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ABSTRACT 

There is a lack of understanding about the potential for remobilisation of polycyclic aromatic 

hydrocarbons (PAHs) residues in soils, specifically after the removal of readily available 

fractions, and the likelihood to cause harm to human and environmental health. Sequential 

solvent extractions, using butanol (BuOH), dichloromethane/acetone, and methanolic 

saponification were used to investigate the time-dependent remobilisation of B[a]P residues in 

aged soils, after removal of readily available or total-extractable fractions. After 120 d of aging, 

BuOH-remobilised B[a]P were small or extremely small ranging from 2.3 ± 0.1 mg/kg to 4.5 

± 0.5 mg/kg and from 0.9 ± 0.0 mg/kg to 1.0 ± 0.1 mg/kg, after removal of readily available 

and total-extractable fractions, respectively. After removal of readily available fractions, the 

remobilisation rates of B[a]P residues were constant over 5 re-equilibration times, as shown by 

first-order kinetics. The amounts of B[a]P remobilised significantly (p < 0.05) decreased with 

aging, particularly in hard organic carbon-rich soils. After 4 years of aging, BuOH- and total-

remobilised B[a]P were generally < 5% of the initially spiked 50 mg/kg. Based on the findings 

of this study, the potential or significant potential for B[a]P NERs in soils to cause significant 

harm to human and environmental health are minimal. 

Keywords: Polycyclic aromatic hydrocarbons, B[a]P, Nonextractable residues, Small 

Remobilisation, Release, Risk assessment 
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1. Introduction 

The impacts and significance of nonextractable residues (NERs) of hydrophobic 

organic contaminants (HOCs), such as polycyclic aromatic hydrocarbons (PAHs), to human 

and environmental health risk assessments of contaminated land are gaining increasing 

attention within the scientific and regulatory communities 1-4. Specifically, whether NERs 

will be remobilised in soil and pose unacceptable levels of risks to human and environmental 

health remain uncertain.  

Sixteen priority PAHs are of global concern as they are ubiquitous and persistent in 

soils, and are potentially toxic and/or carcinogenic. Benzo[a]pyrene (B[a]P) is classified as a 

Group 1 carcinogen and is a key risk-driver for many PAH-contaminated sites 5, 6. The 

potential for B[a]P to persist in soils is predictable given its high Log Kow, very low aqueous 

solubility and volatility, as well as recalcitrance to biodegradation 5, 7. The persistence and 

sequestration of PAHs are key features governing their fate in soils and may affect the 

biological functions and productivity of soils. PAHs are subjected to various physical, 

biological, environmental loss and sequestration processes 8, making it difficult to determine 

total PAH concentrations in soils, particularly for retrospective risk assessments. Non-

exhaustive extractions of PAHs aged in soils often reveal that PAH desorption may be bi- or 

tri-phasic comprising a rapid initial loss phase, and then slow and/or very slow phases that 

remains constant over time under undisturbed environmental conditions 9. Slow desorption of 

PAHs in soil is attributed to mass-transfer limitations resulting from PAH sequestration onto 

and into rubbery or glassy soil organic matter, clay-organic matter matrices and carbonaceous 

materials (such as black carbon), as well as diffusion into micro- and nano-pores 10, 11. 

Detailed sequestration mechanisms are described elsewhere 12, 13. 
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Highly sequestered PAH fractions in soils may result in the failure of remediation 

objectives, particularly where associated concentrations exceed regulatory guideline values 14, 

15. Regulatory concerns regarding the potential risks of these sequestered residues to 

biological receptors may be justified 16, 17. The highly sequestered PAH fraction is usually 

defined as that which is not extractable by exhaustive solvents 18; hence, the term ‘NERs’. 

Previous studies have reported that a fraction of PAH NERs may be extractable by 

methanolic saponification of pre-extracted soils 19. Methanolic saponification cleaves ester or 

ether linkages within the soil matrix, thereby partially releasing entrapped or occluded PAH 

NERs 20. According to Kastner et al. 18, entrapped or occluded NERs (parent compounds and 

metabolites), referred to as Type I NERs, are non-covalently bound to the soil matrix. This 

implies that although Type I NERs have low to high stability, they may be released or 

remobilisable at slow rates and small extents 21. Type II NERs are covalently bound in soils, 

very stable, and less likely to be released. For PAHs, potential covalent binding of 

metabolites to the soil matrix may result in the formation of new compounds that are physico-

chemically different from the original compound. Since Type II PAH NERs may be 

distinguishable from their parent compounds, their classification as NERs of original parent 

compounds may be arguable. Type III NERs are biogenic residues and bear no environmental 

relevance 18. Biodegradation is not a substantial loss mechanism for hydrophobic and 

persistent high molecular weight (HMW) PAHs, such as B[a]P; hence, the bulk of total NER 

in soils from HMW PAHs may be Type I. A lack of understanding of soil-PAH interactions 

and the nature of PAH NERs in soil is a major uncertainty constraining risk-based approaches 

to contaminated land management, and may lead to over- or under-estimation of potential 

health risks that may be associated with exposure to PAH NERs in soils. 



5 

 

Many researchers regard highly sequestered HOC-fractions in soil as unimportant in 

risk assessments 22, because associated desorption rates are slow or very slow and soil half-

lives may last for decades 21, 23. In contrast, a few studies have showed potential for release of 

PAH NERs 19, 24; however, amounts released and associated implications for risk assessment 

are not usually considered 21. In these previous studies, highly sequestered PAH NERs are 

often considered as residues following exhaustive extraction of soils. Exhaustive extractions 

of PAH contaminated soils, a common technique in traditional risk assessment approaches, 

yield total-extractable PAH concentrations considered to be overestimative of risks to human 

and ecological health 22, 25. Risk-based approaches, which are based on bioavailability or 

bioaccessibility concepts, focus on the fractions that are readily available to pose risks to 

human and ecological health 25, 26. Till date, there are no published studies on the potential 

remobilisation of PAH residues in soils resulting from treatments that remove only readily 

available fractions, rather than those that remove total-extractable fractions. Such studies are 

required to minimise the uncertainties associated with risk-based approaches to contaminated 

land management. 

The objectives of this study are to investigate: the time-dependent remobilisation of 

B[a]P residues in soils aged for up to 4 years after the removal of readily available fractions 

(partial removal); the remobilisation kinetics after equilibrating soils from which readily 

available fractions have been removed; and to compare the amounts of PAHs remobilised 

after partial removal and the removal of total-extractable fractions (complete removal) in 

soils. 
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2. Experimental 

2.1. Chemicals 

Analytical grade B[a]P (> 96% purity) was obtained as crystalline solid from Sigma 

Aldrich Pty Ltd., Sydney, Australia. Also sourced from the same supplier were p-Terphenyl-

d14, analytical grade acetone (Ace), acetonitrile (ACN), 1-butanol (BuOH, density = 0.81 

g/mL, ≥ 99.4%), dichloromethane (DCM), methanol (MeOH, HPLC Grade), toluene (Tol, 

99.8%), potassium hydroxide (KOH) and silica sand. Hexane (Hex, HPLC grade) was 

purchased from Fisher Scientific, Loughborough, UK. 

2.2. Design  

Three air-dried soils I (Kurosol), M (Ferrosol) and B (Black Vertosol) were collected 

from a depth of 5 – 20 cm from the Adelaide Hills, South Australia, Mount Tamborine and 

Beaudesert, Queensland respectively. Soils properties were presented previously 27. Soil I is 

sandy loam (10.7% Clay, 4.3% TOC), soil M is sandy-clay-loam (21.2% Clay, 7.4% TOC) 

and soil B is sandy-clay-loam (30.9% Clay, 3.5% TOC) (USDA textural classification). The 

contents (%) of soft- and hard-organic carbon (OC), and black carbon (BC)-rich materials 

were determined 21. Air-dried soils were sieved through a 2 mm sieve, spiked with 50 mg/kg 

B[a]P, and wetted to their field moisture contents (25% to 40% on dry weight basis) 27. Only 

B[a]P spiked soils aged in the dark for 120 d and 4 years were used. Silica sand was 

concurrently spiked and used as a reference material to monitor spike recovery after aging. 

Soil subsamples (n = 18 or n = 8) were collected and dried at 37.5 oC after each aging time. 

For the removal of readily available B[a]P fractions (A in Fig. 1), subsamples of soils (n = 

18) were subjected to a mild BuOH extraction following quality control and quality assurance 

procedures described previously 27. The resulting soil residues were then divided into 6 

batches (n = 3) according to the design in Fig. 1.  
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Fig. 1. Experimental design 
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The replicates did not show significant between-batch differences (p > 0.05) in their BuOH 

extractabilities (data not shown). 

The first batch (n = 3) of the BuOH-extracted soil samples was subsequently extracted 

with DCM/Ace to remove B[a]P fractions that were not extractable by BuOH. The pre-

extracted soils (NERs after DCM/Ace extraction) were further subjected to methanolic 

saponification (MeKOH). The remaining batches, i.e. 2, 3, 4, 5 and 6 (Fig. 1), were then kept 

in the dark to re-equilibrate at 25.5 ± 1.0 oC for 3, 7, 14, 21, and 30 d, respectively, for 

modelling of remobilisation kinetics.  

For the removal of total-extractable B[a]P fractions (B in Fig. 1), only soils aged for 

120 d were used. Subsamples (n = 8) were sequentially extracted with BuOH and DCM/Ace 

27. The pre-extracted soils were each divided into 2 batches (n = 4). The first batches of soils 

were extracted with MeKOH, while the second batches of soils were kept in the fume hood 

overnight and rewetted to field moisture contents, and re-equilibrated in the dark for 30 d. 

After re-equilibration (REQ) of soils (A and B in Fig. 1), soils were again sequentially 

extracted with BuOH and DCM/Ace, and MeKOH. Blank soils were also treated in a similar 

manner. All percentage extractability calculations were based on the initial amounts of B[a]P 

spiked into the soil (50 mg/kg), unless otherwise specified. 

Extractability (%) = (
Amount of B[a]P Extracted by Solvent (mg) 

Amount of B[a]P Spiked into Soil (mg)
) X 100% (1)  

Remobilisation refers to the additional amounts of B[a]P extractable by BuOH, or by a 

combination of BuOH and DCM/Ace (total remobilisation), after REQ. The amounts of 

B[a]P released after the removal of readily available fractions were fitted to a first-order 

exponential decrease model as described previously 21. 
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2.3. Determination of Butanol-, Total-, and MeKOH-extractable B[a]P.  

Soils were extracted with 1-BuOH following a previously described procedure with 

some modifications 27. In the modified procedure, the butanolic supernatant was not decanted 

following centrifugation. Instead, a 2 mL aliquot of the supernatant was transferred into a 

clean glass vial, vacuum-concentrated, redissolved in ACN, and filtered through 0.45 µm 

PTFE syringe filters before transfer into 2 mL amber HPLC vials for analysis. After BuOH 

extraction, soils were extracted with 3 mL DCM/Ace (1:1, v/v) 27. Total-extractable B[a]P is 

the sum of BuOH- and DCM/Ace- extractable B[a]P. The other operational definitions are 

presented in the SI. After the sequential solvent extractions, NERs were then subjected to 

MeKOH by extracting soils with 10 mL MeOH/2 M KOH (14:1, v/v) 27. 

2.4. HPLC Analysis of B[a]P 

The concentrations of B[a]P were determined with an Agilent 1100 Series HPLC 

equipped with a fluorescence detector (excitation wavelength = 230 nm and emission 

wavelength = 460 nm) as in described previously 27. 

2.5. Data analysis 

Extractability data were statistically analysed with SPSS (IBM Corporation, version 24) 

and graphing was by Origin (Microcal Software Inc., Northampton, MA, USA, version 6). 

No data transformation was applied. There were 3 independent and 2 or more outcome 

variables. The independent variables included: soil type (3 nominal categories); aging time (2 

nominal categories); and the procedures for removing extractable fractions (i.e. partial or 

complete). The outcome variables were BuOH, DCM/Ace, total, and MeKOH extractability 

(mg/kg or %). A 95% significance level was used. One-way ANOVA was used to test 

between-group differences with Tukey’s post hoc test where equal variance is assumed and 
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Games Howell’s test where equal variance is not assumed 28. Student’s t test was used for 

pairwise comparisons of independent samples. 
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3. Results and discussion 

3.1. Spike recovery and data variability 

Spike recovery of B[a]P from silica sand was > 95% throughout the study, showing that 

B[a]P losses during laboratory procedures were minimal. Total extractability (i.e. BuOH+ 

DCM/Ace extractability) of B[a]P 2 d (day 0) after spiking ranged from 78.5% (soil B) to 

95.9% (soil M) and agreed with a previous study that used same soils 27, 29. After MeKOH, 

complete mass balance (≥ 100%) was obtained, except in soil B where the mass balance was 

88.9 ± 8.5%. At 120 d of aging, total extractability ranged from 53.2 ± 2.2% (soil B) to 80.0 

± 9.9% (soil M), whereas it ranged from 63% (soil B) to 86% (soil M) after MeKOH. 

Average standard deviation in B[a]P extractability was generally below 5%. Decreases in the 

recovery of PAHs due to the effects of aging and sequestration in soils, and variations due to 

soil properties, are well known 29-31. Other studies have reported comparable decreases in 

total extractability from 100 to 80% over 200 d of aging using Soxhlet extraction 32, and 83 to 

73% after 170 d of aging using a DCM-soxtec extraction technique 20. In sterile conditions, 

14C-B[a]P in aged soil was not completely recovered 20. The decrease in B[a]P extractability 

with aging was attributed to sequestration effects, although minimal losses from 

biodegradation may not be disregarded. 

3.2. Extractability and aging of B[a]P in soils prior to re-equilibration 

All soils showed substantial decrease (p < 0.05) in B[a]P extractability after aging. 

Butanol extractability has been used to assess PAH bioaccessibility in soils for human and 

ecological health risk assessments 29, 33-35. Prior to REQ (day 0), BuOH extractability ranged 

from 16.2 ± 0.8 mg/kg (soil B) to 26.4 ± 1.0 mg/kg (soil I) at 120 d of aging (Fig. 2A), and 

0.28 ± 0.03 mg/kg (soil B), 2.97 ± 0.38 mg/kg (soil I) and 3.02 ± 0.21 mg/kg (soil M) at 4 

years of aging. Soil B had significantly lower (p < 0.05) B[a]P extractability than the other 
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soils whose extractabilities were similar (p > 0.05). The decreases in B[a]P extractability 

through aging indicate that B[a]P became progressively sequestered in the soil matrix 36, 37. 

Hard OC and clay-sized particle fractions in soils can sequester PAHs 29, 32, 38-40, through 

physical adsorption of PAHs to surfaces and occlusion or entrapment in pores 10, 13, 29, 41. In 

this study, the fractions of hard OC relative to TOC (hard OC/TOC) in soils (0.45 – 0.58), as 

well as the contents of very fine-textured particles (10.7 – 30.9%) may account for the 

differences in B[a]P extractability by BuOH. This is indicated by the strong negative 

relationships between BuOH-extractable B[a]P and hard OC/TOC, and with clay content of 

soils (R2 > 0.9) at 120 d and 4 years of aging in agreement with previous studies 21. These 

strong relationships need to be validated using a wider range of soils. 

 

Fig. 2. Exponential curve-fitting of the cumulative amounts of butanol-extractable B[a]P 

following re-equilibration (A) and the amounts of butanol-remobilised B[a]P after each re-

equilibration time (B). Values are means (n = 3) ± standard deviations. Values are means (n = 

3) ± standard deviations. Note the differences in the Y-axis. 

A B 
R2 = 0.89 R2 = 0.98 
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As with BuOH extractability, DCM/Ace-extractable B[a]P and total extractability 

(BuOH + DCM/Ace) decreased significantly (p < 0.05) after fresh spiking to 120 d of aging, 

and to 4 years of aging (Fig. 3), whereas B[a]P NERs increased (Fig. 3). The 4 year aged soils 

had a decrease in the cumulative total extractability of B[a]P ranging from 81% (soil M) to 

97% (soil B) of the total-extractable B[a]P at 0 d of aging (Fig. 3). Methanolic saponification 

released detectable amounts of highly sequestered B[a]P NERs in the pre-extracted soils (Fig. 

3). Although soil B contained the largest amount of B[a]P NERs after aging (Fig. 3), the 

fraction (%) of B[a]P NERs in pre-extracted soils released by MeKOH was consistently smaller 

in Soil B than in the other soils (Fig. 3), indicating stronger B[a]P sequestration by soil B. Soil 

B had large amounts of hard OC/TOC fractions and clay, and may be expected to strongly 

sequester B[a]P compared to the other soils 10, 42. Strong sequestration of PAHs in soils lead to 

very low PAH extractability 20, 30, particularly in long-term aged soils 23. The low total 

extractability from soil B, 2 d after spiking, further indicates rapid B[a]P sequestration and that 

the extents of sequestration is dependent on soil properties 29, 32, 43. 

3.3. Remobilisation of B[a]P after the removal of readily available fractions in soils 

The aim of BuOH extraction in the sequential extraction scheme was to partially, rather 

than completely, remove the extractable B[a]P fractions as in risk-based approaches to 

contaminated land management 22, 26, 44. The amounts of B[a]P that were then re-extractable or 

remobilised after the removal of readily available fractions in soils are illustrated in Fig. 2. 

Cumulative BuOH extractability of B[a]P slightly increased after 2 d of REQ at 120 d and 4 

years of aging (Fig. 2A), however, the increases were generally not significant (p > 0.05). 

Cumulative total extractability of B[a]P after 2 d of REQ were not significantly different (p > 

0.05) from total extractability prior to REQ (Fig. 3). After 2 d of REQ (Fig. 2), cumulative 

BuOH extractability of B[a]P also remained unchanged (p > 0.05), indicating that the amounts 

of B[a]P remobilised by BuOH plateaued quickly. The constancy of BuOH-remobilised B[a]P 
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after 2 d of REQ was reflected by the curves fitted with the first-order kinetic model (Fig. 2). 

The constancy in B[a]P remobilisation further showed that the rates and extents of decrease in 

the amounts of B[a]P remobilised were unchanged from 2 to 30 d of REQ, further reflecting 

the stability of the sequestered B[a]P. 

 

Fig. 3. Temporal changes in B[a]P extractability and sequestration before and after re-

equilibration. Cum. is cumulative. NER is nonextractable. MeKOH is methanolic 

saponification. Values are means (n = 3) ± standard deviations. Note the differences in the Y-

axis. 

Specifically, BuOH-remobilised B[a]P after 30 d of REQ in soils at 120 d of aging were 

4.5 ± 0.5 mg/kg, 2.4 ± 0.6 mg/kg and 2.3 ± 0.1 mg/kg in soils B, I  and M, respectively (Fig. 

2B). Although the amounts of B[a]P remobilised by BuOH after 120 d in soils were below 9% 

of the initially spiked concentrations (50 mg/kg) or below 13% of the residue after BuOH 

extraction prior to REQ, the effects of hard OC fractions and clay content on B[a]P 
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remobilisation appear anomalously obscured. This anomaly may not be attributed to changes 

in hard OC- or clay-induced interactions on B[a]P extractability given that hard OC/TOC 

fractions and clay contents of soils showed negative relationships with B[a]P extractability by 

BuOH before REQ. Rather, the anomaly may be attributed to the non-exhaustive nature of the 

BuOH extraction 20 as it may underestimate the rapidly desorbing or readily available B[a]P 

fractions in soils 45. The extent to which the readily available B[a]P fractions in soil B (16.2 ± 

0.8 mg/kg) were removed by BuOH prior to REQ may be less efficient than the extents in the 

other soils (25.1 ± 3.6, and 26.4 ± 1.0 mg/kg in soils M and I, respectively). After REQ from 2 

to 30 d, the readily available B[a]P fractions in all soils had equilibrated in the residual 

butanolic solvent (1 mL). Hence, subsequent re-extraction of soil B with BuOH after REQ 

efficiently captured both the readily available B[a]P that was not extractable prior to REQ and 

remobilised B[a]P, which may have resulted in the greater B[a]P extractability 

(remobilisation). 

Sorption and desorption of PAHs may be underestimated during extraction of soils that 

may have not been equilibrated efficiently 46. In this study, the subsequent DCM/Ace-

extractable B[a]P after 30 d of REQ was smaller (p < 0.05) in soil B (5.5 ± 0.4 mg/kg) compared 

to soils I (6.6 ± 0.3 mg/kg) and M (9.2 ± 0.7 mg/kg). Hence, total-remobilised B[a]P after 30 

d of REQ ranged from 29 (soil B) – 43% (soil M) of the residues after BuOH extraction prior 

to REQ. Cumulative BuOH extractability and total B[a]P extractability after REQ at 120 d of 

aging were also significantly smaller (p < 0.05) in soil B than in soils I and M (Figures 2 and 

3). In addition, B[a]P NERs in soils recovered by MeKOH before and after REQ at 120 d of 

aging was smaller (p < 0.05) in soil B than in the other soils (Fig. 3), further reflecting stronger 

B[a]P sequestration of B[a]P in soil B. Further, the fraction of DCM-Ace extractable B[a]P 

relative to the residues obtained following BuOH extraction was again smaller in soil B 

(13.6%) than in soils I (28.9%) and M (35.4%) prior to REQ. This suggested that the potential 
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for B[a]P remobilisation in the sandy-clay-loam soil B was low compared to the other soils. 

Although the sandy-clay-loam soil M had the largest TOC contents, its fraction of soft OC 

relative to TOC content (0.58) was larger than in soils I (0.55) and B (0.42). Considering that 

B[a]P sequestration in soils with large amounts of soft OC are weak 10, 13, 32, the large amounts 

of extractable B[a]P before REQ and potentially remobilisable B[a]P after REQ in soil M were 

reasonable. Soils B and I also contain expandable clays (i.e. montmorillonite) 29; this may 

contribute to stronger B[a]P sequestration resulting in reduced B[a]P extractability and 

potential for remobilisation 47. Hence, the influence of the quantity and quality of TOC, and 

clay, in soils should be considered towards understanding the extractability and potential for 

remobilisation of B[a]P NERs. 

At 4 years of aging, the amounts of B[a]P remobilised by BuOH in soils were extremely 

small (p < 0.01) compared to the amounts remobilised after 120 d of aging (Fig. 2). Butanol-

remobilised B[a]P were 1.1 ± 0.1 (soil M), 0.4 ± 0.2 (soil I), and 0.3 ± 0.0 mg/kg (soil B). This 

suggests that only 3% or less of initially spiked B[a]P (50 mg/kg), or of residues after BuOH 

extraction before REQ, was again re-extractable by BuOH. Total-remobilised B[a]P after 30 d 

of REQ were 6.0 ±  0.2 mg/kg, 1.9 ± 0.2 mg/kg, and 0.9 ± 0.07 mg/kg in soils M, I and B, 

respectively. This further suggests that approximately 2 to 13% of initially spiked B[a]P (50 

mg/kg), or of residues after BuOH extraction conducted before REQ, was re-extractable. In 

addition, the fractions of B[a]P NERs recovered by MeKOH after 30 d REQ were again smaller 

in soil B (1.1%) than in soils I (3.5%) or M (7.5%), as with before REQ (Fig. 3). The extremely 

small amounts of extractable- and remobilised-B[a]P observed in all 3 soils after 4 years of 

aging, particularly in soil B, reflect the influence of aging and soil properties on B[a]P 

sequestration and remobilisation in soils. Slow repartitioning of sequestered B[a]P residues 

during the re-equilibration periods could explain the small amounts of B[a]P NERs remobilised 
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in the soils, and further described below. The extents of potential remobilisation of B[a]P may 

be expected to further decrease or remain constant in soils after extended aging periods 30. 

3.4. Comparison of B[a]P remobilisation in soils after the removal of the readily available 

and total-extractable fractions 

The results obtained after 30 d of REQ at 120 d of aging are presented in Fig. 4. Our 

recent investigations revealed that B[a]P remobilised in soils at 200 d of aging, after 

removing total-extractable fractions, were very small (0.7 ± 0.0 to 3.3 ± 0.2 mg/kg) and 

decreased at very fast rates over time 21. In this study, the extractable amounts of B[a]P in 

soils after 4 years of aging before REQ remained very small (Figures 2 and 3), reinforcing the 

effects of aging on B[a]P extractability 21. Investigating the potential remobilisation of B[a]P 

after removing total-extractable fractions in soils aged for 4 years was not justified; hence, 

only the results for 120 d of aging and at 30 d of REQ are presented (Fig. 4).  

Clearly, the amounts of B[a]P remobilised after the removal of the readily available 

fractions in soils were greater than those remobilised after the complete removal of 

extractable fractions (Fig. 4), particularly total-remobilisable B[a]P. This is reasonable since 

more highly sequestered fractions were removed by the exhaustive extraction prior to REQ, 
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compared to the mild extraction.

 

Fig. 4. Amounts of B[a]P remobilised following the removal of readily available and total-

extractable B[a]P fractions in soils. Values are means (n = 3) ± standard deviations. 

However, the amounts of BuOH-remobilised B[a]P after the removal of readily available 

fractions in soils at 4 years of aging were similar (p > 0.05) to the amounts remobilised after 

removal of total-extractable fractions in soils at 120 d of aging. 

Therefore, these results show that it is realistic to assess the risks of potential B[a]P 

remobilisation from long-term contaminated soils based on laboratory measurements of 

readily available concentrations as measured in this study, or the use of other non-exhaustive 

extractions 44, 48. Overall, structured monitoring for potential release of sequestered B[a]P 

from B[a]P-contaminated sites that are managed by risk-based approaches is suggested as 

good practice 49. This is important because the impacts of changing exposure scenarios and 



19 

 

changes in environmental conditions, such as pH, temperature, drying and wetting, freezing 

and thawing, and changes in land-uses on PAH remobilisation in long-term contaminated 

soils are not understood. 

3.5. Proposed slow repartitioning of B[a]P residues following the removal of the readily 

available fractions 

As illustrated in Fig. 5, B[a]P is weakly sequestered within easily accessible sites in 

soils (a), such as on clay surfaces and soft OC 20, during initial soil-B[a]P contact time and 

prior to aging and REQ (‘I’). Hence, large amounts of B[a]P may be solvent-extractable (‘b’, 

‘c’, and ‘d’ in ‘I’). Over time (‘a’ in ‘II’), B[a]P accesses more sequestration sites, diffusing 

into soft OC or may be adsorbed strongly to clay or organo-clay surfaces, and may be 

entrapped in pores or cracks and adsorbed to flat surfaces of (or collapsed pores within) hard 

OC or BC-rich materials through п–п interactions 13. Hence, a mild BuOH extraction of soil 

removes only weakly sequestered B[a]P 50, whereas subsequent DCM/Ace extraction of soil 

(‘b’ in ‘II’) removes highly sequestered B[a]P. Harsh solvents penetrate soil pores causing 

them to swell, and may competitively displace sequestered B[a]P 51. Harsh solvent mixtures, 

such as DCM/Ace, possess greater pore swelling and stronger competitive displacement 

capacities than BuOH 51. Hence, total extractability will be greater than BuOH-extractable 

B[a]P 27. Methanolic saponification (‘c’ in II) partially releases more highly sequestered 

B[a]P from sites where they are physically entrapped 18. The resulting residue after MeKOH 

extraction contain B[a]P that is very highly sequestered; this may be more associated with 

BC-rich materials in soils 10, 12. We have previously reported a strong positive relationship 

between hard OC fractions and BC-rich fractions of these soils (r = 0.98, p = 0.02, n = 4), as 

well as between clay and hard OC/TOC (r = 0.87 and p = 0.13) 21; however, contents of clay 

and hard OC were not multicollinear (R2 = 0.26). 
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Fig. 5. Proposed slow repartitioning of B[a]P after the removal of readily available fractions. a 

is B[a]P-contaminated soil before aging; b is soil residue after mild BuOH extraction that 

removes the readily available fractions; c is NER after DCM/Ace extraction; and d is NER 

after methanolic saponification of soil. 

These observations therefore support the strong B[a]P sequestration in soil B with large 

amounts of clay and hard OC/TOC fractions. Overall, the amounts of B[a]P extractable by 

each of the solvents decreased, whereas the non-extractable fraction increased over time due 

to increasing soil-B[a]P interactions (III). 

Following the re-equilibration (IV and V) of the BuOH-extracted soil (‘c’ in ‘II’ and 

‘III’), sequestered B[a]P may repartition slowly into more readily available compartments in 

soils due to the concentration gradient between sequestered and readily available 

compartments 21. Highly sequestered B[a]P repartition at slow rates (V) 52. After REQ (VI 
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and VII), small amounts of B[a]P residues become re-extractable by BuOH (i.e. readily 

remobilisable B[a]P). Subsequently, DCM/Ace extraction of soil (‘b1’ in VI and VII) 

recovers B[a]P that is not readily remobilisable. Very small amounts of B[a]P residues (‘c1’ 

in VI and VII) may be further released by MeKOH, resulting in residues unlikely to be 

remobilised 18. 

After aging of 120 d and 4 years, strong positive relationships were observed between 

BuOH-remobilised B[a]P after REQ and DCM/Ace-extractable B[a]P prior to REQ (r = 0.88, 

p = 0.02), as well as with MeKOH-extractable B[a]P (r = 0.78, p = 0.07) (Fig. S1). Hence, 

total-remobilised B[a]P showed a stronger relationship with MeKOH-extractable B[a]P after 

REQ than before REQ (Fig. S2). These relationships suggest that B[a]P remobilisation may 

be due to repartitioning of sequestered B[a]P during REQ. Overall, the extremely small 

amounts of B[a]P remobilised, particularly following extended aging (4 years), indicates a 

likelihood for very low remobilisation extents in long-term aged soils. 

3.6. Implications for contaminated land decision-making 

Risk-based approaches to contaminated land management is gaining ground in a 

number of countries 22, 53, 54. However, not all regulators of contaminated lands agree to 

adopting risk-based approaches that rely on contaminant bioavailability or bioaccessibility 

due to associated uncertainties 55, such as the fate of contaminant residues in soils 4. In this 

study, B[a]P remobilisation occurred in soils after 4 years of aging, but the amounts 

remobilised were extremely small (generally < 5% of initially spiked concentration, i.e. 50 

mg/kg) and may be insignificant from a risk assessment perspective. For instance, 

considering the Australian health investigation levels (HILs) of at least 3 mg/kg B[a]P in soils 

56, all contaminated soils used in this study passed the criteria based on the amounts of 

BuOH-remobilised B[a]P from soils after 4 years of aging. Generally, the HIL criteria was 

also passed where total-remobilised B[a]P was used in the soils. In this regard, the potential 
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risks to human and environmental health are minimal and acceptable. These observations are 

a strong case for greater focus on readily available B[a]P fractions, rather than total-

extractable fractions, in the risk assessment of long-term B[a]P-contaminated soils. 
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4. Conclusions 

To the best of our knowledge, this study is the first report of the extremely small 

remobilisation of B[a]P residues after the removal of readily available fractions in long-term 

aged soils, including associated remobilisation kinetics and associated implications for 

contaminated land decision-making. After removal of readily available B[a]P fractions, only 

small amounts of B[a]P residues were remobilised through slow intercompartmental 

repartitioning of sequestered fractions into readily available fractions. However, amounts of 

B[a]P that were remobilised decreased significantly over time. At each aging time, 

remobilisation kinetics of B[a]P residues through the re-equilibration times investigated 

remained unchanged indicating that the small amounts of B[a]P residues which were 

remobilised remained stable with time. After extended periods of aging, the amounts of B[a]P 

remobilised in soils after prior removal of readily available or total-extractable fractions were 

generally extremely small, indicating no significant potential to pose risks to human and 

environmental health. Therefore, it is reasonable to consider readily available fractions of 

B[a]P in the risk assessment of long-term contaminated soils, rather than total-extractable 

fractions. 
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