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Abstract

Stochastic dominance provides an effective tool to characterize indi-

viduals’ risk attitudes in decision making under risk by comparing

risky prospects. The emergence of the cumulative prospect theory

(CPT), developed by Kahneman and Tversky (1979) and Tversky

and Kahneman (1992), provides a prominent alternative to the ex-

pected utility theory. This thesis aims to provide a choice-theoretic

characterization for risk changes and risk attitudes under CPT using

a stochastic dominance approach.

This thesis identifies a set of stochastic dominance conditions to gen-

eralize the notions of increase in risk, strong risk aversion, downside

risk and downside risk aversion to accommodate risk aversion, risk

seeking and downside risk aversion preferences in the CPT paradigm.

This study further investigates risk measures implied by risky choice

behaviour of CPT decision makers. This thesis also extends the anal-

yses to general reference point and inverse S-shaped value functions.

The stochastic dominance conditions identified in this thesis provide

an approach for risk preference elicitation in the paradigm of CPT

without prior knowledge on the shape of value functions or probability



weighting functions, which complements to existing risk preference

elicitation approaches. Consequently, the equivalence of risk measures

and stochastic dominance conditions enables risk preference elicitation

through pairwise comparisons of risky prospects. The implications of

this work in experimental studies and optimal decision problems (e.g.

portfolio choice) shed new light into the application of CPT.
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Chapter 1

Introduction

Expected utility theory (EUT) has reigned several decades as a dominant norma-

tive and descriptive model of decision-making under risk (Levy 1992). Extensive

empirical studies have revealed that individuals’ actual decisions may systemati-

cally violate the axioms of EUT. The emergence of prospect theory, proposed by

Kahneman and Tversky (1979), and then further enhanced as cumulative prospect

theory (CPT) by Tversky and Kahneman (1992), provides one of the most promi-

nent alternatives to EUT as a descriptive model for decision making under risk,

and has wide applications in operations management, economics and finance (see,

e.g., Barberis et al. 2001, Kyle et al. 2006, He and Zhou 2011a, Schweitzer and

Cachon 2000, Nagarajan and Shechter 2013, Long and Nasiry 2014).

In the EUT paradigm, the risk preference is fully represented by the curvature

properties of a utility function with concavity (convexity) for risk averters (risk

seekers). In the CPT paradigm, the risk preference is represented simultane-

ously by a reference-dependent value function and a pair of probability weighting

functions with certain curvature properties.
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In an effort to bridge EUT and CPT, a number of studies have strived to pro-

vide choice-theoretic characterizations for CPT by linking stochastic dominance

conditions with the curvature properties of CPT value functions and probabil-

ity weighting functions. The notion of stochastic dominance, defines partial or-

dering relationships between probability distributions (risky prospects), provides

an effective way to reveal risk preference through pairwise comparisons of risky

prospects. To capture risk seeking (in losses) and risk aversion (in gains), Levy

and Wiener (1998) introduce the notion of prospect stochastic dominance. They

show that when decision makers with S-shaped value functions impose a single

rank-dependent cumulative weighting function on risky prospects, their prefer-

ences agree with prospect stochastic dominance if and only if the weighting func-

tion is S-shaped. Levy and Levy (2002) propose another stochastic dominance

rule, called Markowitz stochastic dominance, for all inverse S-shaped value func-

tions in an attempt to interpret the experimental result for mixed prospects that

cannot be interpreted by CPT. To further account for the pair of nonlinear sign-

dependent probability weighting functions under CPT, Baucells and Heukamp

(2006) identify a stochastic dominance condition which, in addition to Levy and

Wiener (1998), imposes additional restrictions on the pair of prospects under

comparison and they show that the corresponding preference representation is a

combination of S-shaped value functions and a special class of inverse S-shaped

probability weighting functions.

More recently, Schmidt and Zank (2008) investigate the relationship between

(strong) risk aversion and CPT. They show that strong risk aversion holds un-

der CPT if and only if the utility function is concave in the domains of losses
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and gains, respectively, and the weighting functions for losses (gains) is concave

(convex). This, however, does not capture the risk seeking preference observed

in the experimental studies in CPT. This thesis aims to generalize the notion of

increase in risk and strong risk aversion to accommodate both risk aversion and

risk seeking preferences in the CPT paradigm.

Intuitively, the curvature characteristics of CPT provide a natural linkage between

CPT and downside risk aversion, especially when the reference point is related to

the return target and the downside risk is measured by expected losses. Empirical

studies show a tradeoff exists between skewness (or downside risk) and variance

(or overall risk): risk averters may be willing to accept a lower expected return,

or a higher level of variance, if the distribution of the return is more skewed to

the right (smaller downside risk) (see, e.g., Garrett and Sobel (1999), Harvey and

Siddique 2000 and Chiu 2005), which underscores the importance of incorporating

downside risk into the characterization of risk taking behaviour. To the best of

my knowledge, however, there has so far been no attempt to provide a general

choice-theoretic characterization of the tradeoff between overall risk and downside

risk for CPT. This thesis aims to fill the gap.

The notion of risk plays a critical role in many problems in operations manage-

ment and finance. A number of studies have attempted to define and quantify

risk. Value-at-risk (VaR) and conditional value-at-risk (CVaR) are two risk mea-

sures that are commonly used by practitioners, especially by financial institutions

(Levy 2016). Ogryczak and Ruszczynski (2002) first show that VaR is equivalent

to first-degree stochastic dominance, and CVaR is equivalent to second-degree

stochastic dominance. Ma and Wong (2010) use a stochastic dominance approach
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to provide a decision theoretic characterization for VaR and CVaR. Inspired by

the linkage between risk measures and stochastic dominance conditions in the

paradigm of EUT, this thesis investigates the risk measure that can be implied

by decision makers with CPT risk preferences, and provides a behaviour founda-

tion for various distortion risk measures in CPT.

In summary, the objective of this thesis is to provide a choice-theoretic foundation

of risk change and risk attitudes in the paradigm of CPT. In particular, this thesis

aims to address the following research questions:

• How should increase in risk and risk aversion be characterized in CPT?

• How should downside risk and downside risk aversion be characterized in

CPT?

• What is the risk measure that can be implied by decision makers with CPT

risk preferences?

These three research questions correspond to three elements in this thesis. Firstly,

in order to address increases in risk and risk aversion, the thesis extends the

notions of increase in risk and strong risk aversion to the CPT paradigm by

identifying a set of SD rules and provide choice-theoretic characterizations for

the preference towards these SD rules under CPT. To this end, this thesis first

generalizes prospect stochastic dominance for S-shaped value functions by ac-

counting for probability weighting functions. Inspired by Schmidt and Zank

(2008), who consider the mean-preserving spread in CPT, this thesis introduces a

new stochastic dominance condition which combines mean-preserving spread and
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mean-preserving contraction, to elicit the risk preferences of strong risk aversion

in gains and strong risk seeking in losses. In addition, to characterize the inten-

sity of risk aversion, this study generalizes the analysis of Diamond and Stiglitz

(1974) by introducing a compensated adjustment stochastic dominance condition

to capture the trade-off between mean and variance.

Secondly, to address increases in downside risk and downside risk aversion, this

thesis first generalizes the notion of increase in downside risk from EUT to CPT,

and defines the preference against such risk changes as prospect downside risk

aversion. Then, the thesis establishes the stochastic dominance condition under

which the degree of prospect downside risk aversion can be characterized by the

prudence measure. The thesis also discusses some common statistical downside

risk measures such as semi-variance, third-central moment, and strong skewness,

and extends the analyses to inverse S-shaped value functions.

Finally, in order to address the risk measures implied by risky behaviour of CPT

decision makers, this thesis establishes the connections among several distortion

risk measures, stochastic dominance and choices made by decision makers with

CPT risk preferences, to provide behaviour foundations for those risk measures

in the paradigm of CPT. The thesis proposes range value-at-risk (RVaR), that

are defined as the average level of VaR level across a range of loss/return proba-

bilities, to characterize prospect stochastic dominance. The relationship between

stochastic dominance rules and risk measures in turn provides the choice-theoretic

foundation for CPT risk preferences, and captures the curvature properties of

both value functions and probability weighting functions.
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To further explore economic implications for the stochastic dominance rules and

risk measures, the thesis perform comparative statics analysis with the respect to

the stochastic dominance conditions and risk measures for CPT-value maximizing

problems. The analyses can be further extended to preferences with general

reference points and inverse S-shaped value functions.

The contribution of the thesis is fourfold:

• First, the thesis generalizes the notion of increases in risk and downside risk

to CPT by identifying a set of stochastic dominance conditions to provide

choice-theoretic characterizations for strong risk aversion and downside risk

aversion, thereby enhancing the theoretical foundation of CPT;

• Second, this thesis provides a theoretical guideline for risk preference elici-

tation under CPT. In particular, the stochastic dominance conditions iden-

tified in this thesis can serve as a guideline for the design of experiments

testing the joint hypotheses on the curvature properties of value functions

and probability weighting functions;

• Third, the stochastic dominance conditions identified in this thesis shed

new light into the applications of CPT. The thesis investigates the effect of

changes in risk and risk attitudes on optimal solutions of expected utility

maximization problems such as portfolio choice problems, thereby demon-

strating the potential applications to more general optimal decision prob-

lems;

• Fourth, this thesis investigates robust risk measures in the paradigm of CPT

6



and adds to the literature by establishing various logical connections among

risk measures, stochastic dominance, and choices made by decision makers

with CPT risk preferences.

The remainder of the thesis is organized as described below.

Chapter 2 provides a brief literature review and collects some mathematical no-

tions and definitions that will be used in this thesis.

Chapter 3 focuses on increases in risk and strong risk aversion in CPT.

Chapter 4 addresses downside risk in CPT.

Chapter 5 investigates robust risk measures in CPT.

Chapter 6 concludes the thesis.

All technical proofs are provided in the appendices.
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Chapter 2

Background and Related Work

This chapter aims to provide a brief literature review and to collect some math-

ematical notions that will be used in this thesis. Section 2.1 reviews the mea-

surement of risk and downside risk. Section 2.2 collects some notions of risk

preference/attitudes and comparative statics for risk aversion and downside risk

aversion. Section 2.3 provides an overview of cumulative prospect theory. Section

2.4 revisits some notions of stochastic dominance.

2.1 On the Measurement of Risk

The notion of risk plays a critical role in many problems in operations manage-

ment and finance. A number of studies have attempted to define and quantify

risk. There are two major dimensions of risk identified in the literature: the

probability of occurrence of loss and the amount of potential loss (Brachinger

2002). In his seminal work, Markowitz (1952a) proposes that variance can used

as a proxy for overall risk in portfolios and that investors make tradeoffs between
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2.1 On the Measurement of Risk

mean (expected return) and variance of portfolios. Variance or standard devia-

tion are the most commonly used risk measures and the mean-variance rule is

by far the most popular investment decision rule that has been widely adopted

by both academics and practitioners (Levy 2016). The mean-variance rule pro-

vides a foundation for the development of the Capital Asset Pricing Model by

Sharpe (1964) and Lintner (1965). It has long been criticized, however, on the

basis that the variance is not consistent with investors’ actual perception of risk

since it allocates the weights of negative deviations (undesirable) and positive

deviations (desirable) of returns evenly. A large body of empirical studies in fi-

nance, economics and psychology have argued that individuals view dispersions

of returns in an asymmetric manner: losses weighs more heavily than gains (see,

e.g., Markowitz 1959, Kahneman and Tversky 1979).

It has been argued that downside risk is a more appropriate risk measure because

investors are more concerned about outcomes below the target return. Since then,

various downside risk measures have been proposed. Markowitz (1959) proposes

semi-variance, which takes into account only deviations below the mean or a

selected critical value. Roy (1952) was the first to model downside risk formally,

in what is known is known as ‘safety first’ technique. In his model, investors

are assumed to minimize their risk and would prefer the principle of safety first.

Similar to semi-variance, this measure only looks at the lower tail rather than the

entire distribution of returns.

Value-at-risk (VaR) and conditional value-at-risk (CVaR) are two downside risk

measures that are commonly used by practitioners, especially by financial insti-

tutions (Levy 2016). Jorion (2000) define the VaR of a portfolio as the worst
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2.1 On the Measurement of Risk

loss over target horizon such that there is a low, pre-specified probability that

the actual loss will be greater. VaR can be either calculated from the probabil-

ity distribution of returns (gains) or the probability distribution of losses (i.e.,

the negative gains). Mathematically, for a portfolio investment over a period

with return (gain) X, VaR at 100×α% risk tolerance level (or, equally speaking,

100×(1−α)% confidence level) is defined as the cutoff loss such that the probabil-

ity of suffering a greater loss is less than 100×α% (i.e., the loss at the lower 100αth

percentile of the distribution of X): V aRα(X) = sup{a|P (−X > a) ≤ α}. For

example, a portfolio having a 95% one-day VaR of $100 million implies that there

is only a 5% chance that the portfolio will lose more than $100 million over the

next day.

To regulate definitions of risk measures, Artzner et al. (1999) propose the coherent

risk measure. A risk measure ρ is coherent if the following four axioms hold.

(1) ρ(X) ≤ ρ(Y ) if X ≤ Y , (Monotonicity);

(2) ρ(X + a) = ρ(X)− a for any constant a, (Translation invariance);

(3) ρ(λX) = λρ(X) for all λ ≥ 0, (Positive homogeneity);

(4) ρ(X + Y ) ≤ ρ(X) + ρ(Y ), (Subadditivity).

Axioms (3) and (4) together imply that ρ(X) is convex in X. That is, a coherent

risk measure must be convex. It is known that VaR satisfies axioms (1) and (2) but

fails to be subadditive for general loss distributions and is therefore not a convex

risk measure, which makes it difficult to implement in portfolio optimization (see,

e.g., Artzner et al. 1999, Pflug 2000).
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2.1 On the Measurement of Risk

The drawbacks of VaR have led many researchers to propose new risk measures

that are coherent. CVaR is first proposed by Artzner et al. (1997) as an alterna-

tive risk measure, (also called expected shortfall, average VaR, mean excess loss,

expected tail loss or tail VaR). Rockafellar and Uryasev (2000) demonstrate the

use of CVaR in portfolio optimization and show that CVaR surpasses VaR com-

putationally. Formally, the CVaR of the random payoff X at the (1 − α)100%

confidence level is defined as CV aRα(X) = E[−X|−X ≥ V aRα(X)], ∀α ∈ (0, 1].

Rockafellar and Uryasev (2002) show that CV aRα(X) can be defined as the min-

imum objective value of the convex optimization problem with V aRα(X) being

the minimizer: CV aRα(X) := inf
{
a+ 1

α
E[(−X − a)+] : a ∈ R

}
. That is, one

can obtain CV aRα(X) and V aRα(X) simultaneously by solving the convex opti-

mization problem in one dimension, which is appealing in computation. Moreover,

Pflug (2000) and Rockafellar and Uryasev (2002) show that CVaR is a coherent

risk measure.

On the other hand, Gneiting (2011) shows that CVaR suffers from backtesting

and thus is not elicitable. Cont et al. (2010) introduce the notion of qualitative

robustness for risk measurement procedure and show that practitioners should

not only focus on the coherence of risk measures. According to Cont et al.

(2010), practitioners should consider the necessity of the sub-additivity axiom

proposed by Artzner et al. (1999) as it is in conflict with robustness for spectral

risk measures. To overcome the non-robustness of CVaR, Cont et al. (2010)

propose range value-at-risk (RVaR) as an alternative risk measure. RVaR can be

seen as the average level of VaR level across a range of loss/return probabilities.

RVaR is in general a non-convex risk measure. Embrechts et al. (2018) show that
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2.2 Risk Preference

RVaR satisfies a special form of sub-additivity and can be applied to risk sharing

problems.

2.2 Risk Preference

It has been accepted that risk is different from risk preference. Brachinger (2002)

states risk preference as “the preferability of an alternative under conditions of

risk and it is a matter of preference.” Under EUT, the risk preference of a decision

maker is fully characterized by the curvature properties of a utility function with

concavity for risk averters and convexity for risk seekers.

In the EUT paradigm, risk aversion can be defined in both the weak sense and

the strong sense. Weak risk aversion holds if the expected value of a prospect

for certain is always preferred to the prospect itself, which is equivalent to the

increasing concavity of the utility function of a decision maker. Hence weak

risk aversion can be characterized by second-degree stochastic dominance (Pratt

and Zeckhauser 1987). Strong risk aversion holds if a decision maker always

dislikes increase in risk in the sense of mean-preserving spread (Rothschild and

Stiglitz 1970). To characterize the intensity of risk aversion in the sense of the

Arrow-Pratt measure of absolute risk aversion, defined as Ru(x) = −u′′(x)/u′(x),

Diamond and Stiglitz (1974) define the mean utility preserving increase in risk

as a compensated adjustment of mean-preserving increase in risk.

Since the 1980s, a number of studies have attempted to provide a choice-theoretic

foundation for downside risk preference. Empirical studies show a tradeoff exists

between skewness (or downside risk) and variance (or overall risk): risk averters
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2.2 Risk Preference

may be willing to accept a lower expected return, or a higher level of variance,

if the distribution of the return is more skewed to the right (smaller downside

risk) (e.g., Garrett and Sobel (1999), Harvey and Siddique 2000 and Chiu 2005),

which underscores the importance of incorporating downside risk into the char-

acterization of risk taking behaviour.

In an empirical experiment, Mao (1970) shows that comparing two prospects,

(1, 3/4; 3, 1/4) and (0, 1/4; 2, 3/4), decision makers prefer the former one, which

cannot be interpreted by risk aversion. Note that the second prospect in fact

represents a downside risk increase from the first one. Using this as evidence

of the importance of downside risk preference, Menezes et al. (1980) identify

downside-risk aversion with convexity of the marginal utility function (u
′′′
> 0)

and show that a downside risk increase leads to a decrease of the expected utility

under such a utility function. Menezes et al. (1980) introduce the mean and

variance preserving downside risk increase to describe the change in risk that

shifts probability to the lower tail (negative skewness) while preserving mean

and variance. Meanwhile, it has been recognized by Leland (1968) and Sandmo

(1970) that the positive third derivative of an utility function can also be used to

characterize the precautionary saving motive in consumption theory, where the

precautionary saving motive is a behaviour that uncertainty about future income

will reduce current consumption and increase current saving. There is, therefore a

natural linkage between precautionary saving motive and downside risk aversion.

To characterize the intensity of downside risk aversion, there are six different

downside risk aversion measures proposed in the literature. The most well-known

measure for downside risk aversion is prudence. Kimball (1990) introduces the
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2.2 Risk Preference

notion of prudence, defined as Pu(x) = −u′′′(x)/u′′(x), as a measure of downside

risk aversion and show that this index is directly related to precautionary saving.

Chiu (2005) comments that although it was known that there is a linkage between

the concepts of prudence and downside-risk aversion, their precise relationship

had not been clarified formally. To characterize their relationship, Chiu (2005)

identifies a stochastic dominance condition under which an individual’s choice

between risky alternatives can be determined by his prudence measure, which

provides a general choice-theoretic characterization of the tradeoff between overall

risk and downside risk. Chiu (2005) shows that for risk averse decision makers,

the greater the prudence, the greater the intensity of downside risk aversion.

Although the properties of prudence have many useful contexts in downside risk

aversion, and it is recognized as a measure of downside risk aversion, both Keenan

and Snow (2002) and Modica and Scarsini (2005) argue that the degree of local

downside risk aversion should be measured by u′′′/u′. Modica and Scarsini (2005)

follow the analogue of Ross (1981) but use third derivatives and third-degree

stochastic dominance between variables instead. They propose u′′′/u′ by noting

two major properties: (a) a decision maker should be ready to pay a higher

amount to insure against a risk with higher skewness if he has a higher local

measure than another decision maker; (b) they prove that the decreasing property

of u′′′/u′ is equivalent to the concept of local risk vulnerability (Gollier and Pratt

1996), where risk vulnerability refers to any unfair background risk that will

increase risk aversion. They also note that, however, this measure could not

translate a local comparison into a global comparison.

Crainich and Eeckhoudt (2008) also propose u′′′/u′ as a measure for the inten-
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sity of downside risk aversion. They follow the approach of Pratt (1964) and

establish that this measure, rather than contrasting with the prudence measure,

complements it, since the properties of u′′′/u′ are largely similar to the classical

Arrow-Pratt absolute risk aversion. They show that a concave transformation

function with a positive third derivative will increase the intensity of downside

risk aversion in the sense of u′′′/u′, but the same does not apply to the prudence

measure. In particular, they show that such a transformation function (concave

with a positive third derivative) will increase the concavity of u and the con-

vexity of u′, and hence increase the intensity of downside risk aversion in the

sense of u′′′/u′. While the prudence measure is directly related to precautionary

saving (Kimball 1990), Crainich and Eeckhoudt (2008) show that u′′′/u′ can be

interpreted as “a component of a price in a simple general equilibrium of savings”.

It is recognized that the positive third derivative of an utility function is a neces-

sary, but not sufficient condition for decreasing absolute risk aversion. (Liu and

Meyer 2012) propose decreasing absolute risk aversion as a measure for down-

side risk aversion. Keenan and Snow (2012) introduce the Schwarzian measure,

defined as Su = −(Ru)
′ − 1

2
R2
u, where Ru is the Arrow-Pratt absolute risk aver-

sion as defined above, as an alternative measure for the intensity of downside

risk aversion. They show that the Schwarzian measure can be used to charac-

terize the general class of mean and variance preserving increase in downside

risk. Huang and Stapleton (2014) introduce cautiousness as a new downside risk

aversion measure which provides a linkage between cautiousness and skewness

preference. They show that a decision maker with more cautiousness is more

likely to buy options with the aim of pursuing a higher skewness of his portfolio,
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where cautiousness is defined as the rate of change in risk tolerance by Wilson

(1968) in his theory of syndicates.

2.3 Cumulative Prospect Theory

Prospect theory, originated from Kahneman and Tversky (1979), has emerged as

a prominent alternative to EUT. In their seminal paper, Kahneman and Tversky

(1979) use experimental studies to show that the actual decisions of individuals

under risk may systematically violate the axioms of expected utility theory. To

describe the risk preferences observed in choice experiments better, they propose

prospect theory under which utilities or values are defined over gains and losses

related to a reference point rather than over final wealth (reference dependence,

which was originally proposed by Markowitz 1952a), the value function is concave

for gains and convex for losses (diminishing sensitivity) and steeper for losses

than for gains (loss aversion) with a nonlinear transformation of the probability

scale that overweights small probabilities and underweights moderate and high

probabilities.

Prospect theory may violate first-degree stochastic dominance and it is not readily

extended to prospects with a large number of outcomes (Tversky and Kahneman

1992). To overcome this shortcoming, Tversky and Kahneman (1992) develop cu-

mulative prospect theory (CPT) by incorporating a pair of cumulative weighting

functions (also called capacities) that transform cumulative, rather than indi-

vidual probabilities of gains and losses into decision weights. CPT belongs to

the class of rank-dependent utility models introduced by Quiggin (1981, 1982),
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which generalize expected utility theory by incorporating weighting functions

that transforms cumulative probabilities into decision weights. CPT is a rank-

and sign-dependent utility (RDU) model (Luce 1991; Luce and Fishburn 1991;

Luce and Marley 2005) that incorporates reference dependence and sign depen-

dence (a pair of probability weighting functions for gains and losses respectively).

The key features of CPT include:

(1) individuals make decisions based on relative gains and losses against a cer-

tain reference point rather than total wealths (reference dependence);

(2) individuals are risk averse regarding gains and risk seeking regarding losses

(S-shaped value function and diminishing sensitivity);

(3) individuals are more sensitive to losses than to gains (loss aversion); and

(4) individuals allocate decision weights to values of outcomes with a pair of

weighting functions that transform the cumulative distribution of losses

and the decumulative distribution of gains respectively, which generalizes

the rank-dependent utility introduced by Quiggin (1982) to accommodate

the sign and reference dependence of CPT.

Ever since then, successive efforts have been made to provide axiomatic character-

izations for CPT (see, e.g., Wakker and Tversky 1993, Chateauneuf and Wakker

1999, Zank 2001, Wakker and Zank 2002, Schmidt 2003).

According to Tversky and Kahneman (1992), the risk preference under CPT is

jointly represented by a value function and a pair of probability weighting func-

tions. The non-decreasing S-shaped value function is defined over a monetary gain
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or loss (change in wealth with respect to a reference point r and a pair of probabil-

ity weighting functions w−(·) and w+(·) that transform the objective probabilities

(cumulative distribution functions) to decision weights for losses and gains respec-

tively, with boundary conditions w−(0) = w+(0) = 0 and w−(1) = w+(1) = 1.

In addition, the gain weighting function equals the dual of the loss weighting

function (i.e., w−(p) + w+(1 − p) = 1) for all p ∈ [0, 1]. A number of studies

have attempted to characterize the shape of probability weighting functions us-

ing various methodologies (see, e.g., Prelec 1990, Tversky and Wakker 1995, Wu

and Gonzalez 1996). A typical example of S-shaped value function and inverse

S-shaped probability weighting function is provided by Tversky and Kahneman

(1992):

v(x) =


xα, if x ≥ 0,

−λ(−x)β, if x < 0,

and


w+(p) = pγ

(pγ+(1−p)γ)1/γ
,

w−(p) = pδ

(pδ+(1−p)δ)1/δ ,

with 0 < α < 1, 0 < β < 1, λ ≥ 1, and γ, δ ≥ 0.28 Wakker 2010.

In discrete cases, a prospect F : (x1, p1; ...;xn, pn) with a < x1 < ... < xk−1 <

xk = 0 < xk+1 < ... < xn < b is evaluated by VF =
∑n

i=0 πiu(xi), where the

decision weights πi are defined as:

πi =


w+(pi + · · ·+ pn)− w+(pi+1 + · · ·+ pn) if i ≥ k,

w−(p1 + · · ·+ pi)− w−(p1 + · · ·+ pi−1) if i < k.

Without loss of generality, the reference point is normalised to zero and u(0) = 0.

Positive outcomes are defined as gains and negative outcomes are losses. When

all the outcomes are positive, CPT coincides with rank-dependent expected utility
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(Quiggin 1981; Quiggin 1982; Yaari 1987; Green and Jullien 1988; Wakker 1989;

Quiggin and Wakker 1994).

2.4 Stochastic Dominance

Stochastic dominance (SD) provides a powerful alternative decision rule for risk

and risk preferences within expected utility theory. The notion of SD describes

partial ordering relationships between probability distributions (risky prospects)

by pairwise comparisons, providing a way to divide the set of feasible risky

prospects into efficient and inefficient sets (Levy 2016). The early contributions

of Hadar and Russell (1969), Hanoch and Levy (1969), Rothschild and Stiglitz

(1970) and Whitmore (1970) paved the way for employing the SD rule in decision

making under risk. In what follows, we briefly review some notions of SD that

will be used in this paper and the corresponding utility characterization.

The first-degree stochastic dominance (FSD) proposed by Hadar and Russell

(1969) provides a choice-theoretic foundation for risk preferences with nonde-

creasing utility functions (for choice rationality). The notion u
′ ≥ 0 represents

the weakest assumption in respect to the risk preference, that the decision mak-

ers like more money to less. Formally, F dominates G by first-degree stochastic

dominance, denoted by F �FSD G, if F (x) ≤ G(x) for all x.

The second-degree stochastic dominance (SSD) rules proposed by Hanoch and

Levy (1969) and Rothschild and Stiglitz (1970) provides a choice-theoretic foun-

dation for risk preferences with non-decreasing and concave functions (for risk

aversion). Formally, F dominates G by second-degree stochastic dominance, de-
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noted by F �SSD G if
∫ x
−∞ F (z)dz ≤

∫ x
−∞G(z)dz for all x.

Levy and Wiener (1998) introduce the corresponding second-degree stochastic

dominance condition for risk seekers to characterize risk preferences with non-

decreasing and convex functions. Formally, F dominates G by inverse second

degree stochastic dominance, denoted by F �RSD G, if
∫∞
x
F (z)dz ≤

∫∞
x
G(z)dz

for all x. The SD conditions of FSD, SSD are RSD are also called stochastic

increasing, increasing concave order and increasing convex order, respectively, in

the literature on stochastic ordering (Shaked and Shanthikumar 2007).

The third-degree stochastic dominance (TSD) is proposed by Whitmore (1970)

for non-decreasing and concave utility functions with positive third derivatives,

i.e., for decision makers who are risk averse and downside risk averse. Formally,

F dominates G by third-degree stochastic dominance, denoted by F �TSD G, if

(1)
∫ x
−∞ F (z)dz ≤

∫ x
−∞G(z)dz for all x; and (2) µF ≥ µG. Note that the second

condition of TSD specifically requires that the mean of F is greater than that of

G. Menezes et al. (1980) define that the risk change from F to G is an increase in

downside risk if (i)
∫ b
a
[G(z)−F (z)]dz = 0; and (ii)

∫ x
a

∫ z
a

[G(t)−F (t)]dtdz ≥ 0 for

all x ∈ [a, b] and with equality holding at x = b. They show that an individual u

prefers F to G for all risk changes from F to G being increases in downside risk

if and only if u′′′ > 0. These equalities imply equal mean and variance and that

there is an unambiguous risk shift from the right to the left for the risk change

from F to G. The notion of mean- and variance-preserving increase in downside

risk is a special case of TSD when F and G have the same mean and variance.

Menezes et al. (1980) show that an increase in downside risk implies that F is

more skewed to the right than G, in the sense that the third central moment of
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F is greater than that of G. The SD rule implied by the increase in downside

risk is also called 3-convex order (Shaked and Shanthikumar 2007).

To capture the tradeoff between mean and variance, Diamond and Stiglitz (1974)

introduce utility preserving increase in risk. In the same spirit, Chiu (2005)

generalizes the SD conditions of increase in downside risk by introducing mean

and utility preserving increase in downside risk. A risk change from F to G

is mean and utility preserving increase in downside risk for a reference decision

maker with an increasing and concave utility function u if (i)
∫ b
a
[G(z)−F (z)]dz =

0 and (ii)
∫ x
a
u
′′
(z)
∫ z
a

[G(t) − F (t)]dtdz ≤ 0, ∀x ∈ [a, b] with at least one strict

inequality and equality holding at x = b. Note that in Chiu’s definition, the

accumulative advantage function of F over G, defined as
∫ z
a

[G(t) − F (t)]dt, is

weighted by a negative and decreasing function u
′′
, which, together with the

binding condition in (ii), implies that G is more skewed to the left of F while

having a smaller variance. Chiu (2005) shows that, for risk-averse individuals, the

greater the prudence measure, the greater the strength of downside risk aversion,

which supports the role of prudence as a measure of downside risk aversion.

To capture risk seeking (in losses) and risk aversion (in gains), Levy and Wiener

(1998) introduce the notion of prospect stochastic dominance (PSD): F domi-

nates G by PSD if
∫ y
x

[G(z) − F (z)]dz ≥ 0 for any x ≤ 0 ≤ y, with at least

one strict inequality. Levy and Wiener (1998) show that when decision makers

with S-shaped value functions impose a single rank-dependent cumulative weight-

ing function on risky prospects their preferences agree with PSD if and only if

the weighting function is S-shaped. Levy and Levy (2002) propose another SD

rule called Markowitz stochastic dominance (MSD) for all inverse S-shaped value
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functions to interpret those experimental results for mixed prospects that cannot

be interpreted by CPT.

To further account for the pair of nonlinear probability weighting functions un-

der CPT, Baucells and Heukamp (2006) identify a set of SD conditions which,

in addition to PSD, imposing additional restrictions on the pair of prospects un-

der comparison, and show that the corresponding preference representation is a

combination of S-shaped value functions and a special class of inverse S-shaped

probability weighting functions. They also show that in the domain of losses, a

convex (concave) value function is conjugate to a concave (convex) probability

weighting function and, in the domain of gains, a concave (convex) value function

is conjugate to a concave (convex) probability weighting function.

More recently, Schmidt and Zank (2008) investigate the relationship between

(strong) risk aversion and CPT. They show that decision makers are averse to

mean-preserving SSD if and only if the utility function is concave in the domains

of losses and gains, respectively, and the weighting function for losses (gains) is

concave (convex), which is partly in conflict with the curvatures of value functions

and probability weighting functions described in Tversky and Kahneman (1992).

To account for higher order risk preferences, Wong and Chan (2008) further

extend PSD and MSD to third-degree prospect stochastic dominance for all S-

shaped value functions and third-degree Markowitz stochastic dominance for all

inverse S-shaped value functions. Their analysis of utility representation, how-

ever, relies on the assumption that the second derivative of the utility function

is zero at the reference point. This thesis does not impose this assumption since
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many commonly used CPT value functions are not necessarily differentiable at

the reference points that are typically kinks.
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Chapter 3

Risk Aversion and Risk Seeking
in Cumulative Prospect Theory

3.1 Introduction

In this chapter, we aim to extend the notions of increase in risk and strong risk

aversion to the CPT paradigm by identifying a set of SD rules and provide choice-

theoretic characterizations for the preference towards these SD rules under CPT.

In the EUT paradigm, risk preference (e.g., risk aversion or risk seeking) is fully

represented by the shape of the utility function (concavity for risk aversion and

convexity for risk seeking). Risk aversion can be defined in both the weak sense

and the strong sense. Weak risk aversion holds if the expected value of a prospect

for certain is always preferred to the prospect itself, which is characterized by SSD

and increasing concave utility functions (Pratt and Zeckhauser 1987). Strong risk

aversion holds if a decision maker always dislikes an increase in risk in the sense

of mean-preserving spread (Rothschild and Stiglitz 1970). To characterize the
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intensity of risk aversion in terms of Arrow-Pratt absolute risk aversion, Dia-

mond and Stiglitz (1974) define the mean utility preserving increase in risk as a

compensated adjustment of mean-preserving increase in risk.

In the CPT paradigm, the risk preference is represented simultaneously by the

curvatures of a value function and a pair of PWFs. A number of studies have

attempted to provide choice-theoretic characterizations for CPT by identifying

some SD rules that can be represented by some curvature forms of CPT value

functions and PWFs. To capture both risk seeking (in losses) and risk aversion

(in gains), Levy and Wiener (1998) introduce the SD rule of prospect stochastic

dominance (PSD) to generalize SSD and RSD in the CPT paradigm. They show

that an individual with an S-shaped value function and a single rank-dependent

PWF has a preference agreeing with the PSD order if and only if the PWF is

S-shaped. Levy and Levy (2002) identify another SD rule, Markowitz stochastic

dominance (MSD), for inverse S-shaped value functions to interpret the experi-

mental result for mixed prospects that cannot be interpreted by CPT. Wakker

2003 argues that the experimental results of Levy and Levy (2002) can actually

support prospect theory if PWFs are considered. Schmidt and Zank (2008) study

the implication of strong risk aversion for CPT. They show that strong risk aver-

sion holds under CPT if and only if the utility function is concave in the domains

of losses and gains, respectively, and the weighting functions for losses (gains) is

concave (convex), which is partly in conflict with curvatures of the value function

and PWFs described in Tversky and Kahneman (1992). Their analysis general-

izes Chew et al. (1987) who shows that strong risk aversion holds under RDU

model with single PWF if and only if the utility function is concave and the PWF
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is convex. However, it does not capture the risk seeking preference observed in

the experimental studies in CPT.

Baucells and Heukamp (2006) introduce a special PSD rule (defined as PW-SD)

that imposes FSD conditions on both tails of the prospects under comparison.

They identify an interesting conjugate curvature relationship: a concave (convex)

value function and a convex (concave) PWF are conjugate in gains and a con-

vex (concave) value function and a convex (concave) PWFs are conjugate. They

show that PW-SD can be characterized by the set of S-shaped value functions

and the set of inverse S-shaped PWFs with the inflation points corresponding

to the tails where FSD rule applies, which implies that all decision makers with

S-shaped value functions and inverse S-shaped PWFs with the specific inflation

points agreeing with PW-SD. Using this as the theoretic foundation, they con-

duct choice experiments to test the curvatures of value functions and PWFs and

conclude that their experimental results suggest that they can reject the inverse

S-shaped value function advocated by Levy and Levy (2002) in favor of the S-

shaped form. However, they do not show whether an individual exhibiting the

preference towards the PW-SD order implies inverse S-shaped PWFs. It remains

ambiguous whether the preference agreeing with PW-SD order must be repre-

sented by a S-shaped value function and a pair inverse S-shaped PWFs.

Inspired by aforementioned papers, we extend the notions of increase in risk

and strong risk aversion to the CPT paradigm by identifying a set of SD rules

and provide choice-theoretic characterizations for the preference towards these

SD rules under CPT. To this end, we first generalizes PSD for S-shaped value

functions by accounting for PWFs. Inspired by Rothschild and Stiglitz (1970), we
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introduce the SD rule of mean-preserving PSD (M-PSD), which combines a mean-

preserving spread in gains and a mean-preserving contraction in losses, and define

it as the increase in risk in the CPT paradigm. Then the notion of strong risk

aversion can be generalized in the CPT paradigm as the aversion to M-PSD and

we call it prospect strong risk aversion. We show that a decision maker exhibits

prospect strong risk aversion if and only if the value function is S-shaped and both

the gain- and loss-weighting functions are convex. The convexity of PWFs leads

to greater weights on smaller gains (larger losses), which implies the probabilistic

risk attitude of pessimism in gains and optimism in losses (Wakker 2010). We

then generalize the analysis of Diamond and Stiglitz (1974) by introducing the

prospect value preserving PSD (V-PSD) condition as a compensated adjustment

of PSD to describe the tradeoff between mean and variance, which allows us to

characterize the increase in risk aversion. We also show that our analysis can

be further extended to preferences with general reference points and inverse S-

shaped value functions.

We next discuss the implications of our results on risk preference elicitation in

the CPT paradigm. Although it is impractical to elicit an individual’s risk pref-

erence through pairwise comparisons for all possible risky prospect pairs, our

results can provide a theoretic guideline for preference elicitation experimental

studies. To show this, we first discuss the preference elicitation methods (e.g.,

certainty equivalence). Note that Bleichrodt et al. (2001) argue that the standard

utility elicitation methods in the EUT paradigm may be biased. They propose

using the CPT paradigm with the PWFs specified in Tversky and Kahneman

(1992) to correct the biases and improve the prescriptive use of expected utility
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to derive optimal decisions. Inspired by their analysis, we discuss the implication

of strong risk aversion on the certainty equivalence without specifying the PWFs.

We then revisit the experimental studies of Kahneman and Tversky (1979) and

Baucells and Heukamp (2006) by examining the risky prospect pairs using the

SD rules identified in this chapter and provide alternative interpretations of their

experimental results.

To further explore economic implications for optimal decision making, we perform

comparative statics analysis with the respect to the SD conditions for CPT-value

maximizing problems. Using portfolio choice problems as examples, we show that

increases in risk and in risk aversion may lead to less riskier portfolio choices for

a decision maker with CPT preference.

Our analysis can be further extended to preferences with general reference points

and inverse S-shaped value functions. To accommodate inverse S-shaped PWFs

that favor risk aversion in small probabilities of the lower tail of losses and risk

seeking in small probabilities of the upper tail of gains, we extend our analysis by

further generalizing the SD condition and the curvature form of value functions

to allow concavity in the lower tail of losses and convexity in the upper tail of

gains, which complements the effort of Baucells and Heukamp (2006).

Our contribution is threefold. Firstly, we generalize the notions of increase in risk

and strong risk aversion in the CPT paradigm by introducing the M-PSD order

and providing a choice-theoretic characterization for strong risk aversion in gains

and strong risk seeking in losses, which complements the successive efforts of Levy

and Wiener (1998), Schmidt and Zank (2008) and Baucells and Heukamp (2006).
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Secondly, our analysis provides a theoretic guideline for risk preference elicitation

under CPT, which complements the classic elicitation approaches. Thirdly, the

comparative statics analysis with respect to the PSD and M-PSD orders for CPT-

value maximizing decision problems (e.g., portfolio choice) sheds new light into

the applications of CPT.

The remainder of the chapter is organized as follows. Section 3.2 provides choice-

theoretic characterizations of risk aversion and risk seeking in CPT. Section 3.3

and Section 3.4 discuss implications for risk preference elicitation and optimal

decision problems, respectively. Section 3.5 extends our analysis to account for

general reference points, inverse S-shaped value functions, and inverse S-shaped

PWFs, respectively. Section 3.6 concludes the paper. All technical proofs are in

the appendix.

3.2 Choice-theoretic Characterizations in CPT

In decision making under risk, a prospect is described by a probability distribution.

In particular, a prospect of a finite probability distribution can be described

as (x1, p1; ...;xn, pn) where xi is an outcome with probability pi, i = 1, ..., n.

Throughout this paper, the pair of risky prospects in comparison are denoted

by F and G. Let µF and µG be the corresponding means and F̄ and Ḡ be

the decumulative (or tail) distribution functions. Assume that F and G are

continuous with a common support [a, b], a < 0 < b, and F (x) 6= G(x) for at

least one x. A risk change from F to G refers to the change from prospect F to

prospect G, denoted by F → G.

30



3.2 Choice-theoretic Characterizations in CPT

Let u be the value function with u(0) = 0. In this thesis, we use the terms “value

function” and “utility function” interchangeably. Denote by VS and VM the sets

of all increasing S-shaped prospect value functions that are strictly convex in

the losses and strictly concave in the gains (i.e., u′(x) > 0, u
′′
(x) > 0 for x <

0, u
′′
(x) < 0 for x > 0), and all increasing inverse S-shaped prospect value func-

tions that are strictly concave in the losses and strictly convex in the gains (i.e.,

u′(x) > 0, u
′′
(x) < 0 for x < 0, u

′′
(x) > 0 for x > 0).

According to Tversky and Kahneman (1992), the CPT preference can be repre-

sented by a nondecreasing S-shaped value function defined over a monetary gain

or loss (change in wealth with respect to a reference point r that is normalized to

zero) and a pair of PWFs w = (w−, w+) that transform the objective probabil-

ities (cumulative distribution functions) to decision weights for losses and gains

respectively. Assume that the PWFs are nondecreasing with w−(0) = w+(0) = 0,

w−(1) = w+(1) = 1, and w−(p) + w+(1 − p) = 1 for all p ∈ [0, 1]. Then the

PWFs can be viewed as transformation functions that transfer a prospect F to

a “weighted” prospect Fw such that

Fw(x) =


w−(F (x)) for x ∈ [a, 0],

1− w+(F̄ (x)) for x ∈ (0, b].

A typical example of value function and PWFs is provided by Tversky and Kah-

neman (1992):

u(x) =


xα, if x ≥ 0,

−λ(−x)β, if x < 0,

and


w+(p) = pγ

(pγ+(1−p)γ)1/γ
,

w−(p) = pδ

(pδ+(1−p)δ)1/δ ,

(3.1)
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with 0 < α, β < 1, λ ≥ 1, and γ, δ ≥ 0.28 (Wakker 2010). Another well-known

specification of PWFs was proposed by Goldstein and Einhorn (1987):
w+(p) = apγ

apγ+(1−p)γ ,

w−(p) = bpδ

bpδ+(1−p)δ ,

(3.2)

with a ≥ 0, b ≥ 0, δ ≥ 0 and γ ≥ 0. Wakker (2010) uses the term of probabilistic

risk attitude to refer to the effect of probability weighting on risk attitudes: greater

(smaller) weights on unfavorable outcomes reflects pessimistic (optimistic) atti-

tudes. He shows that when γ or δ decreases the degree of likelihood insensitivity

increases and hence the shape of PWF may change from S-shaped to inverse-S-

shaped. In particular, when γ = δ = 1 and a, b < 1, the PWFs are convex, which

implies pessimism in gains (i.e., decision weights of smaller gains are higher) and

optimism in losses (i.e., decision weights of smaller losses are higher).

Under EUT, the choice between prospects F and G for an individual u is deter-

mined by the difference of the values of expected utility:

∆u(F,G) =

∫ b

a

u(x)dF (x)−
∫ b

a

u(x)dG(x) =

∫ b

a

u′(x)[G(x)− F (x)]dx, (3.3)

which can be viewed as the accumulative advantages of F over G throughout the

support set [a, b] weighted by the first derivative of the utility function.

The CPT value of prospect F for a decision maker u with PWFs (w−, w+) is

defined as

VF =

∫ 0

a

u(x)d[w−(F (x))] +

∫ b

0

u(x)d[1− w+(F̄ (x))].
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Then the decision maker under CPT prefers F to G if ∆w
u (F,G) ≥ 0, where

∆w
u (F,G) = VF − VG =

∫ 0

a

[w−(G(x))− w−(F (x))]u′(x)dx

+

∫ b

0

[w+(F̄ (x))− w+(Ḡ(x))]u′(x)dx. (3.4)

In discrete cases, a prospect (x1, p1; ...;xn, pn) with a < x1 · · · < xk−1 < xk = 0 <

xk+1... < xn < b is evaluated by
∑n

i=0 πiu(xi), where the decision weights πi are

defined as

πi =


w+(pi + · · ·+ pn)− w+(pi+1 + · · ·+ pn) if i ≥ k,

w−(p1 + · · ·+ pi)− w−(p1 + · · ·+ pi−1) if i < k.

Correspondingly, we have

∆w
u (F,G) =

k−1∑
i=1

[w−(G(xi))− w−(F (xi))][u(xi+1)− u(xi)]

+
n∑
i=k

[w+(F̄ (xi))− w+(Ḡ(xi))][u(xi+1)− u(xi)].

3.2.1 Increase in Risk under CPT

Levy and Wiener (1998) introduce the notion of prospect stochastic dominance

(PSD) to characterize the preference represented by S-shaped value functions.

Specifically, F dominates G according to PSD, written as F �PSD G, if
∫ y
x

[G(t)−

F (t)]dt ≥ 0 for all x ≤ 0 ≤ y, with at least one strict inequality. PSD implies
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SSD in gains and RSD in losses. Integrating ∆u(F,G) by parts yields

∆u(F,G) = u′(a)

∫ 0

a

[G(z)− F (z)]dz +

∫ 0

a

u
′′
(x)

∫ 0

x

[G(z)− F (z)]dzdx

+ u′(b)

∫ b

0

[G(z)− F (z)]dz −
∫ b

0

u
′′
(y)

∫ y

0

[G(z)− F (z)]dzdy.

Levy and Wiener (1998) show that F �PSD G if and only if ∆u(F,G) ≥ 0 for all

u ∈ VS. Accounting for PWFs, the following lemma follows immediately.

Lemma 1 (PSD and S-shaped Value Functions) Consider a risk change
from F to G and a pair of PWFs (w−, w+). Then Fw �PSD Gw if and only
∆w
u (F,G) ≥ 0 for all u ∈ VS.

Levy and Wiener (1998) also consider the preference with a reference-dependent

value function and a single transformation function defined on the cumulative

probabilities over the full support. They show that F dominates G by PSD if

and only if every transformation function that is increasing, concave in gains and

convex in losses (i.e., S-shaped) preserves this dominance, which implies that

the transformation function overweights larger (smaller) cumulative probabilities

in losses (gains). Note that in the CPT paradigm a pair of PWFs (i.e., a loss-

weighting function and a gain-weighting function) are used to account for the

rank- and sign-dependent structure of CPT. The next lemma further generalizes

their analysis by accounting for a pair of PWFs.

Lemma 2 (Convex PWFs) Consider a risk change from F to G. Then F �PSD
G if and only if Fw �PSD Gw for all (w−, w+) ∈ WCX ×WCX , where WCX is
the set of increasing convex PWFs.

Combining Lemma 1 and Lemma 2 yields the following choice-theoretic charac-

terization of PSD.

Proposition 1 (Characterizing PSD) Consider a risk change from F to G.
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Then F �PSD G if and only if ∆w
u (F,G) ≥ 0 for all u ∈ VS and all (w−, w+) ∈

WCX ×WCX .

Proposition 1 shows that the PSD relationship between two prospects can be

characterized by the choices of a class of individuals with S-shaped value func-

tions and pairs of convex PWFs. Such a result generalizes the SSD and RSD

representations for risk averters and risk seekers.

Our result is similar to Levy and Wiener (1998) in spirit except that they adopt

the conventional rank-dependent weighting function with only one PWF defined

on the cumulative probability. As a result, in the paradigm they adopted, the

preference towards the PSD order is characterized jointly by the common prefer-

ence of a class of S-shaped value functions and S-shaped PWFs, whereas in the

CPT paradigm the curvatures of PWFs are both convex.

Baucells and Heukamp (2006) introduce a special PSD order, defined as PW-SD,

which imposes FSD in two tails. More specifically, they define that a risk change

from F to G is PW-SD if F �PSD G and G(x) ≥ F (x) for a ≤ x ≤ x−p and

x+
p ≤ x < b, where x−p = inf{x ≤ 0 : F (x) ≥ p,G(x) ≥ p} and x+

p = sup{x ≥

0 : F (x) ≤ 1 − p,G(x) ≤ 1 − p} for some probability p ∈ [0, 1]. They show that

F �PW−SD G if and only if ∆w
u ≥ 0 for all u ∈ VP and (w−, w+) are inverse S-

shaped with some inflection point (p−, p+) (i.e., concave in [0, p−] and [0, p+] and

convex in [p−, 1] and [p+, 1], respectively). It is notable that F (x) ≤ G(x) implies

that Fw(x) ≤ Gw(x) and hence the concavity of PWFs in [0, p−] and [0, p+] are

not necessary. It suffices to require the functional set of the PWFs to include

PWFs that are linear in [0, p−] and [0, p+]. Hence, it remains unclear whether an

individual agreeing with the PW-SD order must have inverse-S-shaped PWFs in
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the CPT paradigm.

In the EUT paradigm, Rothschild and Stiglitz (1970) define increase in risk as

mean-preserving spread (MPS) and define strong risk aversion as the aversion

to MPS. More specifically, a risk change from F to G is MPS if F �SSD G

with µF = µG (Levy 2016, p228). If G is a MPS from F , then F is a mean-

preserving contraction (MPC) from G. Similarly, we can use the notion of strong

risk seeking to describe the aversion to MPC. In the CPT paradigm, Schmidt and

Zank (2008) show that strong risk aversion for both losses and gains implies a

concave value function in both losses and gains with a convex gain-weighting func-

tion (overweighting larger tail probabilities) and concave loss-weighting function

(overweighting smaller accumulative probabilities).

To capture both risk aversion and risk seeking observed in experimental studies

that are well documented in the CPT literature, we introduce the notion of mean-

preserving prospect stochastic dominance (M-PSD) to generalize the notion of

increase in risk in the CPT paradigm.

Definition 1 (M-PSD) Prospect F dominates prospect G in the sense of M-
PSD, written as F �M−PSD G, if

∫ y
x

[G(t)− F (t)]dt ≥ 0 for any x ≤ 0 ≤ y, with
at least one strict inequality and with equality holding at (x, y) = (a, b).

Note that F �M−PSD G implies
∫ 0

a
[G(t)− F (t)]dt =

∫ b
0
[G(t)− F (t)]dt = 0, i.e.,

the expected values of losses and the expected values of gains of F and G are

the same. That is, M-PSD combines MPS in gains and MPC in loses. Hence

the preference agreeing with M-PSD displays strong risk aversion in gains and

strong risk seeking in losses, respectively, which captures the reflection effect

observed in the experimental study of (Kahneman and Tversky 1979). For ex-
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positional convenience, we call such a preference prospect strong risk aversion.

Given a value function u and PWFs (w−, w+), an individual displays prospect

strong risk aversion holds if ∆w
u (F,G) ≥ 0 for any risk change from F to G such

that F �M−PSD G. The following proposition characterizes the curvatures of the

value function and PWFs that represent prospect strong risk aversion.

Proposition 2 (Representation of Prospect Strong Risk Aversion)
A decision maker with an increasing value function u and a pair of increasing
PWFs (w−, w+) displays prospect strong risk aversion if and only u ∈ VS and
(w−, w+) ∈WCX ×WCX .

Proposition 2 shows that prospect strong risk aversion can be represented by

S-shaped value functions and convex PWFs, which provides a choice-theoretic

foundation for CPT. The convexity of PWFs distorts the probability distributions

by overweighting smaller values of losses or gains and underweighting larger values

of losses and gains, which reflects pessimism in gains and optimism in losses.

The more convex the PWFs, the greater the degrees of distortions and more

pessimistic (optimistic) in gains (losses).

As an empirical implication for experimental studies, if someone is asked to make

choices between all pairs of prospects satisfying the M-PSD order and his choices

agree with the M-PSD order, then his/her preference can be represented by a

nondecreasing S-shaped value function and a pair nondecreasing convex PWFs.

Clearly, when rank- and sign-dependence is irrelevant, the CPT preference reduces

to expected utility. Hence it follows immediately from Proposition 2 that strong

risk aversion under EUT holds if and only if the utility function is concave.

Note that the experimental studies find that individuals may overweight small
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probabilities and underweight larger probabilities (see, e.g., Tversky and Kahne-

man 1992, Wu and Gonzalez 1996), which implies that inverse-S-shaped PWFs

may better represent the risk preference in CPT. Tversky and Kahneman (1992)

summarize that the shapes of the value and the probability weighting functions

imply risk averse and risk seeking preferences, respectively, for gains and for losses

of moderate or high probability. But the concavity of PWFs in two tails favors

risk seeking for small probabilities of gain and risk aversion for small probabil-

ities of loss. It remains open what SD order can be used to characterize such

complicated preference structure.

3.2.2 Increase in Risk Aversion in CPT

In the EUT paradigm, a decision maker is said to be more risk averse if he

has greater value of Arrow-Pratt absolute risk aversion, defined as Ru = −u
′′

u′
.

Diamond and Stiglitz (1974) define the mean utility preserving increase in risk as

compensated increase in risk to capture the tradeoff between mean and variance.

Specifically, a risk change from F to G is a mean utility preserving increase in risk

for a reference decision maker u if ∆u(F,G) = 0 and
∫ x
a
u′(z)(G(z)−F (z))dz ≥ 0

for all x ∈ [a, b], with at least one strict inequality. They show that all risk averse

decision makers v with Rv ≥ Ru dislike such a mean utility preserving increase

in risk.

In the CPT paradigm, the risk preference can be represented by a reference-

dependent value function and a pair of PWFs (w−, w+). More specifically, strong

prospect risk aversion implies S-shaped value function and a pair of convex PWFs.
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Hence the changes in risk attitudes may include the changes in both the value

function and the PWFs.

First, for the value function, instead of considering the effect of unidirectional

change of intensity of risk aversion on preferences, we consider bidirectional pref-

erence changes: increase in risk aversion (more risk averse) in gains and decrease

in risk aversion (more risk seeking) in losses. Note that the Arrow-Pratt absolute

risk aversion is positive (negative) for risk averters (risk seekers). In what fol-

lows, we use the absolute value of Arrow-Pratt absolute risk aversion, denoted by

|Ru(x)| = |−u′′(x)/u
′
(x)|, to measure the degree of prospect strong risk aversion.

For two value functions v, u ∈ VS, v is said to be more risk averse than u in the

CPT paradigm if it is more risk averse (seeking) than u in gains (losses), i.e.,

|Rv(x)| ≥ |Ru(x)| for all x ∈ (a, 0) ∪ (0, b). Let Tu be the transformation from u

to v such that v(x) = Tu(u(x)), i.e., Tu(·) = v(u−1(·)). Then |Rv(x)| ≥ |Ru(x)|

for x ∈ (a, 0)∪(0, b) if and only if T is concave in (u(a), 0) and convex in (0, u(b)),

i.e., Tu ∈ VS.

Second, the prospect strong risk aversion implies that increase in risk aversion can

also be represented by the increase in the degrees of convexity of PWFs. Similar

to value functions, we can also use the absolute risk aversion to measure the

degree of convexity for PWFs. More specifically, for any (w−, w+), let |Rw−(p)| =

| − (w−)
′′
(p)/(w−)

′
(p)| and |Rw+(p)| = | − (w+)

′′
(p)/(w+)

′
(p)|. Then the pair of

PWFs (w̃−, w̃+) are more convex than (w−, w+) if and only if |Rw̃−(p)| ≥ |Rw−(p)|

and |Rw̃+(p)| ≥ |Rw+(p)|. Let (T−w , T
+
w ) be the nondecreasing transformations

from (w−, w+) to (w̃−, w̃+). Then |Rw̃−(p)| ≥ |Rw−(p)| and |Rw̃+(p)| ≥ |Rw+(p)|

if and only if (T−w , T
+
w ) are convex.
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In the same spirit of expected utility preserving increase in risk, we define (CPT)

value preserving prospect stochastic dominance (V-PSD) as a compensated in-

crease in risk under CPT.

Definition 2 (V-PSD) Prospect F dominates G by V-PSD, denoted by F �V−PSD
G, for a decision maker u ∈ VS with a pair of PWFs w = (w−, w+) if

(i)
∫ 0

a
u′(z)[w−(G(z))− w−(F (z))]dz +

∫ b
0
u′(x)[w+(F̄ (z))− w+(Ḡ(z))]dz = 0,

(ii)
∫ 0

x
u′(z)[w−(G(z))− w−(F (z))]dz ≥ 0, and∫ y

0
u′(x)[w+(F̄ (z)) − w+(Ḡ(z))]dz ≥ 0 for all x ≤ 0 ≤ y, with at least one

strict inequality.

Note that conditions (i) and (ii) of V-PSD imply
∫ 0

a
u′(z)[w−(G(z))−w−(F (z))]dz =∫ b

0
u′(x)[w+(F̄ (z))−w+(Ḡ(z))]dz = 0. Different from PSD, the accumulative ad-

vantage of G over F under PWFs is now weighted by u′. The equalities holding at

x = a and y = b imply that the reference decision maker u with PWFs (w−, w+)

is indifferent between F and G. This definition reduces to mean preserving PSD

when PWFs are linear and u is risk neutral, i.e., u is linear. The concavity of

u in gains and the convexity of u is losses imply that less weights are imposed

on larger values of gains and losses respectively. Hence, the expected value pre-

serving condition implies that relative advantages of Fw over Gw are stretched

horizontally towards the reference point, which in turn implies that Fw has a

smaller mean than that of Gw.

Let F (u,w)(t) = Fw(u−1(t)) and G(u,w)(t) = Gw(u−1(t)). Clearly, F (u,w) and G(u,w)
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can be viewed as two weighted prospects with support [u(a), u(b)] and∫ 0

x

u′(z)[w−(G(z))− w−(F (z))]dz =

∫ 0

u(x)

[G(u,w)(t)− F (u,w)(t)]dt,∫ y

0

u′(x)[w+(F̄ (z))− w+(Ḡ(z))]dz =

∫ u(y)

0

[G(u,w)(t)− F (u,w)(t)]dt,

which implies that F �V−PSD G is equivalent to F (u,w) �M−PSD G(u,w). The next

representation proposition characterizes the change in risk attitude with V-PSD.

Proposition 3 (Increase in Risk Aversion) Consider a reference decision
maker with value function u ∈ VS and a pair of PWFs (w−, w+) ∈WCX ×WCX .
Then, for any decision maker with value function v ∈ VS and w̃ = (w̃−, w̃+),
∆w̃
v (F,G) ≥ 0 for all risk changes from F to G such that F �V−PSD G for the

reference decision maker if and only if |Rv(x)| ≥ |Ru(x)| for all x and |Rw̃−(p)| ≥
|Rw−(p)| and |Rw̃+(p)| ≥ |Rw+(p)| for all 0 ≤ p ≤ 1.

Proposition 3 shows that the preference towards the compensated increase in

risk in CPT, i.e., V-PSD, can be represented by an S-shaped transformation for

value function (i.e., more risk averse in gains and more risk seeking in losses in the

Arrow-Pratt sense than the reference decision maker) and convex transformations

for PWFs (more pessimism in gains and more optimism in losses).

3.3 Implications for Risk Preference Elicitation

in CPT

The choice-theoretic characterizations have important implications on risk pref-

erence elicitation. In particular, Proposition 2 shows that the preference agreeing

with M-PSD can be represented by an S-shaped value function and a pair of con-

vex PWFs, and Proposition 3 shows that the preference towards V-PSD order
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for a reference decision maker can be represented by an S-shaped value function

that is more concave in gains and more convex in losses and a pair of more convex

PWFs, which provide a linkage between risk changes and risk preferences.

Our results provide a theoretical guideline in preference elicitation experiments.

More specifically, one could design pairwise choice experiments according to these

SD rules. Although it is impractical to request the subjects to make choices

between all possible risky prospect pairs subject to an SD rule so as to fully elicit

their risk preferences (if it is possible at all), the choice outcome can still partially

reveal the decision maker’s preference. For instance, for a given pair of prospects

F and G satisfying F �M−PSD G, if a subject chooses F (G), then according to

Proposition 2 he/she is likely (unlikely) to have an S-shaped value function and

a pair of convex PWFs at the same time.

In the rest of this section, we first discuss the classic risk preference elicitation

approach in the literature, and then revisit the experimental studies of Kahneman

and Tversky (1979) and Baucells and Heukamp (2006) by examining the risky

prospect pairs in their studies using the SD conditions identified in this chapter

and provide alternative interpretations of their experimental results.

3.3.1 The Certainty Equivalence (CE) Approach

In the literature, two most commonly used preference elicitation approaches are

certainty equivalence (CE) and probability equivalence (PE) (Kachelmeier and

Shehata 1992, Wakker and Deneffe 1996). Under the CE approach, a subject is

asked to make pairwise comparisons of prospects. Each prospect pair consists of

42



3.3 Implications for Risk Preference Elicitation in CPT

a certain prospect (x, 1) and a risky prospect (m, 1− p;M, p) with m ≤ x ≤ M .

Given a probability p, the outcome x of the certain prospect is varied until the

subject is indifferent between the two prospects and the corresponding certain

outcome x is the CE of the risky prospect. Different from the CE approach,

the PE approach fixes the certain prospect but varies the probability p until the

subject is indifferent between the two prospects.

In the EUT paradigm, these approaches can elicit the utility function exactly if an

individual follows expected value maximization and if there were no measurement

error (Armbruster and Delage 2015). Bleichrodt et al. (2001) attempt to apply

the CE approach in the CPT paradigm.

More specifically, when both prospects are restricted to the domain of gains, i.e.,

0 ≤ m < x < M , for any given p, then CE, denoted by x+
CE(p), satisfies

u(x) = w+(p)u(M) + (1− w+(p))u(m)

= w+(p) (u(M)− u(m)) + u(m). (3.5)

Since u and w+ are strictly increasing and u(M) > u(m), for any given p, there

exists a unique value of CE:

x+
CE(p) = u−1

(
w+(p) (u(M)− u(m)) + u(m)

)
.

Similarly, when both prospects are restricted to the domain of losses, i.e., m <
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x < M ≤ 0, for any given p, the CE, denoted by x−CE(p), satisfies

u(x) = w−(1− p)u(m) + (1− w−(1− p))u(M)

= u(M)− w−(1− p) (u(M)− u(m)) . (3.6)

Since u and w− are strictly increasing, there exists a unique value of CE,

x−CE(p) = u−1
(
u(M)− w−(1− p) (u(M)− u(m))

)
.

Bleichrodt et al. (2001) assume that the PWFs are specified as that of (3.1)

and that utility function is normalized as u(m) = 0 and u(M) = 1. Then for

each given p, given x+
CE(p) or x−CE(p) obtained from the choice experiment, one

obtain u(x+
CE(p)) = w+(p) or u(x−CE(p)) = 1− w−(1− p) according to (3.5) and

(3.6). Clearly, the utility function elicited from their approach depends on the

specification of the PWFs. However, a full risk preference elicitation requires

eliciting both the value function and the PWFs at the same time.

We next show the implication of prospect strong risk aversion on the curvature

of CEs for both losses and gains in the CPT paradigm.

Proposition 4 (Certainty Equivalence) Consider a risky prospect (m, 1−
p;M, p). Under CPT, if prospect strong risk aversion holds, then x+

CE(p) is in-
creasing and convex in p for M > m ≥ 0 and x−CE(p) is increasing and concave
in p for m < M ≤ 0.

Proposition 4 shows that prospect strong risk aversion implies that the CE of a

positive (negative) risky prospect (m, 1− p;M, p) is convex (concave) in p, which

can be used to examine whether a subject displays prospect strong risk aversion

in the experimental study. If x+
CE(p) is increasing and convex in p and x−CE(p) is
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increasing and concave in p, then this subject may display prospect strong risk

aversion; otherwise, prospect strong risk aversion does not hold.

3.3.2 The Experimental Study of Kahneman and Tversky
(1979)

We now revisit the experimental studies conducted by Kahneman and Tversky

(1979). Table 3.1, replicated from Kahneman and Tversky (1979), reports the ex-

perimental results of four pairs of choice problems in each of which the preference

between positive prospects in the left-hand column and its mirror image of the

preference between negative prospects in the right-hand column are tested respec-

tively. In this table, N denotes the number of participants in each experiment,

the number in each [·] denotes the percentage of the choice of this prospect, and

the gains and losses are measured in Israeli currency. They argue that these ex-

perimental results indicate a reflection effect such that the reflection of prospects

around zero reverses the preference order: risk aversion in the positive domain is

accompanied by risk seeking in the negative domain.

Table 3.1: The choice experiments in Kahneman and Tversky (1979)

Task Positive Prospects Task Negative Prospects

3 (4, 000, .80) (3, 000) 3’ (−4, 000, .80) (−3, 000)
(N = 95) [20] [80]∗ (N = 95) [92]∗ [8]

4 (4, 000, .20) (3, 000, .25) 4’ (−4, 000, .20) (−3, 000, .25)
(N = 95) [65]∗ [35] (N = 95) [42] [58]∗

7 (3, 000, .90) (6, 000, .45) 7’ (−3, 000, .90) (−6, 000, .45)
(N = 66) [86]∗ [14] (N = 66) [8] [92]∗

8 (3, 000, .002) (6, 000, .001) 8’ (−3, 000, .002) (−6, 000, .001)
(N = 66) [27] [73]∗ (N = 66) [70] [30]∗
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We next examine the SD relationships between the pairs of prospects. For con-

venience, let Fi and Gi denote the first and second prospects in problem i. The

results and their verifications are summarized in Table 3.2 and the appendix

respectively. Note that the introduction of M-MSD and its choice-theoretic char-

acterization are provided in Section 3.5.

Table 3.2: The SD relationships

Task Majority Minority Task Majority Minority

3 G3 �V−PSD F3 F3 �MSD G3 3’ F3′ �V−PSD G3′ G3′ �MSD F3′

4 F4 �MSD G4 G4 �V−PSD F4 4’ G4′ �MSD F4′ F4′ �V−PSD G4′

7 F7 �M−PSD G7 G7 �M−MSD F7 7’ G7′ �M−PSD F7′ F7′ �M−MSD G7′

8 G8 �M−MSD F8 F8 �M−PSD G8 8’ F8′ �M−MSD G8′ G8′ �M−PSD F8′

In task 3, the majority of the subjects preferred the sure gain of 3000 to a risk

of .80 to gain 4000, though the latter has a greater mean. We show that G3

dominates F3 according to V-PSD with respect to a reference decision maker with

an S-shaped value function as specified in (3.1) with α = β = log 0.8/ log 0.75

and linear PWFs. Hence, the majority of the subjects may have a greater degree

of risk aversion than reference one for gains. For the minority of the subjects,

F3 �MSD G3, which implies that they may be risk seeking in gains.

In task 3’, the preference order is reversed for losses of the same magnitudes such

that F3′ �V−PSD G3′ with respect to the same reference decision maker, which

implies that most subjects may be more risk seeking than the reference one for

losses, while G3′ �MSD F3′ implies that the minority of the subjects may be risk

averse in losses.

Similarly, for tasks 4 and 4’, we can show that F4 �MSD G4, G4′ �MSD F4′ , and

G4 �V SD F4, F4′ �V SD G4′ with respect the same reference decision maker as
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that of task 3.

In tasks 7-8’, all the prospect pairs have equal means and we show that either

M-PSD or M-MSD holds for each pair. For instance, in task 7, the majority of

subjects prefer F7 to G7. Their preferences may agree with the M-PSD rule (i.e.,

prospect strong risk aversion) and hence can be represented by an S-shaped value

function and a pair of convex PWFs. The preferences of the minority of subjects

may agree with the M-MSD rule and the curvatures of value function and PWFs

are inverse S-shaped and concave respectively.

Remark 1 Note that the choice experiments in tasks 3 and 4 were conducted
for the same group of subjects. Kahneman and Tversky (1979) argue that the
experimental results contradict EUT: a decision maker u prefers G3 to F3 if and
only if 0.8u(4000) < u(3000) and prefers F4 to G4 if and only if 0.2u(4000) >
0.25u(3000) (i.e., 0.8u(4000) > u(3000)). In a CPT paradigm with u ∈ VS
and PWFs (w−, w+), the results of the two choice experiments imply (1−w+(1−
0.8))u(4000) < u(3000) and (1−w+(1−0.2))u(4000) > (1−w+(1−0.25))u(3000),
respectively, which implies that

1− w+(0.2) <
u(3000)

u(4000)
<

1− w+(0.8)

1− w+(0.75)
.

One can verify that the inequalities hold when the PWFs are specified as that of
(3.1) with γ = 0.3.

3.3.3 The Experimental Study of Baucells and Heukamp
(2006)

Baucells and Heukamp (2006) conduct an experiment study to test different fea-

tures of CPT, namely S-shaped value functions, inverse-S-shaped PWFs and loss

aversion. The setups and results of their experiments are summarized in and Ta-

ble 3.4. We refer to Baucells and Heukamp (2006) for their definitions of SW-SD,
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WL-SD, S∗W-SD, P∗W-SD and PWL-SD rules.

Table 3.3: Experiments of Baucells and Heukamp (2006)

Task Prospect F Prospect G

I (0, .1; 1000, .4; 2000, .4; 3000, .1) (0, .5; 3000, .5)
N = 277 [74] [26]

II (−3000, .5; 0, .5) (−3000, .1;−2000, .4;−1000, .4; 0, .1)
N = 273 [65] [35]

III (−6000, 1/3; 3000, 1/2; 4500, 1/6) (−6000, 1/6;−3000, 1/3; 4500, 1/2)
N = 276 [76] [24]

IV (−6000, .26; 3000, .72; 4500, .02) (−6000, .02;−3000, .48; 4500, 0.5)
N = 273 [81] [19]

V (−6000, .25; 3000, .75) (−3000, .5; 4500, .5)
N = 271 [37] [63]

VI (−1000, .1; 0, .8; 1000, .1) (−1000, .5; 1000, .5)
N = 216 [43] [57]

VII (−3000, .2; 0, .6; 3000, .2) (−3000, .5; 3000, .5)
N = 208 [61] [39]

VIII (−3000, .2;−1000, .3; 1000, .3; 3000, .2) (−3000, .5; 3000, .5)
N = 208 [64] [36]

IX (−500, .1; 0, .4; 1500, .4; 2000, .1) (−500, .3; 500, .2; 1000, .2; 2000, .3)
N = 209 [46] [64]

X (−2000, .3; 0, .6; 1000, .1) (−2000, .1;−1000, .6; 1000, .3)
N = 216 [70] [30]

XI (−5000, .15;−3000, .3; 0, .2; 3000, .2; 5000, .15) (−5000, .35;−1000, .3; 5000, .35)
N = 209 [46] [64]

XII (−1500, .2; 1500, .6; 4500, .2) (−1500, .5; 4500, .5)
N = 177 [77] [23]

More specifically, tasks I-III test the shape of the value function, assuming that

the PWFs are inverse S-shaped. In fact, the assumption of inverse S-shaped

PWFs implies that the PWFs must be linear for different cumulative probabili-

ties of the pair of prospects. Hence, essentially, prospect F dominates prospect

G according to SSD, RSD and PSD in Tasks I, II and III, respectively. They

therefore argue that the value function cannot be convex in gains and concave in

losses (under the aforementioned assumption on PWFs) and the S-shaped value
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function remains as a specification that is consistent with the preferences of the

majority of the subjects. Similarly, Tasks IV and V test the shape of PWFs,

assuming the value function is S-shaped (which, again, implies that the PWFs

must be linear when the cumulative probabilities under comparison are different);

Tasks VI to VIII test loss aversion, assuming the value function is S-shaped and

the PWFs are inverse S-shaped; and Tasks IX to XII test whether the preferences

of the subjects are consistent with the predictions of CPT, assuming all empirical

specifications of CPT, namely, S-shaped value functions, inverse-shaped PWFs

and loss aversion, hold. Again, in all these experiments, the prospects under

comparisons and the assumption of inverse-shaped PWFs imply that the PWFs

must be linear when the underlying cumulative probabilities are different. Their

result, however, is not sufficient to elicit preferences. For example, for Task I,

rejecting convexity of the value function for gains does not imply that the value

function has to be concave in gains, although preferences under concave value

functions agree with the dominance relationship between two prospects.

Observing that the prospects in each pair have an equal mean, which motivates us

to examine the relationships of these prospect pairs using the notions introduced

in this chapter. It turns out that all pairs of prospects in their experiments

follow the M-PSD order if the reference points are chosen properly (see Table

3.4). According to Proposition 1, a subject agreeing with the M-PSD order

displays the prospect strong risk aversion which can be represented by an S-

shaped value function and a pair of convex PWFs. Hence, in their experiments,

the preferences of those subjects who consistently made choices that are in line

with the corresponding M-PSD orders may be described as prospect strong risk
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aversion. Hence, to further elicit their curvature forms of value functions and

PWFs using the classic approaches (i.e., the CE approach), one could focus on

the classes of S-shaped value functions and convex PWFs.

Table 3.4: SD Rules of Baucells and Heukamp (2006) and M-PSD/M-MSD Rules
Task SD Orders (B&H 2006) Alternative SD Orders

I F �SW−SD G, G �S∗W−SD F F �M−PSD G, G �M−MSD F (r = 0)
II F �S∗W−SD G, F �SW−SD G F �M−PSD G, G �M−MSD F (r = 0)
III F �PW−SD G, G �P ∗W−SD F F �M−PSD G, G �M−MSD F (r = 0)

IV F �PW−SD G, G �P ∗W−SD F F �M−PSD G, G �M−MSD F (r = 0)
V F �PW−SD G, G �P ∗W−SD F F �M−PSD G, G �M−MSD F (r = 0)

VI F �WL−SD G F �M−PSD G, G �M−MSD F (r = −1000)
VII F �WL−SD G F �M−PSD G, G �M−MSD F (r = −3000)
VIII F �WL−SD G F �M−PSD G, G �M−MSD F (r = −3000)

IX F �PWL−SD G F �M−PSD G, G �M−MSD F (r = −500)
X F �PWL−SD G F �M−PSD G, G �M−MSD F (r = −500)
XI F �PWL−SD G F �M−PSD G, G �M−MSD F (r = −5000)
XII F �PWL−SD G F �M−PSD G, G �M−MSD F (r = −1500)

We next provide an example in which a decision maker with an S-shaped value

function and a pair of convex PWFs prefers F to G such that F �PW−SD G.

Example 1 Consider two prospects F : (−2000, 0.4; 1500, 0.5; 2500, 0.1) and G :
(−2500, 0.1;−1500, 0.5; 2000, 0.4). Note that x−c = −2000 and x+

c = 2000 for
c = 0.1, and G(x) ≥ F (x) for all x < x−c , and G(x) ≥ F (x) for all x > x+

c . We
next verify that F �PSD G:

∫ 0

x

[G(z)− F (z)]dz =


−0.2x ≥ 0 for x ∈ [−1500, 0],

300− 0.3(x+ 1500) ≥ 0 for x ∈ [−2000,−1500),

150 + 0.1(x+ 2000) ≥ 0 for x ∈ [−2500,−2000),

and

∫ y

0

[G(z)− F (z)]dz =


0.2x ≥ 0 for x ∈ [0, 1500],

300− 0.3(x− 1500) ≥ 0 for x ∈ (1500, 2000],

150 + 0.1(x− 2000) ≥ 0 for x ∈ (2000, 2500].

Then F �PW−SD G. Consider a decision maker with an S-shaped value function
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v specified as (3.1) with α = β = 0.5, and a pair of convex PWFs specified as
follows:

w−(p) =
1.5p

1.5p+ (1− p)
, and w+(p) =

1.5p

1.5p+ (1− p)
.

We can show that the decision maker prefers F to G:

∆w
v (F,G) =

(
−0.5

√
2000 + 0.55

√
1500 + 0.14

√
2500

)
−

(
0.14
√

2000− 0.55
√

1500 + 0.5
√

2000
)
> 0.

3.4 Implications for Optimal Decision Problems

in CPT

To explore the economic implications of increased risk under CPT, i.e., M-PSD,

on optimal decisions, we follow Diamond and Stiglitz (1974) to consider a utility

function U(x, θ) which depends on a return value of x and a control variable

θ ∈ [0, 1], and a pair of PWFs (w−, w+) which satisfy the regularity properties of

CPT. Assume that U(x, θ) is continuously differentiable in θ.

Given a prospect F , the decision maker aims to solve the following optimization

problem:

max
θ∈[0,1]

ψF (θ) ,
∫ 0

a

U(x, θ)dw−(F (x)) +

∫ b

0

U(x, θ)d[1− w+(F̄ (x))]. (3.7)

Let arg maxθ∈[0,1] ψF (θ) be the set of maximizers for ψF (θ) for any given γ and

prospect F . We are interested to relate the optimal solution to increases in risk

in the sense of PSD or M-PSD.

The next theorem identifies sufficient conditions of U(x, θ) under which an in-

crease in risk in the sense of PSD or M-PSD leads to smaller optimal solutions.
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Proposition 5 (Monotone Comparative Statics) Consider two prospects
F and G and assume that Uθ(·, θ) ∈ VS with a pair of PWFs w = (w−, w+).
Then arg maxθ∈[0,1] ψF (θ) ≥ arg maxθ∈[0,1] ψG(θ) if (i) a risk change from Fw

to Gw is PSD, or (ii) a risk change from F to G is M-PSD and the PWFs
(w+, w−) ∈WCX ×WCX .

It is notable that to obtain the monotonicity result, it suffices to show that

ψF (θ)−ψG(θ) is a decreasing function of θ, or, equivalently, the objective function

is submodular in the control variable θ and the level of risk in the sense of M-PSD

(see, e.g., Topkis 1998).

We next apply this result to a portfolio choice problem.

Example 2 (Portfolio Choice) Consider a portfolio choice problem in a mar-
ket consisting of one risky asset (e.g., stock) and one risk-free asset (e.g., bond)
with an investment planning horizon from date 0 to date T . The return rate of
the risk-free asset over the investment period is deterministic, denoted by τ . We
follow the literature and assume that the reference point of the investor is equal
to the risk-free return rate τ (see, e.g., Barberis and Xiong 2009, He and Zhou
2011a, Li and Yang 2013, and Meng and Weng 2017). The return rate of the
risky asset is random, denoted by R. Let θ ∈ [0, 1] be the percentage of the wealth
invested in the stock and the reminder in the risk free asset. Then the final nor-
malized wealth is Π(θ) = (1− θ)τ + θR. For convenience, let X = R− τ and we
normalize the initial wealth level to one. The stock total excess return R− τ is a
random variable with distribution function F . Then we have Π(X, θ) = τ + θX.
Let θ ∈ [0, 1] be the percentage of the wealth invested in the stock and the re-
mainder in the risk-free asset. Then the relative gain or loss is θX. Suppose the
distribution function of X is F . Then the portfolio choice problem under CPT
preference for u ∈ VS is, therefore,

max
θ∈[0,1]

E[u(θX)]. (3.8)

Consider the portfolio choice problem (4.4) and the S-shaped value function spec-
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ified in (3.1). We have

U(x, θ) = u(θx) =

{
θαxα, if x > 0,

−λθβ(−x)β, if x < 0.

where 0 < α, β < 1, λ > 0. Then we have

Uθx =

{
α2θα−1xα−1, if x > 0,

λβ2θβ−1(−x)β−1, if x < 0,
and Uθxx =

{
−α2(1− α)θα−1xα−2, if x > 0,

λβ2(1− β)θβ−1(−x)β−2, if x < 0.

Clearly, U is thrice differentiable with respect to θ and x, Uθx > 0 for all x,
Uθxx > 0 for x < 0 and Uθxx < 0 for x > 0, i.e., Uθ ∈ VS. According to
Proposition 5, under condition (1) or (2), an increase in risk in the sense of PSD
or M-PSD leads to smaller values of optimal portfolio decision θ or less riskier
portfolio choices.

3.5 Extensions

3.5.1 Reference Points

In the preceding analysis, the reference point is normalized to zero. We now

consider general reference points for PSD with and without PWFs.

For two prospects F and G, let φ(x) =
∫ x
a

[G(z)− F (z)]dz. Clearly, according to

the definition of PSD, F �PSD G with respect to a reference point r if
∫ y
x

[G(z)−

F (z)]dz ≥ 0, or, equivalently, φ(y) ≥ φ(x) for all x ≤ r ≤ y, with at least one

strict inequality. The definition of PSD implies that the function φ(x) crosses

over the horizontal line at φ(r) at most once from below.

Figure 3.1 provides an illustrative graph for the range of possible reference points.

Suppose that there exists a reference point r0 such that F �PSD G with respect

to r0. Let r = inf{x ≤ r0 : φ(x′) ≤ φ(x) ≤ φ(x
′′
) ∀x′ ∈ [a, x], ∀x′′ ∈ [x, r0]} and
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3.5 Extensions

r = sup{x ≥ r0 : φ(x′) ≤ φ(x) ≤ φ(x
′′
) ∀x′ ∈ [r0, x], ∀x′′ ∈ [x, b]}. Suppose that

r and r are well-defined. Then F �PSD G with respect to any r ∈ [r, r]. Such an

observation provides a way to identify reference points at which the risk change

from F to G is PSD. The similar analysis applies to full CPT preference with

PWFs.

𝑟  𝑟𝑎

𝜙(𝑥)

𝑏
𝑥

Figure 3.1: An Example of General PSD

The following proposition shows that PSD is implied by RSD under some condi-

tions if the reference point is chosen properly.

Proposition 6 (SSD and PSD) Consider two prospects F and G and a pair
of PWFs (w−(·), w+(·)). Suppose G crosses F from below exactly once at x0 and
F �RSD G. Then

(i) there exists r ∈ [x0, b] such that F �PSD G for all r ∈ [r, b]; and furthermore

(ii) if the PWFs are convex, there exists r′ ≤ r such that Fw �PSD Gw for all
r ∈ [r′, b].

3.5.2 Markowitz Stochastic Dominance and Inverse S-Shaped
Value Functions

Markowitz (1952) proposes that decisions are based on change in wealth and indi-

viduals are risk averse for losses and risk seeking for gains as long as the possible
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outcomes are not very extreme, i.e., value functions are inverse S-shaped (concave

in the losses and convex in the gains). For extreme outcomes, individuals are risk

seeking for losses and risk averse for gains. Levy and Levy (2002) introduce the

concept of Markowitz Stochastic Dominance (MSD) for inverse S-shaped func-

tions. More specifically, F dominates G by MSD if
∫ x
a

[G(z)−F (z)]dx ≥ 0 for all

x ≤ 0 and
∫ b
x
[G(z)−F (z)]dz ≥ 0 for all x ≥ 0 with at least one strict inequality.

They show that F dominates G by MSD if and only if all u ∈ VM prefer F to

G. In what follows, we show that the choice-theoretic characterizations for CPT

can be readily extended to that with inverse S-shaped value functions.

We first extend the definitions of M-PSD and V-PSD for inverse S-shaped value

functions. Similar to M-PSD, to characterize the preferences with strong risk

aversion (strong risk seeking) in losses (gains), we can define the SD condition of

mean-preserving MSD as follows.

Definition 3 (Mean Preserving MSD) Prospect F dominates prospect G by

mean preserving MSD, denoted by F �M−MSD G, if (i)
∫ b
a
[G(z) − F (z)]dz = 0

and (ii)
∫ x
a

[G(z)− F (z)]dz ≥ 0 for all x ∈ [a, 0) and
∫ b
y
[G(z)− F (z)]dz ≥ 0 for

all y ∈ (0, b], with at least one strict inequality.

The following lemma provides a linkage between M-PSD and M-MSD.

Lemma 3 (M-PSD and M-MSD) Consider two prospects F and G. Then
F �M−PSD G if and only if G �M−MSD F .

Note that in general F �PSD G does not necessarily imply G �MSD F and vice

versa. Lemma 3 shows that under the mean preserving condition, F �PSD G is

equivalent to G �MSD F .

We can also provide a choice-theoretic characterization for M-MSD when consid-
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ering PWFs as that in the CPT paradigm. The following theorem shows that,

different from M-PSD, the preference towards M-MSD can be characterized by

inverse S-shaped value functions and concave PWFs.

Proposition 7 (Preference Representation of M-MSD) A decision maker
with an increasing value function u and a pair of increasing PWFs (w−, w+) dis-
plays a preference that agrees with M-MSD orders if and only if u ∈ VM and
PWFs (w−, w+) ∈WCV ×WCV , where WCV is the set of concave PWF pairs.

Similar to the choice-theoretic characterization for S-shaped value functions in

Proposition 3, the following representation proposition characterizes the change

in risk attitude.

Proposition 8 (Changes in Risk Attitudes) Consider a reference decision
maker with value function u ∈ VM and a pair of PWFs w = (w−, w+) ∈WCV ×
WCV . Then, for any decision maker with value function v ∈ VM and w̃ =
(w̃−, w̃+), ∆w̃

v ≥ 0 for all risk changes from F to G such that F (u,w) �M−MSD

G(u,w) for the reference decision maker if and only if |Rv(x)| ≥ |Ru(x)| for all x
and |Rw̃−(p)| ≥ |Rw−(p)| and |Rw̃+(p)| ≥ |Rw+(p)| for all 0 ≤ p ≤ 1.

Proposition 8 shows that the changes in risk attitudes (e.g., more risk seeking

in gains and more risk averse in losses) can be characterized by the preferences

towards M-MSD.

3.5.3 Accounting for Inverse S-shaped PWFs

Note that based on their experimental results Tversky and Kahneman (1992)

and Wu and Gonzalez (1996) argue that decision makers are risk averse and

risk seeking, respectively, for gains and losses of moderate or high (cumulative)

probabilities, and that the PWFs are concave in (and hence overweight) small

(cumulative) probabilities of the lower tail of losses and the upper tail of gains,
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which favors risk seeking for extreme gains and risk aversion for extreme losses.

Although the S-shaped value function and convex PWFs can characterize the risk

aversion in gains and risk seeking in losses, they are not able to accommodate

the risk seeking and risk averse preferences for the extreme gains and losses,

respectively. Our preceding analysis implies that concavity of value functions and

convexity of PWFs are paired (or conjugate) for risk aversion in gains and that

convexity of value functions and convexity of PWFs are paired for risk seeking in

losses.

To accommodate the risk preferences in both tails, we next generalize the PSD

and M-PSD orders. To this end, let V
c,d
P be the class of value functions that are

increasing concave in (a, c) and (0, d), and increasing convex in (c, 0) and (d, b),

respectively, where c and d are the inflection points satisfying a ≤ c ≤ 0 ≤ d ≤ b.

Denote by W
p
IS the class of inverse S-shaped PWFs that are increasing concave

in (0, p) and increasing convex in (p, 1) for some inflation point p ∈ (0, 1).

We first introduce the definition of generalized prospect stochastic dominance

(GPSD).

Definition 4 (GPSD) Prospect F dominates G by GPSD, denoted by F �GPSD
G, if for some inflection points c ∈ [a, 0] and d ∈ [0, b] we have (i)

∫ x
a

[G(z) −
F (z)]dz ≥ 0 for all x ∈ [a, c), (ii)

∫ y
x

[G(z)−F (z)]dz ≥ 0 for all x ∈ [c, 0], y ∈ [0, d],

and (iii)
∫ b
y
[G(z)− F (z)]dz ≥ 0 for all y ∈ (d, b].

The stochastic change defined by GPSD can be seen as a combination of PSD

with SSD in the lower tail and RSD in the upper tail. It is different from the

PW-SD of Baucells and Heukamp (2006) that requires FSD in both tails. In the

following analysis, we will show that GPSD can be used to accommodate the risk
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aversion and risk seeking preferences in the lower tail of losses and the upper tail

of gains, respectively. To this end, we first generalize Lemma 2 to link GPSD and

inverse S-shaped PWFs.

Lemma 4 Prospect F dominates G by GPSD with inflection points c ∈ [a, 0] and
d ∈ [0, b] if and only if Fw dominates Gw by GPSD for all PWFs (w−, w+) ∈
W

pc
IS ×W

pd
IS, where F (c) = G(c) = pc and F̄ (d) = Ḡ(d) = pd.

The following proposition generalizes Proposition 1 to characterize a risk change

of GPSD with the class of value functions, Vc,dP , and the class of PWFs, Wpc
IS and

W
pc
IS, respectively.

Proposition 9 (GPSD) Prospect F dominates G by GPSD, i.e., F �GPSD G,
with inflection points c ∈ [a, 0] and d ∈ [0, b] if and only if ∆w

u (F,G) ≥ 0 for all
u ∈ V

c,d
P and (w−, w+) ∈W

pc
IS ×W

pd
IS.

We next define mean-preserving generalized prospect stochastic dominance (M-

GPSD).

Definition 5 (M-GPSD) Prospect F dominates G by M-GPSD, denoted by

F �M−GPSD G, if
∫ b
a
[G(z)− F (z)]dz = 0 and F �GPSD G with inflection points

c ∈ [a, 0] and d ∈ [0, b].

Note that the mean preserving condition and the inequalities conditions of GPSD

imply that ∫ c

a

[G(z)− F (z)]dz =

∫ 0

c

[G(z)− F (z)]dz

=

∫ d

0

[G(z)− F (z)]dz

=

∫ b

d

[G(z)− F (z)]dz = 0. (3.9)

We next present the preference representation proposition for M-GPSD.
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Proposition 10 (Preference Representation of M-GPSD) For any de-
cision maker with an increasing value function u and a pair of increasing PWFs
w = (w−, w+), ∆w

u (F,G) ≥ 0 for any risk change from F to G such that
F �M−GPSD G with inflection points c ∈ [a, 0] and d ∈ [0, b] and F (c) = G(c) =
pc, F̄ (d) = Ḡ(d) = pd if and only if u ∈ V

c,d
P and (w−, w+) ∈W

pc
IS ×W

pd
IS.

Proposition 10 shows that the preference towards M-GPSD order can be rep-

resented by the value functions in V
c,d
P and the PWFs in W

pc
IS ×W

pd
IS. Such a

curvature representation allows us to accommodate the inverse S-shaped PWFs

that favors risk aversion in the lower tail of losses and risk seeking in the upper

tail of gains, and to this end we have to generalize the S-shaped curvature form

of the value function to allow it to be concave in the corresponding lower tail of

losses and convex in the corresponding upper tail of gains.

3.6 Conclusion

This chapter provides choice-theoretic characterizations for increases in risk and

in risk aversion in the paradigm of CPT. We first generalize the notions of in-

crease in risk (mean-preserving spread) and strong risk aversion introduced by

Rothschild and Stiglitz (1970) to the CPT paradigm by introducing the SD rule

of mean-preserving prospect stochastic dominance (M-PSD). M-PSD consists of

MPC in losses and MPS in gains. Hence, we define the preference agreeing with

the M-PSD order as strong prospect risk aversion. We show that strong prospect

risk aversion can be represented by an S-shaped value function and a pair of

convex PWFs. To further characterize the increase in risk aversion in the CPT

paradigm, we extend the SD rule of mean utility preserving increase in risk in-

troduced by Diamond and Stiglitz (1974) to the CPT paradigm by introducing
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the SD rule of CPT-value preserving increase in risk (V-PSD). V-PSD serves as

a compensated adjustment to M-PSD to address the tradeoff between means and

variances in gains and domain of losses respectively. We show that the preference

towards V-PSD can be used to characterize the increase in the absolute value

of the absolute risk aversion (more risk averse/seeking in gains/gains) and the

increase of convexity of PWFs. We further extend our analysis to account for

general reference points, inverse S-shaped value functions and inverse S-shaped

PWFs, respectively.

We also explore the implications of our choice-theoretic characterizations on risk

preference elicitation in the CPT paradigm. We first discuss classic preference

elicitation approaches (e.g., certainty equivalence) and then revisit the experimen-

tal studies of Kahneman and Tversky (1979) and Baucells and Heukamp (2006).

We examine the prospect pairs in their studies using the SD rules introduced in

our paper and provide alternative interpretations of the experimental results.

We also show that these SD rules can also provide economic implications for

optimal decision problems in the CPT paradigm. Using portfolio choice as an

example, we show that for a CPT-value maximizing investor will invest less in

risky assets in the presence of increases in risk in the sense of M-PSD or PSD.
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Chapter 4

Downside Risk in Cumulative
Prospect Theory

4.1 Introduction

This chapter aims to generalize the choice-theoretic characterizations of downside

risk aversion and increase in downside risk aversion from the expected utility

theory (EUT) paradigm to the cumulative prospect theory (CPT) paradigm.

In modern portfolio theory that was built upon von Neuman-Morgenstern EUT,

investment decisions focus on the tradeoffs between risks and returns of portfolios.

The Markowitz (1952a) mean-variance decision rule, using variance as a proxy for

the overall riskiness of a portfolio, is by far the most popular investment decision

rule that has been widely adopted by both academics and practitioners (Levy

(2016)). However, it has long been criticized that variance is not consistent with

investors’ actual perception of risk as it allocates weights on (undesirable) neg-

ative deviations and (desirable) positive deviations of returns from their means
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evenly. It has been argued that downside risk is a more appropriate risk mea-

sure because investors are more concerned about loss below the target return

(Markowitz 1959). Various downside risk measures have been proposed; see, e.g.,

semi-variance (Markowitz 1959), lower partial moment (Fishburn 1977), value-at-

risk (VaR) and conditional value-at-risk (CVaR) (Rockafellar and Uryasev 2002).

Empirical studies also show that individuals may be willing to accept a lower

expected return or a higher level of variance if the distribution of the return is

more skewed to the right (smaller downside risk) (e.g., Harvey and Siddique 2000

and Garrett and Sobel 1999).

Stochastic dominance (SD) provides an alternative decision rule based on partial

orders of stochastic changes between distributions. The first-degree stochastic

dominance (FSD) and second-degree stochastic dominance (SSD) were proposed

by Hadar and Russell (1969), Hanoch and Levy (1969) and Rothschild and Stiglitz

(1970) to characterize the preferences of individuals with nondecreasing utility

functions (choice rationality) and nondecreasing concave utility functions (for

risk aversion), respectively. The third-degree stochastic dominance (TSD) was

defined by Whitmore (1970) for nondecreasing and concave utility functions with

positive third derivatives.

Menezes et al. (1980) introduce the increase in downside risk to describe the

risk change that shifts probability to the lower tail (negative skewness) while

preserving mean and variance, and use the positive third derivative of the VNM

utility function to indicate downside risk aversion. Note that this type of utility

functions can also be used to interpret the precautionary saving motive (to save

for future uncertainty) in consumption theory (Leland 1968). Generalizing the
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Arrow-Pratt measure of absolute risk aversion (defined as Ru = −u′′/u′), Kimball

(1990) introduces the notion of prudence measure (defined as Pu = −u′′′/u′′) to

characterize the strength of precautionary saving motive. Following Diamond and

Stiglitz (1974), Chiu (2005) identifies the SD condition of mean utility preserving

increase in downside risk to address the tradeoff between risk and downside risk,

using prudence to measure the intensity of downside risk aversion. This chapter

aims to generalize the choice-theoretic characterizations of downside risk aversion

and increase in downside risk aversion from EUT to the CPT.

To bridge EUT and CPT, a few studies employ SD approach to provide a choice-

theoretic foundation for CPT by addressing the key curvature properties of CPT.

Levy and Wiener (1998) generalize the second-degree stochastic dominance con-

dition to the prospect stochastic dominance (PSD) condition for all S-shaped

value functions and S-shaped probability weighting functions. Levy and Levy

(2002) introduce the Markowitz stochastic dominance (MSD) condition for all in-

verse S-shaped value functions. Baucells and Heukamp (2006) further extend the

PSD condition to accommodate inverse S-shaped probability weighting functions

and loss aversion. To the best of our knowledge, there has so far no attempt to

provide a general choice-theoretic characterization of the tradeoff between overall

risk and downside risk for CPT. This chapter aims to fill this gap.

More specifically, we first identify generalised mean and variance preserving in-

crease in downside risk defined by Menezes et al. (1980), which allows us to char-

acterize downside risk aversion in the CPT paradigm. We then identify another

SD condition, defined as mean utility preserving third degree cumulative prospect

stochastic dominance, to describe the tradeoff between overall risk and downside
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risk under CPT, and characterize the intensity of downside risk aversion using ab-

solute value of prudence measure. Note that to show the necessity of the increase

in downside risk conditions for the characterizations of downside risk aversion

and intensity of downside risk aversion we need to construct value functions with

desired curvature properties of CPT, which appears to be challenging.

We also address several commonly used downside risk measures: lower partial

moment and upper partial moment, third central moment and strong skewness.

We also extend our analysis to alternative downside risk increases under which the

intensity of downside risk aversion can be characterized using decreasing absolute

risk aversion. Finally, we extend the choice-theoretic characterization of downside

risk aversion to inverse S-shaped value functions.

The remainder of the chapter is organized as follows. Section 4.2 briefly reviews

the concepts of SD and downside risk aversion in EUT. Section 4.3 provides the

choice-theoretic characterization for downside risk aversion under CPT. Section

4.4 provides an application in portfolio choice problem. Section 4.5 presents

several extensions. Section 4.6 concludes the chapter with a few remarks. All

technical proofs are provided in the appendix.

4.2 Preliminaries: Downside Risk Aversion in

EUT

In decision making under risk, a prospect is described by a probability distribution.

In particular, the prospect of a finite probability distribution can be described

as (x1, p1; ...;xn, pn) where xi is an outcome with probability pi, i = 1, ..., n.
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Throughout this chapter, we will compare a pair of risky prospects, represented

by (cumulative) distributions F and G with a common support [a, b] for a <

0 < b, with F̄ and Ḡ being the corresponding decumulative (or tail) distribution

functions. Assume that F and G are continuous and F (x) 6= G(x) at least for

some x ∈ [a, b]. The means, standard deviations of F and G are represented by

µF , µG, σF , σG respectively. A risk change from F to G refers to the change

from distribution F to distribution G.

Denote by VCV ,VCX , VP and VM the classes of all nondecreasing strictly con-

cave utility functions (denoted by u) with strictly positive third derivatives (i.e.,

u′(x) > 0, u
′′
(x) < 0, u

′′′
(x) > 0), all nondecreasing strictly convex utility func-

tions with strictly positive third derivatives (i.e., u′(x) > 0, u
′′
(x) > 0, u

′′′
(x) >

0), all nondecreasing S-shaped prospect value functions that are strictly convex

in the losses and strictly concave in the gains with positive third derivatives (i.e.,

u′(x) > 0, u
′′
(x) > 0 for x < 0, u

′′
(x) < 0 for x ≥ 0, u

′′′
(x) > 0), and all non-

decreasing inverse-S-shaped prospect value functions that are strictly concave in

the losses and stictly convex in the gains with positive third derivatives (i.e.,

u′(x) > 0, u
′′
(x) < 0 for x < 0, u

′′
(x) > 0 for x ≥ 0, u

′′′
(x) > 0 ), where all

the inequalities hold almost everywhere. Without loss of generality, the refer-

ence point or status quo is normalized to zero. To accommodate CPT, we will

use in the rest of the chapter the terms “value function” and “utility function”

interchangeably. The choice between prospects F and G for an individual u is

determined by the difference of the expected prospect values

∆u(F,G) =

∫ b

a

u(x)dF (x)−
∫ b

a

u(x)dG(x) =

∫ b

a

u′(x)[G(x)− F (x)]dx,
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4.2 Preliminaries: Downside Risk Aversion in EUT

which can be viewed intuitively as the accumulative advantages of F over G

throughout the support set [a, b] weighted by the first derive of the utility func-

tion. SD approach can also be used to describe risk changes and preferences

towards alternative risky prospects. Specifically, prospect F stochastically dom-

inates prospect G by FSD, SSD, and TSD if and only if F (x) ≤ G(x) for all x

(FSD),
∫ x
a

[G(t)−F (t)]dt ≥ 0 for all x (SSD), and
∫ x
a

∫ z
a

[G(t)−F (t)]dtdz ≥ 0 for

all x and µF ≥ µG (TSD). The corresponding utility functions satisfy: u′(x) ≥ 0

(FSD), u′(x) ≥ 0 and u
′′
(x) ≤ 0 (SSD) and u′(x) ≥ 0, u

′′
(x) ≤ 0 and u

′′′
(x) ≥ 0

(TSD) for all x, respectively Levy (2016). These curvature properties have in-

tuitive economic interpretations: the positive first derivative implies that the

decision maker prefers more payoff to less payoff, which stems from the mono-

tonicity axiom, the positive second derivative implies that decision makers prefer

less uncertainty or risk (risk aversion), and the positive third derivative implies

the preference toward positive skewness or less downside risk Levy (2016).

Intuitively, an individual is downside risk averse if he is decreasingly risk averse

(R′u ≤ 0), which implies that u
′′′ ≥ 0. Menezes et al. (1980) were the first

to provide the choice-theoretic characterization for downside risk aversion by for-

mally introducing the stochastic change concept of mean- and variance-preserving

downside risk increase (MV-DRI).

Definition 6 (MV-DRI) A risk change from F to G is MV-DRI if (i)
∫ b
a
[G(z)−

F (z)]dz = 0, and (ii)
∫ x
a

∫ z
a

[G(t) − F (t)]dtdz ≥ 0 for all x ∈ [a, b], with equality
holding at x = b, and strict inequality holding for some x ∈ (a, b).

Condition (i) of MV-DRI implies that the two risky alternatives have the same

mean. The inequality of condition (ii) implies that there is an unambiguous risk
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shift from the right to the left for the risk change from F to G. The equality

of condition (ii) implies that the magnitudes of risk increases and decreases are

equal and therefore the variances are equal. Menezes et al. (1980) show that MV-

DRI implies that F is more skewed to the right than G in the sense that the third

central moment of F is greater than that of G. Moreover, they show that a down-

side risk change can be expressed in terms of a set of mean-preserving-spread and

mean-preserving-contraction probability transformation functions. They show

that an individual u prefers F to G for all risk changes from F to G being in-

creases in downside risk if and only if u
′′′

(x) > 0. The SD rule of MV-DRI is also

called 3-convex order (Shaked and Shanthikumar 2007).

Remark 2 (MVP-DRI and TSD) Both MV-DRI and TSD describe downside
risk changes. MV-DRI differs from TSD (in characterizing the downside risk
aversion) in that (1) the utility function does not have to be nondecreasing, and
(2) the utility function does not have to be concave, which together drive the
mean- and variance-preserving properties. In other words, if we restrict the class
of preferences with nondecreasing utility functions, the corresponding downside
risk changes may no longer preserve the mean and variance, which can be readily
verified by extending the analysis of Menezes et al. (1980).

To capture the tradeoff between mean and variance, Diamond and Stiglitz (1974)

introduce utility preserving increase in risk. In the same spirit, Chiu (2005)

generalizes the SD conditions of increase in downside risk by introducing mean

utility preserving increase in downside risk. A risk change from F to G is mean

utility preserving increase in downside risk for a reference decision maker u ∈ VCV

if (i)
∫ b
a
[G(z)−F (z)]dz = 0 and (ii)

∫ x
a
u
′′
(z)
∫ z
a

[G(t)−F (t)]dtdz ≤ 0, ∀x ∈ [a, b]

with at least one strict inequality and equality holding at x = b.

The accumulative advantage function of F over G,
∫ z
a

[G(t)−F (t)]dt, is weighted
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4.3 Downside Risk Aversion in CPT

by a negative and decreasing function u
′′
, which, together with the binding condi-

tion of (ii), implies that G is more skewed to the left of F while having a smaller

variance. Chiu (2005) shows that for risk-averse individuals, the greater the pru-

dence measure, the greater the strength of downside risk aversion, which supports

the role of prudence to measure the strength of downside risk aversion.

4.3 Downside Risk Aversion in CPT

According to Tversky and Kahneman (1992), the CPT preference can be de-

scribed with a nondecreasing S-shaped value function defined over a monetary

gain or loss (change in wealth with respect to a reference point r that is nor-

malized to zero in this chapter) and a pair of probability weighting functions

(PWFs) w−(·) and w+(·) that transform the objective probabilities (cumulative

distribution functions) to decision weights for losses and gains respectively, with

boundary conditions w−(0) = w+(0) = 0 and w−(1) = w+(1) = 1. In addition,

the gain weighting function equals the dual of the loss weighting function (i.e.,

w−(p) + w+(1 − p) = 1) for all p ∈ [0, 1]. A typical example of S-shaped value

function and PWFs are provided by Tversky and Kahneman (1992):

v(x) =


xα, if x ≥ 0,

−λ(−x)β, if x < 0,

and


w+(p) = pγ

(pγ+(1−p)γ)1/γ
,

w−(p) = pδ

(pδ+(1−p)δ)1/δ ,

(4.1)

with 0 < α < 1, 0 < β < 1, λ ≥ 1, and γ, δ ≥ 0.28.

Under CPT, an individual u ∈ VP prefers F to G if and only if ∆w
u (F,G) ≥ 0,
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where

∆w
u (F,G) =

∫ 0

a

[w−(G(x)− w−(F (x)]u′(x)dx

+

∫ b

0

[w+(F̄ (x))− w+(Ḡ(x))]u′(x)dx. (4.2)

4.3.1 Increase in Downside Risk under CPT

To describe the SD rule with which decision makers with S-shaped value func-

tions agree, Levy and Wiener (1998) introduce the notion of prospect stochastic

dominance (PSD): F dominates G in the sense of PSD if
∫ y
x

[G(t) − F (t)]dt ≥

0 for any x ≤ 0 ≤ y. When PWFs are linear, i.e., w+(p) = w−(p) = p, they

show that ∆w
u (F,G) ≥ 0 if F dominates G by PSD. To characterize downside

risk aversion under CPT, we first extend PSD to its third-degree counterpart,

called third degree prospect stochastic dominance (TPSD).

Definition 7 (TPSD) Prospect F dominates prospect G by TPSD, denoted by
F �TPSD G, if

(i)
∫ 0

a
[G(z)− F (z)]dz ≥ 0 and

∫ b
0
[G(z)− F (z)]dz ≥ 0, and

(ii)
∫ 0

x

∫ 0

z
[G(t)−F (t)]dtdz ≥ 0 for all x ∈ [a, 0], and

∫ y
0

∫ z
0

[G(t)−F (t)]dtdz ≥ 0
for all y ∈ [0, b], with at least one strict inequality.

Condition (i) of TPSD implies that the expected loss and gain of prospect F are

greater than that of prospect G, which is driven by the monotonicity of value

functions. Recall that Menezes et al. (1980) only require positive third deriva-

tives for the utility functions of downside risk averters while leaving the signs of

first and second derivatives arbitrary, which leads to the mean and variance pre-

serving property of the SD condition of increase in downside risk. The following
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proposition provides an utility representation of TPSD.

Proposition 11 Prospect F dominates G by TPSD if and only if ∆u(F,G) ≥ 0
for all u ∈ VP .

Proposition 11 shows that the risk change described by TPSD is indeed an in-

crease in downside risk for decision makers with S-shaped value functions that

have positive third derivatives. Note that Wong and Chan (2008) introduce a

similar condition, also called TPSD, that only contains condition (ii) of Defini-

tion 7. However, their analysis on utility representation relies on the assumption

that the second derivative of the utility function is zero at the reference point, i.e.,

u
′′
(0) = 0. We do not impose this assumption as many commonly used CPT value

functions, including the specification of (4.1), are not necessarily differentiable at

the reference points that are typically kinks.

To account for PWFs, we now extend TPSD to weighted third-degree prospect

stochastic dominance (W-TPSD).

Definition 8 (W-TPSD) Given a pair of PWFs (w−(·), w+(·)), F dominates
G by W-TPSD, denoted by F �W−TPSD G, if

(i)
∫ 0

a
[w−(G(z))−w−(F (z))]dz ≥ 0 and

∫ b
0
[w+(F̄ (z))−w+(Ḡ(z))]dz ≥ 0, and

(ii)
∫ 0

x

∫ 0

z
[w−(G(t))−w−(F (t))]dtdz ≥ 0 for all x ∈ [a, 0], and

∫ y
0

∫ z
0

[w+(F̄ (t))−
w+(Ḡ(t))]dtdz ≥ 0 for all y ∈ [0, b], with at least one strict inequality.

Clearly, when PWFs are linear, i.e., w+(p) = w−(p) = p, W-TPSD reduces to

TPSD. Using the weighted prospects Fw and Gw, F �W−TPSD G is equivalent to

Fw �TPSD Gw. The following lemma follows immediately from Proposition 11.

Lemma 5 (Downside Risk Aversion and W-TPSD) Consider a risk change
from F to G and a pair of PWFs (w−(·), w+(·)). Then ∆w

u (F,G) ≥ 0 for all
u ∈ VP if and only if F �W−TPSD G.
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Lemma 5 shows that the risk change described by W-TPSD is indeed an increase

in downside risk for all downside risk averters with S-shaped value functions and

a common pair of PWFs.

4.3.2 Increase in Downside Risk Aversion under CPT

Diamond and Stiglitz (1974) define the mean utility preserving increase in risk

as compensated increase in risk to characterize the intensity of risk aversion. In

the same spirit, we now define mean and value preserving W-TPSD (MU-W-

TPSD) as a compensated adjustment of W-TPSD to characterize the intensity

of downside risk aversion under CPT using prudence measure.

Definition 9 (MU-W-TPSD) Consider a reference decision maker u ∈ VP
with PWFs (w−(·), w+(·)). The risk change from F to G is an MU-W-TPSD if:

(i)
∫ 0

a
[w−(G(x))− w−(F (x))]dx+

∫ b
0
[w+(F̄ (x))− w+(Ḡ(x))]dx = 0, and

(ii)
∫ 0

x
u
′′
(t)
∫ 0

t
[w−(G(z))−w−(F (z))]dzdt ≥ 0 for x ≤ 0, and

∫ y
0
u
′′
(t)
∫ t

0
[w+(F̄ (z))−

w+(Ḡ(z))]dzdt ≤ 0 for y ≥ 0, with at least one strict inequality and with equalities
at x = a, y = b.

Condition (i) of MU-W-TPSD implies that the weighted mean of F and G are the

same under the pair of PWFs. Note that condition (ii) of the above definition

describes the downside risk changes based on lower tails of losses domain and

upper tails of gains domain respectively. MU-W-TPSD reduces to W-TPSD

when u′′ is constant. Condition (i) and the equalities holding at x = a and y = b

in condition (ii) imply that the reference decision maker u with PWFs (w−, w+)

is indifferent between F and G.

Rothschild and Stiglitz (1970) define a mean preserving spread (MPS) as a func-

tion that transforms weights from the center of a distribution to its tails with-
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out changing the mean. The converse transformation, which transforms weights

from the tails of a distribution to its center without changing mean, is a mean-

preserving contraction (MPC). Similarly, Menezes et al. (1980) introduce a mean

and variance preserving transformation by combining pairs of MPS and MPC

transformations. We further generalize their analyses by introducing a mean

utility preserving transformation (MUPT) for any u ∈ VP such that the risk

change driven by MUPT is an MU-W-TPSD for u.

Definition 10 (MUPT) For any u ∈ VP and prospect F with probability or
density function f and nonzero probabilities in both losses and gains domains, a
transformation function t(x) is an MUPT for F and u if (i) t(x) = s(x) + c(x)
where s(x) and c(x) are MPS and MPC transformation functions respectively

(i.e., f(x) + t(x) ≥ 0 almost everywhere in [a, b],
∫ b
a
s(x)dx =

∫ b
a
c(x)dx = 0, and∫ b

a
xs(x)dx =

∫ b
a
xc(x)dx = 0), and (ii)

∫ 0

x
u
′′
(z)
∫ 0

z
T (ξ)dξdy ≥ 0 for x ∈ [a, 0]

and
∫ y

0
u
′′
(z)
∫ z

0
T (ξ)dξdz ≥ 0 for y ∈ [0, b] with strict inequality for some x ∈

(a, b) and equalities holding at x = a and y = b), where T (x) =
∫ x
a
t(ξ)dξ.

Lemma 6 (Construction of MU-W-TPSD) Consider a reference decision
maker u ∈ VP and PWFs (w−(·), w+(·)). For any given distribution F , there
always exist a pair of MUPT functions t1, t2 such that the risk change is MU-W-
TPSD from F for u. In particular, w−(G(x)) = w−(F (x)) +

∫ x
a
t1(ξ)dξ for x ≤ 0

and w+(G(x)) = w+(F̄ (x))−
∫ x

0
t2(ξ)dξ for x ≥ 0.

Lemma 6 implies that for any given reference decision maker u ∈ VP and a

prospect F , the risk change of MU-W-TPSD always exists. To gain the idea of

the construction approach, we briefly sketch the proof. First, following Menezes

et al.’s approach, we construct a MPS transformation function s(x), which intro-

duces a greater variance without changing the mean, and a MPC transformation

function c(x), which reduces the variance without changing the mean and intro-

duces negative skewness. We can then observe that the cumulative risk changes

of the MPS-MPC combination t(x), denoted by T (x) =
∫ x

0
t(ξ)dξ, changes signs
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at most twice, first from positive to negative and then from negative to positive.

We then vary the MPC transformation function c(x) until the expected utility

of u is preserved. Figure 4.1 provides a graphical illustrative example for the

MUPT, which is used in the proof of Lemma 6 to construct MU-W-TPSD.

Figure 4.1: A Graphic Illustration of MUPT

We next characterize the intensity of downside risk aversion by showing that

under the SD condition of MU-W-TPSD an individual’s choice between two risky

prospects can be determined by the prudence measure.

Proposition 12 (Increase in Downside Risk Aversion under CPT) Consider
a reference decision maker u ∈ VP with PWFs (w−(·), w+(·)), who is indifferent
between F and G , i.e., ∆w

u (F,G) = 0. For any v ∈ VP , ∆w
v (F,G) ≥ 0 for

all risky prospect pairs F and G, such that the risk change from F to G is a
MU-W-TPSD for u, if and only if |Pv(x)| ≥ |Pu(x)| for any x.
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Proposition 12 extends the analysis of Chiu (2005) for risk averters to that for

downside risk averters under CPT. First, notice that in the special case when

b = 0, the relationship between prudence and downside risk aversion for risk-

seekers is opposite to that for risk averters. It indicates that v prefers F to G,

when G is mean utility preserving increase in downside risk from F for u, if

and only if v has smaller prudence (rather than greater prudence when r = a)

than u. The relationship between prudence and downside risk aversion under

CPT can then be established: if we increase prudence in the gains domain or

decrease prudence in the losses domain, the intensity of downside risk aversion

will be increased. That is, for S-shaped value functions, the absolute value of the

prudence can be used to measure the intensity of downside risk aversion.

We next provide a remarks on the relationship between prudence measure and

loss aversion.

Remark 3 (Index of Loss Aversion and Prudence Measure) To describe
CPT, Tversky and Kahneman (1992) argue that the principle of loss aversion im-
plies that the value function is steeper for losses than gains, i.e., u′(−x) > u′(x)

for x > 0. They use −u(−1)
u(1)

to index the degree of loss aversion. Köbberling and

Wakker (2005) propose an alternative index of loss aversion, defined as λ = u′(0−)
u′(0+)

,

where u′(0−) and u′(0+) are the left and right derivatives of v at zero. In the
power-utility specification (4.1), when α = β, the two definitions coincide, i.e.,

λ = u′(0−)
u′(0+)

= −u(−1)
u(1)

. To explicitly model the index of loss aversion, Köbber-

ling and Wakker (2005) propose a more general form of prospect value function

u(x) =

{
ϕ(x) if x ≥ 0
λϕ(x) if x < 0

, where ϕ is concave for x ≥ 0 and convex for x < 0,

and λ is the index of loss aversion. Clearly, under the aforementioned specifi-
cations, the prudence measure Pu does not depend on the index of loss aversion
λ and hence changing the index of loss aversion does not change the prudence
measure. Therefore, if a risk change from F to G is a MU-W-TPSD for some u
of the above form with ϕ

′′′
(x) > 0 for all x and some λ, then changing the index

of loss aversion (λ) does not change the preference.
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4.4 Applications

4.4.1 Monotonicity of Optimal Decisions

To explore the economic implications of increased downside risk in the sense of

W-TPSD and MU-W-TPSD, we follow a similar setting of Diamond and Stiglitz

(1974) to consider a decision maker with a utility function U(x, θ), which de-

pends on a return value x and a control variable θ ∈ [0, 1], and a pair of PWFs

(w−(·), w+(·)). Given a prospect F , the decision maker aims to solve the following

optimization problem:

max
θ∈[0,1]

ψF (θ) ,
∫ 0

a

U(x, θ)dw−(F (x)) +

∫ b

0

U(x, θ)d[1− w+(F̄ (x))]. (4.3)

Let arg maxθ∈[0,1] ψF (θ) be the set of maximizers for ψF (θ) for any given γ and

prospect F . We are interested to relate the optimal solution to increases in risk

in the sense of W-TPSD and MU-W-TPSD.

The next theorem identifies sufficient conditions of U(x, θ) under which an in-

crease in risk in the sense of W-TPSD or MU-W-TPSD for u leads to smaller

optimal solutions.

Theorem 1 (Monotonicity in Increase in Risk) Consider two prospects F
and G and assume that Uθ(·, θ) ∈ VP with a pair of PWFs (w−(·), w+(·)). Then
arg maxθ∈[0,1] ψF (θ) ≥ arg maxθ∈[0,1] ψG(θ) if (i) the risk change from F to G is
W-TPSD; or (ii) the risk change from F to G is MU-W-TPSD for some u ∈ VP ,

and
∣∣∣UθxxxUθxx

∣∣∣ ≥ |Pu(x)| for all x ∈ [a, b] and θ ∈ [0, 1].

It is notable that to perform the comparative statics with respect to an increase

in risk it suffices to show that ψF (θ) − ψG(θ) is increasing in θ, or, equivalently,
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the objective function is submodular in the control variable θ and the level of risk

in the W-TPSD or MU-W-TPSD sense (see, e.g., Topkis 1998 ).

We next apply Theorem 1 to a portfolio choice problem.

Example 3 (Portfolio Choice) Consider a portfolio choice problem in a mar-
ket consisting of one risky asset (e.g., stock) and one risk-free asset (e.g., bond)
with an investment planning horizon from date 0 to date T . The return rate of
the risk-free asset over the investment period is deterministic, denoted by r. We
follow He and Zhou (2011b) and assume that the reference point of the investor
is equal to the risk-free return rate r. Let the return rate of the risky asset is
random, denoted by R. Let θ ∈ [0, 1] be the percentage of the wealth invested in
the stock and the reminder in the risk free asset. Then the final normalized wealth
is Π(θ) = (1− θ)r + θR. For convenience, let X = R− r and we normalized the
initial wealth level to one. The stock total excess return R−r is a random variable
with CDF F . Then we have Π(X, θ) = r+ θX. Let θ ∈ [0, 1] be the percentage of
the wealth invested in the stock and the remainder in the risk-free asset. Then the
relative gain or loss is θX. Suppose the distribution function of X is F . Then
the portfolio choice problem under CPT preference for v ∈ VP is, therefore,

max
θ∈[0,1]

E[v(θX)]. (4.4)

Assume v is specified as in equation (4.1). Thus,

U(x, θ) = v(θx) =

{
θαxα, if x > 0,

−λθβ(−x)β, if x < 0.

Then we have

Uθx =

{
α2θα−1xα−1, if x > 0,

λβ2θβ−1(−x)β−1, if x < 0,

Uθxx =

{
−α2(1− α)θα−1xα−2, if x > 0,

λβ2(1− β)θβ−1(−x)β−2, if x < 0,

Uθxxx =

{
α2(1− α)(2− α)θα−1xα−3, if x > 0,

λβ2(1− β)(2− β)θβ−1(−x)β−3, if x < 0.

Clearly, Uθx > 0 and Uθxxx > 0 for all x 6= 0, and Uθxx > 0 for x < 0, Uθxx < 0 for
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x > 0, which verifies that Uθ ∈ VP . Treating Uθ as an utility function, calculating
the absolute value of prudence measure, we have∣∣∣∣UθxxxUθxx

∣∣∣∣ =

{
2−α
x
, if x > 0,

−2−β
x
, if x < 0.

According to Theorem 1, an increase in risk in the sense W-TPSD leads to smaller
values of optimal portfolio decision θ or less riskier portfolio choices.

Now consider a reference decision maker u, which is also of the form (4.1), with
parameters α0, β0 and λ0, such that α ≤ α0 and β ≤ β0. Then its absolute value
of prudence measure is

|Pu(x)| =

{
2−α0

x
, if x > 0,

−2−β0
x
, if x < 0.

Clearly,
∣∣∣UθxxxUθxx

∣∣∣ ≥ |Pu(x)| for all x 6= 0 and θ, i.e., the ‘individual’ Uθ is more

downside risk averse than u. Applying Theorem 1 again, an increase in risk in
the sense of MU-W-TPSD for u induces v to choose a less riskier portfolio choice.

4.5 Extensions and Further Discussions

4.5.1 Alternative Downside Risk Measures

We now associate the concept of MU-W-TPSD to the familiar notions of below

target semivariance (Markowitz 1959), lower partial moment (LPM, Fishburn

1977), third central moment and strong skewness that are commonly used as

measures of downside risk.

First, the second-degree LPM, which is identical to the below target semivari-

ance, measures the moments below certain return target (reference point) as a

proxy of downside risk measure in the distribution, and the greater the LPM
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the greater the negative skewness or downside risk. Correspondingly, upper par-

tial moment (UPM), or, equivalently, above target semivariance, measures upside

potential above the reference point (Farinelli and Tibiletti 2008). With PWFs

(w−(·), w+(·)), the second-degree LPMs/UPMs for F can be defined as

LPMw(F ) =

∫ 0

a

x2d[w−(F (x))], and UPM(F )w =

∫ b

0

x2d[−w+(F̄ (z))].

We next show that a MU-W-TPSD can be viewed as a combination of LPM and

UPM.

Lemma 7 (MU-W-TPSD and LPM/UPM) Consider a reference decision maker
u ∈ VP with PWFs (w−(·), w+(·)). A MU-W-TPSD from F to G for u implies
an increase in the second-degree LPM and a decrease in the second-degree UPM.

Combining Lemma 7 and Proposition 12, we know that a downside risk averter,

who has a greater prudence measure than the reference decision maker u for whom

the risk change from F to G is a MU-W-TPSD, prefers a smaller second-degree

LPM defined on the losses domain and a greater second-degree UPM defined on

the gains domain.

Another common downside risk measure is third central moment. Menezes et al.

(1980) show that increase in downside risk from F to G implies that F is more

skewed to the right than G in the sense that the third central moment of F is

greater than that of G. For prospect F , the third central moment with PWFs

(w−(·), w+(·)) can be defined as

mw
F =

∫ 0

a

(x− µwF )3d
[
w−(F (x))

]
+

∫ b

0

(x− µwF )3d
[
−w+(F̄ (x))

]
,

where µwF =
∫ 0

a
xd[w−(F (x))]+

∫ b
0
xd[−w+(F̄ (x))]. The following lemma identifies
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a condition under which a MU-W-TPSD from F to G implies a decrease in third

central moment.

Lemma 8 (MU-W-TPSD and Third Central Moment) Consider a deci-
sion maker u ∈ VP with PWFs (w−(·), w+(·)), and two prospects F and G. Sup-
pose that G crosses over F exactly twice, first from above and then from below,
in both losses and gains domains, and µwF=µwG is between the average values of
crossing points in losses and gains domains respectively. Then a MU-W-TPSD
for u ∈ VP implies that mw

F > mw
G.

The condition of having two crossing points in both losses and gains domains,

with G crossing over F first from above and then from below, implies that F is

more skewed to the right than G in both domains. Intuitively, the mean being

between the mid-points of two crossing points in losses and gains domains is

consistent with its role of being the “central” point. Lemma 8 then shows that

these two conditions together with the MU-W-TPSD conditions imply that the

risk change from F to G leads to a decrease of third central moment.

The last relevant concept is strong skewness. van Zwet (1964) argues that a

distribution F is more skewed to the right than G if the transformation G−1(F (x))

is concave, which is defined by Oja (1983) as strong skewness comparability. The

concavity of the distribution transformation G−1(F (x)) implies that F crosses

G at most twice, and that if they cross exactly twice G must first cross F from

above (Oja 1983). Chiu (2005) shows that the strong right skewness increase

condition plus the mean utility preserving with variance decrease from F to G

for a risk averse reference decision maker u imply that the increase in skewness is

just sufficient to compensate u for the increase of overall riskiness and that such

a risk change is an MUP-IDR.
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The following lemma identifies a set of sufficient conditions, which ensure the

MU-W-TPSD conditions, using below/above target semi-variance measures (or

LPM/UPM) and a pair of modified strong skewness conditions defined on losses

and gains domains respectively under CPT.

Lemma 9 (Strong Skewness and MU-W-TPSD) A risk change from F to
G for some u ∈ VP is MU-W-TPSD when the following conditions are satisfied.

(1)
∫ 0

a
[w−(G(z))− w−(F (z))]dz =

∫ b
0
[w+(F̄ (z))− w+(Ḡ(z))]dz = 0,

(2)
∫ 0

a
u
′′
(x)
∫ 0

x
[w−(G(z))−w−(F (z))]dzdx =

∫ b
0
u
′′
(x)
∫ x

0
[w+(F̄ (z))−w+(Ḡ(z))]dzdx =

0, and

(3) G−1(F (x))− x is quasi-concave in losses and gains domains respectively.

Lemma 9 specifies three conditions which ensure that the risk change from F to G

is a MU-W-TPSD. In particular, condition (1) implies that F andG have the same

weighted means in the losses and gains domains respectively, i.e.,
∫ 0

a
[w−(G(x))−

w−(F (x))]dx =
∫ b

0
[w+(F̄ (x)) − w+(Ḡ(x))] = 0, which, together, imply that the

overall weighted means are equal. Condition (2), in addition to (1), implies

that ∆w
u (F,G) = 0. Moreover, as we show in the proof, conditions (1) and (2)

imply that there are at least two crossing points in the losses and gains domains

respectively. Condition (3) generalizes the strong skewness conditions introduced

by van Zwet (1964), who assumes that G−1(F (·)) is concave, for S-shaped value

functions, which implies that G crosses F at most twice from above in both losses

and gains domains and hence w(G) is strongly more skewed to the left than w(F ).

Combining all three conditions, we know that G crosses over F exactly twice, first

from above, in both losses and gains domains, which leads to the conditions of

MU-W-TPSD.
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4.5.2 Markowitz Downside Risk Increase

Markowitz (1952b) proposes that decisions are based on change in wealth and

individuals are risk averse for losses and risk seeking for gains as long as the

possible outcomes are not very extreme, i.e., value functions are inverse S-shaped

(concave in the losses and convex in the gains). For extreme outcomes, individ-

uals are risk seeking for losses and risk averse for gains. Levy and Levy (2002)

extend the work of Markowitz (1952b) to propose (second-degree) Markowitz

Stochastic Dominance (MSD) for all inverse S-shaped functions.Wong and Chan

(2008) further generalize second-degree MSD to the third-degree MSD, or TMSD,

conditions: (i)
∫ b
a
[G(z)−F (z)]dz ≥ 0, and (ii)

∫ x
a

∫ z
a

[G(t)−F (t)]dtdz ≥ 0 for all

x ∈ [a, 0], and
∫ b
y

∫ b
z
[G(t)−F (t)]dtdz ≥ 0 for all y ∈ [0, b]. It is notable that Wong

and Chan (2008) implicitly restrict that the second derivatives of the inverse S-

shaped value functions are equal to zero at the reference point (zero). We next

provide alternative SD conditions for increases in downside risk and downside risk

aversion without requiring the second derivatives of the inverse S-shaped value

functions to be zero at the reference point. Following Levy and Levy (2002), we

omit PWFs.

Proposition 13 Consider two prospects F and G. ∆u(F,G) ≥ 0 for all u ∈ VM
if and only if

(i)
∫ b
a
[G(z)− F (z)]dz ≥ 0;

(ii)
∫ 0

x

∫ 0

z
[G(t)−F (t)]dtdz ≥ 0 for all x ∈ [a, 0], and

∫ y
0

∫ z
0

[G(t)−F (t)]dtdz ≥ 0
for all y ∈ [0, b], with at least one strict inequality and with equalities holding
at x = a and y = b.

Note that the inequalities in condition (ii) are binding at the lower bound of
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the losses domain and the upper bound of the gains domain respectively, which

is driven by the fact that the second derivative at the reference point is not

necessarily zero.

Similar to MU-W-TPSD, we define the concept of Markowitz mean utility pre-

serving downside risk increase (M-MUP-IDR) to characterize increase in downside

risk aversion.

Definition 11 (M-MUP-IDR) A risk change from F to G is an M-MUP-IDR
for some u ∈ VM if

(i)
∫ 0

a
[G(z)− F (z)]dz =

∫ b
0
[G(z)− F (z)]dz = 0;

(ii)
∫ 0

x
u
′′
(t)
∫ 0

t
[G(ξ)−F (ξ)]dξdt ≤ 0 ∀x ∈ [a, 0) and

∫ x
0
u
′′
(t)
∫ t

0
[G(ξ)−F (ξ)dξdt ≥

0 ∀x ∈ (0, b], with at least one strict inequality and equalities holding at
y = a and x = b.

It is readily to generalize the analysis of Proposition 12 to provide the choice-

theoretic characterization of increase in downside risk aversion for individuals

with inverse S-shaped value functions in VM .

Proposition 14 Consider a reference decision maker with u ∈ VM .

(a) For any v ∈ VM ,
∫ b
a
v(x)dF (x) ≥

∫ b
a
v(x)dG(x) for all pairs of prospects F

and G, such that the risk change from F to G is an M-MUP-DRI for u, if
and only if |Pv(x)| ≥ |Pu(x)| for all x.

(b) Suppose u is indifferent between F and G.
∫ b
a
v(x)dF (x) ≥

∫ b
a
v(x)dG(x)

for all v ∈ VM with |Pv(x)| ≥ |Pu(x)| for all x if and only if the risk change
from F to G is an M-MUP-IDR for u.

Proposition 14 shows that the absolute value of the prudence can also be used

to characterize the intensity of downside risk aversion for decision makers with

inverse S-shaped value functions.
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4.6 Conclusion

This chapter provides choice-theoretic characterizations for the increases in down-

side risk and downside risk aversion in CPT. We identify SD conditions of in-

creases in downside risk to characterize downside risk aversion and intensity of

downside risk aversion under CPT. In particular, our definition of MU-W-TPSD

generalizes the downside risk increase introduced by Menezes et al. (1980) and

Chiu (2005) by accommodating the S-shaped curvature of value functions and

probability weighting functions in CPT. We also extend the analysis to inverse

S-shaped value functions.

There are a few interesting future research directions along this line. First, this

chapter characterizes the intensity of downside risk aversion using prudence mea-

sure. We can extend our analysis to other alternative downside risk aversion

measures introduced in the literature, such as Liu and Meyer (2012) for decreas-

ing absolute risk aversion (DARA), Modica and Scarsini (2005) and Crainich and

Eeckhoudt (2008) for the ratio of the third and first derivatives, Keenan and Snow

(2002) for Schwarzian derivatives, and Huang and Stapleton (2014) for cautious-

ness measure. Second, the downside risk increase conditions are in the class of

third-degree SD conditions, which can be further generalized to higher degree SD

conditions. Last but not least, one can conduct experimental studies to test how

individuals make the tradeoff between risk and downside risk.
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Chapter 5

Robust Risk Measures for
Cumulative Prospect Theory

5.1 Introduction

The measurement of risk plays a central role in managing risk. A number of

studies have attempted to quantify risk by identifying appropriate risk measures.

In his seminal work, Markowitz (1952a) proposes that variance can be used as

a proxy for the overall riskiness of a portfolio and risk averse investors make

tradeoffs between expected returns and the resulting variances of portfolios. The

Markowitz mean-variance (MV) rule is by far the most popular investment deci-

sion rule that has been widely adopted by both academics and practitioners (Levy

2016). It has long been criticized that variance is not consistent with investors’

actual perception of risk since it allocates weights on negative (undesirable) de-

viations and positive (desirable) deviations of returns evenly. Markowitz himself

also recognized that downside risk is a more appropriate risk measure because in-

vestors are more concerned about loss below the target return (Markowitz 1959).
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Since then various downside risk measures have been proposed. Value-at-risk

(VaR) and conditional value-at-risk (CVaR) are two commonly used downside

risk measures by practitioners and financial institutions (Levy 2016).

Jorion (2007) defines the VaR of a portfolio as the worst loss over target hori-

zon such that there is a low, pre-specified probability that the actual loss will be

greater. It represents the maximum potential loss expected on a portfolio at

a given confidence level over a given time period. It has been widely used by

financial institutions, portfolio managers and regulators to measure risks and de-

termine the amount of adequate economic capital to sustain potential losses (i.e.,

capital adequacy) (Jorion 2007). However, VaR is often criticized as it is not a

coherent risk measure (see, e.g. Artzner et al. 1999, Acerbi 2002). CVaR is first

proposed by Artzner et al. (1997) as an alternative risk measure. Rockafellar and

Uryasev (2000) demonstrate the use of CVaR in portfolio optimization and show

that CVaR surpasses VaR computationally.

On the other hand, Gneiting (2011) shows that CVaR suffers from backtesting

and thus is not elicitable. Cont et al. (2010) introduce the notion of qualitative

robustness for risk measurement procedure and argue that practitioners should

not only focus on the coherence of risk measures, and propose to consider again

the necessity of the subbaitivity axiom proposed by Artzner et al. (1999) as it

is in conflict with robustness for spectral risk measures. To overcome the non-

robust property of CVaR, Cont et al. (2010) propose range value-at-risk (RVaR)

as an alternative risk measure. RVaR can be seen as the average level of VaR

level across a range of loss/return probabilities. The notion of RVaR is in general

a non-convex risk measure. Embrechts et al. (2018) show that RVaR satisfies a
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special form of sub-additivity and can be applied to risk sharing problems.

The notion stochastic dominance (SD) describes partial ordering relationships be-

tween probability distributions (risky prospects) by pairwise comparisons, provid-

ing a way to divide the set of feasible risky prospects into efficient and inefficient

sets (Levy 2016). Commonly used SD conditions include first-degree stochas-

tic dominance (FSD) and second-degree stochastic dominance (SSD) which were

proposed by Hadar and Russell (1969), Hanoch and Levy (1969) and Rothschild

and Stiglitz (1970) to characterize the preferences of decision makers who prefer

more to less in a stochastic sense and who are risk averse, respectively.

Although the decision criterion of SD seems very different from the decision cri-

terion of using risk measures, there are logical connections among SD and risk

measures. Ogryczak and Ruszczynski (2002) first show that VaR is equivalent

to FSD, and CVaR is equivalent to SSD. Ma and Wong (2010) use a stochas-

tic dominance approach to provide a decision theoretic characterization for VaR

and CVaR. They show that the risk preference of rational and risk averse deci-

sion makers can be represented by VaR and CVaR at all levels of risk tolerance,

respectively.

The emergence of the cumulative prospect theory (CPT), developed by Kahne-

man and Tversky (1979) and Tversky and Kahneman (1992), provides a promi-

nent alternative to EUT. In the EUT paradigm, the risk preference is fully repre-

sented by the curvature properties of utility functions with concavity (convexity)

for risk averters (risk seekers). In the CPT paradigm, the risk preference is typ-

ically represented simultaneously by a reference-dependent value function and a
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pair of probability weighting functions (PWFs) with certain curvature properties.

Inspired the linkage among VaR, CVaR and SD in the paradigm of EUT, this

chapter investigates the corresponding connections in the paradigm of CPT. In

this chapter, we establish the connections among VaR, CVaR, RVaR, SD and

choices made by decision makers with CPT risk preferences, to provide behaviour

foundations for those risk measures in the paradigm of CPT. More specifically,

we first establish the connections among RVaR, SD and choices made by deci-

sion makers with S-shaped value functions. We then extend the analysis to the

paradigm of CPT by incorporating PWFs. We thereby provide linkages between

risk preferences and risk measures.

To demonstrate the economic implications of increases in RVaR, we identify suf-

ficient conditions under which the optimal solutions to an expected utility max-

imizing problem are monotone in the risk increases in the sense of RVaR. Using

portfolio choice problems as examples, we show that increases in risk in the sense

of RVaR may lead to less riskier portfolio choices for a decision maker with CPT

preference. Finally, we show that our analyses can be further extended to risk

preferences with inverse S-shaped value functions.

The remainder of this chapter is organized as follows. Section 5.2 reviews and

recalls the risk measures that includes VaR, CVaR and RVaR. Section 5.3 provides

a theoretic foundation of various risk measures in the paradigm of CPT. Section

5.4 presents implications for optimal decision problems. Section 5.5 extends the

analysis to reverse S-shaped value functions. Section 5.6 concludes the chapter.

All technical proofs are provided in the appendix.
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5.2 Preliminaries

Throughout this chapter, we focus on quantifying the risks associated with two

random variables X and Y that represent the potential returns of two portfolios

over a certain period with F and G being the prospects or cumulative distribution

functions. For simplicity, we assume that F and G are differentiable with the

inverse functions F−1 and G−1. Denote by UI , UCV ,UCX , VS and VIS the classes

of all nondecreasing function, nondecreasing concave utility functions (i.e., u′ ≥

0, u
′′ ≤ 0), all nondecreasing convex utility functions (i.e., u′ ≥ 0, u

′′ ≥ 0), all

nondecreasing S-shaped value functions with u
′′
(x) ≥ 0 for x < 0, u

′′
(x) ≤ 0

for x > 0 and a reference point 0, and all nondecreasing inverse-S-shaped value

functions with u
′′
(x) ≤ 0 for x < 0, u

′′
(x) ≥ 0 for x > 0 and a reference point 0.

Without loss of generality, we assume that u(0) = 0.

The choice between prospects F and G for an individual with utility function u

is determined by the difference of the expected prospect values

∆u(F,G) =

∫ b

a

u(x)dF (x)−
∫ b

a

u(x)dG(x) =

∫ b

a

u′(x)[G(x)− F (x)]dx,

which can be viewed intuitively as the accumulative advantages of F over G

throughout the support set [a, b] weighted by the first derivative of the utility

function.
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5.2.1 Value-at-Risk and Conditional Value-at-Risk

A risk measure is a real-valued function ρ(·) defined on a space of measurable

functions. VaR can be either calculated from the probability distribution of re-

turns (gains) or the probability distribution of losses (i.e., the negative gains)

(Hull 2015). In this chapter, for convenience, we use the former approach. Math-

ematically, for a portfolio investment over a period with return (gain) X, VaR at

100 × α% risk tolerance level (or, equally speaking, 100 × (1 − α)% confidence

level) is defined as the cutoff loss such that the probability of suffering a greater

loss is less than 100 × α% (i.e., the loss at the lower 100αth percentile of the

distribution of X):

V aRα(X) = sup{a|Pr(−X > a) ≤ α}.

For example, a portfolio having a 95% one-day VaR of $100 million implies that

there is only a 5% chance that the portfolio will lose more than $100 million

over the next day. In what follows, for convenience, we will use V aRα(X) and

V aRF
α interchangeably. We follow the literature and make the convention that

the argument of VaR counts losses positive and profits negative.

Note that VaR is the maximum potential loss expected on a portfolio at a given

confidence level over a given time period. The VaR distinguishes normal and ab-

normal market risks at certain confidence level over the overall risk: the potential

losses below the VaR are treated as normal market risks and the losses above

the VaR are treated as abnormal market risks or catastrophic losses. Accord-

ing to the capital adequacy and regulatory principles for financial institute risk
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VaR$(X)

Expected	Loss	(EL) Unexpected	Loss	(UL)

Catastrophic	Loss	Normal	Loss

Frequency

Figure 5.1: Loss distribution

management (see, e.g., The Basel II Capital Accord), a regulatory capital is re-

served to cover the unexpected loss (UL) which is equal to the difference between

VaR and the expected value of overall potential losses (i.e., expected loss, EL)

and the catastrophic losses can be protected by insurance or hedged by financial

derivatives (see, e.g., Chernobai et al. 2008, Moosa 2008).

To regulate definitions of risk measure, Artzner et al. (1999) propose coherent

risk measure.

Definition 12 (Coherent risk measure) A risk measure ρ is coherent if the
following four axioms hold.

(1) ρ(X) ≤ ρ(Y ) if X ≤ Y , (Monotonicity);

(2) ρ(X + a) = ρ(X)− a for any constant a, (Translation invariance);

(3) ρ(λX) = λρ(X) for all λ ≥ 0, (Positive homogeneity);

(4) ρ(X + Y ) ≤ ρ(X) + ρ(Y ), (Subadditivity).
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Axioms (3) and (4) together imply that ρ(X) is convex in X. That is, a coherent

risk measure must be convex. It is known that VaR satisfies axioms (1) and (2)

but fails to be subadditive for general loss distributions and is therefore not a

convex risk measure, which makes such a risk measure difficult to implement in

portfolio optimization (see, e.g., Artzner et al. 1999, Pflug 2000).

The drawbacks of VaR have led many researchers to propose new risk measures

that are coherent. Artzner et al. (1997) introduce an alternative risk measure

known as CVaR (also called expected shortfall (ES), average VaR (AVaR), mean

excess loss, expected tail loss (ETL) or tail VaR). CVaR is the conditional expec-

tation of loss given that the loss is beyond the VaR level, the maximum potential

loss expected, at a given confidence level over a given period. In other words,

CVaR is the mean of abnormal or catastrophic loss. Formally, the CVaR of the

random payoff X at the (1− α)100% confidence level is defined as

CV aRα(X) = E[−X| −X ≥ V aRα(X)], ∀α ∈ (0, 1]. (5.1)

It is readily to show that CVaR can be represented in the following forms:

CV aRα(X) =
1

α

∫ −V aRα(X)

−∞
(−x)dF (x),

=
1

α

∫ α

0

V aRγ(X)dγ,

= V aRα(X) +
1

α

∫ −V aRα(X)

−∞
F (x)dx,

= V aRα(X) +
1

α
E[(−X − V aRα(X))+].

Rockafellar and Uryasev (2002) show that CV aRα(X) can be defined as minimum
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objective value of the following convex optimization problem:

CV aRα(X) := inf

{
a+

1

α
E[(−X − a)+] : a ∈ R

}
, (5.2)

with V aRα(X) being the minimizer. That is, one can obtain simultaneously

CV aRα(X) and V aRα(X) by solving the above convex optimization problem in

one dimension, which is appealing in computation. Moreover, Pflug (2000) and

Rockafellar and Uryasev (2002) show that CVaR is a coherent risk measure.

5.2.2 Range Value-at-Risk

Cont et al. (2010) introduce an alternative risk measure, called range value-at-risk

(RVaR). RVaR can be seen as the average VaR over a range of return.

Definition 13 (Range Value at Risk) For any 0 < α < 1 − β < 1, the
RV aR at the (1− β − α)100% confidence level is

RV aR[α,1−β](X) =
1

1− β − α

∫ 1−β

α

V aRγ(X)dγ.

It is notable that RVaR comprises CVaR as special cases: RV aR[0,1−β](X) =

CV aR1−β(X). The risk measure RVaR is in general a non convex measure, but

similar to VaR, it satisfies some other properties like monotonicity, translation

invariance and positive homogeneity.

Proposition 15 For any 0 < α < F (0) < 1− β < 1, , RV aR has the following
representations:

(i) RV aR[α,1−β](X) = E[−X| − V aRα ≤ X ≤ −V aR1−β];

(ii) RV aR[α,1−β](X) = 1
1−β−α

(
βCV aR1−β(X)− αCV aRα(X)

)
;

(iii) RV aR[α,1−β](X) = − 1
1−β−α

∫ 1−β
α

F−1(γ)dγ.
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All VaR, CVaR and RVaR belong to the family of distortion risk measures.

5.3 Risk Measures in CPT

5.3.1 Accounting for Value Function

Levy and Wiener (1998) introduce the notion of prospect stochastic dominance

(PSD) to generalize the concepts of SSD and RSD and show that the pref-

erences towards PSD can be represented by S-shaped value functions in the

EUT paradigm. Specifically, F dominates G in the sense of PSD, denoted by

F �PSD G, if
∫ y
x

[G(t) − F (t)]dt ≥ 0 for all x ≤ 0 ≤ y, with at least one strict

inequality, which implies SSD in gains and RSD in losses.

Levy and Wiener (1998) also provide a characterization of PSD using quantiles.

In particular, F �PSD G if∫ q

p

[F−1(t)−G−1(t)]dt ≥ 0 for all 0 ≤ p ≤ F (0) ≤ G(0) ≤ q ≤ 1. (5.3)

The quantile rule of PSD indicates that F (0) ≤ G(0), which can be deduced from

the fact that for PSD rules, the area enclosed by F and G, denoted by G− F , is

always greater than zero around the reference point.

The following proposition establishes the connection between PSD and RVaR as a

measure of risk, and characterizes decision makers with S-shaped value function.

Proposition 16 Consider two prospects F and G with F (0) ≤ G(0). The fol-
lowing are equivalent
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5.3 Risk Measures in CPT

(i) F �PSD G;

(ii) RV aR[α,1−β](X) ≤ RV aR[α,1−β](Y )
for all 0 ≤ α ≤ F (0) ≤ G(0) ≤ 1− β ≤ 1;

(iii) ∆u(F,G) ≥ 0 for all u ∈ VS.

Levy and Wiener (1998) establishes the equivalence of (i) and (iii). Proposition

16 presents the equivalence relationship between PSD and RVaR, and shows that

decision makers with S-shaped value functions prefer smaller RVaR at all levels

of risk tolerance.

Remark 4 Note that when 1− β ≥ F (0), we have V aR1−β(X) ≤ 0.

The following lemma reveals the connections among VaR, CVaR, stochastic domi-

nance and curvature structures of utility functions (preferences), providing behav-

ior foundations for VaR and CVaR, respectively (see, e.g., Pflug 2000, Ogryczak

and Ruszczynski 2002 and Ma and Wong 2010).

Lemma 10 (Var, CVaR and SD) Let F and G be defined as above.

(i) F �FSD G ⇐⇒ V aRα(X) ≤ V aRα(Y ) for all α ∈ (0, 1] ⇐⇒ ∆u(F,G) ≥ 0
for all u ∈ UI .

(ii) F �SSD G⇐⇒ CV aRα(X) ≤ CV aRα(Y ) for all α ∈ (0, 1]⇐⇒ ∆u(F,G) ≥
0 for all u ∈ UCV .

The equivalence of VaR and FSD shows that a decision maker who is rational

(prefers more to less) prefers F to G if F has smaller VaR than G at all levels of

risk tolerance. The equivalence of CVaR and SSD shows that a decision makers

who is risk averse prefers F to G if F has smaller CVaR than G at all levels of

risk tolerance.

Remark 5 If CV aRα(X) ≤ CV aRα(Y ) for only one α level, the risk preference
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5.3 Risk Measures in CPT

for a decision maker is still unknown.

5.3.2 Accounting for Probability Weighting Function

According to Tversky and Kahneman (1992), the CPT preference can be repre-

sented by a nondecreasing S-shaped value function defined over a monetary gain

or loss (change in wealth with respect to a reference point 0 that is normalized to

zero) and a pair of PWFs w−(·) and w+(·) that transform the objective probabil-

ities (cumulative distribution functions) to decision weights for losses and gains

respectively. Without loss of generality, we assume that the PWFs are nonde-

creasing with boundary conditions w−(0) = w+(0) = 0 and w−(1) = w+(1) = 1.

In addition, the gain weighting function equals the dual of the loss weighting func-

tion (i.e., w−(p) + w+(1 − p) = 1) for all p ∈ [0, 1]. Then w = (w−, w+) can be

viewed as a transformation function that transfers a prospect F to a “weighted”

prospect Fw such that

Fw(x) =


w−(F (x)) for x ∈ [a, 0],

1− w+(F̄ (x)) for x ∈ (0, b].

A typical example of value function and PWFs are provided by Tversky and

Kahneman (1992):

u(x) =


xα, if x ≥ 0,

−λ(−x)β, if x < 0,

and


w+(p) = pγ

(pγ+(1−p)γ)1/γ
,

w−(p) = pδ

(pδ+(1−p)δ)1/δ ,

(5.4)

with 0 < α < 1, 0 < β < 1, λ ≥ 1, and γ, δ ≥ 0.28. For convenience, denote

by WI , WCX , WCV , WIS the sets of increasing, increasing convex, increasing
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5.3 Risk Measures in CPT

concave, and increasing inverse S-shaped probability weighting function pairs

respectively

The CPT value of prospect F for a decision maker u with PWFs (w−(·), w+(·))

is defined as

VF =

∫ 0

a

u(x)d[w−(F (x))] +

∫ b

0

u(x)d[1− w+(F̄ (x))].

Then the decision maker under CPT prefers F to G if and only if ∆w
u (F,G) ≥ 0,

where

∆w
u (F,G) = VF − VG

=

∫ 0

a

[w−(G(x)− w−(F (x)]u′(x)dx+

∫ b

0

[w+(F̄ (x))− w+(Ḡ(x))]u′(x)dx.

The next lemma provides a linkage between PWFs and RVaR.

Lemma 11 (RVaR and PWFs) Let F and G be defined as above with F (0) ≤
G(0). The following are equivalent

(i) RV aR[α,1−β](X) ≤ RV aR[α,1−β](Y )
for all 0 ≤ α ≤ F (0) ≤ G(0) ≤ 1− β ≤ 1;

(ii) Fw �PSD Gw for all (w−, w+) ∈WCX ×WCX .

Combining Proposition 16 and Lemma 11, we have the following choice charac-

terization for RVaR.

Proposition 17 Let F and G be defined as above with F (0) ≤ G(0). Then
RV aR[α,1−β](X) ≤ RV aR[α,1−β](Y ) for all 0 ≤ α ≤ F (0) ≤ G(0) ≤ 1 − β ≤ 1 if
and only if ∆w

u (F,G) ≥ 0 for all u ∈ VS and (w−, w+) ∈WCX ×WCX .

Recall that in Chapter 3, we have defined M-PSD to characterize strong risk

seeking in losses and strong risk aversion in gains. More specifically, F dom-
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5.3 Risk Measures in CPT

inates G according to M-PSD, denoted by F �M−PSD G if F �PSD G and∫ b
a
[G(z) − F (z)]dz = 0. Note that F �M−PSD G implies

∫ 0

a
[G(t) − F (t)]dt =∫ b

0
[G(t)− F (t)]dt = 0, and RV aR[0,1](X) = RV aR[0,1](Y ), i.e., the expected val-

ues of losses and the expected values of gains of F and G are the same. That

is, M-PSD combines MPS in gains and MPC in loses. Hence the preference

agreeing with M-PSD displays strong risk aversion in gains and strong risk seek-

ing in losses, respectively, which captures the reflection effect observed in the

experimental study of (Kahneman and Tversky 1979). The following proposi-

tion characterizes the curvatures of the value function and PWFs that can be

represented by preference towards RVaR.

Proposition 18 Consider a decision maker with an increasing value function u
and a pair of increasing PWFs (w−, w+). Then ∆w

u (F,G) ≥ 0 for all prospect
pairs F and G such that RV aR[α,1−β](X) ≤ RV aR[α,1−β](Y ) for all 0 ≤ α ≤
F (0) ≤ G(0) ≤ 1 − β ≤ 1 with RV aR[0,1](X) = RV aR[0,1](Y ) if and only if
u ∈ VS and (w−, w+) ∈WCX ×WCX .

Proposition 18 applies the equivalence of RVaR and M-PSD when F and G have

the same mean. It shows that a decision maker exhibits strong risk aversion

in gains and strong risk seeking in losses respectively will prefer smaller RVaR

for all α and β level. Such preferences can be characterized using S-shaped value

functions and convex PWFs. The convexity of PWFs distorts the probability dis-

tributions by overweighting smaller values of losses or gains and underweighting

larger values of losses and gains, which reflects pessimism in gains and optimism

in losses. The more convex the PWFs, the greater the degrees of distortions and

more pessimistic (optimistic) in gains (losses).

Similarly, the following lemma characterizes the curvatures of the value function
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and PWFs that can be represented by preference towards VaR and CVaR.

Lemma 12 (VaR, CVaR and PWFs) Suppose F (0) = G(0) = 1. Then

(i) V aRα(X) ≤ V aRα(Y ) for all α ∈ (0, 1) if and only if Fw �FSD Gw for all
w− ∈WI .

(ii) CV aRα(X) ≤ CV aRα(Y ) for all α ∈ (0, 1) if and only if Fw �SSD Gw for
all w− ∈WCV .

Proposition 19 Suppose F (0) = G(0) = 1. Then

(i) V aRα(X) ≤ V aRα(Y ) for all α ∈ (0, 1) if and only if ∆w
u (F,G) ≥ 0 for all

u ∈ UI and w− ∈WI .

(ii) CV aRα(X) ≤ CV aRα(Y ) for all α ∈ (0, 1) if and only if ∆w
u (F,G) ≥ 0 for

all u ∈ UCV and w− ∈WCV .

5.4 Implications for Optimal Decision Problems

To explore the economic implications of increased risk in the sense of RVaR under

CPT on optimal decisions, we follow a similar setting of Diamond and Stiglitz

(1974) to consider a utility function U(x, θ) which depends on a return value

of x and a control variable θ ∈ [0, 1], and a pair of PWFs (w−(·), w+(·)) which

satisfy the regularity properties of CPT. Assume that U(x, θ) is continuously

differentiable in θ.

Given a prospect F , the decision maker aims to solve the following optimization

problem:

max
θ∈[0,1]

ψF (θ) ,
∫ 0

a

U(x, θ)dw−(F (x)) +

∫ b

0

U(x, θ)d[1− w+(F̄ (x))]. (5.5)

Let arg maxθ∈[0,1] ψF (θ) be the set of maximizers for ψF (θ) for any given γ and
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5.4 Implications for Optimal Decision Problems

prospect F . We are interested to relate the optimal solution to increases in RVaR.

The next theorem identifies sufficient conditions of U(x, θ) under which an in-

crease in RVaR leads to smaller optimal solutions.

Proposition 20 (Monotone Comparative Statics) Consider two prospects
F and G such that F (0) ≤ G(0) and assume that Uθ(·, θ) ∈ VS with a pair of
PWFs (w−, w+). Then arg maxθ∈[0,1] ψF (θ) ≥ arg maxθ∈[0,1] ψG(θ) if

(1) RV aR[α,1−β](X) ≤ RV aR[α,1−β](Y ) for all 0 ≤ α ≤ F (0) ≤ G(0) ≤ 1−β ≤
1, or

(2) RV aR[α,1−β](X) ≤ RV aR[α,1−β](Y ) for all 0 ≤ α ≤ F (0) ≤ G(0) ≤ 1−β ≤
1 and the PWFs (w−, w+) ∈WCX ×WCX .

It is notable that to obtain the monotonicity result, it suffices to show that

ψF (θ)− ψG(θ) a decreasing function of θ, or, equivalently, the objective function

is submodular in the control variable θ and the level of risk in the sense of RVaR

(see, e.g., Topkis 1998).

We next apply this result to a portfolio choice problem.

Example 4 (Portfolio Choice) Consider a portfolio choice problem in a mar-
ket consisting of one risky asset (e.g., stock) and one risk-free asset (e.g., bond)
with an investment planning horizon from date 0 to date T . The return rate of
the risk-free asset over the investment period is deterministic, denoted by τ . We
follow the literature and assume that the reference point of the investor is equal
to the risk-free return rate τ (see, e.g., Barberis and Xiong 2009, He and Zhou
2011a, Li and Yang 2013, and Meng and Weng 2017). The return rate of the
risky asset is random, denoted by R. Let θ ∈ [0, 1] be the percentage of the wealth
invested in the stock and the reminder in the risk free asset. Then the final nor-
malized wealth is Π(θ) = (1− θ)τ + θR. For convenience, let X = R− τ and we
normalize the initial wealth level to one. The stock total excess return R− τ is a
random variable with distribution function F . Then we have Π(X, θ) = τ + θX.
Let θ ∈ [0, 1] be the percentage of the wealth invested in the stock and the re-
mainder in the risk-free asset. Then the relative gain or loss is θX. Suppose the
distribution function of X is F . Then the portfolio choice problem under CPT
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preference for u ∈ VS is, therefore,

max
θ∈[0,1]

E[u(θX)]. (5.6)

Consider the portfolio choice problem (5.6) and the S-shaped value function spec-
ified in (5.4). We have

U(x, θ) = u(θx) =

{
θαxα, if x > 0,

−λθβ(−x)β, if x < 0.

where 0 < α, β < 1, λ > 0. Then we have

Uθx =

{
α2θα−1xα−1, if x > 0,

λβ2θβ−1(−x)β−1, if x < 0,
and

Uθxx =

{
−α2(1− α)θα−1xα−2, if x > 0,

λβ2(1− β)θβ−1(−x)β−2, if x < 0.

Clearly, U is thrice differentiable with respect to θ and x, Uθx > 0 for all x,
Uθxx > 0 for x < 0 and Uθxx < 0 for x > 0, i.e., Uθ ∈ VS. According to
Proposition 20, under the condition (1) or (2), an increase in risk in the sense
of RVaR leads to smaller values of optimal portfolio decision θ or less riskier
portfolio choices.

Remark 6 (PSD and Certainty Equivalent) For all decision maker u ∈
VP , the certainty equivalence for a prospect F , denoted by CE(F ), satisfies
u(CE(F )) = EFu(x), and CE(F ) = EFu(x) − πF , where πF is risk premium.
When F �M−PSD G, CE(F ) ≥ CE(G). When F �PSD G, the relationship
between πF and πG remains unclear unless EFu(x) = EGu(x).

5.5 Extensions

Markowitz (1952) proposes that decisions are based on change in wealth and indi-

viduals are risk averse for losses and risk seeking for gains as long as the possible

outcomes are not very extreme, i.e., value functions are inverse S-shaped (concave

in the losses and convex in the gains). For extreme outcomes, individuals are risk
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seeking for losses and risk averse for gains. Levy and Levy (2002) introduce the

concept of Markowitz Stochastic Dominance (MSD) for inverse S-shaped func-

tions. More specifically, F dominates G by MSD if
∫ x
a

[G(z)−F (z)]dx ≥ 0 for all

x ≤ 0 and
∫ b
x
[G(z)−F (z)]dz ≥ 0 for all x ≥ 0 with at least one strict inequality.

They show that F dominates G by MSD if and only if all u ∈ VIS prefer F to

G. In what follows, we show that the choice-theoretic characterizations for CPT

can be readily extended to that with inverse S-shaped value functions.

Proposition 21 (CVaR and MSD) Let F , G and α be defined as above. The
following are equivalent

(i) F �MSD G;

(ii) CV aRα(X) ≤ CV aRα(Y ) for all α ∈ (0,min(F (0), G(0))), and
µF − (1− β)CV aR1−β(X) ≤ µG − (1− β)CV aR1−β(Y ) for all
β ∈ (0,max(F (0), H(0)));

(iii) ∆u(F,G) ≥ 0 for all u ∈ VIS.

Similar to M-PSD, to characterize the preferences with strong risk aversion (strong

risk seeking) in losses (gains), we can define the SD condition of mean-preserving

MSD as follows.

Definition 14 (Mean Preserving MSD) Prospect F dominates prospect G
by mean preserving MSD, denoted by F �M−MSD G, if

(i)
∫ b
a
[G(z)− F (z)]dz = 0;

(ii)
∫ x
a

[G(z)− F (z)]dz ≥ 0 for all x ∈ [a, 0) and∫ b
y
[G(z)− F (z)]dz ≥ 0 for all y ∈ (0, b], with at least one strict inequality.

The following lemma provides a linkage between M-PSD and M-MSD.

Lemma 13 (M-PSD and M-MSD) Consider two prospects F and G. Then
F �M−PSD G if and only if G �M−MSD F .
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5.6 Conclusion

Note that in general F �PSD G does not necessarily imply G �MSD F and vice

versa. Lemma 13 shows that under the mean preserving condition, F �PSD G is

equivalent to G �MSD F .

Analogous to the analysis in the CPT paradigm, we show that the preference

towards smaller RVaR is characterized by S-shaped value functions and convex

PWFs (Proposition 18), we can also provide a choice-theoretic characterization

for when considering the PWFs as that in the CPT paradigm.

Proposition 22 (Curvature Representation for CVaR) Consider an in-
creasing value function u and a pair of increasing PWFs (w−(·), w+(·)). Then
∆w
u (F,G) ≥ 0 for all pairs of F and G such that CV aRα(X) ≤ CV aRα(Y ) for all α ∈

(0,min(F (0), G(0))), CV aR1−β(X) ≥ CV aR1−β(Y ) for all β ∈ (0,max(F (0), H(0)))
and µF = µG if and only if u ∈ VIS and PWFs (w−, w+) ∈WCV ×WCV .

Proposition 22 characterizes strong risk aversion in losses and strong risk seeking

in gains. It is a direct application of Proposition 7.

5.6 Conclusion

This chapter provides behaviour foundations for VaR, CVaR and RVaR as risk

measures in the paradigm of CPT. We demonstrate various logical linkages among

risk measures, stochastic dominance and choices made by decision makers with

CPT risk preferences. We show that the SD rule of mean-preserving prospect

stochastic dominance and mean-preserving Markowitz stochastic dominance are

compatible with RVaR and CVaR, respectively. The equivalence of these risk

measures and stochastic dominance conditions enables the elicitation of risk pref-

erence through pairwise comparisons of risky prospects.
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5.6 Conclusion

We also show that RVaR as a risk measure has economic implications for optimal

decision problems in the CPT paradigm. Using portfolio choice as an example,

we show that for a CPT value maximizing investor will invest less in risky assets

in the presence of increases in risk in the sense of RVaR.
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Chapter 6

Conclusion

This thesis investigates risk changes and risk attitudes in the framework of non-

expected utility theories. A set of stochastic dominance conditions are generalised

to provide characterizations for changes in risk and risk attitudes in CPT.

Specifically, Chapter 2 provides choice-theoretic characterizations for increases in

risk and in risk aversion in the paradigm of CPT. We first generalize the notions

of increase in risk (mean-preserving spread) and strong risk aversion introduced

by Rothschild and Stiglitz (1970) to the CPT paradigm by introducing the SD

rule of mean-preserving prospect stochastic dominance (M-PSD). We show that

strong prospect risk aversion can be represented by an S-shaped value function

and a pair of convex PWFs. To further characterize the increase in risk aversion

in the CPT paradigm, we extend the SD rule of mean utility preserving increase

in risk introduced by Diamond and Stiglitz (1974) to the CPT paradigm by

introducing the SD rule of CPT-value preserving increase in risk (V-PSD) to

address the tradeoff between means and variances in gains and domain of losses

respectively. We further extend our analysis to account for general reference
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points, inverse S-shaped value functions and inverse S-shaped PWFs, respectively.

We also explore the implications of our choice-theoretic characterizations on risk

preference elicitation in the CPT paradigm.

Chapter 3 provides choice-theoretic characterizations for the increases in downside

risk and downside risk aversion in CPT. We identify another set of SD conditions

of increases in downside risk to characterize downside risk aversion and intensity

of downside risk aversion under CPT using prudence. We also extend the analysis

to inverse S-shaped value functions.

Chapter 4 provides behaviour foundations for VaR, CVaR and RVaR as risk mea-

sures in the paradigm of CPT. We demonstrate various logical linkages among

risk measures, stochastic dominance and choices made by decision makers with

CPT risk preferences. We show that the SD rule of mean-preserving prospect

stochastic dominance and mean-preserving Markowitz stochastic dominance are

compatible with RVaR and CVaR, respectively. The equivalence of these risk

measures and stochastic dominance conditions enables the elicitation of risk pref-

erence through pairwise comparisons of risky prospects. We also show that RVaR

as a risk measure has economic implications for optimal decision problems in the

CPT paradigm. Using portfolio choice as an example, we show that for a CPT

value maximizing investor will invest less in risky assets in the presence of in-

creases in risk in the sense of RVaR.

A set of stochastic dominance conditions are generalised to provide characteriza-

tions for changes in risk and risk attitudes in CPT. The SD conditions identified

in the study provides an approach for risk preference elicitation in the paradigm
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of CPT without prior knowledge of the value function and probability weighting

functions. This work further demonstrates that the increase in risk aversion in the

CPT paradigm can be characterized using increase in the absolute value of the

absolute risk aversion (more risk averse in gains and more risk seeking in losses),

and the increase of convexity of PWFs. In addition, the increase in downside

risk aversion in the CPT paradigm can be characterized using increase in the the

absolute value of prudence (more downside risk averse in gains and losses).

In addition, this thesis explores the implications of the choice-theoretic charac-

terizations in risk preference elicitation in the CPT paradigm. The research also

demonstrates that these stochastic dominance rules and risk measures have eco-

nomic implications for optimal decision problems in the paradigm of CPT, which

sheds new light into the applications of CPT.

The current research can be further developed in two interesting directions.

Firstly, an important role of SD is to guide the design of choice-based experi-

mental studies for preference elicitation. It is also notable that our approach can

be integrated with the classic elicitation approaches such as certainty equivalence

or probability equivalence approach in the experimental studies. The experi-

ments in Kahneman and Tversky (1979) are either positive or negative prospects

and they do not always satisfy the SD conditions that are characterized by CPT

preferences. It is important to redesign pairwise choice experiments with mixed

prospects that satisfy the SD conditions in the CPT paradigm in order to elicit

the CPT preferences. As an empirical implication for experimental studies, if

someone is asked to make choices between all pairs of prospects satisfying the

M-PSD order and his choices agree with the M-PSD order, then his/her prefer-
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ence can be represented by a nondecreasing S-shaped value function and a pair

nondecreasing convex PWFs. Clearly, when rank- and sign-dependence is irrele-

vant, the CPT preference reduces to expected utility. However, it is impossible

to ask an individual to make choices between all pairs of prospects satisfying the

desired stochastic dominance order, it remains unclear how many such pairwise

comparisons are sufficient for preference elicitation.

Secondly, this thesis characterizes the intensity of downside risk aversion using

prudence measure. The analyses can be extended to other alternative downside

risk aversion measures introduced in the literature, such as Liu and Meyer (2012)

for decreasing absolute risk aversion (DARA), Modica and Scarsini (2005) and

Crainich and Eeckhoudt (2008) for the ratio of the third and first derivatives,

Keenan and Snow (2002) for Schwarzian derivatives, and Huang and Stapleton

(2014) for cautiousness measure.
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Appendix for Chapter 3

Proof of Statements

Proof of Lemma 2

We first prove the “only if” part. For convenience, we define the following slop

functions

ρ−(x) =
w−(G(x))− w−(F (x))

G(x)− F (x)
, and ρ+(x) =

w+(F̄ (x))− w+(Ḡ(x))

F̄ (x)− Ḡ(x)
.

We argue that the convexity of w−(·) and w+(·) implies that ρ−(x) is increasing

in x and ρ+(x) is decreasing in x. To show this, for any x < x′ ≤ 0, we have

w−(G(x))− w−(F (x))

G(x)− F (x)
≤ w−(G(x))− w−(F (x′))

G(x)− F (x′)
≤ w−(G(x′))− w−(F (x′))

G(x′)− F (x′)
,

where both inequalities are due to the convexity of w− and the monotonicity of

F , G and w−. Similarly, for any 0 ≤ x < x′, we have

w+(F̄ (x′))− w+(Ḡ(x′))

F̄ (x′)− Ḡ(x′)
≤ w+(F̄ (x′))− w+(Ḡ(x))

F̄ (x′)− Ḡ(x)
≤ w+(F̄ (x))− w+(Ḡ(x))

F̄ (x)− Ḡ(x)
,

where both inequalities are also due to the convexity of w+ and the monotonicity

of F̄ , Ḡ and w+.
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Then for x ∈ [a, 0], we have∫ 0

x

[
w− (G(z))− w− (F (z))

]
dz

=

∫ 0

x

ρ−(z)[G(z)− F (z)]dz

= −
∫ 0

x

ρ−(z)d

(∫ 0

z

[G(t)− F (t)]dt

)
= ρ−(x)

∫ 0

x

[G(t)− F (t)]dt+

∫ 0

x

ρ
′

−(z)

∫ 0

z

[G(t)− F (t)]dtdz ≥ 0,

where the inequality follows from the fact that ρ−(x) ≥ 0, ρ
′
−(x) ≥ 0, and∫ 0

x
[G(z)− F (z)]dz ≥ 0 for all x ≤ 0.

Similarly, for y ∈ [0, b], we have∫ y

0

[
w+
(
F̄ (z)

)
− w+

(
Ḡ(z)

)]
dz

=

∫ y

0

ρ+(z)
[
F̄ (z)− Ḡ(z)

]
dz

=

∫ y

0

ρ+(z)d

(∫ z

0

[
F̄ (t)− Ḡ(t)

]
dt

)
= ρ+(y)

∫ y

0

[G(t)− F (t)]dt−
∫ y

0

ρ
′

+(z)

∫ z

0

[G(t)− F (t)]dtdz ≥ 0,

where the inequality follows from the fact that ρ+(x) ≥ 0, ρ
′
+(x) ≤ 0, and∫ y

0
[G(z) − F (z)]dz ≥ 0 for all y ≥ 0. Combining the two cases, we know that

F �PSD G implies Fw �PSD Gw when w− and w+ are convex.

For the “if” part, note that among the class of convex PWFs, there is a pair of

PWFs that almost does not change the distribution, e.g., linear PWFs, under

which Fw �PSD Gw implies F �PSD G.
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Proof of Proposition 1

We first prove the “if” part. It follows from the “if” part of Lemma 1 that for any

given pair of PWFs (w−, w+) ∈ WCX , ∆w
u (F,G) ≥ 0 for all u ∈ VS implies that

the risk change from Fw to Gw is PSD. It then follows from the “only if” part of

Lemma 2 that Fw �PSD Gw for all (w−, w+) ∈WCX implies that F �PSD G

The “only if” part follows immediately from the “only if” part of Lemma 2 and

“if” part of Lemma 1.

Proof of Proposition 2

For the “if” part, it follows from Lemma 2 that F �M−PSD G implies F �W−PSD

G when w−(·) and w+(·) are convex. Then we immediately have ∆w
u (F,G) ≥ 0

for all u ∈ VS by Lemma 1.

For the “only if” part, we first consider the domain of losses by showing that

∆w
u (F,G) ≥ 0 for all risk changes from F to G such that F �M−PSD G implies

that w−(·) is convex and value function is convex in the domain of losses. To

this end, consider a prospect F := (x1, p1; ...;xi, pi;xi+1, pi+1; ...;xn, pn) where

x1 ≤ ... ≤ xn ≤ 0, and, in particular, for some i, xi+1 = xi + γ for any γ ≥ 0 and

pi = pi+1 = p for any p ∈ [0, 1/2]. Let G be the prospect such that

G := (x1, p1; ...;xi + δ, p;xi+1 − δ, p; ...;xn, pn) ,

where 0 < δ ≤ γ/2 so that xi−1 ≤ xi + δ ≤ xi+1 − δ ≤ xi+2. Then the risk

change from F to G is a mean-preserving contraction, which also implies that
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F �M−PSD G. Since ∆w
u (F,G) ≥ 0 for such risk changes,

∆w
u (F,G) = πi+1u(xi+1) + πiu(xi)− πi+1u (xi+1 − δ)− πiu (xi + δ) ≥ 0.

Since u is increasing, we have u (xi + δ) ≥ u(xi), and u(xi+1) ≥ u (xi+1 − δ),

which implies that

πi+1 [u(xi+1)− u(xi+1 − δ)] ≥ πi [u(xi + δ)− u(xi)] .

Consequently, we have

πi
πi+1

≤ u(xi+1)− u(xi+1 − δ)
u(xi + δ)− u(xi)

. (1)

Since δ can be arbitrarily small, taking limit with respect to δ on both sides of

(1) yields

πi
πi+1

≤ lim
δ→0

u(xi+1)− u(xi+1 − δ)
u(xi + δ)− u(xi)

= lim
δ→0

[u(xi+1)− u(xi+1 − δ)]/δ
[u(xi + δ)− u(xi)]/δ

=
u′(xi+1)

u′(xi)
.

Since the value of γ can also be arbitrarily small, further taking limit with respect

to γ yields

πi
πi+1

≤ lim
γ→0

u′(xi+1)

u′(xi)
= 1,

which implies that

πi = w−

(
i−1∑
j=1

pj + p

)
− w−

(
i−1∑
j=1

pj

)
≤ πi+1 = w−

(
i−1∑
j=1

pj + 2p

)
− w−

(
i−1∑
j=1

pj + p

)
,

for all p ∈ [0, 1/2]. This implies the convexity of w−.

We next show that the value function is convex in losses. Since p can be arbitrarily
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small, taking limit with respect to p on both sides of (1) leads to

lim
p→0

πi
πi+1

= 1 ≤ u(xi+1)− u(xi+1 − δ)
u(xi + δ)− u(xi)

,

for all γ > 0. Since δ can be arbitrarily small, we know that u must be convex in

the domain of losses.

We now address the domain of gains. Consider a prospect

F := (x1, p1; ...;xi, pi;xi+1, pi+1; ...;xn, pn)

where where 0 ≤ x1 ≤ ... ≤ xn, and, in particular, for some i, xi+1 = xi + γ for

any γ ≥ 0 and pi = pi+1 = p for any p ∈ [0, 1/2]. Let G be a prospect such that

G := (x1, p1; ...;xi − δ, p;xi+1 + δ, p; ...;xn, pn) ,

where 0 < δ ≤ min(xi−xi−1, xi+2−xi+1) so that xi−1 ≤ xi− δ ≤ xi+1 + δ ≤ xi+2.

Clearly, the risk change from F to G is a mean-preserving spread, which also

implies that F �M−PSD G. Since ∆w
u (F,G) ≥ 0 for all such risk changes, we have

∆w
u (F,G) = πi+1u(xi+1) + πiu(xi)− πi+1u (xi+1 + δ)− πiu (xi − δ) ≥ 0.

Since u is increasing, we have u (xi+1 + δ) ≥ u(xi+1), and u(xi) ≥ u (xi − δ),

which implies that

πi+1 [u(xi+1 + δ)− u(xi+1)] ≤ πi [u(xi)− u(xi − δ)] ,

for all such δ. Consequently, we have

πi
πi+1

≥ u(xi+1 + δ)− u(xi+1)

u(xi)− u(xi − δ)
. (2)
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Similar to the analysis for the domain of losses, taking limits with respect to δ

and γ on both side of (2) yields

πi
πi+1

≥ 1,

which implies that

w+

(
2p+

n∑
j=i+2

pj

)
− w+

(
p+

n∑
j=i+2

pj

)
≥ w+

(
p+

n∑
j=i+2

pj

)
− w+

(
n∑

j=i+2

pj

)
,

for any p ∈ [0, 1/2]. This implies the convexity of w+.

We next show that the value function is concave in gains. Since p can be arbi-

trarily small, taking limit with respect to p on both side of (2) yields

lim
p→0

πi
πi+1

= 1 ≥ u(xi+1 + δ)− u(xi+1)

u(xi)− u(xi − δ)
,

for all γ > 0. Since δ can be arbitrarily small, u must be concave in gains.

Proof of Proposition 3

Note that F �V−PSD G is equivalent to F (u,w) �M−PSD G(u,w). Then, treating

Tu as a value function, by Proposition 2 we know that

∆w̃
v (F,G) = ∆Tw

Tu
(F (u,w), G(u,w)) ≥ 0

for all F (u,w) → G(u,w) such that F (u,w) �M−PSD G(u,w) if and only if Tu ∈ VS and

(T+
w , T

−
w ) ∈ WCX . Note that |Rv(x)| ≥ |Ru(x)| for any x if and only if Tu ∈ VS,

and that |Rw̃−(x)| ≥ |Rw−(x)| and |Rw̃+(x)| ≥ |Rw+(x)| if and only if (T−w , T
+
w )

are convex. The desired result holds.
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Proof of Proposition 4

According to Proposition 2, an individual displays prospect strong risk aversion if

and only if the value function u is S-shaped and the PWFs (w−, w+) are convex.

Since u is strictly increasing, we have u(M) > u(m) for all M > m. Then

w+(p) (u(M)− u(m))+u(m) is strictly increasing and convex in p. As u is strictly

increasing and concave in gains, it is easy to verify that (u−1)
′
(y) = 1

u′(u−1(y))
> 0

and (u−1)
′′
(y) = −u′′(u−1(y))

(u′(u−1(y)))3
> 0, i.e., u−1 is strictly increasing and convex. It is

known that the composition of two increasing convex functions remains increasing

and convex. Hence, x+
CE(p) is increasing and convex in p.

Similarly, in the domain of losses, the monotonicity and convexity of u implies

that u−1 is strictly increasing and concave. As w− is strictly increasing and

convex, u(M) − w−(1 − p) (u(M)− u(m)) is strictly increasing and concave in

p. It is known that the composition of two increasing concave functions remains

increasing and concave. Hence, x−CE(p) is increasing and concave in p.

Proof of Proposition 5

Note that ∂
∂θ
ψF (θ) =

∫ 0

a
Uθ(x, θ)dw

−(F (x)) +
∫ b

0
Uθ(x, θ)d[1 − w+(F̄ (x))]. Since

Uθ(·, θ) ∈ VS, we can treat ∂
∂θ
ψF (θ) as if it were a CPT value of prospect F for

an individual with the value function Uθ and PWFs (w−, w+). Then according

to Lemma 1 and Proposition 2, under condition (1) or (2), we have ∂
∂θ
ψF (θ) ≥

∂
∂θ
ψG(θ), which implies that ψF (θ) − ψG(θ) is increasing in θ. In other words,

using a shift factor γ to index the level of risk in the sense of PSD or M-PSD,

the objective function is submodular in θ and the risk level. It follows from
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Proposition 2.8.2 in Topkis (1998) that arg maxθ∈[0,1] ψF (θ) ≥ arg maxθ∈[0,1] ψG(θ).

Proof of Proposition 6

Note that G crosses F exactly once at x0 and F �RSD G, which implies that∫ b
x0

[G(z) − F (z)]dz > 0 and
∫ x
a

[G(z) − F (z)]dz ≤ 0 for x ≤ x0 with a strict

inequality at x = x0. Since F �RSD G implies that
∫ b
a
[G(z) − F (z)]dz ≥ 0,

the function
∫ x
a

[G(z)− F (z)]dz must cross over zero from below exactly once in

(x0, b]. Let r = inf{x ∈ (x0, b] :
∫ x
a

[G(z) − F (z)]dz ≥ 0}. Pick any r ∈ [r, b].

Clearly,
∫ y
r

[G(z) − F (z)]dz ≥ 0 for all y ≥ r and
∫ r
x

[G(z) − F (z)]dz ≥ 0 for all

x ∈ [x0, r] since G(x) ≥ F (x) for all x ≥ x0. We also have
∫ r
x

[G(z)− F (z)]dz ≥∫ r
a

[G(z) − F (z)]dz ≥ 0 for all x ∈ [a, x0) where the first inequality is by the

fact that G(x) ≤ F (x) for all x ≤ x0 and the second by the definition of r and

r ≥ r. Then, by the definition of PSD, we know that F dominates G by PSD

with respect to any r ∈ [r, b].

We now prove assertion (ii). Note that w−(G(x)) and w−(F (x)) have the same

crossing point as that of G and F . Hence w−(G(x)) crosses w−(F (x)) exactly

once at x0, which implies
∫ x0
a

[w−(G(z))−w−(F (z))]dz ≤ 0 for x ≤ x0 with strict

inequality at x = x0. We have∫ r

a

[w−(G(z))− w−(F (z))]dz

=

∫ r

a

ρ−(z)[G(z)− F (z)]dz

=

[
ρ−(x)

∫ x

a

[G(z)− F (z)]dz

]x=r

x=a

−
∫ r

a

ρ
′

−(x)

∫ x

a

[G(z)− F (z)]dzdx

= ρ−(r)

∫ r

a

[G(z)− F (z)]dz −
∫ r

a

ρ
′

−(x)

∫ x

a

[G(z)− F (z)]dzdx ≥ 0,
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where ρ−(x) = w−(G(x))−w−(F (x))
G(x)−F (x)

and satisfying ρ−(x) > 0 and ρ
′
−(x) ≥ 0 for all x

by the proof of Lemma 2, and the inequality is due to the facts that ρ−(x) > 0

and ρ
′
−(x) ≥ 0,

∫ r
a

[G(z)− F (z)]dz ≥ 0 and
∫ x
a

[G(z)− F (z)]dz ≤ 0 for x ∈ [a, r].

Hence the function
∫ x
a

[w−(G(z))−w−(F (z))]dz must cross over zero from below

exactly once in [x, r]. Let r
′

= inf{x ∈ (x0, r] :
∫ x
a

[w−(G(z))−w−(F (z))]dz ≥ 0}.

Pick any r ∈ [r
′
, b]. Clearly,

∫ y
r

[w+(F̄ (z)) − w+(Ḡ(z))]dz ≥ 0 for all y ∈ [r
′
, b]

and
∫ r
x

[w−(G(z)) − w−(F (z))]dz ≥ 0 for all x ∈ [x0, r] since w−(·) and w+(·)

are increasing and G(x) ≥ F (x) for all x ∈ [x0, b]. We also have
∫ r
x

[w−(G(z)) −

w−(F (z))]dz ≥
∫ r
a

[w−(G(z)) − w−(F (z))]dz ≥ 0 for all x ∈ [a, x0], where the

first inequality is by the fact that w−(G(x)) ≤ w−(F (x)) for all x ≤ x0, and the

second inequality is by the definition of r
′

and r ≥ r
′
. Then by definition of PSD,

we know that Fw �PSD Gw with respect to any r ∈ [r
′
, b].

Proof of Lemma 3

According to the definition of M-PSD, F �M−PSD G implies
∫ 0

a
[G(z)−F (z)]dz =∫ b

0
[G(z) − F (z)] = 0,

∫ 0

x
[G(z) − F (z)]dz ≥ 0 for all x ∈ [a, 0], and

∫ y
0

[G(z) −

F (z)]dz ≥ 0 for all y ∈ [0, b]. Then we have∫ x

a

[G(z)−F (z)]dz =

∫ 0

a

[G(z)−F (z)]dz−
∫ 0

x

[G(z)−F (z)]dz = −
∫ 0

x

[G(z)−F (z)]dz ≤ 0

for all x ∈ [a, 0],∫ b

y

[G(z)− F (z)]dz =

∫ b

0

[G(z)− F (z)]dz −
∫ y

0

[G(z)− F (z)]dz

= −
∫ y

0

[G(z)− F (z)]dz ≤ 0
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for all y ∈ [0, b]. which implies that G �M−MSD F by the definition of M-MSD.

Conversely, following the same logic, we can show that G �M−MSD F implies

F �M−PSD G.

Proof of Proposition 7

We first the “if” part. Taking integration by parts for ∆w
u (F,G) yields

∆w
u (F,G) = u

′
(0)

∫ 0

a

[
w− (G(x))− w− (F (x))

]
dx

−
∫ 0

a

u
′′
(x)

∫ x

a

[
w− (G(z))− w− (F (z))

]
dzdx

+u
′
(0)

∫ b

0

[
w+
(
F̄ (y)

)
− w+

(
Ḡ(y)

)]
dy

+

∫ b

0

u
′′
(y)

∫ b

y

[
w+
(
F̄ (z)

)
− w+

(
Ḡ(z)

)]
dzdy.

Note that u′(0) > 0, u′′(x) < 0 for x < 0 and u′′(x) > 0 for x > 0. It suffices to

show
∫ x
a

[w− (G(z))− w− (F (z))] dz ≥ 0 for all x ∈ (a, 0] and∫ b

y

[
w+
(
F̄ (z)

)
− w+

(
Ḡ(z)

)]
dz ≥ 0

for all y ∈ [0, b).

Recall that in the proof of Lemma 2, we defined the following slop functions

ρ−(x) =
w−(G(x))− w−(F (x))

G(x)− F (x)
and ρ+(x) =

w+(F̄ (x))− w+(Ḡ(x))

F̄ (x)− Ḡ(x)
.

We argue that the concavity of w−(·) and w+(·) implies that ρ−(x) is decreasing

in x and ρ+(x) is increasing in x. To show this, for any x < x′ ≤ 0, we have

w−(G(x))− w−(F (x))

G(x)− F (x)
≥ w−(G(x))− w−(F (x′))

G(x)− F (x′)
≥ w−(G(x′))− w−(F (x′))

G(x′)− F (x′)
,
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where both inequalities are due to the concavity of w− and the monotonicity of

G, F and w−. Similarly, for any 0 ≤ x < x′ we have

w+(F̄ (x′))− w+(Ḡ(x′))

F̄ (x′)− Ḡ(x′)
≥ w+(F̄ (x′))− w+(Ḡ(x))

F̄ (x′)− Ḡ(x)
≥ w+(F̄ (x))− w+(Ḡ(x))

F̄ (x)− Ḡ(x)
,

where both inequalities are also due to the concavity of w+ and the monotonicity

of Ḡ, F̄ and w+.

Then for x ∈ (a, 0], we have∫ x

a

[
w− (G(z))− w− (F (z))

]
dz

=

∫ x

a

ρ−(z)[G(z)− F (z)]dz

=

∫ x

a

ρ−(z)d

(∫ z

a

[G(t)− F (t)]dt

)
= ρ−(x)

∫ x

a

[G(t)− F (t)]dt−
∫ x

a

ρ
′

−(z)

∫ z

a

[G(t)− F (t)]dtdz ≥ 0,

where the inequality is due to ρ−(x) ≥ 0, ρ
′
−(x) ≤ 0, and

∫ x
a

[G(z)− F (z)]dz ≥ 0

for all x ≤ 0.

Similarly, for y ∈ [0, b), we have∫ b

y

[
w+
(
F̄ (z)

)
− w+

(
Ḡ(z)

)]
dz

=

∫ b

y

ρ+(z)
[
F̄ (z)− Ḡ(z)

]
dz

= −
∫ b

y

ρ+(z)d

(∫ b

z

[
F̄ (t)− Ḡ(t)

]
dt

)
= ρ+(y)

∫ b

y

[G(t)− F (t)]dt+

∫ b

y

ρ
′

+(z)

∫ b

z

[G(t)− F (t)]dtdz ≥ 0,

where the inequality is due to ρ+(x) ≥ 0, ρ
′
+(x) ≥ 0, and

∫ b
y
[G(z)− F (z)]dz ≥ 0
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for all y ≥ 0. Combining the two cases, we know that ∆w
u (F,G) ≥ 0.

For the “only if” part, we can prove with the same technique as that in the proof

of Proposition 2 where a mean-preserving contraction in the domain of losses and

a mean-preserving spread in the domain of gains were constructed. In particular,

using a mean-preserving spread in the domain of losses and a mean-preserving

contraction in the domain of gains respectively, we can show that ∆w
u (F,G) ≥ 0

for any M-MSD risk change from F to G implies value function is inverse S-

shaped and PWFs w− and w+ are both concave. The detailed arguments are

omitted for brevity.

Proof of Proposition 8

Similar to the proof of Proposition 3, we can treat Tu as a value function, ac-

cording to Proposition 7 we know that ∆w̃
v (F,G) = ∆Tw

Tu
(F (u,w), G(u,w)) ≥ 0 for

all F (u,w) → G(u,w) such that F (u,w) �M−MSD G(u,w) if and only if Tu ∈ VM and

(T+
w , T

−
w ) ∈WCV . Note that |Rv(x)| ≥ |Ru(x)| for any x if and only if Tu ∈ VM ,

and that |Rw̃−(x)| ≥ |Rw−(x)| and |Rw̃+(x)| ≥ |Rw+(x)| if and only if (T−w , T
+
w )

are concave. The desired result holds.

Proof of Lemma 4

For the “only if” part, given that (w−, w+) ∈ W
pc
IS ×W

pd
IS and F �GPSD G, it

follows from the proof of Lemma 2 that the slop function ρ−(x) = w−(G(x))−w−(F (x))
G(x)−F (x)

is increasing in x for x ∈ [a, c] and that ρ+(y) = w+(F̄ (y))−w+(Ḡ(y))

F̄ (y)−Ḡ(y)
is decreasing

in y for y ∈ [0, d] as w− and w+ are convex in [pc, 1] and [pd, 1], respectively, for

126



F (c) = G(c) = pc and F̄ (d) = Ḡ(d) = pd. In a similar fashion, we can show that

ρ−(x) is decreasing in x for x ∈ [0, c] and ρ+(x) is increasing in x for x ∈ [d, b],

which is due to the concavity of w− and w+ in [0, pc] and [0, pd], respectively.

Then the inequalities of GPSD follow immediately. For the “if” part, note that

among the class of PWFs W
pc
IS ×W

pd
IS, there is a pair of PWFs that almost does

not change the distribution, including linear PWFs under which Fw �GPSD Gw

implies F �GPSD G.
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Proof of Proposition 9

We first prove the “only if” part. Integrating ∆w
u (F,G) by parts yields

∆w
u (F,G) =

∫ c

a

u′(z)[w−(G(z))− w−(F (z))]dz +

∫ 0

c

u′(z)[w−(G(z))− w−(F (z))]dz

+

∫ d

0

u′(z)[w+(F̄ (z))− w+(Ḡ(z))]dz +

∫ b

d

u′(z)[w+(F̄ (z))− w+(Ḡ(z))]dz

= u′(c)

∫ c

a

u′(z)[w−(G(z))− w−(F (z))]dz

−
∫ c

a

u′′(x)

∫ x

a

[w−(G(z))− w−(F (z))]dzdx

+u′(c)

∫ 0

c

[w−(G(z))− w−(F (z))]dz

+

∫ 0

c

u′′(x)

∫ 0

x

[w−(G(z))− w−(F (z))]dzdx

+u′(d)

∫ d

0

[w+(F̄ (z))− w+(Ḡ(z))]dz

−
∫ d

0

u′′(x)

∫ x

0

[w+(F̄ (z))− w+(Ḡ(z))]dzdx

+u′(d)

∫ b

d

[w+(F̄ (z))− w+(Ḡ(z))]dz

+

∫ b

d

u′′(x)

∫ 0

x

[w+(F̄ (z))− w+(Ḡ(z))]dzdx

≥ 0

where the second equality follows from integration by parts, the inequality follows

from the necessity of Lemma 4 that F �GPSD G implies Fw �GPSD Gw for

(w−, w+) ∈ W
pc
IS ×W

pd
IS, and u′(x) > 0 for all x, u′′(x) < 0 for x ∈ (a, c), and

x ∈ (0, d), u′′(x) > 0 for x ∈ (c, 0) and x ∈ (d, b).

For the “if” part, since Lemma 4 has shown that F �GPSD G if Fw �GPSD Gw for

all (w−, w+) ∈ W
pc
IS ×W

pd
IS, it suffices to show that F �GPSD G if ∆u(F,G) ≥ 0
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for all u ∈ V
c,d
P . In fact, using the construction method as that for Lemma 1 in

Levy and Wiener (1998), we can prove by contradiction in the intervals [a, c),

[c, 0), (0, d] and (d, b], respectively, to verify that the conditions (i), (ii) and (iii)

of the definition of GPSD hold. The details are omitted for brevity.

Proof of Proposition 10

The “if” part is the same as Proposition 9. For the “only if” part, following the

same approach as that in the proof of Proposition 2, one can readily show that

v ∈ V
c,d
P and (w−, w+) ∈W

pc
IS ×W

pd
IS by constructing mean-preserving spreads in

[a, c) and (0, d], and mean-preserving contraction in [c, 0) and (d, b], respectively.

The details are omitted for brevity.

Verifying SD Relationships of Prospects in Ex-

perimental Studies

The Experimental Study of Kahneman and Tversky (1979)

Tasks 3-3′

We first verify G3 �V−PSD F3 and F3′ �V−PSD G3′ for a reference decision maker

with the value function u as specified in (3.1) with α = β = log 0.8/ log 0.75 and

linear PWFs (i.e., w−(p) = p, w+(p) = p).

For task 3, we first verify the expected utility preserving condition of V-PSD:

∆w
u (F,G) = 0.8(4000)

log 0.8
log 0.75 − (3000)

log 0.8
log 0.75 = 0.
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To verify condition (ii) of Definition 2, we have

∫ x

0

u′(z)[w+(Ḡ(z))− w+(F̄ (z))]dz =


0.2u(x) ≥ 0 for x ∈ [0, 3000],

u(3000)− 0.8u(x) ≥ 0 for x ∈ (3000, 4000].

Then the risk change from G3 to F3 is indeed V-PSD for the above reference

decision maker u.

Similarly, for task 3’, we have

∆w
u (F,G) = −0.8λ(−4000)

log 0.8
log 0.75 + λ(−3000)

log 0.8
log 0.75 = 0, and

∫ 0

x

u′(x)[w−(G(z))− w−(F (z))]dz

=


−0.2λu(x) for x ∈ [−3000, 0],

−λu(−3000)− 0.8λu(x) ≥ 0 for x ∈ [−4000,−3000),

which implies that F3′ �V−PSD G3′ .

We next show that F3 �MSD G3 for task 3 and G3′ �MSD F3′ for task 3, respec-

tively. We have

∫ 4000

x

[G3(z)− F3(z)]dz =


800− 0.2(3000− x) ≥ 0 for x ∈ [0, 3000],

0.8(4000− x) ≥ 0 for x ∈ (3000, 4000],

and

∫ x

−4000

[G3′(z)− F3′(z)]dz =


800− 0.2(x+ 3000) ≥ 0 for x ∈ (−3000, 0],

0.8(x+ 4000) ≥ 0 for x ∈ [−4000,−3000],

which verifies that F3 �MSD G3 and G3′ �MSD F3′ .
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Tasks 4-4′

With respect to the same reference decision maker u as in Task 3, we can show

that G4 �V−PSD F4 and F4′ �V−PSD G4′ . For task 4, we have

∆w
u (F,G) = 0.2(4000)

log 0.8
log 0.75 − 0.25(3000)

log 0.8
log 0.75 = 0, and∫ x

0

u′(x)[w+(Ḡ(z))− w+(F̄ (z))]dz

=


0.05u(x) ≥ 0 for x ∈ [0, 3000],

0.25u(3000)− 0.2u(x) ≥ 0 for x ∈ (3000, 4000].

For task 4’, we have

∆w
u (F,G) = −0.2λ(−4000)

log 0.8
log 0.75 + 0.25λ(−3000)

log 0.8
log 0.75 = 0, and∫ 0

x

u′(x)[w−(G(z))− w−(F (z))]dz

=


−0.05λu(x) ≥ 0 for x ∈ [−3000, 0],

−1/4λu(−3000)− 0.2λu(x) for x ∈ [−4000,−3000].

We next prove that F4 �MSD G4, and G4′ �MSD F4′ .

For task 4, we have µF4 = 800 and µG4 = 750, and

∫ 4000

x

[G4(z)− F4(z)]dz =


200− 0.05(3000− x) > 0 for x ∈ [0, 3000),

0.2(4000− x) > 0 for x ∈ [3000, 4000].
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For task 4′, we have µF4′
= −800 and µG4′

= −750, and

∫ x

−4000

[F4′(z)−G4′(z)]dz =


200− 0.05(x+ 3000) > 0 for x ∈ [−3000, 0],

0.2(x+ 4000) > 0 for x ∈ [−4000,−3000),

which verify that F4 �MSD G4, and G4′ �MSD F4′ .

Tasks 7-7′

For task 7, we have µF7 = µG7 = 270, and

∫ x

0

[G7(z)− F7(z)]dz =


0.45x > 0 for x ∈ (0, 3000),

1350− 0.45(x− 3000) > 0 for x ∈ [3000, 6000],

which implies that F7 �M−PSD G7 and hence G7 �M−MSD F7.

Similarly, for task 7’, we have µF7′
= µG7′

= −270, and

∫ 0

x

[F7′(z)−G7′(z)]dz =


0.45(−x) > 0 for x ∈ (−3000, 0],

1350− 0.45(−3000− x) ≥ 0 for x ∈ [−6000,−3000],

which implies that G7′ �M−PSD F7′ and hence F7′ �M−MSD G7′ .

Task 8-8′

For task 8, we have µF8 = µG8 = 6, and

∫ x

0

[G8(z)− F8(z)]dz =


0.001x > 0 for x ∈ (0, 3000),

3− 0.001(x− 3000) ≥ 0 for x ∈ [3000, 6000],
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which implies F8 �M−PSD G8, or equivalently, G8 �M−MSD F8.

For task 8′, we have µF8′
= µG8′

= −6, and

∫ 0

x

[F8′(z)−G8′(z)]dz =


0.001(−x) > 0 for x ∈ [−3000, 0],

3− 0.001(−3000− x) > 0 for x ∈ [−6000,−3000),

which implies G8′ �M−PSD F8′ , or equivalently, F8′ �M−MSD G8′ .

The Experimental Study of Baucells and Heukamp (2006)

Task I

We have µF = µG = 1500 and

∫ x

0

[G(z)− F (z)]dz =


0.4x ≥ 0 for x ∈ [0, 1000],

400 ≥ 0 for x ∈ (1000, 2000],

400− 0.4(x− 2000) ≥ 0 for x ∈ (2000, 3000],

which, by Definition 1, imply that F �M−PSD G and hence G �M−MSD F .

Task II

We have µF = µG = −1500 and

∫ 0

x

[G(z)− F (z)]dz =


−0.4x ≥ 0 for x ∈ [−1000, 0],

400 ≥ 0 for x ∈ [−2000,−1000),

400− 0.4(−x+ 2000) ≥ 0 for x ∈ [−3000,−2000),
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which, by Definition 1, imply that F �M−PSD G and hence G �M−MSD F .

Task III

We have µF = µG = 250 and

∫ 0

x

[G(z)− F (z)]dz =


−1/6x ≥ 0 for x ∈ [−3000, 0],

500− 1/6(−x+ 3000) ≥ 0 for x ∈ [−6000,−3000),

∫ y

0

[G(z)− F (z)]dz =


1/6x ≥ 0 for y ∈ [0, 3000],

500− 1/3(x− 3000) ≥ 0 for y ∈ (3000, 4500],

which imply that F �M−PSD G and hence G �M−MSD F .

Task IV

We have µF = µG = 1500 and

∫ 0

x

[G(z)− F (z)]dz =


−0.24x ≥ 0 for x ∈ [−3000, 0],

720− 0.24(−x+ 3000) ≥ 0 for x ∈ [−6000,−3000),

∫ y

0

[G(z)− F (z)]dz =


0.24x ≥ 0 for y ∈ [0, 3000],

720− 0.48(x− 3000) ≥ 0 for y ∈ (3000, 4500],

which verify that F �M−PSD G and hence G �M−MSD F .
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Task V

We have µF = µG = 750 and

∫ 0

x

[G(z)− F (z)]dz =


−0.25x ≥ 0 for x ∈ [−3000, 0],

750− 0.25(−x+ 3000) ≥ 0 for x ∈ [−6000,−3000),

∫ y

0

[G(z)− F (z)]dz =


0.25x ≥ 0 for y ∈ [0, 3000],

750− 0.5(x− 3000) ≥ 0 for y ∈ (3000, 4500],

which imply that F �M−PSD G and hence G �M−MSD F .

Task VI

Let r = −1000. We have µF = µG = 0, and

∫ x

−1000

[G(z)− F (z)]dz =


0.4(1000 + x) ≥ 0 for x ∈ [−1000, 0],

4000− 0.4x ≥ 0 for x ∈ (0, 1000],

which verify that F �M−PSD G and hence G �M−MSD F with respect to r =

−1000.

Task VII

Let r = −3000. We have µF = µG = 0 and

∫ x

−3000

[G(z)− F (z)]dz =


0.3(x+ 3000) ≥ 0 for x ∈ [−3000, 0],

900− 0.3x ≥ 0 for x ∈ (0, 3000],
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which verify that F �M−PSD G and hence G �M−MSD F with respect to r =

−3000.

Task VIII

Let r = −3000. We have µF = µG = 0 and

∫ x

−3000

[G(z)− F (z)]dz =


0.3(x+ 3000) ≥ 0 for x ∈ [−3000,−1000],

600 for x ∈ (−1000, 1000],

600− 0.3(x− 1000) ≥ 0 for x ∈ (1000, 3000],

which verify that F �M−PSD G and hence G �M−MSD F with respect to r =

−3000.

Task IX

Let r = −500. We have µF = µG = 750 and

∫ x

−500

[F (z)−G(z)]dz =



100 + 0.2x ≥ 0 for x ∈ [−500, 0],

100− 0.2x ≥ 0 for x ∈ (0, 500],

0 for x ∈ (500, 1000],

0.2(x− 1000) ≥ 0 for x ∈ (1000, 1500],

100− 0.2(x− 1500) ≥ 0 for x ∈ (1500, 2000].

which verify that F �M−PSD G and hence G �M−MSD F with respect to r =

−500.
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Task X

Let r = −500. It is easy to verify that µF = µG = −500, and

∫ −500

x

[G(z)− F (z)]dz =


−0.4(x+ 500) ≥ 0 for x ∈ [−1000,−500],

200 + 0.2(x+ 1000) ≥ 0 for x ∈ [−2000,−1000),

∫ y

−500

[G(z)− F (z)]dz =


0.4(x+ 500) ≥ 0 for y ∈ [−500, 0],

200− 0.2x ≥ 0 for y ∈ (0, 1000],

which verify that F �M−PSD G and hence G �M−MSD F with respect to r =

−500.

Task XI

Let r = −5000. We have µF = µG = −300, and

∫ x

−5000

[G(z)− F (z)]dz =



0.2(x+ 5000) ≥ 0 for x ∈ [−5000,−3000],

400− 0.1(x+ 3000) ≥ 0 for x ∈ (−3000,−1000],

200 + 0.2(x+ 1000) for x ∈ (−1000, 0],

400 for x ∈ (0, 3000],

400− 0.2(x− 3000) ≥ 0 for x ∈ (3000, 5000],

which verify that F �M−PSD G and hence G �M−MSD F with respect to r =

−5000.
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Task XII

Let r = −1500. It is easy to verify that µF = µG = −1500, and

∫ x

−1500

[G(z)− F (z)]dz =


0.3(x+ 1500) ≥ 0 for x ∈ [−1500, 1500],

900− 0.3(x− 1500) ≥ 0 for x ∈ (1500, 4500],

which verify that F �M−PSD G and hence G �M−MSD F with respect to r =

−1500.
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Appendix For Chapter 4

Proof of Proposition 11

Proof of the “if” part. Integrating ∆u(F,G) twice yields

∆u(F,G) = u
′
(a)

∫ 0

a

[G(z)− F (z)]dz +

∫ 0

a

u
′′
(x)

∫ 0

x

[G(z)− F (z)]dzdx

+u
′
(b)

∫ b

0

[G(z)− F (z)]dz −
∫ b

0

u
′′
(y)

∫ y

0

[G(z)− F (z)]dzdy

= u
′
(a)

∫ 0

a

[G(z)− F (z)]dz + u
′
(b)

∫ b

0

[G(z)− F (z)]dz

+u
′′
(a)

∫ 0

a

∫ 0

z

[G(t)− F (t)]dtdz

+

∫ 0

a

u
′′′

(x)

∫ 0

x

∫ 0

z

[G(t)− F (t)]dtdzdx

−u′′(b)
∫ b

0

∫ z

0

[G(t)− F (t)]dtdz

+

∫ b

0

u
′′′

(y)

∫ y

0

∫ z

0

[G(t)− F (t)]dtdzdy ≥ 0

where the inequality follows immediately from conditions (i) and (ii) of TPSD.
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Proof of the “only if” part. We first show that ∆u(F,G) ≥ 0 for all u ∈ VP

implies condition (i) of TPSD. Consider a value function

u1(x) =


ε(eαx−1)

α
+ x for x < 0

ε(1−e−βx)
β

for x > 0

,

with 0 < α < 1, 0 < β < 1, and ε > 0. Clearly, u1 ∈ VP with

u
′

1(x) =


εeαx + 1, for x < 0,

εe−βx, for x > 0.

Taking the limit with respect to ε for ∆u1 for losses and gains respectively,

lim
ε→0

∆w
u1

= lim
ε→0

{∫ 0

a

u′(t)[G(t)− F (t)]dt+

∫ b

0

u′(t)[G(t)− F (t)]dt

}
=

∫ 0

a

[G(t)− F (t)]dt

Therefore ∆u(F,G) ≥ 0 implies
∫ 0

a
[G(t) − F (t)]dt ≥ 0. Similarly, considering

u2(x) = −u1(−x), we can show that
∫ b

0
[G(t)− F (t)]dt ≥ 0.

We next show by contradiction that ∆u(F,G) ≥ 0 for all u ∈ VP implies

condition(ii). In the losses domain, suppose by contradiction that there exists

y∗ ∈ [a, 0) such that
∫ y∗
a

∫ z
a

[G(t) − F (t)]dtdz < 0. Then there must exist an

interval [y1, y2] ( [a, 0) such that
∫ y
a

∫ z
a

[G(t)− F (t)]dtdz < 0 for all y ∈ [y1, y2].
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Now consider the following value function

u3(x) =



∫ x
a

∫ z
a

∫ t
a
εdξdtdz − C, if x ∈ [a, y1),∫ x

y1

∫ z
y1

∫ t
y1

1dξdtdz + A(x)− C, if x ∈ [y1, y2],∫ x
y2

∫ z
y2

∫ t
y2
εdξdtdz +B(x)− C, if x ∈ (y2, 0),

10ε
9
x1/3, if x ∈ (0, b),

where 0 < ε < 1, A(x) = ε
(∫ x

y1

∫ z
y1

∫ y1
a
dξdtdz +

∫ x
a

∫ y1
a

∫ y1
a
dξdtdz

)
,

B(x) =
∫ x
y2

∫ z
y2

[∫ y2
y1
dξ + ε

∫ y1
a
dξ
]
dtdz +

∫ x
y2

[∫ y2
y1

∫ t
y1
dξdt+ A′(y2)

]
dz and

C = B(0) +
∫ 0

y2

∫ z
y2

∫ t
y2
εdξdtdz. Clearly, u ∈ VP , A

′′′
(x) = 0, B

′′′
(x) = 0, and

u
′′′

3 (x) =



ε, if x ∈ [a, y1),

1, if x ∈ [y1, y2],

ε, if x ∈ (y2, 0],

εx−
8
3 , if x ∈ (0, b).

Taking the limit with respect to ε and using the facts that limε→0 u
′′(a) = 0, and

limε→0 u
′′(b) = 0, we have limε→0 u

′(a) = limε→0 u
′(b) = 0, and

lim
ε→0

∆w
u3

=

∫ y0+δ

y0−δ
u′′′(y)

∫ y

a

∫ z

a

[G(t)− F (t)]dtdzdy < 0

as u′′′(y) > 0 and
∫ y
a

∫ z
a

[w−(G(t))− w−(F (t))]dtdz < 0 for y ∈ [y1, y2]. This con-

tradicts ∆u(F,G) ≥ 0. Similarly, in the gains domain, assume by contradiction

that there exists x∗ ∈ [0, b] such that
∫ b
x∗

∫ b
z
[G(t) − F (t)]dtdz < 0, then there

exists an interval [x1, x2] ( [0, b], such that
∫ b
x

∫ b
z
[G(t) − F (t)]dtdz < 0 for all

x ∈ [x1, x2]. Then construct u4(x) = −u3(−x) and the desired results follow.
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Proof of Lemma 6

Denote the density function for w−(F ) and w+(F̄ ) by f−(x) and f+(x) respec-

tively, and f−(x) > 0, f+(x) > 0 almost everywhere in [a, b]. It suffices to

consider only the losses domain as the transformation in the gains domain can

be constructed similarly. We first construct an MPS transformation function for

f−(x):

s(x) =



A for x ∈ [a1 − δ, a1 + δ),

−2A for x ∈ [a2 − δ, a2 + δ],

A for x ∈ (a3 − δ, a3 + δ],

0 otherwise

(3)

where a ≤ a1 − δ, a1 + δ = a2 − δ, a2 + δ = a3 − δ, a3 + δ ≤ 0, δ > 0,

and 0 < A ≤ 1
2
f−(x) for all x ∈ [a1 − δ, a3 + δ]. It is easy to verify that s

satisfies (1)f−(x) + s(x) ≥ 0 for all x; (2)
∫ 0

a
s(x)dx = 0; and (3)

∫ 0

a
xs(x)dx = 0,

which implies that s(x) is an MPS transformation function for f−(x). Clearly,

s(x) is symmetric with respect to a2 and the cumulative change of the MPS

transformation s from 0 to x can be expressed as

S(x) =

∫ x

0

s(ξ)dξ =



A(x− a1 + δ) if a1 − δ ≤ x ≤ a1 + δ,

2A(a2 − x) if a1 + δ ≤ x ≤ a2 + δ,

A(x− a3 − δ) if a2 + δ ≤ x ≤ a3 + δ,

0 otherwise,

which changes sign only once from positive to negative at a2 with the positive

area (to the left hand side of a2) and the negative area (to the right hand side of
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a2) being equal. We can then further verify
∫ 0

x
S(ξ)dξ ≤ 0 with strict inequality

for x ∈ (a1 − δ, a3 + δ) and
∫ 0

a
S(ξ)dξ =

∫ a3+δ

a1−δ

∫ x
0
s(ξ)dξdx = 0.

We next construct an MPC transformation function for f(x) + s(x):

c(x) =



−B for x ∈ [a1, a1 + δ],

2B for x ∈ [a2, a2 + δ],

−B for x ∈ [a3, a3 + δ],

0 otherwise,

(4)

where 0 ≤ B ≤ 2A for all x ∈ [a1, a1 +δ]∪ [a3, a3 +δ]. It is easy to verify that c(x)

satisfies (1) f−(x) + s(x) + c(x) ≥ 0; (2)
∫ 0

a
c(x)dx = 0; and (3)

∫ 0

a
xc(x)dx = 0,

which implies that c(x) is an MPC transformation function for f−(x)+s(x). The

corresponding cumulative change of the MPC transformation c from 0 to x can

be expressed as

C(x) =

∫ x

0

c(ξ)dξ =



−B(x− a1) if x ∈ [a1, a1 + δ],

−Bδ if x ∈ [a1 + δ, a2],

−Bδ + 2B(x− a2) if x ∈ [a2, a2 + δ],

Bδ if x ∈ [a2 + δ, a3],

Bδ −B(x− a3) if x ∈ [a3, a3 + δ],

0 otherwise.

The cumulative changes of the combination of the subsequent MPS and MPC
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transformations t(x) = s(x) + c(x) from 0 to x can be expressed as

T (x) =

∫ x

0

t(z)dz =



A(x− a1 + δ) if x ∈ [a1 − δ, a1],

Aδ − (B − A)(x− a1) if x ∈ [a1, a1 + δ],

(2A−B)δ − 2A(x− a1 − δ) if x ∈ [a1 + δ, a2],

2(B − A)(x− a2)−Bδ if x ∈ [a2, a2 + δ],

A(x− a2 − δ)− (2A−B)δ if x ∈ [a2 + δ, a3],

(B − A)(δ + a3 − x) if x ∈ [a3, a3 + δ],

0 otherwise.

Clearly, T (a) = T (0) = 0,
∫ 0

a
T (x)dx = 0 and T (x) changes signs at most twice

when B ∈ [0, 2A].

In particular, when B = A, we have

T (x) =



A(x− a1 + δ) if x ∈ [a1 − δ, a1],

Aδ if x ∈ [a1, a1 + δ],

Aδ − 2A(x− a1 − δ) if x ∈ [a1 + δ, a2],

−Aδ if x ∈ [a2, a2 + δ],

A(x− a2 − δ)− Aδ if x ∈ [a2 + δ, a3],

0 otherwise,

which changes signs only once from positive to negative at the mid-point of the

interval [a1 + δ, a2] and the sizes of the positive area and the negative area are

equal, i.e.,
∫ 0

a
T (x)dx = 0. Clearly,

∫ 0

x
T (ξ)dξ < 0 if and only if x ∈ (a1 − δ, a3).

Since u
′′
(x) > 0 and u

′′′
(x) > 0 for x < 0, we have

∫ 0

a
u
′′
(z)
∫ 0

z
T (ξ)dξdz < 0.

When A < B ≤ 2A, we can observe that T (x) changes signs exactly twice, first
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from positive to negative in [a2 − δ, a2], and then from negative to positive in

[a3 − δ, a3]. In particular, when B = 2A, T (x) changes signs at a2 − δ and a2 + δ

respectively, and T (x) is symmetric with respect to a2. We can also observe

that
∫ 0

x
T (ξ)dξ ≥ 0 for x ∈ [a2, a3 + δ] with the equality holding at a2, i.e.,∫ 0

a2
T (ξ)dξ = 0, and

∫ 0

x
T (ξ)dξ ≤ 0 for x ∈ [a1 − δ, a2] with the equality holding

at a1 − δ, i.e.,
∫ 0

a1−δ T (ξ)dξ = 0. We can further observe that
∫ 0

x
T (ξ)dξ ≥ 0

changes sign exactly once at a2 from negative to positive, with equal sizes of the

areas contained by T (x) symmetrically at both sides of a2, which implies that∫ 0

x
T (ξ)dξ > 0 for x ∈ (a2, a3 + δ) and

∫ 0

x
T (ξ)dξ < 0 for x ∈ (a1− δ, a2). We have∫ 0

a

u
′′
(z)

∫ 0

z

T (ξ)dξdz =

∫ a2

a

u
′′
(z)

∫ 0

z

T (ξ)dξdz +

∫ 0

a2

u
′′
(z)

∫ 0

z

T (ξ)dξdz

> u
′′
(a2)

[∫ a2

a

∫ 0

z

T (ξ)dξdz +

∫ 0

a2

∫ 0

z

T (ξ)dξdz

]
= 0,

where the inequality is due to the fact that u
′′
(x) > 0 and u

′′′
(x) > 0 for x < 0.

Combining the above two cases (i.e., B = A and B = 2A) and by the continuity

of the term
∫ 0

a
u
′′
(z)
∫ 0

z
T (ξ)dξdz in terms of B, there must exist a value B0 ∈

(A, 2A) such that the equality
∫ 0

a
u
′′
(z)
∫ 0

z
T (ξ)dξdz = 0 holds when B = B0. As

T (x) changes signs exactly twice when B ∈ (A, 2A), first from positive to negative

and then from negative to positive, and
∫ 0

x
T (ξ)dξ changes sign at most once from

negative to positive for x ∈ [a1− δ, a3 + δ] and it must be strictly positive for x ∈

(a3, a3+δ). The equality
∫ 0

a
u
′′
(z)
∫ 0

z
T (ξ)dξdz = 0 and the fact that u′′(x) > 0 for

x < 0, implies that
∫ 0

x
T (ξ)dξ must change sign exactly once; if, otherwise, there

is no sign change, we must have
∫ 0

x
T (ξ)dξ ≥ 0 with at least one strict inequality

for x ∈ (a1 − δ, a3 + δ) and hence
∫ 0

a
u
′′
(z)
∫ 0

z
T (ξ)dξdz > 0, which violates the

equality. Let x0 be the sign-changing point. Since u
′′
(x) > 0 for x < 0, we know
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that
∫ 0

x
u
′′
(z)
∫ 0

z
T (ξ)dξdz > 0 for x ∈ (x0, a3 + δ) and that

∫ 0

x
u
′′
(z)
∫ 0

z
T (ξ)dξdz

will change sign at most once in (a1− δ, x0). We argue that
∫ 0

x
u
′′
(z)
∫ 0

z
T (ξ)dξdz

is always positive. If, otherwise,
∫ 0

x
u
′′
(z)
∫ 0

z
T (ξ)dξdz changes sign at some point

x′0 ∈ (a1−δ, x0), we must have
∫ 0

a
u
′′
(z)
∫ 0

z
T (ξ)dξdz <

∫ 0

x′0
u
′′
(z)
∫ 0

z
T (ξ)dξdz = 0,

which yields a contradiction. This proves that
∫ 0

x
u
′′
(z)
∫ 0

z
T (ξ)dξdz ≥ 0 for all

x ≤ 0 with equality holding at x = a, which implies that the transformation

function T (·) with B = B0 is indeed an MUPT for F and u .

Proof of Proposition 12

We first prove the “if” part. Applying integration by parts yields

∆w
v (F,G) = v′(a)

∫ 0

a

[w−(G(z))− w−(F (z))]dz

+

∫ 0

a

v′′(z)

∫ 0

z

[w−(G(t))− w−(F (t))]dtdz

+v′(b)

∫ b

0

[w+(F̄ (z))− w+(Ḡ(z))]dz

−
∫ b

0

v′′(z)

∫ z

0

[w+(F̄ (t))− w+(Ḡ(t))]dtdz

=

∫ 0

a

v′′(z)

∫ 0

z

[w−(G(z))− w−(F (z))]dtdz

−
∫ b

0

v′′(z)

∫ z

0

[w+(F̄ (t))− w+(Ḡ(t))]dtdz (5)

where the second equality is due to condition (i) in the definition of MU-W-TPSD.

It suffices to show that the two terms of the right hand side of the equality (5)
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are both nonnegative. For the first term, we have∫ 0

a

v′′(z)

∫ 0

z

[w−(G(t))− w−(F (t))]dtdz

=

∫ 0

a

v
′′
(z)

u′′(z)
u′′(z)

∫ 0

z

[w−(G(t))− w−(F (t))]dtdz

−
∫ 0

a

u
′′
(z)

v
′′
(a)

u′′(a)

∫ 0

z

[w−(G(t))− w−(F (t))]dtdz

=

∫ 0

a

u
′′
(z)

(
v
′′
(z)

u′′(z)
− v

′′
(a)

u′′(a)

)∫ 0

z

[w−(G(t))− w−(F (t))]dtdz

=

∫ 0

a

u
′′
(z)

[∫ z

a

(
v
′′
(x)

u′′(x)

)′
dx

]∫ 0

z

[w−(G(t))− w−(F (t))]dtdz

=

∫ 0

a

(
v
′′
(x)

u′′(x)

)′ ∫ 0

x

u
′′
(z)

∫ 0

z

[w−(G(t))− w−(F (t))]dtdzdx

=

∫ 0

a

v
′′
(x)

u′′(x)
[Pu(x)− Pv(x)]

∫ 0

x

u
′′
(z)

∫ 0

z

[w−(G(t))− w−(F (t))]dtdzdx (6)

≥ 0

where the first equality is due to condition (ii) that
∫ 0

a
u
′′
(z)
∫ 0

z
[w−(G(t)) −

w−(F (t))]dtdz = 0, the fourth equality is obtained by changing the order of inte-

grals, and the inequality is due to Condition (ii) of Definition 9 (
∫ 0

x
u
′′
(z)
∫ 0

z
[w−(G(t))−

w−(F (t))]dtdz ≥ 0) and the assumption |Pv(x)| ≥ |Pu(x)|, or, equivalently,

Pv(x) ≤ Pu(x) (since the prudence measure is negative in the losses domain).
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Similarly, for the second term in Equation (5), we have

−
∫ b

0

v′′(z)

∫ z

0

[w+(F̄ (t))− w+(Ḡ(t))]dtdz

=
v
′′
(b)

u′′(b)

∫ b

0

u
′′
(z)

∫ z

0

[w+(F̄ (t))− w+(Ḡ(t))]dtdz

−
∫ b

0

v
′′
(z)

u′′(z)
u′′(z)

∫ z

0

[w+(F̄ (t))− w+(Ḡ(t))]dtdz

=

∫ b

0

u
′′
(z)

(
v
′′
(b)

u′′(b)
− v

′′
(z)

u′′(z)

)∫ z

0

[w+(F̄ (t))− w+(Ḡ(t))]dtdz

=

∫ b

0

u
′′
(z)

[∫ b

z

(
v
′′
(y)

u′′(y)

)′
dy

]∫ z

0

[w+(F̄ (t))− w+(Ḡ(t))]dtdz

=

∫ b

0

(
v
′′
(y)

u′′(y)

)′ ∫ y

0

u
′′
(z)

∫ z

0

[w+(F̄ (t))− w+(Ḡ(t))]dtdzdy

=

∫ b

0

v
′′
(y)

u′′(y)
[Pu(y)− Pv(y)]

∫ y

0

u
′′
(z)

∫ z

0

[w+(F̄ (t))− w+(Ḡ(t))]dtdzdy (7)

≥ 0

where the inequality is due to Condition (ii) of Definition 9 (
∫ y

0
u′′(z)

∫ z
0

[w+(F̄ (t))−

w+(Ḡ(t))]dtdz ≤ 0) and the assumption |Pv(y)| ≥ |Pu(y)|, i.e., Pv(y) > Pu(y)

(since the prudence measure is positive in the gains domain). This completes the

proof of the “if” part for both statements.

We now prove the “only if” by contradictions for losses and gains domains sub-

sequently. In the losses domain, suppose for contradiction that there exists

x− ∈ [a, 0) such that Pv(x
−) > Pu(x

−). Since both u and v are continuous

in VP , there must exist an interval [x−1 , x
−
2 ] ( [a, 0) such that Pv(x) > Pu(x)

∀x ∈ [x−1 , x
−
2 ]. We can construct a risky prospect pair F and G such that

the risk change from F to G is a MU-W-TPSD for u (see Lemma 6), and

satisfies that
∫ 0

x
u′′(z)

∫ 0

z
[w−(G(t)) − w−(F (t))]dtdz > 0 for x ∈ [x−1 , x

−
2 ] and
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w−(G(x)) − w−(F (x)) = 0 for x ∈ [a, x−1 ) ∪ (x−2 , b]. Then, by equation (6), we

have

∆w
v (F,G) =

∫ x−2

x−1

v′′(x)

u′′(x)
[Pu(x)−Pv(x)]

∫ 0

x

u′′(z)

∫ 0

z

[w−(G(t))−w−(F (t))]dtdzdx < 0

where the inequality is due to the fact that v′′(x)
u′′(x)

[Pu(x) − Pv(x)] < 0 for x ∈

[x−1 , x
−
2 ]. This contradicts the assumption ∆w

v ≥ 0 for all MU-W-TPSD risk

changes for u.

Similarly, suppose that in the gains domain there exists y+ ∈ (0, b] such that

Pv(y
+) < Pu(y

+). Then, there must exist an interval [y+
1 , y

+
2 ] ( (0, b] such that

Pv(y) < Pu(y) for ∀y ∈ [y+
1 , y

+
2 ]. We can construct a risky prospect pair F

and G such that the risk change from F to G is a MU-W-TPSD for u, but∫ y
0
u′′(z)

∫ z
0

[w+(F̄ (t)) − w+(Ḡ(t))]dtdz < 0 for all x ∈ [y+
1 , y

+
2 ] and w+(F̄ (y)) −

w+(Ḡ(y)) = 0 for y ∈ [a, y+
1 ) ∪ (y+

2 , b]. Then by equation (7), we have

∆w
v =

∫ y+2

y+1

v′′(y)

u′′(y)
[Pu(y)− Pv(y)]

∫ y

0

u′′(z)

∫ z

0

[w+(F̄ (t))− w+(Ḡ(t))]dtdzdx < 0

where the inequality is due to the fact that v′′(y)
u′′(y)

[Pu(y) − Pv(y)] > 0 as Pv(y) <

Pu(y) for x ∈ [y+
1 , y

+
2 ]. This contradicts the assumption ∆w

v ≥ 0 for all MU-W-

TPSD risk changes for u. This completes the proof for the “only if” part.

Proof of Theorem 1

Note that under prospect F we have

∂

∂θ
ψF (θ) =

∫ 0

a

Uθ(x, θ)dw
−(F (x)) +

∫ b

0

Uθ(x, θ)d[1− w+(F̄ (x))].
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Since Uθ(·, θ) ∈ VP , we can treat ∂
∂θ
ψF (θ) as a CPT value of prospect F for an

individual with value function Uθ and PWFs (w−(·), w+(·)). Then according to

Theorems 5 or Proposition 12, we have ∂
∂θ
ψF (θ) ≥ ∂

∂θ
ψG(θ), which implies that

ψF (θ) − ψG(θ) is increasing in θ. In other words, using a shift factor γ to index

the level of risk in the sense of W-TPSD or MU-W-TPSD, the objective function

is submodular in θ and the risk level. It follows Theorem 2.8.2 in Topkis (1998)

that arg maxθ∈[0,1] ψF (θ) ≥ arg maxθ∈[0,1] ψG(θ).

Proof of Lemma 7

We first prove UPM(G) − UPM(F ) = 2
∫ b

0

∫ x
0

[w+(F̄ (z)) − w+(Ḡ(z))]dz ≤ 0 in

the gains domain. For convenience, let ϕ(x) = −u′′(x). Note that the definition of

MU-W-TPSD with linear PWFs requires
∫ x

0
u′′(t)

∫ t
0
[w+(F̄ (ξ))−w+(Ḡ(ξ))]dξdt <

0 for some x ∈ (0, b), we rule out the case where
∫ x

0
[w+(F̄ (t))−w+(Ḡ(t))] = 0 for

all x ∈ (0, b], in other words,
∫ x

0
[w+(F̄ (z))−w+(Ḡ(z))]dz 6= 0 for some x ∈ (0, b].

Then
∫ x

0
[w+(F̄ (z)) − w+(Ḡ(z))]dz crosses over zero in (0, b) at least once. If,

otherwise,
∫ x

0
[w+(F̄ (z)) − w+(Ḡ(z))]dz > 0 or

∫ x
0

[w+(F̄ (z)) − w+(Ḡ(z))]dz < 0

for all x ∈ (0, b), we must have
∫ b

0
ϕ(t)

∫ t
0
[w+(F̄ (ξ)) − w+(Ḡ(ξ))]dξdt > 0 or∫ b

0
ϕ(t)

∫ t
0
[w+(F̄ (ξ)) − w+(Ḡ(ξ))]dξdt < 0, which leads to a contraction. Since

ϕ(x) > 0 and ϕ′(x) = −u′′′(x) < 0, the inequality∫ x

0

ϕ(t)

∫ t

0

[w+(F̄ (ξ))− w+(Ḡ(ξ))]dξdt ≥ 0

implies that there exists a value x′ ∈ (0, b) such that
∫ x

0
[w+(F̄ (z))−w+(Ḡ(z))]dz ≥

0 for all x ∈ (0, x′). Similarly, the equality
∫ b

0
ϕ(x)

∫ b
x
[w+(F̄ (ξ))−w+(Ḡ(ξ))]dξdx =

−
∫ b

0
ϕ(x)

∫ x
0

[w+(F̄ (ξ)) − w+(Ḡ(ξ))]dξdx ≤ 0 implies that there exists a value
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x
′′ ∈ (0, b) such that

∫ b
x
[w+(F̄ (z))− w+(Ḡ(z))]dz ≤ 0 for all x ∈ (x

′′
, b).

We then show
∫ b

0
x2d[w+(F̄ (z))−w+(Ḡ(z))] = 2

∫ b
0

∫ x
0

[w+(F̄ (z))−w+(Ḡ(z))]dz ≤

0 by contradiction. Suppose that
∫ b

0

∫ t
0
[w+(F̄ (ξ)) − w+(Ḡ(ξ))]dξdt > 0. With-

out loss of generality, we assume that there are n separated closed intervals

A1 = [x1, y1], ..., An = [xn, yn = b] in (0, b], where xi < xj for i < j,
∫ t

0
[w+(F̄ (ξ))−

w+(Ḡ(ξ))]dξ ≤ 0 for t ∈ Ai and
∫ t

0
[w+(F̄ (ξ)) − w+(Ḡ(ξ))]dξ > 0 for t ∈

(y1, x2) ∪ ... ∪ (yn−1, xn). Let A = A1 ∪ ... ∪ An, and Ā = [0, b]/A (the comple-

ment of A in [0, b]). Since
∫ b

0

∫ t
0
[w+(F̄ (ξ))−w+(Ḡ(ξ))]dξdt =

∫
A∪Ā

∫ t
0
[w+(F̄ (ξ))−

w+(Ḡ(ξ))]dξdt > 0, we can then identify a sequence of n separable intervals in

Ā in a backward fashion from b to 0, namely, Ā1, ..., Ān. Each Āi contains the

greatest possible values that can be paired with the corresponding interval in A

according to the same order such that
∫
Āi∪Ai

∫ t
0
[w+(F̄ (ξ)) − w+(Ḡ(ξ))]dξdt = 0

(i.e., the accumulative disadvantages of F over G in each interval Ai is can-

celled out by that in the its paired interval Āi). More specifically, for each inter-

val Ai, i = n, ..., 1, we can correspondingly identify a point x′i < min(xi, x
′
i+1)

to define its paired interval subsequently Āi = (x′i,min(xi, x
′
i+1)) ∩ Ā (with

x′n+1 = xn) such that
∫
Āi∪Ai

∫ t
0
[w+(F̄ (ξ)) − w+(Ḡ(ξ))]dξdt = 0. Note that∫ b

0

∫ t
0
[w+(F̄ (ξ)) − w+(Ḡ(ξ))]dξdt > 0 implies 0 < x′1 < x1. Since φ(x) strictly

decreases in x, for each pair Āi ∪ Ai we must have∫
Āi∪Ai

ϕ(t)

∫ t

0

[w+(F̄ (ξ))− w+(Ḡ(ξ))]dξdt

=

∫
Āi

ϕ(t)

∫ t

0

[w+(F̄ (ξ))− w+(Ḡ(ξ))]dξdt+

∫
Ai

ϕ(t)

∫ t

0

[w+(F̄ (ξ))− w+(Ḡ(ξ))]dξdt

> ϕ(xi)

[∫
Āi

∫ t

0

[w+(F̄ (ξ))− w+(Ḡ(ξ))]dξdt+

∫
Ai

∫ t

0

[w+(F̄ (ξ))− w+(Ḡ(ξ))]dξdt

]
= 0.
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Then ∫ b

0

ϕ(t)

∫ t

0

[w+(F̄ (ξ))− w+(Ḡ(ξ))]dξdt

≥
∫ x′1

0

ϕ(t)

∫ t

0

[w+(F̄ (ξ))− w+(Ḡ(ξ))]dξdt

=

∫
Ā∪A

ϕ(t)

∫ t

0

[w+(F̄ (ξ))− w+(Ḡ(ξ))]dξdt > 0,

which leads to a contradiction to the condition∫ b

0

ϕ(x)

∫ x

0

[w+(F̄ (z))− w+(Ḡ(z))]dzdx = 0.

We therefore must have
∫ b

0

∫ x
0

[w+(F̄ (z)) − w+(Ḡ(z))]dzdx ≤ 0. In a similar

fashion, we can show
∫ 0

a

∫ 0

y
[w−(G(x))− w−(F (x))]dzdy ≤ 0.

Proof of Lemma 8

Let µFw = µGw = µ. Integrating by parts, we have

mFw −mGw =

∫ 0

a

(x− µ)3d
[
w−(F (x))− w−(G(x))

]
+

∫ b

0

(x− µ)3d
[
−w+(F̄ (x))− (−w+(Ḡ(x)))

]
=

∫ 0

a

3(x− µ)2
[
w−(G(x))− w−(F (x))

]
dx

+

∫ b

0

3(x− µ)2
[
w+(F̄ (x))− w+(Ḡ(x))

]
]dx

= 3

(∫ b

a

(x2 − 2µx)[G(x)− F (x)]dx+ µ2

∫ b

a

[G(x)− F (x)]dx

)
= 3

∫ 0

a

(x2 − 2µx)[w−(G(x))− w−(F (x))]dx

+3

∫ b

0

(x2 − 2µx)[w+(F̄ (x))− w+(Ḡ(x))dx,
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where the fourth equation is due to the equal mean. It suffices to show that∫ 0

a

(x2 − 2µx)[w−(G(x))− w−(F (x))]dx ≥ 0, and

∫ b

0

(x2 − 2µx)[w+(F̄ (x))− w+(Ḡ(x))]dx ≥ 0.

Applying integration by parts, we have∫ 0

a

(x2 − 2µx)[w−(G(x))− w−(F (x))]dx

=

∫ 0

a

[(x− x1)(x− x2) + (x1 + x2 − 2µ)x][w−(G(x))− w−(F (x))]dx

−(x1x2)

∫ 0

a

[w−(G(x))− w−(F (x))]dx

=

∫ 0

a

(x− x1)(x− x2)[w−(G(x))− w−(F (x))]dx

+

∫ 0

a

(x1 + x2 − 2µ)x[w−(G(x))− w−(F (x))]dx

=

∫ 0

a

(x− x1)(x− x2)[w−(G(x))− w−(F (x))]dx

+2

[
x1 + x2

2
− µ

] ∫ 0

a

∫ 0

x

[w−(G(z))− w−(F (z))]dzdx ≥ 0,

where the second equality is due to the fact that F and G have the same expected

losses. The inequality is due to the conditions regarding the crossing points in the

losses domain and the fact that
∫ 0

a

∫ 0

x
[w−(G(z))−w−(F (z))]dzdx ≤ 0 by Lemma
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7. Similarly, we have∫ b

0

(x2 − 2µx)[w+(F̄ (x))− w+(Ḡ(x))]dx

=

∫ b

0

[(x− x3)(x− x4) + (x3 + x4 − 2µ)x][w+(F̄ (x))− w+(Ḡ(x))]dx

=

∫ b

0

(x− x3)(x− x4)[w+(F̄ (x))− w+(Ḡ(x))]dx

−2

[
x3 + x4

2
− µ

] ∫ b

0

∫ y

0

[w+(F̄ (z))− w+(Ḡ(z))]dzdy ≥ 0,

where the inequality is due to the conditions regarding the crossing points in the

gains domain and the fact that
∫ b

0

∫ b
y
[w+(F̄ (z))−w+(Ḡ(z))]dzdy ≤ 0 by Lemma

7. The desired result holds.

Proof of Lemma 9

Using equation (5), ∆w
u (F,G) = 0 follows immediately from condition (1) and

(2). It suffices to prove the two inequalities of condition (ii) of Definition 9. In

what follows, we only prove the inequality,
∫ x

0

∫ z
0

[w+(F̄ (t))−w+(Ḡ(t))]dtdz ≤ 0,

for the gains domain. The other inequality for the losses domain can be proved

using the same arguments and its proof is therefore omitted.

Note that the quasi-concavity of G−1(F (x))−x implies that it crosses over zero in

the gains domain at most twice, first from below, which implies that G(x) crosses

over F (x) in the gains domain at most twice, first from above. If F (x) and G(x)

do not cross in the gains domain, then w+(Ḡ(z)) > w+(F̄ (z)) or w+(Ḡ(z)) <

w+(F̄ (z)) for all x ∈ (0, b], then
∫ b

0
[w+(F̄ (z)) − w+(Ḡ(z))]dz 6= 0, which leads

to a contradiction. If G(x) crosses F (x) exactly once, from above, then we have
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∫ x
0

[w+(F̄ (z))− w+(Ḡ(z))]dz ≥ 0 for all x ∈ (0, b], with strict inequality for some

x ∈ (0, b) as
∫ b

0
[w+(F̄ (z)) − w+(Ḡ(z))]dz = 0. Since u′′(x) < 0 for all x ∈ (0, b],

we have
∫ b

0
u
′′
(x)
∫ x

0
[w+(F̄ (z))−w+(Ḡ(z))]dzdx < 0, which contradicts condition

(2). Hence, G(x) crosses over F (x) exactly twice in (0, b), first from above and

then from below. Then we have
∫ x

0
[w+(F̄ (z)) − w+(Ḡ(z))]dz crosses over zero

only once in (0, b) from above as
∫ b

0
[w+(F̄ (x))− w+(Ḡ(x))]dx = 0.

We now show
∫ x

0
u
′′
(t)
∫ t

0
[w+(F̄ (ξ))− w+(Ḡ(ξ))]dξdt ≤ 0. If, otherwise, we have∫ x

0
u
′′
(t)
∫ t

0
[w+(F̄ (ξ)) − w+(Ḡ(ξ))]dξdt changes sign at most once from negative

to positive at some point x′0 ∈ (0, b), since
∫ x

0
[w+(F̄ (t)) − w+(Ḡ(t))]dt changes

sign only once from positive to negative and u′′(x) < 0 for x ∈ (0, b], then∫ b
0
u
′′
(t)
∫ t

0
[w+(F̄ (ξ))−w+(Ḡ(ξ))]dξdt >

∫ x′0
0
u
′′
(t)
∫ t

0
[w+(F̄ (ξ))−w+(Ḡ(ξ))]dξdt =

0, which yields a contradiction. This proves that∫ x

0

u
′′
(t)

∫ t

0

[w+(F̄ (ξ))− w+(Ḡ(ξ))]dξdt ≥ 0

for all x ≥ 0 with equality holding at x = b. The inequality becomes strict

inequality at some x if F (x) 6= G(x) for some x ∈ (0, b) .

Proof of Theorem 14

The “if” part of the proof follows the same arguments of the proof of Proposition

11 , where concave and convex domains are treated separately, and hence it is

omitted. For the “only if” part, we need to exchange ρ(x, ε) and λ(x, ε) in Lemma

6, which makes sure that v ∈ VM and |Pv(x)| ≥ |Pu(x)|.
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Proof of Proposition 13

The “if” part of the proof follows the same arguments of the proof in Proposition

11, therefore we only present the proof for “only if” part. Following the similar

arguments for the “only if” part of Proposition 11, we can show the inequali-

ties. It suffices to prove the equality conditions,
∫ 0

a

∫ 0

z
[G(ξ) − F (ξ)]dξdz = 0

and
∫ b

0

∫ x
0

[G(ξ) − F (ξ)]dξdz = 0. Suppose by contradiction that
∫ b

0

∫ z
0

[G(ξ) −

F (ξ)]dξdz > 0. Consider

u5(x) =


∫ x
a

[z + e−εz−1
ε

]dz −
∫ 0

a
[z + e−εz−1

ε
]dz, if x < 0,∫ x

0
eε(z−b)

ε
dz, if x > 0.

It is easy to verify that

u
′

5(x) =


x+ e−εx−1

ε
, if x < 0,

eε(x−b)

ε
, if x > 0,

u
′′

5(x) =


1− e−εx, if x < 0,

eε(x−b), if x > 0,

and

u
′′′

5 (x) =


εe−εx, if x < 0,

εeε(x−b), if x > 0.

Clearly u ∈ VM . Taking the limit with respect to ε, we have limε→0 u
′
5(a) =

limε→0 u
′
5(b) = limε→0 u

′′
5(a) = limε→0 u

′′′
5 (x) = 0, limε→0 u

′′
5(b) = 1, and limε→0 ∆u5 =

−
∫ b

0

∫ z
0

[G(ξ)− F (ξ)]dξdz < 0, contradicting the assumption that ∆u5 ≥ 0.
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Similarly, we can show that
∫ 0

a

∫ a
z

[G(ξ) − F (ξ)]dξdz = 0 by considering the fol-

lowing value function

u6(x) =


∫ x
a
eε(a−x)

ε
dz −

∫ 0

a
eε(a−x)

ε
dz, if x < 0,∫ x

0
[ e
εz+1
ε
− z]dz, if x > 0.

This completes the proof.
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Appendix for Chapter 5

Proof of Proposition 15

We first show assertion (i) and (ii). We have

E[−X| − V aRα ≤ X ≤ −V aR1−β]

=
1

1− β − α
(
(1− β)E[−X|X ≤ −V aR1−β(X)]− αE[−X|X ≤ −V aRα(X)]

)
=

1

1− β − α
((1− β)CV aR1−β(X)− αCV aRα(X))

=
1

1− β − α

(∫ 1−β

0

V aRγ(X)dγ −
∫ α

0

V aRγ(X)dγ

)
=

1

1− β − α
V aRγ(X)dγ.

where the second and third equalities follow from the definition of CVaR. Asser-

tion (iii) follows immediately from the fact that V aRγ(X) = −F−1(γ).
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Proof of Proposition 16

Note that (i)⇔ (iii) is documented in Levy and Wiener (1998). We only need to

show (i)⇔ (ii). We have

RV aR[α,1−β](X)−RV aR[α,1−β](Y )

=
1

1− β − α

∫ 1−β

α

V aRγ(X)dγ − 1

1− β − α

∫ 1−β

α

V aRγ(Y )dγ

= − 1

1− β − α

∫ 1−β

α

F−1(γ)dγ +
1

1− β − α

∫ 1−β

α

G−1(γ)dγ

= − 1

1− β − α

∫ 1−β

α

[F−1(γ)−G−1(γ)]dγ

where the second equality follows from the quantile representations of RVaR in

Proposition 15, assertion (iii). Then

RV aR[α,1−β](X) ≤ RV aR[α,1−β](Y ) for all 0 ≤ α ≤ F (0) ≤ G(0) ≤ 1− β ≤ 1,

⇔ − 1

1− β − α

∫ 1−β

α

[F−1(γ)−G−1(γ)]dγ ≤ 0 for all 0 ≤ α ≤ F (0) ≤ G(0) ≤ 1− β ≤ 1,

⇔
∫ 1−β

α

[F−1(γ)−G−1(γ)]dγ ≥ 0, for all 0 ≤ α ≤ F (0) ≤ G(0) ≤ 1− β ≤ 1,

⇔ F �PSD G.

This completes the proof.

Proof of Lemma 11

It follows from Proposition 16 that RV aR[α,1−β](X) ≤ RV aR[α,1−β](Y )

for all 0 ≤ α ≤ F (0) ≤ G(0) ≤ 1−β ≤ 1 if and only if F �PSD G. So we only need

to show F �PSD G if and only if Fw �PSD Gw for all (w−, w+) ∈WCX ×WCX .
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We first prove the “only if” part. For convenience, we define the following slop

functions

ρ−(x) =
w−(G(x))− w−(F (x))

G(x)− F (x)
, and ρ+(x) =

w+(F̄ (x))− w+(Ḡ(x))

F̄ (x)− Ḡ(x)
.

We argue that the convexity of w−(·) and w+(·) implies that ρ−(x) is increasing

in x and ρ+(x) is decreasing in x. To show this, for any x < x′ ≤ 0, we have

w−(G(x))− w−(F (x))

G(x)− F (x)
≤ w−(G(x))− w−(F (x′))

G(x)− F (x′)
≤ w−(G(x′))− w−(F (x′))

G(x′)− F (x′)
,

where both inequalities are due to the convexity of w− and the monotonicity of

F , G and w−. Similarly, for any 0 ≤ x < x′, we have

w+(F̄ (x′))− w+(Ḡ(x′))

F̄ (x′)− Ḡ(x′)
≤ w+(F̄ (x′))− w+(Ḡ(x))

F̄ (x′)− Ḡ(x)
≤ w+(F̄ (x))− w+(Ḡ(x))

F̄ (x)− Ḡ(x)
,

where both inequalities are also due to the convexity of w+ and the monotonicity

of F̄ , Ḡ and w+.

Then for x ∈ [a, 0], we have∫ 0

x

[
w− (G(z))− w− (F (z))

]
dz

=

∫ 0

x

ρ−(z)[G(z)− F (z)]dz

= −
∫ 0

x

ρ−(z)d

(∫ 0

z

[G(t)− F (t)]dt

)
= ρ−(x)

∫ 0

x

[G(t)− F (t)]dt+

∫ 0

x

ρ
′

−(z)

∫ 0

z

[G(t)− F (t)]dtdz ≥ 0,

where the inequality follows from the fact that ρ−(x) ≥ 0, ρ
′
−(x) ≥ 0, and∫ 0

x
[G(z)− F (z)]dz ≥ 0 for all x ≤ 0.
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Similarly, for y ∈ [0, b], we have∫ y

0

[
w+
(
F̄ (z)

)
− w+

(
Ḡ(z)

)]
dz

=

∫ y

0

ρ+(z)
[
F̄ (z)− Ḡ(z)

]
dz

=

∫ y

0

ρ+(z)d

(∫ z

0

[
F̄ (t)− Ḡ(t)

]
dt

)
= ρ+(y)

∫ y

0

[G(t)− F (t)]dt−
∫ y

0

ρ
′

+(z)

∫ z

0

[G(t)− F (t)]dtdz ≥ 0,

where the inequality follows from the fact that ρ+(x) ≥ 0, ρ
′
+(x) ≤ 0, and∫ y

0
[G(z) − F (z)]dz ≥ 0 for all y ≥ 0. Combining the two cases, we know that

F �PSD G implies Fw �PSD Gw when w− and w+ are convex.

For the “if” part, note that among the class of convex PWFs, there is a pair of

PWFs that almost does not change the distribution, e.g., linear PWFs, under

which Fw �PSD Gw implies F �PSD G.

Proof of Proposition 18

It follows from Proposition 16 that RV aR[α,1−β](X) ≤ RV aR[α,1−β](Y ) for all

0 ≤ α ≤ F (0) ≤ G(0) ≤ 1 − β ≤ 1 implies F �PSD G. Since RV aR[0,1](X) =

RV aR[0,1](Y ), it further implies that F �M−PSD G. The result then follows

immediately from Proposition 2.

Proof of Lemma 12

Assertion (i) follows immediately from the fact that F �FSD G if and only if

Fw �FSD Gw for all w− that is increasing (Levy and Wiener 1998), and assertion
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(i) in Lemma 10.

For assertion (ii), it follows from Lemma 10 that CV aRα(X) ≤ CV aRα(Y ) for all α ∈

(0, 1) is equivalent to F �PSD G. So we only need to show F �SSD G if and only

if Fw �SSD Gw for all w− ∈WI . To see this, recall that we have defined the slop

function:

ρ−(x) =
w−(G(x))− w−(F (x))

G(x)− F (x)
.

The concavity of w−(·) implies that ρ−(x) is decreasing in x. Suppose F �SSD G,

then for x ∈ [a, 0], we have∫ x

a

[
w− (G(z))− w− (F (z))

]
dz

=

∫ x

a

ρ−(z)[G(z)− F (z)]dz

=

∫ x

a

ρ−(z)d

(∫ z

a

[G(t)− F (t)]dt

)
= ρ−(x)

∫ x

a

[G(t)− F (t)]dt−
∫ x

a

ρ
′

−(z)

∫ z

a

[G(t)− F (t)]dtdz ≥ 0,

where the inequality is due to ρ−(x) ≥ 0, ρ
′
−(x) ≤ 0, and

∫ x
a

[G(z)− F (z)]dz ≥ 0

for all x ∈ [a, 0] as F �SSD G. Hence we have Fw �SSD Gw.

For the “only if” part, note that among the class of convex PWFs, there is a pair

of PWFs that almost does not change the distribution, e.g., linear PWFs, under

which Fw �SSD Gw implies F �SSD G.

Proof of Proposition 19

We first prove the “if” part of assertion (i). It follows from assertion (i) of

Lemma 10 that for any given pair of PWFs w− ∈ WI , ∆w
u (F,G) ≥ 0 for all
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u ∈ VI implies the risk change from Fw to Gw is PSD. It then follows from the

“only if” part of Lemma 12 that Fw �FSD Gw for all w− ∈ WI implies that

V aRα(X) ≤ V aRα(Y ) for all α ∈ (0, 1).

The “only if” part of (i) follows immediately from Lemma 10 and “if” part of

assertion (i) in Lemma 12.

We now prove assertion the “if” part of assertion (ii). It follows from assertion

(ii) Lemma 10 that for any given pair of PWFs w− ∈WCV , ∆w
u (F,G) ≥ 0 for all

u ∈ VCV implies the risk change from Fw to Gw is SSD. It then follows from the

“only if” part of Lemma 12 that Fw �SSD Gw for all w− ∈ WCV implies that

CV aRα(X) ≤ CV aRα(Y ) for all α ∈ (0, 1).

The “only if” part follows immediately from Lemma 10 and “if” part of assertion

(i) in Lemma 12.

Proof of Proposition 20

Note that ∂
∂θ
ψF (θ) =

∫ 0

a
Uθ(x, θ)dw

−(F (x)) +
∫ b

0
Uθ(x, θ)d[1 − w+(F̄ (x))]. Since

Uθ(·, θ) ∈ VS, we can treat ∂
∂θ
ψF (θ) as if it were a CPT value of prospect F for

an individual with the value function Uθ and PWFs (w−, w+). Then according to

Proposition 16 and 18, under condition (i) or (ii), we have ∂
∂θ
ψF (θ) ≥ ∂

∂θ
ψG(θ),

which implies that ψF (θ)−ψG(θ) is increasing in θ. In other words, using a shift

factor γ to index the level of risk in the sense RVaR, the objective function is

submodular in θ and the risk level. It follows from Proposition 2.8.2 in Topkis

(1998) that arg maxθ∈[0,1] ψF (θ) ≥ arg maxθ∈[0,1] ψG(θ).
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Proof of Proposition 21

Note that in the domain of losses,
∫ x
a

[G(z) − F (z)]dz ≥ 0 for all x ≤ 0 implies

and is implied by CV aRα(X) ≤ CV aRα(Y ) for all α ∈ (0,min(F (0), G(0))) due

to Lemma 10. We only need to show that in the domain of gains, µF − (1 −

β)CV aR1−β(X) ≤ µG − CV aR1−β(Y ) for all β ∈ (0,max(F (0), G(0))) implies

and is implied by
∫ b
x
[G(z)− F (z)]dz ≥ 0 for all x ≥ 0. We then have∫ b

x

[G(z)− F (z)]dz =

∫ 1

1−β
[F−1(t)−G−1(t)]dt

=

∫ 1

1−β
F−1(t)dt−

∫ 1

1−β
G−1(t)dt

= µF −
∫ 1

1−β
F−1(t)dt− µG +

∫ 1

1−β
G−1(t)dt

= µF − (1− β)CV aR1−β(X)− (µG − (1− β)CV aR1−β(Y ))

where the first equality follows from the quantile representations of MSD, and

the fourth equality follows from the quantile representation of CVaR. Then

µF − (1− β)CV aR1−β(X) ≤ µG − CV aR1−β(Y ) for all β ∈ (0,max(F (0), G(0)))

⇔
∫ b

x

[G(z)− F (z)]dz ≥ 0 for all x ≥ 0.

This completes the proof.

Proof of Proposition 22

Since µF = µG, it follows from Proposition 21 that CV aRα(X) ≤ CV aRα(Y ) for all α ∈

(0,min(F (0), G(0))) and CV aR1−β(X) ≥ CV aR1−β(Y ) implies F �M−PSD G.

The result then follows immediately from Proposition 7.

165


	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	2 Background and Related Work
	2.1 On the Measurement of Risk
	2.2 Risk Preference
	2.3 Cumulative Prospect Theory
	2.4 Stochastic Dominance

	3 Risk Aversion and Risk Seeking in Cumulative Prospect Theory
	3.1 Introduction
	3.2 Choice-theoretic Characterizations in CPT
	3.2.1 Increase in Risk under CPT
	3.2.2 Increase in Risk Aversion in CPT

	3.3 Implications for Risk Preference Elicitation in CPT
	3.3.1 The Certainty Equivalence (CE) Approach
	3.3.2 The Experimental Study of kahneman1979prospect
	3.3.3 The Experimental Study of baucells2006stochastic

	3.4 Implications for Optimal Decision Problems in CPT
	3.5 Extensions
	3.5.1 Reference Points
	3.5.2 Markowitz Stochastic Dominance and Inverse S-Shaped Value Functions
	3.5.3 Accounting for Inverse S-shaped PWFs

	3.6 Conclusion

	4 Downside Risk in Cumulative Prospect Theory
	4.1 Introduction
	4.2 Preliminaries: Downside Risk Aversion in EUT
	4.3 Downside Risk Aversion in CPT
	4.3.1 Increase in Downside Risk under CPT
	4.3.2 Increase in Downside Risk Aversion under CPT

	4.4 Applications
	4.4.1 Monotonicity of Optimal Decisions

	4.5 Extensions and Further Discussions
	4.5.1 Alternative Downside Risk Measures
	4.5.2 Markowitz Downside Risk Increase

	4.6 Conclusion

	5 Robust Risk Measures for Cumulative Prospect Theory
	5.1 Introduction
	5.2 Preliminaries
	5.2.1 Value-at-Risk and Conditional Value-at-Risk
	5.2.2 Range Value-at-Risk

	5.3 Risk Measures in CPT
	5.3.1 Accounting for Value Function
	5.3.2 Accounting for Probability Weighting Function

	5.4 Implications for Optimal Decision Problems
	5.5 Extensions
	5.6 Conclusion

	6 Conclusion
	Bibliography
	Appendix for Chapter 3
	Appendix For Chapter 4
	Appendix for Chapter 5

