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Cooperative field localization and excitation eigenmodes in disordered metamaterials
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We investigate numerically and experimentally the near-field response of disordered arrays comprising
asymmetrically split ring resonators that exhibit a strong cooperative response. Our simulations treat the unit cell
split-ring resonators as discrete pointlike oscillators with associated electric and magnetic point dipole radiation,
while the strong cooperative radiative coupling between the different split rings is fully included at all orders.
The methods allow us to calculate local field and Purcell factor enhancement arising from the collective electric
and magnetic excitations. We find substantially increased standard deviation of the Purcell enhancement with
disorder, making it increasingly likely to find collective excitation eigenmodes with very high Purcell factors
that are also stronger for magnetic than electric excitations. We show that disorder can dramatically modify the
cooperative response of the metamaterial even in the presence of strong dissipation losses, as is the case for
plasmonic systems. Our analysis in terms of collective eigenmodes paves the way for controlled engineering of
electromagnetic device functionalities based on strongly interacting metamaterial arrays.
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I. INTRODUCTION

The propagation of waves through disordered media is a
ubiquitous theme across diverse research areas, from elec-
trodynamics and solid-state physics to acoustics and fluid
mechanics. In the field of optics, in particular, the quest
for utilizing disorder and analyzing its effects is attracting
considerable interest from the fundamental studies of trans-
port phenomena to potential applications, such as random
lasing [1], hypertransport [2], and image transport through
optical fibers [3]. While metamaterials have so far been al-
most solely based on periodically structured resonator arrays,
there is an increasing interest in extending these also to the
realm of disordered systems, where disorder is introduced
either in the form of inhomogeneous broadening [4–9] or
as random perturbations in the resonator positions [10–21].
Whereas the former can affect the strength of interactions
between the resonators, the latter can lead to qualitative
changes in the response of the resonator array [7]. Recent
work has also included suggestions for a number of applica-
tions, such as topological photonics [17], random lasing with
gain [18], perfect absorbers [22,23], and wave front shaping
[19,20,24].

In this work, we study the near-field response of position-
ally disordered metamaterial arrays consisting of asymmet-
rically split rings (ASRs) [11,16,25]. Our approach includes
numerical simulations of the full metamaterial array, where
each meta-atom is considered individually, and experimental
near-field measurements. The interplay between disorder and
the strong intermetamolecule interactions results in radical

changes to the metamaterial response compared to that of
a regular array. Indeed, examining the collective radiative
excitation eigenmodes of regular and disordered metamate-
rials reveals striking changes in their electromagnetic (EM)
response. A regular planar array of ASR metamolecules
can support a giant, spatially extended subradiant excitation,
where most of the excitation occupies a single collective
eigenmode [26]. Even small amounts of disorder, weakly
perturbing the metamolecule positions, can strongly localize
the eigenmodes, and this change is directly reflected in the
far-field response [27]. Here we show that in the near field,
the localized excitation energies of both electric and magnetic
dipoles grow with increasing disorder, eventually saturating
and, in the case of magnetic dipoles, finally decreasing at
large values of disorder. The field confinement due to disorder
is described in terms of the Purcell factors. We find that,
in particular, the standard deviations of the maxima of the
Purcell factors over collective modes and stochastic realiza-
tions substantially increase with disorder. For strong disorder
it is increasingly likely that there are collective eigenmodes
with very high Purcell factors. Our findings indicate that this
sensitivity of the cooperative response to disorder strength
depends heavily on dissipation losses. In the case of low-loss
(microwave) ASR arrays, manifestations of disorder-induced
collective phenomena are readily observed. On the other hand,
careful engineering of the metamolecule properties allows the
observation of such phenomena even in the case of plasmonic,
lossy metamaterial systems operating in the optical part of the
spectrum.
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Our analysis is focused on the fundamental understanding
of the cooperative microscopic principles of the macroscopic
EM response and paves the way to overcome the deleterious
and unwanted effects of disorder in order to benefit from them.
Modifying collective interaction phenomena in a controlled
way provides a platform for harnessing and engineering com-
plex disorder-dependent EM field response for the design of
metamaterial-based devices with prescribed functionalities.
By means of decomposing the excitations into eigenmodes
that can be shaped and designed by adjusting the disorder,
we demonstrate that one can engineer the near-field landscape
and, e.g., selectively prepare desired localized multipole (such
as magnetic dipole) excitations. In particular, the number of
eigenmodes required to achieve the target states decreases
with increasing disorder. Hence, one needs to employ only a
handful of modes to engineer localized excitations in strongly
disordered arrays.

II. COLLECTIVE RESPONSE AND NUMERICAL MODEL

We utilize the theoretical model based on coupled dipolar
scattering centers that we developed first for regular arrays
[28–30] and recently generalized for disordered cases [27].
The approach is suitable for simulations of a cooperative re-
sponse [31–35] in large, strongly coupled, magnetodielectric
resonator arrays, while closely related models based on point-
dipole scatterers can be used, e.g., in atomic arrays [36,37].
Other point-dipole scatterer techniques that utilize similar
principles have more recently been applied in the design and
modeling of metasurfaces [38,39].

The studies in both regular and disordered arrays provide
good qualitative agreement with the experiments, indicat-
ing that the essential features of the collective responses in
these systems can be captured by accurate descriptions of
the field-mediated interactions between the scattering cen-
ters even when the microscopic features of the resonators
are only approximately incorporated in the point dipole
model.

We briefly highlight the main elements of the theory [28].
Each ASR metamolecule in a two-dimensional array is la-
beled by index � = 1, . . . , 30 × 36. The dominant effect of
the excitations is described by the amplitudes d� and m�,
where the symmetric oscillations possess a net electric dipole
proportional to d�d̂ and antisymmetric current oscillations
possess a net magnetic dipole m�m̂ with a small electric
quadrupole [25] [see Fig. 1(a)]. In order to model the effect of
spatial disorder, the ASR � is assumed to be located at position
r� = R� + δr�, where R� is the center of the corresponding
unit cell and δr� is the random displacement of the ASR.
Each unit cell resonator is decomposed into two asymmetric
arcs, or meta-atoms; the excitations of the arcs are described
by the oscillator normal mode amplitudes b j . For simplicity,
for the unit cell excitations we use a normalization of d� and
m� for which the lower arc of unit cell � has the amplitude
b2�−1 = (d� + im�)/

√
2 and the amplitude of the upper arc

b2� = (d� − im�)/
√

2. The total energy contained in an ASR
excitation is proportional to |d�|2 + |m�|2. Throughout the
discussion we assume that all field and resonator amplitudes
refer to the slowly varying versions of the positive frequency

FIG. 1. (a) Theoretical model for positionally disordered asym-
metrically split ring (ASR) arrays. Each metamolecule consists of
two arc resonators (meta-atoms), which are represented by gray
and black spheres. Blue and red arrows show the electric (d�) and
magnetic (m�) dipole moment of each meta-atom under plane wave
illumination. (b) Experimental setup for near-field characterization
of a microwave ASR metamaterial. The resonators are arranged in a
square lattice with lattice spacing a = 7.5 mm. The inner and outer
radii of each ASR are 2.8 and 3.2 mm, respectively. The ASR array
is supported by a FR4 dielectric substrate. A broadband linearly
polarized horn antenna illuminates the sample, and a microwave
monopole antenna measures the electric field near the surface of the
array.

components of the corresponding variables, where the rapid
oscillations e−i�t (k = �/c) due to the frequency � of the
incident wave have been factored out in the rotating wave
approximation.

In the numerical implementation, each arc (meta-atom) j
( j = 1, . . . , 2N) behaves like a damped RLC circuit driven
by external fields and the fields scattered by the other arcs.
Oscillations in every arc are damped at rate � = �e + �m +
�o, where the electric and magnetic dipole radiation and
nonradiative Ohmic loss rates are �e, �m, and �o, respec-
tively. In the case of microwave ASR resonators Ohmic loss
occurs mainly in the dielectric substrate and is represented by
�o = 0.07�, while in the case of plasmonics, losses occur
mainly in the metal and are set at �o = 0.25� [27]. To
enhance the strength of cooperative interactions, we consider
realistic arrays of metallic metamolecules that are closely
spaced with a lattice spacing of a = 0.28λ and a = 0.2λ for
microwave and plasmonic metamaterials, respectively. With
the symmetry of the problem we obtain d j (t ) = d j (t )êy and
magnetic dipole m j (t ) = mj (t )m̂ j , where m̂2� = −m̂2�−1 ≡
m̂ = êz. The upper and lower arcs are located at r j + (u/2)êy

and r j − (u/2)êy, respectively, where u denotes the parameter
representing the size of the unit cell. If the split rings were
symmetric, the individual meta-atoms would have identical
resonance frequencies ω j = ω0, while an asymmetry in the
arc lengths shifts the meta-atom resonance frequencies by δω

so that, for ASR �, ω2�−1 = ω0 − δω and ω2� = ω0 + δω.
The dynamics of the meta-atom j follows from the fact

that it is driven by the incident fields, E0(r, t ) and H0(r, t ),
and the sum of the fields E(l )

S (r, t ) and H(l )
S (r, t ) scattered by

all the other resonators l in the system,

Eext(r j, t ) = E0(r, t ) +
∑
l �= j

E(l )
S (r, t ), (1)

Hext(r j, t ) = H0(r, t ) +
∑
l �= j

H(l )
S (r, t ) , (2)
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where the scattered field contributions from the meta-atom l
read

E(l )
S (r, t ) = k3

4πε0

[
G(r − rl )dl + 1

c
G×(r − rl )ml

]
, (3)

H(l )
S (r, t ) = k3

4π
[G(r − rl )ml − cG×(r − rl )dl ]. (4)

The dipole radiation of the electric (magnetic) field at r, from
an oscillating electric (magnetic) dipole with an amplitude d̂
at the origin, is given by [40]

G(r) d̂ = (n̂×d̂) × n̂
eikr

kr
+ [3n̂(n̂ · d̂)

− d̂]

[
1

(kr)3
− i

(kr)2

]
eikr − 4π d̂ δ(kr)

3
, (5)

where n̂ = r/r. Similarly, the electric (magnetic) field at r of
an oscillating magnetic (electric) dipole with an amplitude d̂
at the origin is

G×(r) d̂ = i

k
∇ × eikr

kr
d̂ . (6)

The radiative field-mediated interactions lead to a coupled
set of linear equations, describing the dynamics of the normal-
mode amplitudes of the arc variables b ≡ (b1, b2, . . . , b2N )T

[28], where (unnormalized) b j of each meta-atom is given in
terms of its electric and magnetic dipoles,

b j (t ) =
√

k3

12πε0

[
d j√
�e

+ i
m j

c
√

�m

]
. (7)

The system of N ASR metamolecules (2N single-mode res-
onator arcs) possesses 2N collective eigenmodes of current
oscillation, with corresponding eigenvalues λ j = −γ j/2 −
iδω j that are written in terms of the collective resonance
frequencies δω j (the shift of the resonance frequency with
respect to the arc frequency ω0) and decay rates γ j . The
changes in γ j represent collective enhancement of radiation
when γ j is larger than the decay rate of an isolated meta-atom
(superradiance) and collective suppression of radiation in the
opposite case (subradiance) [41].

Although in the experiments it is not practical to ensemble
average over a large number of realizations of disorder, in
numerical simulations we can fully analyze the statistical
properties of the EM response due to disorder in the positions
of the scatterers. For each individual stochastic realization of
metamolecule positions, we calculate the EM response for
the quantities of interest. By means of ensemble averaging
over many such realizations, we obtain both the averages and
statistical fluctuations of the EM response of the magnetodi-
electric array [27]. For displacement δr� of the unit cell and
an observable quantity O of an array of N ASR resonators we

then obtain

〈O〉 =
∫

d3δr1 · · · d3δrN O(r1, . . . , rN )P(δr1, . . . , δrN )

= 1

N

N∑
n=1

O
(
r(n)

1 , . . . , r(n)
N

)
. (8)

Here we have taken the displacements to be independent and
random for each unit cell that simplifies the joint probability
distribution P for displacements δr� of ASRs, and we also
assume the displacements are uniformly distributed within
the square interval x ∈ (−aD/2, aD/2), y ∈ (−aD/2, aD/2),
where a is the periodic array unit cell size and D quantifies
the strength of disorder. We similarly calculate the statistical
variances

(�O)2 = 〈O2〉 − 〈O〉2 . (9)

III. EXPERIMENTAL METHODS

A. Samples

Periodic and disordered ASR metamaterials were fabri-
cated by etching a 35-μm copper film on a 1.6-mm-thick
dielectric (FR4) substrate. The inner (outer) radius of the
ASR resonators was 2.8 mm (3.2 mm). The arrays com-
prised a grid of 30 × 36, where the lattice spacing was a =
7.5 mm in the periodic sample. In the disordered samples,
the center of each metamolecule was displaced following a
random uniform distribution defined over the square interval
x ∈ (−aD/2, aD/2), y ∈ (−aD/2, aD/2), where D = 0.22 is
the degree of disorder.

B. Near-field measurements

The near-field response of the metamaterial arrays was
characterized by a microwave near-field scanning microscope
embedded in an anechoic chamber [16]. The samples were
illuminated by a horn antenna with the electric field oriented
along the arcs of the ASRs [parallel to the y axis of Fig. 1(b)].
A 2.5-mm electric monopole antenna collected the electric
field component normal to the array plane at a distance of
∼1 mm from the array, and the signal was recorded by the
vector network analyzer. For each sample, a central area of
20 × 20 unit cells was scanned with a step of 0.25 mm.

IV. RESONATOR EXCITATIONS AND NEAR FIELDS

The well-known effect of positional disorder in localizing
near-field excitations can be linked to the dramatic behavior
of the collective eigenmodes of the metamaterial. In the case
of regular ASR metamaterial arrays, an incident field can
lead to excitations, where the dominant contribution comes
from a single subradiant magnetic eigenmode [see Fig. 2(a)]
with a suppressed subradiant collective radiative decay rate
of 0.205� that extends across the metamaterial array [26].
Introduction of even moderate disorder leads to a dramatic
deformation of the eigenmode, from a spatially extended
uniform mode to a strongly localized one [see Fig. 2(d)].
Such dramatic effects are related to the interplay between the
strong collective interactions across the metamaterial array
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FIG. 2. The effects of density on the collective uniform magnetic eigenmode. Excitations of a single eigenmode with varying lattice spacing
a for (a)–(c) regular and (d)–(f) disordered ASR arrays. The corresponding lattice spacings are (a) and (d) a = 0.28λ, (b) and (e) 0.83λ, and
(c) and (f) 1.4λ, and the radiative decay rates are (a) 0.205�, (b) 0.073�, (c) 0.909�, (d) 0.210�, (e) 0.101�, and (f) 0.960�. In the disordered
array, the degree of disorder is D = 0.11.

and positional disorder. Indeed, the (dipole-dipole) interac-
tions between the metamaterial resonators depend strongly on
the lattice spacing and become weaker as the latter increases
or, equivalently, the density of the resonators decreases. For
instance, when the lattice spacing becomes larger than the
wavelength, the collective mode of the periodic array loses
its subradiant character, and its decay rate almost reaches that
of the single resonator decay rate � [Fig. 2(c)]. As a result,
disorder now does not lead to a localized subradiant mode as
in the case of dense arrays [Fig. 2(d)], but rather to a strongly
radiating mode with multiple regions of excitation across the
array [Fig. 2(f)].

The effects of interactions and disorder are most prominent
in the microwave regime where we find qualitative agree-
ment between the theory and experiment. Figure 3 shows
the distribution of excitations in an array driven on reso-
nance with the uniform magnetic mode of the regular array.
For a regular array, the theory predicts [Figs. 3(a)–3(c)] a
response that qualitatively agrees with that observed experi-
mentally [Fig. 3(d)]. Our model indicates that the disordered
metamaterial of Figs. 3(e)–3(g) supports regions in which
the metamolecular excitations are enhanced by about 80%
with respect to those of a regular array and shows the same
localized pattern of excitation observed in the experiment
[Fig. 3(h)].

In the optical part of the spectrum, metallic metamaterials
suffer from Ohmic losses, which limit the role of interac-
tions in the response. However, we find evidence also in the
near-field response of the plasmonic metamaterial that the
collective phenomena still manifest themselves. We show in
Fig. 4 how interactions between plasmonic resonators result in

localized regions of the array being more excited in response
to an incident field than any metamolecule would be in a
regular array. For a specific configuration of metamolecule
positions (D = 0.22), Figs. 4(d)–4(f) show that certain meta-
molecules in the disordered array [Fig. 4(e)] have magnetic
dipole intensities enhanced by 50% over the most excited
magnetic dipole of the regular array [Fig. 4(b)]. We find that
the peak energy in disordered plasmonic arrays [Fig. 4(f)]
increases even further owing to an increase in the electric
dipole excitations.

V. LOCALIZED RESPONSE

The dramatic changes in the near-field response of meta-
material arrays upon introducing disorder provide opportuni-
ties for the engineering of the optical near-field landscape.
Indeed, the near-field response of the metamaterial can be
traced to the collective radiative eigenmodes supported by
the array and their coupling to the incident wave. Here we
study the collective excitations of the disordered metamaterial
arrays by employing the array eigenmodes as a basis in which
we expand both the driving field (plane wave; see Sec. II) and
the response of the array [Figs. 5(a) and 5(b)]. In the case
of a regular array, a plane wave tuned at the transmission
resonance can excite strongly only a handful of eigenmodes
(black lines) with both the driving and the response amplitude
decreasing rapidly for other modes. In fact, in the limit
of an infinitely large array, the plane wave would couple
to only the two eigenmodes in which the array oscillates
uniformly. On the other hand, with increasing disorder the
number of eigenmodes that are excited increases rapidly,
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FIG. 3. Disorder-induced localization in microwave ASR arrays. (a)–(c) and (e)–(g) Theoretical and (d) and (h) experimental near-field
maps for (a)–(d) regular and (e)–(h) disordered arrays under illumination with a nearly uniform wave front as obtained from experimental
measurements. (a) and (e) The theoretical electric dipole intensity of each metamolecule is quantified by |d�|2, whereas (b) and (f) the magnetic
dipole intensity is quantified by |m�|2. Both the theoretical framework and experimental observations demonstrate localized regions of field
enhancement, which we show to exhibit strong magnetic dipole moments. The spacing in the ordered arrays is a = 0.278λ. In the case of
disordered arrays, the degree of disorder is D = 0.22.

FIG. 4. Disorder-induced localization in plasmonic metamaterial arrays. (a) The electric dipole, (b) magnetic dipole, and (c) total
excitations of plasmonic ordered arrays. (d)–(f) The corresponding excitations of plasmonic disordered arrays. The degree of disorder is
D = 0.22, and the lattice constant a = 0.2λ.
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FIG. 5. Mode characteristics of plasmonic ASR arrays. (a) The
incident field excitation (squared) applied to each of the collective
eigenmodes by a plane wave; (b) average excitation intensity of
each of the collective modes when the plane wave is tuned to the
transmission resonance of a regular array. Contribution of the collec-
tive eigenmodes to (c) an electric or (d) magnetic dipole excitation
localized in a single metamolecule. Each of the quantities is calcu-
lated for each mode and each realization of metamolecule positions.
For each realization, we order the modes by the relevant quantity
in decreasing order and compute the average over all realizations.
The calculated quantities correspond to disorder parameters D = 0
(black), D = 0.22 (red), and D = 0.44 (blue).

and in the case of strong disorder (blue lines), as many as
100 eigenmodes can be strongly excited. As an example of
near-field engineering, we consider the preparation of strongly
localized excitations in the array. In Figs. 5(c) and 5(d) we
calculate the contributions of different collective eigenmodes
to achieving electric and magnetic dipole excitations, respec-
tively, localized in a single unit cell for a varying degree
of disorder. In both the electric and magnetic dipole cases,
achieving a localized excitation in regular arrays requires a
large number of collective modes. This is a direct result of
the extended character of the eigenmodes in regular arrays.
Conversely, in disordered arrays, the collectives eigenmodes
become increasingly localized (see Fig. 2). Hence, the number
of modes required decreases substantially, and in the case
of strong disorder, a handful of eigenmodes suffices to form
localized excitations [see blue lines in Figs. 5(c) and 5(d)].
This localization of collective eigenmodes occurs in the plane
of the metamaterial array and is drastically different from the
localization of waves propagating in one-dimensional media
[42–44].

The large number of eigenmodes that are accessible in
disordered metamaterial arrays can be employed to engineer
strongly localized excitations. To determine the extent of this
localization, we numerically simulate the collective response
of 1024 disordered microwave arrays for varying degrees of
disorder. For every realization of metamolecule positions, we
consider the region within ten unit cells of the most excited
metamolecule (excluding metamolecules close to the array
edges). Following an averaging process over all realizations,
the electric and magnetic dipole excitations of this meta-
molecule and its vicinity are presented in Figs. 6(a) and 6(b),

FIG. 6. Localized metamolecule excitations. (a) and (c) Electric
and (b) and (d) magnetic dipole excitations of the most strongly
excited metamolecule and its neighboring metamolecules for (a) and
(b) microwave and (c) and (d) plasmonic arrays as a function of
the disorder parameter D. The color maps present averages over all
realizations and are symmetric around r = 0.

respectively. In all cases, regular arrays exhibit an absence of
localized excitations with slow variations of intensity across
the array. However, the introduction of disorder leads to
increasingly localized excitations that extend over a handful
of unit cells. With an increasing degree of disorder, the electric
dipole intensity increases rapidly and begins to saturate at
D = 0.5, while the spatial extent of the localized excitation
remains constant. On the other hand, the magnetic dipole
intensity initially increases with disorder up to D 	 0.15 and
then decreases, while its size decreases continuously with
disorder. The situation is very similar in the case of plasmonic
arrays [Figs. 6(c) and 6(d)] with the magnetic dipole intensity
peaking at D 	 0.3. In both the microwave and plasmonic
cases, the localized excitation for ordered and weakly disor-
dered arrays is predominantly of magnetic dipole character,
but at strong disorder it quickly converts to an electric dipole.
This behavior is corroborated by the experimental measure-
ments of disordered ASR metamaterials. A typical example is
presented in Fig. 7(a), where we plot the electric field intensity
in the vicinity of a localized excitation for a disordered ASR
array with D = 0.22 (red squares). The excitation is primarily
localized in a small number of unit cells, while it decays
rapidly away from its center. In comparison, the same area
in a regular array (blue circles) exhibits an almost flat profile.
Similar behavior is observed around the most strongly excited
metamolecule in the arrays [see Fig. 7(b)], with the excitation
in the disordered array being substantially more confined than
in the case of the ordered array. In fact, the variation in the
field distribution of the ordered array is attributed mainly to
the inhomogeneity of the incident wave.

The ability to generate localized excitations in plasmonic
metamaterial arrays can be exploited to strengthen the cou-
pling between material excitations and, e.g., quantum emitters
in order to control the decay rate of the latter. In fact, each
collective eigenmode of the metamaterial array can act as
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FIG. 7. Examples of microwave localization. Experimentally
measured electric field intensity profiles around characteristic po-
sitions in disordered (D = 0.22) and ordered ASR arrays. (a) The
field profile of a strongly confined excitation in the disordered array
(red) and around the same position in the ordered array (blue). Solid
lines correspond to fits of the form I/Io = e−|r|/ro , where Io is the
electric field intensity at the position of interest, ro = 54α for the
periodic array (blue), and ro = 19α for the disordered one (red).
(b) The field profile around the most strongly excited metamolecule
in the disordered (red) and ordered (blue) arrays with corresponding
fitting parameters ro = 14α and ro = 30α, respectively. All graphs
are symmetric around r = 0.

an effective cavity whose quality factor is linked to the col-
lective eigenmode decay rate. Thus, collective metamolecule
excitations can serve as an intermediary for an external field
to strongly drive quantum emitters. In contrast to the lo-
calization observed in random metal/dielectric composites at
the percolation threshold consisting of nonresonant inclusions
[45,46], the advantage of the ASR metamaterial is that the
enhancement can be achieved with a prescribed multipole
(magnetic or electric dipole) character.

Here we calculate the Purcell factors and their statistical
distributions for the collective modes of the array normalized
to that of a single arc (see the Appendix). We demonstrate
that coupling to a single collective mode can enhance the
emitter’s decay rate by more than three orders of magni-
tude. In Figs. 8(a) and 8(b), we present the Purcell factor
as a function of the degree of disorder for electric dipole
and magnetic dipole excitations, respectively. Whereas the
average over all modes and realizations depends weakly on
disorder, the maxima (averaged over all realizations) of the
Purcell factor increase monotonically with increasing degree
of disorder for both electric and magnetic dipole excitations.
At the same time, the standard deviation of the maximum Pur-
cell factor values [represented by the error bars in Figs. 8(a)
and 8(b)] also increases substantially. This indicates that as
disorder increases, it becomes increasingly likely that there
is at least one collective eigenmode that can substantially
enhance the Purcell factor. This behavior is further illustrated
in Figs. 8(c) and 8(d), where the Purcell factor for each
collective eigenmode and each realization is presented for
electric and magnetic dipole excitations, respectively. In the
case of weakly disordered metamaterial arrays (black points),
the Purcell factor values for all modes and realizations are
similar for both electric and magnetic dipole excitations.
However, as disorder increases (red points), the distribution
of the Purcell factors of each realization becomes much
broader, with very high values becoming increasingly more
likely.

FIG. 8. Purcell enhancement in plasmonic metamaterial arrays.
Average (black) and maximum (blue) Purcell factor for (a) electric
and (b) magnetic dipole excitations as a function of disorder. The
average is calculated over 1024 different realizations and over all
modes of each realization, and it has been multiplied by a factor of
50. The maximum Purcell factors have been calculated by finding the
maximum value for each realization and then averaging over all 1024
realizations. The error bars correspond to the standard deviation of
the average and maximum Purcell factor across different realizations.
Purcell factors for (c) electric and (d) magnetic dipole excitation for
different realizations and for two different degrees of disorder: 0.11
(black) and 0.55 (red). Each point in the graphs corresponds to the
Purcell factor of a single mode of a single realization.

VI. CONCLUDING REMARKS

Strong EM field-mediated interactions between
metamolecules can lead to a collective response, where simple
homogeneous-medium descriptions no longer are valid [26].
As the electrodynamic behavior of the metamaterial is then
determined by collective excitation eigenmodes, the near-field
response under excitation with a delocalized field can be
localized even in the absence of disorder [47,48] or, similarly,
delocalized in the presence of a localized field excitation [49].
Here we have shown that combining positional disorder and
strong field-mediated interactions leads to a more complex
interplay between collective eigenmodes and the near-field
effects.

Our work, in particular, presents an analysis of the coop-
erative response of disordered metamaterials that allows us to
tailor the metamaterial near-field landscape with application
in the design of artificial EM materials and devices. Controlled
localization in metamaterials holds the potential for random
lasing [1] or disorder-enhanced nanoantennas, where the elec-
tric or magnetic dipole field can be selectively enhanced,
allowing thus for engineering the decay rate of emitters posi-
tioned in the vicinity of the metamaterial. Our approach is also
suitable for driving high-order multipole emitters, which are
typically weak but technologically relevant [50]. For instance,
disordered ASR arrays provide enhanced localized magnetic
dipole excitations, while similar effects can be achieved for
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higher-order terms of the multipole expansion using similar
methods [51,52]. Moreover, engaging collective modes in
metamaterial arrays not only allows control of the emitter
decay rate and multipole character but could also enable the
control of the wavefront and direction of emitted radiation.
Other promising applications include novel platforms for
sensing, nonlinear optics, focusing, and even cavity quantum
electrodynamics, allowing coherent Rabi oscillations between
atomic excitations and collective metamolecular excitations.

Following a period of embargo, the data from this paper
will be available from the University of Southampton reposi-
tory in Ref. [53].
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APPENDIX: PURCELL FACTOR

In an ideal case, the Purcell factor is estimated by consider-
ing an emitter placed in the vicinity of the metamaterial array

which couples to a number of different collective modes of
the array. We can then attribute a Purcell factor to each of
these modes. Here we approximate this mode-specific Purcell
factor using the following procedure. For each realization, we
find the most excited metamolecule under plane wave nor-
mal incidence illumination. We then assume an either purely
electric or purely magnetic dipole excitation localized in this
metamolecule. This localized excitation can be expanded to
the eigenmodes of the system with amplitudes u(e)

n and u(m)
n ,

where n is a mode index and e, m refer to electric and magnetic
dipole excitations. Since the Purcell factor depends on the
effective volume (or surface in the case of planar metamaterial
arrays) of the mode, here we estimate the number of unit
cells across which a mode is spread as |u(e)

n |−2 and |u(m)
n |−2.

Assuming an effective cavity with reference surface A0 and
decay rate � corresponding to a single arc, we can write
the Purcell factor for eigenmode n in the rotating wave
approximation as

P(e/m)
n = P0

∣∣u(e/m)
n

∣∣2

γn/�
, (A1)

where P0 = 6πc3/(A2
0�

2
0�) and γn is the decay rate of

mode n.
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