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Abstract

This thesis is concerned with the detection of low energy beta emitting radioisotopes

from a source of groundwater, with particular emphasis on tritium (3H). This is inves-

tigated firstly through an understanding of the challenges of detecting tritiated water,

which involves the use of Monte Carlo simulations, numerical analysis and the develop-

ment of simple scintillator-based detector system. Secondly, by a novel exploration of

heterogeneous scintillators, utilising scintillator fabrication, Geant4 simulations and a

refined detector prototype. And finally, by the design and testing of a flow cell detec-

tor based on the novel heterogeneous scintillator, including the detection of transient

tritium concentration levels. The results have demonstrated that the beta particle in

the tritiated water undergoes attenuation which causes a shift in the detected energy

spectrum, which is particularly relevant for single crystal scintillator detectors used

to discriminate radioisotopes by comparing beta spectra. The heterogeneous scintil-

lator used was fabricated through a granulation method, before being used to validate

simulations resulting in a novel heterogeneous scintillator configuration. The results

of the flow cell and associated detection showed tentative validation of the theory,

showing how a short detection time would impact on detector performance.
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water using Geant4, the ẑ axis has been simulated but not plotted.

Employing the same physics options as in Chapter 3.2, and also the

same definition of water. There is an upper limit placed for each

step to 100 nm, the red arrow indicates the direction of the beam. 30

3.2.1 Data showing the range of tritium (3H) beta particles in both water

and CaF2:Eu. Error bars are plotted but are of small magnitude

and the colour of the maximum values is associated with the curve

it relates to. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.2 Data showing the range of tritium (3H) beta particles in air. Error

bars are plotted but are of small magnitude and the colour of the

maximum values is associated with the curve it relates to. . . . . . 34

4.2.1 Data showing a comparison a peak due to the 60Co source from the

SiPM with the equation Eq. (4.2.1). . . . . . . . . . . . . . . . . . 38

4.2.2 Photograph of the SiPM, CaF2:Eu scintillator and preamplifier (TIA)

used in this chapter. . . . . . . . . . . . . . . . . . . . . . . . . . . 40



LIST OF FIGURES XI

4.2.3 Circuit diagram showing the SiPM bias voltage circuit, employing

the LM317T voltage regulator [155, 156]. The output VBias is ad-

justed using the variable resistor and the 10 nF capacitor is located

adjacent to the SiPM Cathode pin and is present also in the SiPM

Bias Figure A.2.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2.4 Circuit diagrams of the rail splitting and charge sensitive preampli-

fier circuits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3.1 Diagram of the two setups used to model the single crystal detec-

tor. The scintillator is labelled as i
)
, radius 14.3mm and thickness

2mm. The cylindrical water volume, ii
)
, radius 15mm and thick-

ness 10mm and, the disc iii
)
, with radius 15mm with an 1mm gap

from the scintillator. . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3.2 Energy spectrum data for 3H from the Radiological Toolbox [17],

plotted with the extrapolated spectrum. . . . . . . . . . . . . . . . 45

4.3.3 Energy spectrum data for 36Cl from the Radiological Toolbox [17],

plotted with the extrapolated spectrum. . . . . . . . . . . . . . . . 45

4.3.4 Showing the original data [160], extrapolated data and the resulting

emission curve of CaF2:Eu produced by Geant4. . . . . . . . . . . 47

4.4.1 Data showing the energy spectrums of cylinders of tritiated water

of various thicknesses incident on a single crystal scintillator. . . . 50

4.4.2 Data showing that the Geant4 data validates the numerical predic-

tion of the attenuation of the tritium (3H) energy spectrum [151]. 51



LIST OF FIGURES XII

4.4.3 Data showing the histogram of photon production of both the unat-

tenuated and attenuated (5µm) energy spectrums for the tritium

source. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4.4 Data showing the mass attenuation of water as calculated using

Geant4 [151]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4.5 Data showing the experimental data and prediction using both

Geant4 and circuit analysis for tritium. . . . . . . . . . . . . . . . 52

4.4.6 Data showing the experimental data and prediction using both

Geant4 and circuit analysis for 36Cl. . . . . . . . . . . . . . . . . . 53

5.2.1 TEM image of CaF2:Eu particles coated in CaF2, fabricated using

the sol-gel method [165]. . . . . . . . . . . . . . . . . . . . . . . . 59

5.2.2 TEM image of CaF2:Eu particle fabricated using the sol-gel method

[166]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2.3 SEM image of ball milled Yb:YAG [177]. . . . . . . . . . . . . . . 61

5.2.4 SEM image of spherical ball milled CaF2 [182]. . . . . . . . . . . . 61

5.3.1 Raman spectra of pure and impure CaF2, adapted from [195]. . . 67

5.3.2 Raman spectra of pure CaF2 and CaF2:Eu at various doping con-

centrations [196, 197]. . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3.3 Measured raman spectra of a purchased [83] single crystal of CaF2:Eu. 68

5.3.4 Raman results of the spray deposited CaF2:Eu onto a 200 ◦C hot

plate, which were annealed at 600 ◦C. . . . . . . . . . . . . . . . . 69



LIST OF FIGURES XIII

5.3.5 Raman results of the spray deposited CaF2:Eu onto a 200 ◦C hot

plate, which were annealed at 700 ◦C. . . . . . . . . . . . . . . . . 70

5.3.6 Raman spectra of the CaF2 samples spray desposited at 150 ◦C

and annealed at 700 ◦C with annealing times shown. The solution

composition was NH4F and Calcium L-lactate pentahydrate with

deionised water. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3.7 Amplitude of the 321 cm−1 peak vs. hot plate temperature for the

fabricated CaF2. The data has been reduced to plot only the max-

imum peak amplitude for each hot plate temperature. . . . . . . . 72

5.3.8 Data showing the maximum 321 cm−1 peak for each spraying hot

plate temperature for the CaF2 Raman results. . . . . . . . . . . . 72

5.3.9 Amplitude of the 321 cm−1 peak vs. anneal time for the fabricated

CaF2. The data has been reduced to plot only the maximum peak

amplitude for each anneal time. . . . . . . . . . . . . . . . . . . . 73

5.3.10 Data showing the maximum 321 cm−1 peak for each total anneal

time for the CaF2 Raman results. . . . . . . . . . . . . . . . . . . 73

5.3.11 Optical micropscope image of 1 %mol citrate with no delay before

its addition, the scale bar represents 50µm. . . . . . . . . . . . . . 75

5.3.12 Optical microscope image of 1 %mol citrate with no delay before

its addition. Then annealed at 600 ◦C for 90min. The scale bar

represents 50µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3.13 Optical micropscope image of 0.1 %mol citrate with a 1 h delay

before its addition, the scale bar represents 50µm. . . . . . . . . . 76



LIST OF FIGURES XIV

5.3.14 Optical micropscope image of 0.1 %mol citrate with a 1 h delay

before its addition. Then annealed at 600 ◦C for 90min. The scale

bar represents 50µm. . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4.1 Results of the particle size distribution of the produced heteroge-

neous scintillator using a MasterSizer. . . . . . . . . . . . . . . . . 78

5.4.2 Results of the particle size distribution of the produced heteroge-

neous scintillator using a MasterSizer [198]. . . . . . . . . . . . . . 79

5.4.3 Optical brightfield microscope image of the CaF2:Eu particle crushed

using a mortar & pestle. The scale bar equates to 50µm and the

image was taken at 50x magnification. . . . . . . . . . . . . . . . . 79

6.2.1 Energy spectrum data for 14C from the Radiological Toolbox [17],

plotted with the extrapolated spectrum. . . . . . . . . . . . . . . . 83

6.2.2 Energy spectrum data for 210Pb from the Radiological Toolbox [17],

plotted with the extrapolated spectrum. . . . . . . . . . . . . . . . 84

6.2.3 A diagram of the 2D geometries used in the heterogeneous Geant4

simulation, showing both Square Packed and Face Centred Cubic

unit cells. Shown are both the single crystal and heterogeneous

scintillator represented by both red and grey colours. Dimensions

shown are for tritium (black text), Carbon 14 (purple text) and

Lead 210 (green text). The inclusion of the additional radioisotopes

Carbon 14 and Lead 210 is covered in Chapter 6.2.1. . . . . . . . . 85



LIST OF FIGURES XV

6.2.4 A diagram showing the tiling of the 2D Square Packed unit cells, red

and grey colours denote scintillating material. For the 2D geome-

tries the water & source as labelled and represented as the dashed

volumes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.2.5 Diagram showing the structure of the layered 2D particulate scin-

tillator. The source is in the blue part, scintillator spheres in red &

grey and the substrate in white. a
)
and b

)
show a single unit cell

and 2x2 array arrangement respectively. . . . . . . . . . . . . . . . 87

6.2.6 Approximation of the emission curve of CaF2:Eu from reference

data [160], produced using Geant4. . . . . . . . . . . . . . . . . . 91

6.2.7 Comparison of simulation data showing the effect of reducing the

minimum ’cut-off’ kinetic energy, red curves and black curves de-

note the 1 keV and 100 eV energy cut off for the Livermore Models

respectively. The solid black overlays the solid red line. . . . . . . 93

6.3.1 Results of the 2D Geant4 single crystal and heterogeneous scintil-

lator simulations showing the radionuclides 3H, 14C & 210Pb. Face

centred data is not plotted as it overlaps with the Square Pack data

and the error bars are plotted but are of small magnitude. . . . . . 94

6.4.1 Results of two repeat measurements of the particle size distribution

of soda-lime glass crushed using a mortar and pestle. . . . . . . . 96

6.4.2 Optical microscope image of the cross section of the crushed soda-

lime glass (Fig. 6.4.1) deposited onto the PDMS substrate. Image

taken at 10x magnification and the scale bar equates to 200µm. . 97



LIST OF FIGURES XVI

6.4.3 ”Optical microscope bright field image of the surface of the par-

ticulate heterogeneous scintillator taken at 10x magnification. The

scintillator chosen is CaF2:Eu with PDMS as the substrate. The

scale bar in the corner equates to 300µm in length” [211]. . . . . . 98

6.5.1 Circuit to power the pulse shaping part of the circuit using a TLE2426

and a HA5002 IC [214, 215]. . . . . . . . . . . . . . . . . . . . . . 101

6.5.2 A circuit diagram of the updated Transimpedance preamplifier, us-

ing the LT6200-10 OpAmp [216]. This circuit was also employed in

a simulation [212]. For this simulation the representations of the

input and output pulses are shown. . . . . . . . . . . . . . . . . . 101

6.6.1 Simple diagram of beta particle range simulation using Geant4. The

geometry was 2m3 using water, the arrow denotes the beam of

particles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.7.1 The results of the Geant4 2D single crystal and heterogeneous scin-

tillator simulations using the 3H, 14C & 210Pb. These results are

normalised using the Maximum Track Length values. . . . . . . . 107

6.7.2 The results of the Geant4 2D single crystal and heterogeneous scin-

tillator simulations using the 3H, 14C & 210Pb. These results are

normalised using the Maximum Geometric Track Length values. . 108

6.7.3 Geant4 simulation results of the dual layer of 2D 10002 SP hetero-

geneous scintillator with tritium. . . . . . . . . . . . . . . . . . . . 109

6.7.4 Geant4 Data showing the results of all the 2D structures, SP &

FCC. The SP and FCC curves overlay one another. . . . . . . . . 110



LIST OF FIGURES XVII

6.8.1 A diagram of the 3D geometries used in the heterogeneous Geant4

simulation, shown are the Square Packed, Face Centred Cubic and

Body Centred Cubic unit cells. The grey and red colours denote

the scintillator material and the white cube show the limits of the

unit cell itself. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.8.2 A diagram showing the 2x2 tiling of the 3D Square Packed unit

cells, red and grey colours denote scintillating material. The void

volume between spheres is occupied by the water and source. . . . 112

6.9.1 Results of the convergence test for the 2D & 3D square packed unit

cells for tritium, carbon 14 & lead 210. Error bars are plotted but

of small magnitude. . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.9.2 Results of the Geant4 3D heterogeneous scintillator simulation show-

ing the radionuclides 3H, 14C & 210Pb. Face centred data is not

plotted as it overlaps with the Square Pack data. . . . . . . . . . . 114

6.9.3 Results of the Geant4 3D heterogeneous scintillator simulation using

3H, 14C & 210Pb. These results are normalised using the Maximum

Track Length values. . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.9.4 Results of the Geant4 3D heterogeneous scintillator simulation using

3H, 14C & 210Pb. These results are normalised using the Maximum

Geometric Track Length. . . . . . . . . . . . . . . . . . . . . . . . 115

6.9.5 Geant4 simulation data of the 3D heterogeneous scintillator showing

the 3D structures SP, FCC & BCC. . . . . . . . . . . . . . . . . . 116



LIST OF FIGURES XVIII

6.9.6 Geant4 simulation data of the 3D heterogeneous scintillator showing

the CaF2:Eu and CsI:Tl scintillators with a 3D SP 10003 unit cells

tritium arrangement. . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.10.1 Data showing the optimal radius for a particulate heterogeneous 3D

SP flow cell to maximise both the energy the beta particle desposits

into the scintillator, and flow rate of the waterborne source. . . . . 120

7.2.1 Diagram showing the aluminium base and sides of the flow cell. . . 124

7.2.2 Image of the fabricated flow cell with the lid screwed on, the shape

of base can be seen in the diagram in Fig. 7.2.1. . . . . . . . . . . 124

7.2.3 Diagram showing the components of the flow cell setup employed.

The arrows indicate the flow of water & tritium source and dashed

line the connection from the SiPM to the ADC. . . . . . . . . . . 125

7.2.4 Diagram of the counting setup for a transient source of radiation.

The experiment follows the setups shown numerically, blue denotes

DI, green as tritium and grey as waste. The ADC is still included

in the experimental setup but not shown in the figure. . . . . . . . 127

7.3.1 Data showing the transient flow experiment with the total counts

per window of time. The data is analysed using the same data set. 131

7.3.2 Data showing the transient flow experiment with the total counts

per averaged window of time. The data is analysed using the same

data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131



LIST OF FIGURES XIX

7.3.3 Data showing the transient flow experiment with the total counts

per window of time. The data is analysed with a rolling counting

window. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.3.4 Data showing the transient flow experiment with the total counts

per averaged window of time. The data is analysed with a rolling

counting window. . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.4.1 The results of the moving average model on expected data for the

detection of a transient radioisotope. The black line is the expected

data, the coloured lines for the moving average data. . . . . . . . . 134

7.5.1 Diagram
(
a
)
showing the structure of a single layer of the 2D het-

erogeneous scintillator. This layer contains 4x4 (x̂xŷ) square pack
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Chapter 1

Introduction

The focus of this thesis is the design and testing of a detection system for low-energy

beta particle emitting radionuclides with particular emphasis on waterborne tritium.

Tritium, a radioactive isotope of hydrogen, is produced naturally by the interaction of

cosmic rays with upper atmospheric nitrogen; more importantly, it is also produced

through atomic weapons testing, and industrial processes [1, 2]. Tritium enters the

environment through a number of pathways, such as the atmospheric circulation of

naturally produced tritium, weapons testing, industrial processes or accidents. Once

in the environment it behaves in a similar way as the more common hydrogen iso-

tope, i.e. protium. Although tritium has a relatively short half-life of 12.3 years and

emits a beta particle with a low energy (<18.6 keV), it can lead to localised damage

to the body’s cells. Currently it is deemed to have a low biological effectiveness, but

there have been recommendations to increase its biological effectiveness value [3]. At

present, the most accurate methods of detecting waterborne tritium are laboratory-

based liquid scintillation [4, 5]. This makes in-situ and near real-time detection diffi-

1
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cult. A near real-time, in the field detection system that detects waterborne tritium

in-situ will allow easier detection in a range of environmental applications and as a

direct consequence will allow for quicker and easier monitoring reducing any related

biological risk.

The motivation behind this research is to firstly gain a better understanding of the

challenge of waterborne tritium detection, and secondly to design and test an exper-

imental detector demonstrating performance improvements. The overall aim of this

thesis is the development of a prototype of a heterogeneous scintillator for waterborne

tritium detection.

1.1 Research Objectives & Aims

• An initial aim of the work is to investigate and understand through simulations

the inherent difficulties of waterborne tritium detection with a scintillator.

• Design and fabrication of the data collection and processing system for the

radiation detection sensor.

• Development of a heterogeneous scintillator using simulated and experimental

data. This heterogeneous scintillator has to demonstrate improved performance

in a continous flow-cell scenario when comparing with pre-existing detectors.

• Proof of concept for the use of a heterogeneous flow-cell for detecting tritium

in solution. This includes a source with differing flow rates and concentrations
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that are both constant and transient.

1.2 Publications

1. T. Alton, S. Monk, D. Cheneler. Beta Particle Energy Spectra Shift due to

Self-attenuating Effects in Environmental Sources, Nuclear Engineering and

Technology, vol 49, issue 7, pp. 1483-1488, 2017. (See Chapter 4).

2. T. Alton, S. Monk, D. Cheneler. Corrigendum to ”Beta particle energy spectra

shift due to self-attenuation effects in environmental sources”, Nuclear Engi-

neering and Technology, vol 50, issue 6, pp. 996, 2018.

3. S.D Monk, B.A. Shippen, B.R Colling, D. Cheneler, H. Al Hamrashdi, T. Alton.

A comparison of MCNP6-1.0 and GEANT 4-10.1 when evaluating the neutron

output of a complex real world nuclear environment: the thermal neutron fa-

cility at the Tri Universities Meson facility, Nuclear Instruments and Methods

Research Section B, vol 399, pp. 48-61, 2017. This article assisted with learning

the Geant4 code which forms a vital part of the thesis.

4. T. Alton, S. Monk, D. Cheneler. Heterogeneous Scintillator Geometries for

Waterborne Beta Particle Detection, Radiation Measurements, 111, 6-12, 2018.

(See Chapters 5 & 6).
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1.3 Conference Presentations

• In Situ Monitoring of Radionuclides in Water, With Emphasis on Tritium Detec-

tion, Universities Nuclear Technology Forum (UNTF), Open University, 2015.

• In Situ Groundwater Radionuclide Detector with Geant4 Simulation Data, Lan-

caster University Engineering Postgraduate Review Conference, Lancaster Uni-

versity, 2015.

• In Situ Monitoring of Radionuclides in Water, With Emphasis on Tritium De-

tection, Universities Nuclear Technology Forum (UNTF), Sheffield University,

2016.

• In Situ Monitoring of Radionuclides in Water, With Emphasis on Tritium Detec-

tion, Lancaster University Engineering Postgraduate Review Conference, Lan-

caster University, 2016.

• In Situ Monitoring of Radionuclides in Water, With Emphasis on Tritium Detec-

tion, Lancaster University Engineering Postgraduate Review Conference, Lan-

caster University, 2017.

1.4 Thesis Organisation

The thesis is organised into eight chapters and an appendix.

This first Chapter is an introduction detailing the organisation of the thesis, the sec-

ond chapter is a comprehensive view of the literature of the subjects of this thesis,
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solid scintillators, heterogeneous scintillators and flow-cell detectors. A short descrip-

tion of radiation transport detailing the passage of beta particles in matter, comprises

Chapter 3, which also includes a short investigation of the range of tritium beta par-

ticles. The fourth chapter describes the single crystal detector and design, including

the modelling, electronics used, results, discussion and conclusion. Chapter 5 cov-

ers the process of producing the particulate scintillators, covering both chemical and

mechanical approaches. Chapters 6 and 7 cover the heterogeneous scintillator and

the flow cell heterogeneous scintillator respectively, detailing both simulation and ex-

perimental setup, the results, discussion and conclusion. Chapter 8 comprises of the

conclusions to this thesis. The Appendix contains supplimentary information.



Chapter 2

Tritium Behaviour & Detection

This chapter covers the current literature and understanding of detecting beta par-

ticles and particularly tritium (T). Whilst the research area has been broken down

into various sections there is particular emphasis on scintillation crystals and flow cell

detection as these are key areas.

2.1 Tritium

Hydrogen has three common isotopes [6, 7], Protium (1
1H), Deuterium (2

1H) and

Tritium (3
1H), with the respective natural abundances being 99.9885%, 0.0115% &

1× 10−9% [8, 9]. The structure of these isoptopes is such that all three have a proton

in the nucleus and an orbiting electron. The difference between the isotopes is the

addition of neutrons, one for deuterium and two for tritium. Whilst tritium was ini-

tially discovered in 1934 [10], it wasn’t until 1939 that it was isolated and identified

6
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Epeak
Eaverage

Emax

Figure 2.1.1: Tritium beta particle energy spectrum [17].

as radioactive [11, 12, 13, 14]. Aside from the different atomic masses they all be-

have the same chemically. Tritium is unstable and decays with a Super Allowed [15]

decay and with a half-life of 12.3 years. One of the neutrons in the tritium nucleus

decays and releases both a beta particle (an electron) and an electron anti-neutrino

[16], producing a daughter helium atom, 3
2He, see Eq. (2.1.1). This results in a beta

particle being emitted with a spectrum of possible kinetic energies, the maximum of

which is 18.6 keV with an average of 5.7 keV [15], see Fig. 2.1.1.

3
1H →3

2 He + e− + ν̄e (2.1.1)

Natural tritium production in the upper atmosphere is mainly by neutron capture

of 14N, followed by decay into 12C & 3H, 14N(n,31H)12C [18, 19]. More importantly,

tritium is introduced into the environment by the nuclear industry with, routine dis-
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charges, such as from CANDU reactors [20], atmospheric discharges [21] and pipeline

discharges [2]. Tritium is also produced by nuclear fuel reprocessing sites, for example,

in a pressure water reactor the boron in boric acid will undergo neutron absorption.

The subsequent decay will create a tritium atom, which will be separated when the

fuel is reprocessed [22, 23]. Tritium is also released during atomic weapons testing [1]

and accidents, such as Fukushima [24] and Chernobyl [25, 26]. As tritium’s chemical

behaviour is identical to that of hydrogen, it may be found in many hydrogen con-

taining compounds. The majority of tritium produced in the atmosphere oxidises to

tritiated water (HTO) [4], or to tritiated hydrogen (HT) [4]. Other physiochemical

atmospheric forms do exist, such as tritiated methane (CH3T) and tritiated ethanol

(C2H5T) [27]. Tritium is also found in the bioshphere with organically bound tritium

(OBT). Within the hydrosphere, the majority is in the form of HTO [28].

2.1.1 Environmental Concentrations

In designing a detector for in-situ use, it is necessary to benchmark against real world

concentrations and legal limits. There are various legal limits in place for environ-

mental tritium levels and a selection is shown in Table 2.1.1.
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Table 2.1.1: Tritium limits for drinking water for a number of countries, the World

Health Organisation and the European Union [29].

Country/Organisation Tritium limit (BqmL−1)

Australia 76.103

Finland 30

WHO 10

Switzerland 10

Russia 7.7

Canada (Ontario) 7

United States 0.74

European Union 0.1

It should be noted that the European Union, Australian and Canadian limits are a

guideline. However some states such as France and Germany apply the European

Limit as a legal limit, some provinces in Canada apply their recommended limit

(7BqmL−1) as a legal standard [29], such as Ontario.

Tritium levels in the Irish Sea have been examined [30] and the conclusion was that

the normalised activity concentration had a mean of 6.9± 0.4BqmL−1. Using the

published discharge data from 2013 [31] the total discharges from pipeline and sewer

were 1400TBq and 6.6GBq respectively. Using the stated mean above the concen-

trations from the pipeline and sewer are then 9.66mBqmL−1 and 41 nBqmL−1. The
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waters around various French nuclear sites [32] were found to have minimum and max-

imum concentrations of 5 and 70mBqmL−1 respectively. The Western Shore of the

Black Sea was sampled [33] and the collected data found a minimum and maximum

of 0.03 and 0.4mBqmL−1. The Gulf of Finland [34] had several locations analysed

with the results showing a minimum and maximum concentration of 0.6mBqmL−1

and 5.76mBqmL−1.

The above information, particularly the WHO and EU drinking water limits, can be

utilised to provide benchmarks for the performance of a developed detector.

2.1.2 Health Effects of Tritium

Once tritium has entered the environment there are a number of pathways into the

body such as tritiated water and organically bound tritium (OBT). The main path-

way into the body is through ingestion of tritiated water (HTO) [28], however this has

a short biological half-life of 10 days [35]. OBT has a much longer biological half-life

(∼100 days) [35] and accounts for the majority of the tritium content in tissue for ani-

mals and humans [36, 37]. The different physiochemical forms of tritium also extends

to the dose coefficients for adults, namely 4× 10−11 SvBq−1 and 9× 10−11 SvBq−1

for HTO & OBT respectively [38]. The Relative Biological Effectiveness (RBE) is a

weighting factor given to ionising radiation to highlight the different effects it has on

the body at the same energy. Tritium’s penetration length in water is comparable to

the average size of a cell in the body, i.e. 10-20µm, this along with its behaviour in

the body leads to localised doses, such as the breast and colon [39]. The International
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Commission on Radiological Protection (ICRP) considers a weighting factor of 1 for

beta particles relative to gamma rays, however the UK Health Protection Agency [3]

and the US Oak Ridge National Laboratory [40] recommend and conclude stating

that for tritium the value should be 2. This increase is due to the behavior of the

tritium beta particles and the associated biological effectiveness. Once in the body

the effects of tritium are consistent with other ionising radiations [41, 42] in being

able to induce stochastic (probability is a function of dose [43]) and deterministic

(severity is a function of dose [43]) effects, although the data that currently exists

is for lab animals (mice & rats), no epidemiological data shows stochastic effects on

humans [41].

2.2 Tritium Detection

There are a number of detection systems that have been used for detecting tritiated

water. The most common method is a Liquid Scintillation Counter (LSC) employ-

ing a liquid scintillator. Here the radioisotope is typically placed into a glass vial

(approximately 20mL) with a scintillation cocktail, this cocktail contains a solvent,

scintillator and surfactant [44]. Inside the vial the energy from the decaying ra-

dioisotope is transferred to the scintillator through the solvent [44], the generated

scintillation photons are then counted within the LSC using a technology such as a

PhotoMultiplier Tube (PMT). There are two drawbacks applicable here, firstly that

it is challenging to implement in-situ and secondly, is that the waste material is often
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harmful to the environment [45]. This method is widely adopted as it has a high

counting efficiency for tritium, for example Ultima Gold has 56% counting efficiency

for tritium [44].

Direct detection using a mercuric iodide (HgI2) semiconductor has been demonstrated

[46]. This device was custom fabricated using a wafer of HgI2, electrodes of an acrylic

graphite composition and palladium wires, see Fig. 2.2.1. The results showed a promis-

ing 25% efficiency however the surface is hygroscopic, meaning water absorbing [47],

which leads to material degradation. A deadlayer of 0.2µm thick on the surface was

concluded by the authors [46], with this the predicted life expectancy of the device

is poor (50% for one month). Adding an additional layer to protect the HgI2 from

the water would increase the predicted life expectancy (75% for two years) but would

cause further attenuation, which is already significant (0.5 keV losses).

Figure 2.2.1: A diagram of the HgI2 semiconductor used for direct detection of tritium

[46].
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Organic scintillators have been employed for tritium detection, two examples given

here are BC-408 & BC-400 (BC referes to Bicron Corporation [48, 49]). The BC-408

detector [50, 51] was constructed as a flat disc of 29mm diameter and 0.5mm thick,

with one surface in contact with the tritiated water. The container of tritium was

lined with a reflective aluminium cup. The volume was ∼3mL with concentration

∼3GBqL−1 and repeatedly counted for 10min. The results showed a sensitivity of

1.39× 10−8 CPS/(Bq/L·cm2), which is too low for the concentrations desired in this

thesis, which are towards 10BqmL−1 (Table 2.1.1). The scintillators BC-400 and

europium doped calcium fluoride (CaF2:Eu or CaF2(Eu)) have been used to develop

flow cell radiation detectors for waterborne tritium. One of the BC-400 designs [52]

utilised a porous block made by dissolving the BC-400 in a mixture of ethyl-acetate

and amyl-acetate, then stretching thin films of the solution.

They [52] determined a detection limit of 39BqmL−1 with low count times of <5min

and a flow rate of 1mLmin−1. A second design [53] used a channel in acrylic

with a sheet of BC-400 above. The detection limit was found at a concentration

of 346BqmL−1 giving ∼0.6CPS. However, it should be noted that both research

groups [52, 53] experienced a contamination effect with BC-400. To counteract this

the flow cell can be flushed with pure water to clean. Falter [52] determined that

30min of flushing with distilled water was optimal, Uda [53] followed a similar prin-

cipal in flushing with pure water.

It has been demonstrated that nanoporous palladium absorbs hydrogen, and there-

fore tritium [54, 55, 56]. This has formed the basis of a radiation detector where Pd
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is adjacent to a scintillator, any tritium absorbed will then have a reduced possible

path length to the scintillator. This design demonstrates a higher efficiency. However

one major drawback is that the absorption will stop when the structure is full, when

this happens it will need replacing, which is more of a difficulty in an in-situ situation.

CaF2:Eu has been used for transuranics [57], high energy beta particles [58] and flow

cells [59, 60, 61, 62], but also specifically for tritiated water detection [63, 64, 65, 66].

This tritium-specific design focused on a tube packed with purchased small particles of

CaF2:Eu, experimental results exploring how particle size affects the detected count

rate can be seen in Fig. 2.2.2. The results show that the 50µm particles achieve the

highest count rate. Further experiments in shielding, using 900 kg of lead did not have

a significant impact on the background count rate. The three articles demonstrated

that concentrations of 10BqmL−1 can be detected with these purchased scintillator

particles with a counting time of 600 s, albeit with a low flow rate (1mLmin−1). The

results into particle size did not reveal convergence, therefore further reduction could

be beneficial. Further, the low flow rates are not suitable for in-situ detection of

real-time sources, e.g. a transient concentration.
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Figure 2.2.2: Graph of data investigating the impact of scintillator particle diameter

on the count rate of waterborne tritium with a single flow cell, adapted from [64].

2.3 Scintillators

Scintillators have been used for detecting radiation for more than a century [67].

They can also be catagorised into organic, inorganic, and also hygroscopic & non-

hygroscopic. Hygroscopic scintillators [68] are not suitable for exposure to water, and

whilst it is possible to seal the material this would add an attenuating layer. Non-

hygroscopic scintillators offer an alternative as they do not degrade with exposure to

water, nor need a protective layer. The section on tritium (Chapter 2.1) highlighted

the challenges of detection such as a low kinetic energy leading to a small penetration

length (<4µm). Any additional layer in between the radioisotope and the scintillator

will impact the device performance. As the radioisotope source will be in solution,

tritiated water, then the ideal scintillator would be non-hygroscopic, and hygroscopic
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ones can be ignored.

The previous section (Chapter 2.2) listed a number of scintillators, BC-400, BC-408

& CaF2:Eu. However other non-hygroscopic scintillators do exist, which have been

omitted for reasons such as low photon yield. This section covers the ideal scintillator

choice, specifically the needs of such a scintillator are:

• Essential:

1. Maximise scintillation photons created per unit energy of the incident beta

particles.

2. Non-hygroscopic, so detector performance is not compromised with pro-

longed exposure to the source.

• Desirable:

1. Peak emission matching a photon detectors peak sensitivity to increase the

detection efficiency of scintillation photons.

2. Refractive index matching with photon detector will ensure ideal optical

coupling and minimal photon losses.

3. Linear light output with incident energy for ease of calibrating with inci-

dent energy.

4. Minimal temperature dependency for better consistency across different

operating environments.

Table 2.3.1 lists a selection of viable non-hygroscopic scintillators and their proper-

ties. The scintillators and accompanying references are, YSO:Ce [69], YAG:Ce [70],
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YAP:Ce [71], CsI:Tl [72, 73], BC-400 [74] (also referred to as EJ-212 & NE102A [75]),

BGO [76], BaF2 [77], CeF3 [78], PbWO4 [79] and CaF2:Eu [80, 81, 82, 83, 84].

The yttrium based scintillators listed are not suitable for this application because of

their properties, such as low light yield and short decay time. There appears to be

uncertainty in the literature about the hygroscopic nature of CsI:Tl, it is sometimes

listed as non-hygroscopic and other times as partially hygroscopic [85, 72, 86]. Its high

density and inconsistency in hygroscopic property make this scintillator not ideal.

The materials BGO, BaF2, CeF3 & PbWO4 all have properties that are not optimal,

such as too high refractive index or too low light yield. As was shown earlier, BC-400

has contamination issues, it has been shown to have little temperature dependency

[87], and along with its properties stated in Table 2.3.1 make it ideal. CaF2:Eu dis-

plays little temperature dependancy for its light yield [88] and high transmittance

for optical photons [89] minimising absorption. It has a single emission peak for the

scintillation photons [80].

Both BC-400 and CaF2:Eu are amongst the better scintillators. BC-400 does how-

ever have a lower light yield than CaF2:Eu (10 photons keV−1 compared with ∼

30 photons keV−1) and the noted contamination issue. The advantages of CaF2:Eu

are, non-hygroscopic, low density, emission peak at 425 nm (closely matches common

photon detectors), refractive index of 1.44 (closely matching water and common pho-

ton detectors), reasonable brightness and minimal temperature dependency. CaF2:Eu

is the ideal scintillator for this tritium flow cell, with the only viable alternative BC-

400.
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Table 2.3.1: A review of the physical properties of a number of scintillators, YSO:Ce, YAG:Ce, YAP:Ce, CsI:Tl, BC-400, BGO,

BaF2, CeF3, PbWO4 and CaF2:Eu. Scintillators with two decay times will be labelled as slow/fast.

Properties of Inorganic Scintillators

YSO:Ce YAG:Ce YAP:Ce CsI:Tl BC-400 BGO BaF2 CeF3 PbWO4 CaF2:Eu

Wavelength of max 420 370 370 550 423 480 310/220 340/300 440/530 435

emission (nm)

Index of refraction 1.8 1.95 1.95 1.8 1.58 2.15 1.52 1.62 2.16 1.44

at max emission

Decay constant 70 ns 30 ns 30 ns 1µs 2.4 ns 300 ns 630/0.7 ns 300/30 ns 30/6 ns 0.9µs

Total light yield 10 15 15 54 10 8-10 10-1.8 4.4 0.2 24-30

(Photons/keV)

Density (g cm−3) 4.5 5.3 5.3 4.51 1.023 7.13 4.88 6.16 8.28 3.179

Hygroscopic No No No ? No No No No No No

Hardness (Mohs) 5.6 8.5 8.5 2 5 3 ? ? 4

Birks constant 5.3x10−3

gMeV−1 cm−2
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2.3.1 CaF2:Eu Scintillation Process

CaF2:Eu is a scintillating material and this section details its scintillation process

when exposed to ionising radiation [90, 91, 92, 93]. When the ionising radiation

enters the scintillator it will interact through a number of processes with the atomic

nuclei, although it is more likely to be with the orbiting electrons. The result of this

is the transfer of energy from the incident ionising radiation to the orbiting electrons,

which creates electron-hole pairs in the scintillator (Fig 2.3.1). These electron-hole

pairs migrate through the crystal to a location where they can recombine. There

are a number of locations where the recombination occurs, such as a defect or doped

element. Between the Valence Band & Conduction Band is a forbidden region, the

europium is then used to add energy levels in the forbidden region. Recombinations

at the europium dopant are radiative, meaning, the creation of visible photons.

Figure 2.3.1: Diagram of the process of scintillation in CaF2:Eu through the creation

and recombination of electron-hole pairs [94].
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2.3.2 Heterogeneous & Nanoparticle Scintillators

Unfortunately the nomenclature surrounding heterogeneous scintillators is a little un-

clear. There appears to be three terms in use to describe very similar and often

overlapping structures of scintillators: heterogeneous [66], granulated [86, 95] & par-

ticulate [96, 97, 98, 99]. A fourth term, distributed [100], does exist but appears to

have gained little traction. For the purpose of the rest of this thesis the term hetero-

geneous will be preferred as it is the most applicable as it usually refers to flow cell

detectors.

A heterogeneous scintillator is a scintillator which is often made of a porous or dis-

persed structure [101], these are often in the form of tightly packed particles. The

theory behind the effect of nanometer sized particle scintillators has been explored

[102, 103] and demonstrates a number of advantages when compared with a single

crystal of the same material; the luminescence of the nanoparticle scintillator increases

as its radius decreases with some scintillators.

There is a reduction in the number of defects and therefore less non-radiative re-

combinations.

The reduction in size creates changes in the crystal structure such as, a broadening

of the absorption & emission lines, an increase in the forbidden band and a change in

the luminescence lifetime.

Many of the recombination centres are located on the surface, so application of a
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coating can further increases the luminescence.

The radiative lifetime can be decreased by coating with a high refractive index ma-

terial. Two practicalities have been noted, nanoparticle layers thicker than 0.5mm

become opaque and the size reduction leads to an increase in radiation hardness [103].

Experimental data validating validating various parts of the theory have been pre-

sented [102, 104], for example the prediction of an increase to luminescence and

emission peak wavelength can be observed in Fig. 2.3.2. The data shows that the

luminescence does increase, other predictions from the theory such as a shift in the

peak emission wavelength are validated too.

A development of the nanoparticle and heterogeneous scintillator has been to apply a

coating to the particles. This approach has a theoretical basis [102], with the explana-

tion that recombinations on the surface are more likely to be non-radiative, therefore

a surface coating will reduce the non-radiative recombinations. Experimental data for

validation of this [105, 106] can be seen in Fig. 2.3.3. The results have demonstrated

that for a few scintillators, including CaF2:Eu it is possible to utilise a coating and

core/shell structure for the particles to increase the luminescence.

The data has shown that the ideal scintillator would be CaF2:Eu as its properties most

meet the requirements, the alternative would be BC-400. The data and theory on

heterogeneous & nanoparticle scintillators shows that it is an area that could provide

a route for possible optimisation for tritium detection by increasing luminescence.
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Figure 2.3.2: Experimental radioluminescence data using the scintillator YSO:Ce of

both single crystal (Bulk) and nanoparticle setups. The light output is normalised by

sample mass [104].

Figure 2.3.3: Radioluminescence data demonstrating the effect of coating small par-

ticles of CaF2:Eu with CaF2 [105].
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2.4 Beta Particle Simulations

Heterogeneous scintillators have been modelled before for pixelated X-ray detection

[107, 108] and pixelated alpha detection [109]. The results from those show that the

spacial resolution comparable to direct semiconductor detection can be maintained,

with increased detector efficiency. An example of the geometry of one of these detec-

tors can be seen in Fig. 2.4.1, here the substrate is polycarbonate with ZnO nanowires

and either matched with a PMT or CCD. Simulations were utilised [109, 107] to op-

timise the scintillator diameter, separation and detector thickness to guide the design

process.

Figure 2.4.1: Diagram of the ZnO nanowire structure used for X-ray detection [109].

Simulations covering a heterogeneous geometry with alpha particles have been written

[110] and the associated code can be viewed in the document [110]. The geometry

was defined to be an Face Centred Cubic (FCC) unit cell with spheres, the initial

positions of the alpha particles were described by either in the void between spheres,
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or on the surface of the spheres. The results highlighted that for the alpha particles

that occupy the void between spheres the small radius produced an increase in the

deposited energy. Monte-Carlo code simulating both alpha and beta particles for a

heterogeneous scintillator of fabricated scintillating fluors [111, 112] has been written

and run previously. In these, two geometries were examined: Hexagonal Close Pack

and Cubic Close Pack, this was to calculate the energy deposited into the scintilla-

tors. The results highlighted that reducing the scintillaing particle radius increased

the energy deposited. Both of these codes however are quite limited, partly due to

the restricive definitions of geometry.

Simulations involving the Monte-Carlo transport code PENELOPE2000 has been car-

ried out for heterogeneous scintillators [113], in this case to specifically to model a

flow cell detector. The geometry here focused around a 3D packing arrangement us-

ing Square Packing (SP), Body Centred Cubic (BCC), Cubic Close Packing (CCP)

& Hexagonal Close Packing (HCP). These structures were made with 1000 spheres of

a scintillating material, see Fig. 2.4.2. Several radionuclides were modelled using mo-

noenergetic beta particles, those being tritium (18.6 keV), carbon 14 (160 keV), nickel

63 (67 keV), strontium 90 (550 keV), yttrium 90 (2200 keV), technetium 99 (292 keV)

and promethium 147 (224 keV). A number of variables were investigated with the aim

of maximising the energy deposition into the scintillator:

• Porosity

• Radius

• Packing arrangement
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• Density

• Energy

The radii examined were 0.5µm to 800µm with the scintillating materials being

CsI:Tl, CaF2 and polystyrene. The conclusions for low energy beta particles, defined

here as <180 keV, were that the variables sphere radius, packing arrangement, density

and particle energy all had an impact on the energy deposition. The results showed

that in order to maximise the energy deposition from a low energy beta particle

various factors can be optimised. These optimisations are a small radius, cubic close

packing and a low density scintillator (to reduce backscatter) [113].

Figure 2.4.2: Modelling geometry of the flow cell detector, PD indicates a photode-

tector [113].



Chapter 3

Radiation Transport

This chapter gives an overview of the transport behaviour of beta particles including

a brief description of the physics.

The radiation transport simulations used in this thesis were written and ran us-

ing Geant4 which is a Monte Carlo transport code distributed for free by CERN

[114]. Geant4 is capable of simulating a range of particles such as neutrons [115],

muons [116] and beta particles. When it comes to simulating the beta particle from

a tritium decay, Geant4 is an ideal transport code compared to other codes such

as Penelope or MCNP. Geant4 has numerous advantages for this thesis. Examples

are that Geant4 can generate and track scintillation optical photons, handle complex

geometries, e.g. importing from CAD, Constructive Solid Geometry & Boundary

Representative Solids. Geant4 also has an advantage in that the user can choose and

design which physics processes are used and their associated accuracies, as part of this,

Geant4 includes multiple electron electromagnetic physics models. A few of these are

26
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valid to low energies: Livermore; Penelope; G4DNA; Option 4 & Low Energy. Liv-

ermore specifically has two models for electrons, G4LivermoreIonisationModel and

G4LivermoreBremsstrahlungModel, both of which are applicable down to ∼10 eV

[117, 118, 119, 120, 121, 122, 123, 124]. The model itself is built from evaluated data

libraries [125]. Geant4 has two classes to handle the generation of particles, namely,

G4GeneralParticleSource and G4ParticleGun. Due to the greater flexibility in han-

dling particle generation, G4GeneralParticleSource has been used throughout. The

simulations in this chapter were completed using Geant4 version 10.3 on the CentOS

7 VM [114].

3.1 Physical Processes

This section aims to provide a basic explanation of the behaviour of beta parti-

cles/electrons in matter, i.e. scattering by the atomic nucleus. It will be assumed

during this chapter that the electrons will be low energy, akin to those from a tritium

decay which has a kinetic energy up to 18.6 keV.

Elastic Scattering

Elastic scattering is the scattering by either the nucleus or an orbiting electron where

the incident particle does not lose any energy. As electrons primarily interact with the

electromagnetic force [126] it is the electrostatic force [127, 128, 129] between it and

the nucleus or orbiting electron responsible for elastic scattering. When scattering
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from the nucleus, the closer the incident particle gets, the larger the scattering angle.

This gives rise to Back Scattered Electrons where the scattering angle is close to the

incident path [130]. A diagram of this type of scattering is shown in Fig. 3.1.1a.

Inelastic Scattering

Inelastic scattering is the scattering by either the nucleus or an orbiting electron where

the incident particle transfers some of its energy to the other particle/s. The inelastic

scattering can occur between either an orbiting electron or the atomic nucleus and

is due to electrostatic forces. The inelastic scattering could occur with an orbiting

electron, leading to excitiation, ionisation & Auger electrons [131, 132], if ionisation,

the resulting free electron leads to further ionisation events it is a Delta Ray [133].

These interactions are collectively called Collisional Stopping Power. Radiative Stop-

ping Power is another component of inelastic scattering, here the incident particle

undergoes an acceleration due to change in direction where the energy loss is in the

form of a photon [134]. This interaction is called Bremsstrahlung and whilst it can

occur with either the nucleus or an orbiting electron, it is more likely with the atomic

nucleus [135]. A diagram of this can be seen in Figs. 3.1.1b and 3.1.1c.

Of the possible interactions described above the most likely for a low energy electron

is ionisation [136].

When the electron moves through matter, the various interactions lead to scattering.

When compared with other particles from radioactive decays, such as alpha, neutron

and gamma particles, the electrons scattering angles are greater. These increased

scattering angles lead to a greater discrepency between the total distance the particle
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travels and its assumed straight line distance [137, 138, 129, 139], see Fig. 3.1.2.
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(a) A diagram of elas-

tic scattering of an elec-

tron.
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(b) A diagram of in-

elastic scattering with

an atomic orbiting elec-

tron.
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E

W

(c) A diagram of in-

elastic scattering cre-

ating a bremsstrahlung

photon.

Figure 3.1.1: Diagram of (a) electron processes elastic scattering, (b) inelastic scatter-

ing and (c) inelastic scattering creating a Bremsstrahlung photon. Here the incident

electron is labelled E with scattering angle θ, the scattered orbiting electron ES and

associated angle θS, the Bremsstrahlung photon W with angle θW . Adapted from

[140].
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x̂ ≡1µm

ŷ ≡
1µm

Figure 3.1.2: A diagram of the tracks of 1,000 3H beta particles/electrons through

water using Geant4, the ẑ axis has been simulated but not plotted. Employing the

same physics options as in Chapter 3.2, and also the same definition of water. There

is an upper limit placed for each step to 100 nm, the red arrow indicates the direction

of the beam.
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3.2 Range

As mentioned in the previous section, there is a discrepency between the total path

travelled and the total straight line distance due to scattering effects. This scattering

effect is pronounced in tritium decay due to the low kinetic energy of the emitted

particles, resulting in a short effective penetration or straight line distance. The true

total path length (including scattering effects) the particle travels will be referred too

as the track length and the total straight line distance as the geometric track length.

As the tritium to be detected is contained in water, the emitted beta particle will

interact with the water, resulting in attenuation. This attenuation is a result of the

energy loss to the particle, meaning that the track length between emission and detec-

tion ought to be minimised in order to maximise detection efficiency. To investigate

the track length and geometric track length a Geant4 simulation has been written.

Here a beam of electrons was fired through a cubic block of water. The energy spec-

trum of the beta particles was described using a 1000 bin histogram extrapolated

from reference data of the tritium beta particles [17] (see Fig. 2.1.1). The water was

defined as 1H2
16O with a density of 1 g cm−3, and a total of 1x106 particles examined.

For increased accuracy in the simulation, the physics models used were eIonisation

and eBremsstrahlung from the Livermore package and the default eMultipleScatter-

ing model. The results were analysed using a histogram and are located in Fig. 3.2.1,

where the plotted errors are calculated as
√

N where N is the number of particles

in each bin. The data reveals that the maximum path lengths are 3µm and 7µm
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for geometric track length and track length respectively. In the previous chapter,

Chapter 2.2, it was shown that a non-hygroscopic scintillator is ideal for detection of

the beta particle. Whilst it is possible to protect a hygroscopic scintillator with an

additional layer, this would increase attenuation, reducing the energy upon entering

the scintillator. Therefore the scintillator CaF2:Eu, is a good scintillating material

candidate, the same simulation was then repeated with identical geometry where the

medium was changed to CaF2:Eu (Fig. 3.2.1). The properties for it used Ca1F2 and

Eu from the Geant4 NIST definition [141], with the Eu doped to 2% (2% mass). The

results show maximum track lengths and geometric track lengths of 2µm and 1µm.

The track lengths for air have also been examined, air being 70% 7N (14.01 gmol−1

molar mass) and 30% 8O (16.00 gmol−1 molar mass). The results, Fig. 3.2.2, show

maximum lengths of 10mm and 5mm for track length and geometric track length.

As can be seen for the data presented, all the track lengths are very short, which is

due to the low energy of emission and the attenuation from the medium. The short

range makes detection inherently very difficult as beyond ∼1µm from the surface the

detector is effectively ’blind’. Any dead layers or protective layers will attenuate the

particles reducing the energy, before the particle has reached the scintillator.

The maximum ranges were stated above, however the probable upper range is<0.3µm

for both water and CaF2:Eu, and <400µm for air. The above maximum track length

values can be seen in Table 6.6.1 in Chapter 6. Later chapters utilise other ra-

dionuclides, 36Cl, 14C & 210Pb and the track length data for these is included in the

Appendix A.1.
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<1µm
<2µm

<3µm
<7µm

Figure 3.2.1: Data showing the range of tritium (3H) beta particles in both water and

CaF2:Eu. Error bars are plotted but are of small magnitude and the colour of the

maximum values is associated with the curve it relates to.
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<5mm

<1 cm

Figure 3.2.2: Data showing the range of tritium (3H) beta particles in air. Error

bars are plotted but are of small magnitude and the colour of the maximum values is

associated with the curve it relates to.
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3.3 Conclusions

Both sections of this chapter have shown how the electron/beta particle interactions

and their scattering leads to the particles range. This, combined with the low energy

from the tritium decay leads to a very short range. This short range means that any

attenuation must be minimised in order to maximise detection efficiency. Therefore

the inorganic non-hygroscopic scintillator CaF2:Eu is still a suitable candidate for the

scintillating material as it does not require an additional coating to stop it dissolving.

The maximum straight line distance the particle will travel in water is<0.3µm (∼99%

of the electrons) which is an inherent difficulty in waterborne tritium detection as any

beta particle emitted further than this away from a scintillator will not be detected.



Chapter 4

Single Crystal Scintillation Detector

4.1 Introduction

In Chapter 2.3, CaF2:Eu was determined to be the ideal scintillator for detecting

waterborne tritium. This chapter then investigates the efficiency and limitations of

using a homogeneous, single crystal inorganic non-hygroscopic scintillator, specifically

CaF2:Eu. This particular chapter covers experimental data, simulations results and

numerical analysis, which culminates in the comparison of experimental data with a

model of the detector setup. The conclusions were used to inform the design of the

heterogeneous scintillator in later chapters.

36
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4.2 Experimental Detector

For the reasons given in Chapter 2.3 the scintillator CaF2:Eu has been selected as the

best scintillating material for detecting the beta particles from a tritium decay. Once

the beta particle enters the scintillator the process of scintillation will produce optical

photons. There are a number of photon detection technologies, PhotoMultiplier Tubes

[142], Silicon PhotoMultiplier (SiPM) [143], Avalanche Photo Diode (APD) [144],

CMOS/CCD [145, 146] etc. The SiPM was selected [147] as it has a lower operating

voltage (29.7V) when compared with a PMT (1-2 kV) and compact size. The model

selected was a Sensl C-Series 60035 [148]. As the overall motivation of the thesis is

an in-situ detector, the SiPM appears to be the ideal.

A preliminary experiment was conducted to examine the shape of the pulse from the

SiPM. For this experiment a Cobalt 60 source was chosen [149, 150]. This particular

60Co source was sealed, with an activity of ∼38.11 kBq, diameter of ∼3 cm and decays

with both β (317.32 keV) & γ (1332.508 kBq) [150]. The only circuitry employed was

a power supply to bias the SiPM, see Fig. A.2.1 in the Appendix A.2. Thirty pulses

were captured using an oscilloscope, averaged (Fig. 4.2.1), then curve fitted. Circuit

analysis [151] suggested that the output pulse should take a particular exponential

form, as shown in Eq. 4.2.1. After fitting to the values, a & b were found to be

2.381×10−7 ± 1.085x10−9 s and 7.443×10−7 ± 2.283x10−9 s respectively [151]. The

values a and b above are constant and not dependent on the energy of the radiation,

the equation (Eq. 4.2.1) is used in the model further into this chapter to predict the
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output current given a known pulse amplitude.

i(t) = c(exp(−t/a) + exp(−t/b)) (4.2.1)

For the experiments into waterborne tritium detection the scintillator CaF2:Eu was

Figure 4.2.1: Data showing a comparison a peak due to the 60Co source from the

SiPM with the equation Eq. (4.2.1).

brought from Hellma [83] and measured 28.6mm in diameter with thickness of 1mm.

During the experiments the scintillator was in contact with the tritiated water with a

cylindrical volume of 20mL, concentration 1500BqmL−1, resulting in an activity of

30 000Bq. The cylinder itself had a radius of 2.5 cm and height of 2.5 cm. This vol-

ume of tritiated water was compared in a subsequent experiment with a background

of de-ionised water, itself having a volume of 20mL. Another radioisotope, a sealed

source of Chlorine 36 (36Cl), was picked to compare with tritium. 36Cl only decays

with a beta emission, albeit at a higher energy than tritium (708.6 keV [152, 153])
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making it useful to compare and calibrate with. Throughout the following experi-

ment, the scintillator itself was optically coupled to the SiPM using optical gel, when

the tritium source was in use it was in contact with the scintillator, i.e. no air gap

(see Fig. 4.2.2). The 36Cl sealed source was placed with a ∼1mm air gap between

itself and the scintillator surface. Each of the sources was sampled for 30min.

The bias voltage for the SiPM was supplied from a voltage regulator, seen in Fig. 4.2.3.

The output from the SiPM went through a pre-amplifier (Fig. 4.2.4) for conditioning

before sampling, for this a Charge Sensitive Pre-Amplifier was used (CSP, also named

a Transimpedance Amplifier, TIA). The feedback resistor and capacitor values give it

a time constant of 82 ns, along with a gain of 29 for a 70mV 1µs pulse, and 74 for a

70mV 10µs. The output from the CSP was sampled with a 400 kS s−1 16 bit ADC,

National Instruments USB-6212 and part number 780107-01 [154].
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SiPM

Scintillator

TIA

Deionised Water

Figure 4.2.2: Photograph of the SiPM, CaF2:Eu scintillator and preamplifier (TIA)

used in this chapter.

36 V
0.1 µF

Vin Vout
ADJ

VBias
240 Ω 1 µF

10 µF

LM317T
1N4002

10 nF

Figure 4.2.3: Circuit diagram showing the SiPM bias voltage circuit, employing the

LM317T voltage regulator [155, 156]. The output VBias is adjusted using the variable

resistor and the 10 nF capacitor is located adjacent to the SiPM Cathode pin and is

present also in the SiPM Bias Figure A.2.1.
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220 µF

220 µF

4.7 kΩ

4.7 kΩ

30V

0V

VGND

+Vcc

-Vcc

(a) Circuit diagram showing the rail splitter

for powering the OP27E in Fig. 4.2.4b.

−

+

Vout & ADC
Vin 1 pF

82 kΩ

OP27E

(b) Circuit diagram of a Charge Sen-

sitive Preamplifier/Transimpedance

Amplifier [157].

Figure 4.2.4: Circuit diagrams of the rail splitting and charge sensitive preamplifier

circuits.
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4.3 Simulation Model Definition

The results from the experimental detector described above were validated with a

Monte Carlo simulation. This simulation was made of two parts, the first used Geant4

to model the electron transport to the scintillator and photons created to the SiPM,

then a second used Matlab [158] to model the electronics. This information, cou-

pled with circuit analysis of the SiPM [151] & preamplifier, along with fitting of one

parameter allows the prediction of the detector behaviour given the exposure received.

4.3.1 Geant4 Simulation

The Geant4 simulations for both tritium and 36Cl were completed using two virtual

machines, Geant4 version 10.1 was employed for the validation of the detector model (

Figs. 4.4.5 and 4.4.6) and Geant4 version 10.3 was used for the other data and figures.

The simulation code was the same for both versions.

Geant4 Physics

Geant4 simulations require the user to select the physics models or libraries it will

use. These models and libraries represent the physical processes that a particle can

undergo, and therefore should be chosen carefully for an accurate simulation. The

physics models for this Geant4 simulation for electron/beta particles were,

G4eMultipleScattering, G4eIonisation and G4eBremsstrahlung from the default elec-



CHAPTER 4. SINGLE CRYSTAL SCINTILLATION DETECTOR 43

tromagnetic physics. The code used was as follows:

pmanager->AddProcess(new G4eMultipleScattering(),-1,1,1);

pmanager->AddProcess(new G4eIonisation(),-1,2,2);

pmanager->AddProcess(new G4eBremsstrahlung(),-1,3,3);

The three numbers in each line above are options, with the numbers indicating how

the specified process is applied. The numbers represent AtRest, AlongTheStep &

PostStep and positive numbers indicate it is active, negative number inactive [159].

The optical photons creation and transportation model were, G4OpAbsorption,

G4OpRayleigh, G4OpMieHG, G4OpBoundaryProcess, G4Scintillation and G4Cherenkov.

Geant4 Geometry

Geant4 allows the user to define the geometry according to the application, here the

single crystal scintillator was a cylinder with a thickness of 2mm and radius 14.3mm

for both radioisotopes. The water volume used for the tritium was defined as a cylinder

15mm in radius & 1mm thick, with one surface in contact with the scintillator. For

the 36Cl source, the water was removed. The remainder of the simulation was declared

as air. Diagrams of these are shown in 4.3.1.
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i
)
ii
)

(a) Diagram of the Tritium (3H) single

crystal detector model in Geant4, not to

scale.

i
)

iii
)

(b) Diagram of the Chlorine 36 (36Cl) sin-

gle crystal detector model in Geant4, not

to scale.

Figure 4.3.1: Diagram of the two setups used to model the single crystal detector.

The scintillator is labelled as i
)
, radius 14.3mm and thickness 2mm. The cylindrical

water volume, ii
)
, radius 15mm and thickness 10mm and, the disc iii

)
, with radius

15mm with an 1mm gap from the scintillator.

Geant4 Beta Source

As mentioned above, there are two sources, tritiated water and 36Cl. The tritiated

water is modelled as an isotropic volume source described as a cylinder, this is placed

inside of the water volume stated in the geometry section and with one surface in

contact with the scintillator. The radius of this cylinder is 15mm with the height

being varied, see Fig. 4.3.1a. The 36Cl is a disc source of 15mm radius and placed

1mm from the scintillator, a diagram is located in Fig. 4.3.1b. The energy spectrum

for both sources was extracted from the Radiological Toolbox [17] then extrapolated

to 1000 bins. The energy spectrums for tritium and chlorine are shown in Figs. 4.3.2

and 4.3.3 respectively.
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Figure 4.3.2: Energy spectrum data for 3H from the Radiological Toolbox [17], plotted

with the extrapolated spectrum.

Figure 4.3.3: Energy spectrum data for 36Cl from the Radiological Toolbox [17],

plotted with the extrapolated spectrum.
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Geant4 Materials

Geant4 requires the user to define the material properties for all the materials in the

simulation, this definition also includes other properties such as scintillation and vis-

ible photon interactions. Four materials were used in these simulations, air, water,

CaF2:Eu and glass.

Air was defined as 70% nitrogen and 30% oxygen, with nitrogen having an atomic

number of 7 and molar mass of 14.01 gmol−1 and oxygen having an atomic num-

ber of 8 and molar mass of 16.00 gmol−1. Water was defined as two parts hydro-

gen and one part oxygen, with hydrogen having an atomic number of 1 and molar

mass 1.00 gmol−1, and oxygen as stated above. CaF2:Eu was defined using the NIST

database for CaF2 (G4_CALCIUM_FLUORIDE) and Eu (G4_Eu) with a density

of 3.179 gmol−1 and 0.2% doping. Glass was defined using the G4_Pyrex_Glass from

the NIST database.

The scintillation properties of CaF2:Eu were defined using the information in Chap-

ter 2 and Table 2.3.1 and the emission curve made of 59 points. Data showing the

original data from Saint Gobain [160], the interpolated 59 point data and the scintil-

lation emission curve from Geant4 is shown in Fig. 4.3.4.
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Figure 4.3.4: Showing the original data [160], extrapolated data and the resulting

emission curve of CaF2:Eu produced by Geant4.

4.3.2 Electronics Simulation

This is the second part of the simulation, the code that models the output voltage

given an input of number of photons per event that arrive at the SiPM. This was

written in Matlab, using circuit analysis of the SiPM and CSP [161, 162, 151] with

the output pulses simplified to be only the peak amplitude. The model is shown in

Eq. 4.3.1 with the terms shown in Eq. (4.3.2), (4.3.3) & (4.3.4). G is the SiPM gain,

RQ quench resistance, CQ quench capacitance and CD is a capacitance value. RS is

the shunt resistance, e electron charge (1.602× 10−19 C), time t, rs=1kΩ, rq=200 kΩ

and cq=0.5 pF. Values a & b are the constants given earlier in Chapter 4.2, N f ired is

the number of SiPM microcells fired by incident photons and F is the parameter to

deduce from fitting. The parameter F was found to be 1.8×1019 through fitting the
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data, giving the final equation Eq. 4.3.5 [151].

V(t) = F · G · RQ · CQ · CD · RS
b − a

· e · (exp(−t/a)− exp(−t/b)) (4.3.1)

RQ =
rq

N f ired
(4.3.2)

CQ = cq · N f ired (4.3.3)

CD = cd · N f ired (4.3.4)

V(t) = 1.8 × 1019 · G · RQ · CQ · CD · RS
b − a

· e · (exp(−t/a)− exp(−t/b)) (4.3.5)

4.4 Results & Discussion

The Geant4 model described above is for the single crystal CaF2:Eu scintillator to de-

tect tritiated water. As the medium of the source of radiation is self-attenuating, the

shape of the energy spectrum of the beta particles arriving at the surface of the scin-

tillator can be distorted from the initial energy spectrum (Fig. 4.4.1). Additionally, as

the beta particle source self-attenuates there will be a thickness that is representative

of an infinite volume for an isotropic source beyond which emitted beta particles will

never reach the detector and effectively do not exist. That is, increasing the thick-

ness further does not impact on the energy spectrum at the single crystal scintillator

surface. The optimal thickness for this is 5µm, as the simulation data (Fig. 4.4.1)

demonstrates that increasing it further does not change the curve shape. Then in any

future simulations of tritiated water with an adjacent material, the optimisation is

that the tritiated water need not be thicker than 5µm.

The attenuation of the tritium beta spectrum due to the self-attenuating medium has
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been predicted numerically, Appendix A.3 [151]. This numerical prediction has been

validated using the same Geant4 simulation, likewise with a 5µm thick tritiated water

volume. The results are shown in Fig. 4.4.2. The data reveals that the simulation

validates the theory for predicting the attenuation of the self-attenuating source of a

beta radioisotope. Both Figs. 4.4.1 and 4.4.2 show that there is a shift in the average

energy, note that the ŷ axes (Probability & Yield) have been normalised. The simu-

lation was also verified by prediction of the mass attenuation of water, Fig. 4.4.2, the

details for this are located in the Appendix A.3 and Eq. A.3.5.

The attenuation of the beta particle energy spectrum also impacts the number of

scintillation photons arriving at an adjacent SiPM. Figure 4.4.3 highlights how this

attenuation shifts the photon distribution. Similar simulations have been used to

calculate the mass attenuation of water, using the method in the Appendix A.3. The

results are shown in Fig. 4.4.4.

Using the Geant4 model of the single crystal detector and both tritium & 36Cl ra-

dioisotopes, along with the model of the detector electronics a model of the entire

detector can be made. Figs. 4.4.5 and 4.4.6 shows that with the parameter fitted the

model is able to replicate the output from the preamplifier. For this data the error is

expressed as 1/
√

N, where N is the number of particles in each histogram bin. Both

figures show a peak at the low voltage, which can be explained as noise. The data

analysis method used for both figures also employed a threshold, which was set to

-0.265V during the calibration. From the tritium data in Fig. 4.4.5 there is a data

point at approximately −0.27V (labelled with a *), this is an erroneous peak. The
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Figure 4.4.1: Data showing the energy spectrums of cylinders of tritiated water of

various thicknesses incident on a single crystal scintillator.

36Cl results (Fig. 4.4.6) displays a peak at approximately −0.4V, this is due to noise

in the detector setup.
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Figure 4.4.2: Data showing that the Geant4 data validates the numerical prediction

of the attenuation of the tritium (3H) energy spectrum [151].

Figure 4.4.3: Data showing the histogram of photon production of both the unatten-

uated and attenuated (5µm) energy spectrums for the tritium source.
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Figure 4.4.4: Data showing the mass attenuation of water as calculated using Geant4

[151].

*

Figure 4.4.5: Data showing the experimental data and prediction using both Geant4

and circuit analysis for tritium.
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Figure 4.4.6: Data showing the experimental data and prediction using both Geant4

and circuit analysis for 36Cl.

4.5 Conclusions

This chapter has provided a number of useful results. First that the output pulse

from an SiPM takes a particular form, with the time constants shown to be indepen-

dent of the kinetic energy. For simulating a volume of source tritium with a single

crystal scintillator, the results showed that a volume 5µm thick can be assumed to

be effectively ’infinite’. Therefore for any future simulations the distance from the

surface of the scintillator for an isotropic self-attenuating volume of tritium is 5µm.

The attenuation data, both Geant4 simulation and numerical analysis, show that the

energy spectrum of the beta particles arriving at the scintillator has changed. This

matters as the expected energy spectrum for a detector has to account for the self-

attenuating source itself. This shift in the energy spectrum is accompanied with a

change in the distribution of the photons arriving at an adjacent SiPM. By employing
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a combination of both the Geant4 simulations, a model of the detector & preamplifier

and an additional radioisotope (36Cl), a model of the entire detector has been made.

This model had a single parameter fitted using both radioisotopes where the data was

a histogram of pulse heights.



Chapter 5

Heterogeneous Scintillator Fabrication

5.1 Introduction

The previous chapters have highlighted the difficulty in detecting waterborne tritium,

such as the low range of the beta particle in water. A novel approach to improve the

detection efficiency of waterborne tritium will be covered in the next chapter through

a development of a new heterogeneous scintillator. However the explanation of this

novel approach relies on a separate body of work, which will be the content of this

chapter. This chapter covers the fabrication of the heterogeneous scintillator material.

Two methods were attempted, the Chemical and Granulation, only the Granulation

method yielded successful results.

55
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5.2 Preexisiting Fabrication Methods

5.2.1 Chemical

There are many available methods for fabricating nanometer & micrometre sized par-

ticulate CaF2:Eu in the literature. The predominant method is utilising a chemical

approach, these methods will be reviewed in this section.

The Reverse Micelle Method [163] has been used to produce both undoped CaF2

and doped CaF2:Eu. The process involved a number of solutions to form the end

product, starting from a Ca solution. This was mixed with an Igepal-520 & cyclo-

hexane solution, rare earth dopant added and EtOH (co-surfacant). The final step

was the addition of a HF, cyclohexane and Igepal-520. After being left for two hours

the result was centrifuged, washed and dried before characterisation. The XRD and

TEM analysis [163] demonstrated the presence of CaF2 with dopant, average parti-

cle diameter 20 nm and homogeneous chemical composition. Once the particles were

annealed that analysis revealed a reduction in surface contamination, e.g water.

The process of Electrodeposition [164] has been investigated for producing undoped

CaF2 particles and those doped with Eu & Tb. An initial solution of CaCl2, EDTA

& Sodium Ascorbate was used, to this NH4F was added, as well as NaOH to control

the pH. The electrodeposition used a three electrode cell controlled by a potentiostat

to complete the procedure. Analysis of the resulting material showed small particles

with diameters of ∼500 nm. The dopants were distributed over the material and dis-
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played the expected single emission peak.

CaF2:Eu can also be made in nanometer sized particles using a process of Precip-

itation [165, 166]. This begins with two solutions, the first is NH4F and a ligand,

ammonium di-n-octadecyldithiophosphate (ADDP), which is in 1:1 mixture of ethanol

and water. The second solution contained (Ca(NO3)2·4H2O & Eu(NO3)3·6H2O which

are sources of Ca and the Eu doping in water. The first solution was added drop-wise

into the second, and after stirring the precipitates were washed in ethanol and water.

XRD characterisation revealed that CaF2:Eu was produced [165, 166], TEM analysis

identified that the particles size average diameter of 10± 2 nm. The radiolumines-

cence results demonstrated three peaks, one at 420 nm for Eu2+ and the others at

590 nm and 620 nm for Eu3+. CaF2 & CaF2:Eu3+ nanometre sized nanocrystals have

been fabricated through the Hydrothermal method [167, 168]. This starts with CaCl2

in de-ionised water, with the addition of NH4F and stirring. This was placed in an

autoclave for 24 h at a temperature of 160 ◦C, then centrifuged and washed. XRD

results confirmed the production of CaF2, however luminescence measurements high-

lighted the presence of defects. During this method it was noted that the pH affected

the particle size and size distribution.

Chemical co-precipitation as a technique to create nanometre sized particles of CaF2

& CaF2:Eu3+ has led to successful results [169, 168]. This method involves CaCl2 &

EuCl3 in ethanol and NH4F being added, then left to stir. Completing this in ethanol

is advantageous when compared to water as NH4F is less soluble, which makes con-
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trolling the CaF2 easier [169]. XRD results demonstrated the formation of CaF2:Eu,

and TEM results showed that using water the particle diameters were ∼30 nm to

35 nm and ∼15 nm to 20 nm when using ethanol.

Vacuum deposition is a technique for producing a sheet of CaF2:Eu [170]. The

powders CaF2 and EuF3 were mixed under nitrogen, charged into a graphite crucible.

This was heated to 500 ◦C, then melt flowed under argon gas. Held for 4 hours, cooled

back to room temperature and finally under a vacuum (3× 10−4 Pa) deposited onto

fused silica glass. Using XRD the layer was confirmed to be CaF2:Eu.

The Sol-Gel method has been used to produce CaF2:Eu nanometre particles [171, 170,

172, 173], Figs. 5.2.1 and 5.2.2. This starts with the Ca precursor Ca(OLac)2·0.2H2O

and the europium precursor Eu(CH3COO)3 being dissolved in methanol. To this, HF

was added to provide the fluorine, after mixing trifluoroacetic acid (TFA) & tetram-

ethyl orthosolicate (TMOS) was added to stablise the solution. Alternatively Ca(OH)2

& Eu(CH3COO)34H2O in a solution of ethanol, water and TFA. The characterisa-

tion of the methanol based method yielded particles of CaF2:Eu as confirmed by XRD

and size analysis concluded with ∼10 nm. The method using ethanol and water found

that after sintering at 300 ◦C to 700 ◦C the particles were CaF2:Eu with sizes ∼100 nm.

The sintering/annealing has been utilised as a successful method of reducing Eu3+ to

Eu2+ [172, 174], including in an air environment [175]. The impact of surface rough-

ness on a Bismuth Germanate scintillator and its performance has been investigated
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[176] and the result showed that the difference between a polished and rough surface

was minimal. Therefore, the surface finish of any produced scintillator should have

only a minimal impact on its performance.

Figure 5.2.1: TEM image of CaF2:Eu particles coated in CaF2, fabricated using the

sol-gel method [165].

Figure 5.2.2: TEM image of CaF2:Eu particle fabricated using the sol-gel method

[166].
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5.2.2 Granulation

As stated in Chapter 2.3.2 the nomenclature for the use of particles of a scintillator

material is unclear. Here the term Granulation is used to refer to a purely mechani-

cal method of producing the particles, as opposed to the chemical approach. This is

consistent with literature where a granulated scintillator is often referred to as one

that has been made into a powder. The method preferred is the ball milling machine

[177, 178], however the mortar & pestle has been explored too [179, 180]. Unfortu-

nately little information is available in regards to the production of a heterogeneous

scintillator using a mechanical method. There is information on the ball milling

of CaF2 and how the nanocrystalline structure compares with the chemical approach

[181, 182]. Specifically the ball milling of CaF2 powder was compared with small crys-

tals grown from CaCO3 & NH4F. The resulting materials were characterised through

XRD, NMR,TEM and SEM, with the conclusion that the nanocrystalline structures

were nearly identical. Examples of granulated scintillators produced by ball milling

are shown in Figs. 5.2.3 and 5.2.4. Whilst little data exists for the accurate process

of granulating a scintillator, this is likely due to the positive correlation relationship

between milling time and average crystallite size [177].
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Figure 5.2.3: SEM image of ball milled Yb:YAG [177].

Figure 5.2.4: SEM image of spherical ball milled CaF2 [182].
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Summary

Whilst there are many methods of fabricating CaF2:Eu into small particles through

the chemical approaches, some are not suitable due to the method, such an example is

vacuum deposition [170], or the use of hazardous chemicals like HF. There are a num-

ber of methods that have a similar approach, hydrothermal, chemical co-precipitation

& sol-gel appear to lead to the best results Figs. 5.2.1 and 5.2.2. All the current

methods target small particles, ∼10µm to 100µm. However this is a limited range

and if an ideal particle size exists, it could lie outside of that particular range. The

granulation method will create particles of the correct chemical composition, however

the size distribution of mortar & pestle crushed CaF2:Eu is unknown. Both methods

shall be attempted to find the ideal for this specific application.

5.3 Particle Fabrication Method: Chemical

This section details the chemical approach used in the endevour to fabricate small

particles of CaF2:Eu.

5.3.1 Method

The method of using reagents to produce the CaF2:Eu particles used the reagents

listed in Table 5.3.1. Throughout the various experimental series the solvents utilised

were de-ionised water, ethanol, methanol and acetylacetone.
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Table 5.3.1: The list of the reagents used as the precursors to produce CaF2:Eu

[183, 184, 185, 186].

Precursor Element Formulae Molecular Weight

(gmol−1)

Calcium L-lactate Calcium [CH3CH(OH)COO]2Ca 308.29

Pentahydrate · 5H2O

(Unknown Purity)

Ammonium Fluoride Fluoride NH4F 37.04

(≥99.99%)

Europium Acetate Europium(III) Eu(CH3CO2)3 329.10

Hydrate (99.9%) · xH2O (anhydrous)

Chemical

Tri-Sodium Na3C6H5O7 294.10

Citrate (99%) ·H2O (258.07 anhydrous)

An experiment into the impact of annealing was conducted using CaF2:Eu. The re-

sults to this are shown in Figs. 5.3.4, 5.3.5 and A.4.1 to A.4.3. A total of 1 g of

CaF2:Eu of stoichiometric amounts was produced with the europium doping at 1%.

1 g NH4F, 4 g calcium L-lactate & 400mg europium acetate was employed along with

the solvents 80mL methanol and 10mL acetylacetone. Stirring was completed at am-

bient temperature and the mixture was deposited onto the substrate using a spray-gun
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and hot plate, which itself was maintained at 200 ◦C. After spray deposition the sub-

strates were left to cool before being placed in a furnace to anneal for 2 h at either

600 ◦C or 700 ◦C.

An experimental series involving a fixed concentration of CaF2 and a fixed annealing

temperature to find both the ideal annealing time and spray deposition hot plate

temperature was completed. The concentration was 0.1M (0.1mol dm−3) with an an-

nealing temperature of 700 ◦C, the annealing time then varied through 0min, 30min,

60min, 90min, 120min and 150min and the hot plate temperature varied through

150 ◦C, 200 ◦C, 250 ◦C, 300 ◦C, 350 ◦C and 400 ◦C. Here the precursors included NH4F,

Ca-Lactate and the solvent Deionised Water (DI). The glass substrates used under-

went a cleaning process:

1. 5min sonication in DI and decon 90 (”an emulsion of anionic and non-ionic sur-

face active agents, stabilising agents, non-phosphate detergent builders, alkalis

and sequestering agents, in an aqueous base”[187]).

2. Wash with DI.

3. 5min sonication in acetone.

4. Wash with DI.

5. 5min sonication with Isopropyl Alcohol (IPA).

6. Dry with a nitrogen airgun.
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The product from this experimental series was analysed using Raman spectroscopy,

the results can be seen in Figures 5.3.6 to 5.3.8.

Further investigation into the pH comparing the Ca & F precursors in a DI solution

with dropwise addition of the NH4F solution into the Ca solution was undertaken. A

0.1mol dm−3 solution of Ca-lacate and NH4F in DI stirred for many hours had a pH

of 6.0. However with the NH4F being added dropwise and left stirring yielded a pH

of 5.6. As the ideal pH for CaF2 production is between 5 & 6 [188], then dropwise

addition of the F solution is the optimal method.

An experimental series involved fixed concentrations of CaF2, varying concentrations

of citrate with a delay before the addition of the citrate. The concentrations of citrate

were 0.01, 0.1, 0.5, 1 & 5 %mol, the time delays chosen were, 0, 1, 2, & 3 h. The

concentration of CaF2 was 0.1mol dm−3. As a development from the previous experi-

ment, the NH4F solution was added dropwise into the Ca lactate solution whilst being

stirred. The citrate solution was also added dropwise whilst being stirred, then left

to stir for 2 hours before characterisation. After characterisation the samples were

annealed at 600 ◦C for 90min. The results from this particular series can be seen in

Figures 5.3.11 to 5.3.14.

Raman Characterisation

Raman is a technique used to characterise a sample by illuminating it with monochro-

matic optical light [189, 190]. The majority of the interactions will be elastic, i.e. no
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energy loss, therefore the wavelength is constant. However some of those interactions

are inelastic, there is an energy change and therefore a shift in the wavenumber. By

investigating a sample through this technqiue many features about a material can

be probed. One of the features is the presence of elements, but the bonds between

them can also be understood. Figures Figs. 5.3.1 and 5.3.2 show the Raman spectra

for CaF2 and CaF2:Eu respectively. The data reveals that pure CaF2 has a single

peak at 321 cm−1, the presence of impurities adds peaks at ∼500 cm−1 and 2000 cm−1

to 2200 cm−1. When the CaF2 is doped with europium there remains a single peak,

however it does shift down to a lower Raman Shift values, ∼318 cm−1 (Fig. 5.3.2).

One further effect of the europium doping is the broadening of the ∼318 cm−1 peak.

The data in Fig. 5.3.1 shows at peak a ∼470 cm−1, this is quite likely due to small

amounts of impurities [191, 192]. The peaks that are present at ∼2050 cm−1 are not

as readily identifiable as other data sets do not extend this far [193, 194].
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Figure 5.3.1: Raman spectra of pure and impure CaF2, adapted from [195].

Figure 5.3.2: Raman spectra of pure CaF2 and CaF2:Eu at various doping concentra-

tions [196, 197].
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5.3.2 Results & Discussion

The data shown in Fig. 5.3.3 shows the Raman spectra from a single crystal of CaF2:Eu

purchased from Hellma. This acted as a reference for the Raman results, note that the

characteristic 321 cm−1 peak of CaF2 has a low relative intensity and the numerous

additional peaks. The two figures shown earlier showed that for CaF2 & CaF2:Eu

there should only be the 321 cm−1 peak. These additional peaks could be from surface

contamination.

321 cm−1

Figure 5.3.3: Measured raman spectra of a purchased [83] single crystal of CaF2:Eu.

The experiment investigating the spray depositing of CaF2:Eu onto a hotplate, with

the resulting samples being annealed at 600 ◦C and 700 ◦C are shown in Figs. 5.3.4

and 5.3.5. The remainder of the figures are located in the Appendix, Figures A.4.1

to A.4.3. The expected 321 cm−1 peak is present in some of the data. There are

a number of other peaks in the data, particularly at ∼1900 cm−1 and ∼2500 cm−1,

which are also of a much larger amplitude. It seems that CaF2 has likely been formed,
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but in small quantities and with significant impurities in the product. The Raman

spectra of CaF2:Eu [194] shows an additional peak at ∼1050 cm−1, this is also in the

presented data at 1095 cm−1. This peaks has a low amplitude, like the CaF2 peak,

indictating that CaF2:Eu has likely been produced but in small quantities.

Figure 5.3.4: Raman results of the spray deposited CaF2:Eu onto a 200 ◦C hot plate,

which were annealed at 600 ◦C.
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Figure 5.3.5: Raman results of the spray deposited CaF2:Eu onto a 200 ◦C hot plate,

which were annealed at 700 ◦C.

Shown in Fig. 5.3.6 is the resulting Raman for a hot plate temperature of 150 ◦C,

the remainder of the data can be seen in Appendix A.4. The data across all of the

deposition temperatures provides evidence that annealing is important. As can be

observed the 321 cm−1 peak has increased amplitude with many of the other peaks

decreasing in amplitude. Figures 5.3.6 to 5.3.8 show the effects of temperature and

anneal time and Figs. 5.3.9 and 5.3.10 shows the effect of annealing time. Fig. 5.3.6

shows all the Raman spectra for the 150 ◦C hot plate temperature, the spectra for the

other temperatures are located in Appendix A.4. In the presented data (Fig. 5.3.6 and

Appendix A.4) every curve shows the characteristic CaF2 peak. When the data from

Figures 5.3.7 to 5.3.10 is analyses it reveals that in order to maximise the 321 cm−1

peak the hot plate temperature should be 400 ◦C and the sample should be annealed

for 120min. This suggests that these parameters are close to optimal for producing
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321 cm−1

Figure 5.3.6: Raman spectra of the CaF2 samples spray desposited at 150 ◦C and

annealed at 700 ◦C with annealing times shown. The solution composition was NH4F

and Calcium L-lactate pentahydrate with deionised water.

CaF2 using these chemicals and hot plate deposition. A further observation can be

made from the data, the annealing process decreased the amplitude on many of the

other peaks. This suggests that the annealing process affected the structure of the

material. It was noted that in Chapter 5.2.1 it is possible to reduce Eu3+ to Eu2+

through annealing, this reduction was not examined.
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Figure 5.3.7: Amplitude of the 321 cm−1 peak vs. hot plate temperature for the fab-

ricated CaF2. The data has been reduced to plot only the maximum peak amplitude

for each hot plate temperature.

Figure 5.3.8: Data showing the maximum 321 cm−1 peak for each spraying hot plate

temperature for the CaF2 Raman results.
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Figure 5.3.9: Amplitude of the 321 cm−1 peak vs. anneal time for the fabricated CaF2.

The data has been reduced to plot only the maximum peak amplitude for each anneal

time.

Figure 5.3.10: Data showing the maximum 321 cm−1 peak for each total anneal time

for the CaF2 Raman results.
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The results from the experimental series with the citrate did not produce any con-

clusive results. All the samples were analysed only using the optical microscope, a

small selection of these images are included in Figures 5.3.11 to 5.3.14. Whilst there

are some differences between the images, analysis of the size of the features did not

determine a correlation between feature size and citrate concentration. As there was

no noticeable correlation further analysis, i.e. the Raman spectra, was not measured.
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Figure 5.3.11: Optical micropscope image of 1 %mol citrate with no delay before its

addition, the scale bar represents 50µm.

Figure 5.3.12: Optical microscope image of 1 %mol citrate with no delay before its

addition. Then annealed at 600 ◦C for 90min. The scale bar represents 50µm.
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Figure 5.3.13: Optical micropscope image of 0.1 %mol citrate with a 1 h delay before

its addition, the scale bar represents 50µm.

Figure 5.3.14: Optical micropscope image of 0.1 %mol citrate with a 1 h delay before

its addition. Then annealed at 600 ◦C for 90min. The scale bar represents 50µm.
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5.3.3 Conclusion

This section has demonstrated the likely formation of CaF2 in Fig. 5.3.6, as the

321 cm−1 peak is characteristic of CaF2. However the results do not conclusively show

the formation of CaF2 particles.

5.4 Particle Fabrication Method: Granulation using Mortar &

Pestle

This section covers the alternate method of granulation, focusing on the use of a

mortar and pestle.

5.4.1 Method

This method involved crushing up a single crystal scintillator to produce the desired

particles. The single crystals were purchased from Hellma [83] as a small disc (1.5 cm

radius & ∼1.5mm thickness), and with either a ground or polished surface finish.

After crushing, the particle size distribution was determined using water dispersion

and optical light, the particular instrument being a MasterSizer 3000 [198].

5.4.2 Results & Discussion

The results of the granulation process using a mortar & pestle are shown in Figs. 5.4.1

and 5.4.2. The results demonstrate that crushing down a single crystal with a mortar

& pestle can produce small particles of CaF2:Eu. The two figures represent the
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particle size distribution from the crushing of two different (no known difference in

composition) single crystals. The centre of the distribution in Fig. 5.4.1 is ∼7µm with

the particles sizes between ∼2µm to 11µm, and Fig. 5.4.2 has its centre at ∼10µm

and the diameters range between ∼2µm to 50µm. An optical microscope image of

the crushed CaF2:Eu is shown in Fig. 5.4.3, no shape analysis of the image has been

undertaken, however it can be seen visually that the particles do not have a sphericity

close to 1.

Figure 5.4.1: Results of the particle size distribution of the produced heterogeneous

scintillator using a MasterSizer.
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Figure 5.4.2: Results of the particle size distribution of the produced heterogeneous

scintillator using a MasterSizer [198].

Figure 5.4.3: Optical brightfield microscope image of the CaF2:Eu particle crushed

using a mortar & pestle. The scale bar equates to 50µm and the image was taken at

50x magnification.
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5.5 Conclusion

The data from the chemical section does show the fabrication of CaF2, in the hot plate

experimental series. However the experiments with the citrate and with the europium

did not show the successful formation of CaF2:Eu particles. The mortar & pestle

method did demonstrate the production of micrometre sized particles of CaF2:Eu.

Given the simplicity of this method and the positive results it is the chosen method

for the required application.



Chapter 6

Heterogeneous Scintillator Detector

6.1 Introduction

Chapters 2 and 4 demonstrated that CaF2:Eu can detect the beta particles from a

tritium decay. Chapter 3 highlighted some of the inherent difficulties, such as the

short range of the beta particle. It was further noted in Chapter 2 that heterogeneous

scintillators offer important advantages. This chapter extends this work by presenting

a novel approach, the scintillator for this was produced using the method in Chap-

ter 5.4, the mortar & pestle.

This chapter details the design of a particular arrangement of heterogeneous scintil-

lator through both simulations and experiments to show its benefits when compared

with a single crystal. This arrangement is referred to as a planar 2D structure. Latter

parts of this chapter will examine alternate configurations, namely multiple layers of

2D unit cells, 3D structures of unit cells and a flow-cell.

81
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6.2 Definition of 2D Configuration in Geant4

Chapter 4.3 utilised the Monte Carlo simulation software Geant4 to model the beta

particles, as will this chapter. Whilst it was previously used to better understand

the inefficiencies in waterborne tritium detection, in this chapter it will be used to

simulate the efficiency of the heterogeneous scintillator configuration. This model

will be employed to guide the design of a flow-cell by optimising the particles arrange-

ment and size. The modelling for the heterogeneous scintillator was completed using

Geant4 versions 10.3 using the CentOS 7 VM [114] and a Ubuntu 16.04 LTS machine.

6.2.1 Beta Source

Three beta emitting radionuclides were used to create the heterogeneous scintillator

model, namely 3H (<18.6 keV [15]), 14C (<156.476 keV [199]) and 210Pb (<63.5 keV

[200]). 14C and 210Pb were chosen because they are both beta emitters, with a different

energy spectrum and they are commonly used as tracers in the environmental sciences

[201, 202, 203, 204, 205]. The energy spectrum data for each was extracted and

extrapolated from the Radiological Toolbox [17], using the same method as discussed

in Chapter 4. The energy spectra for the radionuclides are shown in Figs. 4.3.2, 6.2.1

& 6.2.2, the original data from the Radiological Toolbox is also plotted.

For the reasons stated in Chapter 4 G4GeneralParticleSource has been employed

again. The source was defined as a cubic volume and isotropic. The dimensions were

set using the sum of the individial water volumes, e.g. 1000 unit cells in a square
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Figure 6.2.1: Energy spectrum data for 14C from the Radiological Toolbox [17],

plotted with the extrapolated spectrum.

pack which equates to 2000R, the length of the source volume in the x̂ & ŷ axes.

One cubic volume is then used to cover all the present unit cells, for this example

it would be 2000Rx̂ & 2000Rŷ. This definition of the source will generate the beta

particles at any location inside its volume, therefore when placed over the unit cells,

the beta particles could be created inside one of the scintillator volumes. This is not

representative of an experimental setup, so to avoid this, if a beta particle is created

in one of the scintillator volumes it is immediately killed, along with any secondaries

so that it effectively was never generated.
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Figure 6.2.2: Energy spectrum data for 210Pb from the Radiological Toolbox [17],

plotted with the extrapolated spectrum.

6.2.2 Geometry

As stated in the introduction to this chapter, there is a focus on a planar arrangement

of scintillator particles, called here 2D. The current detectors (Chapter 2) have either

used a single crystal scintillator or a heterogeneous scintillator for this application.

The choice of heterogeneous scintillators used in the literature so far offers an increase

in the energy detection efficiency over equivalent single crystal configurations, but only

at flow rates unsuitable for detecting rapid changes in transient tritium concentration

levels. The novel method presented here using a single layer (2D) of scintillator

particles provides a small increase in the deposited energy compared to single crystal

configurations without a significant impact on the flow rate. The geometry used in this

simulation was built up from unit cells, similar to those from crystallography. The unit

cells chosen for use with the 2D arrangements here were Square Pack (SP) and Face
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Centred Cubic (FCC), these were tiled together to form a large array of unit cells. The

tiling of the unit cells was checked using the inbuilt visualisation code of Geant4. Close

packed unit cells were selected as these arrangements would give the best possible

results and be the most representative of an experimental heterogeneous scintillator

produced using the techniques described in the previous chapter, given random arrays

are very difficult to simulate. The sphericity of the CaF2:Eu particles are not known

so the model will assume perfect sphericity, this has been used previously [113, 110].

This assumption does lead to a limitation of these simulations as a sphericity of <1

has not been examined.
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Figure 6.2.3: A diagram of the 2D geometries used in the heterogeneous Geant4

simulation, showing both Square Packed and Face Centred Cubic unit cells. Shown

are both the single crystal and heterogeneous scintillator represented by both red and

grey colours. Dimensions shown are for tritium (black text), Carbon 14 (purple text)

and Lead 210 (green text). The inclusion of the additional radioisotopes Carbon 14

and Lead 210 is covered in Chapter 6.2.1.
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Figure 6.2.4: A diagram showing the tiling of the 2D Square Packed unit cells, red

and grey colours denote scintillating material. For the 2D geometries the water &

source as labelled and represented as the dashed volumes.

These 2D structures in the simulation were designed to represent a layer of scintillator

particles on a substrate, a diagram of this can be seen in Fig. 6.2.3. The unit cells

were defined using the following in the x̂ & ŷ axes:

• Square pack ±2R

• Face centred cubic ±4Rsin(45deg)

The height (ẑ) of the unit cells were set to be larger than the range of the particles and

is given in the diagram. For comparison a single crystal of equivalent size was also

modelled using the same method, this is also shown in Fig. 6.2.3. The figure contains

diagramatic representations of the 2D square packed unit cells and single crystal unit

cells employed along with the dimensions for each radioisotope. Red & grey is the

scintillator material, white the substrate and blue the waterborne radioisotope. A

diagram of these large tiled arrays can be seen in Fig. 6.2.4. An evolution of the 2D
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idea involved a second inverted layer of particles and substrate. This would then rep-

resent a narrow planar channel lined with a layer of scintillator particles. A diagram

given in Fig. 6.2.5 reveals the layout, the centre blue part is the source. Then the

scintillator particles in red & grey and the substrate in white, this is then a pair of 2D

structures. For this only the radioisotope tritium was employed, utilising the square

packing and the sphere radius was fixed to 3.5µm, as this is the optimal determined

from the 2D data.

a) b)

Figure 6.2.5: Diagram showing the structure of the layered 2D particulate scintillator.

The source is in the blue part, scintillator spheres in red & grey and the substrate in

white. a
)
and b

)
show a single unit cell and 2x2 array arrangement respectively.

A convergence study was conducted as to the ideal size of the array, for this the ra-

dioisotopes tritium and carbon 14 were employed. The structure was square packed

and the radii were fixed to 3.5µm and 150µm for tritium and carbon 14, as these will

maximise the energy deposited. The number of tiles in the simulation were varied

to identify if an optimal exists, meaning, if more units cells are added beyond the
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optimal there will not be an impact on the calculated energy deposited/initial energy

ratio. The sizes of the arrays examined were 1n, 10n, 100n, 1000n & 10,000n, where

n is the number of tiled dimensions. The data (Fig. 6.9.1) demonstrated that 1000n

was the optimal, all the simulations were then run with that size.

6.2.3 Data Analysis

The analysis code with Geant4 was broken down into several blocks:

1. Any particles escaping the unit cells and into the world gets removed from the

simulation.

2. This simulation will investigate maximising the energy deposited from the ra-

dioisotope into the scintillator. As this simulation focuses on the energy deposi-

tion the scintillation photons do not need to be tracked. Therefore any optical

photons created are killed after the first step, to prevent any interactions.

3. Extract the initial kinetic energy for each tritium beta particle and add to the

running total of the tritium beta particles initial kinetic energy of beta particles

generated. But not those that start inside a scintillator sphere.

4. Extract the energy deposited into the scintillator in each step from the tritium

beta particles, and add to the running total of the deposited energy into the

scintillator from the tritium beta particles.

Any simulation of a radiation detector system using a scintillator would have to simu-
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late both the particle transport or interaction to the scintillator, and the scintillation

photon transport to a photon detector (e.g. PMT). As is stated above, this simulation

will focus on maximising the energy deposition into the scintillator. The reason for

this focus is to generalise the results, as any inclusion of photon tracking would need to

define the volumes that will reflect or absorb the photons. The errors associated with

the quantities of Initial Kinetic Energy and Deposited Kinetic Energy were defined

using a single pass variance, called Welford’s Method [206, 207]. The implementation

of Welford’s method used is given below:

Number = 0;

OldMean = 0;

Mean = 0;

Var = 0;

for loop for each interaction{

Number++;

OldMean = Mean;

Mean = Mean + (Value - Mean)/Number;

Var = Var + (Value - Mean)*(Value - OldMean);

}

Variance = Var/(Number - 1);

The above method is used for a single quantity, Value, and calculates the associ-

ated variance. This form is employed once for the total initial energy and again for

the total deposited energy to calculate the variance for each quantity.
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6.2.4 Simulation Materials

The water was defined as above as hydrogen having an atomic number of 1 and molar

mass of 1.01 gmol−1, and oxygen using an atomic number of 8 and molar mass of

16.00 gmol−1. With water itself being defined as H2O with density 1 g cm−3 [208].

Carbon and Silicon were defined using the NIST database, then used to create PDMS

(Polydimethylsiloxane) as C2H6OSi with density 0.97 g cm−3 [209].

The properties for CaF2:Eu were defined as in Chapter 2. Using the NIST database

the CaF2 and Eu entries were combined, the Eu was doped at 2% and has a density of

5.243 g cm−3 [141]. The scintillating properties had the absoprtion length set to 1.0m,

the refractive index set to 1.47 [83] and the emission curve was approximated to 59

data points from literature [160] to provide sufficient accuracy (see Fig. 6.2.6) and

the light yield set to 30 000 photonsMeV−1 [83]. The emission curve of the CaF2:Eu

scintillator is shown in Fig. 6.2.6. For PDMS the refractive index and attenuation

length was set to 1.44 and 1m respectively [209]. The scintillator thallium doped

caesium iodide (CsI:Tl) was also simulated to compare with the CaF2:Eu results with

its properties also from Chapter 2. The above section describes that optical photons

will not be tracked, for this reason the scintillation emission curve of CsI:Tl was

simplified to only utilise 3 data points.
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Figure 6.2.6: Approximation of the emission curve of CaF2:Eu from reference data

[160], produced using Geant4.

6.2.5 Physics Models Employed in Simulations

The physics models for e-/beta particles for the simulations in the this chapter are

described below:

pmanager->AddProcess(new G4eMultipleScattering(),-1,1,1);

G4eIonisation* eIonisation = new G4eIonisation();

eIonisation->SetEmModel(new G4LivermoreIonisationModel());

pmanager->AddProcess(eIonisation,-1,2,2);

G4eBremsstrahlung* eBremsstrahlung = new G4eBremsstrahlung();

eBremsstrahlung->SetEmModel(new G4LivermoreBremsstrahlungModel());

pmanager->AddProcess(eBremsstrahlung,-1,-3,3);

For optical photons the models were, G4OpAbsorption, G4OpRayleigh, G4OpMieHG
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& G4OpBoundaryProcess, for optical photon creation the models were G4Scintillation

& G4Cherenkov. The electron/beta particle physics models were adjusted from the

previous Chapter 4.3 with an aim towards increased accuracy. G4eIonisation was re-

placed with G4LivermoreIonisationModel and G4eBremsstrahlung was replaced with

G4LivermoreBremsstrahlungModel, G4eMultipleScattering was unchanged. Chap-

ter 3 explained that the Livermore models had increased accuracy when compared

with the default models, including to lower energies. The physics simulation in Geant4

version 10.3 requires the use of a low energy cut-off for the beta transport, the default

value for this is 1 keV. When a beta particles energy falls below the cut-off it will

no longer be simulated. Fig. 6.2.7 shows a comparison of data with 1 keV and 100 eV

cut offs. The ŷ axis here is same ratio of total deposited energy against total initial

energy as described in the above section. The cut-off here means that beneath this

value the particle will no longer be tracked. This figure demonstrates that dropping

the cut-off from 1 keV to 100 eV had no significant impact on the results.
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Figure 6.2.7: Comparison of simulation data showing the effect of reducing the mini-

mum ’cut-off’ kinetic energy, red curves and black curves denote the 1 keV and 100 eV

energy cut off for the Livermore Models respectively. The solid black overlays the

solid red line.

6.3 Geant4 Model Results Planar

The results for the 2D planar scintillator particle arrays data and all three radioiso-

topes is shown in Fig. 6.3.1. The ŷ axis data for all the curves in the figure are

normalised to the maximum value in the single crystal data for that particular iso-

tope. It can be seen that the single crystal data for tritium, lead-210 and carbon-14

have a consistent efficiency. This is expected as the thickness is always adequate to

absorb any particles and the increasing surface area is matched with a proportional

increase in the surface area of the radiation source. The microparticle data curves all

have a similar shape, and all have a single peak in the ŷ axis to a value of ∼1.2, an

approximate 20% increase. Those curves are shifted in the x̂ axis due to the higher
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energies of the beta particles. The radii of the scintillating at which each radioisotope

has a maximum for the deposited energy in the microparticle unit cells are 3.5µm,

30µm and 150µm for tritium, lead 210 and carbon 14 respectively. This specific re-

sult for tritium will be utilised in the next two sections in an experimental waterborne

tritium detector.

3H 210Pb 14C

Figure 6.3.1: Results of the 2D Geant4 single crystal and heterogeneous scintillator

simulations showing the radionuclides 3H, 14C & 210Pb. Face centred data is not

plotted as it overlaps with the Square Pack data and the error bars are plotted but

are of small magnitude.

6.4 Heterogeneous Planar Scintillator Fabrication

The simulation results as shown in the previous chapter were validated using an ex-

perimental setup. This chapter and the next detail the setup, followed by the results.
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The scintillator was produced using single crystals (CaF2:Eu) from Hellma [83]. These

were crushed down using a mortar & pestle with particle size verified by dispersing in

de-ionised water (using a MasterSizer 3000 instrument). The particle size distribution

(most likely diameter at 7µm diameter) can be seen in Fig. 5.4.1. PDMS was used as

the substrate as it is optically transparent, has a similar refractive index to water and

CaF2:Eu and easy to cast to shape. A preliminary experiment was conducted to inves-

tigate the ease of depositing a powder onto the surface of PDMS. For this experiment

a powder formed of crushed soda-lime glass was chosen as it is cheaper than CaF2:Eu,

this was crushed through the same method and its size and associated distribution

verified using the same methodology. The size distribution of the soda-lime glass used

in this preliminary experiment can be seen in Fig. 6.4.1, the most likely diameter is

∼30µm. Time curing of the PDMS, using a 10:1 (base:curing agent) concluded that

∼22 h is ideal. A further preliminary experiment into the powder deposition method

using a thin grating yielded a successful thin layer. Fig. 6.4.2 shows the cross section

of crushed soda-lime glass powder deposited onto the PDMS substrate, it can be seen

that the result is a single thin (∼80µm) layer of glass particles. The method of us-

ing a thin grating is then suitable for depositing the heterogeneous scintillator onto

PDMS.

The above method of fabricating the scintillating particles will be used to produce a

scintillator for an experimental detector. The heterogeneous scintillator particles were

deposited onto a substrate of PDMS [210], this was mixed to 10:1 base:curing agent.



CHAPTER 6. HETEROGENEOUS SCINTILLATOR DETECTOR 96

Figure 6.4.1: Results of two repeat measurements of the particle size distribution of

soda-lime glass crushed using a mortar and pestle.

The deposition process itself involved partially curing the PDMS to 22 hours at room

temperature under ambient conditions before the particle powder is deposited onto

the top surface. This is then left to fully cure >48 hours. The particle size distribu-

tion of the soda lime particles adhered to the PDMS surface is shown in Fig. 5.4.1.

An optical microscope image is included in Fig. 6.4.3.
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Soda-lime particles

Substrate

Figure 6.4.2: Optical microscope image of the cross section of the crushed soda-lime

glass (Fig. 6.4.1) deposited onto the PDMS substrate. Image taken at 10x magnifica-

tion and the scale bar equates to 200µm.
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Figure 6.4.3: ”Optical microscope bright field image of the surface of the particu-

late heterogeneous scintillator taken at 10x magnification. The scintillator chosen is

CaF2:Eu with PDMS as the substrate. The scale bar in the corner equates to 300µm

in length” [211].

The simulation results in Chapter 6.3 revealed that a layer of 3.5µm radii CaF2:Eu

particles lead to more energy deposition than a comparable single crystal, Chapter 5.4

demonstrated that these particles could be produced through granulation with a mor-

tar and pestle. If a single crystal had a radius of 5mm it would have a projected surface

area of 0.79 cm2, however if the same crystal was granulated to form a single layer

of particles the projected surface area would increase. To determine this increase the

assumptions of the single crystal will be, a radius of 5mm and a thickness of 2mm.

It will also be assumed that the particles produced all have a radius of 3.5µm, are in

a Square Packing formation, with a single layer and an equal number of units cells in

each of its two axes (x̂ & ŷ).

The equations used are listed in Eq. (6.4.1), (6.4.2), (6.4.3) & (6.4.4), with the terms,
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r, the radius of the single crystal, h the height and R the radius of the granulated scin-

tillator particle. The results are shown in Table 6.4.1, along with data for carbon 14

and lead 210 with their associated radii of 150µm and 30µm respectively. Whilst this

is a idealised analysis the results show that the projected surface area does increase.

This provides a further advantage, for a single crystal of a given volume it could be

granulated for a larger surface area, leading to an increased detectable volume.

Single Crystal Volume = πr2h (6.4.1)

Unit Cell Volume =
4
3

πR3 (6.4.2)

Number O f Unit Cells =
Eq. (6.4.1)
Eq. (6.4.2) (6.4.3)

Length = 2
√

Eq. (6.4.3) · 2R (6.4.4)

Table 6.4.1: Calculated results of a simple numerical prediction of the increase in

surface area due to crushing a single crystal down to small uniform radius particles.

Isotope Particle Radius (µm) Projected Surface Area (cm2)

Tritium (3H) 3.5 428.49

Carbon 14 (14C) 150 9.99

Lead 210 (210Pb) 30 49.98
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6.5 Experimental Detector Method & Results

6.5.1 Method

The experimental detector used the heterogeneous scintillator as described above

(Chapter 6.4), the electronics in the detector were redesigned from those in Chapter 4.

The redesigned circuit still employed a single Sensl C-Series 60035 SiPM, however the

remainder of the circuit used surface mount components. The virtual ground cir-

cuit was improved (Fig. 6.5.1) and the TIA/CSP circuit (Fig. 6.5.2) now featuring a

higher quality Op-Amp, LT6200-10, which has a lower noise voltage and bandwidth.

The gain of the preamplifier was calculated using an LT Spice (version XVII) [212]

simulation, Fig. 6.5.2. The input pulse was a single pulse of 1mV & 0.5µs square

wave. The gain calculated from the output pulse is -3300.1. The feedback resistor and

capacitor values are 600 kΩ & 33 pF respectively, this equates to a time constant of

19.8µs. The ADC and light-proof box were identical to that from the earlier chapter.

The radioisotope used was tritium with a concentration of 1500BqmL−1, this source

of tritium was compared with a background sample of de-ionised water. The data

produced from the detector was analysed using the peak detection code which used

the Labview code [213] and operates through a threshold. When a data point passes a

threshold and where the number of points in the peak exceed the user specified value

the code will extract the value of the peak.
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Figure 6.5.1: Circuit to power the pulse shaping part of the circuit using a TLE2426

and a HA5002 IC [214, 215].
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Figure 6.5.2: A circuit diagram of the updated Transimpedance preamplifier, using

the LT6200-10 OpAmp [216]. This circuit was also employed in a simulation [212].

For this simulation the representations of the input and output pulses are shown.
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6.5.2 Results & Discussion

The results from the heterogeneous scintillator and single crystal scintillator are shown

in Table 6.5.1. The results reveal that there was an approximate ∼15% increase in

the total counts when comparing the heterogeneous scintillator to the single crystal

with the same projected surface area (actual surface area higher for the heteroge-

neous scintillator). The prediction from the Geant4 model highlighted that ∼20%

more energy should be deposited in the scintillator when arranged as a layer of small

particles. This result from experiment data is evidence for the accuracy of the Geant4

2D results.

Table 6.5.1: The results of the experimental setup of the single crystal scintillator and

a comparable heterogeneous scintillator. Shown is the total counts i.e. those from

tritium minus those from background. The prediction is taken to be a 20% increase

of the single crystal with associated error [211].

PPPPPPPPPPPPPPPPPP

Counting Time
600 s 1200 s

Single Crystal Scintillator 151 393± 406 293 481± 568

Total Counts

Prediction using the 181 670± 487 352 180± 681

Single Crystal Scintillator

2D Heterogeneous 173 421± 228 339 450± 305

Scintillator Total Counts



CHAPTER 6. HETEROGENEOUS SCINTILLATOR DETECTOR 103

6.6 Normalisation of Geant4 Results

The results for the non-normalised Geant4 2D data has been shown previously in

Fig. 6.3.1, a further method of analysing the data was used. The single crystal data

in Fig. 6.3.1 maintains the same energy deposition despite the increasing projected

surface area, the heterogeneous scintillator curves have the same overall shape, but at

a different position on the x̂ axis. The aim of the normalisation was to find a method

of aligning the heterogeneous scintillator curves, the method was identical for the 2D

SP, FCC & BCC unit cells, as well as the three radioisotopes. It specifically explored

the normalisation through the maximum range of the beta particles in the medium.

Two scenarios were considered, the true distance the particle travelled and the straight

line distance the particle travelled, statistical expressions such as maximum, mean,

geometric mean etc. were then applied. This range data has been produced using a

simple simulation, a diagram is included in Fig. 6.6.1.

This simulation used a cube of 2m3 of the medium, here water, with the beta particle

source as a beam located at the centre. This beam in the x̂ direction fired a total of

1x109 particles, the remainder of the simulation such as physics models and material

definitions were identical to those in Chapter 6.2. Two terms will be defined, the first

is the Maximum Track Lengh. This is where the particles steps (i.e. the distance

associated with each interaction) have been summed, then the maximum from all of

these can be found. The other term is the Maximum Geometric Track Length which

is the sum of the steps in the direction of the beam, likewise the maximum from

all the particles can be found. Table 6.6.1 contains the two normalisation values as
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mentioned, along with the additional values that were unsuccessful.

β

Figure 6.6.1: Simple diagram of beta particle range simulation using Geant4. The

geometry was 2m3 using water, the arrow denotes the beam of particles.
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Table 6.6.1: Normalisation values used for the Geant4 heterogeneous scintillator data.

Variable Tritium (3H) Carbon 14 (14C) Lead 210 (210Pb)

(µm) (µm) (µm)

Max Track Length 7.5405 340.004 63.5444

Mean Track Length 1.1992 53.2159 1.9190

Geometric Mean 0.5542 23.1442 0.4158

Track Length

Harmonic Mean 0.0998 0.8567 0.0606

Track Length

Median Track Length 0.7644 35.1438 0.5061

Max Geometric Track Length 4.0885 201.7240 36.5528

Mean Geometric Track Length 0.6104 27.9500 0.9887

Geometric Mean 0.2717 12.0033 0.1994

Geometric Track Length

Harmonic Mean 0.0162 0.1388 0.0089

Geometric Track Length

Median Geometric 0.3858 18.3627 0.2539

Track Length
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6.7 Geant4 Model Results 2D Normalised

The results for the non-normalised Geant4 2D data has been shown previously in

Fig. 6.3.1 and Table 6.6.1 contains the data that was used for normalising. The aim of

the normalisation was to align all the heterogeneous scintillator curves and the results

are shown in Figs. 6.7.1 and 6.7.2 and Appendix A.5.1. The various figures show that

only two of the variables worked, maximum track length and maximum geometric

track length. All the of the normalisation variables are able to align the tritium and

carbon 14 data, but only the aformentioned two can align all three curves. With the

data now normalised and aligned, the peak in the heterogeneous data is located at

0.46x̂ and 0.81x̂, for maximum track length and maximum geometric track length

respectively.

The initial energy spectra of the three radioisotopes have a different shape, with the

lead 210 spectra being particularly different. The above method of normalisation is

able to align the curves from the three radioisotopes, this could be applied to other

beta emitters. If either of the two variables (maximum track length or maximum

geometric track length) are known for a different β− emitting radioisotope, then the

ideal radius can be predicted. With this prediction a 2D heterogeneous scintillator

detector can be optimised for any waterborne β− emitting radioisotope.
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Figure 6.7.1: The results of the Geant4 2D single crystal and heterogeneous scintil-

lator simulations using the 3H, 14C & 210Pb. These results are normalised using the

Maximum Track Length values.
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Figure 6.7.2: The results of the Geant4 2D single crystal and heterogeneous scintil-

lator simulations using the 3H, 14C & 210Pb. These results are normalised using the

Maximum Geometric Track Length values.
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The results of the 2D multiple layers are located in Fig. 6.7.3. It can be seen that

as the gap between the layers decreases the fraction of the total initial kinetic energy

that gets deposited into the scintillator increases. This could then form the foundation

of an experimental flow cell. A further figure has been included (Fig. 6.7.4) which

demonstrates that the FCC data and SP data overlay one another. This data only

displays the results for tritium.

Figure 6.7.3: Geant4 simulation results of the dual layer of 2D 10002 SP heterogeneous

scintillator with tritium.
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Figure 6.7.4: Geant4 Data showing the results of all the 2D structures, SP & FCC.

The SP and FCC curves overlay one another.

6.8 Geant4 Model Definition 3D Packed Particle Configura-

tion

This chapter has so far focused on 2D unit cells, that is where the particles are

located in two spacial dimensions, and compared to planar single crystals. The focus

now shifts to 3D unit cells, where the microparticles are positioned in three spacial

dimensions. Aside from the change in geometry, the remainder of the simulation is

the same, e.g. physics, materials definitions and data analysis code. These results

will also be analysed using the same normalisation method as the 2D results.
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6.8.1 Geometry

The 3D arrangements are built up from unit cells, in the same method as the 2D

planar configurations. Here the packing structures chosen were Square Pack (SP),

Face Centred Cubic (FCC) and Body Centred Cubic (BCC). The model for the 3D

arrangements was designed to recreate a packed volume, i.e. a packed tube. For this

reason, the material representing the volume between the spheres in the unit cell was

defined to be water. These were again tiled up into larger arrays, see Figs. 6.8.1

and 6.8.2. The size of those unit cells in the x̂, ŷ & ẑ axes was as follows:

• Square pack ±2R

• Face centred cubic ±4Rsin(45deg)

• Body centred cubic ± 4R√
3

As before the convergence study revealed that 1000 unit cells in each axis was sufficient

to be considered infinite in extent, the data of this can be seen in Fig. 6.9.1.
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2R

Square Packing

4R√
3

Body Centred
Cubic

4Rsin(45◦)

Face Centred
Cubic

Figure 6.8.1: A diagram of the 3D geometries used in the heterogeneous Geant4

simulation, shown are the Square Packed, Face Centred Cubic and Body Centred

Cubic unit cells. The grey and red colours denote the scintillator material and the

white cube show the limits of the unit cell itself.

Figure 6.8.2: A diagram showing the 2x2 tiling of the 3D Square Packed unit cells,

red and grey colours denote scintillating material. The void volume between spheres

is occupied by the water and source.

6.9 Geant4 Model Results 3D

The convergence study employed by both 2D & 3D Geant4 configurations is shown

in Fig. 6.9.1. For this, tritium and carbon 14 were chosen and the SP unit cells with

the equivalent optimal radii calculated in the previous section from their data sets,

e.g. 3.5µm for the 2D tritium. The results reveal that for both 2D and 3D structures

1000 unit cells in each axis is the optimal.
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Figure 6.9.1: Results of the convergence test for the 2D & 3D square packed unit cells

for tritium, carbon 14 & lead 210. Error bars are plotted but of small magnitude.

The raw non-normalised data for the 3D unit cells is located in Fig. 6.9.2, note that

unlike the 2D data the ŷ axis data is not normalised here. The results show that

as the scintillator particles are reduced in size, the energy deposited in the scintil-

lating particles, as compared to being attenuated in the water, increases, this is in

agreement with previous research and explains why the liquid scintillator will always

have the best possible detection efficiency as the scintillating particle is as small as

possible. [113]. As with the 2D configurations the ideal normalisation method for

the 3D data has been determined to be the maximum track length and maximum

geometric track length value for each radioisotope. Figs. 6.9.3 and 6.9.4 show the

3D data normalised using the methods stated above. The remainder of the data with

unsuccessful normalisation is located in the Appendix A.5.2. Whilst the 2D unit cells

data (Chapter 6.7) showed that all three microparticle curves could be aligned using
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these normalisation methods the same is not true for the 3D data. The methods do

however give the best results as none of the other methods tested lead to such close

alignment.

Figure 6.9.2: Results of the Geant4 3D heterogeneous scintillator simulation showing

the radionuclides 3H, 14C & 210Pb. Face centred data is not plotted as it overlaps

with the Square Pack data.
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Figure 6.9.3: Results of the Geant4 3D heterogeneous scintillator simulation using 3H,

14C & 210Pb. These results are normalised using the Maximum Track Length values.

Figure 6.9.4: Results of the Geant4 3D heterogeneous scintillator simulation using

3H, 14C & 210Pb. These results are normalised using the Maximum Geometric Track

Length.
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Figure 6.9.5 reveals the similarity between the SP and FCC unit cells, with BCC

plotted for comparison. As with the 2D data, the FCC curve overlays with the

SP curve and so it has been omitted from the other figures in this section. The

data showing the comparison between the use of CaF2:Eu & CsI:Tl scintillators is

located in Fig. 6.9.6. It can be seen that the physical properties of the scintillator do

impact on the results. Although the curves are similar the simulations results are not

independent of scintillator choice.

Figure 6.9.5: Geant4 simulation data of the 3D heterogeneous scintillator showing the

3D structures SP, FCC & BCC.
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Figure 6.9.6: Geant4 simulation data of the 3D heterogeneous scintillator showing the

CaF2:Eu and CsI:Tl scintillators with a 3D SP 10003 unit cells tritium arrangement.

6.10 Detector Flow Cell Model

The Geant4 model of the 3D unit cells was analysed further, this time including a

simple calculation of the flow rate. Chapter 6.9 demonstrated through the 3D stacked

particle unit cells that a practical flow-cell with small particles could achieve a high

detection efficiency. This configuration has already been explored experimentally, e.g.

[64]. One significant consequence is that there is a reduced flow rate. This section of

the thesis explores the possibility of maximising both energy deposition detection and

flow rate, leading to better detector designs. One potential application of the flow cell

detectors is in detecting short lived concentration spikes of radioisotopes, such as an

accidental spill into a river. It is in this situation that detectors with low flow rates

are rendered ineffective, the purpose of this section is to maximise both the energy
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deposition and flow rate through selecting an optimal scintillator particle radius.

6.10.1 Flow Rate Calculations

The flow rate through the 3D arrays has been analysed to determine whether particle

size can affect transient concentration detection efficiency due to the restriction to

flow and the time taken to fill a flow cell. The equation used to determine the flow

rate is given in Eq. (6.10.1) [217, 218]. A number of assumptions have been made,

as the flow cell will feature a pump, the provided pressure drop (dp) will be defined

as 1000Pa. This value is not reflective of an existing setup, a low pressure has also

been chosen based on the situation, an in-situ detector will likely utilise a small low

power pump, therefore a low pressure. The density of water has been assumed to be

1000 kgm−3, and the sphericity (Φ) of the scintillator particle has been defined as 1.

This is partly because the Geant4 simulation used the same assumption, likwise with

simulations from other authors [113, 110], but also as the sphericity of the particles

is not known. The length of the array (dx) as 100mm, the void porosity (ϵ) at 0.476,

the viscosity (µ) of water set to be 1.002mPa s and the particle diameter (Dp) set to

3.5µm. In using the equation Eq. (6.10.1) it is assumed that the flow is laminar, for

this to apply the Reynolds Number should be less than one. The equation used for

this is shown in (6.10.2) [219] and this work is featured fully in the Appendix A.7

section. The terms in (6.10.2) are, Re the Reynolds Number, R the particle radius,

Vs, the velocity of the fluid, µ the viscosity of water and ϵ the void porosity.

u = −dp
dx

Φ2D2
p

150µ

ϵ3

(1 − ϵ)2 (6.10.1)
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Re =
2RVs

µ(1 − ϵ)
(6.10.2)

The energy deposition ratio and flow rate data for this section will be normalised in

the ŷ axis. This was completed by first subtracting the minimum value from each

data set, then each data set was normalised to between 0 & 1. The optimal can then

be found by multiplication of the ratio curve and flow rate curve.

6.10.2 Flow Cell Model Results

The results are plotted in Fig. 6.10.1 and the data has been normalised in both x̂

& ŷ axes. The x̂ has been normalised through the maximum track length method,

the ŷ axis data has been normalised by the method stated in the previous section.

The optimal radius values are then displayed in Table 6.10.1. The values for each

radioisotope are the same with either x̂ axis normalising method. The results can

then be used to guide the design of a flow cell detector that approximates the 3D unit

cell arrays.
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Table 6.10.1: Data of the peak from the Optimal curves in Fig. 6.10.1. These values

of Optimal Radius are unchanged with the x̂ axis normalising method.

Isotope Optimal Radius

(µm)

Tritium (3H) 10

Carbon 14 (14C) 350

Lead 210 (210Pb) 75

Figure 6.10.1: Data showing the optimal radius for a particulate heterogeneous 3D SP

flow cell to maximise both the energy the beta particle desposits into the scintillator,

and flow rate of the waterborne source.
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6.11 Conclusions

The Geant4 simulations of the 2D microparticle unit cells reveal that a single layer

leads to approximately 20% higher energy deposition in the scintillator, when com-

pared with a single crystal. An experimental detector has been built employing a layer

of CaF2:Eu particles (∼3.5µm radius), this was compared with an equivalent single

crystal with tritium in solution. The results show good agreement with the simula-

tion. A number of methods have been attempted to normalise the simulation results

along the x̂ axis. Of these two were successful, as once normalised the peaks in the

2D data aligned. These two methods are the Maximum Track Length and Maximum

Geometric Track Length and are related to the particles behaviour in water. The

results of the dual 2D layer simulation revealed that with a very small gap between

the layers there is an increase in the energy deposited. The simulations with the 3D

unit cells showed that the energy deposited is maximised with the smallest radius.

These results can also be normalised using the same method as the 2D, although the

lead 210 data does not align as well. The combination of the 3D unit cell data and

flow rate calculation demonstrates that while smaller scintillating particles mean less

attenuation of the beta particles, it takes longer to fill flow cells with smaller particles

making detection of transient activity levels less accurate.

The work investigating both the dual 2D layers, and optimising the radius for the 3D

unit cells can provide a basis for experimental flow cell for radiation detection.
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Heterogeneous Scintillator Flow Cell

7.1 Introduction

The previous chapter demonstrated that a 2D planar heterogeneous scintillator ex-

periences approximately 20% more energy deposition when compared with a single

crystal that has the same projected area whilst using significantly less material. The

advantage of more energy being deposited is that it will lead to an increase in the

number of the scintillation photons produced, making detection of the radiation more

efficient. The previous results were demonstrated for a single layer, which can be

scaled up to be many layers, greatly increasing the surface area while still maintaining

minimal material requirements. The advantage of this configuration is that it allows

a significant flow rate through the cell as compared to equivalent 3D close-packed

arrays, whilst still retaining the energy deposition increase over a single crystal. This

chapter covers the development and testing of an experimental flow cell incorporat-

ing a heterogeneous scintillator comprised of multiple layers of 2D packed arrays of

122
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scintillating particles, and its application to transient radioisotope detection.

7.2 Experimental Flow Cell Detector

The electronics for the detector were identical to the circuit from Chapter 6.5.1,

and the same single Sensl C Series 60035 SiPM was employed. For the transient

experiments, a peristaltic pump (120S with 114DV pump head) [220] was integrated

with the flow cell. The shape of the flow cell can be seen in Fig. 7.2.1. The base and

sides of the flow cell was machined from a single block of aluminium, the lid was made

from transparent perspex. The top of the aluminium featured a rubber ring for the

seal, with holes to screw the lid down and maintain a seal. The SiPM was mounted in

the centre of the lid, with the remainder of the area covered in an optically reflective

material. The inlet and outlet of the flow cell are located in the sides. A diagram

of the aluminium base is shown in Fig. 7.2.1 and a photograph of the complete flow

cell is located in Fig. 7.2.2. The integration of the flow cell and pump can be seen

in the diagram in Fig. 7.2.3. The counting times used were 6 h with the source being

either the tritium (1500BqmL−1) or background de-ionised water. The flow rate of

the pump when used was set to either 1mLmin−1 or 50mLmin−1. The fabrication of

the scintillator discs is discussed in Appendix A.6.
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Figure 7.2.1: Diagram showing the aluminium base and sides of the flow cell.

Figure 7.2.2: Image of the fabricated flow cell with the lid screwed on, the shape of

base can be seen in the diagram in Fig. 7.2.1.
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Flow Cell
& SiPM
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Figure 7.2.3: Diagram showing the components of the flow cell setup employed. The

arrows indicate the flow of water & tritium source and dashed line the connection

from the SiPM to the ADC.

7.2.1 Transient Radioisotope Concentration Level Detection

The concentration of a radioisotope in water can be transient and as such only de-

tectable for a short period of time, such as an accidental discharge into a river. The

full theory for detecting a transient radioisotope is in the Appendix A.7 [211]. A tran-

sient radioisotope is where the radioisotope only exists for a certain period of time,

see Fig. A.7.1. As this theory explains, when a volume of water contaminated with a

radioisotope passes the flow cell, it will then take time to fill the flow cell. As the con-

taminated volume passes through the flow cell the concentration of the radioisotope

in the flow cell will decrease back to background. As the transient radioisotope fills

the flow cell, the concentration of the flow cell volume will increase to equate to the

transient source, the detector will then show a consistent count rate. However if the

flow cell does not fill with the source, then the detected count rate will not plateau.

Instead it will decrease with the cell becoming filled with non-contaminated water.
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It is possible for the concentration inside the flow cell to not equate to the width of

the transient source if it doesn’t fill. There is then room to optimise an experimental

detector to maintain a fast enough flow rate, and reasonable detection efficiency, and

hence be able to detect a radioisotope that is only present for a short time.

The experimental setup used to validate this theory is shown in Fig. 7.2.4. Through-

out the experiment the SiPM, flow-cell and readout electronics are inside of a light-

proof box, with the pump and two beakers located outside. The transient experiment

is conducted in four steps, the first is the circulation of DI water for a period of time

using only a single beaker, labelled Reservoir in the figure. Then, step 2
)
, a volume of

known concentration of tritium is added into the same beaker and left to circulate and

be counted. After a certain time has elapsed, the current beaker becomes the Waste

beaker, then a second beaker Reservoir containing deionised water is used as the inlet

to the pump, step 3
)
. This will flush the system with deionised water, replacing all

the now radiologically contaminated water with deionised water. At this point the

outlet from the flow cell is placed into the reservoir, completing the circuit so that

only deionised water is now in the system, step 4
)
. The volumes and concentrations

of tritium employed were based on the total volume of the system, not the amount of

source added. For example if the total initial system volume is 100mL of deionised

water, and 200mL of tritium with a concentration of 1500BqmL−1 is added, then the

final concentration will be 1000BqmL−1.
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Figure 7.2.4: Diagram of the counting setup for a transient source of radiation. The

experiment follows the setups shown numerically, blue denotes DI, green as tritium

and grey as waste. The ADC is still included in the experimental setup but not shown

in the figure.
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7.3 Experimental Flow Cell Results

The results of the flow cell experiments can be seen in Table 7.3.1, the data here

already has the background subtracted. The results demonstrate that increasing the

number of layers leads to an increase in the detected counts from the same concen-

tration of tritium validating the effectiveness of the methodology. The error for both

tritium source and background was calculated as δ =
√

N [221], where N is the

number of counts. The equation used to calculate the error from the subtraction of

the background count is shown in Eq. (7.3.1).

δSource−Background =

√
(
√

δSource)2 + (
√

δBackground)2 (7.3.1)

Table 7.3.1: Data showing the total counts of the two different scintillator experiments.

Scintillation Detector Total Counts in 6 h

Three layers 50mLmin−1 flow rate 271± 31

Twelve layers 50mLmin−1 flow rate 11 660± 150

An experiment was conducted to verify the transient radioisotope theory. For this a

total of six hours were counted, the first hour of only deionised water, three hours

with the tritium added and the final two hours of flushing the system with deionised

water. During this, the flow rate was set to 1mLmin−1 and the concentration of

tritium after being added equated to 1000BqmL−1. The results of this are shown in

Fig. 7.3.1, with the background already subtracted. The experimental errors for the
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subtraction of source and background are shown in Eq. (7.3.2). There is a DC offset

in the data between the background and tritium, this is assumed to be the error, as it

is also larger in magnitude than
√

NSource. This method of calculating the error has

not been applied to the previous data as this data set had a less consistent DC offset.

The error in the tritium count is then:

Tritium Error =
√
(NBackground)2 + (NSource Error)2 (7.3.2)

The error in the averaged tritium data is calculated from error progagation [221]:

Averaged Tritium Error =
Tritium Error

|Length O f Window (hours)| (7.3.3)

The same dataset has been analysed in Figs. 7.3.1 and 7.3.2, the same peak detection

algorithm from Chapter 6.5.1 has been utilised. The data has been analysed by using

three windows for the cumulative counts, 15min, 30min and 60min. Fig. 7.3.1 shows

the raw total counts in each window, Fig. 7.3.2 presents the total counts divided by

the length of counting window in hours. The same data set was further analysed

using a rolling counting window, which can be seen in Figs. 7.3.3 and 7.3.4. It can

be seen that with increasing the size sections analysed there is a smoothing effect.

There is a single peak at ∼1.5 h in the data, this becomes less prominant with the 1 h

windows of data. There is no known reason for this peak. The impact of the tritium

on the data can be seen as the main peak starting at 4 h, the delay from when the

source is added at 1 h is due to the low flow rate. Due to the length of tubing used it

is estimated that the tritium will take ∼50min to reach the flow cell, then a further

∼40min to fill the flow cell. The prediction made in Appendix A.7 shows that with

a low flow rate the peak will not plateau, as the flow cell never fills with the source.
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This appears to be reflected in the data, however the larger 1 hour window does not

show this due to the smoothing effect. From this data the 30min window appears to

be ideal, this is because there is a trade-off between smoothing out false positives and

a rapid detection of the transient radioisotope.

An issue that arose in the data was the inconsistent signal offset, this can be seen

in the presented data by the missing points at 4.5 h. Previous runs with the SiPM

did show a signal offset which displayed minimal drift within the counting time, but

varied a little day-to-day. The transient radioisotope data set contained a near ’step’

change in the offset, which had not been observed before. Further attempts to run

the experiment were made but yielded poor results, this has coincided with the un-

foreseen gradual failure of the SiPM. A new SiPM and associated PCB were used in

attempted reruns of the experiment, the data initially displayed a reduced electronic

noise and was missing the inconsistent signal offset of the failed one. Given that the

SiPM failed gradually it would likely have affected the results in this section. In the

transient radioisotope data (Figures 7.3.1 to 7.3.4) the presence of the peak at ∼1.5 h

and the unexpectedly long delay before the main peak at 4 h could have been due to

a failed or nearly failed SiPM. The inconsistent ’step’ signal offset was not observed

in the earlier data comparing the three and twelve layers with a static radioisotope

concentration. These experiments were however not repeated with the new SiPM,

therefore some caution should be exercised on the validity of those results.
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DI 3H DI

Figure 7.3.1: Data showing the transient flow experiment with the total counts per

window of time. The data is analysed using the same data set.

Figure 7.3.2: Data showing the transient flow experiment with the total counts per

averaged window of time. The data is analysed using the same data set.
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Figure 7.3.3: Data showing the transient flow experiment with the total counts per

window of time. The data is analysed with a rolling counting window.

Figure 7.3.4: Data showing the transient flow experiment with the total counts per

averaged window of time. The data is analysed with a rolling counting window.
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7.4 Model of Averaging

A simple numerical model was used to investigate the effect of sampling for a win-

dow of time on the transient experimental data. This code was written in Matlab

and modelled the count rate to follow the same shape as the numerical count rate

prediction (Appendix A.7), the modelled data was then averaged using a moving win-

dow of fixed width. As the application of the transient flow cell detector is real-time

monitoring, the sampling window and confidence in the cumulative counts data are

important factors. The aim of this model is to determine the effect that the length of

the counting window has on the detection confidence. The results for this are shown

in Fig. 7.4.1, the black line is the modelled data with the averages as the coloured

lines. This demonstrates that as the number of data points the average is performed

over increases, the shape of the expected data is smoothed. In the in-situ situation the

device would ideally detect very quickly when there is radiation present, in practice

a large window of cumulative counting is needed for reasonable statistics. The larger

the window the more confidence will be gained about possible detection, but this

would delay the notification that radiation has been detected. A rolling cumulative

windows could be used, it would still exhibit the same smoothing effect however.
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Figure 7.4.1: The results of the moving average model on expected data for the

detection of a transient radioisotope. The black line is the expected data, the coloured

lines for the moving average data.

7.5 Geant4 Model Definition

A model of the flow cell has been produced to examine the impact that a reflective top

layer has on the detection efficiency. This model was written in Geant4 version 10.3

using the CentOS 7 VM. It is built & developed from the model used in Chapter 6.2.

7.5.1 Geant4 Flow Cell Geometry

The geometry employed is an evolution of the heterogeneous simulation from Chap-

ter 6.2. The geometry was again built up from unit cells, although in this chapter

only the square packed is used. The individual unit cell has a substrate with volumes

of water above and beneath. Along with the scintillator spheres at both boundaries.
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These unit cells were then tiled to form a thin cube, which is repeated vertically as

required. These thin cubic layers reside in a hollow aluminium cylinder with an alu-

minium base to simulate the transmission or reflection of the scintillation photons on

the flow cell walls, the experimental detector has this also which behaves as an optical

reflector. Above this is the perspex/PMMA lid and a thin glass cube to represent

the window to the SiPM. The diagram of a layer of the heterogeneous scintillator is

shown in Fig. 7.5.1a, with two repeated layers in Fig. 7.5.1b.

The simulation was run twice to examine the impact that a reflective top surface had

on the scintillation photon distribution, once with the top surface as transparent and

once with it as reflective. For both runs the sphere radius was fixed to 3.5µm, with

1001 unit cells in x̂ & ŷ axes. This number was selected as it was found to lead to a

more stable simulation run, a total of six layers were used. The height of both the

substrate layer and water layer was set to 5mm. The SiPM had a height (ẑ) of 0.5mm

and widths (x̂ & ŷ) of 6mm.
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2.5mm

5mm

Water & Source

Scintillator
Spheres

Substrate

(a) (b)

Figure 7.5.1: Diagram
(
a
)
showing the structure of a single layer of the 2D heteroge-

neous scintillator. This layer contains 4x4 (x̂xŷ) square pack unit cells, the substrate

is shown in white. The scintillator in grey & red and the water and source volume in

blue.
(
b
)
showing the structure of two repeated layers of a heterogeneous scintillator.

This is a 4x4x2 (x̂xŷxẑ) arrangement using the same colour scheme as
(
a
)
. The water

volume is labelled as 2.5mm as it is only half of the height between the layers of

scintillator spheres.
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7.5.2 Beta Source & Materials

The beta source used for this section employs the same histogram definition for the

tritium energy spectrum as previous chapters. The beta source is represented in

Fig. 7.5.1b by the blue cubic volumes.

The materials and their properties were modified from those in Chapter 6.2. The

aluminium is included using the Geant4 NIST definition (2.699 g cm−3) [141], PMMA

defined as C5O2H8, 1.18 g cm−3 [222, 223] and Polycarbonate defined as C16H18O5,

1.21 g cm−3 [224, 225].

The optical properties of Al were assumed to be a reflectivity of 0.9 and electrophoton

efficiency of 0.0. PMMA has a refractive index of 1.49 [223] and absorption length as-

sumed to be 1.0m, Polycarbonate has a refractive index of 1.585 [226] and absorption

length assumed to be 1.0m.

7.5.3 Data Analysis

The data has been analysed in a similar method to Chapter 6.2 in that there was a

running total of the initial kinetic energies of all generated beta particles as well as

summing the total energy deposited into the scintillator from all the beta particles.

The photons were tracked and summed, both the initial number due to scintillation

and the number arriving at the SiPM. The number of initial photons and those arriving

at the SiPM for each event were printed.

For the same reasons as Chapter 6.2 any beta particles generated in a scintillator
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sphere were killed immediately.

7.5.4 Physics Models Employed in Simulation

The physics selected for this section was a modification from Chapter 6.2, the changes

were designed to further increase accuracy. The Livermore models for eIonisation and

eBremsstrahlung were again used, G4EmParameters was called with the minimum

energy set to 10 eV, lowest electron energy 100 eV and the SetIntegral to false. Atomic

de-excitation (G4UAtomicDeexcitation) was enabled along with SetFluo, SetAuger

and SetPIXE being set to true for fluorescence, the Auger effect and particle induced

X-Ray emission.

7.6 Geant4 Results & Discussion

The results from the Geant4 model are shown in Figs. 7.6.1 and 7.6.2. The data

reveals that making the top surface optically reflective makes a significant improve-

ment to the number of photons arriving at the SiPM. These losses are due to the

scintillation photons escaping from the non-reflective surface, and therefore not being

detected by the SiPM. This will improve the detection efficiency due to the increased

number of photons arriving at the SiPM, which is confirmed by the Geant4 results.

No experimental data was collected to compare the Geant4 results with.
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Figure 7.6.1: Simulation data showing the light collection losses by not having the

top surface surrounding the SiPM as reflective.

Figure 7.6.2: Simulation data showing the light collection efficiency when the top

surface surrounding the SiPM is reflective.
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7.7 Conclusions

The data of the perspex and polycarbonate layers show the expected increase in count

rate with the flowing tritium source. Later equipment failure means that there is likely

a systematic error in the static concentration data. The experimental data for the

transient concentration shows only some agreement with the analytical prediction. It

is anticipated that when the flow rate is too low the detector will not fill and therefore

the count rate will never maximise. Instead there will be a broad peak, which is ob-

served. Gradual failure of the SiPM used for detection casts doubt on the validity of

the experimental data, the detection of an unexpected peak at 1.5 h and delayed main

peak offer some validation for this assessment. The two experimental series, static

concentration and transient concentration have not been repeated with a new setup,

therefore it is not possible to verify the associated theory wthout these systematic

errors.

The Geant4 simulation data reveals the importance of a complete optically reflec-

tive flow cell, when the lid was left transparent a significant number of the photons

escaped.



Chapter 8

Conclusions

This final chapter provides an overview of the conclusions gained from this body of

work. Recommendations will also be made regarding the direction of future work on

this topic.

8.1 Thesis Conclusions

• When the tritium is located in water, i.e. tritiated water, it acts as a self-

attenuating volume. This self-attenuation has two main effects on the beta

particle as emitted due to the tritium decay, firstly that the range of the particles

is reduced when compared with a medium that attenuates less, and secondly

that the energy spectrum of those attenuated particles is shifted. This second

result has been demonstrated through Monte Carlo simulation data of a volume

of tritiated water and a single crystal inorganic scintillator. It has also been

141
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verified through an analytical model of the attenuation. This result is important

as any detection of tritium from tritiated water will need to account for this

shift in the energy spectrum in order to discriminate between radioisotopes

via spectra comparison. The same simulation data revealed that a 5µm thick

volume of the tritium was sufficient to replicate an infinitely thick volume of

tritiated water, aiding in simulation design.

• A detector was made using a single crystal inorganic scintillator (CaF2:Eu) and

the associated electronics such as power regulation, pulse shaping and amplifi-

cation.

• The radioisotope and scintillator were modelled using Geant4 Monte Carlo sim-

ulation software, the pulse shaping and amplification was modelled through

circuit analysis and Matlab. Two beta emitting radioisotopes were examined,

with the results show good agreement between the model and experimental de-

tector. This model is then an accurate representation of the detector and can

be refined as the detector improves.

• The most common approach to the fabrication of small particles of CaF2:Eu

is to grow them from a combination of precursor chemicals, however another

method using a mortar and pestle was tested. The data presented shows that

the mortar and pestle method achieved the desired particles size. The size of

particles desired was 3.5µm and the results showed a reasonable agreement.

• Geant4 modelling was used to investigate a novel heterogeneous scintillator
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using 2D planar structure. This focused on the use of small particles of an

inorganic scintillator arranged as a flat layer. This was compared with a single

crystal of the same material in the situation where the source was a volume of

radioisotope in solution. The results revealed that of the three beta emitters

(3H, 14C & 210Pb) simulated, each had an optimal radii of scintillator particle

that 20% more energy was deposited into the scintillator for the heterogeneous

scintillator in relation to the single crystal of equivalent projected surface area.

This was validated experimentally utilising small CaF2:Eu particles fabricated

using the mortar & pestle method.

• Alongside simulation of this 2D planar heterogeneous scintillator 3D closed

packed arrays of spheres were also simulated to act as a comparison. The data

for 2D & 3D scintillators, along with three radioisotopes (3H, 14C & 210Pb)

were normalised using two constants, the maximum track length & maximum

geometrical track length. These being the furthest the beta particle will travel

in the medium, including scattering effects and straight line distance.

• The 3D packed arrays demonstrated that with decreasing radii of the particle,

the percentage of the beta particles energy deposited increases. However the

flow rate prediction showed that the decreasing radii reduces flow rate. By nor-

malising the data, an optimal was found for each radioisotope that maximised

both flow rate and energy deposited.

• The application of a scintillator for the detection of a transient radioisotope

was explored. The analytical theory was paired with an experimental flow cell



CHAPTER 8. CONCLUSIONS 144

featuring repeated layers of the 2D planar scintillator. The results offered some

validation to the theory, showing the predicted lack of a plateau due to the

flow cell not being filled with the tritium source. The results also show the

impact that the sampling window has on the data, which is in agreement with

the numerical prediction. The gradual failure of a key piece of instrumentation

has introduced systematic errors into the experimental results.

• The main conclusion of this thesis is that for the detection of pure beta emitting

radioisotopes in water by inorganic scintillator, a 2D planar heterogeneous scin-

tillator will have 20% more energy deposited than a comparable single crystal.

8.2 Future Work

• The simulations investigating the 2D planar heterogeneous scintillator high-

lighted that the choice of inorganic scintillator did impact the results, this could

be further explored in case there is a normalising factor to explain the data.

• The results for the 2D & 3D heterogeneous scintillator could be explored for

other radioisotopes, including 14C and 210Pb. Other β and α emitters could

also be investigated such as those commonly discharged or leaked into the en-

vironment.

• The normalisation of the heterogeneous scintillator results were more effective

with the 2D planar data than the 3D stacked particles. Additional normalisation

methods might exist that could be as effective with the 3D data as with the 2D
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data, such as scintillator physical properties.

• The results for the transient radioisotope and associated flow cell could be

utilised in the design of a detector that could be field tested. This would also

include the electronic and computational alterations needed for in-situ work.

This would show how the device performs in the real situation, not in a lab.

• Whilst the design of the flow-cell has focused around tritium, due to its inherent

detection challenges, it is worth considering other radioisotopes. Environmental

discharges from nuclear facilities could benefit from a flow-cell that could detect

and discriminate a number of β and possibly α emitters too.



Appendix A

Appendix

A.1 Penetration Lengths

Penetration length data not shown in the earlier Chapter 3.2, below is the remainder

of the data.

146
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Figure A.1.1: Data showing the range of carbon 14 (14C) beta particles in both

water and CaF2:Eu. The data is produced using a simple Geant4 simulation and the

Livermore physics packages. Error bars are plotted but are of small magnitude.

Figure A.1.2: Data showing the range of carbon 14 (14C) beta particles in air. The

data is produced using a simple Geant4 simulation and the Livermore physics pack-

ages. Error bars are plotted but are of small magnitude.
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Figure A.1.3: Data showing the range of lead 210 (210Pb) beta particles in both

water and CaF2:Eu. The data is produced using a simple Geant4 simulation and the

Livermore physics packages. Error bars are plotted but are of small magnitude.

Figure A.1.4: Data showing the range of lead 210 (210Pb) beta particles in air. The

data is produced using a simple Geant4 simulation and the Livermore physics pack-

ages. Error bars are plotted but are of small magnitude.
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Figure A.1.5: Data showing the range of chlorine 36 (36Cl) beta particles in both

water and CaF2:Eu. The data is produced using a simple Geant4 simulation and the

Livermore physics packages. Error bars are plotted but are of small magnitude.

Figure A.1.6: Data showing the range of chlorine 36 (36Cl) beta particles in air.

The data is produced using a simple Geant4 simulation and the Livermore physics

packages. Error bars are plotted but are of small magnitude.
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A.2 SiPM Bias Circuit

The following is the circuit diagram showing the method used to provide the bias

voltage to the SiPM. This biasing method has been employed in Chapters 4.2. In

this diagram the thick dashed line represents the SiPM, with the common cathode

above and anode below. Whilst there are a few biasing circuits available this one was

selected as the VBias is positive and the output pulse is with reference to 0V. In

this setup the Fast Out is left floating and only the Standard Out is used, labelled

Output.
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Figure A.2.1: SiPM voltage bias circuit, adapted from [227]. The SiPM is represented

by the thick dashed line and the representation has been simplified to only a single

diode, resistor and capacitor.

A.3 Attenuation Numerical Prediction

The following is taken verbatim from the article [151] and covers the numerical pre-

diction of the attenuated energy spectrum of tritium for Chapter 4.4, the figures have

been removed.
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Figure A.3.1: ”Geometry of β-particle interaction from a volume of tritiated water,

dV, to an area on the scintillator dS. d is the shortest distance from dV to dS and n̂

is the unit vector from dV to dS”[151].
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Figure A.3.2: ”Probability mass functionof the relative intensity of β-particles emitted

with a given initial kinetic energy Ti. The red line denotes the continous relative

distribution N(T). Note k=20 for this figure, although it was 1000 during subsequent

calculations”[151].
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Consider a cylinder scintillator in contact with the surface of a volume of tritiated

water with activity density A. The scintillator has a radius R and length h. An el-

emental volume of the tritiated water, where dV=dxdydz see Fig. A.3.1, emits beta

particles in all directions with equal probability. The attenuation and scattering of

the beta particles as it travels through the water is captured to first order by a linear

attenuation coefficient (in cm−1), denoted by µ. Use of this coefficient assumes an

exponential decrease in kinetic energy as the particle travels through the medium

[228]. The rate of flux, Φ, of beta particles passing through area dS on the scintilla-

tor surface is the product of the number of beta particles emanating from volume dV

per second per steradian and the solid angle subtended by the area element and the

exponential attenuation factor:

dΦ = (
AdV
4π

)
n̂ · d2

d2 (e−µd) =
Ae−µd

4πd2 n̂ · dSdV (A.3.1)

d is the shortest distance from dV to dS and n̂ is the unit vector from dS to dV. Setting

the base of the scintillator to be perpendicular to the z-axis as shown in Fig. A.3.1, an

elemental area on the base, positioned at (x,y,0), can be denoted as dS=(0,0,1)dxdy.

The rate of flux of beta particles emanating from volume dV and reaching area dS is

therefore:

dΦ =
Ae−µd

4πd2 n̂dSdV =

Az1exp
(
− µ[(x − x1)

2 + (y − y1)
2 + z2

1]
1
2

)
4π[(x − x1)2 + (y − y1)2 + z2

1]
3
2

dxdydz

(A.3.2)

Therefore the total flux of beta particles that can reach the base of the scintillator is:
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ΦD =
∫ 0

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ R

−R

∫ √
R2−x2

−
√

R2−x2

Az1exp
(
− µ[(x − x1)

2 + (y − y1)
2 + z2

1]
1
2

)
4π[(x − x1)2 + (y − y1)2 + z2

1]
3
2

dxdydx1dy1dz1

(A.3.3)

In practice, as the energy of the beta particles is small, numerical integration of

Eq. A.3.2 can be over a much smaller domain (i.e. non-infinite) than suggested and

still get accurate results. To simply this integral, the axisymmetry of the problem

can be exploited by setting x = rcosϕ,y = rsinϕ,dxdy = rdrdϕ, x1 = r1cosϕ1,y1 =

r1sinϕ1,dx1dy1 = r1dr1dϕ1 yielding:

ΦD =
∫ 2π

0

∫ 2π

0

∫ Rv

0

∫ R

0

∫ 0

−Hv

Arr1z1exp
(
− µ[r2 + r2

1 − 2rr1cos(ϕ − ϕ1) + z2
1]

1
2

)
4π[r2 + r2

1 − 2rr1cos(ϕ − ϕ1) + z2
1]

3
2

dz1drdr1dϕdϕ1

(A.3.4)

This integral becomes singular when r2 + r2
1 − cos(θ) + z2

1 = 0 making it difficult

to solve using brute force Monte Carlo and quadrature integration methods. This is

because when z1 → 0 and cos(θ) → 1, the integral becomes singular when r → r1

which is an area inconveniently in the middle of the domain of integration preventing

good convergence using the previously mentioned methods. However, the Vegas algo-

rithm [229] which utilises both importance sampling and adaptive stratified sampling

as implemented in Python using the Vegas 3.0 algorithm [230] yields satisfactory

results. The mass attenuation was determined using the built in cross section files,
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the mean free path and therefore the mass attenuation can be determined. The mass

attenuation is a function of the initial kinetic energy of the beta particle. The mass

attenuation can be calculated from Geant4 using the mean free path data at various

energies, when fitting to this data a standard power-law relationship is observed:

(
µ

ρ

)
=

1.28
T1.74 (A.3.5)

where T is the initial kinetic energy of the beta particle in MeV and ρ is the den-

sity of water g cm−3. The coefficient in Eq. A.3.6 are 1.28±0.0390 and 1.74±0.0061

respectively where the errors denote a 95% confidence level. The coefficient of deter-

mination [231] for the fit is 0.938 (see Fig. 4.4.4). The beta particles are emitted from

the tritiated water with a spectrum of possible energies as shown in Fig. A.3.2. This

can be conveniently presented by a probability mass function so that the ith group of

beta particles can be treated as a monoenergetic beam with initial kinetic energy:

Ti =
Q
k

(
i − 1

2

)
(A.3.6)

here Q is the maximum kinetic energy (18.59 keV) and k is the total number of groups.

The relative emitted intensity, i.e. the proportion of beta particles that are emitted

with kinetic energy Ti can be shown to be:

Ii =

∫ T
i+ 1

2
T

i− 1
2

N(T) dT∫ Q
0 N(T) dT

(A.3.7)

where N(T) is the energy spectrum for tritium. In this way, the energy spectrum can

be represented in Fig. A.3.2. The flux on the scintillator surface due to beta particles
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of initial kinetic energy Ti being emitted over the entire volume of tritiated water is

therefore:

Φi =
∫ 2π

0

∫ Rv

0

∫ R

0

∫ 0

−Hv

AIirr1z1exp
(
− µ[r2 + r2

1 − 2rr1cos(θ) + z2
1]

1
2

)
2[r2 + r2

1 − 2rr1cos(θ) + z2
1]

1
2

dz1drdr1dθ

(A.3.8)

The total flux is defined simply as:

ΦT =
k

∑
i=0

Φi (A.3.9)

The attenuated energy spectrum of the beta particles colliding with the scintillator

surface is:

NA =
k

∑
i=0

(
TiΦi

1
n

n

∑
j=0

exp(−µidj)

)
(A.3.10)

for all dj. This can be calculated by randomly generating a list of n (where n is very

large, here 106 was used) pairs of coordinates, where one set of coordinates spans the

whole volume of tritium and the other set is over the entire surface of the scintillator.

A.4 Heterogeneous Scintillator Fabrication

This chapter presents the remainder of the data from Chapter 5.3.2.
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Figure A.4.1: Raman results of the spray deposited CaF2:Eu onto a 200 ◦C hot plate,

which were annealed at 700 ◦C.

Figure A.4.2: Raman results of the spray deposited CaF2:Eu, which were annealed at

700 ◦C.
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Figure A.4.3: Raman results of the spray deposited CaF2:Eu, which were annealed at

700 ◦C.

321 cm−1

Figure A.4.4: Raman spectra of the CaF2 samples spray desposited at 150 ◦C and

annealed at 700 ◦C with annealing times shown.
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321 cm−1

Figure A.4.5: Raman spectra of the CaF2 samples spray desposited at 200 ◦C and

annealed at 700 ◦C with annealing times shown.

321 cm−1

Figure A.4.6: Raman spectra of the CaF2 samples spray desposited at 250 ◦C and

annealed at 700 ◦C with annealing times shown.



APPENDIX A. APPENDIX 161

321 cm−1

Figure A.4.7: Raman spectra of the CaF2 samples spray desposited at 300 ◦C and

annealed at 700 ◦C with annealing times shown.

321 cm−1

Figure A.4.8: Raman spectra of the CaF2 samples spray desposited at 350 ◦C and

annealed at 700 ◦C with annealing times shown.
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321 cm−1

Figure A.4.9: Raman spectra of the CaF2 samples spray desposited at 400 ◦C and

annealed at 700 ◦C with annealing times shown.

A.5 Heterogeneous Scintillator Simulation

This chapter contains the remaining Geant4 simulation results investigating hetero-

geneous scintillator normalisation from Chapter 6.7 & 6.9 respectively.

A.5.1 2D Structure Results
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Figure A.5.1: The results of the Geant4 2D single crystal and heterogeneous scintil-

lator simulations using the 3H, 14C & 210Pb. These results are normalised using the

Mean Track Length values.
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Figure A.5.2: The results of the Geant4 2D single crystal and heterogeneous scintil-

lator simulations using the 3H, 14C & 210Pb. These results are normalised using the

Geometric Mean Track Length values.
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Figure A.5.3: The results of the Geant4 2D single crystal and heterogeneous scintil-

lator simulations using the 3H, 14C & 210Pb. These results are normalised using the

Harmonic Mean Track Length values.
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Figure A.5.4: The results of the Geant4 2D single crystal and heterogeneous scintil-

lator simulations using the 3H, 14C & 210Pb. These results are normalised using the

Median Track Length values.
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Figure A.5.5: The results of the Geant4 2D single crystal and heterogeneous scintil-

lator simulations using the 3H, 14C & 210Pb. These results are normalised using the

Mean Geometric Track Length values.
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Figure A.5.6: The results of the Geant4 2D single crystal and heterogeneous scintil-

lator simulations using the 3H, 14C & 210Pb. These results are normalised using the

Geometric Mean Geometric Track Length values.
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Figure A.5.7: The results of the Geant4 2D single crystal and heterogeneous scintil-

lator simulations using the 3H, 14C & 210Pb. These results are normalised using the

Harmonic Mean Geometric Track Length values.



APPENDIX A. APPENDIX 170

Figure A.5.8: The results of the Geant4 2D single crystal and heterogeneous scintil-

lator simulations using the 3H, 14C & 210Pb. These results are normalised using the

Median Geometric Track Length values.
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A.5.2 3D Structure Results

Figure A.5.9: Results of the Geant4 3D heterogeneous scintillator simulation using

3H, 14C & 210Pb. These results are normalised using the Mean Track Length.
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Figure A.5.10: Results of the Geant4 3D heterogeneous scintillator simulation using

3H, 14C & 210Pb. These results are normalised using the Geometric Mean Track

Length.
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Figure A.5.11: Results of the Geant4 3D heterogeneous scintillator simulation using

3H, 14C & 210Pb. These results are normalised using the Harmonic Mean Track

Length.

Figure A.5.12: Results of the Geant4 3D heterogeneous scintillator simulation using

3H, 14C & 210Pb. These results are normalised using the Median Track Length.
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Figure A.5.13: Results of the Geant4 3D heterogeneous scintillator simulation using

3H, 14C & 210Pb. These results are normalised using the Mean Geometric Track

Length.
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Figure A.5.14: Results of the Geant4 3D heterogeneous scintillator simulation using

3H, 14C & 210Pb. These results are normalised using the Geometric Mean Geometric

Track Length.
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Figure A.5.15: Results of the Geant4 3D heterogeneous scintillator simulation using

3H, 14C & 210Pb. These results are normalised using the Harmonic Mean Geometric

Track Length.
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Figure A.5.16: Results of the Geant4 3D heterogeneous scintillator simulation using

3H, 14C & 210Pb. These results are normalised using the Median Geometric Track

Length.
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A.6 Flow Cell Scintillator Fabrication

The scintillators for these experiments were manufactured as two sets of scintillator

discs. The first as a set of three 4mm thick perspex discs, 4 cm in diameter, with

the gap between the layers as 8mm. The second set was twelve polycarbonate discs

of 1mm thick, 4 cm in diameter and the gap between them as 1mm. The CaF2:Eu

powder for both of these was made through the same process as Chapter 6.4. The pro-

cess used to form the thin layer involved a thin layer of an acrylic adhesive EvoStik

ExtruFix, a metallic grating was utilised through which the powder was deposited

onto the disc, and repeated to cover both sides. The polycarbonate discs were fur-

ther processed by the use of 3M Scotchbright 7447 handpad to enhance the optical

transparency of each disc, the transparency was not measured.

A.7 Transient Radioisotope

This section is taken verbatim from the article [211]. This theory is used in Chap-

ter 6.8 for prediciting the flow rates of packed volumes, this theory is also used to

underpin how to detect a transient radioisotope which is employed in Chapter 7.2.1.

Consider the scenario in Fig. A.7.1, whereby a detector comprised of a porous het-

erogeneous scintillator is being used to monitor the concentration of beta particle

emitting radionuclides in an open channel, such as a river. At some past time, con-

taminated water was released into the channel. This contaminated water contains

a concentration, C0, of a beta particle emitting radionuclide such as tritium. The



APPENDIX A. APPENDIX 179

contamination is assumed to flow as a plug of width, w, at a velocity, v. Note that

this neglects issues such as dispersion, evaporation, decay etc. but the conclusions

apply quite generally.

Figure A.7.1: ”Top row depicts schematics of the fill level of a porous scintillator-

based detector at various times, i.e. (a) before exposure, (b) during exposure where

the detector is filling up with contaminated water and (c) after exposure where the

detector is draining but still contains contaminated water. Bottom figure shows the

effective concentration as measured by the detector at different times assuming both

high and low flow rates though the detector.” [211].

Naturally, what is desired is for the detector to measure the true concentration of

the contaminated water. However, the detector is only exposed to the contamination

for a finite time, Te=te-t0=w/v (assuming the length/diameter of inlets to be negli-

gible) and the detector takes a finite time to fill, t f=V/Q, where Q is the flow rate
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through the porous scintillator, see Fig. A.7.1. If the flow rate into the flow cell is too

slow, then it is possible that the detector may never read the true concentration of

the contamination. This may be the case for 3D packed structures comprised of very

small particles. The volume of contaminated water in the detector at a given time is:

Vt(t) =



i f t f > Te Q · (t − t0) f or t0 < t ≤ te

otherwise Q · (t − t0) f or t0 < t ≤ t f

V f or (t0 + t f ) < t ≤ t f

Vt(te)− Q · (t − te) f or t > te

0 f or t < t0 and t > (te + t f )

(A.7.1)

The flow rate through the porous scintillator is given by the Carman-Kozeny equation

[217, 218]:

dp
dx

= − 150µ

Φ2D2
p

(1 − ϵ)2

ϵ3 u (A.7.2)

where dp⁄dx and u is the pressure gradient and mean flow velocity through the porous

scintillator respectively, µ is the viscosity of the fluid, taken here to be effectively water

so that µ = 1.002mPa s−1, ε� is the scintillator porosity (ε = 0.476 for cubic packed

spheres), Φ is the sphericity which equals 1 and Dp is the mean scintillator particle

diameter.

If C0 [mol L−1] is the concentration of the radionuclide in the contaminated water and

the specific radioactivity is [81]:

a[Bq/g] =
1.32 × 1016[mol−1]

T1/2[year]× m[gmol−1]
(A.7.3)

where T1/2 is the half-life of the radionuclide and m is its mass number, the activity
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measured by the detector as a function of time is:

A[Bq] = Vt(t)[L]× C0[molL−1]× m[gmol−1]× a[Bqg−1] (A.7.4)

As an example, consider a river following at 1m s−1 contaminated by 0.1 nmol of tri-

tiated water such that it forms a plug 100m long (exposure time of Te = 100 s). The

mass number and half-life of tritiated water is 22.0315 gmol−1 and 12.3 years respec-

tively and so it has a specific activity of 4.87× 1013 Bq g−1. At this concentration,

the activity per volume will be 107.3 kBqL−1, which is at dangerous levels. Let the

scintillator be 100mm x 100mm x 100mm (V = 1L) in size and comprised of cubic

packed spherical particles of diameter 10µm so that the maximum water volume in

the scintillator is ε.V = 0.476 L. Let the pump apply 10 kPa across the scintillator

(a low pressure as not to cause loss of the scintillator material). In this case, by

rearranging Eq. (A.7.2), the flow velocity through the scintillator can be found to be:

u =
dp
dx

D2
pϵ3

150µ(1 − ϵ)2 = 2.94 × 10−5ms−1 (A.7.5)

Multiplying this velocity by the cross-sectional area of the scintillator gives the flow

rate. In this case Q = 0.29mL s−1 and so filling time, t f = 1618 s. The filling of the

flow cell and the monitoring of the activity within the flow cell will be continuous and

simultaneous, as the experimenter will not know when the contamination will reach

and leave the flow cell. In this scenario, the detector never completely fills up with

contaminated water and so the maximum measured count rate would be 3.16 kCPS

(1.62 kCPS average counts over t0<t<t0+te+Vt (te)/Q) while the maximum possible

expected total counts would be 51.08 kCPS (neglecting detection inefficiencies and
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attenuation effects). Therefore, to the experimenter, the contamination would ap-

pear to have a triangular profile over 200 s with an average and peak concentration

of 3.17 pmol and 6.19 pmol respectively, far from the constant 0.1 nmol concentration

for 100 s that is expected. However, if the scintillator particles had a mean diameter

of 100µm the fill time would be much reduced (t f = 16.2 s) so it would be completely

filled by contaminated water. Therefore, the maximum possible measured count rate

would be 51.08 kCPS as expected with an average count rate of 46.68 kCPS. The

experimenter would therefore see a near constant contamination concentration of

0.1 nmol for 80 s with an average of 0.091 nmol over 120 s which is much closer to the

actual value.
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