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Abstract

In this paper we report results from an economic experiment where we investigate the

predictive performance of dynamic ambiguity models in the gains domain. Representing

ambiguity with the aid of a transparent and non-manipulable device (a Bingo Blower) and

using two-stage allocation questions, we gather data that allow us to estimate particular pa-

rametric forms of the various functionals and compare their relative performance in terms

of out-of-sample fit. Our data show that a dynamic specification of Prospect Theory has the

best predictive capacity, closely followed by Choquet Expected Utility, while multiple pri-

ors theories can predict choice only for a very restricted subset of our subjects.
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1 Introduction

Many everyday economic life activities involve decision making under some form of uncer-

tainty, either objective (risk) or subjective (ambiguity). Moreover, decisions usually are charac-

terised by a dynamic (sequential nature), in the sense that the decision maker needs to make

a series of choices, while gradually she acquires additional, partial information about the state

of nature, between choices, that allows her to update her prior beliefs. The standard theory

of behaviour under uncertainty in a dynamic framework, Subjective Expected Utility (SEU), is

based on three main assumptions regarding decision makers’ behaviour: (1) they form well-

defined subjective beliefs to describe ambiguous situations; (2) they are ambiguity neutral, in

the sense that ambiguity has no impact on their choices and; (3) they update their subjective be-

liefs applying Bayes rule. Nevertheless, the thought experiments proposed in Ellsberg (1961)

challenged the two first assumptions. The direct consequence of this was a growing strand

of literature to emerge, aiming to theoretically model non-Expected Utility (see Etner et al.

(2012) and Machina and Siniscalchi (2014) for a review of the theoretical models) along with

the generation of considerable experimental evidence confirming the existence of non-neutral

ambiguity attitudes (see Hey (2014) and Trautmann and van de Kuilen (2015) for a review of

the experimental literature).

However, Gilboa and Schmeidler (1993) argue that in order for a model to be theoreti-

cally valid, it should be able to successfully cope with the dynamic aspect of the choices.

Consequently, a complementary line of research appeared in the literature, trying to recon-

cile ambiguity non-neutral attitudes and conditional preferences. A common feature of all

these non-Expected Utility models is that they relax in one way or another one of the principle

axioms that Savage (1954) used in order to characterise preferences, the famous postulate P2,

also known as the Sure-Thing Principle. When one considers decisions in a dynamic frame-

work, the Sure-Thing Principle is equivalent to two rationality axioms, dynamic consistency (the

ex-ante preferences coincide with the ex-post) and consequentialism (only residual uncertainty

and available outcomes matter). Furthermore, Ghirardato (2002) provides a well-established

result, that when both axioms are simultaneously satisfied, preferences are represented by the

Subjective Expected Utility model, and conditional beliefs are formed according to Bayes rule.

Consequently, violation of the Sure-Thing principle in a dynamic context implies violation

of either the dynamic consistency or the consequentialism axiom, and thus deviations from

Bayesian updating. As a result, and since there is still no consensus regarding which axiom

should be adopted, two kinds of extensions of the static ambiguity models have been pro-

posed in the literature to capture dynamic choice and conditional beliefs. Those that satisfy
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consequentialism (Gilboa and Schmeidler (1993), Pires (2002), Wang (2003), Eichberger et al.

(2007), Eichberger et al. (2010) and Siniscalchi (2011) among others) and those that satisfy dy-

namic consistency (Epstein and Schneider (2003), Klibanoff and Hanany (2007), Hanany and

Klibanoff (2009) and Klibanoff et al. (2009) among others)1.

It is however interesting, the fact that while the experimental literature comparing the va-

rious theoretical models of choice under ambiguity in an atemporal framework is quite deve-

loped (see section 2), there is a shortage of empirical evidence comparing dynamic ambiguity

models. This is a gap that the present study aspires to bridge. To this end, we report the results

from an economic experiment where using a sequential decision task, we compare dynamic

ambiguity models.

Representing ambiguity with the aid of a transparent and non-manipulable device, a Bingo

Blower and using two-stage allocation questions with an interim stage that allows for updating

of beliefs, we are able to compare the predictive (out-of-sample fit) power of various dynamic

ambiguity models. The predictive performance of the models is based on structural parame-

ters which are estimated for each model and for each subject, using Hierarchical Bayes esti-

mation techniques on a subset of the data. The out-of-sample fit comparison, tests the ability

that each specification has to predict behaviour (allocations) in the subset of the data that has

not been included during the estimation of the parameters. We can then rank models based on

their relevant predictive power.

We therefore compare the predictive power of the dynamic version of the most commonly

used models, including the Savage (1954) Subjective Expected Utility (SEU), which we use as

a benchmark model, the Gilboa and Schmeidler (1989) Maxmin Expected Utility (MEU), the

Ghirardato et al. (2004) α-Maxmin Expected Utility (α-MEU), the Schmeidler (1989) Choquet

Expected Utility (CEU), the Chateauneuf et al. (2007) CEU model with neo-additive capacities

(CEUNEO) and the Tversky and Kahneman (1992) Cumulative Prospect Theory (PT). For all the

aforementioned models (with the exception of PT), well-defined update rules have been pro-

posed in the literature in order to define conditional preferences. Hence, our analysis allows us

to conduct comparisons across different theoretical models2, as well as across different update

rules within a particular theoretical model. Adopting the results from the recent experimental

literature, in our analysis we do not consider models that preserve the assumption of dynamic

consistency. Dominiak et al. (2012) reported extensive violations of the dynamic consistency

axiom. Furthermore, our data show that for at least 70% of the observed choices, subjects

1 Siniscalchi (2011) and Machina and Siniscalchi (2014) provide extensive reviews of the theoretical literature of
dynamic ambiguity models.

2We analytically present all the rules we consider in section 4.
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behave in a dynamic inconsistent way and therefore such models would poorly describe or

predict behaviour.

To the best of our knowledge, this is the first study to experimentally test the predictive

power of dynamic models under ambiguity. Our contribution can be summarised as follows:

(1) we provide the first experimental test to compare the various ambiguity models in a dyn-

amic framework; (2) we provide the first experimental comparison on the various rules that

have been proposed for the updating of Choquet capacities as well as neo-additive Choquet

capacities; (3) we perform the first empirical test of Prospect Theory in a dynamic framework

under ambiguity and; (4) we use the estimates obtained by the fitted models in order to test the

predictive power of the various theories. The following are our key results: (1) the rank depen-

dent family of models (PT and CEU) performs much better compared to the multi-priors model

(MEU and α-MEU) in terms of their predictive capacity; (2) Prospect Theory wins all other mo-

dels as far as out-of-sample fit is concerned; (3) within the Choquet Expected Utility model, the

Generalised Bayesian updating rule best explains behaviour while the Dempster-Shaffer rule

performs better within the neo-additive Choquet capacities specification; (4) within the Pro-

spect Theory family, the specification assuming a Prelec (1998) 2-parameter weighting function

provides the best fit and; (5) Choquet Expected Utility and Prospect Theory are better in pre-

dicting behaviour compared to the competing models.

2 Related Literature

As the objective of our study is to compare dynamic models of ambiguity, we split this section

in two parts, one where we survey studies that compare atemporal ambiguity models and

one where we review the experimental work on dynamic choice under ambiguity. One of the

first and most comprehensive studies to compare ambiguity models, in a static framework,

is Hey et al. (2010) who investigate the descriptive and predictive power of several models.

They find evidence in favour of the multiple prior models and show that a more complicated

theoretical structure does not improve the capacity of the models. Kothiyal et al. (2014) re-

analyse the data of Hey et al. (2010) including a version of Prospect Theory that has not been

used in the analysis of the original study. They find that Prospect Theory provides the highest

predictive power against the CEU model, as well as against the multiple prior ones. Hayashi

and Wada (2010) also report evidence against the multiple prior models (MEU and α-MEU).

Hey and Pace (2014) using an allocation decision task, compare the explanatory and predictive

ability for the most commonly used ambiguity models. They find supporting evidence for

the Vector Expected Utility model and for SEU and to lower degree for α-MEU and CEU.
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Ahn et al. (2014), using a portfolio choice problem, compare two main families of models, the

kinked (multiple prior models) and the smooth, reporting evidence in favour of the former. On

the contrary, Cubitt et al. (2014) investigating preferences for randomised acts, compare two

models, namely the α-MEU and the smooth model, finding supporting evidence for the latter.

Recently, Baillon and Bleichrodt (2015) compare the in-sample capacity of various ambiguity

models, in both the gains and the losses domain, using matching probabilities to elicit beliefs.

They find supporting evidence for Prospect Theory and to a lesser extend for α-MEU and CEU.

The experimental literature on dynamic choice under ambiguity, on the other hand, is quite

limited. Cohen et al. (2000) and Dominiak et al. (2012), both investigate behaviour in the dy-

namic, 3-colour Ellsberg paradox, using a similar experimental design. The former study as-

sumes multiple prior preferences and investigates which updating rule, between the two that

have been proposed for this family of models (Maximum Likelihood Updating and Full Bay-

esian Updating) best explains behaviour. The authors assume that participants satisfy conse-

quentialism and their analysis provides support to the Full Bayesian updating rule. Dominiak

et al. (2012) relax the assumption of consequentialism and they indeed study whether subjects

behave according to dynamic consistency or consequentialism. They report extensive viola-

tion of dynamic consistency and they also replicate the dominance of the Full Bayesian rule.

Corgnet et al. (2013) in an experimental asset market under ambiguity, study how traders re-

act when dividend information is sequentially revealed . They find that the role of ambiguity

cannot explain financial anomalies. However, they do not consider any particular preference

functional or updating rule in their analysis. Two recent studies Georgalos (2016) and De Fi-

lippis et al. (2016) report extensive violations of Bayesian updating in different contexts. The

former investigates heterogeneity in the planning strategies of decision makers, while the lat-

ter studies behaviour in a social learning experiment. Both assume some kind of multiple prior

preferences along with their corresponding updating rules3.

It is difficult to directly compare our study with the aforementioned experimental work,

since none of these studies performs a comparison between competing theories and updating

rules, as they either assume a specific preference functional to represent preferences (e.g. MEU)

or they do not assume any preferences at all. As a consequence, the only comparison that has

been done to date, is between the two updating rules that have been proposed for the MEU

model, namely the Full Bayesian and the Maximum Likelihood updating rule (see subsection

4.2). Our analysis differs from these studies in that using structural econometric techniques,

3Two recent studies (Baillon et al. (2017) and Peysakhovich and Karmarkar (2016)) investigate how additio-
nal information affects choice in a decision task under ambiguity. Nevertheless, none of these studies explicitly
considers updating of ambiguous beliefs.
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we consider a battery of preference functionals and updating rules, we test the predictive ca-

pacity of these models, we represent ambiguity using a Bingo Blower, thus deviating from the

standard Ellsberg-type experiments, we ask a large number of questions per subject and finally

we consider heterogeneity, both within and between subjects (see section 5).

3 Experimental Design

Our experimental design is an extension of the design used in Hey and Pace (2014) to its dy-

namic dimension. As was previously noted, we represented ambiguity using a transparent

device, a Bingo Blower4, and we used a set of two-stage allocation questions. In our expe-

rimental protocol, there were three payoff relevant, mutually exclusive states of the world.

Inside the transparent Bingo Blower, there were 20 balls in total, of three different colours

(pink, blue and yellow), representing the three potential states of the world. The balls were in

continuous motion and the actual composition of the Bingo Blower consisted of 4 blue (20%),

6 pink (30%) and 10 yellow (50%) balls out of the total 20. The advantage of this device is that

although there exist objective probabilities, known only to the experimenters, the subjects lack

this information and they somehow form subjective beliefs, regarding the probabilities of the

three states of the world, that may not be known to them in a conscious way. That is, while

they can observe that there is at least one ball of each colour (lower bound probability), it is

almost impossible to be able to identify the exact composition of the Bingo Blower, generating

in this way genuine ambiguity. During the experiment, the subjects could observe the physical

Bingo Blower placed in the middle of the lab, as often as they wished, and they could also

consult live streaming of the blower projected in two large screens in the front of the lab.

We asked subjects a series of two-stage allocation questions. Each allocation question con-

sists of an experimental income m, expressed in tokens, and an exchange rate es for each of the

possible states of the world, with s ∈ {blue, pink, yellow}. At the first stage, the subjects were

asked to allocate their experimental income between the three colours, knowing that at the end

of the second stage, one ball would be extracted from the Bingo Blower, and the payoff would

be the product between the tokens allocated to this colour and its respective exchange rate.

Then, there was an intermediate stage, where the subjects would obtain partial information

that a ball was extracted, but they wouldn’t learn the exact colour of the ball. For example,

the subjects would learn that “the ball is not blue”. Then, all the tokens allocated to the blue

colour were lost and the subject was given the opportunity to make a new allocation, using

4A similar Bingo cage has been used by Andersen et al. (2012) and the Bingo Blower has been used by Hey et al.
(2010) and Hey and Pace (2014), all in static choice problems.
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the remaining experimental income, to the two available colours, pink and yellow5. This was

repeated for a total of sixty, independent allocation questions, where each question included a

different experimental income ranging from 9 to 110 tokens, and different exchange rates for

the three colours, ranging from 0.1 to 1.8.6 All subjects faced the same set of allocation questi-

ons, presented in a randomised order for each subject, in an effort to eliminate potential order

effects. The subjects realised their allocations, using sliders that were interconnected with each

other. Consequently, subjects were forced to spend their whole experimental income to the

three colours and there was no possibility to invest on a safe asset (keep money on hand), save

for the next round or borrow. All the allocations were recorded in integer values in an effort to

reduce noise in the data that could have been caused due to difficulties that the subjects might

have while operating the software.

Since we are interested in the updating process of subjective beliefs, we needed a way to

elicit these beliefs. Rather than asking subjects to state their beliefs, using some kind of scoring

rule or matching probabilities, we infer those, based on the revealed allocations of the subjects.

Asking subjects two-stage allocation questions, allows to observe both the ex-ante and the ex-

post allocations. Generally, it is claimed in the literature, that data from allocation tasks can be

richer regarding the provided information, compared to discrete choice data. Allocation type

questions were pioneered in Loomes (1991) and have been afterwards exploited in various

contexts7. Asking subjects to make decisions in a continuous action space, allows us to estimate

beliefs (and therefore test updating rules) using a structural econometric model (see section 5).

In total, fifty-eight subjects (52% females) were recruited from a standard student expe-

rimental population, using the ORSEE recruitment system (Greiner (2015)). The experiment

was conducted at the EXEC lab at the University of York (U.K.). The experiment lasted for

5As was mentioned before, our design is an extension of Hey and Pace (2014) to its dynamic dimension. Nevert-
heless, apart for the difference regarding the time of periods of each allocation task, there is another fundamental
difference that we should mention. Hey and Pace (2014) use two types of problems. In type 1 they ask subjects
to allocate experimental income between two of the colours (implying a zero allocation to the third colour). In
type 2, they asked subjects to allocate the tokens between one of the three colours and the other two. These type
of questions reduce the problem to a two-way allocation problem. Since we need to introduce an interim stage,
and compare allocations ex-ante and ex-post, we rather ask subjects to explicitly make allocations between the three
colours.

6The set of questions was chosen after extensive Monte Carlo simulations that were conducted in order to verify
both the possibility to discriminate between different theoretical models, and also to confirm that it is possible to
recover the value of the underlying behavioural parameters that were used for these simulations (see Wilcox (2007)
and Wilcox (2008)). We deliberately varied both the experimental income and the exchange rates in an effort
to increase the identification power and robustness of our econometric estimation. Varying the income allows a
better identification of the shape of the utility function, while varying the exchange rates, ensures that the ranking
between outcomes in not the same for all the problems, which can potentially provide more information regarding
the subjects’ preferences. All the relevant information was provided via the experimental interface to ensure that
confusion is minimised.

7See Choi et al. (2007), Charness and Gneezy (2010), Hey and Panaccione (2011), Ahn et al. (2014), Hey and Pace
(2014), Loomes and Pogrebna (2014). See Loomes and Pogrebna (2014) for an extensive discussion on the allocation
procedure.
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less than one hour and the subjects were paid privately and in cash directly after the end of

the experiment. Subjects gained on average £14.16 including a show-up fee of £2.5. The maxi-

mum payment was £25.5. We collected the data using a custom developed for the experiment

software, written using the Python programming language.8

Subjects were paid according to a random incentive mechanism, where one of the alloca-

tion questions was played for real. In order to prevail subjects from learning the actual com-

position of the Bingo Blower9, we informed participants, that no actual draws will take place

during the experiment, but instead, hypothetical draws, and subsequently hypothetical par-

tial information would be announced to subjects10. A draw was realised individually for each

subject at the end of the experiment to determine the payoffs, in a randomly chosen question.

If for example, for the allocation question that was played for real, the information ”the ball

is not blue” was revealed during the experiment, the subject would continue drawing balls,

till an either pink or yellow ball was expelled. This ball defined the “winning” colour, and

the subject was paid the amount of tokens that she had allocated to this colour multiplied by

the corresponding exchange rate. Recent theoretical studies (Oechssler and Roomets (2014),

Bade (2015), Baillon et al. (2015)) challenge the incentive compatibility of the random incentive

mechanism, arguing that an ambiguity averse agent may not reveal her true preferences in an

effort to hedge against ambiguity. Nevertheless, this result is based on a series of assumptions,

such that ambiguity is represented by the Ellsberg urn, the choice task is discrete and the sub-

jects know ex-ante what the payoffs will be. However, it is not straightforward how this could

affect our design, since in our experiment, there was no way for subjects to contemplate what

the next allocation question will be, and therefore there was no space for hedging.

4 Theoretical Models Under Investigation

In this section we present all the preference functionals that we include in our analysis. All

the models that we consider share a common feature, that is, they separate tastes (utility) from

beliefs. Consequently, they differ in two main characteristics, the representation of beliefs and

8Python Software Foundation. Python Language Reference, version 2.7. Available at http://www.python.org.
9Conducting actual draws from the Bingo Blower, would change the nature of the research question, as in this

case, subjects would continuously obtain information on the actual distribution and instead of updating, we would
need to focus on learning models under ambiguity (see Marinacci (2002), Epstein and Schneider (2007), Epstein
et al. (2010)). We leave this for future research.

10The computer was programmed to draw i.i.d. virtual balls from a uniform distribution. Then it would an-
nounce that the ball is not one of the two remaining colours with equal chances. For instance, if a ball was blue, it
would announce that the ball is not pink with probability 50% and not yellow with the residual probability. In a
pilot session we implemented virtual draws from the actual distribution. Nevertheless, this could allow subjects
to learn the actual composition based on the empirical distribution. To avoid this kind of effects, we resorted to the
uniform distribution. The information that the subjects received on average was “not blue” 34.54%, “not yellow”
34.36% and “not pink” 31.09%.
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the way that these beliefs are updated in the light of new information. For all the models, we

follow Al-Najjar and Weistein (2009) and we assume that our subjects perform fact based up-

dating11. This assumption is in line with the available experimental evidence (Dominiak et al.

(2012) and the present study, where subjects extensively violate dynamic consistency.12 In our

experimental design, there are three mutually exclusive potential states of nature and the de-

cision maker faces ambiguity regarding which state will happen. We represent this ambiguity

with a state-space S, and we define subsets E of S to represent events. In our experiment there

are potentially three events (the ball is either blue, yellow or pink) and we denote these events

as Eb, Ey and Ep. We also define the three possible unions between two events. For instance,

Eb ∪ Ey, indicates the event where the ball is either blue or yellow. To keep the analysis alig-

ned to the spirit of our experimental design, the latter union event can be also written as E¬p,

implying that the ball is not pink. Finally, in all the subsequent preference functionals, utility

is assumed to be represented by a monotonic, concave and strictly increasing utility function

u(.), the shape of which we specify in section 5.

In all the preference functionals, subjects are assumed to maximise

w(Eb) u(eb × xb) + w(Ey) u(ey × xy) + w(Ep) u(ep × xp) (1)

s.t. xb + xy + xp = m (2)

at the first stage, where w(Es) is the subjective decision weight attached to state s, es is the

exchange rate of state s and xs is the fraction of the experimental income m that is allocated

to state s. The solution of this optimisation program provides the first stage optimal demands

which are denoted as the allocation vector x∗ = (x∗b , x∗y , x∗p). Then, given that the subjects

obtain some form of partial information (e.g. E = E¬y), they maximise

w′(Eb) u(eb × x′b) + w′(Ep) u(ep × x′p) (3)

s.t. x′b + x′p = m− x∗y (4)

where w′(Es) denotes the updated decision weights w(Eb|E¬y)and w(Ep|E¬y) and x′i the con-

ditional demands. The first order conditions of Equation 1 require the following equality to

11Al-Najjar and Weistein (2009) note that fact-based updating consists of two parts: (1) when comparing two
actions f and g, given the event E, the conditional preference %E places no weight on the consequences of these
acts at states that are now excluded and; (2) the conditional preference depends only on the information set E and
not on inconsequential aspects of the decision problem (e.g. ex-ante optimal plan). As a result, we exclude from our
analysis, all these axiomatic models that retain dynamic consistency and reject consequentialism (e.g. the Klibanoff
et al. (2005) smooth ambiguity model).

12In our allocation framework, violation of dynamic consistency means different ex-ante and ex-post allocations
to a state s. We have in total data from 3480 2-stage allocations. Out of these allocations, 72% violate dynamic
consistency for at least 1 token, 51% for at least 2 tokens and 41% for at least three tokens. These percentages are
independent of the kind of information that was revealed to the subjects.
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hold

w(Eb)
∂u(eb × xb)

∂xb
= w(Ey)

∂u(ey × xy)

∂xy
= w(Ep)

∂u(ep × xp)

∂xp
(5)

Similarly, in the second stage, the optimisation conditions require that

w′(Eb)
∂u(eb × x′b)

∂x′b
= w′(Ep)

∂u(ep × x′p)
∂x′p

(6)

Since each of the theoretical models we consider characterises these decision weights in a dif-

ferent way, we devote the rest of the section to describe how these weights are represented, as

well as the way that updating takes place for each of the preference functionals.

4.1 Subjective Expected Utility

The benchmark model Subjective Expected Utility, assumes that there exists a probability mea-

sure P over S representing beliefs, such that π(s) = P(Es) for s ∈ {b, y, p} and ∑ π(s) = 1.

In Equation 1, w(s) is substituted by π(s). Upon the arrival of information, these subjective

beliefs are updated according to the Bayes rule. So for instance, given the information E = E¬y,

the conditional beliefs in Equation 3 for outcome 1 are given by

w(Eb|E¬y) =
P(Eb)

P(E¬y)
=

P(Eb)

P(Eb ∪ Ep)
=

π(b)
π(b) + π(p)

and for outcome 3 by the residual probability 1− w(Eb|E¬y). Substituting these conditional

beliefs to Equation 6, it is straightforward to show that the allocation at the first stage should

coincide with the conditional allocation, satisfying both dynamic consistency and consequen-

tialism.13

4.2 Multiple Prior Theories: α-Maxmin & Maxmin Expected Utility

In multiple prior theories, ambiguity is captured by a closed and convex set C of priors which

is a subset of all the possible probability measures P over the state space S. In the α-MEU

model, the objective function to maximise can be written as a convex combination between

the maximum and the minimum utility that a decision maker can obtain. Denoting by zs the

13The first order conditions, at the first stage, require that π(b) ∂u(eb×xb)
∂xb

= π(p) ∂u(ep×xp)
∂xp

. Substituting

the conditional probabilities to Equation 6, gives π(b)
π(b)+π(p)

∂u(eb×x′b)
∂x′b

=
π(p)

π(b)+π(p)
∂u(ep×x′p)

∂x′p
which simplifies to

π(b) ∂u(eb×x′b)
∂x′b

= π(p)
∂u(ep×x′p)

∂x̂3
. Therefore, the solution of the maximisation problems will lead to the same op-

timal allocation and consequently, the unconditional and conditional allocations will coincide (x∗s = x′∗s ), satisfying
dynamic consistency. Since for the rest of the theoretical models that we consider, beliefs are updated in a non-
Bayesian way, the above condition will be occasionally violated, resulting to violations of dynamic consistency,
and consequently to different ex-ante and ex-post allocations.
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payoff es × xs of the agent, the optimisation problem is given by

α min
P∈C

[
∑

s
p(s)u(zs)

]
+ (1− α)max

P∈C

[
∑

s
p(s)u(zs)

]
(7)

with P = {p(s) : p(s) ≥ p(s)}, with s ∈ {b, y, p} and ∑s p(s) < 1. This representation requi-

res some form of specification regarding the non-additive lower bounds p(s) in order to able

to fit parametric models. We adopt the representation first proposed in Hey et al. (2010) and

then broadly used in the literature (see Hey and Pace (2014), Kothiyal et al. (2014), Burghart

et al. (2015)) where beliefs for the three states of the world are represented in a 2-dimension

simplex, known from the decision theory literature under risk as the Marschak-Machina Tri-

angle (MMT). The horizontal axis in Figure 1 represents the probability for state b while the

vertical axis for state p. This kind of models, depend on the relative ranking between out-

come payoffs. Assuming the ranking zb > zy > zp the minimum expected utility is obtained

when the probability for the best outcome is minimised (or the probability of the worst out-

come is maximised). This happens at point 3 where the decision maker attaches probabilities

π(b), π(y), 1− π(b)− π(y) to the three states of the world respectively. In the same spirit, the

maximum expected utility is obtained at the point where the probability for the best outcome

is maximised (and for the worst is minimised), which happens at point 1. At this point, the

subject attaches probabilities 1−π(y)−π(p), π(y), π(p) to the three states. Since the decision

maker maximises a convex combination of the minimum and the maximum utility, it is easy to

show that the weights will be a convex combination between the lower and the upper bound

probability for each state. Therefore, the weights for Equation 1 are given by

w(Eb) = απ(b) + (1− α)(1− π(y)− π(p))

w(Ey) = απ(y) + (1− α)π(y)

w(Ep) = α(1− π(b)− π(y)) + (1− α)π(p)
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Figure 1: Prior Beliefs

In the second stage, the subject updates her beliefs conditional to the provided partial in-

formation. In the literature there have been suggested two types of updating rules for the

multiple prior family, those that satisfy consequentialism (Gilboa and Schmeidler (1993), Pires

(2002)) and those that satisfy dynamic consistency (Epstein and Schneider (2003), Klibanoff et al.

(2009)). The two most prominent rules of the former category, those that we are using in the

present study, are the Maximum Likelihood Updating rule (MLU) and the Full Bayesian Updating

(FBU). The former rule dictates to the decision maker to update only those priors that maximise

the probability of the conditional event while according to the latter, all the sets are updated

in a prior by prior way. In both cases, all priors are updated according to the Bayesian rule.

For both rules, the priors that generate the minimum and the maximum expected utilities are

updated to generate the conditional weights. For instance, consider the partial information

E = E¬y and the conditional ranking of outcomes zb > zp. For the MLU rule, the probability

of the event E¬y is maximised at points 1 and 3 in Figure 1 and is equal to 1− π(y). Then,

given the ranking of the outcomes, the conditional minimum expected utility is given when

the priors of point 3 are used while the maximum expected utility is obtained at point 1. Thus,
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the conditional weight attached to event 1 is given by

w(Eb|E¬y) = α
π(b)

1− π(y)
+ (1− α)

1− π(y)− π(p)
1− π(y)

and for the worst outcome, weight equal to 1− w(Eb|E¬y) is attached.

Note that in our context, with three ambiguous outcomes, the predictions of both the MLU

and the FBU rules are behaviourally indistinguishable14. According to FBU, the subject updates

all the available priors and uses those posteriors that generate the minimum and maximum

expected utility. In practice, in our example the subject updates priors at points 1 and 3 in

Figure 1 as was the case in MLU, and also updates beliefs at point 2. Nevertheless, Georgalos

(2016) shows that given the ranking zb > zp, posteriors at 2 can generate neither the minimum

nor the maximum expected utility. Consequently, these values are obtained at points 3 and 1

respectively, which leads to the same predictions as the MLU rule.

We also consider the MEU model which is a special case of the α-MEU when α=1. Therefore,

the same logic applies in calculating the minimum expected utility, and the weighting formulas

presented above are used to optimise Equations 1 and 3, since the coefficient attached to the

maximum utility is now equal to 0.

4.3 Choquet Expected Utility

In the Choquet Expected Utility model, beliefs are represented by non-additive probability

measures (capacities) v that should satisfy the normalisation conditions v(∅) = 0, v(S) = 1 as

well as monotonicity where for A ⊂ B it must hold v(A) ≤ v(B). The decision weights strictly

depend on the relative ranking of the various outcomes so first we need to order the payoffs in

a descending way. For example, for the ranking zb > zy > zp, and according to the definition

of the Choquet integral, the respective decisions weights are given by

w(Eb) = v(Eb)

w(Ey) = v(Eb ∪ Ey)− v(Eb)

w(Ep) = 1− v(Eb ∪ Ey)

so the subject maximises Equation 1 given these weights. Regarding the conditional state,

in the literature there have been suggested various ways to update non-additive capacities.

Eichberger et al. (2007) and Eichberger et al. (2010) summarise the three most commonly

used updating rules, namely the optimistic updating rule (Gilboa and Schmeidler, 1993), the

Dempster-Shafer rule (Dempster (1968), Shafer (1976)) and the Generalised Bayesian Updating

14However, this is not the case in the 3-colour Ellsberg urn with one risky and two ambiguous states where MLU
and FBU lead to distinct predictions.
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rule (Dempster, 1967). In their general form, the three updating rules for a state A given the

event E are given by the following formulas

vOPT(A|E) = v(A ∩ E)
v(E)

vDS(A|E) = v(A ∪ Ec)− v(Ec)

1− v(Ec)

vGB(A|E) = v(A ∩ E)
v(A ∩ E) + 1− v(A ∪ Ec)

where Ec denotes the complement of E. Applying this to our framework and using the example

that the available information is that E = E¬y, and the ranking zb > zp, the updated capacity

for Eb for each of the updating rules is given by

vOPT(Eb|E¬y) =
v(Eb ∩ E¬y)

v(E¬y)
=

v(Eb)

v(Eb ∪ Ep)

vDS(Eb|E¬y) =
v(Eb ∩ Ec

¬y)− v(Ec
¬y)

1− v(Ec
¬y)

=
v(Eb ∪ Ey)− v(Ey)

1− v(Ey)

vGB(Eb|E¬y) =
v(Eb ∪ E¬y)

v(Eb ∩ E¬y) + 1− v(Eb ∪ Ec
¬y)

=
v(Eb ∩ (Eb ∪ Ep))

v(Eb ∩ (Eb ∪ Ep)) + 1− v(Eb ∪ Ey)

=
v(Eb)

v(Eb) + 1− v(Eb ∪ Ey)

Notice that all the above formulas collapse to the Bayes rule v(Eb)
v(Eb∪Ep)

whenever the capacities

are additive. In the second stage and given that the initial ranking of outcomes holds (i.e. zb >

zp) the decision maker is attaching weight vl(Eb|E¬y) to the best outcome and 1− vl(Eb|E¬y)

to the worst, in order to maximise Equation 3, with l ∈ {OPT, DS, GB}. Eichberger et al.

(2010) summarise the behavioural characteristics of the three update rules as follows. The

optimistic rule puts more weight to the good outcome while the Dempster-Shafer rule adjusts

its weight on the bad outcome. On the contrary, the Generalised Bayesian rule balances the

weight between the good and the bad outcome. However, these updating rules of the CEU

models are based on a representation that requires uniform ambiguity attitudes. In the next

subsection we present a model that accommodates both optimistic and pessimistic attitudes

towards ambiguity.

4.4 Neo-additive Choquet Expected Utility

Chateauneuf et al. (2007) propose a generalisation of the SEU model that can accommodate

both optimistic and pessimistic attitudes towards ambiguity, the so called CEU with neo-additive
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capacities. A neo-additive capacity is defined as a convex combination between an additive ca-

pacity and a special capacity (Hurwicz capacity) that distinguishes between whether an event

is impossible, possible or certain. In its general form, for a given set of null events N ⊂ S, the

capacity consists of a 3-tuple v(Ei) = v(π(i), δ, α), with δ, α ∈ [0, 1] such that

v(Ei) =


0 if Ei ∈ N

δα + (1− δ)π(Ei) if Ei /∈ N and S\Ei /∈ N

1 if S\Ei ∈ N

Applying the notion of neo-additive capacities to our three-way allocation problem, the weig-

hts for the three outcomes in Equation 1, given the ranking zb > zy > zp, are given by

w(Eb) = αδ + (1− δ)π(b)

w(Ey) = αδ + (1− δ)π(b ∪ y)− αδ− (1− δ)π(b)

= (1− δ)π(y)

w(Ep) = 1− αδ− (1− δ)π(b ∪ y)

= 1− αδ− (1− δ)(1− π(p))

= δ(1− α) + (1− δ)π(p)

Substituting these weights to Equation 1, the objective function to maximise can be rewritten

as

(1− δ)∑
s

π(s)u(zs) + δ(αu(zb) + (1− α)u(zp)) (8)

which is a convex combination between the expected utility of the three outcomes and a weig-

hted sum between the utility received by the best and the worst outcome. The parameter

(1 − δ) expresses the degree of confidence that the decision maker has to her subjective pro-

bability distribution over outcomes (likewise the value of δ expresses the lack of confidence)

while the parameter α is an indicator of the relative degree of optimism which is put to the best

outcome while the residual weight (1− α) is assigned to the worst outcome. For a particular

combination of different values of δ and α, Equation 8 collapses to several standard decision

criteria. When δ = 0, the representation becomes equivalent to SEU. When δ > 0 and α = 0

pure pessimism is expressed while when α = 1 pure optimism. Finally, when δ = 1 and

α ∈ (0, 1), Equation 8 becomes the Hurwicz criterion where only the utility values of the best

and the worst outcome are essential for the choice.

At the second stage, the subject updates her neo-additive capacities in order to assign weig-

hts to the available outcomes. More specifically, Eichberger et al. (2010, Proposition 1) prove

that for every π(Ei) > 0, every neo-additive capacity that is updated applying one of the three

rules from subsection 4.3, the conditional capacity is also neo-additive. For the event E = E¬y
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and zb > zp, the conditional neo-additive capacities are given by

vOPT(Eb|E¬y) =
v(Eb ∩ E¬y)

v(E¬y)
=

(1− δ)π(Eb ∩ E¬y) + αδ

(1− δ)π(E¬y) + αδ

=
(1− δ)π(Eb) + αδ

(1− δ)π(Eb ∪ Ep) + αδ

vDS(Eb|E¬y) =
v(Eb ∪ Ec

¬y)− v(Ec
¬y)

1− v(Ec
¬y)

=
(1− δ)π(Eb ∪ Ec

¬y) + αδ− (1− δ)π(Ec
¬y)− αδ

1− ((1− δ)π(Ec
¬y) + αδ)

=
(1− δ)π(Eb ∩ E¬y)

(1− δ)π(E¬y) + δ(1− α)
=

(1− δ)π(Eb)

(1− δ)π(Eb ∪ Ep) + δ(1− α)

vGB(Eb|E¬y) =
v(Eb ∩ E¬y)

1− v(Eb ∪ Ec
¬y) + v(1∩ E¬y)

=
(1− δ)π(Eb ∩ E¬y) + αδ

1− [(1− δ)π(Eb ∪ Ec
¬y) + αδ] + (1− δ)π(Eb ∩ E¬y) + αδ

=
(1− δ)π(Eb ∩ E¬y) + αδ

1− (1− δ)π(Ec
¬y)

=
(1− δ)π(Eb ∩ E¬y) + αδ

(1− δ)π(E¬y) + δ

=
(1− δ)π(Eb) + αδ

(1− δ)π(Eb ∪ Ep) + δ

As previously, the weight 1− vl(Eb|E¬y) is assigned to the worst outcome, with l ∈ {OPT, DS, GB}

in order to maximise Equation 3.

4.5 Prospect Theory

The last model that we include in our comparison is a parsimonious version of the Tversky and

Kahneman (1992) Prospect Theory. We follow Kothiyal et al. (2014) and we specify the model

based on the source method, as this was recently developed and used in the analysis of experi-

mental data in Abdellaoui et al. (2011). A source of uncertainty concerns a group of events that

is generated by a specific mechanism of uncertainty and therefore, different sources of uncer-

tainty can be treated in a different way. In our framework, it is reasonable to assume that the

Bingo Blower is a source of ambiguity, as the various events and their respective representa-

tion are created in a particular way. A subject i in a given treatment, holds subjective, additive

beliefs for the various states of the world that can be represented by a vector P over S . In that

sense, subjects are assumed to satisfy probabilistic sophistication as this is defined in Machina

and Schmeidler (1992). Then, there exists a source function w(.)15, which is a mapping in the

15We denote the source weighting function with w(.) to distinguish it from the weight w(.) attached to each event
in Equation 1.
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interval [0,1], satisfying the continuity and strict monotonicity properties, such that w(0) = 0,

w(1) = 1 and w(E) = w(P(E)), that transforms these subjective probabilities in a pessimistic

or optimistic way, expressing in that way ambiguity aversion or seeking respectively. Due to

the cumulative nature of this model, the weights assigned to the various outcomes depend on

their relative ranking of payoffs. Similarly to the CEU case, given the ranking zb > zy > zp,

the weights in Equation 1 for the unconditional state are substituted by

w(1) = w(p(Eb))

w(2) = w(p(Eb ∪ Ey))− w(p(Eb))

w(3) = 1− w(p(Eb ∪ Ey))

As source functions we consider some of the most commonly used specifications in the litera-

ture, namely the Prelec (1998) family with one (PRL1) and two parameters (PRL2), the Tversky

and Kahneman (1992) weighting function (TK) and the Goldstein and Einhorn (1987) function

(GE). The functional forms of the source functions are presented below:

w(p) = exp(−(− ln(p))γ), PRL1

w(p) = exp(−(− ln(p))γ))γ2 , PRL2

w(p) =
pγ

(pγ + (1− p)γ)1/γ
, TK

w(p) =
γ2 pγ

γ2 pγ + (1− p)γ
, GE

The functions are linear when γ = 1 and γ2 = 1, implying SEU preferences. For γ < 1

the source function tends to an inverse S-shape, while for γ > 1 the function becomes S-

shaped. The shape of the source function, along with the values of the parameters γ and γ2,

express the degree of likelihood insensitivity (the ability of the decision maker to “understand”

probabilities), as well as attitude towards ambiguity (see Wakker (2010), Abdellaoui et al. (2011)).

The parameter γ captures insensitivity for the PRL1, PRL2 and GE weighting functions, while

γ2 acts as an index of ambiguity aversion (for the PRL2 and the GE functions). In the case of TK

source function, the parameter γ acts as both an index of insensitivity and ambiguity aversion.

PT has been extensively used to model atemporal choice under ambiguity (see Wakker

(2010)). In addition, while PT has been recently applied to model behaviour in dynamic frame-

works in dynamic contexts under risk (Barberis (2012), Ebert and Strack (2015)), this theoretical

model has not been yet used on dynamic decision making under ambiguity. As a result, there

is a gap in the literature of axiomatised updating rules for a dynamic version of PT. As Stomper

and Vierø (2015) highlight, neither of the two aforementioned studies adopts actual updating

but they rather assume that probability weighting is applied to probabilities that have already
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been updated according to Bayes rule. We follow Stomper and Vierø (2015) and specify an

updating process which involves updating of the probability weighting function. Given the

conditional information E = E¬y and the relative ranking of outcomes zb > zp, the conditional

probability for outcome 1 is given by

w(Eb|E¬y) =
w(p(Eb))

w(p(E¬y))
=

w(π(b))
w(π(b) + π(p))

and the residual 1− w(Eb|E¬y) is assigned to the worst outcome 3 in order to maximise Equa-

tion 3. Since the experiment involves only positive outcomes (gains domain), the PT specifi-

cation presented above is identical to the Source Choquet Expected Utility in Kothiyal et al.

(2014, page 6).

5 Econometric Analysis

In order to be able to econometrically fit and obtain estimated parameters of the various pre-

ference functionals, we need to make several structural assumptions regarding the representa-

tion of the utility function, as well as the stochastic part of the decision making process (noise).

Following Wilcox (2008), we define a specification as the combination between a deterministic

choice model, a utility functional and a stochastic choice statistical model. Regarding the uti-

lity function, the extensive degree of non-boundary allocations observed throughout the expe-

riment, implies risk-averse attitudes16, thus we need to assume a concave utility function. We

adopt a power utility function that is characterised by constant relative risk aversion (CRRA)

whose shape is given by17

u(x) =

 x1−r

1−r if r 6= 1

ln(x) if r = 1

with r being the power utility coefficient. Under this assumption, we are able to optimise

Equations 1 and 3 and obtain closed form formulas of the optimal constrained allocations, for

any given allocation tuple (eb, ey, ep, m), of the following form

x∗b =
meyep(w(Eb)eb)

1/r

eyep(w(Eb)eb)1/r + ebep(w(Ey)ey)1/r + ebey(w(Ep)ep)1/r

x∗y =
mebep(w(Ey)ey)1/r

eyep(w(Eb)eb)1/r + ebep(w(Ey)ey)1/r + ebey(w(Ep)ep)1/r

16Antoniou et al. (2015) show how taking into consideration risk aversion alters inferences on Bayesian updating.
17The justification of using a power utility is twofold: (1) it is a common finding in the literature that the CRRA

utility provides good fit in empirical applications (see Wakker (2008), Stott (2006), Balcombe and Fraser (2015)) and;
(2) the power utility function naturally satisfies out non-negativity constraint as the optimal allocations are bound
to be always positive under CRRA.
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with x∗p being calculated as the residual m− x∗b − x∗y and w(.) being the weights as those cal-

culated is section 4. Similarly, the conditional allocations, based on some partial information

(e.g. E = E¬y are given by

x¬y
b
∗
=

m¬yep(w(Eb|E¬y)eb)
1/r

ep(w(Eb|E¬y)eb)1/r + eb(w(Ep|E¬y)ep)1/r

with x¬y
b
∗

being the conditional allocation, m¬y the conditional remaining income (m− x∗y)

and w(Es|E¬y) the corresponding conditional decision weights, updated according to the way

that each theoretical model defines (section 4). We call these allocations, the optimal allocati-

ons. Note that as the calculation of the optimal allocation depends on the relative ranking bet-

ween the three outcomes, the decision weights w(Ei) depend on the outcomes zi in a non-linear

and discontinuous fashion. Therefore, the first order conditions in Equation 5, are valid only

within the comonotonic sets (where events are consistently ranked). Our estimation code takes

into consideration all the possible rankings, including strict inequalities (e.g. zb > zy > zp) as

well as weak inequalities (e.g. zb = zy > zp or zb > zy = zp). All the combinations of weak

and strict inequalities provide in total 13 possible rankings for the first stage and 3 rankings

for the second stage (conditional), including the case of equal allocation between all events.

Following Ahn et al. (2014) and Hey and Pace (2014), we calculate allocations for all the possi-

ble rankings, and define the optimal allocation as the one that simultaneously maximises the

utility of the subject and satisfies the respective ranking constraints.

Then, in order to specify the likelihood function, we need to make some assumptions re-

garding the stochastic part of the subjects’ decision making process (noise). As the allocations

are bounded to the interval [0,m], a convenient way to model noise in choices is to assume

that the ratios xs/m at a specific allocation question are distributed according to a Dirichlet

distribution. The Dirichlet distribution is a continuous probability distribution over multino-

mials, which are m-tuples x = (x1, · · · , xm) that sum to unity. A simple parametrisation of the

Dirichlet is given by setting

σ =
K

∑
k=1

βk

and

K =

(
β1

σ
, · · · ,

βK

σ

)
with the vector K summing up to unity. In our context with K = 3 the shape parameters of the

distribution are defined as

βs =
x∗s
m

σ
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where x∗s is the theoretical optimal allocation to state s. This specification has the nice property

that the mean of the distribution is centered to the optimal allocation, since the expression for

the mean of the distribution is given by:

E(
xs

m
) =

βs

∑k βk
=

x∗s
m σ

σ
=

x∗s
m

σ is an indicator of the precision of the distribution of the random variable xs
m also known as

the precision of the Dirichlet and needs to be estimated.The higher the value of σ, the lower

the noise in the data.

To specify the likelihood function for all the problems, for a particular subject, we need to

take into consideration the two stages of each allocation question, with 3-way allocations in

the first stage and 2-way in the second. For a particular allocation problem the unconditional

allocation xb, xy, xp to blue, yellow and pink and assume the conditional state ¬y that will lead

to the conditional allocation xb
¬y, xp

¬y and the conditional income m̂¬y. Using the allocations

at the first stage, we assume that x = ( xb
m , xy

m , xp
m ) is Dirichlet distributed with the appropriate

shape parameters that satisfy the properties above. The contribution to the likelihood function

by the first stage allocation is given by:

g1(π, k, r, e, m, σ, X) = ln(Ψ(β, σ))

where π represents beliefs for every preference functional that we consider, k is a vector of the

behavioural parameters of each model (e.g. α for the α-MEU model, α and δ for the CEUNEO

and so on), e are the exchange rates for that problem, m is the available income, X is the vector

of the actual unconditional allocations, Ψ is the density function of the Dirichlet distribution,

β are the shape parameters of the distribution and σ is the precision parameter.

In the second stage, there are two available allocations to be made and the dimension of the

distribution is equal to 2 (it becomes a standard Beta distribution). In our example, we assume

that x¬p = ( xb
¬y

m̂¬y , xp
¬y

m̂¬y ) is Dirichlet (Beta) distributed, subject to the suitable shape parameters.

The contribution to the likelihood function by the first stage allocation is given by:

g2(π, k, r, e, m¬y, σ, X¬y) = ln(Ψ(β¬y, σ))

with m¬y and X¬y denoting the conditional income and allocation respectively. The total con-

tribution to the likelihood function of a particular problem is given by g1 + g2. We consider the

remaining two conditional states in a symmetric way. The log-likelihood function, conditional

to a particular model specification over the 60 allocation problems and over all 58 participants,

is defined as:

ln(L(π, k, r, σ)) =
58

∑
n=1

60

∑
i=1

(g1 + g2) (9)
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We now turn to the estimation method. The most common approach to estimate structu-

ral decision making models, is the use of either population or subject-level maximum likeli-

hood estimation techniques (MLE). Nevertheless, MLE suffers from few drawbacks. As MLE

considers each participant as a separate unit of analysis, if there is a lack of a large number

of observations, it may generate noisy and unreliable estimates and therefore can produce ex-

treme estimates for some of the subjects. Second, MLE is prone to overfitting and adjust mostly

noise rather than the actual preferences of the subject, leading to very poor predictive perfor-

mance of the models. To mitigate these drawbacks, we adopt Hierarchical Bayesian estimation

techniques (see Balcombe and Fraser (2015) and Ferecatu and Önçüler (2016) for some recent

applications of Hierarchical Bayesian models for choice models under risk). The key aspect of

hierarchical modelling is that even though it recognises individual variation, it also assumes

that there is a distribution governing this variation (individual parameter estimates originate

from a group-level distribution). An hierarchical Bayes model, simultaneously estimates the

individual level parameters, along with the hyper-parameters of the group level distributions.

In typical hierarchical models, the estimates of the low level parameters are pulled closer to-

gether than they would in the absence of a higher-level distribution, leading to the so called

shrinkage of the estimates.

Given a dataset y and a set of parameters θ, Bayesian inference focuses on the posterior

distributions of the parameters of each preference functional by combining the likelihood in

Equation 9 with the priors of the individual and the group-level parameters. The posterior

distribution is given by

P(θ|y) ∝ P(y|θ)× P(θ)

with P(y|θ) being the likelihood and P(θ) the priors for all parameters in the set θ. Prior

distributions need to be specified for all the parameters of the model. For all the parameters

(with the exception of the decision weights), we assume that individual parameters θn are

normally distributed (θn ∼ N(µθ , σθ)), while for the hyper-parameters we assume normal

priors for the mean µθ and uninformative priors (uniform) for σθ . We also follow the standard

procedure and transform all the parameters to their exponential form to ensure that they lie

within the appropriate bounds. As far as the decision weights are concerned, given that they

need to be jointly distributed, we set Dirichlet priors. This kind of priors guarantees that the

sum of the decision weights is equal to unity for the SEU, PT and CEUNEO specifications, while

a re-parametrisation is required for the MEU, α-MEU and CEU models so that the sum of the

decision weights lies in the range [0,1].

Monte Carlo Markov Chains (MCMC) were used to estimate all the specifications. The
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estimation was implemented in JAGS (Plummer, 2017)18. The posterior distribution of the pa-

rameters is based on draws from two independent chains, with 200,000 MCMC draws each, for

all the specifications. Due to the high level of non-linearity of the models, there was a burn-in

period of 100,000 draws, while to reduce autocorrelation on the parameters, the samples were

thinned by 10 (every tenth draw was recorded). Convergence of the chains was confirmed by

computing the R̂ statistic (Gelman et al., 1992). Our inference is based on the point estimates

for all model parameters π, k, r, σ which are obtained from the posterior distribution (posterior

mode).

We complete this section by presenting the total number of parameters that we need to

estimate, at the individual subject level, for the various preference functionals, as well as the

constraints that we need to impose during the estimation. Table 1 summarises the number of

parameters for each specification.

Table 1: Number of parameters for each model

Model Parameters Total

α-Maxmin Expected Utility (α-MEU) π(b), π(y), π(p), α, r, σ 6

Choquet Expected Utility (CEU) v(b), v(y), v(p), v(b ∪ y), v(y ∪ p), v(b ∪ p), r, σ 8

Neo-additive Choquet Expected Utility (CEUNEO) π(b), π(y), α, δ, r, σ 6

MaxMin Expected Utility (MEU) π(b), π(y), π(p), r, σ 5

Prospect Theory (PT1) π(b), π(y), γ, r, σ 5

Prospect Theory (PT2) π(b), π(y), γ, γ2, r, σ 6

Subjective Expected Utility (SEU) π(b), π(y), r, σ 4

Notes: CEUNEO stands for the CEU specification with neo-additive capacities, PTk stands for the
PT specification with k indicating the number of parameters of the weighting function. π(s)
stands for the additive probabilities in SEU, CEUNEO and PT, π(s) stands for the lower bounds
of the probabilities for MEU and α-MEU, v(s) stands for the individual and joint capacities for
the CEU.

For estimation reasons we need to apply several box constraints (lower and upper bounds)

to the various parameters on top of inequality or equality constraints. The bounds of these

parameters are dictated by either feasibility constraints, the experimental design or by the

relevant literature, while the inequality constraints by the particular model. In all the the-

oretical models we consider, all probabilities (either additive or lower bounds) and all the

capacities are constrained to the interval [0,1]. The additivity constraint ∑3
s=1 π(Es) = 1, is

imposed to all models that assume probabilistic sophistication (i.e. SEU, CEUNEO and PT)

while the weak inequality constraint is applied to those models that do not (i.e. MEU, α-

18The estimation codes are available upon request.
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MEU and CEU). Moreover, the capacities in the CEU model are constrained to be convex (i.e.

v(Ei ∪ Ej) ≥ v(Ei) + v(Ej), for all states i, j). The power utility parameter r is constrained to

the interval [0,5]. r = 0 denotes a risk neutral subject, while r > 0 a risk averse one.19 The

upper bound is set to 5, value that implies high levels of risk aversion20. The α parameter in

the α-MEU model is constrained to the unit interval, with α = 1 implying extreme aversion

to ambiguity (the model collapses to MEU) and α = 0, denoting ambiguity loving attitude.

The parameters α and δ in the CEUNEO model are also constrained to the interval [0,1]. Re-

garding the parameters of the weighting functions for the PT specifications, γ and γ2, both

are constrained to the interval [0,2], with the only exception the γ parameter of the TK source

function which is constrained to the interval [0.27,2]. This range of values guarantees that the

functions are both monotonically increasing on the probabilities π(.) and that they exhibit the

S and inverse S shapes. Finally, the precision parameter σ is constrained to the interval [1,100].

The maximum value indicates very high precision and therefore, low noise.

6 Results

Our methodology is that of prediction. Each subject made in total 60 2-stage allocations. Using

a subset of the data, the training set, namely 45 randomly drawn questions out of the total 60,

we first estimated the parameters for each of the theoretical models presented above. The-

refore, for each subject and for each theoretical model, we obtain estimates for the subject’s

beliefs, their power utility coefficient, their precision parameter and additional behavioural

coefficients that some models require. Then, using the estimated parameters, we simulate

choices in order to predict behaviour (allocations) on the test set. Each set of parameters, ge-

nerates a deterministic allocation, conditional on the model under consideration and the allo-

cation problem. The precision parameter σ allows us to generate simulated allocations which

are centered on the optimal allocations implied by the estimated parameters. For each subject,

for each preference functional, and for each of the 15 problems of the test set, we generate 100

simulated datasets and we calculate the mean squared deviation between the simulated and

the actual data from the test set. The model with the highest predictive capacity should mini-

mise the deviation score. The selection of the estimation and prediction questions was based

19This lower bound is imposed by the requirement of non-negative portfolios, since a risk neutral subject would
allocate everything to the colour with the highest product between the rate of return and the probability for this
colour, while a risk loving subject (r < 0) would be willing to allocate negative amounts. This constraint does not
impose problems to our analysis, since only two subjects selected boundary portfolios and not for the whole range
of problems. The lack of risk loving subjects is also confirmed in Gneezy et al. (2015).

20At very large values of r it becomes impossible to observationally distinguish the different allocations, as they
all the allocations tend to equalise the payoffs at each state.
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on a random sampling without replacement from the whole set of the 60 allocation questions.

While each subject faced the questions in a randomised order during the experiment, we deli-

berately used the same set of questions as the training and test sets, so that both the estimation

and the prediction are based on the same questions for all subjects.

As is common in these studies (see Stahl (2014), Hey and Pace (2014)), we expect large

heterogeneity across and within subjects. We allow for heterogeneity across subjects in the

econometric comparison of the various specifications by analysing the data in both the group

and the subject level, while regarding within heterogeneity we adopt a suitable stochastic error

story.

6.1 Predictive Power of the Models

We now turn to the predictive accuracy of the various theoretical models. We rank the models

based on the value of the mean squared deviation which serves as a measure of prediction.

The lower the deviation (the closest to zero), the better the predictive capacity of the theory.

The value of the deviation is directly comparable between models and there is no need to use

information criteria in order to correct for the different degrees of freedom.

In order to choose which models will participate to the overall comparison, we first perform

horse race comparisons within each family of models, that is we include the best specification

of the PT family, the best of the CEU and so on. We include in total 6 specifications. Table

2 reports the results of the within CEU family comparison. More specifically, we make the

assumption that our subjects are either SEU or one of the three CEU types. Then for each

subject we rank the models from the best to the worst according to their predictive capacity.

The first column of the Table reports the percentage of subjects for which each row model

is classified as best. The second column reports the cumulative percentage of subjects for

which the column model is classified as best or second best and so on. It appears that the

CEUGB specification being best for 36% of the subjects outperforms both the other two CEU

specifications and SEU which is classified first for 29% of the subjects, while CEUDS can predict

the choices of a very restricted subset.

Table 3 reports the same kind of ranking for the PT family against again SEU. In this case,

SEU is the winner by being the best model for 22% of the subjects, closely followed by PTPRL2

with 21% which marginally wins all the remaining 3 PT specifications which explain behaviour

for roughly 1/5 of the population each. The within CEUNEO family comparison is reported in

Table 4. Here there is a clear winner, the CEUNEO/DS which predicts best for 29% of the subjects

followed by SEU with 26%. In all cases, the SEU predictive capacity is restricted to 22-29% of
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the total sample.

We finally perform an overall ranking of the models, including all the winning specificati-

ons from the within-families comparison. We include in total 6 models, as these are presented

in the rows of Table 5. The overall winner is a dynamic specification of PT, PTPRL2 closely

followed by CEUGB which together may predict 57% of the choices of our sample. SEU and

CEUNEO/DS follow with 14% each, while the multiple priors families have the worst perfor-

mance overall.

Table 6 reports the mean squared deviations, as well as the trimmed means at 5 and 10%

levels to mitigate the impact of outliers, the median value and the standard deviation for each

of the theoretical specifications. Overall, CEUGB outperforms, on average, all the competing

model, according to all but one measures that we report, with PTPRL2 in the second place.

The multi-priors family models (MEU and α-MEU) perform relatively bad, while are SEU is

ranked last. The size of the standard deviations indicates that there is considerable variation

across subjects and that while some models perform well in the subject level analysis (e.g.

PTPRL2), they fail to perform well on average due to this variation, which provides evidence in

favour of the individual level inference.

6.2 Estimated Parameters

To conclude, we briefly report the estimated values of the parameters for the best specifications

of each family in Table 7. The Table reports the mean, median and the standard deviations of

all the parameters. The large values of the standard deviations capture the extensive level of

heterogeneity between subjects, within each preference functional. From this Table we summa-

rise two important findings: (1) the overweight of low probabilities and underweight of high

probabilities, a result commonly reported in studies of choice under ambiguity; and (2) the

non-additivity of beliefs for the models that allow for violation of probabilistic sophistication.

The latter is in line with the findings in Baillon et al. (2017), where extensive violation of pro-

babilistic sophistication was reported. The over/under-weighting of probabilities finding, is

also confirmed by Figure 2 where the boxplots of all the parameters representing beliefs, for all

the specifications are illustrated. The solid vertical lines correspond to the actual probabilities

of the three colours which were known to the experimenters but unknown to the subjects (0.2

for Eb, 0.5 for Ey and 0.3 for Ep). Nevertheless, it is clear that subjects do not exhibit extreme

likelihood insensitivity (failure to distinguish the different probabilities of the three events and

therefore resort to a uniform probability distribution) since in all the specifications, the ranking
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π(Ey) > π(Ep) > π(Eb) is on average satisfied21.

Figure 5 presents the boxplots for the parameters of the utility function (r) and precision

(σ), which are common in all models, as well as the boxplot for the parameters γ and γ2 of

the PRL2 weighting function. In the first panel of the Figure, it is obvious that subjects are

considerably risk averse with the median value of the coefficient being between 0.833 and

1.013, finding which is in line with experiments that use a similar experimental design (Hey

and Pace (2014), Ahn et al. (2014)). The noise in the data (second panel in Figure 5) seems to

follow a uniform pattern across the different specifications, where the mean and the median

values are almost identical for all the models. The last panel in Figure 5 illustrates the boxplot

of the estimates for the PRL2 γ and γ2 parameter. These parameters are key ones, since they

simultaneously capture ambiguity attitudes and likelihood insensitivity. The large standard

deviation confirms that the subject-level estimates are significantly different than 1. This large

variation is also confirmed by Figure 4, where the Kernel density plots of the estimated values

of γ and γ2 are presented. Finally, it worths commenting on the estimated parameters of the

CEUNEO/DS model since it has been widely used in the literature. The value of the parameter

δ, which expresses lack of confidence to the additive subjective beliefs, is on average quite

low (δ = 0.139) indicating that roughly, only 14% of the weight is put to the best and the

worst outcome, with the higher volume of the weight being assigned to the subjective beliefs.

Moreover, the parameter α that captures optimism, is estimated close to 0.5 (α = 0.419). Kernel

distribution plots, verify that the δ parameter follows a skewed to the right distribution across

subjects, while the parameter α is mostly concentrated on the 0.5 value for a majority of the

subjects indicating that the subjects are neither extremely pessimistic (α = 0) or extremely

optimistic (α = 1), with pessimism prevailing marginally.

7 Discussion and Concluding Remarks

This paper experimentally tested the out-of-sample predictive power of dynamic models un-

der ambiguity. Employing a within subjects experimental design, using a 2-stage allocation de-

cision task, and representing ambiguity with a transparent, non-manipulable device (a Bingo

blower), we gather data that allow us to run a horse race between the dynamic versions of

the most commonly used theoretical models of choice under ambiguity. We include in total

13 different theoretical specifications. We conduct comparisons between theories as well as

within theories, when various different updating rules have been proposed in the literature.

Our key results are summarised as follows: (1) overall, Prospect Theory outperforms all the

21This also holds for the capacities v(.) as well as for the lower bounds of the probabilities π(.).
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other models regarding out-of-sample fit capacity closely followed by the Choquet Expected

Utility model; (2) within the Prospect Theory family, the Prelec (1998) 2-parameter weighting

function (PRL2) best describes behaviour; (3) within the Choquet Expected Utility model, the

Generalised Bayesian rule provides the best fit, while and; (4) within the neo-additive CEU

family, the Dempster-Shaffer rule.

As a general conclusion, we find that a dynamic specification of Prospect Theory has the

highest predictive capacity closely followed by the CEU model. Both PT and CEU differ in the

way they represent beliefs and therefore they differ in their assumptions on the assumptions

behind these beliefs, the way they form decision weights and the way these decision weights

are updated. Given the strong performance of the PT model in predicting behaviour calls for

further theoretical advances and axiomatisation of the model in its dynamic version, while the

strong performance of CEU, offers a strong candidate model for empirical applications.

Wakker (2010, Appendix C) referring to non-Expected Utility models and dynamic deci-

sions, concludes: “I do not consider nonexpected utility to be normative and think that no

normatively satisfactory method for updating or implementation in dynamic decisions will

be found. [..] Which method of updating is most appropriate for descriptive applications is

an interesting topic for empirical research”. Given the increasing popularity of dynamic am-

biguity models in modelling financial decision making (Easley and O’ Hara (2009), Mele and

Sangiorgi (2015)) or in empirical research using field data (Thimme and Völkert (2015), Jeong

et al. (2015), Li et al. (2016)), it is crucial to understand which theoretical model is the most

appropriate to apply in empirical analysis.

The present study is a first step towards understanding choices and updating of ambiguous

beliefs in a dynamic decision making problem. To keep the experiment as simple as possible,

we used an urn and balls type experimental design, with a 2-period decision task and three

possible states of nature, constrained to the gains domain. Given the advances in the experi-

mental literature of static choice under ambiguity, it would be interesting to extend the current

analysis and explore dynamic choice in richer contexts such as addressing multiple-period de-

cision problems, study behaviour in the losses domain, allowing learning under ambiguity or

consider natural events as the source of ambiguity. We leave these for future research.
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Table 2: Ranking of CEU specifications based on the mean squared predicted deviation

Model 1 1–2 1–3 1–4

CEUDS 0.09 0.38 0.69 1.00

CEUGB 0.36 0.57 0.81 1.00

CEUOPT 0.26 0.62 0.78 1.00

SEU 0.29 0.43 0.72 1.00

Notes: All values represent the cumulative percentages. CEU stands for the Choquet Expected
Utility model, with the subscript indicating the respective updating rule, DS the Dempster-
Shafer, GB the Generalised Bayesian and OPT the Optimistic rule. SEU stands for the Sub-
jective Expected Utility model.

Table 3: Ranking of PT specifications based on the mean squared predicted deviation

Model 1 1–2 1–3 1–4 1–5

PTGE 0.19 0.43 0.57 0.72 1.00

PTPRL1 0.19 0.33 0.57 0.83 1.00

PTPRL2 0.21 0.40 0.57 0.79 1.00

PTTK 0.19 0.38 0.64 0.86 1.00

SEU 0.22 0.47 0.66 0.79 1.00

Notes: All values represent the cumulative percentages. PT stands for the Prospect Theory
model, with the subscript indicating the respective probability weighting function, GE for the
Goldstein and Einhorn (1987), PRL1 and PRL2 for the 1 and 2-parameter Prelec (1998) and
TK for the Tversky and Kahneman (1992) weighting function. SEU stands for the Subjective
Expected Utility model.

Table 4: Ranking of CEUNEO specifications based on the mean squared predicted deviation

Model 1 1–2 1–3 1–4

CEUNEO/DS 0.29 0.50 0.83 1.00

CEUNEO/GB 0.24 0.53 0.76 1.00

CEUNEO/OPT 0.21 0.52 0.66 1.00

SEU 0.26 0.45 0.76 1.00

Notes: All values represent the cumulative percentages. CEUNEO stands for the Choquet Ex-
pected Utility model with neo-additive capacities , with the subscript indicating the respective
updating rule, DS the Dempster-Shafer, GB the Generalised Bayesian and OPT the Optimistic
rule. SEU stands for the Subjective Expected Utility model.
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Table 5: Ranking of all specifications based on the mean squared predicted deviation

Model 1 1–2 1–3 1–4 1–5 1–6

α-MEU 0.05 0.29 0.47 0.60 0.84 1.00

CEUGB 0.28 0.43 0.57 0.71 0.79 1.00

CEUNEO/DS 0.14 0.29 0.48 0.76 0.95 1.00

MEU 0.10 0.28 0.53 0.69 0.86 1.00

PTPRL2 0.29 0.41 0.53 0.60 0.69 1.00

SEU 0.14 0.29 0.41 0.64 0.86 1.00

Notes: All values represent the cumulative percentages. α-MEU stands for the α-Maxmin
Expected Utility model, CEUGB stands for the Choquet Expected Utility with a Generalised
Bayesian updating rule, CEUNEO/DS stands for the Choquet Expected Utility with neo-additive
capacities and a Dempster-Shafer updating rule, MEU stand for the Maxmin, PTPRL2 stands for
the Prospect Theory with a 2-parameter Prelec (1998) weighting function and SEU stands for
the Subjective Expected Utility model.

Table 6: Mean predicted squared deviations

Mean Mean.1 Mean.05 Median s.d.

α-MEU 1.59 1.37 1.48 0.68 2.31

CEUGB 1.53 1.30 1.42 0.66 2.29

CEUNEO/DS 1.57 1.35 1.46 0.65 2.33

MEU 1.59 1.37 1.48 0.68 2.32

PTPRL2 1.69 1.49 1.59 0.63 2.46

SEU 1.72 1.51 1.61 0.69 2.49

Notes: The mean, the 5 and 10% trimmed means, the median and the standard deviation of
the mean predicted squared deviations are reported for each specification. A lower value of
each measure implies a better predictive capacity of the model on average. α-MEU stands for
the α-Maxmin Expected Utility model, CEUGB stands for the Choquet Expected Utility with a
Generalised Bayesian updating rule, CEUNEO/DS stands for the Choquet Expected Utility with
neo-additive capacities and a Dempster-Shafer updating rule, MEU stand for the Maxmin,
PTPRL2 stands for the Prospect Theory with a 2-parameter Prelec (1998) weighting function
and SEU stands for the Subjective Expected Utility model.
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Table 7: Descriptive Summary of Estimates

Theory Parameter Mean Median s.d

α-MEU π(b) 0.229 0.274 (0.115)

π(y) 0.314 0.340 (0.123)

π(p) 0.290 0.312 (0.097)

α 0.527 0.563 (0.302)

r 1.047 1.011 (0.491)

s 41.576 17.362 (54.054)

CEUGB v(b) 0.242 0.282 (0.128)

v(y) 0.310 0.338 (0.142)

v(p) 0.265 0.275 (0.130)

v(b ∪ y) 0.595 0.660 (0.165)

v(y ∪ p) 0.675 0.695 (0.146)

v(b ∪ p) 0.530 0.521 (0.126)

r 0.983 0.951 (0.400)

s 41.882 18.57 (53.028)

CEUNEO/DS π(b) 0.291 0.292 (0.152)

π(y) 0.364 0.362 (0.105)

π(p) 0.345 0.328 (0.130)

α 0.419 0.441 (0.206)

δ 0.139 0.022 (0.248)

r 0.997 0.931 (0.478)

s 41.493 17.381 (54.065)

MEU π(b) 0.250 0.283 (0.112)

π(y) 0.333 0.349 (0.130)

π(p) 0.305 0.317 (0.107)

r 0.935 0.883 (0.430)

s 40.946 17.043 (53.309)

PTPRL2 π(b) 0.275 0.288 (0.085)

π(y) 0.390 0.379 (0.079)

π(p) 0.335 0.330 (0.069)

γ 0.971 0.982 (0.168)

γ2 1.125 1.104 (0.247)

r 1.075 0.954 (0.623)

s 43.727 19.766 (55.114)

SEU π(b) 0.279 0.295 (0.086)

π(y) 0.380 0.357 (0.076)

π(p) 0.341 0.325 (0.073)

r 1.360 1.013 (0.985)

s 43.102 16.833 (56.875)

Notes: α-MEU stands for the α-Maxmin Expected Utility model, CEUGB stands for the Cho-
quet Expected Utility with a Generalised Bayesian updating rule, CEUNEO/DS stands for the
Choquet Expected Utility with neo-additive capacities and a Dempster-Shafer updating rule,
MEU stand for the Maxmin, PTPRL2 stands for the Prospect Theory with a 2-parameter Prelec
(1998) weighting function and SEU stands for the Subjective Expected Utility model.
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Figure 2: Boxplots of all the parameters representing beliefs
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The vertical lines correspond to the actual probabilities of the three colours, 0.2 for colour 1, 0.5
for colour 2 and 0.3 for colour 3. The dashed line inside each box illustrates the mean value,
while the continuous line corresponds to the median.
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Figure 3: Boxplots of risk, precision and weighting coefficients
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Figure 4: Kernel density plot of the γ and γ2 parameters
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Notes: The Figure presents the density plot of the estimates of the parameters γ and γ2 for the
Prelec (1998) weighting function with two parameters. The vertical line illustrates the median
value.
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Figure 5: Kernel densities plots for the CEUNEO,DS model
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