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Abstract: In this paper we introduce a model for specifying fluid architectures of 
intelligent environments. A fluid architecture is one that is able to accommodate 
continuous structural changes without aversely affecting the system’s behaviour. The 
model enables designers to specify structural modifications that may be performed by 
users as part of the normal interaction and which must be supported by the underlying 
environment infrastructure. The model is formulated as a generative architectural style: it 
defines component types, connector types and rules for their composition. This leads to a 
model that can describe an unlimited number of concrete architectures. To demonstrate 
the utility of our model, we discuss the design, architecture and change scenarios of an 
ambient display system. 
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1. INTRODUCTION 

Ubiquitous computing envisions a computing 
infrastructure that seamlessly aids users in 
accomplishing their tasks and renders the actual 
computing devices and technology virtually invisible 
[Weiser (1)] and distraction-free [Garlan et al (2)]. One 
approach to realize this vision is to turn everyday objects 
and architectural spaces into interfaces to an otherwise 
invisible computational system. This idea has led to the 
development of intelligent environments, a new and 
important category of interactive systems whose 
realization is tightly integrated with the physical world. 
Intelligent environments mediate between the physical 
and the digital world: they promise to facilitate 
interaction with information away from the desktop and 
as part of everyday activities, they make use of non-
traditional interface technologies (e.g. sensors, 
embedded computing devices); and they require new 
interaction models based on implicit or physical 
interaction (e.g. tangible interfaces [Ishii and Ullmer (3), 
embodied interaction [Dourish (4)].  

One aspect of intelligent environments that has received 
scant attention in the past is their ability to afford 
change.  As emphasized by Rodden and Benford (5), 
living and work environments are subject to continuous 
transformation: they are modified by the people who 
inhabit them in a variety of ways, for a variety of 
purposes and with different frequencies. Some of these 
changes are performed by the inhabitants themselves (for 

example, moving furniture in the house) while other are 
performed by professionals (for example, rewiring of an 
old building). Intelligent environments are composed of 
the physical objects and artefacts that surround us and 
the buildings we inhabit.  As such, they are subject to the 
same dynamics as the rest of our living and work 
environments.  

In this paper, we investigate architectural models for 
intelligent environments.  The key goal of our work is 
the ability to model user-induced structural changes of 
intelligent environments, leading us to the notion of fluid 
software architectures.  Our approach is inspired by 
research in dynamic software architectures [Allen et al 
(6), van der Hoek (7)] and reconfigurable distributed 
system [Kramer and Magee (8). We describe an 
architectural model for intelligent environments that 
allows designers to incorporate change aspects into the 
architectural design. We do this by supporting 
architectural change scenarios based on physical 
reconfiguration.  

This paper is organized as follows. In the following 
section we introduce a concrete case study. In Sections 3 
and 4, we first discuss requirements for supporting 
structural change on the architectural level and then 
introduce our model for specifying fluid architectures.  
Following that, we demonstrate the utility of the model 
by presenting the design and architecture of the ambient 
display case study.  Section 6 discusses related research 
and gives an outlook on future research activities. 



     

2. CASE STUDY: AMBIENT WEB MONITOR 

To make our discussion more concrete we use the 
Ambient Web Monitor, a system that was designed and 
implemented by a group at University of Karlsruhe 
[Gellersen and Schmidt (9)], as case study. The Ambient 
Web Monitor is a collection of digitally augmented 
posters that provide users with peripheral awareness of 
the popularity of specific web sites. Each poster is a 
large scale print of a web page illuminated by a spot light 
(Fig. 1). The intensity of the spot light shinning on each 
poster corresponds to the amount of traffic directed at the 
web page (measured in page hits per time interval): the 
poster of a web page that receives many page hits is 
brightly illuminated while a web page with no traffic is 
not illuminated. As traffic of a web page increases or 
decreases, so does the light intensity.  As a result, the 
system provides a sense not only of how much interest a 
particular project raises on the web, but also of how this 
interest is distributed across different projects.  

A key issue in the design of the Ambient Web Monitor is 
that it should afford similar physical manipulations as 
other artefacts in a typical office environment. Chairs for 
example can easily be moved from one room to the next 
without loosing their usefulness. Similarly, it is easy to 
buy a chair and add it to an existing table. To identify 
user manipulation that should be supported by the web 
monitor we collected typical change scenarios (Table 1). 
Change scenarios can broadly be classified into three 
categories: 1. changes that concern a system as a whole, 
2. changes that only concern individual system 
components, and 3. changes that concern two or more 
system. The change scenarios represent requirements for 
the Ambient Web Monitor system. Users should be able 
to perform the activities described in these scenarios 
without having to reprogram or rewire the system. For 
the purpose of this paper, we focus on changes which are 
clearly part of the normal usage pattern and ignore 
changes that substantially alter the system’s 
functionality. Thus, for example, we excluded from 
consideration changes to the system that are the result of 
modified functional requirements.  

                    
Figure 1.  Ambient Web Monitor. (From Gellersen and Schmidt (9)) 

                                           TABLE 1. Change scenarios for the Ambient Web Monitor 

 Change scenario Example Scope  

1. Setup system for the first 
time  

Starting to use the Ambient Web Monitor 
after purchase or development. Involves 
setup and installation in office  

Entire system 

2.  Move system to new 
location 

Moving Ambient Web Monitor from office 
into hallway Entire system 

3.  Remove system from 
location 

Ceasing to use the Ambient Web Monitor 
(temporarily or permanently). Involves 
complete breakdown. 

Entire system 

4.  Move poster to new 
location Moving a poster from office into hallway  Individual 

component 

5.  Remove poster from 
system 

Removing a poster from Ambient Web 
Monitor 

Individual 
component 

6.  Add new poster to system 
Adding a new poster to the Ambient Web 
Monitor.  The purpose is to monitor web 
traffic to a new URL. 

Individual 
component 

7.  Replace poster with 
another one 

Removing a poster and replacing it with a 
different one.  The purpose is to change a 
monitored URL. 

Individual 
component 

8. Combining two existing 
systems 

Moving two Ambient Web Systems, which 
prior have existed independently, into the 
same room.   

More than one 
system 



     

In order to investigate system architectures that support 
the identified change scenarios we have reimplemented 
the Ambient Web Monitor. Our original and naïve 
implementation employed a centralized architecture in 
which the lights were controlled by a single process on 
the web server. It was easy to implement, but adding or 
removing a poster required software modifications in 
addition to manipulations of the lights. Setting up the 
system and tearing it down requires careful disassembly 
of the light fixtures. More importantly changing a URL 
(for the purpose of changing the web page the system 
monitors) requires access to a computer terminal and 
reconfiguration of the server process.  Thus, adding, 
removing or changing a poster is not simply a matter of 
physically adding or removing it, and is not a task that 
can be performed by the end user.  Instead, it requires the 
intervention of a programmer.  

The inability to accommodate the required structural 
modifications is due to an inappropriate system 
architecture which is too rigid and inflexible. Thus, we 
need to turn our attention to architectural models for 
intelligent environments. 

3. CAPTURING CHANGE REQUIREMENTS 
WITH FLUID SOFTWARE ARCHITECTURES 

While there has been a much work on enabling 
technologies and software tools for intelligent 
environments, the problem of how to specify and model 
such systems on an abstract level has received only scant 
attention. Yet, high-level system models that specify 
essential system properties and abstract from 
implementation specific details are vital for a rigid and 
effective engineering process. The lack of tailored 
specification methods for intelligent environments is a 
fundamental shortcoming, especially in the context of 
business critical applications and for systems that 
consists of large numbers of networked components.  

For a number of years, software architecture approaches 
have been used for modelling and analyzing complex 
software systems [Perry and Wolf (10), Garlan and Shaw 
(11). A good architecture can help ensure that a system 
will satisfy key requirements in areas such as 
performance, reliability, portability, scalability, and 
interoperability. Despite the importance of architectural 
models there has been surprisingly little research on 
architectural models for pervasive systems (see Chemg 
et al (12) for an exception). Most ubiquitous computing 
systems described in the literature have been developed 
without formal specification.  

Intelligent environments pose a particular challenge for 
the field of software architecture because of their 

inherent dynamics. As emphasized by Rodden and 
Benford (5), living and work environments are subject to 
continuous transformation: they are modified by the 
people who inhabit them in a variety of ways, for a 
variety of purposes and with different frequencies. 
Intelligent environments are composed of the physical 
objects and artefacts that surround us, and the buildings 
we inhabit.  As such, they are subject to the same 
dynamics as the rest of our living and work 
environments. Important is that these changes are part of 
the normal and expected usage pattern – they are not 
extraordinary circumstances that only happen 
occasionally. Thus we can formulate a fundamental 
requirement for intelligent environments:  

Intelligent environments must be change resilient with 
respect to structural modifications imposed by users.  

Change resilience is a non-functional requirement that is 
related to usability, reliability, dependability, availability, 
and maintainability. Resilience is the ability to assimilate 
change without dysfunction: a resilient system will 
maintain its ability to function without requiring 
extensive maintenance.  

If the observation is correct that evolutionary structural 
changes are an inevitable part of intelligent environment, 
does it still make sense to speak about its architecture as 
a static, immutable concept? To answer this question, we 
must clarify what we mean by architecture. The term 
architecture is commonly used in computer science to 
refer to organizational aspects of hardware and software 
systems. Perry and Wolf (13) make an analogy to 
building architecture and define software architecture as 
the triple of elements, form and rationale. That is, a 
software architecture is a set of architectural elements 
that have a particular form and exist to fulfil a particular 
purpose. In this paper, we use the term architecture in a 
more narrow sense to denote the structure of the 
components of a program/system and their 
interrelationships. It then becomes clear that the 
architecture of an intelligent environment is not static but 
changes over time. In fact, intelligent environments have 
what we call a fluid system architecture. We define a 
fluid architecture as follows:  

Def.: A fluid software architecture is a software 
architecture that can accommodate continuous structural 
change without aversely affecting the system behaviour.  

Fluid architectures cannot be easily captured with current 
software architecture models. Similarly, work on self-
healing and self-adaptive systems by Garlan and Schmerl 
(14), Garlan et al (15) and Oreizy et al (16) focuses on 
behaviour adaptation in response to changes in the 
operating environment (e.g. variable resources) but not 
on user-induced structural changes.  



     

Our primary goal is to model how intelligent 
environments may structurally change over time by 
defining sets of permissible architecture configurations. 
Each permissible configuration describes a state of a 
system in which it is supposed to work without failure; if 
a system is in a non-permissible configuration, it may 
fail. In the remainder of this paper, we will introduce a 
concrete architectural model and demonstrate its utility 
using the Ambient Web Monitor as case study. 

4. AN ARCHITECTURAL MODEL FOR  
FLUID INTELLIGENT ENVIRONMENTS 

In the context of intelligent environments, one of the 
most important requirements for an architectural model 
is that it reflects the fact that such systems are embedded 
in the physical environment and consist of physical 
entities.  The architecture of an intelligent environment 
must be consistent with its physical nature.  In particular, 
system components must not cross physical boundaries, 
although communication across physical boundaries 
should be possible.  Similarly, reconfigurability should 
only be supported on the physical component level and 
not on the level of arbitrary abstract components (as we 
want to exclude reconfiguration that would involve 
physical destruction of components).  

Our main focus here is on architectural models as means 
for documenting design decisions and for improving 
communication between stakeholders and not on 
automated system verification or code generation. Thus, 
our architectural model is presented informally rather 
than formal. 

We formulate our architecture model as an architectural 
style [Perry and Wolf (10),Garlan and Shaw(11), Abowd 
et al (17)].  The key elements of the style are 
components, connectors and assemblies. A set of 
composition rules determines how components and 
connectors may be arranged to form a valid 
configuration. An architecture is defined as a (possibly 
infinite) set of configurations. Each architecture 
configuration represents one possible structural state of 
the described system. During its lifetime, a system may 
be reorganized many times by its users and thus go 
through a series of configurations.  

4.1 Components 

The architectural style distinguishes three component 
types: sensors, actuators, and transformers. Sensors 
model input into the system while actuators model 
output. The key component is the transformer. It is the 
only component that can perform processing. A 
transformer receives inputs from one or more sensors, 
converts them and sends the results to other transformers 
or actuators. Components communicate by generating 
events which are transported by connectors. Each 
component has a set of labelled input and output ports 
for receiving and sending events, respectively. 
Connectors are used to join input and output ports of 
different components. However, connectors can only join 
ports with the same label. Events are delivered 
anonymously: a component that generates an event does 
not know to which components it will be delivered. 
Routing of events is determined by how components are 
joined together by connectors.  Events automatically 
travel from the output port of one component to the input 
port of all connected components. 

The left side of Figure 2 shows the structure of a 
transformer. It has three input and three output ports, 
labelled p, d and s. p stands for physical input/output, d 
stands for digital input/output and s stands for state 
input/output. s ports represent state variables that are 
accessible by other components. In the diagrams we use 
the convention that input ports are shown on the left side 
of a component and output ports on the right side.  

We distinguish two types of sensors: physical sensors 
and digital sensors. A physical sensor is a component 
that monitors a particular state of the physical 
environment. Examples include temperature and load 
sensors. A digital sensor monitors the state of an external 
system component such as a legacy system such as a web 
server or database. Similar to sensors, we distinguish 
between physical actuators and digital actuators. A 
physical actuator models output that is immediately 
observable by a user. Examples of physical actuators are: 
lights, speakers, and displays. A digital actuator is a 
component that changes the state of an external system.  

The right side of Figure 2 shows the structure of sensors 
and actuators. Digital sensors and actuators have one 
input and one output port, while physical sensors and 
actuators have only one out and one input port, 
respectively.  
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Figure 2. Transformer Component (left) and Sensor and Actuator component (right) 



     

4.2 Connectors 

Connectors bind components together into a specific 
configuration. We define two types of connectors: data 
channels and constraints. Data channels model the flow 
of data from sensors through transformers to actuators. 
Constraints model communication between transformers 
related to state information. Data channels can only be 
connected to the d and p ports of sensors, actuators and 
transformers. They are unidirectional: events carrying 
data travel in one direction from the producer to the 
receiver. Constraints synchronize state variables of two 
transformers. They are bi-directional and can only be 
connected to the s ports of transformers.  

The result of using two different connector types is that 
there are two separate flows of information in a system:  

1. A horizontal flow dedicated to transforming input into 
output.  

2. A vertical flow dedicated to inter-component 
synchronization.  

Connectors are abstract elements for modelling 
communication. They may be realized by different 

mechanisms such as procedure calls or events.  

4.3 Assemblies 

Assemblies are collections of components that model 
physical boundaries. They are the level on which 
structural chances within a system can occur. Assemblies 
may be added to or removed from a system in there 
entirety, but they must not be broken up. Of course, 
removing or adding an assembly might change the 
overall system behaviour.  For example, we model an 
augmented piece of furniture as an assembly.  This 
indicates that moving this furniture piece in and out of an 
environment is a normal change that the system is 
expected to handle. However, taking the furniture apart 
is not.  

To facilitate composition of a system out of a collection 
of assemblies, assemblies may only communicate via 
constraints. In other words, two transformers connected 
by a data channel must be contained in the same 
assembly. Thus a set of assemblies connected by 
constraints form a constraint network. Figure 3 shows an 
example of two communicating assemblies; each 
assembly is visually represented as a shaded box. 
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Figure 4. Initial Architecture Configuration of Ambient Web Monitor 
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Figure 3.  Two component assemblies connected by one constraint 



     

4.4 Composition Rules 

We now summarize the composition rules for 
components, connectors and assemblies: 

Rule 1: Data channels may be used to connect d and p 
ports of sensors, actuators and transformers. One out port 
may be connected to exactly one in port (unicast) or 
more than one in ports (multicast). 
Rule 2: Constraints may be used to connect s ports of 
two transformers.   
Rule 3: An assembly may contain one or more 
components. Each component may only be part of one 
assembly. 
Rule 4: Only constraints, data channels connected to the 
in port of digital sensors and data channels connected to 
the out port of digital actuators may cross assembly 
boundaries. This rule guarantees that inter-assembly 
communication only occurs through constraints.  

5. MODELLING THE AMBIENT WEB MONITOR 
ARCHITECTURE 

In this section, we demonstrate the utility of the 
architectural model by discussing two architectures for 
the Ambient Web Monitor.  The first architecture failed 
to exhibit the required flexibility as described earlier. In 
the following, we will only present one configuration for 
each architecture rather than listing all possible 
configurations.   

5.1 Initial Architecture 

The initial architecture uses a centralized architecture; all 
processing is done on a web server that communicates 
wirelessly with external lights. A configuration of the 
initial architecture with three posters is depicted in 
Figure 4.  There is one traffic sensor that monitors 
several URLs. Whenever a page is visited, the traffic 
sensor sends an event to the transformer. The 

transformer manages all connected lights. Periodically, it 
computes a new page activity level for each monitored 
URL and derives new light intensities. If a light intensity 
significantly differs from its previous level, the 
transformer sends the new light intensity event to the 
corresponding light actuator. Web server, traffic sensor 
and controller are contained in one assembly, that is, they 
represent one physical unit. 

5.2 Evaluation of Initial Architecture  

The initial architecture fairs rather poorly when it comes 
to supporting the change scenarios listed in Section 2.  
Scenarios 4 to 7, which concern individual components, 
all require internal modifications of the traffic sensor 
and/or the controller by a programmer. Adding or 
removing a poster is not possible by simply adding or 
removing a physical entity.   

Scenarios 1 to 3, which concern the entire systems as a 
whole, are similarly poorly supported. Setting up the web 
monitor requires access to the web server in order to 
install software for traffic sensor and controller.  Moving 
the entire system to a new location requires either a 
physical move of the web server or a fresh installation of 
the web monitor software on a new web server.  In sum, 
there is no correlation between the physical architecture 
of the system and the user’s conceptual view of the 
system.  The architecture does not afford the required 
change scenarios.  The results of our architecture 
evaluation are shown in Table 3.   

5.3 Improved Architecture 

The improved architecture consists of self-contained 
light objects with their own sensor, transformer, and 
actuator. Thus, lights and posters can easily be added or 
removed without requiring software modifications.   

A configuration of an Ambient Web Monitor system 
with three posters is depicted in Figure 5. For each 
poster, the system contains one assembly with one 
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Figure 5. Improved Architecture Configuration of Ambient Web Monitor 



     

transformer, one digital sensor and one physical actuator. 
Each sensor monitors the web activity of one particular 
web page. Whenever a page is visited, the corresponding 
traffic sensor sends an event to its transformer. 
Periodically, the transformer computes a new page 
activity level and derives from that a new light intensity. 
If the new light intensity significantly differs from the 
previous level, the transformer sends a new light 
intensity event to the actuator.   

The three transformers are connected to each other by 
constraints. They guarantee that their state variables stay 
synchronized. The state variables of the transformers and 
event types of this architecture are summarized in Table 
2. Each transformer maintains two state variables s1 and 
s2. s1 is the time interval over which the traffic data is 
aggregated. A value of 60 min indicates that the intensity 
of the light corresponds to the number of page hits per 
hour. s2 is the update frequency of the light. A value of 
10 seconds indicates that the light intensity is adjusted 
every 10 seconds.    

5.4 Evaluation of Improved Architecture 

The assemblies in this configuration indicate direct 
support for two distinct manipulations:  

1. Removing a transformer together with the connected 
sensor and actuator; 

2. Adding a transformer together with a sensor and an 
actuator.  

As result, scenarios 4 to 7 can be performed by 
physically manipulating assemblies.  For example, a user 
can add a new poster by simply adding a new sensor – 
transformer – actuator assembly.  The constraints 
between assemblies guarantee that the state variables of 
transformers are synchronized.  This is important 
because the state variables determine the visible 
behaviour of the system.  Because of the use of 
constraints existing system components do not need to 
be updated or reconfigured: the new assembly is 
automatically integrated into the system.  

Scenarios 1 to 3 are also better supported as in the initial 
architecture. However, we need to make an additional 
assumption, which is not expressed in the architecture 
description: installing, moving and removing a web 
monitor system is simple and can be performed by the 

user if a web server is available with a publicly 
accessible log file. If this is the case, then the user can set 
up a new system simply by hanging up a poster and 
attaching a sensor – transformer – actuator assembly.   

The improved architecture also supports change scenario 
8, the bringing together of two previously separate web 
monitor systems.  Let’s assume there are two Ambient 
Web Monitor installations in two separate buildings and 
each installation contains several posters.  One 
installation is set up to use a one hour time interval as 
parameter and the other is set up to use a 24 hour time 
interval.  Obviously, the light intensities will be different 
for both installations even if the real web traffic is the 
same.  However, since they are physically apart this does 
not matter.  Let’s further assume both installations will 
be merged and physically moved into the same room.  To 
make sense to the user, all displays need to use the same 
parameters.  This is guaranteed by the constraints 
between the transformers.   

In sum, the improved architecture shows a correlation 
between the physical architecture of the system and the 
user’s conceptual view of the system.  To a large extent, 
the architecture does afford the required change 
scenarios.   

6    IMPLEMENTATION 

The improved version of the Ambient Web Monitor has 
been implemented with the help of the Smart-It 
embedded device platform [Gellersen et al (18)]. Each 
transformer is realized as an embedded device to which 
sensors and actuators are added. Communication 
between transformers, and to and from external systems 
is performed via a short-range wireless network. 
Transformer devices run software for handling 
communication and for computing updates to state 
variables.  

Currently, constraints must be implemented manually by 
the programmer; there is no high-level support provide 
by the embedded devices software platform. Each 
constraint variable requires the implementation of its 
own dedicated constraint network.  In the future, we plan 
to investigate generic constraint network 
implementations for wireless embedded device 

                                       TABLE 2. State Variables and Event Types 

 State Variables Events 

Traffic sensor - d: Page hit  

Light - - 

Transformer s1: Time interval (e.g. 60 min) 
s2: Update frequency (e.g. 10 sec.) p: Light intensity (0…100) 

 



     

platforms. Constraint relationships should be 
automatically established between devices that are 
within communication reach and the name of state 
variables (s1, s2) should be used to auto-establish 
constraint relationships. Updates to constraint variables 
will then be broadcast over the network. To prevent 
cascading updates and endless loops, updates will 
contain a logical time stamp. The time stamp will be 
derived from the distributed clock implementation that is 
part of the network software.  

7    RELATED WORK 

Change is a key aspect of intelligent environments. In 
the following we will discuss how physical change 
resilience is addressed in context-aware systems and 
platforms. We will then provide an overview of existing 
approaches from other disciplines such as configuration 
management, dynamic software architecture, and 
reconfigurable distributed system. 

Context-Aware Computing. Research in ubiquitous 
and context-aware computing has for the most part 
focused on the pre-deployment phases of the software 
lifecycle such as design and implementation. 
Nevertheless, several context-aware computing 
platforms provide mechanisms for supporting limited 
forms of evolutionary changes. For example, the Context 
Toolkit [Dey et al (19)] and Context Fabric [Hong and 
Landay (20)] support the swapping of components at 
runtime. However, they do not target embedded device 
platforms and they do not allow designers to specify the 
changes that a system built with these platforms can be 
expected to accommodate. Furthermore, these platforms 
have no notion of physical components and thus lack of 
the concept of physical reconfiguration which we 
consider essential for intelligent environments.  

The architecture for context aware computing by 
Crowley et al. (21) is one of the few attempts at 
designing a generic architecture for context-aware 
systems. The architecture is based on reconfigurable 
components and is able to express certain structural 
changes.  Yet, again, it lacks the notion of physical 
components and physical reconfiguration.  In addition, it 
is best suited for input-rich context-aware systems, and 
less suited for output-only systems.  

Dynamic Software Reconfiguration. Kramer and 
Magee (8) have pioneered the idea of dynamic software 
reconfiguration for distributed systems. The purpose of 
dynamic reconfiguration is to make a system evolve 
incrementally from its current configuration to another 
configuration while introducing as little impact as 
possible on the system execution. Kramer and Magee’s 
focus is to increase the availability of distributed 
systems. They do that, however, not from an architecture 
point of view, but they work with a system’s code base. 
The changes they consider originate in a system’s 
operating environment and may lead to disruptions of a 
system’s normal operation. Our work, in contrast, is 
architectural and concerned with changes induced by end 
users that occur normally as part of the daily interaction 
with a system.  

In Kramer and Magee’s approach, a system is seen as a 
directed graph whose nodes are the entities and whose 
arcs are connections between entities. Entities can only 
affect each other states via transactions. In our approach 
we limit component interactions to constraints. In 
addition, a vital aspect of our work missing from Kramer 
and Magee is the explicit representation of structural 
changes as part of the architecture.  

Dynamic Software Architectures. Allen et al (6) were 
the first to consider dynamic software architectures. 
There main interest is to develop an architecture 
description language (ADL) that is capable of 

                                                    TABLE 3. Summary of Architecture Evaluation 

 Change scenario Initial 
Architecture 

Improved 
Architecture 

1. Setup system for the first time  - o 

2. Move system to new location - o 

3. Remove system from location - o 

4. Move component to new location - + 

5. Remove component from system - + 

6. Add new component to system - + 

7. Replace component with another 
version - + 

8.  Combining two existing systems - + 

 



     

representing certain structural modifications. Their 
approach is heavily geared towards developing a 
semantic foundation for their language; they are not at all 
concerned with identifying which types of changing 
might be most important from a user’s point of view. 
Van der Hoek et al (7) follow a more pragmatic 
approach by examining the relations between software 
architecture and software configuration management. 
They propose a novel representation, called configurable 
software architecture, which extends the traditional 
notion of software architecture with the concepts of 
variants, options and evolution. Similar in scope to our 
fluid architecture model, they focus on architectural 
changes that may be performed by developers as part of 
ongoing development activities. Our work, in contrast, is 
driven by user-level usage scenarios. Furthermore, 
similar to work in dynamic software reconfiguration they 
do not consider the physical boundaries as vital change 
aspect.   

Self-healing and Self-adaptive Systems. Software 
architecture specifications can serve many purposes 
beyond simply functioning as a means for 
communication between stakeholders. Work on self-
healing and self-adaptive systems (14)(15) uses 
architecture to make decisions about run-time adaptation 
by comparing monitored and expected system state. 
However, the current work in this area focus on 
behaviour adaptation as opposed to user-induced 
structural modifications. Similarly, it has not yet been 
applied to context-aware and embedded systems. Many 
of the techniques and methods, however, apply to 
intelligent environments and we plan to investigate them 
as outlined below.   

End user configuration. An interesting alternative to 
our approach was proposed by Humble et al (22). 
Instead of trying to shield the user from the knowledge 
that reconfiguration takes place and the knowledge of 
how reconfiguration is performed, they aim to put user in 
control of the configuration task. To that end, they have 
developed a graphical editor for a PC that users can use 
to reconfigure their environment at will. This assumes 
that users are willing to reconfigure their pervasive 
computing environment and knowledgeable enough to 
understand the consequences of their actions. 

8    CONCLUSION AND FUTURE WORK 

Intelligent environments emerge when we augment 
physical objects and environments with computation, 
sensing, and communication. These systems have a 
physical nature, they are dispersed in space, and they 
mediate between the physical and digital world.  A key 
requirement of intelligent environments is that they are 
change resilient with respect to physical reconfiguration. 
These changes are induced by the user and are part of the 
normal and expected usage pattern.   

The key contribution of this paper is an architectural 
model for fluid intelligent environments that allows 
designers to specify the range of physical reconfiguration 
supported by an architecture. The model defines a fluid 
architecture as a (possibly infinite) set of alternative 
system configurations. Each configuration represents one 
possible architectural state.  Each configuration consists 
of a set of components bound together by connectors.  
Data channels are used to model the transformation from 
sensor input into output for actuators.  Component 
assemblies are used to represent physical boundaries 
within the system.  By limiting communication between 
assemblies to constraints, we achieve a conceptually 
simple model for physical composition that is easy to 
implement.   

The main focus of our work so far has been to investigate 
change requirements for intelligent environments and to 
develop an architectural model that allows designers to 
capture important change dimensions. Our future work 
aims to answer the following two questions: 

§ Is it possible to derive an implementation of an 
intelligent environment from high-level models? In 
particular, we are interested in applying recent results 
from research on model-driven software development.  

§ Is it possible to add self-awareness to an intelligent 
environment such that it knows when it is in a legal or 
illegal state? How can this be done in a decentralized 
ad-hoc environment consisting of resource-limited 
wireless embedded devices? 
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