

MODELLING AND EVALUATING
FLUID SOFTWARE ARCHITECTURES FOR INTELLIGENT ENVIRONMENTS

Gerd Kortuem

Lancaster University, Computing Department, UK

Abstract: In this paper we introduce a model for specifying fluid architectures of
intelligent environments. A fluid architecture is one that is able to accommodate
continuous structural changes without aversely affecting the system’s behaviour. The
model enables designers to specify structural modifications that may be performed by
users as part of the normal interaction and which must be supported by the underlying
environment infrastructure. The model is formulated as a generative architectural style: it
defines component types, connector types and rules for their composition. This leads to a
model that can describe an unlimited number of concrete architectures. To demonstrate
the utility of our model, we discuss the design, architecture and change scenarios of an
ambient display system.

Keywords: Ubiquitous computing, intelligent environment, software architecture,
adaptation, structural changes, architecture evaluation.

1. INTRODUCTION

Ubiquitous computing envisions a computing
infrastructure that seamlessly aids users in
accomplishing their tasks and renders the actual
computing devices and technology virtually invisible
[Weiser (1)] and distraction-free [Garlan et al (2)]. One
approach to realize this vision is to turn everyday objects
and architectural spaces into interfaces to an otherwise
invisible computational system. This idea has led to the
development of intelligent environments, a new and
important category of interactive systems whose
realization is tightly integrated with the physical world.
Intelligent environments mediate between the physical
and the digital world: they promise to facilitate
interaction with information away from the desktop and
as part of everyday activities, they make use of non-
traditional interface technologies (e.g. sensors,
embedded computing devices); and they require new
interaction models based on implicit or physical
interaction (e.g. tangible interfaces [Ishii and Ullmer (3),
embodied interaction [Dourish (4)].

One aspect of intelligent environments that has received
scant attention in the past is their ability to afford
change. As emphasized by Rodden and Benford (5),
living and work environments are subject to continuous
transformation: they are modified by the people who
inhabit them in a variety of ways, for a variety of
purposes and with different frequencies. Some of these
changes are performed by the inhabitants themselves (for

example, moving furniture in the house) while other are
performed by professionals (for example, rewiring of an
old building). Intelligent environments are composed of
the physical objects and artefacts that surround us and
the buildings we inhabit. As such, they are subject to the
same dynamics as the rest of our living and work
environments.

In this paper, we investigate architectural models for
intelligent environments. The key goal of our work is
the ability to model user-induced structural changes of
intelligent environments, leading us to the notion of fluid
software architectures. Our approach is inspired by
research in dynamic software architectures [Allen et al
(6), van der Hoek (7)] and reconfigurable distributed
system [Kramer and Magee (8). We describe an
architectural model for intelligent environments that
allows designers to incorporate change aspects into the
architectural design. We do this by supporting
architectural change scenarios based on physical
reconfiguration.

This paper is organized as follows. In the following
section we introduce a concrete case study. In Sections 3
and 4, we first discuss requirements for supporting
structural change on the architectural level and then
introduce our model for specifying fluid architectures.
Following that, we demonstrate the utility of the model
by presenting the design and architecture of the ambient
display case study. Section 6 discusses related research
and gives an outlook on future research activities.

2. CASE STUDY: AMBIENT WEB MONITOR

To make our discussion more concrete we use the
Ambient Web Monitor, a system that was designed and
implemented by a group at University of Karlsruhe
[Gellersen and Schmidt (9)], as case study. The Ambient
Web Monitor is a collection of digitally augmented
posters that provide users with peripheral awareness of
the popularity of specific web sites. Each poster is a
large scale print of a web page illuminated by a spot light
(Fig. 1). The intensity of the spot light shinning on each
poster corresponds to the amount of traffic directed at the
web page (measured in page hits per time interval): the
poster of a web page that receives many page hits is
brightly illuminated while a web page with no traffic is
not illuminated. As traffic of a web page increases or
decreases, so does the light intensity. As a result, the
system provides a sense not only of how much interest a
particular project raises on the web, but also of how this
interest is distributed across different projects.

A key issue in the design of the Ambient Web Monitor is
that it should afford similar physical manipulations as
other artefacts in a typical office environment. Chairs for
example can easily be moved from one room to the next
without loosing their usefulness. Similarly, it is easy to
buy a chair and add it to an existing table. To identify
user manipulation that should be supported by the web
monitor we collected typical change scenarios (Table 1).
Change scenarios can broadly be classified into three
categories: 1. changes that concern a system as a whole,
2. changes that only concern individual system
components, and 3. changes that concern two or more
system. The change scenarios represent requirements for
the Ambient Web Monitor system. Users should be able
to perform the activities described in these scenarios
without having to reprogram or rewire the system. For
the purpose of this paper, we focus on changes which are
clearly part of the normal usage pattern and ignore
changes that substantially alter the system’s
functionality. Thus, for example, we excluded from
consideration changes to the system that are the result of
modified functional requirements.

Figure 1. Ambient Web Monitor. (From Gellersen and Schmidt (9))

 TABLE 1. Change scenarios for the Ambient Web Monitor

 Change scenario Example Scope

1. Setup system for the first
time

Starting to use the Ambient Web Monitor
after purchase or development. Involves
setup and installation in office

Entire system

2. Move system to new
location

Moving Ambient Web Monitor from office
into hallway Entire system

3. Remove system from
location

Ceasing to use the Ambient Web Monitor
(temporarily or permanently). Involves
complete breakdown.

Entire system

4. Move poster to new
location Moving a poster from office into hallway Individual

component

5. Remove poster from
system

Removing a poster from Ambient Web
Monitor

Individual
component

6. Add new poster to system
Adding a new poster to the Ambient Web
Monitor. The purpose is to monitor web
traffic to a new URL.

Individual
component

7. Replace poster with
another one

Removing a poster and replacing it with a
different one. The purpose is to change a
monitored URL.

Individual
component

8. Combining two existing
systems

Moving two Ambient Web Systems, which
prior have existed independently, into the
same room.

More than one
system

In order to investigate system architectures that support
the identified change scenarios we have reimplemented
the Ambient Web Monitor. Our original and naïve
implementation employed a centralized architecture in
which the lights were controlled by a single process on
the web server. It was easy to implement, but adding or
removing a poster required software modifications in
addition to manipulations of the lights. Setting up the
system and tearing it down requires careful disassembly
of the light fixtures. More importantly changing a URL
(for the purpose of changing the web page the system
monitors) requires access to a computer terminal and
reconfiguration of the server process. Thus, adding,
removing or changing a poster is not simply a matter of
physically adding or removing it, and is not a task that
can be performed by the end user. Instead, it requires the
intervention of a programmer.

The inability to accommodate the required structural
modifications is due to an inappropriate system
architecture which is too rigid and inflexible. Thus, we
need to turn our attention to architectural models for
intelligent environments.

3. CAPTURING CHANGE REQUIREMENTS
WITH FLUID SOFTWARE ARCHITECTURES

While there has been a much work on enabling
technologies and software tools for intelligent
environments, the problem of how to specify and model
such systems on an abstract level has received only scant
attention. Yet, high-level system models that specify
essential system properties and abstract from
implementation specific details are vital for a rigid and
effective engineering process. The lack of tailored
specification methods for intelligent environments is a
fundamental shortcoming, especially in the context of
business critical applications and for systems that
consists of large numbers of networked components.

For a number of years, software architecture approaches
have been used for modelling and analyzing complex
software systems [Perry and Wolf (10), Garlan and Shaw
(11). A good architecture can help ensure that a system
will satisfy key requirements in areas such as
performance, reliability, portability, scalability, and
interoperability. Despite the importance of architectural
models there has been surprisingly little research on
architectural models for pervasive systems (see Chemg
et al (12) for an exception). Most ubiquitous computing
systems described in the literature have been developed
without formal specification.

Intelligent environments pose a particular challenge for
the field of software architecture because of their

inherent dynamics. As emphasized by Rodden and
Benford (5), living and work environments are subject to
continuous transformation: they are modified by the
people who inhabit them in a variety of ways, for a
variety of purposes and with different frequencies.
Intelligent environments are composed of the physical
objects and artefacts that surround us, and the buildings
we inhabit. As such, they are subject to the same
dynamics as the rest of our living and work
environments. Important is that these changes are part of
the normal and expected usage pattern – they are not
extraordinary circumstances that only happen
occasionally. Thus we can formulate a fundamental
requirement for intelligent environments:

Intelligent environments must be change resilient with
respect to structural modifications imposed by users.

Change resilience is a non-functional requirement that is
related to usability, reliability, dependability, availability,
and maintainability. Resilience is the ability to assimilate
change without dysfunction: a resilient system will
maintain its ability to function without requiring
extensive maintenance.

If the observation is correct that evolutionary structural
changes are an inevitable part of intelligent environment,
does it still make sense to speak about its architecture as
a static, immutable concept? To answer this question, we
must clarify what we mean by architecture. The term
architecture is commonly used in computer science to
refer to organizational aspects of hardware and software
systems. Perry and Wolf (13) make an analogy to
building architecture and define software architecture as
the triple of elements, form and rationale. That is, a
software architecture is a set of architectural elements
that have a particular form and exist to fulfil a particular
purpose. In this paper, we use the term architecture in a
more narrow sense to denote the structure of the
components of a program/system and their
interrelationships. It then becomes clear that the
architecture of an intelligent environment is not static but
changes over time. In fact, intelligent environments have
what we call a fluid system architecture. We define a
fluid architecture as follows:

Def.: A fluid software architecture is a software
architecture that can accommodate continuous structural
change without aversely affecting the system behaviour.

Fluid architectures cannot be easily captured with current
software architecture models. Similarly, work on self-
healing and self-adaptive systems by Garlan and Schmerl
(14), Garlan et al (15) and Oreizy et al (16) focuses on
behaviour adaptation in response to changes in the
operating environment (e.g. variable resources) but not
on user-induced structural changes.

Our primary goal is to model how intelligent
environments may structurally change over time by
defining sets of permissible architecture configurations.
Each permissible configuration describes a state of a
system in which it is supposed to work without failure; if
a system is in a non-permissible configuration, it may
fail. In the remainder of this paper, we will introduce a
concrete architectural model and demonstrate its utility
using the Ambient Web Monitor as case study.

4. AN ARCHITECTURAL MODEL FOR
FLUID INTELLIGENT ENVIRONMENTS

In the context of intelligent environments, one of the
most important requirements for an architectural model
is that it reflects the fact that such systems are embedded
in the physical environment and consist of physical
entities. The architecture of an intelligent environment
must be consistent with its physical nature. In particular,
system components must not cross physical boundaries,
although communication across physical boundaries
should be possible. Similarly, reconfigurability should
only be supported on the physical component level and
not on the level of arbitrary abstract components (as we
want to exclude reconfiguration that would involve
physical destruction of components).

Our main focus here is on architectural models as means
for documenting design decisions and for improving
communication between stakeholders and not on
automated system verification or code generation. Thus,
our architectural model is presented informally rather
than formal.

We formulate our architecture model as an architectural
style [Perry and Wolf (10),Garlan and Shaw(11), Abowd
et al (17)]. The key elements of the style are
components, connectors and assemblies. A set of
composition rules determines how components and
connectors may be arranged to form a valid
configuration. An architecture is defined as a (possibly
infinite) set of configurations. Each architecture
configuration represents one possible structural state of
the described system. During its lifetime, a system may
be reorganized many times by its users and thus go
through a series of configurations.

4.1 Components

The architectural style distinguishes three component
types: sensors, actuators, and transformers. Sensors
model input into the system while actuators model
output. The key component is the transformer. It is the
only component that can perform processing. A
transformer receives inputs from one or more sensors,
converts them and sends the results to other transformers
or actuators. Components communicate by generating
events which are transported by connectors. Each
component has a set of labelled input and output ports
for receiving and sending events, respectively.
Connectors are used to join input and output ports of
different components. However, connectors can only join
ports with the same label. Events are delivered
anonymously: a component that generates an event does
not know to which components it will be delivered.
Routing of events is determined by how components are
joined together by connectors. Events automatically
travel from the output port of one component to the input
port of all connected components.

The left side of Figure 2 shows the structure of a
transformer. It has three input and three output ports,
labelled p, d and s. p stands for physical input/output, d
stands for digital input/output and s stands for state
input/output. s ports represent state variables that are
accessible by other components. In the diagrams we use
the convention that input ports are shown on the left side
of a component and output ports on the right side.

We distinguish two types of sensors: physical sensors
and digital sensors. A physical sensor is a component
that monitors a particular state of the physical
environment. Examples include temperature and load
sensors. A digital sensor monitors the state of an external
system component such as a legacy system such as a web
server or database. Similar to sensors, we distinguish
between physical actuators and digital actuators. A
physical actuator models output that is immediately
observable by a user. Examples of physical actuators are:
lights, speakers, and displays. A digital actuator is a
component that changes the state of an external system.

The right side of Figure 2 shows the structure of sensors
and actuators. Digital sensors and actuators have one
input and one output port, while physical sensors and
actuators have only one out and one input port,
respectively.

Transformer

p p

d d

s

s

state input

state output

physical output

digital output

physical input

digital input

Physical
Sensor p

Digital
Sensord d Digital

Actuatord d

Physical
Actuatorp

Figure 2. Transformer Component (left) and Sensor and Actuator component (right)

4.2 Connectors

Connectors bind components together into a specific
configuration. We define two types of connectors: data
channels and constraints. Data channels model the flow
of data from sensors through transformers to actuators.
Constraints model communication between transformers
related to state information. Data channels can only be
connected to the d and p ports of sensors, actuators and
transformers. They are unidirectional: events carrying
data travel in one direction from the producer to the
receiver. Constraints synchronize state variables of two
transformers. They are bi-directional and can only be
connected to the s ports of transformers.

The result of using two different connector types is that
there are two separate flows of information in a system:

1. A horizontal flow dedicated to transforming input into
output.

2. A vertical flow dedicated to inter-component
synchronization.

Connectors are abstract elements for modelling
communication. They may be realized by different

mechanisms such as procedure calls or events.

4.3 Assemblies

Assemblies are collections of components that model
physical boundaries. They are the level on which
structural chances within a system can occur. Assemblies
may be added to or removed from a system in there
entirety, but they must not be broken up. Of course,
removing or adding an assembly might change the
overall system behaviour. For example, we model an
augmented piece of furniture as an assembly. This
indicates that moving this furniture piece in and out of an
environment is a normal change that the system is
expected to handle. However, taking the furniture apart
is not.

To facilitate composition of a system out of a collection
of assemblies, assemblies may only communicate via
constraints. In other words, two transformers connected
by a data channel must be contained in the same
assembly. Thus a set of assemblies connected by
constraints form a constraint network. Figure 3 shows an
example of two communicating assemblies; each
assembly is visually represented as a shaded box.

Web
Server

Traffic
Sensori o

Lighti

Lighti

Lighti

Transformer
p p

d d

s

s

Figure 4. Initial Architecture Configuration of Ambient Web Monitor

Transformer

p p

d d

s

s

Physical
Sensor p

Digital
Sensord d

Transformer

p p

d d

s

s

Physical
Actuatorp

Transformer

p p

d d

s

s

Figure 3. Two component assemblies connected by one constraint

4.4 Composition Rules

We now summarize the composition rules for
components, connectors and assemblies:

Rule 1: Data channels may be used to connect d and p
ports of sensors, actuators and transformers. One out port
may be connected to exactly one in port (unicast) or
more than one in ports (multicast).
Rule 2: Constraints may be used to connect s ports of
two transformers.
Rule 3: An assembly may contain one or more
components. Each component may only be part of one
assembly.
Rule 4: Only constraints, data channels connected to the
in port of digital sensors and data channels connected to
the out port of digital actuators may cross assembly
boundaries. This rule guarantees that inter-assembly
communication only occurs through constraints.

5. MODELLING THE AMBIENT WEB MONITOR
ARCHITECTURE

In this section, we demonstrate the utility of the
architectural model by discussing two architectures for
the Ambient Web Monitor. The first architecture failed
to exhibit the required flexibility as described earlier. In
the following, we will only present one configuration for
each architecture rather than listing all possible
configurations.

5.1 Initial Architecture

The initial architecture uses a centralized architecture; all
processing is done on a web server that communicates
wirelessly with external lights. A configuration of the
initial architecture with three posters is depicted in
Figure 4. There is one traffic sensor that monitors
several URLs. Whenever a page is visited, the traffic
sensor sends an event to the transformer. The

transformer manages all connected lights. Periodically, it
computes a new page activity level for each monitored
URL and derives new light intensities. If a light intensity
significantly differs from its previous level, the
transformer sends the new light intensity event to the
corresponding light actuator. Web server, traffic sensor
and controller are contained in one assembly, that is, they
represent one physical unit.

5.2 Evaluation of Initial Architecture

The initial architecture fairs rather poorly when it comes
to supporting the change scenarios listed in Section 2.
Scenarios 4 to 7, which concern individual components,
all require internal modifications of the traffic sensor
and/or the controller by a programmer. Adding or
removing a poster is not possible by simply adding or
removing a physical entity.

Scenarios 1 to 3, which concern the entire systems as a
whole, are similarly poorly supported. Setting up the web
monitor requires access to the web server in order to
install software for traffic sensor and controller. Moving
the entire system to a new location requires either a
physical move of the web server or a fresh installation of
the web monitor software on a new web server. In sum,
there is no correlation between the physical architecture
of the system and the user’s conceptual view of the
system. The architecture does not afford the required
change scenarios. The results of our architecture
evaluation are shown in Table 3.

5.3 Improved Architecture

The improved architecture consists of self-contained
light objects with their own sensor, transformer, and
actuator. Thus, lights and posters can easily be added or
removed without requiring software modifications.

A configuration of an Ambient Web Monitor system
with three posters is depicted in Figure 5. For each
poster, the system contains one assembly with one

Traffic
Sensor

Traffic
Sensor

Light

Light

Light

Web
Server

Traffic
Sensor

d

d

d

d

d

d

p

p

pTransformer

Transformer

Transformer

p p

d d

s

s

p p

d d

s

s

pp

d d

s

s

Figure 5. Improved Architecture Configuration of Ambient Web Monitor

transformer, one digital sensor and one physical actuator.
Each sensor monitors the web activity of one particular
web page. Whenever a page is visited, the corresponding
traffic sensor sends an event to its transformer.
Periodically, the transformer computes a new page
activity level and derives from that a new light intensity.
If the new light intensity significantly differs from the
previous level, the transformer sends a new light
intensity event to the actuator.

The three transformers are connected to each other by
constraints. They guarantee that their state variables stay
synchronized. The state variables of the transformers and
event types of this architecture are summarized in Table
2. Each transformer maintains two state variables s1 and
s2. s1 is the time interval over which the traffic data is
aggregated. A value of 60 min indicates that the intensity
of the light corresponds to the number of page hits per
hour. s2 is the update frequency of the light. A value of
10 seconds indicates that the light intensity is adjusted
every 10 seconds.

5.4 Evaluation of Improved Architecture

The assemblies in this configuration indicate direct
support for two distinct manipulations:

1. Removing a transformer together with the connected
sensor and actuator;

2. Adding a transformer together with a sensor and an
actuator.

As result, scenarios 4 to 7 can be performed by
physically manipulating assemblies. For example, a user
can add a new poster by simply adding a new sensor –
transformer – actuator assembly. The constraints
between assemblies guarantee that the state variables of
transformers are synchronized. This is important
because the state variables determine the visible
behaviour of the system. Because of the use of
constraints existing system components do not need to
be updated or reconfigured: the new assembly is
automatically integrated into the system.

Scenarios 1 to 3 are also better supported as in the initial
architecture. However, we need to make an additional
assumption, which is not expressed in the architecture
description: installing, moving and removing a web
monitor system is simple and can be performed by the

user if a web server is available with a publicly
accessible log file. If this is the case, then the user can set
up a new system simply by hanging up a poster and
attaching a sensor – transformer – actuator assembly.

The improved architecture also supports change scenario
8, the bringing together of two previously separate web
monitor systems. Let’s assume there are two Ambient
Web Monitor installations in two separate buildings and
each installation contains several posters. One
installation is set up to use a one hour time interval as
parameter and the other is set up to use a 24 hour time
interval. Obviously, the light intensities will be different
for both installations even if the real web traffic is the
same. However, since they are physically apart this does
not matter. Let’s further assume both installations will
be merged and physically moved into the same room. To
make sense to the user, all displays need to use the same
parameters. This is guaranteed by the constraints
between the transformers.

In sum, the improved architecture shows a correlation
between the physical architecture of the system and the
user’s conceptual view of the system. To a large extent,
the architecture does afford the required change
scenarios.

6 IMPLEMENTATION

The improved version of the Ambient Web Monitor has
been implemented with the help of the Smart-It
embedded device platform [Gellersen et al (18)]. Each
transformer is realized as an embedded device to which
sensors and actuators are added. Communication
between transformers, and to and from external systems
is performed via a short-range wireless network.
Transformer devices run software for handling
communication and for computing updates to state
variables.

Currently, constraints must be implemented manually by
the programmer; there is no high-level support provide
by the embedded devices software platform. Each
constraint variable requires the implementation of its
own dedicated constraint network. In the future, we plan
to investigate generic constraint network
implementations for wireless embedded device

 TABLE 2. State Variables and Event Types

 State Variables Events

Traffic sensor - d: Page hit

Light - -

Transformer s1: Time interval (e.g. 60 min)
s2: Update frequency (e.g. 10 sec.) p: Light intensity (0…100)

platforms. Constraint relationships should be
automatically established between devices that are
within communication reach and the name of state
variables (s1, s2) should be used to auto-establish
constraint relationships. Updates to constraint variables
will then be broadcast over the network. To prevent
cascading updates and endless loops, updates will
contain a logical time stamp. The time stamp will be
derived from the distributed clock implementation that is
part of the network software.

7 RELATED WORK

Change is a key aspect of intelligent environments. In
the following we will discuss how physical change
resilience is addressed in context-aware systems and
platforms. We will then provide an overview of existing
approaches from other disciplines such as configuration
management, dynamic software architecture, and
reconfigurable distributed system.

Context-Aware Computing. Research in ubiquitous
and context-aware computing has for the most part
focused on the pre-deployment phases of the software
lifecycle such as design and implementation.
Nevertheless, several context-aware computing
platforms provide mechanisms for supporting limited
forms of evolutionary changes. For example, the Context
Toolkit [Dey et al (19)] and Context Fabric [Hong and
Landay (20)] support the swapping of components at
runtime. However, they do not target embedded device
platforms and they do not allow designers to specify the
changes that a system built with these platforms can be
expected to accommodate. Furthermore, these platforms
have no notion of physical components and thus lack of
the concept of physical reconfiguration which we
consider essential for intelligent environments.

The architecture for context aware computing by
Crowley et al. (21) is one of the few attempts at
designing a generic architecture for context-aware
systems. The architecture is based on reconfigurable
components and is able to express certain structural
changes. Yet, again, it lacks the notion of physical
components and physical reconfiguration. In addition, it
is best suited for input-rich context-aware systems, and
less suited for output-only systems.

Dynamic Software Reconfiguration. Kramer and
Magee (8) have pioneered the idea of dynamic software
reconfiguration for distributed systems. The purpose of
dynamic reconfiguration is to make a system evolve
incrementally from its current configuration to another
configuration while introducing as little impact as
possible on the system execution. Kramer and Magee’s
focus is to increase the availability of distributed
systems. They do that, however, not from an architecture
point of view, but they work with a system’s code base.
The changes they consider originate in a system’s
operating environment and may lead to disruptions of a
system’s normal operation. Our work, in contrast, is
architectural and concerned with changes induced by end
users that occur normally as part of the daily interaction
with a system.

In Kramer and Magee’s approach, a system is seen as a
directed graph whose nodes are the entities and whose
arcs are connections between entities. Entities can only
affect each other states via transactions. In our approach
we limit component interactions to constraints. In
addition, a vital aspect of our work missing from Kramer
and Magee is the explicit representation of structural
changes as part of the architecture.

Dynamic Software Architectures. Allen et al (6) were
the first to consider dynamic software architectures.
There main interest is to develop an architecture
description language (ADL) that is capable of

 TABLE 3. Summary of Architecture Evaluation

 Change scenario Initial
Architecture

Improved
Architecture

1. Setup system for the first time - o

2. Move system to new location - o

3. Remove system from location - o

4. Move component to new location - +

5. Remove component from system - +

6. Add new component to system - +

7. Replace component with another
version - +

8. Combining two existing systems - +

representing certain structural modifications. Their
approach is heavily geared towards developing a
semantic foundation for their language; they are not at all
concerned with identifying which types of changing
might be most important from a user’s point of view.
Van der Hoek et al (7) follow a more pragmatic
approach by examining the relations between software
architecture and software configuration management.
They propose a novel representation, called configurable
software architecture, which extends the traditional
notion of software architecture with the concepts of
variants, options and evolution. Similar in scope to our
fluid architecture model, they focus on architectural
changes that may be performed by developers as part of
ongoing development activities. Our work, in contrast, is
driven by user-level usage scenarios. Furthermore,
similar to work in dynamic software reconfiguration they
do not consider the physical boundaries as vital change
aspect.

Self-healing and Self-adaptive Systems. Software
architecture specifications can serve many purposes
beyond simply functioning as a means for
communication between stakeholders. Work on self-
healing and self-adaptive systems (14)(15) uses
architecture to make decisions about run-time adaptation
by comparing monitored and expected system state.
However, the current work in this area focus on
behaviour adaptation as opposed to user-induced
structural modifications. Similarly, it has not yet been
applied to context-aware and embedded systems. Many
of the techniques and methods, however, apply to
intelligent environments and we plan to investigate them
as outlined below.

End user configuration. An interesting alternative to
our approach was proposed by Humble et al (22).
Instead of trying to shield the user from the knowledge
that reconfiguration takes place and the knowledge of
how reconfiguration is performed, they aim to put user in
control of the configuration task. To that end, they have
developed a graphical editor for a PC that users can use
to reconfigure their environment at will. This assumes
that users are willing to reconfigure their pervasive
computing environment and knowledgeable enough to
understand the consequences of their actions.

8 CONCLUSION AND FUTURE WORK

Intelligent environments emerge when we augment
physical objects and environments with computation,
sensing, and communication. These systems have a
physical nature, they are dispersed in space, and they
mediate between the physical and digital world. A key
requirement of intelligent environments is that they are
change resilient with respect to physical reconfiguration.
These changes are induced by the user and are part of the
normal and expected usage pattern.

The key contribution of this paper is an architectural
model for fluid intelligent environments that allows
designers to specify the range of physical reconfiguration
supported by an architecture. The model defines a fluid
architecture as a (possibly infinite) set of alternative
system configurations. Each configuration represents one
possible architectural state. Each configuration consists
of a set of components bound together by connectors.
Data channels are used to model the transformation from
sensor input into output for actuators. Component
assemblies are used to represent physical boundaries
within the system. By limiting communication between
assemblies to constraints, we achieve a conceptually
simple model for physical composition that is easy to
implement.

The main focus of our work so far has been to investigate
change requirements for intelligent environments and to
develop an architectural model that allows designers to
capture important change dimensions. Our future work
aims to answer the following two questions:

§ Is it possible to derive an implementation of an
intelligent environment from high-level models? In
particular, we are interested in applying recent results
from research on model-driven software development.

§ Is it possible to add self-awareness to an intelligent
environment such that it knows when it is in a legal or
illegal state? How can this be done in a decentralized
ad-hoc environment consisting of resource-limited
wireless embedded devices?

ACKNOWLEDGEMENTS

This work has been supported by the EU project CoBIs
(IST 004270) and the UK Engineering and Physical
Science Research Council (EPSRC) project NEMO
(EP/C014677/1).

REFERENCES

1. M. Weiser 1994. Creating the Invisible Interface,
Proc. 7th Ann. ACM Symp. User Interface Soft-
ware and Technology, ACM Press, 1994, p. 1.

2. D. Garlan, D. Siewiorek, A. Smailagic, and P.
Steenkiste 2002. Towards Distraction-Free
Pervasive Computing, by, IEEE Pervasive
Computing, special issue on "Integrated Pervasive
Computing Environments", Volume 1, Number 2,
April-June 2002, pages 22-313

3. Ishii, H., Ullmer, B. 1997. Tangible Bits: Towards
Seamless Interfaces Between People, Bits and
Atoms. Proceedings of CHI ‘97 (March 1997), ACM
Press, 234-241

4. Paul Dourish 2001. Where the Action Is. The
Foundations of Embodied Interaction. MIT Press.
October 2001

5. T. Rodden and S. Benford 2003. The evolution of
buildings and implications for the design of
ubiquitous domestic environments. Conference on
Human Factors and Computing Systems (CHI
2003), Ft. Lauderdale, Florida, USA, 2003.

6. R. Allen, R. Douence, and D. Garlan 1998.
Specifying and analyzing dynamic software
architectures. In Proc. FASE'98, Springer Lect.
Notes in Comp. Sci. 1328, 1998

7. André van der Hoek, Dennis Heimbigner, Alexander
L. Wolf 1999. Configurable software architectures:
Capturing Architectural Configurability: Variants,
Options, and Evolution. Technical Report CU-CS-
895-99, Department of Computer Science,
University of Colorado, Boulder, Colorado,
December 1999.

8. J. Kramer and J. Magee. Dynamic Reconfiguration
for distributed systems. IEEE Transactions on
Software Engineering 11(4), pp. 424-436, April
1985.

9. H.-W. Gellersen, A. Schmidt 2002. Look who's
visiting: supporting visitor awareness in the web.
International Journal of Human Computer Studies
IJHCS 56(1), January 2002. pp. 25-46.

10. D.E. Perry and A.L. Wolf. Foundations for the
Study of Software Architecture. ACM SIGSOFT
Software Engineering Notes, 17(4):40-52, October
1992.

11. D. Garlan and M. Shaw. An Introduction to
Software Architecture: Advances in Software
Engineering and Knowledge Engineering, vol 1.
World Scientific Publishing, 1993.

12. S.-W. Cheng, D. Garlan, B. R. Schmerl, J.P. Sousa,
B. Spitznagel, P. Steenkiste, N. Hu. Software
Architecture-Based Adaptation for Pervasive
Systems. Proceedings of the International
Conference on Architecture of Computing Systems:
Trends in Network and Pervasive Computing, 2002,
Pages: 67 – 82.

13. D.E. Perry and A.L. Wolf. Foundations for the
Study of Software Architecture. ACM SIGSOFT
Software Engineering Notes, 17(4):40-52, October
1992.

14. D. Garlan, and B. Schmerl. Model-based Adaptation
for Self-Healing Systems," ACM SIGSOFT
Workshop on Self-Healing Systems (WOSS'02),
November 18-19, 2002

15. D. Garlan, S-W Cheng, and B Schmerl, Increasing
System Dependability through Architecture-based
Self-repair, in Architecting Dependable Systems, R.
de Lemos, C. Gacek, A. Romanovsky (Eds),
Springer-Verlag, 2003

16. P. Oreizy, M. M. Gorlick, R. N. Taylor, D.
Heimbigner, G. Johnson, Nenad Medvidovic, A.
Quilici, D.S. Rosenblum, A. L. Wolf. An
Architecture-Based Approach to Self-Adaptive
Software. IEEE Intelligent Systems, Volume 14,
Issue 3 (May 1999), pages: 54 – 62.

17. .G. Abowd, R. Allen, and D. Garlan. Using Style to
Understand Descriptions of Software Architecture
Proceedings of SIGSOFT '93: Symposium on the
Foundations of Software Engineering, December,
1993.

18. H. Gellersen, G. Kortuem, A. Schmidt, M. Beigl
2004. Physical Prototyping with Smart-Its, IEEE
Pervasive Computing, July-September 2004 (Vol. 3,
No. 3) pp. 74-82

19. Dey, A. K., Salber, D., Abowd, G. A conceptual
framework and a toolkit for supporting the rapid
prototyping of context-aware applications. Human-
Computer Interaction, Vol. 16, 2001.

20. J. I. Hong and J, A. Landay, An Infrastructure
Approach to Context-Aware Computing." In
Human-Computer Interaction, 2001, Vol. 16.

21. J. L. Crowley, Joëlle Coutaz, Gaeten Rey, Patrick
Reignier. Perceptual Components for Context Aware
Computing. Proceedings 4th International
Conference on Ubiquitous Computing (Ubicomp
2002), pp 117-134, September/October 2002.

22 Humble, J., Crabtree, A., Hemmings, T., Åkesson,
K-P., Koleva, B., Rodden, T., Hansson, P. Playing
with the Bits - User-configuration of Ubiquitous
Domestic Environments. In Proc. Fifth Annual
Conference on Ubiquitous Computing, UbiComp
2003, Seattle, Washington, USA, 12-15 October
2003.

