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In recent years, two innovative computing and communication technologies 

have emerged: wearable computers and wireless personal area networks. Wearable 

computers advance an innovative form of personal computing based on continuously 

worn, intelligent assistants that augment memory, intellect, communication, and 

physical senses.  Wireless personal area networks (WPAN) are a new class of wireless 

networks that provide seamless ad hoc communication over short-range radio links.  

The convergence of these technologies creates new opportunities for technological 

support of social interactions and face-to-face communities.  

While past research has provided a partial understanding of the social potentials 

of wearable computers and wireless personal area networks, we know little about the 
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software engineering aspects of such systems. This dissertation aims to remedy this 

situation by exploring software infrastructure and architectural support for co-present 

communities. In particular, the goal of this dissertation is to develop a generic wearable 

software platform that (1) enables spontaneous interactions in face-to-face settings, 

(2) aids developers in the implementation of ad hoc collaborative applications and 

(3) supports building of co-present communities.  

The contribution of this dissertation is a methodology and software platform for 

building wearable communities; that is, co-present communities that emerge when 

enough people use their wearable computers to form webs of personal relationships. 

Wearable communities are based upon embodied real-world human encounters 

augmented by wearable computers. The proposed methodology defines a conceptual 

framework for software support of wearable communities, and specifies a design 

language and development process. The software platform addresses the information 

needs of applications and provides developers with high-level programming 

abstractions. To address the utility and practicality of the methodology and software 

platform, the design and implementation of a number of wearable community 

applications are presented and experiences of using the methodology in software 

engineering education are reported. 
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Chapter I 

 

INTRODUCTION 

Wearable computing advances an innovative form of personal computing 

brought about by continuously worn, intelligent assistants that augment memory, 

intellect, communication, and physical senses (Mann 1997; Rhodes 1997; Starner 1999; 

Starner 2001). As wearable computing technology is taking on a larger role in our daily 

lives, one the most important questions is how this technology will influence people’s 

social behavior and change the way wearable computer users interact, cooperate, 

organize and act collectively. Will it merely make people “smarter” by providing them 

with seamless, context-aware access to information or will it contribute to rich social 

interactions? Unfortunately, wearable computing research for the most part ignores the 

crucial interplay between wearable computing technology and people’s social 

behaviors. Current systems and applications emphasize intellectual and sensory 

capabilities over interpersonal interactions and social competence. As we want to 

advance the wearable computing paradigm as an innovative form of personal 

computing, we need to carefully consider the social mechanisms, social potential and 

social constraints of this technology.  

Important research questions in this respect are: 

• What are the social potentials of wearable computers, if any?  

• What are the requirements and characteristics of wearable systems to realize 

these potentials? 

• How can we systematically and effectively build such systems?  
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• How can we evaluate the success of failure of these wearable systems? 

This dissertation focuses on the second and third question, provides some 

insights into possible answers for the first question and ignores the last question.  

The focus of this dissertation is the combination of wearable devices and 

wireless personal area networks. Wireless personal area networks, such as Bluetooth, 

are a new class of wireless networks that enable seamless ad-hoc communication over 

short-range radio links (typically up to 10 m).  

The convergence of wearable devices and wireless personal area networks 

creates opportunities for a new family of wearable computing applications aimed at 

fostering human connections, enabling cooperation and collaboration, and supporting 

natural social behaviors. Such applications hold the potential to modify established 

social relationships and create new ones. In particular, it provides new opportunities for 

community-building in the world of face-to-face encounters by bringing together 

strangers and by enhancing social interactions among acquaintances.  

This dissertation introduces the notion of wearable community. By wearable 

community we mean a social network that emerges when enough people use wearable 

communication and computing technology throughout their daily lives. A wearable 

community is a community that is defined by the use of a particular technology, namely 

wearable computers, in the same way an online community is defined by the use of the 

Internet. Similar to online communities, wearable communities are multiparty 

conversation organized around affinities and shared interests, bringing together people 

who do not necessarily know each other personally. Unlike online communities, they 

are based upon embodied, co-located, real-world human encounters that are mediated 

and augmented by wearable computers. The notion of wearable communities builds on 

preceding research aimed at technology to support face-to-face communication. In 

particular, systems like ThinkingTags (Borovoy et al. 1996), MemeTags (Borovoy et al. 

1997), i-Balls (Borovoy et al. 2001), Hummingbird (Holmquist et al. 1999) and Geney 

(Danesh et al. 2001) have shown how mobile and wearable devices can be used to 
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facilitate face-to-face communication among friends and strangers alike and support 

social practices of sharing, cooperation, learning and story-telling.  

While we have at least partial answers to the question of the social potentials of 

wearable computers, we know almost nothing about the engineering aspects of systems 

supporting social face-to-face interactions. This dissertation aims to remedy this 

situation by exploring requirements and architectural support for wearable community 

applications.   

Wearable community applications are a form of wearable communityware. 

Communityware (Ishida 1998a, Ishida 1998b) is software that fosters social exchanges 

and contributes to community building among a loose collection of individuals with 

shared interests but no common goal. Communityware stands in contrast to groupware, 

software that enables task-oriented cooperation and collaboration among members of a 

well-defined group who share a common goal or purpose.    

I.1 Problem Description 

While enabling technologies for the realization of wearable community 

applications have become widely available over the last years, namely wearable 

devices, short-range wireless networks, mechanisms for spontaneous networking, as 

well as context technologies, there is a lack of high-level development support in the 

form of design methods and software infrastructure. Wearable communities require 

loosely coupled, dynamic, decentralized systems composed of communicating wearable 

devices. In order to support the formation of wearable communities anywhere at 

anytime, such systems must be independent of external communication and computing 

infrastructures, relying solely on the capabilities of devices carried by individuals. 

Developing wearable community applications for such environments is a difficult task 

that touches upon a wide variety of issues. These range from human-factors issues 

related to collaboration paradigms based on opportunistic, proximity-based interactions 
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to technical issues of communication and context-awareness in dynamic ad hoc 

networks.  

The fundamental problem in the development of wearable community 

applications is the semantic gap between the application domain and system layer. As 

of today, there is no direct support for the variety of features that wearable community 

applications require. Likewise, there are no programming and building abstractions for 

developers to leverage off when designing such applications. This results in a lack of 

generality, requiring each new application to be built from the ground up in a manner 

dictated by the underlying network technology and device platform.  

This set of problems associated with the development of wearable community 

applications makes it clear that there is a need for the uniform support of the design, 

implementation and deployment of wearable community applications. Thus, the goal of 

this dissertation is to develop a conceptual framework and concrete tools to enable rapid 

development of wearable community applications.  

The hypothesis of this dissertation is: 

A software platform that provides support for key abstractions together with a 

development methodology that defines a systematic, repeatable process will enable 

developers to build wearable community applications within a short time frame and 

with reduced effort.  

I.2 Contributions 

This dissertation makes three main contributions: 

1. The first contribution is the WearCoM wearable community methodology. Its 

purpose is to guide the design of wearable communities and wearable 

community applications. It consists of three components: (1) a conceptual 

model that defines terminology and an abstract architecture; (2) a design 

language that addresses the specification of important analysis and design 
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decisions and enables developers to specify key aspects of the application 

design; and (3) a development process that outlines a sequence of development 

steps that result in the creation of specific artifacts.  

2. The second contribution is the Proem peer-to-peer platform. Proem is designed 

to tightly integrate with the WearCoM methodology and provides infrastructure 

and development support required for wearable community applications. The 

main focus of Proem is the information needs of applications and the provision 

of high-level programming abstractions. The three main platform components 

are: 

• The Peerlet application framework, a collection of libraries and APIs for the 

rapid development of wearable community applications.  

• The Proem runtime system, a software environment for hosting and 

executing applications built with the Peerlet framework.  

• The Proem protocols, a set of peer-to-peer protocols that define the way in 

which Proem peers communicate and cooperate over the network.  

3. The final contribution of this research is the evaluation of the WearCoM 

methodology and Proem platform. To address the utility and practicality of the 

methodology and platform for the development of wearable community 

applications, we present five case studies and report our experiences of using 

the methodology in software engineering education. 

I.3 Outline 

This dissertation is structured as follows: 

 Chapter II explores social and technical aspects of wearable communities. We 

present a set of design principles for wearable communities that represent requirements 

for technological support of wearable communities and survey related systems to 
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support face-to-face communication. The chapter concludes by identifying the need of 

and the requirements for a wearable community methodology. The main outcome of 

this chapter is an understanding of why existing development support for wearable 

communities is not sufficient. 

 Chapter III presents background for this work. We summarize the key concepts 

of the following areas: wearable computing, ad hoc networking, virtual communities 

and communityware.  

 Chapter IV introduces the WearCoM methodology. We lay out the underlying 

conceptual framework and describe the design process and design language. 

Throughout the chapter we provide example to clarify key concepts. The chapter 

concludes with a discussion of tool support for the methodology.  The outcome of this 

chapter is an understanding of the key requirements of a wearable community platform.  

 Chapter V and  Chapter VI describe the Proem peer-to-peer platform.  Chapter V 

starts by discussing basic assumptions and providing an architectural overview. It then 

goes on to discuss the set of protocols that lie at the heart of Proem: The Proem 

Transport Protocol which defines a common messaging layer for ad hoc networks and 

the Proem Presence Protocol which implements a mechanism for devices and users to 

announce their presence throughout a network of wearable computers.  Chapter VI 

describes the Peerlet application framework for building presence-aware ad hoc 

collaborative applications.  

 Chapter VII presents five wearable community case studies. In each case we 

follow the whole development process as laid out by the methodology and present 

design and implementation details. Each of these case studies highlights one particular 

aspect of the Proem platform.  

 Chapter VIII discusses the main lessons learned from our experiences of using 

the Proem platform. We start with a brief overview of the highlights and shortcomings; 

next we contrast Proem with related software platforms. The chapter ends with a 

discussion of experiences of using Proem as educational tool in software engineering 

education. 
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 Chapter IX summarizes the key results of this dissertation and presents  

directions for future research.    

I.4 Topics Not Covered in This Dissertation 

Like any other, this dissertation necessarily must limit its scope to a narrow set 

of questions. As a consequence, it leaves open many equally important related 

problems. Two subject areas which we do not investigate in this dissertation are privacy 

and security. Privacy is the right of individuals to control collection and use of personal 

information about themselves. Unlike security, which deals with safeguarding of 

information from unauthorized users, privacy is concerned with the amount of 

information known about an individual. Both privacy and security are essential for 

systems that broadcast personal information over wireless networks. Wearable 

communities depend on a careful tradeoff between revealing and hiding personal data: 

if users disclose too much personal data, their privacy might be violated; if they do not 

disclose any data, wearable communities might not emerge. Privacy and security in 

open decentralized systems are issues that by themselves warrant extensive exploration. 

As the focus of this dissertation is on the design process of wearable community 

applications, we will not elaborate on mechanism to ensure privacy and security. The 

last chapter, however, includes a brief discussion of trust as an alternative social 

mechanism for dealing with some of the aspects of privacy and security.        
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Chapter II 

 

WEARABLE COMMUNITIES 

This chapter lays the groundwork for this dissertation by presenting a 

conceptual framework of wearable computing support for social groups and social 

interactions. In order to highlight our emphasis on social aspects of wearable computers 

we first introduce the notion of social wearable computing. Social wearable computing 

is concerned with augmenting every-day social interactions and aims at wearable 

technology systems that enable collaboration and support natural social behaviors. We 

then explore wearable communities as a concrete example of the social wearable 

computing idea. A wearable community is a social network that emerges when enough 

people use their wearable computers to form webs of personal relationships. Similar to 

online communities, wearable communities are multiparty conversation organized 

around affinities and shared interests, bringing together people who do not necessarily 

know each other personally. Unlike online communities, they are based upon embodied 

real-world human encounters that are augmented by wearable computing technology. 

The chapter concludes with a discussion of technological challenges of wearable 

community systems, i.e. the hardware and software to facilitate and support wearable 

communities. The main outcome of this chapter is the realization of the need for 

software infrastructure and architectural support for wearable communities in the form 

of a wearable community methodology and wearable community software platform.   
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II.1 Social Wearable Computing 

In recent years, wearable computing has emerged as a new discipline in the field 

of computer science. The applications of wearable computers are broad and encompass 

a wide spectrum ranging from personal to professional applications. They include 

augmented reality (Starner, Mann, Rhodes, Levine, Healey, Kirsch, Picard, and 

Pentland 1997; Rekimoto et al. 1998; Höllerer, Feiner, and Pavlik 1999; Höllerer, 

Feiner, Terauchi, Rashid, and Hallaway 1999; Bauer et al. 1998; Kortuem et al. 1998), 

maintenance (Smailagic et al. 1994; Siewiorek et al. 1998; Siewiorek et al. 1994; 

Kortuem, Bauer, Heiber and Segall 1999; Bauer et al. 1998; Bauer et al. 1999), personal 

information management (Rhodes 1997), shopping (Randell and Muller 2000), tourist 

information and guidance systems (Smailagic and Martin 1997; Höllerer, Feiner, 

Terauchi, Rashid, Hallaway 1999; Feiner et al. 1997), affective computing (Picard and 

Healey 1997; Healey and Picard 1998), personal imaging (Mann 1996; Mann 2001b), 

and video conferencing (Billinghurst et al. 1997; Billinghurst et al. 1998).   

Although there is no commonly accepted definition of the term “wearable 

computing” we can identify two diverging strands of research: some (for example 

(Smailagic et al. 1994; Siewiorek et al. 1998)) see wearable computers as tools designed 

for particular industrial or military tasks while others (for example (Mann 1997; Starner 

1999)) see wearable computing as a radical form of personal computing characterized 

by a near symbiotic relationship between man and computer. This symbiotic 

relationship is made possible by a modification of the physical and temporal boundaries 

of computer usage: (1) moving the computer directly onto the body and (2) making the 

device interactionally constant, that is, making the device's inputs and outputs always 

potentially active. One of the best illustrations of the latter idea, which we will refer to 

as personal wearable computing, is the Wearable Remembrance Agent (Rhodes 1997), 

a system that augments a user’s memory by proactively searching for and presenting 

potentially valuable information based on a person's situational context: his location, 

people in the room, time of day, and subject of the current conversation. Processing is 
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performed on a shoulder-worn wearable computer and suggestions are presented on a 

head-mounted display.  

The personal wearable computing idea was inspired in part by the works of two 

seminal researchers: In 1960, J.C.R. Licklider (1960) published a paper with the title 

“Man-computer symbiosis” in which he described his vision of real-time cooperation 

between man and computer. Two years later, Doug Engelbart (1962) wrote a report 

entitled “Augmenting Human Intellect: A Conceptual Framework” in which he laid 

down his vision of a synergistic man-machine system for improving the intellectual 

effectiveness of the individual human. In accordance with Licklider’s and Engelbart’s 

ideas, personal wearable computing is aimed at assisting the individual and the 

amplification of his intellectual and sensory capabilities. The most radical expression of 

this view was formulated by Steve Mann (Mann 2001a) who coined the term 

“humanistic intelligence”. Humanistic intelligence is a computing style designed to 

assist human intelligence by augmenting and mediating the human senses. The 

proposed augmentation and mediation of human senses is enabled and fundamentally 

depends on body-worn computing devices that are always on and always active. 

II.1.1 A Social Computing View of Wearable Computing 

The personal wearable computing model has lead to a number of innovative 

applications: augmented memory systems (Rhodes 1997), augmented reality navigation 

systems (Feiner et al. 1997) and assistive wearable technology (Starner, Weaver, and 

Pentland 1997), to name just a few. Yet, this research has failed to realize the social 

potentials of wearable technology. Although the term “collective intelligence” has been 

around at least as long as wearable computers have become feasible, today’s wearable 

users largely live a lonely and disconnected life. Other than email, interaction among 

fellow cyborgs is limited to the old fashioned way – through unmediated and un-

augmented face-to-face conversation. 
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In this dissertation, we propose an alternative model of wearable computing, 

called social wearable computing. Social wearable computing defines a research 

framework that addresses the fact that wearable computing technology is taking on a 

larger role in human social lives. It is concerned with assisting and augmenting every-

day social interactions and aims at wearable technology systems that enable 

collaboration and support natural social behaviors and compelling and effective social 

interactions. Social wearable computing is motivated and made possible by the recent 

emergence of wireless personal area networks (WPAN), a new class of wireless 

networks that enable seamless ad-hoc communication over short-range radio links 

(typically up to 10 m). Wireless personal area networks such as Bluetooth make it 

possible for wearable computers belonging to different individuals to communicate 

during face-to-face encounters, thus enabling computer-mediated interactions among 

co-located people.  

In contrast to personal wearable computing, social wearable computing focuses 

on supporting social groups, e.g. families, groups of friends, class mates etc, rather than 

disconnected individuals. This includes support for group formation processes and 

activities within already well-established groups. Aspects of social live that fall within 

the reach of social wearable computing are social awareness, social identity, group 

belonging and social curiosity.   

II.1.2 Augmenting Social Space 

The key mechanism of social wearable computing is the augmentation of social 

interactions and social space. Social space is a concept introduced by Edward T. Hall as 

part of his theory of proxemics (Hall 1959; Hall 1962; Hall 1966).  He established the 

idea that there are distinct levels of proximity in interpersonal communication. In 

western society, he distinguished four concentric spatial zones, each one a region 

around the body demarcated by invisible, though operative, boundaries determined by 

the characteristics of sense organs, the length of limbs and cultural conditioning, and the 
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particular relationship with the other (Table 1) (Hall 1966): intimate space – where 

touch happens – is the closest "bubble" of space surrounding a person; personal space is 

used for conversations and among friends and family members; social space is the 

space in which people feel comfortable conducting routine social interactions with 

acquaintances as well as strangers; and public spaces is the area of space beyond which 

people will perceive interactions as impersonal and relatively anonymous. The 

particular zone that we use depends on situational conditions such as our relationship 

with the others and the activity we are engaged in.  

Table 1. Edward T. Hall's spatial zones 

Distance 
Appropriate Relationships 
and Activities 

Sensory Qualities 

Intimate distance  
(0 to 1.5 feet) 

Intimate contacts (e.g. 
making love, comforting) 
and physical sports (e.g. 
wrestling) 

Intense awareness of sensory inputs 
(e.g. small, radiant heat) from other 
person: touch overtakes vocalization 
as primary mode of communication. 

Personal distance  
(1.5 to 4 feet) 

Contacts between close 
friends, as well as 
everyday interactions with 
acquaintances. 

Less awareness of sensory inputs 
than intimate distance; vision is 
normal and provides detailed 
feedback; verbal channels account 
for more communication than touch. 

Social distance  
(4 to 12 feet) 

Impersonal and 
businesslike contacts 

Sensory inputs minimal; information 
provided by visual channels less 
detailed than in personal distance; 
normal voice level (audible at 20 
feet) maintained; touch not possible. 

Public distance 
(more than 12 
feet) 

Formal contacts between 
an individual (e.g. actor, 
politician) and the public 

No sensory inputs; no detailed visual 
input; exaggerated nonverbal 
behaviors employed to supplement 
verbal communication, since subtle 
shades of meaning are lost at this 
distance. 
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Social space varies across individuals according to factors such as culture, age, 

and gender and is characterized by direct verbal communication, embodied co-presence, 

mutual awareness and shared artifacts. 

Wireless personal area networks make it possible to augment social space. They 

generate a sphere-like digital space that envelops a wearable computer and its users. 

This digital space is filled with information broadcast by the wearable computer. The 

extension of the space depends on the transmission range of the wireless transceivers 

and can range from a few inches to several feet. The digital space is invisible to the 

human eye but can be sensed by wearable computers: as soon as the digital spaces of 

two wearable computers overlap, they become aware of each other.  

The digital field created by wireless personal area networks can is the alter ego 

of human social space. Just as the concept of social space describes factors that 

influence inter-personal activities, the concept of digital space describes factors that 

influence interactions between wearable devices. Interactions in the social realm can 

initiate interactions in the digital realm, and vice versa. For example, during a 

conversation, two individuals may exchange electronic business card between their 

Personal Digital Assistants (PDAs). Here, social interaction leads to digital interaction. 

On the other hand, interactions between wearable devices can facilitate, promote or 

even augment social interactions between their users. For example, wearable computers 

connected by wireless personal area networks can inform their users about the presence 

of nearby persons, suggest a conversation topic for two strangers meeting for the first 

time or speculate about affinity relationships from repeated encounters (Terry et al. 

2002). To refer to the combination of social space and corresponding digital space we 

introduce the term augmented social space. In an augmented social space, human 

interactions are augmented by digital interactions (Figure 1). In this context 

“augmented” refers to the assistive and complementary nature of the interactions and 

indicates a temporal, physical and semantic correlation.  
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Digital interaction

Human interaction

Wearable 
computer

Wearable 
computer

 

Figure 1. Augmenting Social Space 

II.1.3 Wearable Computers 

The personal wearable computing model is embodied by a very specific form of 

wearable computer.  Wearable computers are typically composed of a CPU and storage 

unit attached to a belt or carried in a backpack, see-through head mounted display 

(HMD), wireless communications hardware and an input device such as touchpad or 

chording keyboard. Worn on the body, they provide constant access to computing and 

communications resources. Over the years, there have been many attempts at defining 

what distinguishes a wearable computer from a simple mobile or handheld device. 

Rhodes (Rhodes 1997, 3) lists five essential characteristics of wearable computers:  

(i) “Portable while operational: The most distinguishing feature of a wearable 

is that it can be used while walking or otherwise moving around. This 

distinguishes wearables from both desktop and laptop computers.  

(ii) Hands-free use: Military and industrial applications for wearables 

especially emphasize their hands-free aspect, and concentrate on speech 

input and heads-up display or voice output. Other wearables might also use 
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chording-keyboards, dials, and joysticks to minimize the tying up of a user's 

hands.  

(iii) Sensors: In addition to user-inputs, a wearable should have sensors for the 

physical environment. Such sensors might include wireless communications, 

GPS, cameras, or microphones.  

(iv) "Proactive": A wearable should be able to convey information to its user 

even when not actively being used. For example, if your computer wants to 

let you know you have new email and whom it's from, it should be able to 

communicate this information to you immediately.  

(v) Always on, always running: By default a wearable is always on and 

working, sensing, and acting. This is opposed to the normal use of pen-

based PDAs, which normally sit in one's pocket and are only woken up 

when a task needs to be done.”  

According to Rhodes, the main distinguishing feature of wearable computers is 

that they are designed to minimize the distraction from the wearer's real-world tasks. A 

wearable computer is no longer the main center of user attention (as is the case with 

desktop and handheld computers) but it takes on an active support role. A similar 

definition was offered by Starner (Starner 1999) who lists the following attributes as 

necessary requirements for achieving human-computer symbiosis: a wearable computer 

persists and provides constant access, senses and models context, augments and 

mediates, and interacts seamlessly with the user by adapting its input and output 

modalities according to the context.   

Social wearable computing defines new requirements for wearable computers. 

In order to support the social wearable computing model, we believe a wearable 

computer must satisfy the following operational characteristics:   
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1. Constant: A wearable computer should be always on and always running, it 

should not need to be turned on every time the user wants to use it (this does not 

exclude the possibility of low-power sleep modes). 

2. Presence-aware: A wearable computer should be aware of the presence of 

nearby people (i.e. wearable computer users). The term “presence-aware” refers 

to the acquisition and use of knowledge about the availability and reachability 

of people.  

3. Communicative: Wearable computers should be able to communicate with each 

other. Most importantly, wearable computers should be able to communicate 

with other nearby wearable computers through the use of short-range network 

technologies like Bluetooth or IEEE 802.15 Personal Area Networks.  

4. Proactive: A wearable computer should be able to perform tasks autonomously 

and proactively without requiring explicit user intervention (interactivity may 

also be supported). Most importantly, a wearable computer should be able to 

interpret and react to changes in its knowledge about the presence of wearable 

computer users in the immediate environment.  

This characterization of a wearable computer is consistent with previous 

definitions, yet adds further functional requirements: it defines the ability to 

communicate with nearby devices as important attribute and it replaces the generic term 

context-awareness with the more specific term presence-awareness.  

The differences between the traditional personal model of wearable computing 

and our new social wearable computing model are summarized in Table 2. The models 

differ in what interface they focus on (human-computer vs. human-human), whether 

they focus on the individual or on social groups, the object of augmentation (intellectual 

capabilities vs. social interactions), the necessary device characteristics, and finally, the 

applications. In the following, we will discuss the new applications made possible by 

social wearable computing.   
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Table 2. Personal wearable computing vs. social wearable computing 

 Personal Wearable Computing 
 

Social Wearable Computing  
 

Interface 
 

Human – computer Human – human 

Focus Individuals 
 

Social groups 

Augmentation intellectual and sensor 
capabilities 

Interpersonal interactions and 
social space 
 

Device characteristics Constant, hands-free, sensors, 
proactive, portable while 
operational (Rhodes 1997) 

Constancy, mediation, 
augmentation (Mann 2001a) 

Persistent and constant, senses 
and models context, augments 
and mediates, interacts 
seamlessly with the user 
(Starner 1999) 
 

Constant, presence-aware, 
communicative, proactive 

Applications Augmented memory, 
augmented reality 
 

Wearable communities 

II.2 Wearable Communities 

The social wearable computing model creates opportunities for a new family of 

wearable computing applications aimed at fostering human connections, enabling 

cooperation and collaboration, and supporting natural social behaviors. Social wearable 
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computing holds the potential to modify established social relationships, and create new 

ones. In particular, it provides new opportunities for community-building in the world 

of face-to-face encounters by bringing together strangers and by enhancing social 

interactions among acquaintances. We call the social networks that emerge when 

enough people use wearable computers throughout their daily lives wearable 

communities. A collection of wearable computer users becomes a wearable community 

when enough people use their wearable computers to form webs of personal 

relationships. 

The term community has a long and rich tradition in sociology, anthropology 

and psychology and in recent times has become popular with the emergence of online 

or virtual communities (Rheingold 1993). It is thus not surprising that the term 

“community” has many different uses and connotations. In addition, many different 

types of communities have been identified over time (e.g., intentional communities, 

communities of interest, and communities of practice). In the most general terms, 

Mynatt et al. (1997, 16) define a community as “a social grouping which exhibit in 

varying degrees: shared spatial relations, social conventions, a sense of membership and 

boundaries, and an ongoing rhythm of social interaction." With a view towards online 

communities Howard Rheingold offered in his book, The Virtual Community 

(Rheingold 1993) the following definition: "Virtual communities are social 

aggregations that emerge from the Net when enough people carry on those public 

discussions long enough, with sufficient human feeling, to form webs of personal 

relationships in cyberspace." Finally, Jennifer Preece (Preece 2000) defines online 

communities as  

• a collection of people  

• with a shared purpose,  

• guiding policies and  

• a supporting computer system.  
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Within the community, people interact with each other and take roles; the 

shared purpose is a common interest or need that provides a reason for belonging to the 

community; policies are (implicit or explicit) protocols that guide people's interactions 

or folklore and rituals that bring a sense of history and accepted social norms (Preece 

1999).  

An important distinction exists between co-present (or face-to-face) 

communities (Ostrom 1990) and online communities. Most computer-mediated 

communities are online communities and are characterized by the fact that members are 

separated in time and space. On the other hand, most co-present communities are not 

computer-mediated and are characterized by direct interactions in face-to-face settings.  

A wearable community is a computer-mediated co-present community. It is defined by 

the use of a particular technology, namely wearable computers, in the same way an 

online community is defined by the use of the Internet. Similar to online communities, 

wearable communities are multiparty conversation organized around affinities and 

shared interests, bringing together people who do not necessarily know each other 

personally. Unlike online communities, they are based upon embodied real-world 

human encounters that are augmented by wearable computing technology. The notion 

of wearable communities acknowledges and is based on the unique value of random 

encounters and face-to-face interactions. We believe that fully embodied human 

moments are essential for community building. While online communities on the 

Internet have led to a separation of physical place and social space, wearable 

communities attempt to reunite the two. 

II.2.1 Examples 

In order to clarify the concept of wearable communities, we will now present 

some concrete examples. Over the last years, we have designed and implemented a 

variety of wearable community applications with the goal to explore social and 

technical aspects of wearable communities. Most of these applications are aimed at 
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University students. There are two important reasons why we choose to focus on 

students. First, students already form a loosely knit community and are likely to share 

certain interests. Second, the frequency of random encounters and casual social 

interactions is relatively high among students. Finally, most of our developers are 

students themselves and thus have a chance to use and evaluate their own technology. 

The three wearable community applications we will describe are PIRATÉ, WALID and 

mBazaar. We will discuss the implementation of these applications in detail in  Chapter 

VII.  

PIRATÉ 

PIRATÉ (Kortuem et al. 2001) takes ideas from peer-to-peer file sharing 

applications like Napster and moves them to the wearable domain. PIRATÉ is a 

collaborative music guide that enables users to exchange MP3 play lists and music 

recommendations during brief random encounters. The goal of this application is (1) to 

enable user to discover new music they want to listen to based on the playing habits of 

the people they most often meet; (2) to provide awareness of the most favorite music 

titles within the community; and (3) to let users discover with whom they share a 

common taste in music. These goals are achieved by serendipitously exchanging and 

accumulating information throughout the day.   

PIRATÉ implements the following scenario: 

 

“Kim is a 20 year old architecture student and an ardent music lover. She has 

an extensive CD collection and has digitized all of them as MP3s. During most of her 

waking hours she can be seen sporting an MP3 player and headsets, especially when 

she is working in her studio at school.  

As soon as the first generation of Bluetooth-enabled wearable MP3 players 

appeared on the market she rushed out to buy one despite its steep price: she knew that 

most of her friends at the University would do the same. Her new MP3 player has the 
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ability to detect other MP3 players in the vicinity and to trade play lists with them. Kim 

has set up her player to recognize the MP3 players of all of her music-loving friends 

and to automatically trade information about the songs she listens to. So while Kim and 

her friends are having lunch or are working in their studio, their MP3 players exchange 

play list and generate personalized music recommendations that take into account the 

listening habit of the entire social group. Furthermore, she has enabled the privacy 

mode of her MP3 player. As a result, her player emits an audible signal every time it is 

trading play lists with another device.  

After each day at school, Kim downloads the information she collected from her 

friends’ players to her laptop computer that is connected to the Internet. She then 

downloads freely available samples of the songs her friends listen to and copies some of 

them to her MP3 player. On a good day she identifies two or three new CDs she plans 

to buy as soon as she has enough money.” 

 

This scenario stresses two important points: first, interactions within wearable 

communities may be fully automated, not requiring direct interactions between users. 

The general willingness to share information and the opportunities presented by 

physical proximity suffice for successful collaboration. Second, existing personal 

relationships (such as between friends or colleagues) can play an important part in 

wearable communities.  

WALID 

The second wearable community application is WALID (Kortuem, Schneider, 

Suruda, Fickas, and Segall 1999). WALID implements a digitized version of the 

timeworn tradition of borrowing butter from your neighbor. You do a favor for others 

because you know that one day they will do it for you. With WALID two individuals 

use their wearable devices to semi-automatically negotiate about the exchange of real-
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world tasks: dropping of someone’s dry cleaning, buying a book of stamps at the post 

office, or returning a book to the local library.  

WALID employs personal agent software to find community members close by 

and to negotiate the exchange of favors. The agents maintain a user's task list, becoming 

fully aware of the locations and activities involved. When an encounter occurs, the 

agents produce a negotiation. If both users approve, a deal is struck.  The role of the 

agent in a negotiation is to evaluate the value of favors and to keep scores. Having to 

run across town just to drop off someone’s mail, compares unfavorably with buying 

milk for someone if the grocery store is just a block away. WALID agents employ ideas 

from game theory to ensure that results of negotiations are mutually beneficial. They 

cooperate only if there is the opportunity to enhance the users' goals.   

WALID illustrates the importance of trust in wearable communities. It is 

unlikely that people are willing to trade tasks unless they trust each other to a certain 

extent. Thus, WALID works best for close-knit groups with established trust 

relationships (for example groups of friends, classmates or colleagues).  

mBazaar 

mBazaar is a wearable community application developed to support students in 

buying, selling and swapping of personal items like CDs, books, bikes, furniture, and 

electronics. mBazaar employs personal agents that ‘advertises’ items a user wants to 

buy or sell to nearby wearable users. The use of a short-range wireless network 

guarantees that only people in the immediate vicinity of the advertising user can receive 

these ‘virtual classifieds’. At the time of an encounter between two or more individuals, 

for example when students meet after class at a local coffee shop, the personal agents 

identify matches between advertised items and exchange the users’ contact information. 

Depending on the privacy preference of each user, contact information might be a cell 

phone number or pictures of the users. The picture enables users to identify each other 

in a crowed and to verbally negotiate a possible transaction right on the spot. 
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The three wearable community applications are summarized in Table 3.  

Many other wearable communities can be envisioned: computing communities 

in which computational resources like network bandwidth and computing cycles are 

shared; helper communities in which members pledge to assist each other when in 

distress; bargain-hunter communities in which members collectively search out sale 

items in local stores; marketplace communities in which goods are exchanged without 

money; job market communities in which free applications offer their services to 

passerby’s; knowledge communities in which members collectively accumulate 

information to create shared understanding; and finally political communities in which 

members create new forms of spontaneous democracy and local activism.   

Table 3. Wearable Communities  

 PIRATÉ WALID mBazaar 

User population Music lovers, groups 
of friends, classmates, 
students, colleagues 
who frequently listen 
to music. 

Close-knit groups 
with established 
trust relationships 
(for example 
groups of friends, 
classmates or 
colleagues) 

Friends, students, 
colleagues 

Purpose (1) To generate 
personalized music 
recommendations 
based on listening 
behavior of 
community members 
(2) To discover 
people with similar 
music taste 
(3) to discover most 
popular music titles 

(1) To strengthen 
the social ties of a 
group by 
identifying 
opportunities for 
mutual assistance  
(2) to enable users 
to do daily tasks 
more efficiently 

(1) to match buyers 
and sellers while 
they are close to 
each other and are 
able to talk to each  

Exchanged data  Play lists Task descriptions Classifieds 
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II.2.2 From Online Communities to Wearable Communities 

The idea of wearable communities has precursors in other forms of computer-

mediated communities. In the following, we will highlight the differences between 

online, mobile and wearable communities.   

Online Communities 

The invention of the Internet and the beginning proliferation of personal 

computers in the early 90ths created a new digital media that almost instantly was 

adopted by its users as a tool for social interactions. Today, people use the Internet to 

stay in touch with friends and family by sending greeting cards, sharing vacation 

photos, and chatting about daily life. One of the most powerful features of the Internet 

is its ability to enable total strangers to interact on a very personal and sometimes even 

intimate level. People who have never met in their entire life (and are unlikely to ever 

do so) use the Internet to discuss personal matters related to health, raising kids, 

romance and many other topics of shared interest. In effect, the Internet provides the 

connectivity for the "Global Information Community" envisioned in 1968 by J.C.R. 

Licklider (Licklider 1968, 2) as being "... not of common location, but of common 

interest." The fact that the Internet is a place that enables a new type of social network, 

one mediated by computer terminals and networks, was vividly described by Howard 

Rheingold who coined the term “Virtual Community” (Rheingold 1993). He defined 

virtual communities as “social aggregations that emerge from the Internet when enough 

people carry on public discussions long enough and with sufficient human feeling to 

form webs of personal relationships.”  

Examples of successful online or virtual communities include Slashdot, 

Sourceforge, and The Well. 
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Peer-to-Peer Communities 

Recently, a new form of online communities has emerged, namely peer-to-peer 

file sharing communities. Applications like Napster, Gnutella (CLIP2 2002; Kan 2001), 

Freenet (Clarke et al. 2001) and KaZaA (Sharman Networks 2002) have created 

communities of users who anonymously trade MP3 files over the Internet. In contrast to 

traditional web-based online communities which create a centralized shared space for 

interaction, peer-to-peer file sharing occurs in a decentralized fashion via direct pair-

wise interaction between users (Napster uses a centralized directory of available music 

titles, but file exchanges still occur in a direct peer-to-peer fashion).  From a social point 

of view, peer-to-peer communities can be seen as a special form of online communities 

with the following unique characteristics: (1) they are very specific in their purpose 

(trading MP3 files is the only supported activity), (2) they are anonymous (in contrast to 

most web-based communities, users of peer-to-peer file sharing communities have no 

(semi-)persistent identities such as user names or handles; exchanges occur between 

computers with IP addresses but not between users), and (3) there are few guiding 

policies to resolve conflicts of interests (free-riders, people who download MP3s from 

others but do not share their own collection, are a constant problem in file sharing 

communities). 

Reuniting Virtual Space and Physical Space 

With the advent of online and peer-to-peer file sharing communities, social 

space and physical place have become separated to an unprecedented degree. 

Communities have emerged without relation to physical place, enabling people to 

connect across the globe at any time of the day or night without the need to leave the 

house or office. In some cases, this convenience can lead to a reduction in authentic 

psychological encounters or "human moments": when a person finds it easier to 

communicate anonymously with a stranger in a virtual world rather than to engage the 

neighbor next door, the consequences may include severe psychological problems 
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including isolation and depression (Kraut et al. 1998). The lack of fully embodied 

human moments in such cases may compensate or even reverse the otherwise positive 

character of online communities.  

In face-to-face meetings, vocal inflection and gestures carry significant social 

cues which are necessarily absent from web-based tools. Thus, numerous attempts have 

been made to enrich the communication in online communities and to reproduce the 

physical world’s rich set of social cues in the online world. Still, the vast majority of 

online communities on the Internet today are text-based.  

An interesting attempt to reunite virtual space and physical space was made 

with the recent launch of the MEETUP web site (Meetup, LCC. 2002). MEETUP 

provide a service that allows members to set up or find face-to-face meetings of like-

minded users in the same area. By telling the site where they are and what they are 

interested in (quitting smoking, reading books, having pets), users can organize and find 

meetings of other people in the same area and with the same interest. An important 

aspect of MEETUP is that the early adopters of this service are people who are already 

connected to a virtual community. Local meetups have already been scheduled for 

people from the Slashdot, LiveJournal, and Plastic communities. This indicates how 

interconnected virtual community members already are, and how much demand there is 

to meet face-to-face.  

Mobile Communities 

With the advent of mobile technologies like cell phones and Internet-enabled 

PDAs, online communities are slowly extending their reach to mobile users. Already, 

chatting on mobile phones has become an important part of the lifestyle of certain 

segments of the population. A recent study (Fox 2002) by the Social Issue Research 

Centre in Oxford found that gossiping on mobile phones has become a vital “social 

lifeline” for building relationships, solving conflicts, teaching social skills and making 

friends. A similar conclusion can be drawn from observations of teenagers in some 
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Asian and European countries, where exchanging SMS text messages via mobile 

phones has become a major part of adolescent rituals. Simultaneously, some online 

communities have sprouted mobile extensions by giving users access to community 

tools from their mobile devices, thereby allowing members to stay in touch with their 

community at anytime from any place. 

Despite their widespread and successful adoption, mobile phones and Internet-

enabled PDAs have serious flaws as tools for community building. Mobile phones 

enable communication over long distances; they do not support many-to-many 

communication and consequently do not facilitate random encounters (both virtual and 

real) and anonymous relationships. Using cell phones it is difficult to create new 

relationships, as they require the caller to have a fairly good idea who the callee is or a 

good reason (and thus a relationship) to place a call in the first place. Moreover, the use 

of mobile technology has the potential of decreasing real-world random encounters and 

face-to-face interactions: by attending to people who are located elsewhere they may 

reduce the amount of time and attention paid to strangers nearby and activities in public 

places. All this makes current mobile technology good for maintaining existing 

community relationships, yet ill suited for creating new ones. 

With the mounting use of mobile communication and computing devices, 

various successful mobile communities have emerged over time. One example is 

Geocaching (Groundspeak Inc. 2002), a high-tech “treasure hunt” for users of the 

Global Positioning System (GPS). The game involves a GPS user hiding “treasures” -- 

the cache and its contents (usually Tupperware with goodies inside) -- in public places 

and publishing the exact coordinates on the Geocaching web site so other users can go 

on a “treasure hunt” to find it. Users equipped with GPS receivers seek out nearby 

caches and return back to the site to talk about it.  
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Differences between Virtual, Mobile and Wearable Communities 

Wearable communities are different from online and mobile communities. 

Similar to online and mobile communities, they are webs of relationships that grow 

from computer-augmented social interactions. Yet, online and mobile communities 

depend on indirect and remote interactions between users. In contrast, wearable 

communities are based on direct face-to-face encounters. Thus, interactions in wearable 

communities are situated and involve a rich social context.  

The three wearable community applications described above highlight the 

differences between traditional computer-mediated communities and wearable 

communities: 

Social context: In a wearable scenario involving WPANs exchanges are only 

possible over short distances, that is, when people come face-to-face or are at least 

within close physical proximity. Consequently, communication partners will be aware 

of whom they are interacting with and be able to observe important social cues 

including sex, clothing and gestures. In addition, they might even be able to talk to each 

other. The addition of social context shapes people’s willingness to engage with 

strangers and the particular manner in which they interact. For example, politeness and 

trust are two aspects of human interactions that strongly differ when people interact 

face-to-face vs. terminal-to-terminal across the Internet.   

Usage context: The context in which wearable devices are used is different in 

two important respects from using a stationary computer at home or in the office. When 

wearable devices are involved, user attention is a scarce resource. Instead of sitting in 

front of a computer where a user can pay full attention to the computer and its 

operation, wearable computers are used in situations where the user’s attention is 

occupied by demanding real-world task like driving, operating a machine, or simply 

conversing with other people.  

Furthermore, with wearable computers time becomes a critical resource as well. 

When surfing the Internet at home or at the office people are less likely to care if an 
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operation takes just a few seconds or several minutes; they can always shift their 

attention to another task. This is no longer true if exchanges occur between two 

wearable devices. Since a connection can only be active while users are close to each 

other, a lengthy interaction among two wearable computers is less likely to succeed 

than a brief one.  

Technical context: In comparison to wired computers networks, WPANs are 

limited in terms of bandwidth and reliability. Using PIRATÉ as an example, this 

suggests that rather than exchanging large-sized MP3 files, systems should be designed 

to exchange metainformation, that is, URLs pointing to an MP3 file an a server or 

recommendations about a song.  

These observations make clear that wearable communities are significantly 

different from traditional computer-mediated communities. Thus it becomes necessary 

to rethink the whole system design and modify it in accordance with the social, usage, 

and technical context. 

II.2.3 Factors that Bind Wearable Communities Together 

When does a collection of individuals using wearable computers become a 

wearable community? A group of people comes together because each individual 

recognizes there is something valuable that they can gain by banding together. This is 

the theory of collective goods as formulated for example by Olson (Olson 1965) and it 

applies to all types of communities, whether augmented by technology or not. Thus 

looking for a group's collective goods is a way of looking for the elements that bind 

isolated individuals into a community. What people find in a community varies and 

may include knowledge, ideas, friendship, companionship, fun, excitement, money and 

many other qualities that people value.  

Yet, a community is not a perfectly organized group where everyone who 

participates gains equally. One of the reasons is that peoples’ individual actions 

typically serve their own self-interests. Although altruistic behavior is possible and 
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common, it is not the norm. In particular, when exchanges and transactions are 

involved, conflicts can arise. How individuals deal with these obstacles and how they 

adjust their behavior to overcome them makes the difference between a successful and a 

non-successful community. In the following, we list some of the factors that are 

relevant for wearable communities: 

• Identity: All of our interactions, even those with strangers, are shaped by our 

sense of with whom we are interacting. In interactions involving social space, 

there are a wealth of cues of varying reliability to indicate our identity and our 

intentions. Our clothes, voices, bodies, and gestures signal messages about 

status, power, and group membership. We rely on our ability to recognize 

fellow group members in order to know who we can turn to and what we can 

expect. Our ability to identify others also allows us to hold individuals 

accountable for their actions. Wearable technology enables people to define and 

broadcast digital identities that may or may not be their true identities. In 

contrast to online communities, these digital identities augment rather than 

replace a person’s true identity as both are visible at the same time. Because 

observers can match the digital identity to a person’s appearance and behavior, 

it is difficult in wearable communities to switch identities at will. 

• Privacy: Privacy and identity are two sides of the same coin. Privacy is the right 

of individuals to control collection and use of personal information about 

themselves. Unlike security, which deals with safeguarding of information from 

unauthorized users, privacy is concerned with the amount of information known 

about an individual. Privacy can be defined as an individual’s ability of 

individuals to determine for themselves when, how and to what extent 

information about them is communicated to others. Not all wearable 

communities require members to disclose information about themselves. 

Lurking and voyeurism are two behaviors that, within limits, are sanctioned by 

social norms. 
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• Situational Context: Interactions in wearable communities take place within a 

rich social and physical context and are thus subject to usual norms. Because 

interactions occur in the real world, the location and the presence of other 

people matter just as much as in non-augmented communities. The differences 

between public and private space, crowded and empty rooms, meeting and 

party, or intimate conversation and public lecture remain important just as in 

unmediated situations (but unlike in online communities).   

• Historical context: A wearable community is bounded in time and space. It has 

a beginning and an end and is located within a limited physical space. Although 

these boundaries might not be apparent to its members or outsiders, they 

nevertheless exist. With an extension in time and space, each community has a 

history and interactions that take place add to this history. In addition, each 

community member has a very personal interaction history. Having a sense of 

history and being able to learn from history is an important aspect of a wearable 

community.  

• Risks: As wearable communities are based on interactions taking place in the 

real world, risks are real as well. In addition to risks of virtual communities like 

being verbally assaulted or loosing money, wearable communities also include 

risks to the person’s life and wellbeing. Fear of being assaulted and injured may 

make people more careful than in virtual communities.   

• Trust: Trust is an aspect of human interactions that strongly differs whether 

people interact face-to-face or terminal-to-terminal across the Internet (Misztal 

1999).  Being able to look someone in the face, and observe gestures and mimic 

can tell you a lot about another person. The reason why people place so much 

importance in a handshake when completing a transaction - such as selling a car 

- is that it is a sign of commitment and mutual trust. There is no equivalent of a 

handshake in online communities, but in wearable communities a (possibly 

digitally augmented) handshake is possible. 
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II.3 Building Wearable Communities 

How can we build successful wearable communities? The success criteria for 

wearable communities are not different from those of real world or virtual communities: 

a wearable community is successful if it creates a rich social environment in which the 

augmentation of random encounters and social space leads to psychologically satisfying 

“human moments” and lasting personal relationships. What turns a loose collection of 

individuals into a community, is persistent and ongoing conversations. Thus a collection 

of wearable computer users becomes a wearable community when enough people use 

their wearable computers to form webs of personal relationships. In other words, we 

want wearable communities to foster social interaction and communal spirit. Yet this 

observation doesn’t make it any clearer how we can achieve this goal. This is because 

wearable communities, like all communities, are the result of self-organizing behavior 

of a group of people. They emerge; they cannot be constructed from the outside by 

following a simple recipe. Referring to online communities, Jennifer Preece expressed 

this sentiment as follows:  

 

“Software developers design software, thinking that they are designing 

communities. Meanwhile, keen-eyed, reflective sociologists describe the emergence of 

communities. But communities are neither designed nor do they just emerge. How 

software is designed affects community development. The way people interact in a 

community strongly contributes to its long-term evolution. People's behavior cannot be 

controlled but it can be influenced“. (Preece 1999, 24) 

 

Computer-mediated communities, in a very real sense, are self-organizing, 

emerging in response to technology and the needs of its users.  
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II.3.1 An Exploratory Design Approach based on Rapid Prototyping 

An important characteristic of wearable communities is that social concerns 

become difficult to separate from technical practices: social and technical issues interact 

and co-evolve in such intimate ways that they often merge. Thus in order to design a 

wearable community, we need to simultaneously design technology and social 

interactions. 

A successful community design often hinges on what Wenger (Wenger 1998) 

referred to as a “minimalist design”. The idea behind a minimalist design is to create a 

provisional design and to facilitate the growing of community over time. While doing 

so, designers must try to identify the attributes that make communities successful and 

design technology to embody these attributes.  

In building wearable communities, we are faced with a chicken-and-egg 

problem which we refer to as the fundamental problem of wearable communities:  

 

Wearable communities require hardware and software to support them, but 

without experiences with actual wearable communities we don’t really know what the 

success factors for wearable communities are and how to design systems to embody 

them.  

 

The cyclical interdependence between technological and social factors of 

wearable communities is visualized in Figure 2: technology to support wearable 

communities exhibits certain properties which define the kind of wearable communities 

that can emerge. The success or failure of communities hinges on its ability to promote 

lasting personal relationships. The attributes that make communities successful must be 

embodied by the technology.   
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Figure 2. Wearable community design problem 

How can we solve this problem?  

One solution is to use an exploratory design approach based on rapid 

prototyping. Rapid prototyping is a circular design process based on an initial 

technology prototype followed by repeated evaluation and refinement. The initial 

prototype represents the designers’ educated best-guess of what the final systems may 

look like. Its design may be informed by prior experiences with similar systems or 

theoretical insight.  

A rapid prototyping approach can be divided into four distinct activities (Figure 

3): 

• Planning: this involves understanding the users (including goals, interests, 

needs, etc.), understanding the available technology, the definition of the overall 

purpose of a system, and the design of a prototype.  

• Implementation. during implementation, a prototype is built  

• Measuring: this involves observing the use of the system in a real-world setting 

with real users. The goal is to identify shortcoming of the prototype.  

• Learning: finally, results from the measurements must be analyzed with the goal 

to determine in which way the prototype should be modified.  
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There can be many reasons that a prototype does not achieve its goals. 

Sometimes these will be implementation issues, but more often the problem will be an 

incorrect or insufficient understanding of the users. Thus it is important to go all the 

way back to planning and to take a fresh look at a system from a user’s perspective. To 

succeed, prototyping must be iterative and must support rapid creation and modification 

of prototypes.  

Rapid prototyping has successfully been used at Carnegie Mellon University for 

the development of successive generations of the VuMan wearable computer 

(Smailagic et al. 1998). Using this approach, interdisciplinary groups of students have 

again and again succeeded to design and build the hardware and software components 

of a wearable computer within just one semester.  

 

Planning Implementing

MeasuringLearning

Time →

 

Figure 3. The iterative prototyping cycle  
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II.3.2 Wearable Community Systems 

Building and maintaining computer-mediated communities involves the design 

and manipulation of technologies in ways that foster human connection. Technologies 

to support online communities include hardware (personal computers, networks, and 

hosts) and software (web servers, email list servers, message boards, chat and instant 

messaging software, online calendars, web browsers, newsreaders, etc.).  

With regard to wearable communities the following questions arise:  

• What are the characteristics and components of a wearable community system?  

• What are the challenges in developing such systems? 

• How can we systematically and rapidly build such systems? 

In the remainder of this chapter, we will explore various aspects of wearable 

community systems and discuss the need for a software infrastructure and architectural 

support for wearable communities.  

A wearable community system is a collection of wearable devices, distributed 

software infrastructure and application software that enables people to interact with 

fellow community members. By “system” we refer to software and hardware that sets 

the context for interaction. The term “wearable” indicates the wearable nature of 

devices and implies a usage model that is always on, communicate, proactive and 

presence-aware.  

Within a wearable community system, communication is established by a 

wireless personal-area network that enables seamless connectivity among co-located 

devices. Thus, a wearable community system is highly dynamic, loosely connected, 

potentially large-scale distributed system made up of mobile host (Figure 4). In order to 

support the formation of wearable communities anywhere at anytime, such a wearable 

community system must be largely independent of external communication and 

computing infrastructures, relying solely on the capabilities of devices carried by 

individuals. Besides the obvious hardware components of the individual computers 
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(cpu, storage, input/output, etc.) it consists of system and application-level software that 

performs functions essential to wearable communities: discovery of nearby devices and 

users, initiating interactions across wireless links, managing user identities, handling 

user input and output and much more. 

In contrast to online communities, for which a mature and proven technological 

foundation exists, wearable communities require advanced technologies that are subject 

to intensive research: this includes wearable devices, wireless ad hoc networks, 

mechanisms for spontaneous networking, as well as context technologies.  
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Figure 4. Wearable Community System 
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The key technical challenges of wearable community systems are the result of 

the decentralized system architecture and the independence and autonomy of 

individuals. In the following, we will list the primary challenges of wearable 

community systems. These are: 

1. Creating presence-awareness in dynamic decentralized systems 

2. Enabling human-centered communication  

3. Enabling trust, cooperation and privacy in an open decentralized environment 

4. Striking the balance between proactivity and user control 

Creating Presence-Awareness in Dynamic Decentralized Systems 

A Wearable community system is a highly dynamic, decentralized and self-

organizing network of autonomous, wearable devices. Connectivity is determined by 

the distance between devices; as devices change their physical location they establish 

pair-wise communication links based on proximity. Thus, a wearable community 

system resembles a wireless peer-to-peer system in which human presence is the main 

resource. Important questions regarding presence-awareness include: 

• What kind of personal information will users want to disclose to others?  

• How can we support multiple identities for the same person to be used in 

different contexts?  

• How can users determine who is around at a given moment and find out how 

they can interact with other people? 

• How can we distribute presence information in a dynamic decentralized peer-to-

peer network efficiently?  

As individuals wander around and encounter each other, their devices must be 

able to detect the presence of nearby devices and exchange metainformation. 

Algorithms for presence-awareness must satisfy three conflicting requirements: 
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Expressiveness: They must allow users to create rich and possibly multiple 

digital identities for themselves. 

Efficiency: To prevent overloading the algorithms must be efficient and/or 

adaptable. 

Timeliness: To facilitate interactions among people in movement algorithms 

must react fast. For example, if two individuals, each of them carrying a wearable 

device, walk towards each other with a constant speed of 5 kilometers/hour and network 

transmission radius is 10 meters, devices will be able to communicate for 15 seconds or 

less.  

Enabling Human-Centered Communication  

Traditionally, addressing and naming schemes in distributed systems are 

designed to enable communication among devices. However, in a wearable community 

system the ultimate goal is communication among humans. Individuals may own and 

operate more than one device at different times. In addition, individuals might want to 

use alternative identities in order to protect their privacy. Thus, we must find answers to 

the following questions: 

• How can we define device-independent identities for users? 

• How can we move identities from device to device? 

• How can we route a message destined for a particular user to the device he or 

she is currently using? 

• How can we enable multi-hop communication among individuals in a dynamic 

crowed? 

• How can we prevent unauthorized users from intercepting messages not 

destined for them?  
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Enabling Trust, Cooperation and Privacy in an Open Decentralized Environment 

A wearable community system is an open environment without a well-defined 

population of individuals and devices. Individuals may join or leave a community at 

will. Therefore, encounters often occur between strangers who have never met before 

and might not do so again in the future. There is no a priori agreement among members 

of a community to cooperate. Instead, cooperation is the result of combined actions 

taken by independent users in their own interest. Sharing of resources and access must 

be granted between hosts who are unknown to each other. Developers cannot expect 

that all hosts and users are benevolent; hosts may attempt to gain access to private data, 

willingly corrupt data and messages, introduce wrong information or do harm in some 

other way. One of the main privacy concerns is protecting a user’s anonymity. 

Monitoring network traffic or gaining access to confidential personal data can 

compromise a user’s anonymity. Not only must a system prevent spying and 

monitoring, but users must also given control what information is disclosed, to whom, 

and when.  

In such an environment, we are faced with three related challenges: 

• How can we enable users (i.e. devices) to spontaneously and effectively 

cooperate if users (i.e. devices) are autonomous and non-trusted? 

• How can we represent, codify and notions of trust and reputation? 

• How can we enable individuals who have met before and have established 

relationships to form secure trusted groups?  

• How can we protect a user’s privacy and protect him/her from malicious 

community members if we can’t trust anyone? 

Striking the Balance between Proactivity and User Control 

In a wearable community, digital interactions between devices are spontaneous 

and numerous. In such a scenario, it is no longer feasible to expect from a user to direct 
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an application and the many ongoing interactions in real-time. Instead, in order to 

perform acts of ad hoc cooperation, wearable devices must be able to reach out and 

negotiate with each other autonomously and proactively, i.e. they must be able to 

anticipate the requirements of the users and act accordingly. This requires a move from 

an interactive model of human-computer interaction to a new model based on 

supervision. Such supervisory interfaces will fundamentally rely on software agents that 

act in the interest and on behalf of the user.  

Some of the challenges of supervisory interfaces are: 

• How can we maintain human control over agent-based applications? 

• How can we enable users to define and modify their agents’ behavior?  

• How should interfaces be designed that enable humans to supervise large 

numbers of concurrent real-time actions?  

In sum, developing wearable community systems is a difficult task that requires 

highly specialized knowledge in a variety of fields ranging from human-factors issues 

related to collaboration paradigms based on opportunistic, proximity-based interactions 

to technical issues related to ad hoc networking and context-awareness. 

II.3.3 Towards a Wearable Community Methodology 

In recent years, the enabling technologies for the realization of wearable 

community systems have become available, i.e. wearable devices, wireless networks, 

mechanisms for spontaneous networking, as well as context technologies. As a 

consequence, individual solutions to the above challenges exist and it is possible to 

build wearable community systems today (see Chapter III). Yet, it is not possible to 
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build them rapidly and effectively. In particular, there is no support for the exploratory 

design approach based on rapid prototyping advocated above.  

This dissertation aims to remedy this situation by exploring software 

infrastructure and architectural support for wearable communities. 

As first step towards a solution, we introduce the distinction between wearable 

community infrastructure and wearable community applications. 

• Wearable community infrastructure comprises system-level software 

components that are useful and necessary for the support of a large variety of 

wearable communities. This infrastructure is generic in a sense that it embodies 

fundamental aspects of the wearable community domain. Among other thing, 

wearable community infrastructure should include mechanism for distributed 

communication, discovery and presence-awareness, definition of user identities, 

situational and historical context and trust (see Chapter  II.2.3).  

• Wearable community applications are community-specific software applications 

that are built on top of and make use of functionality provided by wearable 

community infrastructure. They are installed on and run by users on their 

wearable computers.  

As of today, there is no comprehensive wearable community infrastructure and 

there is little or no direct support for the variety of features that wearable community 

applications require. Likewise, there are no programming and building abstractions for 

developers to leverage off when designing wearable community applications. This 

results in a lack of generality, requiring each new application to be built from the 

ground up in a manner dictated by the underlying network technology and device 

platform. This situation is detrimental to an exploratory design approach and rapid 

prototyping.  
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To deal with the intervening technological and social issues of wearable 

communities we propose a wearable community methodology and associated wearable 

community platform.  The methodology should incorporate the following parts: 

1. A well-defined conceptual framework is required as reliable foundation. It 

should express the basic concepts and an abstract model of a wearable 

community system. 

2. Description techniques are required that allow designers to capture essential 

design elements. They are necessary for communication between the designers 

and between designers and developers. Examples for description techniques are 

graphical notations like class diagrams and state transition graphs from 

modeling languages like UML.  

3. Development should be organized according to a process model. Such a process 

model supports system development by clearly defining individual development 

tasks, roles and results as well as the relationships between them.  

The description techniques and the process model should be directly supported 

by the associated wearable community platform. The platform realizes a wearable 

community infrastructure and should provide support for rapid development of 

wearable community applications. In particular, it must (1) enable spontaneous 

interactions in face-to-face settings, (2) aid developers in the implementation of ad hoc 

collaborative applications and (3) support formation of wearable communities.  

If successful, the methodology and platform will function as catalyst for 

wearable community applications and thus wearable communities.  

II.4 Summary 

People are social animals. We love to interact with other people and to a large 

degree depend on social interactions for our psychological well-being. Social 
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interactions do not have to involve direct person-to-person conversations. Merely being 

at the same place at the same time can be an important indicator for similarities in taste, 

interests, preferences, and believes: concerts, street demonstrations, trade shows and 

social venues like bars are proof of that. Social behavior in public places like coffee 

shops and sidewalks can take the form of sending non-verbal signals and gestures and 

making others aware of one’s preferences and personality, as well as observing and 

interpreting signals from others. To be ‘seen’ and asserting one’s social role and group 

identity is an important aspect of any community, whether virtual or real. The notion of 

wearable communities is based on the idea that augmented random encounters and 

augmented social interactions can nurture social networks. Wearable computers 

connected by proximity networks increase the bandwidth for social messages. They 

enable people to send and observe digital signals (in addition to non-digital), allowing 

new forms of digital curiosity. Most importantly, however, interactions that take place 

in digital space can facilitate and promote interactions in social space, and can lead to 

rich human encounters. The assumption of this dissertation is that, if properly designed, 

wearable technology can indeed beget community.  

An important characteristic of wearable communities is that social concerns 

become difficult to separate from technical practices. To deal with the complexity of 

intervening technological and social issues we propose a methodology and associated 

platform for building wearable community applications. In Chapter IV, we will describe 

the WearCoM wearable community methodology, followed in Chapters V and VI by a 

description of the Proem wearable community platform. Before that, in Chapter III, we 

will explore the technological foundations of wearable community systems and discuss 

precursors to wearable community systems. An evaluation will be presented in Chapters 

VII and VIII, where we address the utility and practicality of the methodology and 

software platform. In particular, we will present case studies and report on our 

experiences of using both in software engineering education. 
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Chapter III 

 

BACKGROUND AND RELATED WORK 

The design and development of wearable community systems touches on a 

number of research areas including wireless ad hoc networking, peer-to-peer 

computing, and communityware. This chapter provides an overview of the issues and 

challenges in these areas as they relate to wearable communities systems.  The main 

contribution of this chapter is a survey of systems to support face-to-face interactions. 

Although the enabling technologies to support face-to-face interactions among co-

located individuals have become available over the last years only a few systems have 

been realized. The main outcome of this chapter is an understanding of the technical 

issues of wearable community systems.   

III.1 Wireless Ad-Hoc Networking 

Wireless ad hoc networks and wireless personal area networks are the most 

important enabling technology for wearable communities. A wireless ad hoc network is 

a self-organizing network comprised of autonomous nodes that cooperate in order to 

dynamically establish communications. Nodes may be highly mobile or stationary, and 

may vary widely in terms of their capabilities and uses. Each node in a wireless ad hoc 

network functions as both a host and a router, and the control of the network is 

distributed among the nodes. The network topology is in general dynamic, because the 
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connectivity among the nodes may vary with time due to node up and downtimes and 

the possibility of having mobile nodes. 

Wireless personal area networks (WPAN) are a special class of ad hoc 

networks. They are used for interconnecting devices centered around an individual 

person and are characterized by short-range communication links and a low cost, low 

power design.  

Ad hoc networks were initially developed for use in battlefields under the name 

packet radio networks (Tornow 1987; Leiner and Nielson 1987). Today, there are two 

major types of wireless ad hoc networks: 

• A mobile ad hoc network (MANET) is an ad hoc network composed of mobile 

nodes (IETF 2002). Since nodes can move, the network topology may change 

rapidly and unpredictably. The network is decentralized, where all network 

activity including discovering the topology and delivering messages is executed 

by the nodes themselves. A mobile ad hoc network is typically used in 

connection with mobile, handheld and wearable computers. Applications made 

possible by mobile ad hoc networks include mobile patient monitoring, 

emergence response, and distributed command and control systems.  

• A smart sensor networks consists of sensors spread across a geographical area.  

Each sensor has wireless communication capability and sufficient intelligence 

for signal processing and networking of the data. Smart sensor networks are 

used by the military to detect enemy movements, in environmental sciences to 

monitor environmental changes (e.g., air quality), and in traffic control to 

monitor vehicle traffic on highways or in a congested parts of a city.  

In the following discussion, we will focus on mobile ad hoc networks as they 

are the primary enabling technology for wearable communities. 

Mobile ad hoc networks represent an alternative to the traditional infrastructure 

model of mobile communication. The objective of this new network architecture is to 

achieve increased flexibility, mobility and ease of management relative to infrastructure 
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wireless networks such as cellular voice and data networks. Compared to these 

networks, mobile ad hoc networks have the following advantages: 

• No required infrastructure: mobile ad hoc networks do not rely on wired base-

stations and for that reason can be deployed in places without existing 

infrastructures. They can be created spontaneously and on as needed basis, 

because they require little configuration to setup. As result, they can be 

deployed in situations where no other communication infrastructure exists or 

where such infrastructure cannot be used because of security, cost, or safety 

reasons. 

• Self-organization: In a wired network the connection topology of nodes is 

determined by the physical cabling and thus is fixed. This restriction is not 

present in mobile ad hoc network: as soon as two nodes are within hearing 

distance of each other, an instantaneous link between them is automatically 

formed. As a consequence, the network topology of a mobile ad hoc network 

reflects the relative distance of its nodes and is continuously reconfigured as 

nodes come within reach of each other. 

• Fault tolerance: The self-organizing nature of mobile ad hoc networks and the 

fact that they don’t rely on dedicated base stations makes them fault-tolerant. In 

a traditional cellular network, a fault in the base station will impair all nodes in 

its cell. In mobile ad hoc networks, a malfunction in one node can be easily 

overcome through network reconfiguration. 

The advantages of ad hoc networks come with certain drawbacks. Because 

transmission range of ad hoc networks is limited by power constraints, frequency reuse 

and channel effects, store-and-forward packet routing is required over multiple-hop 

wireless paths. Because communication hosts can move freely and independently of one 

another, routing is a difficult challenge and has become the major research topic related 

to ad hoc networks.  



48 

 

  

III.1.1 Wireless Communication Technologies for Mobile Ad Hoc Networks 

Mobile ad hoc networks can be implemented on a variety of communication 

technologies including the IEEE 802.11 (IEEE 1999) and HiperLAN (ETSI 2002) 

standards for wireless local area networks (WLAN), the IEEE 802.15 standard for 

wireless personal area networks (WPAN) (IEEE 802.15) and future ultra-wideband 

wireless networks (UWBWG 2002).  

IEEE 802.11 Local Area Networks 

The IEEE 802.11 standard (IEEE 1999) is a family of specifications created by 

the Institute of Electrical and Electronics Engineers Inc. for wireless local area 

networks. The specifications specify a shared media "over-the-air" interface between 

wireless nodes and address both the Physical (PHY) and Media Access Control (MAC) 

layers. The IEEE 802.11 standard is based on a single channel, broadcast media and is 

the wireless equivalent of Ethernet. The IEEE 802.11 standard currently defines four 

separate but backward compatible specifications: 802.11, 802.11a, 802.11b, and 

802.11g. The most recently approved standard, 802.11g, offers wireless transmission 

over relatively short distances (25 meter) at up to 54 megabits per second (Mbps) in the 

x-GHz range of the radio frequency (RF) spectrum compared with the 11 megabits per 

second of the 802.11b standard. The range of 802.11b can exceed 500 meters but is 

typically no more than 150m outdoors and significantly less indoors.  

802.11 networks can be operated in two different modes: 

• Infrastructure mode is the most common operating mode. It connects the 

wireless node to a wired network through one or more wireless access points 

(bridge). If the range of the different access points overlap each other it is 

possible to move from one cell to another without losing network connection 

(roaming).  
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• The independent mode (or ad hoc mode) realizes a standalone ad hoc wirelesses 

network in which all nodes share the same medium and are directly connected. 

An access point is not required and communication is possible between all 

nodes within direct transmission range. 

HiperLAN 

HiperLAN (ETSI 2002) is a set of wireless local area network communication 

standards primarily used in European countries and provides features and capabilities 

similar to those of the IEEE 802.11 WLAN standards. There are two specifications: 

HiperLAN/1 and HiperLAN/2. HiperLAN/1 provides communications at up to 20 Mbps 

in the 5-GHz range of the radio frequency (RF) spectrum. HiperLAN/2 operates at up to 

54 Mbps in the same RF band. Similar to 802.11 networks, HiperLAN is based on 

single channel, broadcast based wireless media. 

Ultra-Wideband Radio 

Ultra-wideband (see UWBWG 2002) (also known as UWB or as digital pulse 

wireless) is a wireless technology for transmitting large amounts of digital data over a 

wide spectrum of frequency bands with very low power for a short distance. Unlike 

conventional radio systems including that operate within a relatively narrow bandwidth 

(e.g., IEEE 802.11, HiperLAN, and Bluetooth) ultra-wideband operates across a wide 

range of frequency spectrum by transmitting a series of very narrow and low power 

pulses. Ultra-wideband radio not only can carry a huge amount of data over a distance 

up to 80 meters at very low power (less than 0.5 milliwatts), but has the ability to carry 

signals through doors and other obstacles that tend to reflect signals at more limited 

bandwidths and a higher power. The combination of broader spectrum, lower power 

and pulsed data means that ultra-wideband causes less interference than conventional 

narrowband radio solutions, and delivers wire-like performance in an indoor wireless 

environment. 
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Wireless Personal Area Networks 

A wireless personal area networks (WPAN) is a short-range wireless network 

for interconnecting devices centered around an individual person. The most prominent 

WPAN example is Bluetooth (Bluetooth 2002), which was used as the basis for a new 

IEEE 802.15 standard (IEEE 2002). Bluetooth is based on a low-cost, low-power 

transceiver chip that transmits and receives data in the 2.45 GHz frequency band at a 

maximal rate of 2 megabit per second. Transmission range is limited to 10 meters.   

Unlike IEEE 802.11 and HiperLAN networks, which are based on single 

channel, broadcast based wireless media, Bluetooth is based on a frequency hopping 

physical layer. This fact implies that hosts are not able to communicate unless they have 

previously discovered each other by synchronizing their frequency hopping patterns. In 

contrast, for single channel networks in ad hoc mode the distance relationship between 

the nodes implicitly (and uniquely) determines the topology of the ad hoc network. In a 

Bluetooth network, only those nodes which are synchronized with the transmitter can 

hear the transmission, even if all nodes are within direct communication range of each 

other. 

Bluetooth supports point-to-point, point-to-multipoint, and multi-hop 

communication over wireless medium (any-to-any communication will be part of a 

future release). Point-to-multipoint connections are referred to as piconets.  A piconet 

consists of one master (the owner or creator of the network) and up to seven slaves. 

Several piconets can be established and linked together spontaneously creating what is 

called a scatternet. A scatternet represents a Bluetooth-based mobile ad hoc network, 

albeit one whose overall topology is divided into several piconets.  

To support any-to-any communication among a set of Bluetooth devices that 

have no knowledge of their surroundings requires to build a scatternet in which pairs of 

nodes (which can communicate with each other) form a connected graph. Several 

topology creation algorithms have been devised to achieve this goal (Salonidis et al. 

2001a; Salonidis et al. 2001a; Záruba et al. 2001; Groten and Schmidt 2001). 
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III.1.2 Research Issues 

The two most prominent research areas in ad hoc networking are routing and 

multicasting. 

Routing 

Communication between arbitrary hosts in a mobile ad hoc network requires 

routing over multi-hop wireless paths because of the limited propagation range of 

wireless radios (Figure 5). Conventional routing is inadequate in ad hoc networks, as 

the mobility aspect can cause rapid and frequent changes in network topology. The 

main difficulty arises because (1) without a fixed infrastructure these paths consist of 

wireless links whose end-points are likely to be moving independently of one another 

(2) the capacity of a wireless link varies over time, and its utilization is often low due to 

noise, interference and contention (3) nodes typically have very limited energy supplies 

(batteries) and must transmit and receive sparingly to conserve energy (4) nodes may 

temporarily disconnect from the network for a "sleep" period to save energy when 

traveling out of network range. These issues make routing in an ad hoc network a 

difficult problem which cannot be solved with current Internet routing protocols. 

Routing protocols for ad hoc networks are responsible for maintaining and 

reconstructing the routes in a timely manner as well as establishing the durable routes. 

In addition, routing protocols are required to perform these tasks in a manner that is 

efficient in bandwidth and energy consumption.  



52 

 

  

Source
Destination

 

Figure 5. Multi-hop routing in an ad hoc network 

Routing protocols proposed for mobile ad hoc wireless networks can be divided 

into three categories according to the routing strategy.  

First, there are distance vector protocols. Protocols of this type include Wireless 

Routing Protocol (WRP) (Murthy and Garcia-Luna-Aceves 1996), Destination 

Sequence Distance Vector (DSDV) routing protocol (Perkins and Bhagwat 1994), and 

Least Resistance Routing (LRR) (Pursley and Russel 1993).  

Second, there are protocols that are based on link state algorithms. Protocols 

such as Global State Routing (GSR) (Chen and Gerla 1998), Fisheye State Routing 

(FSR) (Pei et al 2000a), Adaptive Link-State Protocol (ALP) (Garcia-Luna-Aceves and 

Spohn 1998), Source Tree Adaptive Routing (STAR) (Garcia-Luna-Aceves and Spohn 

1999), and Landmark Ad Hoc Routing (LANMAR) (Pei et al. 2000b) fall into this 

category. 

Third, there are on-demand routing protocols (Maltz et al. 1999) that are 

proposed for ad hoc networks only. On-demand routing protocols do not maintain route 

to each destination of the network on a continual basis. Instead, routes are established 

on demand by the source. When a route is needed by the source, it floods a route 

request packet to construct a route. Upon receiving route requests, the destination 

selects the best route based on route selection algorithm. Route reply packet is then sent 

back to the source via the newly chosen route. In on-demand routing protocols, control 
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traffic overhead is greatly reduced since no periodic exchanges of route tables are 

required. Numerous protocols of this type have been proposed including Lightweight 

Mobile Routing (LMR) (Corson and Ephremides 1995), Dynamic Source Routing 

(DSR) (Johnson and Maltz 1996), Ad-Hoc On Demand Distance Vector (AODV) 

routing (Perkins and Royer 1999), Associativity-Based Routing (ABR) (Toh 1997), and 

Multipath Dynamic Source Routing (MDSR) (Nasipuri and Das 1999). 

Multicasting 

In a typical ad hoc environment, network hosts work in groups to carry out a 

given task. Therefore, multicast plays an important role in ad hoc networks. In addition, 

multicasting is important for efficient dissemination of data throughout a network. For 

example, service discovery often relies on disseminating service advertisements to 

interested partners. Multicast protocols used in static networks (e.g., Distance Vector 

Multicast Routing Protocol (DVMRP) (Deering and Cheriton 1990)) do not perform 

well in wireless ad hoc networks because multicast tree structures are fragile and must 

be readjusted as connectivity changes, yielding excessive processing and network 

overhead. Hence, the tree structures used in static networks must be modified, or a 

different topology between group members (i.e., mesh) need to be deployed for efficient 

multicasting.  

Many different protocols for multicasting in mobile wireless networks have 

been proposed in recent years. Acharya and Badrinath (Acharya and Badrinath 1996) 

were the first to address the issue of wireless multicast. However, their protocol 

assumes a fixed wired network component and mobile hosts that can only receive 

multicast packages but not send. Many multicasting protocols have been recently 

proposed for ad hoc networks. The Reservation-Based Multicast (RBM) routing 

protocol (Corson and Batsell 1995) builds a core (or a Rendezvous Point) based tree for 

each multicast group. RBM is a combination of multicast, resource reservation, and 

admission control protocol where users specify requirements and constraints. The Ad 
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hoc Multicast Routing protocol utilizing increasing id numbers (AMRIS) (Wu and Tay 

1999) builds a shared-tree to deliver multicast data. Each node in the multicast session 

is assigned an ID number and it adapts to connectivity changes by utilizing the ID 

numbers. A multicast extension of Ad Hoc On-Demand Distance Vector (AODV) 

routing protocol has been newly proposed in (Perkins and Royer 1999). Its uniqueness 

stems from the use of a destination sequence number for each multicast entry. The 

sequence number is generated by the multicast grouphead to prevent loops and to 

discard stale routes. Another multicast algorithm based on neighbor relationships is 

described in (Lee and Kim 2000).  

III.2 Peer-to-Peer Computing 

Peer-to-peer computing has gained popularity thanks to the recent emergence of 

file sharing applications over the Internet. Peer-to-peer computing leverages available 

computing performance, storage, and bandwidth found on systems around the Internet. 

With distributed computing applications like SETI@home (Korpela et al. 2001) 

millions of users contribute their computing resources to work on a common 

computational analysis. Instant messaging services enable users to communicate and 

collaborate with their peers in real time. In addition, file-sharing applications like 

Napster, Gnutella (CLIP2 2002) (Kan 2001), and Freenet (Clarke et al. 2001) offer a 

compelling and intuitive way for Internet users to find and share files directly with each 

other. 

The term “peer-to-peer computing” can be interpreted in at least two different 

ways. First, it can emphasize the users’ perspective and refer to a system where users 

are at the same time users and providers of information. Such systems are based on the 

principle that users who are willing to share files or resources with others may gain 

benefits in the long run. Second, it can refer to the architecture of a distributed system. 

This view emphasis the distinction of peer-to-peer computing from traditional client-

server computing by insisting that in order to qualify as a peer-to-peer system it must 
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not have a central server or coordinator and communication between hosts must be pair 

wise. Proponents of the user-centered view see a peer-to-peer system as technology that 

supports sharing and collaboration among independent users. This view was 

popularized by Napster, a peer-to-peer file sharing application that enables pair wise 

interactions between users although architecturally it relies on a central server. 

Proponents of the technical point of view see a peer-to-peer architecture as a way to 

tackle issues like system scalability, reconfigurability and user privacy and anonymity. 

Ultimately, peer-to-peer is about overcoming the barriers to the formation of ad-hoc 

communities, whether of people, of programs, of devices, or of distributed resources. In 

this dissertation we follow a definition of peer-to-peer computing expressed by (Bolcer 

et al. 2000) who describe peer-to-peer as “any relationship in which multiple, 

autonomous hosts interact as equals. An autonomous host is useful in its own right even 

in the absence of others. The peering relationship implies that additional functions are 

available to other peers collectively as a consequence of their collaborations with other 

hosts. Known as the network effect, the value and extent of these added powers 

increases dramatically as the number and variety of peers grows” (Bolcer et al. 2000, 3). 

Although the concept of peer-to-peer computing is far from new, its application 

to modern distributed computing systems and applications brings in new problems and 

research challenges including networking protocols, decentralized algorithms, 

middleware, software architectures, coordination models, and security.  

III.2.1 Mobile Peer-to-Peer Computing 

Traditionally, mobile devices have been designed as thin clients as part of a 

client-server system. For example, cell-phones and Internet-enabled PDAs use wireless 

connections to gain access to resources such as data and computation provided by large 

central servers. With the advent of wireless ad hoc networks, it becomes possible to 

design mobile systems as peer-to-peer systems.  
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A mobile peer-to-peer system (MP2P) (Mascolo et al. 2001; Gold and Mascolo 

2001; Kortuem et al. 2001; Kortuem 2002; Charas 2001) is a distributed mobile system 

that consists of mobile hosts that continuously change their physical location and 

establish peering relationships among each other based on proximity. Hosts interact 

during brief physical encounters thereby engaging in short-haul wireless exchanges of 

data. Mobile P2P applications take advantage of resources -- storage, cycles, content, 

human presence – provided by mobile devices in the immediate physical proximity. 

Such systems closely match Bolcer’s definition of peer-to-peer computing: mobile 

devices are autonomous and provide great benefits to their users even when not 

connected to other devices. However, as soon as two devices come within reach and a 

communication link is established, they enter into a short-lived, yet mutually beneficial 

partnership by exchanging data and accessing each other’s services.  

Mobile peer-to-peer systems differ from client-server based distributed mobile 

systems in the following respects: 

• Mobile P2P systems are decentralized: there is no central node and all peers 

have the same roles and responsibilities.  

• Communication links are highly transient: disconnections and reconnections 

occur frequent and unpredictably. 

• Since mobile hosts can move frequently and independently of one another, 

mobile P2P systems have rapidly and unpredictably changing topologies. 

Similarly, there are important differences between traditional (non-mobile) and 

mobile peer-to-peer system. (Bolcer et al. 2001) describe (non-mobile) peer-to-peer 

computing as the natural and desirable outcome of three profound and pervasive trends: 

• The ease of interconnection 

• The expansion of bandwidth 

• The wealth of cycles 
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“… in a world where (network access) interconnection is universal, (network) 

bandwidth is plentiful, and (processor) cycles are inexpensive, peering among physical 

unequals is both natural and desirable” (Bolcer et al. 2001, 3).  

Traditional peer-to-peer systems such as Napster, Gnutella and Freenet, which 

are intended to run on stationary hosts in wired networks, have been designed with this 

view in mind. However, two of these trends do not apply to mobile peer-to-peer 

systems: while ad hoc networks provide ease of interconnection, there is much less 

expansion of bandwidth in wireless networks than there is in wired networks, and much 

less wealth of cycles in mobile devices than there is in desktop units.  

III.2.2 Challenges 

The unique character of mobile peer-to-peer systems represents a significant 

challenge for the designer. Not surprisingly, mobile peer-to-peer computing exhibits the 

combined issues and challenges of ad hoc networking, mobile computing, distributed 

computing and peer-to-peer computing. In the following, we will summarize these 

challenges.  

Mobile Device Limitations  

Mobile devices present a more constrained computing environment compared to 

workstations and desktop computers. Because of fundamental limitations of battery life 

and form factor, mobile devices tend to have less powerful CPUs, less memory, smaller 

and less reliable storage, restricted power consumption, smaller displays, and missing or 

restricted input devices. The limitations in processing power and storage make it harder 

to implement algorithms for distributed coordination and cryptographic security 

measures.  
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Communication  

Mobile peer-to-peer systems exhibit all the limitations (and advantages) of ad 

hoc networks. Because of fundamental limitations of power, available spectrum, and 

mobility, ad hoc networks tend to be low bandwidth and long latency. As bandwidth 

increases, the device’s power consumption also increases further draining the already 

limited battery life of mobile devices. Thus, even as wireless networks improve their 

ability to deliver higher bandwidth, the power availability still limits the effective 

throughput. 

As discussed above, communication links in ad hoc networks are prone to 

unexpected interruptions. Consequently, mobile peers must anticipate frequent network 

failures and handle them gracefully. In addition, peer applications should provide for 

disconnected operations (Kistler and Satyanarayanan 1992) such that a peer remains 

operational even without network connection. The instability of multi-hop paths and the 

limited lifetime of routes in ad hoc networks have a negative impact on the performance 

on peer-to-peer routing. For example, the Gnutella file-sharing software uses routing as 

a way to return search results to the peer that initiated a search. Search results travel 

backwards on the same route the original search query took. If one of the intermediate 

peers disappears from the network before the search result could be returned, the search 

result will be lost. In our own experiments using Gnutella over the Internet we 

experienced that about 2% of all search results could not be returned. In an ad hoc 

network, this number would increase dramatically.  

Naming 

Traditional (non mobile) peer-to-peer systems are characterized by an 

increasing decentralization and autonomy of hosts. Because accessing these 

decentralized resources means operating in an environment of unstable connectivity and 

unpredictable IP addresses, peer-to-peer systems often operate outside the DNS system. 
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The same must be true for mobile peer-to-peer systems. Additional reasons for not 

relying on the DNS system are: 

• In ad hoc networks, access to a central DNS server cannot be assumed 

• Not all mobile devices support IP networking and thus do not have IP addresses 

• Collaborative applications require the ability to identify not only devices, but 

also users.  

Resource Discovery 

One of the things that makes current peer-to-peer system so powerful is that 

they take advantage of resources -- storage, cycles, content, human presence -- available 

at the edges of the Internet. In a mobile peer-to-peer system we want to take advantage 

of resources provided by peers running on mobile devices in the immediate physical 

proximity. Because of the unpredictable physical mobility of mobile devices, 

discovering resources becomes a challenge.  

The highly dynamic nature of mobile peer-to-peer systems requires similarly 

dynamic mechanisms for device and resource discovery. In ad hoc networks, device 

discovery is part of the network; resource discovery, however, is the task of the peer 

system. We need algorithms through which a computing device can detect the presence 

of neighboring devices, share configuration and service information with those devices, 

and notice when devices become unavailable. Resource discovery must be timely (in 

order to detect moving devices) and efficient (so not to overload the network). One such 

algorithm has been developed as part of the DEAPspace project (Nidd 2000). 

In contrast to peer-to-peer systems that are targeted at fixed networks, 

decentralization is not a mere option for mobile peer-to-peer networks, but a necessity. 

Even seemingly decentralized peer-to-peer systems such as Gnutella rely on centralized 

servers for some tasks. For example, Gnutella clients use a central host cache for 

determining initial entry points into the Gnutella network. In mobile peer-to-peer 

systems all functions need to be decentralized.  
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Data Sharing and Synchronization 

A mobile peer-to-peer system is basically a highly dynamic, decentralized 

distributed system with weakly connected mobile hosts. In order to cooperate, peers 

need to be able to share and synchronize data. The extreme decentralization and 

unpredictability of mobile peer-to-peer system together with the fact that peers always 

only establish pair-wise connections leads to the following conflicting requirements: 

• High availability: mobile peers needs to be as autonomous as possible and they 

should be able to perform computations even in the absence of connections with 

other peers. This requirement can be achieved with a replicated data storage 

scheme where each peer maintains a local copy of shared data object.  

• Consistency: Replicated data storage introduces the problem that local copies 

can be updated independently by different peers and thus might become 

inconsistent over time. This requires a synchronization mechanism that is able 

to handle weakly connected hosts and unpredictable network links.  

• Timeliness: Any solution to the consistency problem has to deal with the fact 

that data might be shared across a group of peers that rarely come together. 

Even more, there is no guarantee that a specific group of peers will ever be 

connected to each other at the same time. Consequently, updates must be 

propagated throughout a network by passing information from peer to peer. 

Because of the unpredictability of host mobility, it is impossible to guarantee 

that each host receives update information in a timely manner.  

Trust and Security 

A particular security aspect of mobile peer-to-peer systems relates to the 

question "how do we know we can trust somebody on the network?" In systems with a 

centralized component, this problem can be handled by public key certificates issued 

and cryptographically signed by globally trusted certification authorities (CA). A public 
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key certificate proves that its holder is trustworthy simply because the issuer, the trusted 

CA, has signed it and can therefore vouch for the holder's credentials. A chain of CAs, 

each trusting the next CA in the chain, may sometimes be necessary when a certificate 

signed by an unknown CA is presented.  

In a mobile peer-to-peer system global trust authorities are difficult or even 

imposable to maintain, because connectivity is to such an authority cannot be 

guaranteed. Thus a mobile peer-to-peer system requires distributed authentication 

protocols. This, however, is made difficult by the fact that this must occur in a 

completely decentralized environment with no or intermittent connection to a trusted 

authority. Possible solutions might include the use of reputations (Schneider et al. 2000; 

Abdul-Rahman and Hailes 2000).   

In order to engineer a fully secure system it becomes necessary that the device 

is able to authenticate the user. Otherwise digital certificates can easily be stolen by 

taking the device itself. Depending on the required security level this might require 

biometric identification.  

Privacy 

Privacy is the right of individuals to control collection and use of personal 

information about themselves. Unlike security, which deals with safeguarding of 

information from unauthorized users, privacy is concerned with the amount of 

information known about an individual. One of the main privacy concerns is protecting 

a user’s anonymity. Monitoring network traffic or gaining access to confidential 

personal data can compromise a user’s anonymity. Not only must a system prevent 

spying and monitoring, but users must also be given control what information is 

disclosed, to whom, and when. In particular, it must be possible for an individual to stay 

anonymous if so desired. 
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Building mobile peer-to-peer systems requires a variety of skill-sets ranging 

from collaboration paradigms based on opportunistic proximity-based interactions to 

highly dynamic wireless networks. As a consequence, the software infrastructure to 

support mobile peer-to-peer applications is becoming critically important. Recognizing 

this need researchers have started to develop mobile peer-to-peer platforms. Among 

them are platforms that exclusively focus on data sharing aspects (XMIDDLE (Mascolo 

et al. 2001), Lime (Murphy et al. 2001)), mobile groupware platforms (Pocket 

DreamTeam (Roth 2002)), Bluetooth-specific platforms (BlueTalk (Pocit Labs 2001)), 

and general purpose platforms (JXTA for J2ME = JXME (Arora et al. 2002)). We will 

discuss these platforms in more detail in  Chapter VIII.  

III.3 Communityware 

With the advent of online communities, an interest in communityware emerged. 

Communityware, a term coined by Ishida (Ishida 1998a; Ishida 1998b), is software for 

supporting and enabling communities. Communityware is intended to support diverse 

and amorphous groups of people and focuses on the process of organizing people who 

are willing to reach some mutual understanding.  

Examples of communityware are:   

• Recommendation systems and collaborative filtering systems (e.g., book 

recommendations at Amazon.com) 

• Matchmaking software (systems that identify similarities in user’s interests with 

the purpose to facilitate direct communication) 

• Collaborative information collection tools with awareness and notification 

support (e.g. document repositories, shared bookmark applications) 

• Comprehensive solutions for building community web sites  

Communityware is related to the more familiar class of systems known as 

groupware. Peter and Johnson-Lenz, who are credited by many as coining the term 
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groupware (Johnson-Lenz and Johnson-Lenz 1981), define groupware as "intentional 

group processes plus software to support them" (Johnson-Lenz and Johnson-Lenz 

1982, 4). This definition properly excludes multi-user databases and electronic mail that 

are not designed particularly to enhance the group process. According to (Johnson-Lenz 

and Johnson-Lenz 1981), a complete groupware infrastructure has three dimensions: 

communication, collaboration (shared information and building shared understanding), 

and coordination (delegation of task, floor control, etc.). 

Communityware is intended to support social processes of diverse and 

amorphous groups of people. This is in stark contrast to groupware which typically 

focuses on work-related activities of already organized people, such as teams. Teams 

are composed of members who know each other and collaborate to achieve a common 

goal while community members have just common interests or preferences. Thus 

communityware aims to support the process of organizing people who are willing to 

reach some mutual understanding. In other words, communityware focuses on the early 

stage of collaboration, which includes group formation, contact facilitation, finding 

people, and building a common understanding. 

The differences between groupware and communityware are summarized in 

Table 4. 

Table 4. Differences between Groupware and Communityware 

 Groupware Communityware 
 

User population Small Potentially large 
 

Degree of cooperation 
among users 

High Low-high 

Motivation for 
participation 

External pressure, Common 
goal 

Shared interests, Self interest 

Relations between 
users 

Everyone knows everyone else Not everyone knows everyone 
 

Collaboration means Shared artifacts Occasional exchange 
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III.4 Systems to Support Face-to-Face Interactions  

The notion of wearable communities defines a research framework for 

investigating computer support for social interactions in face-to-face settings. Such 

interactions are often spontaneous (driven by chance encounters of mobile people) and 

highly situated (embedded in the real world context in which people interact). In the 

literature, spontaneous unstructured interactions are referred to as informal 

communication (Whittaker et al. 1994; Fish et al. 1990; Fish et al. 1993). Typically 

short, expressive, and frequent, informal communication may be initiated by one party 

or serendipitously occur through chance meetings. (Fish et al. 1990) describe informal 

communication as a social event that takes place ad hoc when there is an opportunity 

for communication. It can be strongly related to work (Bergqvist et al. 1999; Kraut et al. 

1990; Luff and Heath 1998; Belotti and Bly 1996), but it can also be purely social. 

Informal communication has no pre-established agenda, and no pre-established topics 

are discussed. Informal interactions play an important part in our social life and are vital 

for coordination of work activities at the office.  

Despite the importance of face-to-face and informal communication in our daily 

lives information technologies to support interactions between people have mostly been 

targeted at planned rather than spontaneous communication, in settings that are virtual 

(shared virtual space) or artificial (instrumented meeting rooms) rather than part of 

people’s everyday. For example, the CoLab (Stewart et al. 1999) project features an 

electronic meeting room that enables a group of users to control a shared display at the 

front of the room. The Pebbles project (Myers et al. 1998), investigates the use of 

handheld Personal Digital Assistants (PDAs) as portable input devices for a single 

shared display. In addition, up until recently research aimed at supporting informal 

communication has focused on distributed (Dourish and Bly 1992; Fish et al. 1993; 

Fitzpatrick et al. 1998; Nakanishi et al. 1996) rather than co-located groups.  

With the advance mobile and wearable technology some researchers have 

started to recognize the social potential of this technology and have build systems to 
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support face-to-face communication. Among the early proposals are match-making 

technologies (e.g. LoveGety (CNN 1998)), awareness devices to provide roaming 

groups with a sense of connectedness (e.g. HummingBird (Holmquist et al. 1999)), ad 

hoc games and gaming platforms that seek to make real-world group mobility part of 

digital entertainment (e.g. Pirates (Björk et al 2001), Mercantile (Pering and Pering 

2001), Pervasive Clue (Schneider and Kortuem 2001)), educational software tools (e.g., 

Geney (Danesh et al. 2001)) and messaging devices that adopt ‘word of mouth’-

metaphors for proximity-based passing of information (e.g. ThinkingTags (Borovoy et 

al. 1996), MemeTags (Borovoy et al. 1998), iBalls (Borovoy et al. 2001)).  

The main characteristics of these systems are summarized in Table 5.  

These systems represent important precursors of wearable community systems. 

In our survey we limit our attention to systems that make use of mobile or wearable 

devices. This excludes, for example, systems like AgentSalon (Sumi and Mase 2001) 

where users interact in front of a shared display without devices on their own. In the 

following we will provide a short description of the overall design and purpose of these 

systems and then discuss technical and architectural aspects.  

III.4.1 Design Overview  

Thinking Tags 

The Thinking Tag (Borovoy et al. 1996) is a small badge used to initiate 

communication among co-located people at events involving large crowds. The purpose 

of Thinking Tags is to determine if two users share common interests. The badge itself 

consists of five LED signs and an IR-transceiver. Each user defines his or her interests 

during an initial setup procedure by connecting the tag to a terminal and answering a 

number of yes/no questions related to the event, e.g. “Are you interested in the Y2K 

problem?” The tags compare the user preferences and indicate, by lighting one or 
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several LED signs, if the two persons have anything in common. The idea behind 

Thinking Tags is that users can use the knowledge about shared interests to initiate a 

conversation.  

    

Table 5. Systems to Support Face-to-Face Communication: Overview 

 User Population Interaction Type Objectives 
 

MemeTags Community 
(strangers) 

Unplanned Creating common 
ground, contact 
facilitation 
 

ThinkingTags Community 
(strangers)  

Unplanned Creating common 
ground, contact 
facilitation 
 

iBalls Children  Entertainment, 
creating common 
ground 
 

Hummingbird Group (friend, Co-
workers) 

Unplanned, 
opportunistic 

Group awareness, 
contact facilitation 
 

ProxyLady Co-workers Opportunistic Group awareness, 
contact facilitation 
 

NewsPilot Co-workers Opportunistic Group awareness, 
contact facilitation 
 

Pervasive Clue (no characteristics) Unplanned, 
opportunistic 

Entertainment 
 

PIRATÉ s  (no characteristics) Unplanned, 
opportunistic 

Entertainment 
 

Mercantile (no characteristics) Unplanned, 
opportunistic 

Entertainment 
 

Geney Children Planned  Entertainment, 
Education 
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Meme Tag 

The Meme Tag (Borovoy et al. 1998) is a wearable display device worn around 

the neck, its display facing a conversation partner rather than its wearer. The purpose of 

Meme Tags is to propagate memes, contagious ideas, opinions or messages, throughout 

a network of Meme Tags worn by participants of a large scale event. If one Meme Tag 

has a meme that the other does not have, the wearer of that other device is offered to 

accept a transfer of that message. The idea is that users will only accept memes they 

like or agree with. Similar to Thinking Tags, the idea is to initiate conversations by 

letting people know if they subscribe to the same memes or not.    

A Meme Tag is proactive in that it initiates communication with other Meme 

Tags without explicit user action, but ultimately the user authorizes the message transfer 

by explicitly pressing a button. Hence, no messages can propagate over the “network” 

unless users specifically agree to host them and, in fact, this is the main idea behind the 

Meme Tag application. 

Hummingbird 

The Hummingbird (Holmquist et al. 1999) is a small wearable device equipped 

with a short-range radio transceiver, through which it broadcasts its identity and receive 

information about other Hummingbirds in the vicinity. The Hummingbirds were 

developed to “give members of a group continuous aural and visual indications of 

which other group members are in the vicinity” (Holmquist et al. 1999, 2). Whenever 

two or more Hummingbirds are close enough to communicate, the devices give a subtle 

audio signal and display the identity of the other devices in the proximity. The devices 

are functionally self-contained, i.e. non-dependent of surrounding infrastructure. A 

Hummingbird extends the range of our ordinary senses, allowing the user to know that a 

colleague is nearby even though he or she is not close enough to be directly seen. 

Inspired by what is often within “shouting distance”, the communication range is set to 
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approximately 100 meters (depending on the number and nature of obstacles like 

people, walls etc.).  

Hummingbirds are an example of an Inter-Personal Awareness Device (IPAD) 

as defined by Holmquist (Holmquist et al. 1999). In contrast to a communication device 

like the mobile phone, an IPAD facilitates contacts instead of mediating them. An 

important basis for the IPAD concept comes from the observation that informal 

communication may occur whenever people are in the same place, but that it does not 

necessary matter which place they happen to be in. In this sense, IPADs seek to support 

spontaneous interactions between people in vicinity. 

ProxyLady 

Proxy Lady (Dahlberg et al. 2001) is a mobile system which objective is to 

foster opportunistic face-to-face communication, for example during unexpected 

encounters in corridors and coffee rooms. An opportunistic meeting is an event 

anticipated by one but not all parties involved (Kraut et al. 1990).  Proxy Lady enables 

user to associate information items such as email messages and text files with people, 

called candidates for interaction. When a candidate is in the proximity of the proxy 

lady’s users, the device notifies its owner, which can initiate a face-to-face conversation 

with this person and (possibly) start a brief conversation or meeting relating to the 

information item. The information items are downloaded to the PDA during 

synchronization with a desktop computer. The use of email and files as trigger for 

interactions implies that users are acquainted or have communicated prior to the 

encounter. Typically, this limits Proxy Lady to use in workgroup and work-related 

informal communication.  

In its basic conception Proxy Lady is very similar to Hummingbirds, but 

provides more flexibility. It extends the basic IPAD concept by supporting 

opportunistic meetings, i.e. meetings expected by one but not the other party. In 

response to privacy concerns voiced by users of Hummingbirds, Proxy Lady provides 
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an ‘invisible mode’. If a device is in invisible mode, nearby users are unable to detect 

its presence. The range of the radio transmitters is fixed at approximately 20 meters.  

NewsPilot 

The NewsPilot (Dahlberg, Redström, and Fagrell 1999; Dahlberg, Fagrell, and 

Redström 1999) is an Inter-Personal Awareness devices based upon Palm handheld 

devices. Very similar to ProxyLady, NewsPilot uses radio transceivers to detect and 

inform the user about nearby NewsPilot users. As triggers NewsPilot uses to-do action 

items stored in a person’s calendar. Each to-do item in the to-do list of the Palm 

handheld device can be associated with one or several person. When one of those 

persons is nearby, the to-do item is shown and a small beep is emitted.  

Pervasive Clue 

Pervasive Clue (Schneider and Kortuem 2001) is a live-action role-playing 

game based loosely on Hasbro's classic board game Clue augmented with short-range 

radio frequency (RF) PDA devices. The goal of Pervasive Clue is to discover who 

killed the host, Mr. Bauer, where it was done and what was the murder weapon. Solving 

the murder is done through the discovery of clues, when a player feels they can solve 

the crime they are allowed to make an accusation. If any of the crime facts (murderer, 

location or weapon) are incorrect the player is eliminated. Players are each equipped 

with a Cluefinder (Figure 6), an RF enabled PDA device with a large magnifying glass 

attached. Although the magnifying glass is entirely cosmetic its design illustrates the 

function of the device, how it is used and promotes use of the Cluefinder as a role-

playing prop. Each clue has a physical representation (i.e. knife, book, candlestick) as 

well as a hidden short range RF beacon <1 foot, broadcasting its clue. Players find game 

clues by searching a room with the Cluefinders and coming within 1 foot of the beacon. 

Players may also gain clues by exchanging them with other players. The rules of the 

game do not restrict a player’s ability to give or trade clues with other players.  
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Figure 6. Clue Finder 

The Cluefinder PDA accomplishes its task of promoting sociability by: 

identifying nearby people, semi-automatic support for trading clues and items, 

capturing and disseminating reputation information about people for use in evaluating a 

player’s trustworthiness based on his or her behavior (like cheating or lying) in past 

games. 

Geney 

Geney (Danesh et al. 2001) is a collaborative problem solving application to 

help children explore genetics concepts. The goal is to encourage players to collaborate 

and share knowledge in order to complete the task. In Geney, students work together to 

produce a fish with a particular set of characteristics by exchanging fish with their 

friends through the handheld’s infrared port. Each Geney handheld contains a single 

pond of fish and students can view the genetic traits of fish in their pond. Two fish in a 

pond can be mated and the offspring will have genetic traits that are derived from their 

parents’ genes. The goal of the game is to breed a specific creature. Only by 
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collaborating with other students playing the game can the group achieve the desired 

goal. 

Pirates 

Pirates (Björk et al. 2001) is a multi-player computer game that takes place in a 

fantasy archipelago setting, where each player is the captain of a ship. Game objectives 

include solving different missions, such as finding treasures, trading with commodities 

found on the islands, and fighting other players in sea-battles. As missions are 

completed, the players gain experience points that translate into rank, and as goods are 

traded for money, ships are upgraded to sturdier ones.  

The game is implemented on handheld computers connected in a Wireless Local 

Area Network (WLAN). A local server maintains and controls the virtual game 

environment, and keeps a record of what events take place in the game. In addition to 

the WLAN adapters, each handheld device is fitted with custom-made proximity 

sensors, used to determine the players’ location in physical space. Although the game is 

played on handheld computers and is maintained by a server, the players must roam a 

physical environment, the game arena, in order to explore the virtual game 

environment. To engage in a virtual battle with co-players, they must walk up to them, 

forcing the players to not only watch the computer screen but also to look at other 

players and the real world.  

Mercantile 

Mercantile (Pering and Pering 2001) is a mobile game designed to support face-

to-face interaction within an already existing social context, such as the office 

workplace. In the game, each player represents a trading empire and the computer 

system requires them to meet face-to-face to negotiate and affect a trade, instead of 

allowing them to trade in a purely virtual world. The mobile device itself possess no 

inherent display (e.g., LCD), and instead uses short-range wireless communication to 
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provide access to a user’s data and applications through already-existing nearby 

displays, such as a desktop workstation or internet kiosk. Even in the virtual world, 

players can only “see” the holdings of other players if they are physically co-located, 

encouraging them to actually move around and seek out other players. The overall 

concept intends to explore mobile computing and distributed gaming in a truly mobile 

context by focusing on co-located social interaction, rather than relying on the 

distributed virtual interaction typically supported by mobile game consoles. 

III.4.2 Implementation and Architecture  

Table 6 summarizes the technical attributes of the systems we examined. It lists 

the device characteristics, the communication technology, the type of data exchanged 

between devices, the proximity sensing technology and the overall system architecture.  

Devices 

The devices used in these systems fall into two categories: proprietary devices 

and commercial off-the-shelf devices like PalmOS PDAs, Nintendo GameBoys and 

Cybikos. The proprietary devices use by ThinkingTags, MemeTags are extremely small 

and computationally not very powerful, while the “Personal Server” used by the 

Mercantile project is in the same class as commercial PDAs. Most devices have regular 

displays capable of displaying text and graphics, while others have very simple (LEDs, 

ThinkingTags) or no (Mercantile) output capabilities at all.   
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Table 6. Systems to Support Face-to-Face Communication: Technology 

 Device  Data 
Exchange 
between 
devices 

Communication 
Technology 

Proximity 
Sensing 
Technology 

System 
Architecture 

Thinking Tags Small,  
proprietary, 
output only, 
5 LEDs 
function as 
display, no 
input 

Interests 
(small text 
snippets 
representing 
predefined by 
answers to 
five 
predefined  
opinion 
questions; 

IR (range < 5m) (communic
ation) 

Decentralized 
P2P 

MemeTags Small, 
proprietary, 
output only, 
2x16 
character 
display 

Memes 
(small, user 
defined text 
snippets) 

IR (range < 5m) (communic
ation) 

Decentralized 
P2P 

iBalls Key-chain 
sized game 
devices 
from SEGA 
DreamCast 

Software 
objects with 
data and 
behavior 

RF (?),  
range < 5m 

(communic
ation) 

Decentralized 
P2P 

Hummingbird Nintendo 
GameBoy 

User id RF, proprietary, 
range < 5m 

(communic
ation) 

Decentralized 
P2P 

ProxyLady Casio 
Cassiopeia 
E-105 PDA 

User id RF, 802.11 
WLAN (no 
direct 
communication 
between 
devices),  
range < 5m 

(communic
ation) 

Centralized 
(for managing 
database of 
user ids and 
email) 

NewsPilot PalmOS 
PDA 

User tasks RF, proprietary 
(?),range < 5m 

Dedicated 
RF 
transmitter 

Centralized 

Pervasive Clue Cybiko 
wireless 
device 

User IDs, 
clues 

RF, built into 
device, range < 
5m 

(communic
ation) 

Decentralized 
P2P 

Pirates HP Jornada 
PDA  

User photo RF (802.11 
WLAN), range 
< 5m 

Dedicated 
RF 
transmitter 

Centralized 

Mercantile “Personal 
Server” 

Trading 
items, 

RF (Bluetooth), 
range < 5m 

(communic
ation) 

Decentralized 
client-server 
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(StrongAR
M-based 
proprietary 
mobile 
device) w/o 
display 

holdings (Each device 
is server that 
connects to 
shared public 
display) 

Geney Palm OS 
PDA 

Fish data 
object 

IR (IRDA), 
range < 5m 

(communic
ation) 

Decentralized 
p2p 

 

Communication Technology 

All devices are communication enabled, either via infrared (IR) or radio 

frequency (RF) technology.  Some systems use communication standards like IRDA, 

IEEE 802.11b and Bluetooth, while the rest uses proprietary solutions.  The maximum 

transmission range varies from just under 5 meters to up to 100 meters.  

Data Exchange 

All systems support data exchange between devices either directly from device 

to device or indirectly with the help of additional infrastructure.  All but one system 

exchanges data objects such as user ID and text strings: the i-Ball system allows the 

transfer of small software object, i.e. programs that encapsulate data and behavior.     

Proximity Sensing Technology 

All devices have the ability to detect the presence of proximate devices. The 

technologies used to determine if two devices are co-located fall into two categories. 

Two system (Pirates, NewsPilot) use dedicated proximity sensors, while others combine 

communication and proximity sensing. With a combined solution two devices are 

considered to be co-located if they are able to communicate. Since Pirates and 

NewsPilot are the only systems that do not use a short-range communication 

technology, dedicated proximity sensors are a necessity. However, dedicated sensors 
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provide additional advantages: it is easier to modify the distance two devices have to be 

apart before they are considered co-located.  

System Architecture 

The systems use three basic architectures:  

• Centralized: all devices rely on and communicate with a central system 

component, such as a database or email server. 

• Decentralized, peer-to-peer: there is no centralized system component and all 

device interaction occur peer-to-peer (i.e. without intermediary).  

• Decentralized client-server:  the Mercantile system uses an unusual architecture. 

Mercantile devices do not have any display, but require users to walk up to a 

shared public display. Only users who are connected to the same display can 

exchange data. This architecture is decentralized because there is no central 

system component. At the same time it is client-server, because devices act as 

servers that provide computational services to a “dumb” display client.  

The decentralized peer-to-peer solution has the advantage that the system does 

not require external communication or computation infrastructure. Thus such a system 

can bet set up at any place, inside and outside. Compared to a centralized architecture, a 

decentralized system is usually more difficult to build but provides significantly more 

freedom for users. The decentralized client-server solution of Mercantile makes it 

possible to simplify the device (it doesn’t need to have a display), but users can only 

interact in the presence of a shared display.  

III.4.3 Problems 

The fundamental problem in the development of system to support face-to-face 

communication is that there is a semantic gap between the application layer and system 
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layer. As of today, there is little or no direct support for the variety of features that such 

applications require. Likewise, there are no programming and building abstractions for 

developers to leverage off when designing wearable community applications. This 

results in a lack of generality, requiring each new application to be built from the 

ground up in a manner dictated by the underlying network technology and device 

platform. This direct dependency results in the following problems:  

1. Lack of network transparency. Applications must be tailored towards specific 

network technologies and device platforms. As result, the designer must have 

intimate knowledge of the underlying technologies and deal with low-level 

aspects.  

2. Limited portability. For the same reason, applications are difficult to port to 

other device or network technologies.  

3. Lack of reuse. There is no code sharing among applications. Instead, each 

application must be build from scratch requiring the programmers to solve the 

same problems all over again.  

4. Inability to evolve applications. If underlying network and device platforms 

evolve so must applications. Currently it is nearly impossible to rearchitect or 

evolve applications to incorporate changes in network and hardware or to 

exploit new features. 

5. Lack of interoperability. There are no established standards with regard to 

communication in ad hoc networks and context awareness. Without 

standardization every application is an island unto itself and applications created 

by different developers are not able to talk to each other.     

6. Limited feature set. Due to the time and skills required to build applications they 

tend to be rather simple and only provide a very rudimentary set of 

functionality. 

This set of problems makes clear that there is a need for the uniform support for 

designing, building and executing these types of applications.  
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III.5 Summary 

The two fundamental technologies for wearable communities are ad hoc 

networks and peer-to-peer computing. Despite that fact that ad hoc networking and 

peer-to-peer computing deal with similar issues such as discovery and routing, there is 

not much overlap in the research. Most research on ad hoc networks focuses on the 

lower layer of the protocol stack including the link layer, network layer and transport 

layer. On the other hand, current peer-to-peer systems are designed for an Internet-like 

network infrastructure in which stationary hosts are connected by high bandwidth links. 

The assumptions on which these peer-to-peer systems are built are no longer valid in 

dynamic ad hoc networking environments. The unique characteristics of such networks 

require highly adaptable peer-to-peer systems that can react to changes in connectivity 

and resource availability in a timely and ongoing manner.  

Emerging ad hoc and personal area networks open a rich field for innovative 

groupware and communityware solutions for supporting face-to-face communication. 

Yet as of today, only a small number of systems that exhibit important characteristics of 

wearable community systems exist. Current systems suffer from a series of technical 

shortcoming which must be overcome for the rapid and efficient development of 

wearable community systems. The dynamic environment created by mobile ad hoc 

networks together with the social and collaborative nature of wearable community 

applications makes it hard to architect such systems. The fundamental problem is the 

semantic gap between the application layer and system layer, and the lack of an 

appropriate development infrastructure. Without it, each new application must be built 

from the ground up in a manner dictated by the underlying network technology and 

device platform. In the following we describe the WearCoM wearable community 

methodology and associated Proem platform that have been designed to address the 

problems of building wearable communities applications.  
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Chapter IV 

WEARABLE COMMUNITY METHODOLOGY 

The fundamental problem this dissertation addresses is how to build software to 

support wearable communities. In Chapter II, we argued that it is beneficial to divide 

the software part of a wearable community system into two layers: a generic distributed 

software infrastructure, also called a wearable community platform, and community-

specific application software. A wearable community platform implements common 

functionality, and provides services and capabilities required by a wide range of 

wearable community application.  

In this chapter, we present the WearCoM methodology for the design and 

development of wearable community applications. The goal of the methodology is to 

provide a framework that guides the design and development activities from initial 

conception to implementation and deployment of an application on the users’ devices. 

The methodology consists of three components: (1) a conceptual model that 

defines terminology and an abstract architecture; (2) a design language that addresses 

the specification of important analysis and design decisions and enables developers to 

specify key aspects of the application design; and (3) a development process that 

outlines a sequence of development steps that result in the creation of specific artifacts. 

These artifacts include specification documents and software code. The WearCoM 

methodology is supported by the Proem peer-to-peer platform described in Chapters V 

and VI. An overview of the methodology is depicted in Figure 7. 

Our primary goal in developing the WearCoM methodology and the Proem 

platform is to enable an exploratory design approach based on rapid prototyping. Thus, 

our main focus is a reduction of the complexity of the development process to a point 
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where it becomes possible for developers without extensive prior knowledge of wireless 

networking and wearable computing to build wearable community applications. For that 

purpose, we opted to employ an informal design language partially inspired by the 

Unified Modeling Language (UML) (see OMG 2001). The idea is that be making it 

easier to develop wearable community application, we will facilitate the exploratory 

creation and investigation of wearable communities.  

 

Figure 7. WearCoM methodology overview 
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IV.1 Conceptual Model 

The conceptual model defines the key concepts and components of a wearable 

community application. These include: community agent, user profile, and community 

language.   

 

IV.1.1 Community Agents  

A wearable community application involves two types of actors: users and 

community agents. A community agent (agent, for short) is a software application that 

runs on a user’s wearable device. An agent functions as intermediary between a user 

and a community. It has two primary tasks: it announces the presence of its user to 

nearby agents and enables (indirect) communication between users. It does that by 

discovering nearby agents and autonomously exchanging data with them. Each agent is 

community-specific. A user ‘owns’ one agent for each community he or she is a 

member of and only agents belonging to the same community can communicate.  

We use the term ‘agent’ to emphasize autonomy both at design time and 

runtime, and cooperation. An agent is not an interactive application that sits idle until 

the user interacts with it by means of a graphical user interface. Instead, an agent is an 

application that exhibits autonomous behavior and acts on behalf and in the interest of 

its user without requiring direct user intervention: it is proactive and takes the initiative 

when circumstances are opportune. For example, an agent may autonomously interact 

with agents of nearby community members and may inform its user about nearby users. 

In sum, a community agent is software that is personal, proactive, presence-aware, 

communicative and to a certain extent autonomous. It is predictable and can be fully 

controlled and monitored by its user.   
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IV.1.2 Encounters 

The second fundamental concept is an encounter. We define an encounter as a 

situation where  

• two or more individuals are in close physical proximity to each other; 

• the agents of these individuals have discovered each other’s presence; and 

• the agents are able to communicate. 

This definition does not say anything about how agents discover each other, or 

how close users have to be for discovery to happen. Similarly, this definition does not 

say whether discovery and communication are independent functions or can be 

combined into one.  Discovery and communication might be based on two different 

technologies: for example discovery could use dedicated proximity sensors while 

communication might rely on wireless communicating networks.  

Encounters have several important properties: 

• Encounters can occur between two, three or more individuals. 

• Encounters are situations that last a certain time interval, not momentary events: 

encounters can be short and last only a few seconds, or they can be long-lasting 

and going on for hours.  For example, the encounter between two individuals 

passing each other in a hallway might last just a few seconds.  Yet, two or more 

people in a lengthy meeting encounter each other for the full duration of that 

meeting.  

• Encounters are not reflexive: if A encounters B, then B does not necessarily 

encounter A.  

• Encounters are non-transitive: if A encounters B, and B encounters C, then A 

does not necessarily encounter C. 
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IV.1.3 User Profiles 

A user profile is a typed data item that defines the identity of a user within a 

community. It contains information a user willingly discloses to other community 

members and may include any information that is defined useful or necessary to 

identify or describe a person. For example, it may include a user’s (real or assumed) 

name, contact information, a list of hobbies and a photo. While some interactions may 

be anonymous, most communities depend on an exchange of personal information to 

introduce community members to each other. 

Each community uses a different profile template and all user profiles used 

within one community have the same structure. The profile template standardizes the 

structure and content of user profiles used within a community.  

During an encounter, agents exchange profiles thereby disclosing their users’ 

identity to the other agent. Agents may perform different operation depending on the 

content of a received profile: they might inform their owner about the presence of a 

particular person, update an internal database that keeps track of encounters or simply 

cache the profile for later use.  

IV.1.4 Community Language 

The most important concept of our system model is the community language. A 

community language defines a way for actors to interact (communicate). It consists of 

two components: 

1. The community vocabulary. is a collection of messages types that actors can 

exchange. A message type is a data structure that that provides a template for 

messages that actors can exchange. A message is a single data object that is sent 

by one actor (the sender) to another actor (the recipient). When an actor sends a 
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message, it has expectations about how the recipient will respond to the 

message. Those expectations are not encoded in the message itself. 

2. The community protocol defines the conversations actors can have. A 

conversation is a pattern of message exchange that two or more actors are bound 

to follow in communicating with one another. Typically, actors do not engage in 

single message exchanges but they have more or less extended conversations, 

i.e., sequences of message exchanges with a definite beginning and end. A 

community protocol can be thought of as formalizing rituals that actors can 

engage in 

A conversation can contain two types of interactions: 

1. Agent-Agent interactions: agents communicate by sending messages over a 

wireless link. 

2. Human-agent interactions: users interact with their agents, for example in order 

to query the agent for information or to modify the agent’s behavior. Agents 

interact with users, for example in order to inform the user about the status of 

ongoing operations or about the presence of nearby users.  

Agent-agent interactions can only occur during an encounter, because they are 

dependent upon a direct wireless link between the users’ wearable computers and 

because we assume the use of short-range wireless networks. Human-agent interactions 

can occur before, during or after an encounter.  

The scope of a community language is shown in Figure 8. 
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Agent - agent interaction

Human - agent 
interaction

Human - agent 
interaction

Wearable computer with 
community agent

Wearable computer with 
community agent

 

Figure 8. Scope of a Community Protocol 

Human-human interactions happen outside of the scope of the wearable 

community system. Direct exchanges between users are thus not part of a conversation 

and are not covered by the community language. A community protocol creates rather 

than constrain social protocols.  

In groupware, there has been a longstanding controversy whether social 

protocols should be determined only by the users, only by the software, or somewhere 

in between. We believe that social protocols should not be determined by software, but 

nevertheless should be reflected in the design.  

A community language shares some similarities with a communication protocol 

such as TCP/IP or an agent communication language (ACL) such as KQML 

(Genesereth and Ketchpel 1994; Finin et al. 1994) or the Interagent Communication 

Language (ICL) (Martin et al. 1999). First, it differs from both in that it regulates 

communication between four entities, two of which are computational and two of which 

are human users. Second, it differs from a communication protocol in that it does not 

deal with the mechanism of communication but with its content, specifying the 

vocabulary as well as the structure of interactions. Finally, it differs from an agent 
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communication language in that it is not concerned with providing a semantic 

foundation for communication but only with the structure. 

Examples of community languages and protocols are proximity-based 

awareness of other users, ‘word of mouth’ message passing, and ad hoc voting in 

temporarily connected groups – all these create opportunities for more additional social 

interaction rather than narrowing the space of interactions. 

 

Table 7. Main Concepts of the Wearable Community System Model 

Community Agent A software application running on a 
wearable computer that connects a user to a 
community 
 

Encounter A situation in which two or more people are 
in close physical proximity and their 
respective agents are aware of each other 
and able to communicate  

 
User Profile A typed data item that defines the identity of 

a user within a community 
 

Message A typed data item exchanged by actors  
 

Conversation A sequence of message exchanges among 
actors 
 

Community Vocabulary A collection of message types that actors of 
a community can exchange  
 

Community Protocol A set of rules that defines the valid 
conversation within a community   
 

Community Language Community vocabulary + community 
protocol 
 

Wearable Community Application community agent + community language + 
user profile 
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IV.1.5 Summary 

The conceptual model as defined above enables us to formalize the notion of a 

wearable community. From a system point of view, a wearable community is a 

collection of users plus the collection of the users’ community agents plus a community 

language. Within a wearable community, each user has exactly one community agent. 

The community language describes the interactions between users and their agents and 

between agents. The main concepts of the system model are summarized in Table 7.  

In the following we will introduce a design language for specifying the key 

aspects of a wearable community and outline a development process that defines the 

activities from initial design to implementation of wearable community software.  

IV.2 Design Language 

IV.2.1 Purpose 

The wearable community design language (WCDL) is a semi-formal notation 

for specifying the key aspects of the design of wearable community software. The 

WCDL provides the modeling language for:  

• Scenarios 

• User profile templates 

• Community vocabularies 

• Community protocols 
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IV.2.2 Scenarios 

A scenario summarizes the essential elements of a community from the users’ 

perspective. Each scenario is described with the following pieces of information: 

• NAME (unique name of community) 

• PURPOSE (short description of the purpose of the community) 

• POPULATION (short description of user population as it relates to purpose of 

community) 

• DEVICE (short description of required device capabilities) 

• BEFORE (short description of actions performed by individual users before an 

encounter) 

• ENCOUNTER (short description of interactions that take place during an 

encounter of two community members)  

• AFTER (short description of actions performed by individual users after an 

encounter) 

Example 

Let’s look at a concrete example. Genie is a simple wearable community system 

whose purpose it is to improve the knowledge exchange within a dispersed group of 

wearable computer users, for example employees working in a particular office building 

or students attending the same college. The goal of Genie is to make the combined 

expertise of the group available to every group member. Some people of the group 

might be experts on soccer while other might by hobby gardeners with an extensive 

knowledge on horticulture. If one member of the group needs to find the answer to a 

 particular question (such as “Where do I find x?”, “How do I do y?”), it is often not 

immediately obvious who is able to answer the question in a given situation. Thus 

Genie members use their WPAN-equipped wearable computers to automatically find 

fellow community members who are willing and able to answer particular questions.   
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Hi, this is Peter: 
Who won the 1934 

soccer world 
championship?

Hi, this is Ann. 
I  know the answer!

Talk to me!

 

Figure 9. Genie wearable community (Step 1) 

This is done in the following way: each user defines a set of questions which are 

stored by the user’s Genie community agent. Whenever two or more wearable users 

meet, their agents exchange their users’ questions. This may happen during informal 

chance encounters occurring normally throughout a day (for example, during coffee 

break, lunch, or an official company meeting). After receiving a question an agent alerts 

its user and displays the question on the wearable computer’s display, allowing the user 

to indicate if he or she knows the answer and is willing to talk to the person looking for 

an answer. The response is relayed back in real-time from agent to agent and eventually 

to the user (Figure 9). After a successful exchange among the user’s community agents, 

the users can approach each other and discuss the topic of interest in a personal 

conversation (Figure 10). In order to facilitate contact agents also exchange personal 

user information including the users’ names and photos (photos facilitate contact by 

people who do not know each other by name). 
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Hi, I’m 
Peter.

Hi, I’m Ann. 
In 1934, the championship was held 
in Italy. In the final game, Italy beat 

Czechoslovakia 2-1.  The spectators had to 
wait until the 70th minute for the first goal to 
be scored: Antonin Puc sent the Czech team 
into the lead. Ten minutes later, Raimundo
Orsi brought the game to a tie and sent the 

game into overtime. Angelo Schiavio's scored 
in the 95th minute marked the victory for host 

country Italy. 

Thanks!
I’m so glad 
I met you!

 

Figure 10. Genie wearable community (Step 2) 

The scenario description for the Genie is shown in Table 8 

Table 8. Genie scenario 

Name Genie 
Purpose To improve knowledge exchange within a group of mobile people by 

enabling them to find people who are willing and able to answer 
particular questions   

Population University students of a specific course OR employees of a company OR 
members of a project team OR a group of friends 

Device  Device must allow users to input questions as text or speech and to 
indicate that they are willing to talk to the person who poses a question 
(via a button press or a verbal command) 

Before Users define questions and input them into their computers where they 
are stored persistently 

Encounter Agents exchange questions and pose the other user’s question to their 
own user. Users who know the answer and are willing to talk to the first 
user, indicate this willingness to their computer. This information is 
relayed back to the original user via both user agents together with 
contact information (name and picture) which allows both users to find 
each other 

After -  
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IV.2.3 Profile Templates 

The profile template of a community is described by a list of attribute 

descriptors each of which contains the following fields: 

• Attribute Name  

• Implementation Type 

• Description 

The syntax of the attribute name and attribute type is defined as follows: 

 

<attribute_name>      ::=  <attribute_name>+    |  
   A | B | … | Z | 0 | … | 9 | _ | - 
 
<implementation_type> ::=   <primitive_type>    |  
 [ <primitive_type> ]  |  
         <implementation_type>*   |  
   <implementation_type>+  | 
    <primitive_type> ; <implementation_type> 
  
<primitive_type> ::= built-in type 

An implementation type can either be a primitive type, an optional primitive 

type (indicated by square brackets), a possibly empty list of implementation types 

(indicated by *), a non-empty list of implementation types (indicated by +) or a 

sequence of types (a list of types separated by ;). 

A primitive type specifies the implementation and refers to the name of 

programming language-dependent variable type. For example, the name of a Java class 

or built-in type is a valid primitive type.  

Example 

The profile template for the Genie community is shown in  

Table 9. 
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Table 9. Genie profile template 

Attribute Name Implementation Type Description 
Name String A real or assumed name of the 

user, e.g. “Ann”   
Subject String* A possibly empty list of subject 

fields the user is willing and able 
to answer questions about. For 
example: “soccer”, “architecture”  

 

In the Genie community, members disclose two pieces of personal information: 

their name and a list of subjects they feel knowledgeable about and are willing to 

answer questions. The name, which is mandatory and of type String, need not be the 

user’s real name, but might be an assumed name similar to screen names people use in 

online chat rooms. The subject is represented as a string. In the example, Ann’s subject 

of expertise is soccer.   

IV.2.4 Community Vocabulary  

A community language consists of two components: the vocabulary and the 

protocol. A vocabulary is a list of message types each of which is described by three 

fields: 

• Message Type Name 

• Description 

• Implementation  

 

The specification of the implementation is a list of attribute type specifications 

as described in Chapter  IV.2.3.   
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Example 

The vocabulary of the Genie Community contains three types: question, positive 

and negative. Their definition is shown in Table 10. 

Table 10. Genie vocabulary 

Implementation Message Type  Description 

Attribute Name Implementation 
Type 

Description 

Subject String* The subject 
field this 
question refers 
to. For example 
“soccer” or 
“architecture”    

Question A message of 
this type 
contains the 
subject of the 
question and the 
text of the 
question.    

Text String The actual text 
of the question. 
For example 
“Who won the 
1936 soccer 
world cup?” 

Positive A message of 
this type 
indicates that a 
user does know 
the answer and 
is willing to be 
contacted 

void (a message of this type does not carry any data) 

Negative A message of 
this type 
indicates that a 
user does not 
know the 
answer to a 
question.  

void (a message of this type does not carry any data) 
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IV.2.5 Community Protocol 

A community protocol defines a set of allowed conversation each of which is a 

finite sequence of message exchanges.  Protocols are specified by community protocol 

diagrams (CPD). A CDP models two aspects of a protocol: 

• The states a conversation can be in (“not yet started”, “finished”, …) 

• The flow of messages during a conversation. 

A CDP emphasizes message sequences, i.e. the time ordering of messages. 

Notation 

A CDP is a graph with the following elements: 

• A state is a conditions in which a conversation can reside during its lifetime 

(visualized by labeled circles) 

• A transition is a relationship between two states indicating that the conversation 

can move from the first state to the second state. A transition is shown as a 

rectangle connected by solid arrows to the source state and the target state. 

Transitions are labeled with messages types indicating a communication event 

that occurs at the time of the transition. On such a change of state the transition 

is said to “fire”.  

• States are organized into realms. Each realm is assigned to one actor and 

indicates responsibility for the continuation of the conversation (visualized by 

boxes) 

• The initial state is the default starting place for a conversation (visualized by a 

black circle) 



94 

 

  

Example 

Figure 11 shows a simple CDP for a hypothetical community protocol (we will 

discuss the protocol for the Genie community below). The vertical axis of the diagram 

indicates time, while the horizontal axis indicates the actor which is responsible for the 

continuation of the conversation.  The diagram defines the following sequence of 

interactions: 

The conversation is initiated by Agent A, who sends a message of type t1 to 

Agent B. Agent B sends a message of type t2 to User B who responds with message of 

type t3. Agent B then sends a message of type t4 to Agent A who contacts its user by 

sending message of type t5.  

 

 

Figure 11. Sample community protocol diagram 
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A transition simultaneously indicates two related aspects of a protocol: 

• Temporal succession: if a transition leads from state s1 to State s2 it means that 

state s1 strictly occurs before state s2.  

• Messaging: if a transition labeled t1 leads from state s1 in realm r1 to state s2 in 

realm r2 it means that actor r1 sends a message of type t1 to actor r2. 

Restrictions 

The following additional restrictions apply to CDPs: 

• There are exactly four realms, one for each of the four actors: User A, Agent A, 

Agent B and User B.  

• Realms are ordered as follows: User A, Agent A, Agent B, User B.  

• Transitions may only connect states of consecutive realms (User A <-> Agent 

A, Agent A <-> Agent B, Agent B <-> User B) 

• Each state has only one outgoing transition (but may have multiple incoming 

transitions) 

• There is exactly one start state 

• State labels are unique 

• Transition labels need not be unique 

Complex Transitions 

A CDP is intended to model not just one possible conversation, but the space of 

all allowed conversations at once. Thus, we introduce four types of complex transitions 

(Figure 12): 

• A branch indicates the splitting into two or more alternate paths. It can be 

interpreted as logical OR. It is visualized by a triangle with one incoming 

transition and multiple outgoing arrows. Only outgoing arrows carry labels. 
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• A merge indicates the convening of multiple alternate paths. It is visualized by a 

triangle with multiple incoming transitions and one outgoing arrows. Only 

incoming arrows carry labels. 

• A fork represents the splitting of a single flow of control into two or more 

concurrent flows of control. It can be interpreted as logical AND. It is visualized 

by a horizontal bar with one incoming transition and multiple outgoing arrows. 

Only outgoing arrows carry labels.  

• A join represents the synchronization of two or more flows of control into one 

sequential flow of control. It has multiple incoming transitions and one outgoing 

arrows. It is visualized by a horizontal bar with multiple incoming transitions 

and one outgoing arrows. Only incoming arrows carry labels. 

 

Figure 12. Complex transitions 
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A complex transition is enabled when the source states is occupied. After a 

complex transition fires its destination state is occupied. 

Example 

The protocol diagram for the Genie community is shown in Figure 13. It 

captures two possible conversations: 

The exchange is initiated by Agent A, who sends user A’s question to Agent B 

(s1 -> s2). Agent B forwards the question to User B (s2 -> s3). If user B does not know 

the answer she indicates this by sending a ‘no_answer’ message to her agent (s3 -> s4). 

Agent B relays this negative result to Agent A (s4 -> s5). As User A should not be 

interrupted with a negative response, no further message is send to User A and the 

conversation has come to an end. If, however, User B knows the answer to User A’ 

question, then she sends an ‘answer’ message to her Agent B (s3 -> s6). Agent B then 

informs Agent A (s6 -> s7) which in turn alerts User A that an answer has been found 

(s7 -> s8).  
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Figure 13. Genie community CPD 
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IV.3 Development Process  

IV.3.1 Purpose 

The purpose of the wearable community development process (WCDP) is to 

guide the activities the lead to the implementation of a wearable community application 

and its deployment on user devices. The description of the development process is 

divided into roles and development phases.  

IV.3.2 Roles 

The development process defines three roles: designer, developer and user.  

• Designers define the overall purpose of a wearable community. They are 

concerned with the social interactions that are to take place among members of 

a wearable community. 

• Developers create the software that runs on the users’ wearable computers. 

Their main concern is the implementation of specific wearable community 

applications. 

• Users are the persons who use wearable computers to engage fellow community 

members. 

At least two different models of community development are possible. In the 

first model, designers, developers and users are distinct individuals. Designers and 

developers together develop a wearable community application that is then distributed 

to users. This model is similar to the traditional software development model. In an 

alternative model, users are at the same time designers and developers. A group of 

individuals may collectively specify and design the application, but different individuals 

may create their own interoperable implementation. This distributed development 
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model is possible because a community language defines a standard that promotes 

interoperability.  

IV.3.3 Development Phases 

The design process guides design and development activities ranging from the 

initial design to deployment of application software on a user’s device. The process is 

an iterative, cyclic process divided into seven phases: assessment, conceptual design, 

specification, implementation, seeding, dissemination and review (Figure 7). Each phase 

defines activities performed by users, designers or developers; the outcome of some 

phase is a specific set of design artifacts. The relationship between roles, phases and 

artifacts is depicted in Figure 14.  

 

Figure 14. Relationship between WearCoM roles, phases and artifacts 
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The seven process phases are defined as follows: 

Phase 1. Assessment  

The assessment phase is performed by designers and developers in cooperation 

with users. The goal of this phase is to explore the purpose of a wearable community 

and the user requirements.     

The activities of the assessment phase include: 

• Identify the user population 

• Identify the user needs   

• Define the overall purpose of a wearable community 

• Identify high-level requirements of the wearable community application  

The outcome is an understanding of the goal, purpose and scope of a wearable 

community and wearable community application. 

Phase 2. Conceptual Design  

The design phase is performed by designers, possibly in cooperation with 

users. The goal of this phase is to capture the user experience of interacting within a 

community. The design activities are:   

• Define scenarios that describe all possible interactions within a community 

• Identify which personal information people are willing to disclose about 

themselves. 

The artifacts produced by the conceptual design phase are: 

• A scenario description (Chapter  IV.2.2) 

• A user profile template (Chapter  IV.2.3) 
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Phase 3. Specification 

The specification phase is performed by designers and developers. The goal 

of this phase is to specify the interactions that can take place during an encounter. 

The activities of this phase are: 

• Specify the conversation that can occur between actors (users and agents) 

The artifacts produced by the specification phase are: 

• A community vocabulary (Chapter  IV.2.4) 

• A community protocol diagram (Chapter  IV.2.5) 

Phase 4. Implementation 

The implementation phase is performed by developers. The goal is to create 

a software implementation of the community agent, the messages and the user 

profile. The particular activities include: 

• Implement the community agent 

• Implement data structures representing the messages 

• Implement data structure representing a user profile  

Artifacts are: 

• Agent implementation (source code and executable code) 

• Profile implementation  

• Vocabulary implementation (i.e. implementation of message types) 

The community protocol is implemented by the community agent. 

Phase 5. Seeding 

The seeding phase is performed by users or developers. Seeding is the act of 

distributing the agent to a small number of initial users. This can be done in a public 

way by creating a community web site that enables users to download the agent or 

in a more personal way by approaching prospective community members. Seeding 
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enables individuals to gradually start a new community by involving just a few 

people. Seeding involves only one essential activity: 

• Install the application on a user’s device 

Phase 6. Dissemination 

The dissemination phase is performed by the user. Dissemination is the 

rumor-like spreading of copies of an agent throughout a user population during 

face-to-face encounters. An individual who is already member of a particular 

community transfers a copy of an agent to an individual who is not yet a member, 

but wishes to become one. Therefore, all members will eventually share the same 

agent implementation which originates/stems from the original seeders. This phase 

is essential for a grass-root like growing of an initially small community and 

represents an important and novel aspect of wearable communities. We envision an 

ecosystem of wearable community agents, each one created by a different 

developer, all together competing for the user’s attention. Only those agents that are 

beneficial to users (because it connects them to a useful or fun community) will be 

propagated to friends, family and colleagues. Agents that are not circulated will 

eventually die out and disappear.  The individual activities of the dissemination 

phase are: 

• Negotiate about access to the agent 

• Transfer the agent from one device to another 

• Install the agent on the user’s device  

• Remove an agent from the user’s device 

Phase 7. Review 

The review phase is performed by designers in cooperation with users. The 

goal is to evaluate:  

• the technical quality of a community application prototype 

• the success or failure of the design of a community application prototype 
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• the success or failure of the wearable community created by the application 

prototype  

As discussed in Chapter II, social and technical concerns of wearable 

communities are difficult to separate. A wearable community application creates a 

technical foundation from which a community might or not emerge. The success of an 

application depends on the success of the community it creates. Thus, designers need to 

simultaneously evaluate technology and social behavior. This can only be done through 

empirical studies of real users using the technology in a real context. 

If the results of the review phase are not satisfactory, a new development cycle 

needs to be started beginning with either the assessment or the conceptual design phase.  

The review phase is one of the least understood phases  

IV.4 Tool Support 

To help developers use the outlined methodology and to enable rapid 

development of wearable community applications, infrastructure and tool support is 

essential. For that purpose, we advocate the use of a wearable community platform, a 

set of software technologies for designing, implementing and deploying wearable 

community applications. The platform must be distributed in nature and provide high-

level abstractions and services for building applications. In particular, it must provide 

three major support functions: 

1. Development support: to manage this complexity during the application 

development the platform must provide architectural and functional abstractions 

for developers to leverage off when implementing wearable community 

applications. These abstractions must closely match the concepts introduced by 

the methodology.   
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2. Decentralized system support: to enable the spontaneous formation of wearable 

community systems, the platform must provide infrastructure support for 

presence-awareness and communication.  

3. Runtime support: to support the dissemination of agents throughout a group of 

users, the platform needs to enable transmission and guarantee safe execution of 

community agents.    

IV.4.1 Development Support  

The primary task the wearable community platform is to simplify the 

construction of community applications by providing programmers with commonly 

needed functionality and appropriate abstractions. Thus, the platform should provide an 

application framework, i.e., a set of libraries and application programming interfaces 

(APIs) for constructing applications. Based on the discussion of the conceptual model at 

the beginning of this chapter and of the challenges of wearable community systems in 

Chapter II, we can identify the following required framework features:  

• Identity Management – enable applications to define and manipulate user 

identities; in order to address privacy concerns, applications (and thus users) 

should at all times be in full control over the information given out to other 

users.  

• Presence awareness (situational context) – make applications aware of nearby 

devices and users; to reduce the need for active and repeated inquiry by 

applications, the framework should support a notification mechanism for 

“presence events”. 

• Human-centered Communication – enable human-addressable messaging (in 

addition to device-addressable messaging); the framework should provide 

flexible addressing modes including direct messaging between two individuals 

as well as community-wide broadcasting of messages.  
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• Relationship Management (social context) – enable applications (and thus users) 

to define personal relationship between users. Behavior of applications might 

change depending on whether a friend, a colleague from work or a total stranger 

is being encountered. 

• Episodic Memory (historical context) – make applications aware of the 

historical context; to reduce the need for applications to record individual 

events, the framework should automatically record encounters and interactions 

among users in a persistent database; applications should be able to query this 

database using user identities and time as search keys.  

• Trust Management (social context) – enable applications (and thus users) to 

evaluate the trustworthiness of other users; for example, this may be done on the 

basis of subjective personal experiences, aggregated experiences of the 

community as a whole (reputation). Although not all application scenarios and 

wearable communities require an explicit measure of trust (for example, Genie 

knowledge community), some applications may benefit from it (for example, 

the mBazaar “wearable eBay” community).  

By addressing these features in a framework, we will enable programmers to 

more easily and more rapidly build applications. Developers will be able to leverage of 

the framework, rather than be forced to provide their own custom support in an ad hoc 

manner. 

IV.4.2 Decentralized System Support 

A community system is a decentralized system in which hosts interact in a peer-

to-peer fashion. Thus, many of the requirements on the system level are similar to those 

of mobile peer-to-peer systems. They include:  
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• Presence awareness – dissemination of presence information throughout a 

system; network-based discovery of nearby devices, resources and individuals 

through exchange of metainformation. 

• Peer-to-peer communication – multi-hop message delivery in highly dynamic ad 

hoc networks. 

• Security – establishing of secure communication links between devices3. 

• Transfer of applications from device to device – as support for the 

dissemination phase, applications need to be passed from device to device 

(application transport need not occur during runtime).  

IV.4.3 Runtime Support 

The dissemination phase requires that applications be transferred between two 

user’s devices in a peer-to-peer manner. In order to ensure safe execution of 

applications, a secure runtime environment with the following properties is required:  

• Verification of application code – to unsure integrity of application code 

• Safe execution of application code (sand boxing) – to prevent malicious code 

from causing harm 

• Persistent storage of application state – to enable reliability in the wake of 

system failures   

                                                   
3 Although security is a requirement for a wearable community platform, we will not address security in 

this dissertation. Security in dynamic decentralized mobile systems and wireless ad hoc networks is a 

dissertation topic in itself.  
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IV.5 Summary 

The methodology described in the chapter defines a conceptual model, a design 

language and a development process for wearable communities. In order to enable an 

exploratory design approach based on rapid prototyping of wearable community 

applications and thus wearable communities, we need infrastructure and development 

support in a variety of areas. To address these needs, we advocate the development of a 

wearable community platform that focuses on the information needs of applications and 

provides developers with high-level programming abstractions. The primary component 

of such a platform is an application framework for building wearable community 

applications. Although individual solutions exist for the identified requirements there is 

currently no platform that combines the development, system and runtime support 

required for adequate support of the WearCoM methodology. In the following section, 

we describe the Proem platform that was designed to remedy this shortcoming. 
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Chapter V 

 

THE PROEM PLATFORM 

In this chapter, we present a solution to the development problem in the form of 

the Proem peer-to-peer platform. Proem is a platform for building presence-aware, ad 

hoc collaborative applications. The term “presence-aware” refers to the use of 

knowledge about availability and reachability of people while “ad hoc collaborative” 

refers to the fact that interactions between people are spontaneous and transient. This 

type of applications increasingly gains importance as personal mobile devices and 

wireless ad hoc networks become more popular. Wearable community applications are 

one important example of ad hoc collaborative applications and Proem has been 

designed to tightly integrate with the WearCoM development methodology. It offers an 

extensive API that provides access to common application functionality and enables 

developers to rapidly build feature-rich wearable community applications. By providing 

a common ground for the development and execution of wearable community 

applications, the Proem platform serves as an effective catalyst for wearable 

communities.  

The main components of the platform are: 

1. The Peerlet application framework, a collection of libraries and APIs for the 

rapid development of presence-aware, ad hoc collaborative applications.  

2. The Proem Runtime System, a software environment for hosting and executing 

applications built with the Proem application framework.  
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3. The Proem protocols, a set of peer-to-peer protocols that define the way in 

which Proem peers communicate and cooperate over the network.  

Proem is implemented in the Java programming language and runs on a variety 

of mobile and wearable computers including PocketPC-based handheld devices like the 

Compaq iPAQ series. The runtime and application framework consist of 135 Java 

classes that have a total size of 75KB (250KB source code). Proem is independent of 

network transport protocols and can be implemented on top of TCP/IP, HTTP, 

Bluetooth, and many other protocols. This means that applications built with Proem 

function in the same fashion when the system is expanded to a new networking 

environment or to a new class of devices, as long as the Proem runtime system is ported 

to the new operating environment.  

In this Chapter, we describe the overall architecture of Proem and discuss the 

runtime system and the communication protocols. In Chapter V, we describe the 

application framework and discuss how the platform integrates with the WearCoM 

development methodology. In Chapter VI, we discuss case studies of applications built 

on top of Proem.   

V.1 Architecture 

V.1.1 Proem Network 

Proem is an infrastructure for building decentralized peer-to-peer systems. It is 

based on a family of peer-to-peer protocols that define the way in which autonomous 

hosts, called peers, communicate and cooperate over a network. A collection of 

cooperating Proem peers is called a Proem network (Figure 15). It builds, on the 

application level, a virtual network with its own routing mechanisms on top of an 

existing network infrastructure. Depending on the type of the communication network, 

the virtual network topology may or may not match the underlying network topology. 
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Figure 15. Proem Network 

Proem is primarily aimed at wireless proximity networks, i.e. local area and 

personal area networks. This implies that hosts must be co-located in physical space in 

order to establish a peer-to-peer relationship.  

In a Proem network, each peer operates independently and asynchronously of 

any other peer. Yet peers may choose to cooperate for a variety of purposes. On the 

most fundamental level, they may act as mobile routers and cooperatively propagate 

messages across the network. Cooperation in a Proem network is entirely voluntary and 

there is no mechanism to enforce cooperation.    

A Proem network is a dynamic, self-organizing, ad hoc network. In general, it is 

partitioned and consists of multiple clusters. Due to the rapid and unpredictable 

movement of hosts a Proem network does not have a stable topology; communication 

links are repeatedly created and destroyed as side effect of host movement causing 

peers to enter and leave each other’s transmission range. In a Proem network visibility 

is limited: not every peer can communicate with every other peer. The set of peers that 

are visible from a particular peer is called this peer’s horizon (Figure 16). At a 

minimum, the horizon includes all immediate neighbors of a peer, i.e. all peers to which 
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it is connected by a direct network link. In addition, the horizon may include peers that 

are two or more hops away. Due to the dynamic nature of a Proem network the horizon 

is constantly changing: peers may unexpectedly and unpredictably enter or leave a 

peer’s horizon at any moment. The horizon is thus mostly a theoretical concept and it is 

impossible for a peer to know or compute its horizon with certainty.  

V.1.2 Key Concepts 

The architecture of a Proem network is based on a few fundamental concepts, 

namely peer, peerlet, peerlet engine, protocol and message.  

A peer is an autonomous, wireless host such as a mobile or wearable computer. 

We assume peers to be personal devices that are owned and operated by users. A person 

can simultaneously use any number of peers, but each peer belongs to only one 

individual.  

Each peer may host one or more peer-to-peer applications, called peerlets. 

Peerlets are network enabled applications whose primary task is to interact with peerlets 

running on other peers. Each peerlet implements an application-specific peerlet 

protocol and only peerlets that support the same protocol are able to communicate. All 

peerlet protocols are asynchronous messaging protocols. Proem developers specify and 

implement peerlet protocols; they are not restricted to a set of built-in protocols. 

PeerPeer

PeerPeer

PeerPeer

PeerPeer
Peer Horizon = Visibility

Messages

Messages

 

Figure 16. Peer Horizon 
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Figure 17. Peers, peerlets, peerlet engines and peerlet protocols 

Peerlets are hosted and managed through their lifecycle by the peerlet engine. A 

peerlet engine is the Proem runtime system and is installed on every Proem peer. It 

provides core services such as discovery, communication and presence awareness. The 

peerlet engine ensures interoperability and makes sure that peerlets can be installed and 

safely executed on any peer.  

The relationship between peers, Peerlet engine, Peerlets and protocols is 

depicted in Figure 17. 

V.1.3 Assumptions 

Proem is an infrastructure for building collaborative peer-to-peer systems, i.e. 

the ultimate goal is to support interactions and exchanges between people, not just 

devices.  In addition, Proem is primarily aimed at mobile network environments. In its 

design we made the following assumptions about the operating environment: 

Peers are personal mobile or wearable personal devices that are owned and 

operated by people. They are battery-operated and posses capabilities for data 

processing, data storage and communication. They are not fault-tolerant and may crash, 

be turned off or run out of battery power at any time. Hosts do not need to be identical 

and in general use a variety of hardware and operating system platforms. In contrast to 
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most mobile computing research, we do not assume that mobile hosts are severely 

limited in processing power, memory capacity or storage. This reflects the fact that 

speed of innovation in mobile device technology has increased so dramatically over the 

last years that we can expect mobile devices soon to become as powerful as high-end 

workstations were a few years back. For example, we expect that in the near future 

mobile processors will run at speeds of several gigahertz and mobile storage solutions 

will provide hundreds of gigabytes of storage, thereby effectively eliminating some of 

the limitations currently associated with mobile devices. In sum, we assume mobile 

devices that match or exceed the specifications of today’s PalmOS and PocketPC 

handheld devices.  

Short-range and ad hoc wireless communication technology is still relatively 

new and significant progress can be expected for the future. As we want to 

accommodate networks based on single channel, broadcast based wireless media (such 

as 802.11 or IR LAN) and on multi-channel wireless media (such as Bluetooth) we 

make only few assumptions about the capabilities of the wireless network. The 

fundamental requirement on the communication technology is that it enables seamless 

data communication via short-range links both inside and outside of buildings, and 

allows connecting devices in an ad-hoc fashion (i.e., not requiring setup procedures or 

user intervention). In particular, we do not make any assumptions about reliability, 

routing capabilities and link topology of the network: 

• The network may not support high-level network protocols such as IP. 

Communication links may be unreliable, message transmission times may be 

variable and message may be lost or corrupted during transmission. In 

particular, there is no guarantee that replies will reach their destination. 

• The network may not support multi-hop routing and there is no guarantee that 

routes between arbitrary hosts exist, even if these hosts are co-located and 

within transmission range. In addition, routes that do exist may disappear at any 

moment.  
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• Communication links may be point-to-point, point-to-multipoint or broadcast-

based. 

• Communication links may be unidirectional or bi-directional.   

Unidirectional links are unknown in wireline networks but are common in 

wireless networks. Links may be unidirectional due to the hidden terminal problem 

(Tanenbaum 1996) or due to disparity between the transmission power levels of the 

nodes at either ends of the link. Node A may be able to receive messages from node B 

as there may very little interference in A’s vicinity. However, B may be near an 

interfering node and, therefore, be unable to receive A’s messages. As result, the link 

between A and B is unidirectional and directed from B to A. Link unidirectionality can 

be a persistent or transient phenomenon and it is possible for a link to quickly and 

repeatedly transition between unidirectional and bidirectional state (Prakash 1999). 

Wireless communication and networking technologies that are covered by the 

above definition include existing standards like Bluetooth, IrDA, Home RF, IEEE 

802.11 and HIPERLAN, and experimental network technologies like Ultra-wideband 

radio technology.  

V.1.4 Distributed Object Identifiers 

Peers manage, communicate about and manipulate distributed objects, which we 

call entities. Within the architecture, entities have first-class status. The Proem 

architecture defines six different entity types, namely user, peer, peerlet, peerlet 

protocol, message type, message and user. Each entity is globally identified by a 

uniform resource name (URNs) (see Moats 2001), i.e. a persistent and location-

independent identifier.  

Proem does not provide a built-in naming system and does not guarantee that 

each distributed entity has a unique ID. A mobile peer-to-peer system that does not 

make use of central resources and in which peers interact during random encounters 
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does not have a global state. Thus there is no absolute way to guarantee uniqueness 

across an entire community that may consist of a large number of peers. However, 

because of the large identifier space and the high locality of interactions with a Proem 

network, we do not expect many name clashes. 

Proem entities may have multiple URNs. In particular, we do not require that 

users and peers are known throughout a network by only one name. Multiple names 

provide for pseudo-anonymity: since there is no central name repository it is impossible 

to determine whether two different names refer to the same or two different identities. 

Thus a user who wants to obfuscate his identity may switch to a different URN for 

himself and his peer. The reason to allow multiple names for users and peers is to allow 

users to change their identity at will and to make tracking of individual users more 

difficult. Note, however, that certain collaborative applications depend on stable and 

unique identities and switching URNs makes these collaborations impossible. It is up to 

the designer and ultimately the user to make the tradeoff between privacy and 

functionality. 

The syntax of Proem URNs is defined as follows:  

<Proem-URN>  ::=  "urn:proem:" <Proem-Type> “:” <Proem-UID> 

<Proem-Type> indicates the type of the entity identified and <Proem-UID> is a 

numerical identifier that is unique within each type. The syntax definition for the proem 

type and uid are as follows: 

<Proem-Type>   ::=  “peer” | “user” | “protocol” |  

    “messagetype” | “message” | “peerlet” 

<Proem-UID>   ::=  <symbol> [ 1,63<symbol> ] 

<symbol>   ::=  <number> | <upper> | <lower> 

<number>        ::=  "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" |  "8" | "9" 

<upper>         ::=  "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | 

                        "I" | "J" | "K" | "L" | "M" | "N" | "O" | "P" | 
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                        "Q" | "R" | "S" | "T" | "U" | "V" | "W" | "X" | 

                        "Y" | "Z" 

<lower>         ::=  "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | 

                        "i" | "j" | "k" | "l" | "m" | "n" | "o" | "p" | 

                        "q" | "r" | "s" | "t" | "u" | "v" | "w" | "x" | 

                        "y" | "z" 

Example 

The following strings are valid Proem IDs: 

“unr:proem:peer:12345678”, “unr:proem:user:00789”, 

“unr:proem:protocol:genie”.  

V.2 Peerlet Engine 

The peerlet engine is the heart of the Proem platform. It provides a runtime 

environment for peerlets and is responsible for  

• Discovery of peers and users 

• Hosting and execution of peerlets  

• Enabling communication between peerlets 

• Managing peerlet user interfaces  

The peerlet engine realizes a Proem virtual machine that ensures interoperability 

between peers and makes sure that peerlets can be installed and safely executed on any 

peer. In addition, it provides core services to peer-to-peer application including 

discovery, presence awareness, and messaging.  
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Figure 18. Peerlet Engine Software Architecture 

 

The architecture of the peerlet engine is shown in Figure 18. It is divided into 

four functional layers: 

Protocol Layer 

The protocol layer encapsulates essential peer-to-peer computing functions. Its 

task is to connect peers in a Proem network and to enable cooperation between them. It 

is implemented as a protocol stack:  

• The Proem Transport Protocol is the common messaging protocol for all Proem 

peers. It hides the underlying network by creating a virtual network view. 

Similar to the Internet Protocol (IP), the Proem Transport Protocol is an 

unreliable, best-effort connectionless protocol. It assumes little from the 

underlying network mechanisms, only that messages will “probably” (best-

effort) be transported to the addressed peer.  
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• The Proem Presence Protocol is implemented on top of the Proem Transport 

Protocol. It is used by to advertise and discover information about peers and 

users in a Proem network. As such it is the mechanism for realizing presence 

awareness.  

The Proem protocols are discussed in more detail in Chapter  V.3. 

Service Layer 

The Service Layer implements a set of common application services. The most 

important services are the identity service, presence service, communication service and 

history service (searching and indexing, directory, storage, file sharing, distributed file 

systems, resource aggregation and renting, protocol translation, authentication, and PKI 

services). The primary goal of this layer is to provide developers with the right 

abstractions for easy development of wearable community applications. 

The service layer provides a set of common application services. These include 

the identity service, presence service, messaging service, history service and 

relationship service. The primary goal of this layer is to provide developers with the 

right abstractions and a complete set of services for developing presence-aware ad hoc 

collaborative applications.  

• The identity service provides an API for specifying a user’s public identity in 

the form of a public profile. A profile is a data structure similar to an electronic 

business card which is used to advertise a user within a network. A user can 

define one profile for each peerlet.  

• The presence service provides information about nearby users. Applications can 

query the service and get the profiles of all users who are reachable across the 

network.  

• The history service realizes an episodic memory and provides information about 

past encounters and interactions. For example, applications can ask “When did I 
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last encounter user x?” The service automatically captures relevant information 

about encounters thus simplifying the implementation of applications.  

• The messaging service provides a message-based, network-independent 

communication API that is used to send messages to peerlets on remote peers.  

• The relationship service enables applications to define relationships that exist 

between the user and other individuals. These relationships are stored 

persistently and are available even after a restart of the peerlet engine. 

The functionality of these services and their APIs are described in Chapter  VI.5.  

Peerlet Layer 

This peerlet layer represents the actual execution environment for peerlets. It is 

responsible for storage of peerlet binaries and the management of peerlets throughout 

their lifecycle. The development of peerlets and their lifecycle are discussed in Chapter 

 VI.2.  

User Interface Layer 

The user interface layer manages the interaction users and peerlets. Its main 

component is the peerlet controller, a simple graphical user interface management 

system. It displays the user interfaces of individual peerlets and allows users to switch 

between running peerlets.  

In the following two sections we describe the network and user interface layers 

in more detail. The peerlet and service layers are presented in Chapter VI.  
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V.3 Proem Protocols 

The Proem architecture defines two communication protocols, the Proem 

Transport Protocol and the Proem Presence Protocol. These protocols are the 

foundations for realizing presence-awareness ad hoc interactions of Proem-based 

devices.  

• The Proem Transport Protocol (PTP) is an unreliable, connectionless, 

asynchronous messaging protocol that defines a common communication 

substrate for Proem peers. All communication among peers is based on this 

protocol. PTP is designed as lightweight XML-based messaging protocol. Its 

design makes minimal assumptions about the underlying communication 

infrastructures and can easily be implemented on top of a variety of mobile 

network protocols. It is a connectionless, asynchronous messaging protocol and 

supports point-to-point and multi-hop messaging.  

• The Proem Presence Protocol (PDP) is used to announce and discover peers and 

users within a Proem network. PDP uses the PTP as messaging layer. 

Both protocols must be supported by Proem peer. The definition and use of 

these protocols guarantees interoperability between different implementations of the 

Proem platform.  

V.3.1 Proem Transport Protocol (PTP)  

The Proem Transport Protocol is the common messaging protocol for all Proem 

peers. It hides the underlying network protocol by creating a virtual network view and 

enables universal understanding of how to perform data exchanges between peers. 

Similar to the Internet Protocol (IP), the Proem Transport Protocol is an unreliable, 
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best-effort connectionless protocol. It assumes little from the underlying network 

mechanisms, only that messages will “probably” (best-effort) be transported to the 

addressed peer. As result of using a common transport protocol Proem peers can be 

implemented in any programming language and communication among Proem peers 

can occur over a wide variety of network technologies. 

Proem Transport Protocol (PTP) is a connectionless asynchronous messaging 

protocol. Data is passed from peer to peer in one atomic unit, called a message. Peers 

communicate by exchanging one-way messages. The same messages may be sent or 

received more than once during the course of a protocol exchange. When an unreliable 

transport protocol is used messages may be delivered more than once, may not arrive at 

all, or may arrive in a different order than sent. In addition, message delivery is not 

guaranteed: a sent message may or may not reach its destination. The simplicity of the 

protocols implies that no protocol states are required to be maintained at either the 

sending or receiving end.  

Addressing  

Addressing is based on unique Peer IDs. A Peer ID is transport independent and 

uniquely identifies a peer, even if it uses different lower level network addresses.  

Messages 

The information transmitted between peers is packaged as XML-encoded 

messages. Messages are fundamentally one-way transmissions from a sender to a 

receiver.  A Proem message is an XML document that consists of a header, delivery 

hints and a body: 

• The header contains a collection of XML elements indication among other 

things the source and destination of a messages.  
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• The delivery hints are a collection of XML elements that define how a message 

should be delivered to its destination. Delivery hints are interpreted by 

intermediate peers that forward messages.  

• The body is an application specific container of data intended for the application 

on the destination host.  

The header is mandatory, while delivery hints and message body are optional.  

The XML representation of a message looks as follows: 

<?xml version=”1.0” > 
<Header> 
 … 
</Header> 
<Hints> 
 … 
</Hints> 
<Body> 
 … 
</Body> 

 

Message Header 

The message header contains the following elements: 

 

Element Occurrence Type Purpose 

<Message-id> 1 Proem ID A unique message id 

<Source-id> 1 Proem ID The id of the peer where this 
message originated 

<Destination-id> 1 Proem ID The id of the destination peer 

<Application-id> 1 Proem ID The id of the application this 
message belongs to  

<Message-type> 1 Proem ID The type of this message 
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• The message id is a (semi-unique) identifier for this message instance.  

• The source id indicates the peer from which this message originates. Because 

messages may be forwarded, this is not necessarily the sender. 

• The destination id indicates the peer to which this message should be delivered 

to 

• The application id indicates the application this message belongs to. It is used to 

determine to which peerlet application a message should be dispatched to once 

it reaches its destination. 

• The message type identifies the type of the message as defined by the peerlet 

protocol.  

Delivery Hints 

The delivery hints consists of three components which are discussed below. 

 

<TTL> 1, optional Integer Indicates the message’s time-to-
live 

<Hop-count> 1, optional Integer Indicates the current hop count of 
this message 

<Expires> 1, optional Date Indicates expiration time of this 
message (used in connection with 
broadcast or communitycast) 
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Example 

A complete message might look as follows: 

<?xml version=”1.0”> 
<Header> 
 <Message-id>urn:proem:message:568767</Message-id> 
 <Source-id>urn:proem:peer:0123487</Source-id> 
 <Destination-id>urn:proem:peer:0123487</Destination-id> 
 <Protocol-id>urn:proem:appplication:6565675 </Protocol-id> 
 <Message-type>urn:proem:application:6565675:2</Message-type> 
</Header> 
 <Hints> 
 <TTL>3</TTL> 
 <Hop-count>0<Hop-count> 
</Hints> 
<Body> 
     …………  
</Body> 

 

Cooperative Message Delivery 

Message delivery from the source to the destination is done cooperatively, that 

is with the help of intermediate peers. If a message destination is one hop away, it is 

delivered directly to the destination peer. If that is not the case, the message is 

forwarded to peers that are within reach of the sender. To that effect, messages may 

carry a set of delivery hints that indicate how messages should be handled by 

intermediate peers. The propagation of messages that cannot directly be delivered to 

their destination is controlled by two delivery hints. The time-to-live element (TTL) 

indicates how often a message should be forwarded. If a TTL is used, the hop-count 

element must be present as well. The hop count indicates the number of times a 

message has been forwarded. Each time a message is forwarded, the TTL is decreased 

by one and the hop-count is increased by one. A message with a TTL of 0 must not be 

forwarded.  
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Figure 19. Cooperative Message Delivery 

In a Proem network cooperation is voluntary. No peer is required to forward 

messages, but may do so at its own discretion. A peer may decide to drop a message 

that is not addressed to itself. Similarly, delivery hints are mere hints: there is no 

mechanism to guarantee that peers interpret them correctly and act accordingly. In 

particular, intermediate peers can choose to ignore delivery hints entirely. This behavior 

is a direct consequence of the fact that peers are independent and may act only in their 

own (or their users’) best interest. Because of bandwidth, energy or privacy concerns, 

peers might refuse to carry network traffic that does not concern them. Thus, there is no 

guarantee that messages will be delivered beyond a peer’s horizon. In the worst case, a 

peer might only be able to see and communicate with its direct neighbors. 

Avoiding Transmission Loops 

The network flooding algorithm used for delivering messages can result in a 

peer receiving the same message more than once from two different peers. Such a 

situation indicates a transmission loop. In order to prevent loops intermediate peers, i.e. 

peers that forward messages, must maintain a cache holding the ids of messages that 

they have received in the past. If a received message is already in the cache, it must be 

dropped. The cache size can be fairly small because due to the high locality of a Proem 
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network loops, if they exist, are small and duplicated messages should arrive “fairly 

soon” after the first arrival.  

Retransmissions 

It is valid for a message to be sent more than once. If a peer suspects that a 

message might not have been received and needs to be retransmitted it may do so. 

However, because of the way message are handled the message-id of the original 

message and retransmitted message must be different.  

Communitycast and Broadcast 

In some situations it is necessary to send the same message to multiple 

destinations, for example if one wants to disseminate a piece of information throughout 

a network. Thus, Proem supports three addressing modes: 

• Unicast: this is the default addressing mode. Such a message is destined for 

exactly one peer. 

• Broadcast: a broadcast message is intended to be delivered to every peer in the 

network.  

• Communitycast: a communitycast message is intended to be delivered to each 

peer that supports a specified application.    

A broadcast message is identified by using the special Proem id 

proem:peer:broadcast as destination. A communitycast address is identified by using an 

application id as destination. For example, the destination proem:application;029809 

indicates that this message should be delivered to all peers supporting application 

029809. 

The intention of the broadcast and multicast addressing modes is that a message 

be delivered to as many qualifying peers as possible. Network flooding as described 

above is not appropriate as delivery method: first, flooding would lead to congestion 

because traffic is no longer local. Second, Proem networks are typically divided into 
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many small clusters. The reach of flooding is limited to a single cluster and messages 

thus would not be delivered to peers in a cluster different from the one the sending peer 

is in.  

Thus communitycast and broadcast are implemented by periodically sending the 

message to all currently connected neighbors. The transmission rates used by peers are 

independent: each peer can decide how often a message should be repeated. Each 

community or broadcast message carries an expiration date (delivery hint ‘expires’) 

which indicates when retransmission should be stopped.  

Implementation 

The implementation of the Proem Transport protocol may vary depending on 

the capabilities of the underlying network. In particular, message delivery is different 

whether the network supports one-to-one, one-to-many, broadcast or multicast. In the 

current IP-based implementation, messages to direct neighbors are transmitted via IP 

unicast while broadcast messages are transmitted via IP multicast.  

The current implementation of the Proem Transport Protocol does not support 

message routing along a particular path, but uses a controlled form of network flooding. 

If source and destination peer are connected by a direct link the source peer sends the 

message to the destination.  If source and destination are not directly connected, the 

source peer may forward its message to all peers it is connected to and ask them to 

forward them on its behalf. Intermediate peers may, but are not required to forward 

messages until a message finally reaches its destination. This effectively floods the 

network. The reason for using this approach is twofold:  

• Proem networks are dynamic ad hoc networks with potentially rapidly changing 

topologies. In such a network, the cost of calculating routes can be prohibitive. 

• Most or all communication within a Proem network is local with source and 

destination being only a few hops away. Thus flooding does not incur a large 

overhead. 
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V.3.2 Proem Presence Protocol (PPP) 

The Proem Presence Protocol defines a decentralized discovery mechanisms for 

peers and users, i.e. the process of advertising metadata describing peers and users and 

allowing for their discovery. 

One of the most important goals of the Proem platform is to realize proximity 

awareness. Proximity awareness, in contrast to location awareness, describes a system’s 

ability to determine the presence or absence of entities (users and devices) within the 

immediate physical space surrounding the system. For wearable communities we are 

interested in two form of proximity awareness: awareness of people and awareness of 

devices. Proximity awareness of people can also be described as proximity-based 

presence awareness. 

Proximity awareness can be realized in at least two ways: 

• Sensor based: Using dedicated sensor technology such as RFID tags and readers 

• Network based: deriving locality information from topology information of 

communication networks. 
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Figure 20. Distribution of Profiles in the Proem Presence Protocol 
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 A network-based approach has the advantage that it is essentially for free as it 

does not require additional hardware components but instead relies on existing 

communication infrastructure. The disadvantage of this approach is that in most cases 

the topology of communication networks is independent of spatial arrangements of 

communication nodes. This is not true, however, for short-range communication 

technologies. Here, the existence of a direct link between two nodes implies their 

physical nearness (the converse is not necessarily true, however).  

Proem is agnostic about the method for determining proximity: the presence 

service API is technology-independent and the presence service can be implemented in 

various ways. 

Discovery  

The Proem Presence Protocol defines a decentralized discovery mechanisms 

for Proem peers and users. It defines message formats and a process of advertising 

metainformation throughout a network and allowing for its discovery. 

The basic data unit of the presence protocol is the profile. A user profile 

contains a description of a user’s identity with regard to a particular peerlet protocol. A 

peer profile is a list of user profiles and describes the protocols a peer supports and the 

associated user identities.  

The presence protocol supports two discovery modes: 

• Push: in this mode each peer periodically broadcasts its peer profile. The 

broadcast is done uncoordinated and asynchronously. The rates with which 

peers send out broadcasts are independent and may vary widely among peers.  

• Pull: in this mode a peer periodically broadcasts a query. A query is a request to 

peers to broadcast their peer profiles. Upon receiving a query peers may, but are 

not required to, respond by sending a peer profile.  

Push mode is the default discovery mode. It allows peers (and ultimately users) 

to control and adapt the broadcast rate. A low rate may be used to minimize bandwidth 
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usage or energy consumption associated with sending of messages; a high rate may be 

used to guarantee discovery of fast moving peers.  

The simple push mode has the problem that it provides information about the 

fact that two peers are within transmission range, but not when they are leaving 

transmission range. A peer profile indicates the presence of a peer at the particular 

moment when it is sent and received, but it doesn’t say anything about the time 

immediately following the transmission. Because of the movement of peers 

communication links are transient and short-lived. Two peers that were visible to each 

other at one moment may be far apart only a few seconds later. In order to allow peers 

to predict if they have lost contact with another peer, each peer profile contains a 

number indication the expected future time interval between two consecutive 

transmissions (EFTI = expected future transmission interval). A value of 10000 

indicates that the sending peer promises to send the next message no later than 10 

seconds from now. This information enables the receiving peer to predict when it 

should receive subsequent messages. If within the specified time interval it does not 

receive another message, it can assume that it has lost contact with the sending peer. 

This may either be because the sender has traveled out of transmission range or it was 

shut down. 

Peers can change their EFTI at will. A long EFTI may be used if (1) energy and 

bandwidth conversation is the primary goal (2) the peer is stationary and visibility 

relationships are somewhat stable (3) it is not important to discover each and every 

single peer. The decision about the most appropriate EFTI cannot be made by the 

system alone, but must be determined in connection with the user’s intentions and 

preferences. At present, the Proem system uses a fixed EFTI that can be adjusted 

manually by the user.   

The pull mode can be used in situations where it is crucial to have the most 

accurate information. If a peer’s EFTI is very long (> 1 minute), it is difficult for other 

peers to make accurate predictions. Thus if a peer needs to know for sure which peers 
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and users are in its immediate vicinity it can switch to pull mode and actively query its 

environment.  

Messages 

The presence protocol utilizes the PTP transport protocol to route messages.  

PeerProfile 

The peer profile message contains three elements: 

• The id of the peer that is described by this profile (represented as URN) 

• An unsigned number indicating the EFTI (in seconds).   

• A list of user profiles  

 

Element Occurrence Type Purpose 

<peer-id> 1 Proem ID ID of the peer whose identity is 
described by this message 

<update-interval> 1 Unsigned int The approximate expected time 
interval between  two identity 
messages originating from the same 
peer 

<user-profile> * User profile A profile describing the user’s 
identity  

 

  

A user profile describes a user’s identity with regard to one application. A user may use 

different identities for each application. The peer profile  message contains one profile 

per application.  
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A user profile contains three elements: 

• The user id represented as URN 

• The application id this profile relates to (represented as URN) 

• An application specific attribute block containing attributes describing the user.    

Element Occurrence Type Purpose 

<user-id> 1 Proem ID ID of the peer whose identity is 
described by this message 

<application-id> 1 Proem ID ID of the application this profile is 
associated with 

<attributes> *  Application specific attributes   

 

Example 

A complete identity message might look as follows: 

<?xml version=”1.0”> 
<Header> 
 … 
 <application-id>urn:proem:protocol:0</application-id> 
 <message-type>urn:proem:protocol:0:0</message-type>. 
  … 
</Header> 
<Body> 
 <peer-profile> 
  <peer-id>urn:proem:peer:12345</peer-id> 
  <efti>20</efti> 
  <user-profile> 
   <user-id>urn:proem:user:0123487</user-id> 
   <application-id>urn:proem:protocol:0987</protocol-id> 
   <attributes> 
     <name>Peter Pan</name> 
     <age>29</age> 
    </attributes> 
  </user-profile> 
 </peer-profile > 
</Body> 
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Query 

The query message contains two elements: 

• The id of the peer from which this request originates (represented as URN) 

• A list of protocol ids  

Element Occurrence Type Purpose 

<peer-id> 1 Proem ID The id of the peer from which 
this request originates 

<protocols> * Proem ID  Indicates the applications the 
sending peer is interested in.  

 

Example 

A query message might look as follows: 

<?xml version=”1.0”> 
<Header> 
 … 
 <application-id>urn:proem:protocol:0</application-id> 
 <message-type>urn:proem:protocol:0:1</message-type>. 
  … 
</Header> 
<Body> 
 <query> 
  <peer-id>urn:proem:peer:12345</peer-id> 
  <application-id>urn:proem:protocol:234567</application-id> 
  <application-id>urn:proem:protocol:19876</application-id>  
 </query> 
</Body> 

 

Delivery Hints 

The following delivery hints can be used in connection with the presence 

protocol: 

• TTL: If a peer is only wants to interact with its immediate neighbors, the TTL 

should be set to 0. 

• Expiration Time: this hint may not be used with identity or query messages  
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V.4 Peerlet Controller 

The peerlet controller is a graphical user interface manager for peerlets. In its 

functionality it is similar to a desktop window manager, yet it has been designed for the 

requirements of mobile users and mobile and wearable computers. The main goal is 

simplify the interaction with multiple running applications and to enable mobile users to 

operate applications while on the go.  

The user interface of each peerlet consists of a list of peerlet panels where each 

panel is a fixed-size rectangle displaying common graphical user-interface widgets such 

as text boxes, menus etc. Panels cannot overlap and only one panel is visible at once 

(Figure 21 shows the PocketPC implementation). 

 

 

Figure 21. Peerlet controller user interface with one visible panel 
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The peerlet controller organizes the panels of all peerlets in a 2-dimensional 

grid (Figure 22). The panels belonging to a peerlet are organized horizontally while 

peerlets are organized vertically. Four buttons (up, down, left, right) allow the user to 

scroll through the grid: using the left and right buttons the user can scroll through all 

panels belonging to one peerlet; using the up and down buttons the user can switch 

between peerlets. For each peerlet, the peerlet controller remembers the current panel. 

The current panel is the one that is visible when the user selects a peerlet. If the user 

switches between peerlets using the up and down buttons, the peerlet controller jumps 

from one peerlet’s current panel to the next peerlet’s current panel. When the user 

moves left or right, the left or right panel becomes the peerlet’s current panel.  

 

Figure 22. Peerlet panel grid 
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A peerlet’s panel list can be static or dynamic. Peerlets may programmatically 

create new panels or destroy existing ones. In addition, a peerlet may request from the 

peerlet manager that a particular panel becomes the current panel and is displayed in the 

main window. For example, a temporary alert box can be realized by creating a new 

panel and making it the current panel. After the user has acknowledged the panel, the 

peerlet may remove the panel from the list.   

V.5 Summary 

This chapter described the architecture of the Proem peer-to-peer platform. In 

particular, we described the Proem protocols and the structure of the peerlet engine. The 

two Proem protocols, the Proem Transport Protocol and the Proem Presence Protocol 

protocols, define the way in which Proem peers communicate and cooperate over the 

network. A collection of Proem peers supporting these protocols form a Proem network. 

The Proem Transport Protocol defines a common, ad hoc communication substrate for 

Proem peers. It is programming language and network independent and can be 

implemented on top of a variety of lower-level network protocols. The Proem Presence 

Protocol defines a standard way for peers to discover each other in the network and to 

exchange metainformation. Most importantly, it supports the exchange of user profile as 

required by the WearCom methodology. 

A peerlet is a Proem peer-to-peer application. The community agents defined in 

the WearCoM methodology is implemented as Proem peerlet. Peerlets are hosted by the 

peerlet engine. The peerlet engine provides runtime services for peerlets for messaging, 

discovery and presence-awareness and managing of user identities, interaction histories 

and relationships.  

Thus far, the discussion of the Proem platform has focused on architecture, 

protocols and algorithms. In the next chapter, we will discuss how to implement 

peerlets and thus wearable community agents using the Peerlet application framework 
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Chapter VI 

 

THE PEERLET FRAMEWORK 

The Peerlet Framework is a Java class library for the rapid development of 

peerlet applications. It consists of classes and interfaces for the construction of 

applications and includes a service API providing common functionality for presence 

aware ad hoc collaborative applications. This chapter presents the Peerlet Framework 

and illustrates how to implement, deploy and run peerlet applications.  

VI.1 Application Model 

A peerlet application is separated along functional lines and consists of the 

following required components: 

• A peerlet class (derived from class GenericPeerlet4)  

• A user interface controller class (derived from class GenericPeerletController) 

• A set of message classes (derived from MessageBody) 

• A user profile (an XML file describing the user’s identity) 

The peerlet is the main component of an application; it defines the application 

logic and its communication behavior. The peerlet controller manages the interaction 

                                                   
4 Class names with the prefix ‘Generic’ indicate abstract classes that implement an associated interface. 

For example, proem.GenericPeerlet implements proem.Peerlet. Such classes define default behavior that makes 

using them more convenient than the associated interface.  
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with the user; it is responsible for creating the user interface. The message classes 

define the data that can be exchanged between peerlets on different hosts and between a 

peerlet and its controller. The user profile is used to advertise a user’s identity 

throughout a Proem network. For easy distribution a peerlet suite may be placed inside 

a Java Archive (JAR) file.  

VI.2 Peerlets  

The central abstraction of the Peerlet API is the peerlet. All peerlets implement 

the Peerlet interface either directly, or more commonly, by extending the class 

GenericPeerlet that implements the interface. 

The peerlet interface is defined as follows: 

 

interface Peerlet  
{ 
 /* 
  * the getPeerletID method returns the id of this peerlet 
  */ 
 public PeerletID getPeerletID (); 
   
 /* 
  * the getProtocolID method returns the protocol supported by this peerlet 
  */ 
 public ProtocolID getProtocolID (); 
  
 /* 
  * the init method initializes the Peerlet and puts it into service 
  */ 
 public void init (); 
  
 /* 
  * the destroy method is called just before unloads the Peerlet.  
  */ 
 public void destroy (); 
  
 /* 
  * the handleProemEvent method gets called when a system event occurs. 
  * 
  */  
 public void handleEvent(proem.Event event); 
 
} 
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All methods defined in the Peerlet interface are called by the Peerlet engine at 

various stages of the peerlet’s lifecycle. They are called in the following sequence:  

1. getProtocolID: The peerlet engine constructs the peerlet and calls the 

getProtocolID methods to determine which protocol this peerlet implements5. If 

the peerlet engine already hosts a peerlet that implements the same protocol, the 

start-up process is terminated.  

2. init: The calling of this method signals to the peerlet that it has entered an active 

state. This allows the peerlet to initialize data structures.  

3. handleProemEvent: this method signals an event that should be handled by the 

peerlet. The method is called exactly once for each event occurrence. Calls to 

this method may occur concurrently and it is the responsibility of the 

programmer to make sure that the code is reentrant. 

4. destroy: this method signals that the peerlet instance is about to be destroyed. It 

enables the peerlet to release resources and save persistent state information.  

VI.2.1 Event Handling  

Peerlets receive and react to events generated by the Peerlet engine. The Peerlet 

Framework defines three event types (Figure 23):  

1. Communication events: events of this type indicate a message from a remote 

peer  

2. Discovery events: events of this type indicate that a new peer has been 

discovered or that a previously encountered peer has disappeared 

3. User interface events: events of this type indicate input from the user 

Each event type is represented by a Java interface. 

                                                   
5 All ID classes (PeerletID, ProtocolID, UserID, …) are simple wrapper classes that encapsulate a Java 

String object. 
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Figure 23. Proem event type hierarchy 

The IncomingMessageEvent Interface  

An event of type IncomingMessageEvent is fired whenever the peerlet engine 

receives a message that belongs to the same protocol as supported by the peerlet. The 

event encapsulates the incoming messages which can be extracted using the getMessage 

method (the structure of messages and the mechanisms for sending messages are 

discussed in Chapter  VI.5.3). 

public interface IncomingMessageEvent extends proem.Event 
{   
 public proem.Message getMessage(); 
  
} 

The UserInterfaceEvent Interface  

An event of type UserInterfaceEvent is fired whenever there is new input from the 

user. The event encapsulates a message object which can be extracted using the 

getMessage method.  
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public class UserInterfaceEvent implements proem.Event 
{ 
 public proem.Message getMessage() 
} 

The BeginEncounterEvent Interface  

An event of type BeginEncounterEvent is fired whenever a new peer has been 

discovered in the vicinity that supports the same peerlet protocol. The event 

encapsulates an object of class Encounter which can be extracted using the getEncounter 

method. An encounter object contains information about the peer and user encountered 

when the encounter happened (encounter objects are discussed in Chapter  VI.5.4) 

public interface BeginEncounterEvent extends proem.Event 
{ 
 public proem.Encounter getEncounter() 
} 

The EndEncounterEvent Interface  

An event of type EndEncounterEvent is fired whenever a previously encountered 

peer disappears i.e. is no longer visible. The event encapsulates an object of class 

Encounter which can be extracted using the getEncounter method. 

public class EndEncounterEvent implements proem.Event 
{ 
 public proem.Encounter getEncounter() 
} 
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VI.2.2 Example 

The following code segment illustrates the basic structure of event handling 

code in a peerlet.  

public void handleEvent(proem.Event event) 
{ 
 if (event instanceof BeginEncounterEvent) 
 { 
  Encounter encounter = ((BeginEncounterEvent)event).getEncounter(); 
  UserProfile profile = encounter.getProfile(); 
  UserID user = profile.getUserID(); 
  // action 1 
 } 
 else if (event instanceof EndEncounterEvent) 
 { 
  Encounter encounter = ((BeginEncounterEvent)event).getEncounter(); 
  UserProfile profile = encounter.getProfile(); 
  UserID user = profile.getUserID(); 
  // action 2 
 
 } 
 else if (event instanceof IncomingMessageEvent) 
 { 
  Message in = ((IncomingMessageEvent).event).getMessage(); 
  if (in.getBody() instanceof A) 
  { 
    //action 3 
  } 
  else if (in.getBody() instanceof B) 
  { 
    //action 4 
  } 
 } 
 else if (event instanceof UserInterfaceEvent) 
 { 
  Message in = ((UserInterfaceEvent).event).getMessage(); 
  if (in.getBody() instanceof C) 
  { 
    //action 5 
  } 
  else if (in.getBody() instanceof D) 
  { 
    //action 6 
  } 
 }  
} 

The handleProemEvent consists of a sequence of if-then-else statements 

differentiating between four cases. If the event indicates an encounter 

(BeginEncounterEvent), the peerlet extracts the encounter object encapsulated in the 

event; it then extracts the user’s profile from the encounter and the user’s id from the 

profile. Knowing the user’s identity the peerlet may now perform any action such as 

sending a message or alerting the user (action 1). The code is almost identical if the 



144 

 

  

event indicates the end of an encounter (EndEncounterEvent) instead of the beginning. 

Of course, the actions performed are different (action 2). 

If the event indicates a message (IncomingMessageEvent), the peerlet first 

extracts the message object from the event and may then, depending on the type of the 

message, perform any number of actions (action3 and 4). User interactions are handled 

in exactly the same way as messages received from remote peers (UserInterfaceEvent). 

All user input is represented and send to a peerlet in form of a message which can be 

extracted from the event object. The message type, which indicates the nature of the 

user input, can be used to decide which action should be performed (action 5 and 6).  

VI.3 Peerlet User Interfaces  

The Peerlet Framework strictly separates the user interface code from the main 

application logic. The peerlet implements the application logic while the peerlet 

controller implements the user interface. The controller is responsible for creating the 

user interface, displaying of information and handling of user interactions. The interface 

between peerlet and controller is message based and hides the details of the user 

interface implementation. In particular, a peerlet is unaware of the user interface 

technology. A controller may implement a graphical or speech-based user interface and 

the peerlet code need not be changed.   

The user interface component of a peerlet application implements the 

PeerletController interface which is almost identical to the peerlet interface (it is missing 

the getProtocolID method). 
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interface PeerletController 
{ 
 /* 
  * returns the id of the peerlet this controller belongs to  
  */ 
 public PeerletID getPeerletID (); 
   
 /* 
  * the init method initializes the controller  
  */ 
 public void init (); 
  
 /* 
  * the destroy method is called just before unloads the Peerlet.  
  */ 
 public void destroy (); 
  
 /* 
  * the handleEvent method is called to handle messages from the peerlet. 
  * 
  */  
 public void handleEvent(proem.Event event); 
} 

 

All methods are called by the peerlet engine at various stages of the application 

lifecycle.  

• getPeerletID must return the id of the peerlet this controller belongs to. This 

information is used by the peerlet engine to match up peerlets and user interface 

objects.  

• The init method is called during initialization and is used to build the concrete 

user interface.  

• The handleEvent method is called to handle messages sent by the peerlet to the 

user interface. The only event type that controllers must handle is 

incomingMessageEvent (the sending of messages is discussed in Chapter 

 VI.5.3). 

• The destroy method is called by the peerlet engine to signal that the controller 

instance is about to be destroyed. It enables the controller to release resources 

and destroy the user interface.  
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VI.4 Application Lifecycle 

Peerlet applications are managed throughout their lifecycle by the peerlet engine 

which controls how they are loaded, initialized, and how they are taken out of service. 

Each running application is an isolated process, defined by the peerlet, with possibly 

multiple threads of execution. Applications running within the same peerlet engine are 

not aware of other and cannot communicate. 

Peerlet applications are continuously running processes within the peerlet 

engine that are not started and stopped by the user. Instead, applications are loaded and 

started when the peerlet engine starts and they are terminated when the peerlet engine 

shuts down (see also Chapter  VI.6).  

The application lifecycle consists of four distinctive phases: 

1. Loading and Instantiation 

At system startup the peerlet container loads the peerlet and peerlet controller 

classes of a peerlet suite (using normal Java class loading facilities) and creates one 

instance of each class. 

2. Initialization 

Initialization consists of three steps: 

1. The peerlet engine calls the peerlet’s and methods. The peerlet engine initializes 

the peerlet by calling its getPeerletID, getProtocolID and init methods. The last 

call enables the peerlet to read persistent configuration data, initialize costly 

resources and perform other one-time activities.  

2. The peerlet engine initializes the controller by calling its getPeerletID and init 

methods. The later enables the controller to create the user interface.   
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3. Finally, the peerlet engine reads the user profile file and hands it to the 

discovery manager. The discovery manager then distributes the profile to other 

peers in order to advertise the user’s identity.  

3. Event Handling 

After an application is initialized it is ready to handle events. Event handling 

occurs concurrently: the peerlet engine may send an event to a peerlet even if the peerlet 

has not finished handling the previous event. To handle concurrent events properly the 

developer of the peerlet must make adequate provisions for concurrent processing. 

4. Termination 

The peerlet container keeps an application loaded until the engine itself shuts 

down. The peerlet engine terminates an application in the following way: 

• The peerlet engine first calls the destroy method of the peerlet controller.  

• It then calls the destroy method of the peerlet to allow the peerlet to release any 

resources it is using and to save any persistent state. Before the peerlet engine 

calls the destroy method, it allows any threads that are currently running in the 

handleProemEvent method of the peerlet to complete execution, or exceed a 

predefined time limit. Once the destroy method has been called on a peerlet 

instance, the engine does not route other events to it.   

• After the destroy methods complete, the peerlet engine releases the peerlet and 

controller instance so that they are eligible for garbage collection. 
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VI.5 Proem Services 

The Proem service API is a collection of interface and classes that provide 

common application functionality. These services are the presence service, messaging 

service, history service, relationship service, and reputation service. 

Each service is defined by a Java interface and implemented by a single global 

service object. The service objects are accessible through static methods in the Proem 

system object: 

class Proem  
{ 

static public PresenceService getPresenceService(); 
static public CommunicationService getCommunicationService(); 
static public HistoryService getHistoryService(); 
static public RelationshipService getRelationshipService(); 
static public ReputationService getReputationService(); 
 

} 

VI.5.1 Identity Service 

The identity service enables applications to define and change a user’s profile. 

This profile is used by the discovery mechanism to advertise a user throughout a 

network.    

public interface IdentityService 
{ 

public UserProfile createProfile(); 
public void activate(UserProfile profile); 
public UserProfile getActiveProfile(ProtocolID protocol); 

} 
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• The createProfile method returns a new empty profile.  

• The activateProfile method activates the supplied profile, i.e. it makes it the 

current profile for the protocol associated with the profile. After activation, the 

profile will be distributed by the discovery mechanism to other peers.  

The UserProfile interface is defined as follows: 

public interface UserProfile 
{ 
  public UserID getUserID (); 
 public void setUserID (); 
 public ProtocolID getProtocolID ();  
 public void setProtocolID ();  
  public void setAttributeValue ( String attributeName, java.io.Serializable 
attributeValue ); 
 public java.io.Serializable getAttributeValue ( String attributeName ); 
  public void deleteAttribute ( String attributeName ); 
} 

 

The getUserID returns the id of the user described by this profile while the 

getProtcolID returns the protocol this profile is associated with. Each profile carries a 

list of attributes which are name-value pairs. The last three methods set and get an 

attribute value, and delete an attribute entirely.  

Example 

The following example code segment illustrates how to define and activate a 

profile. 

…  
IdentityService is = Proem.getIdentityService(); 
UserProfile profile = is.createProfile(); 
Profile.setUserID(new UserID(“urn:proem:user:01234”)); 
Profile.setProtocolID(new UserID(“urn:proem:protocol:genie”)); 
Profile.setAttribute(“name”, “Howard”); 
is.activateProfile(profile); 
… 
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VI.5.2 Presence Service 

The presence service provides information about proximate peers and users. It 

allows peerlets to determine which peers and users are visible and can be communicated 

with. The service is defined by the PresenceService Interface: 

public interface PresenceService 
{ 

public Collection getPeers(ProtcolID protocol); 
public Collection getUsers(ProtcolID protocol);  
public boolean isVisible(PeerID peer); 
public boolean isVisible(UserID user); 
public void forceUpdate(ProtcolID protocol, long wait); 
public UserProfile getUserProfile(UserID user); 

} 

• The getPeers method returns a list of PeerID objects each one identifying one 

nearby peer. Similarly, getUsers returns a list of UserID objects each one 

identifying a currently visible user. The result only contains peers and uses 

related to the specified protocol. The protocol argument might be null in which 

case all peers or users are returned.  

• The overloaded method isVisible enables a peerlet to test whether a particular 

peer or user is currently visible. It true if the specified peer or user is visible, 

false otherwise.  

• The information maintained by the presence service and returned by these 

methods is not guaranteed to be up to date. Because of the constant movement 

of peers visibility can change rapidly. Two peers that can see each other one 

moment may be too far apart to communication the next moment. The 

forceUpdate enables peerlets to actively query their environment for the presence 

of peers supporting a particular protocol. This method forces the discovery 

mechanism to perform one pull operation, i.e. to send out one single query 

message. In order to see the effect of this method, a peerlet should call getPeers 

or getUsers right after a call to forceUpdate. The first parameter indicates the 
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protocol that peers must support. The second argument indicates how many 

milliseconds should pass before a call to this method returns.  

• The getUserProfile method returns the profile of a user that has been encountered 

in the past or is currently visible. User profiles are automatically cached by the 

presence service so that peerlets do not have to do it. 

The UserProfile interface is defined as follows: 

public interface UserProfile 
{ 
  public UserID getUserID (); 
 public ProtocolID getProtocolID ();  
  public void setAttributeValue ( String name, Serializable value ); 
 public java.io.Serializable getAttributeValue ( String attributeName ); 
  public void deleteAttribute ( String attributeName ); 
} 

•  The getID method returns the id of the entity described by this profile. The 

remaining three methods set and get an attribute value, and delete an attribute 

entirely.  

Example 1 

The following example code segment illustrates how to force an update 

operation. 

static ProtocolID pid = new ProtocolID(“proem:protocol:example99”); 
…  
PresenceService ps = Proem.getPresenceService(); 
ps.forceUpdate(pid, 10000); // wait for 10 seconds 
Collection peers = ps.getPeers(); 
… 

Example 2 

The following code segment illustrates how to find and print the name of every 

currently visible user (assuming the profile of the particular application includes a name 

attribute represented as String). 
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…  
PresenceService ps = Proem.getPresenceService(); 
Collection users = ps.getAllUsers(); 
Iterator it = users.iterator(); 
UserID id = null; 
UserProfile profile = null; 
while (it.hasNext()) 
{ 
 id = it.next(); 
 ps.getUserProfile(id); 
 if (profile != null) 
 { 
  System.out.println(“The user’s name is: “ + profile.getAttribute(“name”)); 
 } 
 it++; 
} 
… 
 

VI.5.3 Messaging Service 

The Messaging Service enables peerlets to send messages to remote peers. 

Messaging is also used for communication with the user interface.   

The Service Interface 

The service interface defines three basic methods for sending messages, namely 

send, broadcast and community. The interface does not contain any method for listening 

for or receiving messages as messages are delivered to peerlets automatically via event 

notification. 

interface MessagingService  
{ 
  
 public DeliveryHint newDeliveryHint( long ttl, Date expires); 
 public Message newMessage( MessageTypeID mtype,  
             ProtocolID pid,  
             DeliveryHints hints, 
              MessageBody body); 
 public Message newMessage( MessageTypeID mtype,  
             ProtocolID pid,  
             MessageBody body); 
 public void send(PeerID destination, Message mes); 
  public void send(UserID destination, Message mes); 
 public long broadcast(Message mes); 
 public long communitycast(ProtocolID destination, Message mes); 
  public void cancel(long); 
} 
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interface Message  
{ 
 public MessageTypeID getMessageType(); 
 public ProtocolID getProtocolID();   

 public MessageBody getBody();  
 public DeliveryHints getHints(); 
 public PeerID getDestination(); 
 public PeerID getSource(); 
  public UserID getSender(); 
   public void setBody(); 

} 

 
 

interface DeliveryHint 
{ 
 public long getTTL (); 
 public Date getExpirationDate ();   
} 

 

• newMessageHint creates a new delivery hint object. The time-to-live indicates 

how many hops a message should be forwarded, while the expiration time 

indicates until time a broadcast or communitycast message remains valid.    

• newMessage creates a new message object. The programmer must specify the 

message type, the protocol ID, and a message body.  The delivery hints 

argument is optional and may be null. 

• Send initiates the transmission of a unicast message to the destination peer. The 

ttl delivery hint, if present, indicates that this message should be forwarded from 

host to host. However, there is no guarantee that receiving peers interpret this 

hint or act upon it.  

• Broadcast sends a message to all peers in a network. If no expiration time is 

specified in the delivery hint the message is sent immediately and only once. If 

the delivery hint contains an expiration date and it lies in the future, the message 

is repeatedly sent until the expiration data has been reached. The returned is a 

unique number that can be used to stop a broadcast in progress (see Cancel). 
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• Communitycast sends a message to all peers supporting a particular application. If 

no expiration time is specified the message is sent immediately and only once. 

If an expiration date is specified and it lies in the future, the message is 

repeatedly sent until the expiration data has been reached. The returned is a 

unique number that can be used to stop a communitycast in progress (see 

Cancel). 

Cancel stops a broadcast and communitycast which is in progress, i.e. has not 

reached its expiration date.  

MessageBody Interface 

The message body of a message represents the application specific payload. 

Any Java object may be used as payload. A class intended as payload must implement 

the (empty) MessageBody interface.  

 

interface MessageBody  
{ 
} 
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Example 

The following code segment illustrates how a peerlet can send a message to a 

peer it just encountered.  

 

/* 
 * defininition of message body class  
 */ 
class MessageBody_Example implements proem.MessageBody 
{ 
 public  String someText; 
 public  MessageBody_Example(String initialText) { someText = initiualText; 
}; 
}; 
 
 
/* 
 * peerlet definition (implements protocol proem:protocol:example99) 
 */ 
class Peerlet_Example implements proem.Peerlet 
{ 
 static MessageTypeID mtid = new MessageTypeID(“proem:messagetype:01”); 
 static ProtocolID pid = new ProtocolID(“proem:protocol:example99”); 
  
 … 
 public void handleProemEvent(proem.Event event) 
 { 
  if (event instanceof BeginEncounterEvent) 
  { 
   // get id of encountered peer 
   PeerID peer = ((BeginEncounterEvent)event).getEncounter().getPeerID(); 
   // get handle to service object 
   CommunicationService cs = Proem.getCommunicationService(); 
   // build message object 
   DeliveryHints hints = cs.newDeliveryHints(2, null); 
   MessageBody_Example body = new MessageBody_Example(“welcome”);  
   Message welcome = cs.newMessage(mtid, pid, hints, body ); 
   // send message 
   cs.send(peer, welcome); 
  } 
  … 
 } 
 … 
} 
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VI.5.4 History Service 

The history service provides information about past encounters. It allows 

peerlets to make decisions based on historical data. For example, a peerlet may act in 

one way if a peer or user is encountered for the first time ever and a different way if the 

same peer or user has been encountered numerous times before. Similarly, a peerlet 

may make different decisions depending on how long ago the last encounter occurred. 

As another example, a peerlet may choose to interact with a particular peer only once a 

day and ignore all subsequent encounters.  

The history service listens to event generated by the discovery mechanism. It 

maintains a global persistent database that is automatically updated for each event.  

The Encounter Interface  

The main concept of the history service is the encounter represented by the 

encounter interface.  

interface Encounter 
{ 
 public PeerID getPeerID(); 
 public UserID getUserID(); 
 public Date getDate(); 
} 

An encounter object is created whenever a BeginEncounterEvent is generated 

by the discovery mechanism. It contains information about the identity of the involved 

peer and user and the starting time and date of the encounter.   
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The history service is defined by the HistoryService interface. 

interface HistoryService 
{       
 public Encounter getFirstEncounter(PeerID); 
 public Encounter getFirstEncounter(UserID); 
 
 public Encounter getLastEncounter(PeerID); 
 public Encounter getLastEncounter(UserID); 
 
 public long getSecondsSinceLastEncounter(PeerID); 
 public long getSecondsSinceLastEncounter(UserID); 
 
 public List getAllEncounters(PeerID); 
 public List getAllEncounters(UserID);  
 
 public long getNumberOfEncounters(PeerID);  
 public long getNumberOfEncounters(UserID); 
 
 public Set getAllPeers(); 
 public Set getAllUsers(); 
} 

• getFirstEncounter returns an encounter object representation the first ever 

encounter with the specified peer or user.  

• getLastEncounter returns an encounter object representation the mot recent 

encounter with the specified peer or user. 

• getSecondsSinceLastEncounter returns the seconds since the last encounter with the 

specified peer or user.  

• getAllEncounters returns an unordered collection of all encounters with the 

specified peer or user.  

• getNumberOfEncounters determines how often the specified peer or user has been 

encountered. 

• Finally, getAllPeers and getAllUsers return a set of ids of all peers and users ever 

encountered.  

The information maintained by the presence service is stored persistently and is 

available after a restart of the peerlet engine. However, if the amount of data becomes 

too large to handle it may delete parts of the history. This is done with the following 

guarantees: 
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1. The first and last encounters for each peer and user are always preserved. 

2. If an encounter that dates from time ti is deleted, than all encounters with times 

tj < ti, j ≠ 0 are also deleted.   

3. In other words, the service may only purge the earliest part of history (excluding 

the very first encounter with each peer and user), but not never the later or most 

resent part.  

Example 

The following example illustrates how information about past encounters can be 

used to implement different behaviors.  In particular, the following code segment sends 

a message whenever only if the last encounter with the same person occurred more than 

24 hours ago.  

class Peerlet_Example implements proem.Peerlet 
{ 
 static MessageTypeID mtid = new MessageTypeID(“proem:messagetype:01”); 
 static ProtocolID pid = new ProtocolID(“proem:protocol:example99”); 
  
 … 
 
 public void handleProemEvent(proem.Event event) 
 { 
  HistoryService hs = Proem.getHistoryervice(); 
  CommunicationService cs = Proem.getCommunicationService(); 
 
  if (event instanceof BeginEncounterEvent) 
  { 
   UserID user = ((BeginEncounterEvent)event).getEncounter().getUserID(); 
   PeerID peer = ((BeginEncounterEvent)event).getEncounter().getPeerID(); 
 
   if (hs.getSecondsSinceLastEncounter(user) > 24 * 60 * 60)  
   { 
    // more than 24 hours: send welcome message 
    MessageBody_Example body = new MessageBody_Example(“welcome”);  
    Message welcome = cs.newMessage(mtid, pid, null, body ); 
    cs.send(peer, welcome); 
   } 
   else 
   { 
    //less than 24 hours: do nothing  
   } 
  } 
  … 
 } 
 … 
} 
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VI.5.5 Relationship Service 

Our interactions with other people differ depending on the type of relationship 

we have with them. For example, we might be willing to trade MP3 files with almost 

everyone (ignoring for the moment the legal ramifications), but we might want to share 

our diary only with our best friends. Similarly, we probably want to receive music 

recommendations only from people who we know have a good taste in music.  

Thus for Proem applications it is crucial to be able to reliably remember certain 

individuals. The relationship service enables applications to define relationships that 

exist between the user and other individuals. These relationships are stored persistently 

and are available even after a restart of the peerlet engine. 

The relationship service is defined by the following interface: 

interface RelationshipService 
{ 
 public void defineRelationship(String name); 
 public void removeRelationship(String name); 
 public void addUser(String relationship, UserID id); 
 public void removeUser(String relationship UserID id); 
 public void isMember(String relationship, UserID user); 
 public Collection getMembers(String relationship); 
 public Collection getRelationships(UserID user) 
} 

 

A relationship is simply a named collection of users. 

• defineRelationship creates a new empty relationship. 

• removeRelationship deletes an existing relationship from the database. 

• addUser adds a user to a relationship and removeUser removes it. 

• isMember enables applications to determine if a particular user is part of a 

relationship. 

• getMembers returns an unordered collection containing all members of a 

relationship. 

• getRelationships returns an unordered collection containing the names of all 

relationships a user is part of.  
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Example 

The following example illustrates how relationships can be used to change the 

behavior of a peerlet depending whether a friend or an unknown person is being 

encountered. In particular, the following code segment sends a message whenever a 

friend is encountered, but ignores strangers. 

 

class Peerlet_Example implements proem.Peerlet 
{ 
 static MessageTypeID mtid = new MessageTypeID(“proem:messagetype:01”); 
 static ProtocolID pid = new ProtocolID(“proem:protocol:example99”); 
 
  … 
 
 public void init() 
 { 
  RelationshipService rs = Proem.getRelationship(); 
  rs.defineRelationship(“My Friends”); 
  rs.addUser(“My Friends”, new UserID(“proem:user:1111”); 
  rs.addUser(“My Friends”, new UserID(“proem:user:2222”); 
 } 
 
 public void handleProemEvent(proem.Event event) 
 { 
  RelationshipService rs = Proem.getRelationship(); 
  CommunicationService cs = Proem.getCommunicationService(); 
 
  if (event instanceof BeginEncounterEvent) 
  { 
   UserID user = ((BeginEncounterEvent)event).getEncounter().getUserID(); 
   PeerID peer = ((BeginEncounterEvent)event).getEncounter().getPeerID(); 
 
   if (rs.isMember(“My Friends”, user))  
   { 
    // this is a friend, send welcome message 
    MessageBody_Example body = new MessageBody_Example(“welcome”);  
    Message welcome = cs.newMessage(mtid, pid, null, body ); 
    cs.send(peer, welcome); 
   } 
   else 
   { 
    // ignore unknown user  
   } 
  }  
  … 
 }  
 … 
} 
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VI.6 Deployment and Distribution  

VI.6.1 Bundling 

A Proem application is bundled and distributed in form of a peerlet suite. A 

Peerlet suite is the collection of classes and resources that are required to run the 

application. The suite must contain the following items:  

• A peerlet class (derived from class GenericPeerlet)  

• A peerlet user interface (derived from class GenericPeerletController) 

• A set of message classes (derived from MessageBody) 

• A user profile (an XML file describing the user’s identity) 

To facilitate distribution a peerlet suite may be stored in a JAR file.  

VI.6.2 Installation 

A peerlet suite is installed by placing it in the application directory inside the 

peerlet engine installation directory of the peerlet engine. The application will 

automatically be started after a restart of the peerlet engine.  

VI.7 Summary 

This chapter described the Peerlet Framework and illustrated how to implement, 

deploy and run peerlet applications. The Proem platform and SDK enable developers to 

work in a high-level environment that hides the intricacies of the underlying network 

and device platform and frees developers from dealing with low-level issues unrelated 

to their application. A set of specially designed services for communication, presence 
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awareness, history information provide the building blocks for powerful peer-to-peer 

applications for ad hoc collaboration. Once an application is written, Proem provides a 

common runtime environment across many makes and models of devices, enabling 

developers to deploy their applications with ease and without the need of modifications. 

Developed applications can be shielded from future changes in technology by making 

necessary modifications once in the peerlet engine.  

We can summarize the main features of the peerlet framework from a 

programmer’s point of view as follows: 

• Separation of concerns: The programming model enforces and simplifies the 

separation of application logic and user interface code. 

• Simple event-based programming model: The event mechanism provides a 

uniform way for handling communication, discovery and user interface events. 

• A rich library of common application functionality: The service API provides 

the abstractions and building blocks for the development of presence aware, ad 

hoc peer-to-peer applications.  

• Network and device independence: Developers need not be aware of the 

specifics of the underlying network and device platforms. In particular, they are 

able to target multiple heterogeneous network technologies and devices 

platforms.  

• Tight integration with the WearCoM methodology: Proem directly supports 

important concepts the WearCoM methodology: user profiles, community 

protocols (via peerlet protocols), community agents (via peerlets)  

In the following chapter, we will describe several case studies that show how 

the WearCoM methodology and the Proem platform are used to build wearable 

community applications.   
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Chapter VII 

 

CASE STUDIES:  

BUILDING WEARABLE COMMUNITY APPLICATIONS 

In this chapter, we present a number of wearable community applications that 

have been developed using the WearCoM methodology and implemented on top of the 

Proem platform. Our goal is to demonstrate how the methodology is used in practice to 

design and build wearable community applications. In particular, this chapter 

demonstrates two things.  

1. The reduction in the complexity of the development task achieved by the peerlet 

framework.  

2. The close relationship between design and implementation  

VII.1 Overview 

The wearable community applications presented in this chapter cover a large 

spectrum of the wearable community application space: 

• FriendFinder: this application was inspired by Holmquist’s notion of an Inter 

Personal Awareness Device (Holmquist et al. 1999) (see Chapter III.4). The 

purpose of this application is to determine affinity relationships between users 

based on recurring encounters.  
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• Genie: this application was introduced in Chapter IV to demonstrate the 

WearCoM methodology. It is one of the most simple wearable community 

applications (Kortuem and Segall 2003). 

• PIRATÉ: this application is a collaborative music guide that enables users to 

share and collect music recommendations as side effect of encounters (see 

Chapter II.2.1). PIRATÉ was first described in (Kortuem et al. 2001).  

• mBazaar: a wearable eBay application that facilitates contacts between buyers 

and sellers of goods and services (see Chapter II.2.1) (Kortuem and Segall 

2003) 

• WALID: this application was introduced in Chapter II.2.1. It represents one of 

the first examples of a wearable community application and assists users by 

negotiating the exchange of tasks with the agents of nearby community 

members. WALID was first described in (Kortuem, Schneider, Suruda, Fickas, 

and Segall 1999). 

Each of the five applications highlights a particular specific aspect of the Peerlet 

API (Table 11). 

Table 11. Case Studies 

Application  Highlighted API Features 

FriendFinder  User profiles, event handling, history service 

Genie User profiles, simple community protocols, messaging 
service 

PIRATÉ  User profiles, community protocols, messaging service, 
history service, relationship service 

mBazaar User profiles, community protocols, messaging service, 
history service, communitycasting 

WALID User profiles, complex community protocols, messaging 
service, history service, relationship service 
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The main part of this chapter consists of a presentation of the five case studies. 

The description of the design and implementation of each application is organized as 

follows:  

• Overview: this section describes the general application idea 

• Scenario: this section describes the usage scenario underlying the application 

• Community language: this section describes the community language, i.e. the 

community protocol and vocabulary.  

• User profile: this section describes the personal data disclose themselves. 

• User interface: this section describes how users interact with the application. In 

general, we use screen shots to highlight the key aspects of the user interface. 

• Implementation: this section describes the peerlet implementation the 

community agent 

VII.2 FriendFinder 

VII.2.1 Overview 

FriendFinder is a simple presence-aware community application inspired by the 

notion of Inter-Personal Awareness Devices (IPAD) (Holmquist et al. 1999). In contrast 

to a communication device like the mobile phone, an Inter-Personal Awareness Device 

facilitates contacts instead of mediating them. The earliest example of an IPAD is the 

Hummingbird (Holmquist et al. 1999) (see Chapter III.4). The Hummingbird gives 

members of a group continuous aural and visual indication of which other group 

members are in the vicinity. A Hummingbird broadcasts a unique signal and receives 

information about other Hummingbirds in the vicinity. Each Hummingbird displays a 
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list of currently ‘visible’ devices. Whenever a Hummingbird discovers a new device in 

its vicinity, it alerts its user with a subtle audio signal.  

The Hummingbirds architecture is simple and effective, but suffers from several 

limitations. Most importantly, it only supports awareness between members of a closed 

user group. To provide social awareness between users (as opposed to devices) the 

Hummingbird architecture uses an implicit static mapping from devices to users. This 

mapping must be performed independently by each device making it difficult to add 

new members to a group.    

FriendFinder is an extension to the original IPAD idea. Contrary to what the 

name might suggest, FriendFinder is not a tool for locating one’s friends, but for 

discovering affinity relationships between users that might not be obvious to the users 

themselves. The idea underlying FriendFinder is that the frequency, with which two 

users meet is an important indicator for similarities in their taste, interests, preferences, 

and believes. This idea has subsequently been explored in more depth in the Social Net 

project (Terry et al. 2002). For example, if two people frequently attend the same events 

(for example, gallery openings), then this might be an indication that they share an 

interest in art.  

The FriendFinder user profile contains a unique but arbitrary user id, a name 

and a photo of the user. The photo helps to relate faces in a crowed with names 

displayed by the application. The FriendFinder application records frequencies of 

encounters with other people and displays a list of ‘suggested friends’ ordered by the 

frequency with which they have been encountered.   



167 

 

  

VII.2.2 Scenario 

The scenario description for the FriendFinder applications is shown in Table 12. 

 

Table 12. FriendFinder Scenario 

Name FriendFinder 

Purpose To increase social awareness by identifying people with whom we might 
share interests, preferences, or believes based on frequencies of 
encounters  

Population Students or teenagers 

Device  Device must be able to display a list of user names and photos. Device 
must be able to persistently store a list of encountered people. Users 
must be able to set up their user profile, preferably by downloading it 
from a PC.   

Before Users sets up their user profiles 

Encounter Devices exchange user profiles and update list of most frequently 
encountered users. 

After -  
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VII.2.3 User Profiles 

The user profile template for the FriendFinder application is shown in Table 13.  

 

Table 13. FriendFinder User Profile Template 

Attribute Name Implementation Type Description 

ID UserID A semi-unique identifier for the 
user.  

Name [String] The user’s name (this might be the 
user’s real first name or an 
assumed name). This entry is 
optimal. 

Photo [Image] A photo depicting the user (this 
allows for easy spotting of the 
user in a crowed). This entry is 
optimal. 

 

The user profile consists of user id, user name and a photo. Name and photo are 

optional. 

VII.2.4 Community Language 

The FriendFinder application does not use a community language, but solely 

depends on the exchange of user profiles (which is automatically done by the discovery 

mechanisms). 
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VII.2.5 Using the Application 

The FriendFinder user interface is shown in Figure 24. It displays a list of users 

ordered by frequency.  

  

 

Figure 24. FriendFinder user interface  

VII.2.6 Implementation 

The FriendFinder application consists of two main Java classes:  

• FriendFinderPeerlet is implements the community agent.  

• FriendFinderUI displays the user interface.   

In the following discussion, we will ignore the user interface details and limit 

our attention to the application logic. The FriendFinderPeerlet class is shown in 

Program 1.  
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Program 1: FriendFinder Peerlet 

1. public class FriendFinder_Peerlet extends GenericPeerlet 
2. { 
3.    static public PeerletID getPeerletID () 
4.   { 
5.   return new PeerletID("proem:peerlet:friendfinder"); 
6.   } 
7.   
8.  static public ProtocolID getProtocolID () 
9.  { 
10.   return null; // no protocol 
11.  } 
12.  
13.   public void handleProemEvent(proem.Event event) 
14.  { 
15.   if (event instanceof BeginEncounterEvent) 
16.   { 
17.    Set users = Proem.getHistoryService().getAllUsers(); 
18.    uimanager.updateDisplay(users); 
19.   } 
20.  }   
21. } 

 

The code of the FriendFinder peerlet consists of only three methods, two of 

which simply return the peerlet ID (lines 3-6) and protocol ID (lines 8-11).  Since the 

FriendFinder application does not use a community protocol, the peerlet returns null as 

value for the protocol ID (line 10). The handleProemEvent method (lines 13-20) is 

called by the peerlet engine with an event of type BeginEncounterEvent whenever the 

Proem discovery mechanism determines the beginning of a new encounter. This method 

then calls the HistoryService to get the set of all users that have been encountered so far 

(line 17) and forwards it to the user interface (line 18). The user interface object sorts 

the set of previously encountered users and displays  their information (code not 

shown).   

VII.2.7 Summary 

The FriendFinder application is a simple community application that 

demonstrates some of the core aspects of peerlet programming. In order to build this 

application, the programmer needs to understand only a few concepts, namely  
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• how to implement a peerlet by deriving a new class from the class 

GenericPeerlet; 

• the basics of event handling; 

• the functionality provided by the history service API. 

As can be seen by the code shown in Program 1, the FriendFinder application is 

extremely simple. The whole application logic (excluding user-interface code and 

comments) comprises just 21 lines of code.  

The FriendFinder case study is important because it shows how an application 

described in the literature can be recreated using Proem and how easy it is to extend its 

functionality without increasing the complexity of the implementation.  

VII.3 Genie 

VII.3.1 Overview 

The second case study is the Genie application introduced in Chapter 3. As we 

already described the scenario, user profile and community protocol in Chapter IV.2, 

we will limit our discussion to the user interface and implementation.  

VII.3.2 Using the Application 

The user-interface of the Genie application consists of two screens. The first 

screen allows a user to define a question that will be transmitted to other devices during 

encounters (Figure 25). The second screen displays a question (including subject) 

received from another device. By pressing the ‘Answer’ button the user can indicate 

that he or she knows the answer (Figure 26).  
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Figure 25. Genie user interface (screen 1).  

 

Figure 26. Genie user interface (screen 2) 
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VII.3.3 Implementation 

The Genie application consists of several Java classes:  

• Genie_UserProfile implements the user profile (Program 2) 

• Genie_Question, Genie_Positive and Genie_Negative are classes representing 

the three message bodies of the community protocol (Program 2) 

• Genie_Peerlet is derived from GenericPeerlet and implements the user agent 

(Program 3) 

• Genie_UI displays the user interface and handles the user interaction (not 

shown).   

In our discussion, we will ignore the implementation of the user interface and 

limit our attention to the agent implementation.  

 

Program 2. Genie Message and User Profile Classes 

1. class Genie_MessageBody_Question implements proem.MessageBody 
2. { 
3.  public String subject; 
4.  public String text; 
5. }; 
6.  
7. class Genie_MessageBody_Answer implements proem.MessageBody 
8. { 
9.  public String text; 
10. }; 
11.  
12. class Genie_MessageBody_No_Answer implements proem.MessageBody 
13. { 
14. }; 
15.  
16. class Genie_UserProfile extends Proem.GenericUserProfile 
17. { 
18.  public String name; 
19.  public String subject; 
20. }; 
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Program 3. Genie Peerlet 

1. public class Genie_Peerlet implements GenericPeerlet 
2. { 
3.  Genie_MessageBody_Question question;   // this user's question 
4.   MessagingService ms = Proem.getMessagingService();  
5.  
6.  static public PeerletID getPeerletID() 
7.   { 
8.   return new PeerletID("proem:peerlet:genie"); 
9.   } 
10.   
11.  static public ProtocolID getProtocolID () 
12.  { 
13.   return return new ProtocolID("proem:protocol:genie"); 
14.  } 
15.  
16.  public void handleProemEvent(Event event) 
17.  { 
18.   if (event instanceof BeginEncounterEvent) 
19.   { 
20.    Encounter encounter = ((EncounterEvent)event).getEncounter();  
21.    Genie_UserProfile profile = encounter.getUserProfile(); 
22.    remote_user = profile.getUserID(); 
23.    if (profile.getSubject().equals(question.subject)) 
24.    {  
25.      Message mes; 
26.      mes = ms.newMessage(“proem:messagetype:question”, 

                               getProtocolID(),question); 
27.      ms.send(remote_user, mes); 
28.    } 
29.   } 
30.     
31.    else if (event instanceof IncomingMessageEvent) 
32.   { 
33.    Proem.Protocol.Message in = event.getMessage(); 
34.    if (in.getMessageType().equals("proem:messagetype:question")) 
35.    { 
36.     Genie_UI.send(in); 
37.     } 
38.    if (in.getMessageType().equals("proem:messagetype:positive")) 
39.    { 
40.     Genie_UI.send(in); 
41.    } 
42.    if (in.getMessageType().equals("proem:messagetype:negative"))  
43.    { 
44.      // do nothing 
45.    } 
46.   } 
47.    
48.    else if (event instanceof UserinterfaceEvent) 
49.    { 
50.     Proem.Protocol.Message in = event.getMessage(); 
51.    ms.send(in.getSource(), in);  
52.   } 
53.    
54.    else if (event instanceof EndEncounterEvent) 
55.   { 
56.    // do nothing 
57.   }  
58.  }  
59. } 

 

The code of the Genie peerlet consists of a variable declaration section (lines 3-

5) and four methods. The variables are: 



175 

 

  

• a variable for storing the user’s question (line 5)  

• a variable for holding a reference to the global MessagingService object. 

The main component of the peerlet is the handleProemEvent() method (line 16-

58). It directly reflects the community protocol as defined by the community protocol 

diagram in Chapter IV.2.5. The method consists of one large if-statement with four 

cases for handling events indicating (1) the beginning of an encounter (2) an incoming 

message and (3) a user interface event and (4) the end of an encounter.  

Upon receiving a BeginEncounterEvent, the peerlet constructs a message 

containing the question and sends it to the encountered user (line 27).  

Upon receiving an IncomingMessageEvent, the peerlet forwards the message to 

the user interface (accessible through the class Genie_UI) unless it is a negative 

response (line 44).  

Upon receiving a UserInterfaceEvent, the peerlet forwards the message to the 

original sender, i.e. the user who originally sent a question (line 51).  

An EndEncounterEvent is ignored by the peerlet (line 56) 

VII.3.4 Summary 

The Genie application illustrates how agents implement (simple) community 

protocols. In particular, it demonstrates that the structure of the handleProemEvent 

method directly reflects the structure of the community protocol. In order to build this 

application, the programmer needs to understand  

• how to implement a peerlet by deriving a new class from the class 

GenericPeerlet; 

• how to handle events; 

• how to send messages to either the user interface or a remote agent. 
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VII.4 PIRATÉ Collaborative Music Guide 

PIRATÉ (Kortuem et al. 2001) (see Chapter II.2.1) takes ideas from peer-to-

peer file sharing applications like Napster and moves them to the wearable domain. It is 

a collaborative music guide that enables users to exchange MP3 play lists and music 

recommendations during brief random encounters.  

PIRATÉ can be described as “Napster in reverse”. In contrast to MP3 file 

sharing applications like Napster and Gnutella, PIRATÉ is not a tool for sharing MP3 

files, but for discovering music one would like to listen to by trading recommendations. 

The bandwidth limitations of wireless personal area networks make it unfeasible to send 

large MP3 files across the network. PIRATÉ circumvents these restrictions by 

exchanging meta-information about songs instead of the songs themselves.  

PIRATÉ employs methods for “collaborative filtering” or “social filtering” of 

information (Resnick et al. 1994) (Shardanand and Maes 1995) (Breese et al. 1998) for 

generating recommendations.  The main idea of PIRATÉ is to automate the process of 

"word-of-mouth" by which people recommend music to one another. Faced with a 

myriad of choices when it comes to deciding which music to listen to, people will often 

rely on the opinions of others. These others can either be certified experts in the field, 

i.e. professional music critiques, or members of the social circle, that is friends, family 

and coworkers.  

Collaborative filtering generates recommendations by identifying groups of 

people with similar interests, that is, it uses a collective method of recommendation. 

Collaborative or social filtering methods produce recommendations by computing the 

similarity between a user’s music preferences and the ones of other people.  

The task of the PIRATÉ community agents is to collect information about other 

people’s music preferences and to generate personalized recommendations. The basic 

mechanism behind the PIRATÉ collaborative filtering method is the following:  
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• Each community agent maintains an ordered MP3 play list where each MP3 file 

is marked by how often the user has listened to a song within the last seven 

days.  

• Agents exchange play lists during encounters thus giving each user access to the 

music preferences of a potentially large group of people.  

• Using a similarity metric, the agent selects a subgroup of people whose 

preferences are similar to the user’s preferences.  

• Based on the collective taste of the subgroup, the agent recommends MP3s to 

the user. 

In contrast to Internet-wide collaborative filtering systems like Amazon, 

PIRATÉ produces localized recommendations that reflect the taste of the user’s local 

social circle. For example, with PIRATÉ students can get music recommendations 

based on the collective music preferences of the campus population. Such a system 

allows local bands that are relatively unknown to be included.  

The main bottleneck with existing collaborative filtering systems is the 

collection of preferences. To be reliable, the system needs a very large number of 

people to express their preferences about a relatively large number of options. Since the 

system becomes useful only after a "critical mass" of opinions has been collected, 

people will not be very motivated to express detailed preferences in the beginning 

stages (e.g. by scoring dozens of music records on a 10 point scale), when the system 

cannot yet help them. One way to avoid this start-up problem is to collect preferences 

that are implicit in people's actions (Nichols 1997). For example, people who order 

books from an Internet bookshop implicitly express their preference for the books they 

buy over the books they do not buy. Customers who have bought the same book are 

likely to have similar preferences for other books as well. This principle is applied by 

the Amazon web bookshop, which for each book offers a list of related books that were 

bought by the same people. Another method – the on employed by PIRATÉ - uses MP3 

play lists to gauge user’s music preferences. People who listen to some MP3s more 
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frequently express their preference for the MP3s they listen to over the MP3s they do 

not listen to. The list of all MP3s the user has been listening to within the past few days 

determines a preference function for this user. The preference of each MP3 is equal to 

the frequency with which the user has listened to the song.  

Another novel feature of PIRATÉ is a filter mechanism based on personal 

relationships. A user might prefer to receive music recommendations only from a few 

“trusted” sources, i.e. users who are known for their exceptional taste in music. 

PIRATÉ enables users to set up a list of trusted users and have his or her agent ignore 

play lists from all other users.   

In sum, PIRATÉ differs in the following ways from traditional recommender 

systems: 

• decentralized architecture  

• based on localized social groups 

• implicit user interface: user is not required to rate songs, exchange occurs 

automatically 

• recommendations are constantly updated 

• trusted sources, instead of anonymous recommendations 
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VII.4.1 Scenario 

The scenario description for the PIRATÉ applications is shown in Table 14. 

Table 14. PIRATÉ scenario 

Name PIRATÉ 

Purpose To generate personalized music recommendations based on listening 
behavior of community members.  

population Music lovers, groups of friends, classmates, students, colleagues who 
frequently listen to music. 

Device  Wearable device that can play MP3 music files.  
Input: MP3 player controls (play, forward, stop, rewind)  
Output: display recommendation  

Before - 

Encounter Devices exchange play lists and generate personalized recommendations 

After - 

VII.4.2 User Profile 

PIRATÉ user profiles are simple and only contain the user’s URI and a name 

(Table 15). 

Table 15 PIRATÉ user profile 

Attribute Name Implementation Type Description 

Name [String] The user name, e.g. the first name or nick name 

Favorites String* A list of favorite artists or music genres, for 
example “Blues”, “Talking Heads”. 
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VII.4.3 Community Language 

Protocol 

The PIRATÉ community protocol is depicted in Figure 27. The interactions are 

rather simple: when an encounter occurs, agents exchange MP3 play lists. The data is 

used by agents to compute a new set up recommendation which is sent to the users. 

Although the interactions are symmetric, the recommendations generated by agents are 

personalized and will differ for each user.  

s1

s4

User A Agent A Agent B User B

s2

Play List Play List

s3

s5 s6

Recommendations Recommendations

 

Figure 27. PIRATÉ community protocol 
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Vocabulary 

In PIRATÉ, MP3 files are identified by ID3 tags (ID3 2002). ID3 tags are fix-

sized 128-byte data fields embedded in MP3 files that carry information for identifying 

songs. The ID3 format v1.1 is as follows: 

Song title 30 characters 

Artist 30 characters 

Album 30 characters 

Year 4 characters 

Comment 30 characters 

Genre 1 byte   

 

The genre field holds the index into a predefined table. For example genre 0 

represents Blues, 1 represents Classic Rock, 2 represents Country etc. In PIRATÉ, the 

comment field is used for storing the rating information, i.e. the number of times a song 

has been listened to.  The PIRATÉ vocabulary definition is shown in Table 16. Play 

lists and recommendations are lists of ID3 tags.  

Table 16. PIRATÉ vocabulary 

Implementation  Message Type Description 

Type Description 

PlayList A message of this type 
carries a list of songs, 
each of which is 
described by an ID3 tag.    

ID3Tag* A list of ID3 tags each 
of which represent one 
song in the play list.    

Recommendation A recommendation is a 
list of songs each of 
which is described by an 
ID3 tag    

ID3Tag* A list of ID3 tags each 
of which represent one 
song in the 
recommendation list.    
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VII.4.4 Implementation 

The PIRATÉ application consists of several Java classes.  

• Two message classes (Program 4) 

• The user profile class (Program 4) 

• A user interface class derived from PeerletUserInterface (not shown)  

• The class PIRATE_Peerlet which implements the application logic (Program 5).  

Program 4. PIRATÉ message and user profile classes 

1. class ID3Tag 
2. { 
3.  String title; 
4.  String artist; 
5.  String album 
6.  String year; 
7.  String comment; // = number of times this song has been listened to 
8.  byte genre; 
9. }; 
10.  
11. class PIRATÉ _PlayList implements proem.MessageBody 
12. { 
13.  public java.util.List songs; 
14. }; 
15.  
16. class PIRATÉ _Recommendation implements proem.MessageBody 
17. { 
18.  public java.util.List songs; 
19. }; 
20.  
21. class Genie_UserProfile extends Proem.GenericUserProfile 
22. { 
23.  public String name; 
24.  public List favorites; 
25. }; 
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Program 5. PIRATÉ Peerlet Class 

1. public class PIRATE_Peerlet extends GenericPeerlet 
2. { 
3.  PIRATE_PlayList playlist;           // the user's current play list 
4.   PIRATE_Recommednation recommendations; // the user's cur. recommendations 
5.   HistoryService      hs = Proem.getHistoryService(); 
6.   MessagingService    ms = Proem.getMessagingService(); 
7.   RelationshipService rs = Proem.getRelationshipService(); 
8.    
9.  public PeerletID getPeerletID () 
10.   { 
11.   return new PeerletID("proem:peerlet:PIRATÉ "); 
12.   } 
13.   
14.  public ProtocolID getProtocolID () 
15.  { 
16.   return new ProtocolID("proem:protocol:PIRATÉ "); 
17.  } 
18.   
19.   public void init() 
20.   { 
21.    rs.defineRelationship(“PIRATÉ ”); 
22.    rs.addUser(“PIRATÉ ”, new UserID(“proem:user:peter01”)); 
23.    rs.addUser(“PIRATÉ ”, new UserID(“proem:user:jim1786”)); 
24.    rs.addUser(“PIRATÉ ”, new UserID(“proem:user:ann4711”)); 
25.   } 
26.  
27.  public void handleProemEvent(Event event) 
28.  { 
29.    UserID remote_user; 
30.  
31.    if (event instanceof BeginEncounterEvent) 
32.   { 
33.     Ecounter encounter = ((EncounterEvent)event).getEncounter();  
34.    PIRATÉ _UserProfile profile = encounter.getUserProfile(); 
35.    remote_user = profile.getUserID(); 
36.     if (hs.getSecondsSinceLastEncounter(remote_user)) > 24*60*60) //24 hours 
37.    { 
38.      Message mes; 
39.      mes = ms.newMessage(“proem:messagetype:playlisy”, 

                               getProtocolID(),playlist); 
40.      ms.send(remote_user, mes); 
41.      } 
42.   } 
43.  
44.   else if (event instanceof IncomingMessageEvent) 
45.   { 
46.    Message in = event.getMessage(); 
47.     if (in.getMessageType().equals("proem:messagetype:playlist")) 
48.    { 
49.      remote_user = in.getSender(); 
50.       if (rs.isMember(“PIRATÉ ”, remote_user) 
51.      { 
52.       PIRATÉ _PlayList remote_playlist = in.getMessageBody(); 
53.       recommendations = computeRecommendations(remote_playlist); 
54.       Message mes; 
55.       mes = ms.newMessage(“proem:messagetype:recommedation”, 

                                          getProtocolID(),recommendations); 
56.       PIRATE_UI.send(mes); 
57.       
58.     } 
59.     } 
60.    } 
61.  } 
62. } 
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The code of the PIRATÉ peerlet consists of a variable declaration section (lines 

3-7) and three methods. The variables are: 

• a variable for storing the user’s play list  

• a variable for storing the recommendations generated by the agent  

• a variable for holding a reference to the global MessagingService object. 

• a variable for holding a reference to the global HistoryService object. 

• a variable for holding a reference to the global RelationshipService object. 

The init method (line 19-25) defines a personal relationship between this user 

and three other users. This information will be used later on to filter incoming play lists. 

A more flexible approach would be to implement a user interface screen for adding and 

removing users from the relationship.    

The main component of the peerlet is the handleProemEvent() method (lines 27-

61). The method consists of one large if-statement with just two cases for handling 

events indicating the beginning of an encounter and an incoming message.  

Upon receiving a BeginEncounterEvent, the peerlet first determines if the last 

encounter with this particular person occurred more than 24 hours ago. If this is the 

case, it constructs a message containing the play list and sends it to the encountered 

user.  

Upon receiving an IncomingMessageEvent (lines 44-56), the peerlet checks to 

see if the received play list is one a person with whom the user has a special 

relationship. If it is the case, the play list is used to generate new recommendations, 

otherwise it is discarded. The recommendations are sent to the user interface for 

display. 
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VII.4.5 Summary 

The PIRATÉ application illustrates the use of the following APIs:  

• How to set up and use relationships with the relationship service 

• How to use the history service to access information about past encounters 

VII.5 mBazaar 

mBazaar (see Chapter II.2.1) is a wearable community application that supports 

students in buying, selling and swapping of personal items like CDs, books, bikes, 

furniture, and electronics. mBazaar employs community agents that advertise items a 

user wants to buy or sell to other nearby mBazaar users. At the time of an encounter 

between two or more individuals, for example when two or more students meet after 

class at a local coffee shop, the community agents identify matches between advertised 

and desired items and exchange contact information. Depending on the users’ 

preferences, contact information might include email addresses or pictures of the users. 

The picture enables users to identify each other and to verbally negotiate a possible 

transaction right on the spot. 

The mBazaar application is designed to highlight an application that in some 

important respects is different from the one employed by PIRATÉ. First, it does not use 

user profiles: users exchange contact information only after their agents have 

determined a match. Second, instead of waiting for an encounter, agents broadcast 

classifieds to all nearby devices using the communitycast method of the messaging 

service. 
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VII.5.1 Scenario 

The scenario description for the mBazaar applications is shown in Table 17. 

Table 17. mBazaar Scenario 

Name mBazaar 

Purpose mBazaar enables users to advertise products and services they wish to 
buy or sell and to identify other users with complimentary desires.  

population “Localized groups” such as students or employees without strong 
personal relationships but a high frequency of chance encounters 

Device  Input capabilities for text and possible images to define classifieds and 
users’ contact information 
Output: display of classifieds and contact information  

Before - 

Encounter Devices exchange classifieds, identify possible match and if approved by 
users’ exchange contact information 

After - 

 

VII.5.2 Community Language 

Protocol 

The mBazaar community protocol is depicted in Figure 28. An agent starts by 

sending out a classified to a nearby agent. Upon receiving a classified, an agent 

determines if there is a match between its user’s classifieds and the incoming classified. 

The agent sends information about a match to the user to garner the user’s opinion. If 

the user likes the match and is interested in contacting the other user, he or she replies 

with a positive answer. If not, he or she replies with a negative answer and the exchange 
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terminates (states s7 and s8).  In case of a positive response, the agent forwards the 

user’s contact information to the remote agent which in turn informs its user. The user 

can then decide if he or she wants to pursue the opportunity and contact the other 

person. Note, that this scheme is asynchronous: one user sends contact information and 

the other receives it.  This scheme does not guarantee that both users have mutual 

knowledge of each other.  

If two simultaneous interactions occur (which may or may not be the case), each 

user ends up receiving the other users contact information.  

The asymmetry in the original exchange has the advantage that users are in full 

control to whom they want to disclose their contact information. They will reply to a 

classified if and only if their agent found a match and they are interested in pursuing it.  



188 

 

  

 

Figure 28. mBazaar community protocol 
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Vocabulary 

The mBazaar vocabulary consists of four message types as shown in Table 18.      

Table 18. mBazaar vocabulary 

Implementation  Message Type Description 

Type Description 

Classifieds A message of this 
type carries a list of 
individual classifieds    

(boolean; String)* 
 

Each classified consists 
of two fields: a boolean 
value indicating the 
classified type (buy = 
true; sell = false) and a 
String for a textual 
description of the 
product or service.      

Positive A message of this 
type indicates the 
user is interested in a 
match and wants to 
contact the other user 

Void (carries no data) 

Negative A message of this 
type indicates the 
user is not interested 
in a match or does 
not want to contact 
the other user 

Void (carries no data) 

ContactInformation A message of this 
type contains a user’s 
contact information 
(e.g. email, cell 
phone number) 

String A string containing an 
unstructured textual 
representation of the 
contact information 
(e.g. “This is Hanna. 
Call me on my cell 
phone at 541-456 4560 
to discuss a deal”)  
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VII.5.3 Implementation 

The mBazaar application consists of several Java classes.  

• Four message classes (Program 6) 

• A user interface class derived from PeerletUserInterface (not shown)  

• The class mBazaar_Peerlet which implements the application logic (Program 7).  

Program 6. mBazaar message classes 

1. class Classified 
2. { 
3.   public boolean buy; 
4.   public String description; 
5. }  
6.  
7. class mBazaar_Classifieds implements proem.MessageBody 
8. { 
9.  public java.util.List classifieds; 
10. }; 
11.  
12. class mBazaar_Positive implements proem.MessageBody 
13. { 
14. }; 
15.  
16. class mBazaar_Negative implements proem.MessageBody 
17. { 
18. }; 
19.  
20. class mBazaar_ContactInformation extends proem.MessageBody 
21. { 
22.  public String description; 
23. }; 
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Program 7. mBazaar peerlet class 

1. public class mBazaar_Peerlet extends GenericPeerlet 
2. { 
3.  mBazaar_Classifieds classifieds;             // the user's classifieds 
4.   mBazaar_ContactInformation contact; // the user's contact information 
5.   MessagingService    ms = Proem.getMessagingService(); 
6.      
7.  public PeerletID getPeerletID () 
8.   { 
9.   return new PeerletID("proem:peerlet:mBazaar"); 
10.   } 
11.   
12.  public ProtocolID getProtocolID () 
13.  { 
14.   return new ProtocolID("proem:protocol:mBazaar"); 
15.  } 
16.   
17.   public void init() 
18.   { 
19.    // set up classifieds and contact information via UI 
20.     long ttl = 2; 
21.    Calendar cal = Calander.instance().roll(HOUR_OF_DAY); // now + 1 hour 
22.    Date later = cal.getTime(); // date indicating now + 1 hour 
23.    DeliveryHint hint ms.newDeliveryHint(ttl, later); 
24.    Message mes; 
25.    mes = ms.newMessage(“proem:messagetype:classifieds”, 

                           getProtocolID(), 
                           hint, 
             classifieds); 

26.    ms.communitycast(mes); 
27.   } 
28.  
29.  public void handleProemEvent(Event event) 
30.  { 
31.    UserID remote_user; 
32.  
33.    if (event instanceof IncomingMessageEvent) 
34.   { 
35.    Message in = event.getMessage(); 
36.     if (in.getMessageType().equals("proem:messagetype:classifieds")) 
37.    { 
38.      remote_user = in.getSender(); 
39.       if (match(classifieds, in.getMessageBody()) 
40.     { 
41.       mBazaar_UI.send(in); 
42.      } 
43.     } 
44.    }  
45.    else if (event instanceof UserInterfaceEvent) 
46.    { 
47.     Message in = event.getMessage(); 
48.     if (in.getMessageType().equals("proem:messagetype:positive")) 
49.     { 
50.     Message mes; 
51.      mes = ms.newMessage(“proem:messagetype:contactinformation”, 

                             getProtocolID(),contact); 
52.      ms.send(in.getSender(),mes); 
53.    } 
54.    } 
55.  } 
56. } 

 

The code of the mBazaar peerlet consists of a variable declaration section (lines 

3-5) and four methods. The variables are: 
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• a variable for storing the user’s classifieds  

• a variable for storing the user’s contact information 

• a variable for holding a reference to the global MessagingService object. 

The init method (line 17-26) sets up the classifieds and contact information. Its 

most important task is to initiate a communitycast that sends out the user’s classifieds to 

all members of the community. It defines a delivery hint object with a TTL and an 

expiration time. The TTL is set to 2, indicating a request to other Proem devices to 

forward the message to other peers. The expiration time is set to one hour in the future, 

guaranteeing the repeated communitycast of the same message for the next hour (the 

user should be able to set the expiration date of the communitycast, but for sake of 

simplicity has been fixed in this example. A more flexible approach would be to 

implement a user interface screen for setting the expiration date).    

The handleProemEvent() method only needs to deal with one type of user 

interface event and one type of incoming message event.   

Upon receiving an IncomingMessageEvent, the peerlet checks to see if there is a 

match. If there is, it forwards the classifieds to the user interface for display. The user 

can then respond.  

Upon receiving a UserInterfaceEvent, the peerlet checks if it is a positive or a 

negative response. If it is positive it sends out the user’s contact information.  

VII.5.4 Summary 

The mBazaar application illustrates a method of implementing community 

agents without using user profiles. Contact information is sent after negotiations 

between agents and, indirectly, between users has been successful. This approach is 

preferable in situations in which user are concerned about privacy.  In addition, this 

example illustrates how to use communitycasting and delivery hints.  
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VII.6 WALID: Opportunistic Task Trading 

WALID (Kortuem, Schneider, Suruda, Fickas, and Segall 1999) (see Chapter 

II.2.1) is our last case study. Historically, it is actually one of the first wearable 

community applications. It demonstrates how to define and implement a complex 

community protocol. 

VII.6.1 Scenario 

The scenario description for the WALID applications is shown in Table 19: 

Table 19. WALID Scenario 

Name WALID 

Purpose To strengthen the social ties of a group by identifying opportunities for 
mutual assistance.  

population Close-knit groups with established trust relationships, for example 
groups of friends, classmates or colleagues. 

Device  Input: user enters and maintains task list  
Output: display task list, alert user of a agent’s proposed trade  
Sensors: determine user location (for example using GPS Global 
Positioning System) 

Before User defines tasks  

Encounter Devices exchange task lists, identify if there is a mutually beneficial 
trade and alert users 

After If users accept a deal proposed by their agents, task lists must be updated 
to reflect the trade 



194 

 

  

VII.6.2 User Profile 

The WALID application is designed for a group of people who know and trust 

each other. It is unlikely that people are willing to trade tasks with people they are not 

familiar with. Therefore, user profiles are simple and only contain the user’s name 

(Table 20). 

Table 20. WALID user profile template 

Attribute Name Implementation Type Description 
name String The name under which the user is 

known to friends. May be the first 
name or an assumed name.  

VII.6.3 Community Language 

WALID employ ideas from game theory (Rosenschein and Zlotkin 1994) to 

ensure that results of negotiations are mutually beneficial. The first step in developing a 

community protocol is to formulize the task trading scenario. We use a variation of the 

Postman domain (Nash 1950) as follows: 

“Agents have to deliver sets of packages to destinations, which are 

arranged on a graph G = G(V,E). The set V of vertices represents all possible 

destinations while the set E of edges represents routes along which agents can 

travel. Agents can exchange packages at no cost during encounters at any 

vertex.  

A task is a vertex v and indicates that an agent has to deliver a package 

to the location represented by v. A task set is a set of vertices. If vertex v is in an 

agent’s task set, it means that he has at least one package to deliver to v. 

The cost of delivering a package from the agent’s current location to a 

destination is defined by a cost function c: V x V -> N where c(v1,v2) is the 

length of the minimal path from v1 to v2. The cost of a subset of destinations 
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X ⊆ V is the length of the minimal path that starts at the current vertex and 

visits all members of X. Thus, the cost of a task set s is defined as the sum of 

the cost of all tasks contained in s.” 

The WALID community protocol is based upon Nash’s Product Maximizing 

Mechanism (PMM). PMM is a three-step protocol: in the first step the two agents 

disclose their task sets; in the second step each agent proposes a deal (division of tasks) 

that is pareto-optimal6; in the third step the agents select and agree upon a winning deal. 

The deal that is selected is the one that offers each of the agents the most benefits which 

is the one with the highest combined cost savings. 

Example 

Let’s assume two agents are negotiating at point C of the graph shown in Figure 

29.  Landmarks are indicated by circles and paths between landmarks by arrows. For 

sake of simplicity, distance between neighboring landmarks is assumed to be 1. Agent 1 

must deliver packages to points A and D; Agent 2 must deliver a package to point A.   

 

Figure 29. WALID Task Trading Example 

                                                   
6 Pareto-optimal: No agent could derive more from a different agreement, without some other agent 

deriving less from that alternate agreement.  
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Step 1: In the first negotiation step, both agents disclose their respective tasks 

sets. As result, the agents know their own and their opponents tasks and the costs for 

each of them. This situation is shown in the following table: 

 

Step 1.  
Disclosure of Tasks 
Sets 

Agent Location Task set Cost = Length of 
minimal path 

Agent 1 C {A,D} 2 + 2 = 4 

Agent 2 C {A} 2 

 

Step 2: In the second step, both agents propose a deal, where a deal is a new 

distribution of tasks. Let’s assume agent 1 proposes that agent 1 deliver packages to 

point D and agent 2 deliver packages to point A. Let’s further assume agent 2 proposes 

just the opposite (agent 1 delivers to A and agent 2 delivers to D). The following table 

shows the costs and utilities for each of these deals from the perspective of each of the 

two agents. The utility of a deal is defined as the cost saving of the proposed deal, that 

is as the difference of the costs between of the original situation and the proposed deal:  

 

Step 2. 
Proposed 
Deals 

Task 
distribution  

Cost for 
agent 1 

Utility for 
agent 1 

Cost for 
agent 2 

Utility for 
agent 2 

Product of 
utilities 

Deal 1 Agent 1: D 
Agent 2: A 

1 3 2 0 0 

Deal 2 Agent 1: A 
Agent 2: D 

2 2 1 1 2 

 

The cost of a deal for an agent is the distance the agent has to travel. The utility 

of a deal for an agent is the cost saving of the proposed task distribution. For example, 

with deal 1 agent 1 needs to travel from C (its current location) to D. The distance and 

thus cost is 1. The utility is 3, because without an exchange of task agent 1’s cost is 4.  
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The Product Maximizing Mechanism says that the winning deal is the deal with 

the highest product of the two expected utility. Thus, in this example deal 2 is the 

winning deal. 

Step 3: The third step involves the actual trade of tasks according to the winning 

deal. Since this scenario is about delivering packages a trade involves the physical 

exchange of packages. The final result is that agent 1 will deliver two packages to 

destination A, while agent 2 will deliver one package to destination D. The situation 

after this trade is shown in the following table: 

 

Step 3.  
Final task 
distribution 

Agent Location Task set Cost = Length of 
minimal path 

Agent 1 C {A, A} ≅ {A} 2 

Agent 2 C {D} 1 

 

Protocol 

The WALID community protocol diagram is shown in Figure 30. 
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Figure 30. WALID Community Protocol Diagram 
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Vocabulary 

The WALID vocabulary is defined in Table 21.  

 

Table 21. WALID vocabulary 

Implementation Message 
Type  

Description 

Attribute Name Implementation 
Type 

Description 

Description String Textual description 
of task 

Location_x Int Map location 
where tasks needs 
to be performed     

Tasklist A message of this 
type represents the 
tasks a user has to 
do. It contains a 
list of tasks, each 
of which consists 
of a textual 
description and a 
location.    

Location_y Int Map location 
where tasks needs 
to be performed     

UserA Proem.UserID ID of first user 

UserB Proem.UserID ID of second user 

TasksA java.util.Set The task set to be 
performed by user 
A 

Deal A deal is 
represented by 
two sets of tasks 
indicating an 
assignment of 
tasks to the two 
agents 

TasksB java.util.Set The task set to be 
performed by user 
B 

Response A message of this 
type indicates 
whether a user 
agrees to swap 
tasks or not. 

Accept Boolean A value of true 
indicates that the 
user accepts a deal, 
false indicates the 
use does not accept 
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VII.6.4 Implementation 

The WALID application consists of several Java classes as listed in Program 8:  

• WALID_UserProfile implements the user profile 

• WALID_Tasklist, WALID_Deal and WALID_Response are classes 

implementing the vocabulary  

• WALID_Peerlet is derived from GenericPeerlet and implements the community 

agent (Program 9). 

• WALID_UI displays the user interface and handles the user interaction (not 

shown).   

In our discussion, we will ignore the implementation of the user interface and 

limit our attention to the agent implementation. 

 

Program 8. WALID Message and User Profile Classes 

1. class Task 
2. { 
3.  public int id; 
4.  public String description; 
5.  public int location_x; 
6.  public int location_y; 
7. }; 
8.  
9. class WALID_Tasklist implements proem.MessageBody 
10. { 
11.  public Set tasks; 
12. }; 
13.  
14. class WALID_Deal implements proem.MessageBody 
15. { 
16.  public UserID userA; 
17.   public UserID userB; 
18.  public Set  tasksA;  // tasks for user A 
19.  public Set  tasksB;  // tasks for user B 
20. }; 
21.  
22. class WALID_Response implements proem.MessageBody 
23. { 
24.  public boolean response; 
25. }; 
26.  
27. class WALID_UserProfile extends proem.GenericUserProfile 
28. { 
29.  public String name; 
30. }; 
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Program 9. WALID Peerlet 

1. public class WALID_Peerlet implements GenericPeerlet 
2. { 
3.  Set tasks;   // this user's task set  
4.   HistoryService   hs = Proem.getHistoryService(); 
5.   MessagingService ms = Proem.getMessagingService(); 
6.  int state = 0;  // communication state according to CPD 
7.  
8.  static public PeerletID getPeerletID () 
9.   { 
10.   return new PeerletID("proem:peerlet:WALID_01"); 
11.   } 
12.   
13.  static public ProtocolID getProtocolID () 
14.  { 
15.   return new ProtocolID("proem:protocol:WALID"); 
16.  } 
17.  
18.  public void handleProemEvent(Event event) 
19.  { 
20.   UserID remote_user; 
21.   WALID_Deal deal; 
22.  
23.  
24.   if (event instanceof BeginEncounterEvent) 
25.   { 
26.    Ecounter encounter = ((EcounterEvent)event).getEncounter();  
27.    WALID_UserProfile profile = encounter.getUserProfile(); 
28.    remote_user = profile.getUserID(); 
29.    if (hs.getSecondsSinceLastEncounter(remote_user)) > 60*60) //1hour 
30.    { 
31.      Message mes; 
32.      mes = ms.newMessage(“proem:messagetype:tasks”,getProtocolID(),tasks); 
33.      ms.send(remote_user, mes); 
34.       state = 1; 
35.    } 
36.   } 
37.   else if (event instanceof IncomingMessageEvent) 
38.   { 
39.    Message in = event.getMessage(); 
40.      
41.     if (in.getMessageType().equals("proem:messagetype:tasks") && state == 1) 
42.    { 
43.     deal = computeDeal(tasks, in.getBody().tasks); 
44.     in.setMessageBody(deal); 
45.     ms.send(in.getSender(), in); 
46.     state = 3; 
47.    } 
48.  
49.     if (in.getMessageType().equals("proem:messagetype:tasks") && state != 1) 
50.    { 
51.      Message mes; 
52.      mes = ms.newMessage(“proem:messagetype:tasks”,getProtocolID(),tasks); 
53.      remote_user = in.getSender(); 
54.      ms.send(remote_user, mes); 
55.  
56.     deal = computeDeal(tasks, in.getBody().tasks); 
57.      in.setMessageBody(deal); 
58.     ms.send(in.getSender(), in); 
59.     state = 3; 
60.    } 
61.  
62.    if (in.getMessageType().equals("proem:messagetype:deal")) 
63.    { 
64.     deal = pickWinningDeal(deal, in); 
65.      in.setMessageBody(deal); 
66.     WALID_UI.send(in); 
67.    } 
68.     
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69.     if (in.getMessageType().equals("proem:messagetype:response")) 
70.    { 
71.     WALID_UI.send(in); 
72.    }  
73.   } 
74.    else if (event instanceof UserInterfaceEvent) 
75.   { 
76.    if (in.getMessageType().equals("proem:messagetype:response")) 
77.    { 
78.     ms.send(in.getSender(), in); 
79.    } 
80.  
81.   } 
82.   else if (event instanceof EndEncounterEvent) 
83.   { 
84.    // do nothing 
85.   }  
86.  }  
87. } 

 

The code of the WALID peerlet consists of a variable declaration section (lines 

3-6) and three methods. The variables are: 

• a variable for storing the user’s tasks (line 5)  

• a variable for holding a reference to the global MessagingService object. 

• a variable for holding a reference to the global HistoryService object. 

• A state variable for keeping track of the communication state. 

The main component of the peerlet is the handleProemEvent() method (line 17-

85). It directly reflects the community protocol as defined by the WALID community 

protocol diagram shown in Figure 30. The method consists of one large if-statement 

with four cases for handling events indicating (1) the beginning of an encounter (2) an 

incoming message and (3) a user interface event and (4) the end of an encounter.  

Upon receiving a BeginEncounterEvent, the peerlet constructs a message 

containing the tasks and sends it to the encountered user (line 27).  

Upon receiving an IncomingMessageEvent, the peerlet either forwards the 

message to the user interface or, when receiving a task list, responds by sending a deal 

back the encountered user’s agent (lines 45 and 58).  
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Upon receiving a UserInterfaceEvent, the peerlet forwards the user’s response 

to the agent of the original sender (line 78).  

An EndEncounterEvent is ignored by the peerlet (line 84) 

VII.6.5 Summary 

The WALID application illustrates how agents implement a reasonable 

community protocols. In order to build this application, the programmer needs to 

understand  

• how to implement a peerlet by deriving a new class from the class 

GenericPeerlet 

• how to handle events 

• how to use the history service 

• how to send messages to either the user interface or a remote agent. 

VII.7 Summary 

This chapter has presented several case studies of applying the development 

framework. In particular, it has shown two things: 

• The use of the design language to capture key aspects of wearable community 

applications.  

• The use of the Peerlet application framework for implementing wearable 

community applications.  

The semi-automatic generation of code templates and the powerful service API 

dramatically simply the development by reducing the amount of code that programmers 

need to write.  
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Chapter VIII 

 

DISCUSSION 

This chapter discusses issues related to the utility and novelty of the research 

presented in this dissertation. First, it described our experiences in using the Proem 

platform in software engineering education. This will attest to the utility of our work. 

Next we discuss the differences and similarities of Proem with existing software 

development platforms. This will attest to the novelty of our work. Finally, we discuss 

possible enhancements and additions. In particular, we will talk about reputations as 

mechanisms for trust in wearable communities and peer-to-peer dissemination of 

wearable community applications.  

VIII.1 Experiences of Using Proem in Software Engineering Education 

In the previous chapter, we demonstrated how to build wearable community 

applications with the Proem platform. We were able to demonstrate that the amount of 

code that needs to be written to create applications is fairly small and that the code 

structure is straight forward. While we have successfully used Proem over the years as a 

research test bed, our own experiences are of limited use when it comes to evaluating 

utility of the WearCoM methodology and the Proem platform. Just as the usability of 

application software can only be evaluated through empirical tests with real end users, 

so can the utility of development tools only be evaluated by empirical tests with real 

developers. Preferably, these developers should be independent developers who were 
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not involved in the design and implementation of the tool itself. Rather than performing 

artificial experiments in a lab, we decided to study how Proem performed in practice by 

using it as development platform in several software engineering courses at the 

University of Oregon. This approach, while delivering more realistic results than mere 

lab tests, has one important drawback: we more not able to perform comparative studies 

of application development with and without Proem. In the following, we will outline 

our methodology and the result of this study.  

VIII.1.1 Methodology 

Between spring of 2001 and spring of 2002 three different software engineering 

courses were taught at the University of Oregon’s Computer Science Department using 

Proem as development platform. These courses were:  

• CIS 650: Software Engineering: Peer-to-Peer Computing, Spring 2001  

• CIS 610: Mobile Information Systems, Fall 2001 

• CIS 422/522: Software Methodologies, Spring 2002 

600 courses are graduate level courses and 400/500 courses are mixed 

undergraduate/graduate level courses. Each course ran ten weeks.  

User Population   

In total, 35 students participated in this study. Of these, 10 were undergraduates 

and 25 were graduate students. All but 5 students were computer science majors. All 

students had medium to advanced Java skills. None of the students had any prior 

experience in wearable computing, peer-to-peer computing or wireless networking.  
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Projects 

In total, 4 different projects were undertaken aimed at building 4 different 

wearable community applications: 

• mClique: a wearable community application aimed at group awareness. The 

goal of this application is to determine groups (= cliques) of mutually connected 

friends.   

• mBazaar: a wearable eBay application that enables users to buy, sell and trade 

goods and services.    

• PIRATÉ : a collaborative music guide. 

• Infomediation: a distributed application that enables users to access 

infomediation services provided by other users. Each service enables users to 

query the database that drives one of the major book sites (Amzon.com, 

BarnesAndNoble etc.). As result, users were able to perform collaborate price 

comparisons for books. This application is described in (Segall et al. 2002). 

All projects were undertaken by one or more teams of between 3 and 4 students. 

Both mClique and mBazaar were implemented by 1 team; PIRATÉ was implemented 

twice (by two different teams) and the infomediation application was implemented by 5 

teams. The infomediation application was unique in that it was developed using a 

distributed development process. All teams specified a common community language 

and then independently implemented interoperable service components. The end result 

was a heterogeneous system. In contrast, all other systems were individually designed 

and implemented by just one team.  
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Figure 31. Infomediation Architecture 

Process 

Each course ran for 10 weeks and was divided into three phases: 

Introduction into the application domain (1 week = 2 lectures) 

Introduction to the WearCom methodology and the Proem platform (1 lecture) 

Project work (design, specification, implementation) 

The introduction to the WearCom methodology and the Proem platform was 

done using one 45 minute lecture. At the same time, students were provided with a 

Proem User Guide that explains the installation and setup, a Programmer’s Manual that 

teaches how to write peerlets, and a single rather simple example application.  

The actual project work was divided into three iterations. At the beginning, each 

group outlined the tasks they planned to complete, and the features they planned to 

implement by the end of each iteration. At the end of each iteration, the groups 
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presented a demonstration of their progress, a summary of the challenges they 

encountered, and a discussion of unanticipated problems. The end result of each project 

consisted of design documentation and a running prototype implementation. The first 2 

weeks of the project work were reserved for reading, drafting specifications and 

software design. The actual implementation took between four and five weeks.   

At the end of each course, a questionnaire was handed out asking about each 

student’s experience with Proem, problems encountered and suggestions for 

improvement. 

Cooperation between teams was strongly encouraged, and extraordinarily 

useful, as many teams were solving similar problems. The only rule was “You are 

cheating if you do not acknowledge the contributions of others.”  Throughout the 

project, teams traded code, technical knowledge, and advice on using Proem.   

Equipment and Tools 

Development was performed in Java SE 1.3 on Sun workstations, PCs and 

notebooks. Because of logistical problems and lack of hardware, none of the teams had 

access to actual wearable hardware.  

The teams were free in their choice of development tools, but encouraged to 

utilize version control software, bug tracking software etc.  

The Proem version used in all projects was 1.1. It is very similar to the one 

described in this dissertation but lacked support for user interfaces. Thus, each team had 

to implement a user interface from scratch using Swing and AWT.   

Measured Variables 

During the courses, we closely observed the progress of each team and 

evaluated the final software implementation. We assessed Proem’s quality along the 

following dimensions: 
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• Learning time: how long does it take each team to implement the very first 

peerlet? The conceptual simplicity of Proem can be approximated by how long 

it takes students to learn Proem before they are able to use it independently. 

• Implementation time: how long does it take each team to implement their 

prototype (excluding time spent on design and specification). The effectiveness 

of the support provided by Proem can be measured by how long it takes 

students to implement a full-featured application on top of Proem. 

• Complexity of Developed Applications: Complexity of an application is hard to 

measure. We thus relied on two objective measures: application size and 

number of Proem API functions used (excluding user interface code).  

• Support Requirements: how many support incidents (email, personal contact) 

occurred over the entire project lifetime? In order for students to have timely 

access to technical support related to the Proem platform, we set up a mailing 

list. In addition, students had the opportunity to discuss questions with Proem 

developers during weekly face-to-face meetings. For each project, we tracked 

the number of support instances over the entire project lifetime. 

• Subjective satisfaction: what is the level of satisfaction among students (based 

on the questionnaire handed out at the end of class)?  
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VIII.1.2 Results 

The results of the study are summarized in Table 22.  

In our experiment, in under one week students were able to get the Proem 

platform up and running, experiment with the example application and write their own 

very simple tests (participating students carried a full work load with 3 to 4 classes and 

thus were only able to spend a fraction of their time on this particular project). Data 

extracted from informal interviews and the questionnaire indicates that it took 

individual students between 1 and 5 hours to write their first application. Considering 

that Proem consist of about 80 classes and interfaces this is a comparatively short time.  

The implementation time was bounded by the set up of the courses. Each team 

had about 4 weeks for the three iterations. The time estimates for individual students 

vary widely and range from 0 hours to 15 hours per week. Some of the teams were 

highly organized with some students responsible for only design and documentation and 

others only for implementation. Considering the varying quality of the implementations 

and the varying scopes of each project it is difficult to judge these numbers. In 

comparison, two similar projects not based upon WearCoM and Proem took 3 month 

each with a weekly time estimate of between 10 and 15 hours. 

The application size ranged from 22 Java classes (120KB source code) to 39 

Java classes (200KB source code). The overall complexity of most applications is high, 

given the decentralized character and the nature of the interactions. Most of the 

complexity, however, is hidden in the Proem network and service components.  
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Table 22. Result Overview 

  Learning 
time 

Impl. 
time 

Complexity 
(source code 
size 
excluding 
user 
interface) 

Complexity 
(percentage 
of API used) 

Support 
requirements 
(# support 
incidents for 
10 week 
time period) 

mClique 1 week 4 week 30 Java 
classes 
(~120KB)  

~20% 4 

mBazaar 1 week 4 week 25 Java 
classes 
(~110KB)  

~17% 3 

PIRATÉ 
(version 1) 

1 week 4 week 22 Java 
classes 
(~120KB)  

~39% 5 

PIRATÉ 
(version 2) 

1 week 4 week 39 Java 
classes 
(~200KB)  

~21% 1 

Infomediation 
(averaged over 
all teams) 

1 week 4 week 30 Java 
classes 
(~150KB)  

~20% 3 

Average 1 week 4 weeks ~ 30 Java 
classes 
(~145KB) 

~22% < 3 

 

Somewhat disappointing is the low percentage of API calls used by the 

application. In average, applications make use of only 22% of the API. After evaluating 

the source code, we found that some of the teams reimplemented functionality that is 
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provided by Proem instead of using the built-in functionality. Informal discussions 

revealed that some teams were not as familiar with the API as expected and thus they 

were not aware that they could have used built-in API calls. Up to 50% of the APIs 

could have been employed by each application, indicating that about half of the 

required functionality had not been discovered by students. Subsequently, we modified 

the names and signatures of some of the APIs in order to clarify the concepts and 

abstractions represented by them. It has yet to be determined if this will increase the 

clarity and usability of the API. 

The support requirements is the area were Proem really shines. The numbers are 

consistently low and never reach more than 5 support instances per project for the entire 

10 week span of the course. A contributing factor to this surprisingly low number is that 

students had been encouraged to share their understanding of the methodology and 

Proem across teams. About half of the support incidents were questions related to if and 

how a particular function is implemented by Proem, while about 25% were bug reports. 

Overall, we are very satisfied with the stability of the Proem platform. 

The evaluation of the subjective satisfaction suffered from a poor response to 

the questionnaire. Only few students submitted answers to the free-form questions that 

asked for particular good or bad experiences. However, when students answered the 

questions, the response was overwhelmingly positive. For example, two students 

answered the question “What do you particularly like about Proem?” as follows:  

•  “Its intuitiveness and good abstraction. We don't need to delve into its details 

and still can do complex job.” 

• “Working with Proem is just like working with JAVA APIs. Ease of use and 

understanding. Easy to start and get going.” 

Informal interviews after the end of each course indicated a very high 

satisfaction level and about 80% of students were convinced that they could not have 

done the project without Proem.  
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VIII.1.3 Key Benefits 

Summarizing our experiences during research projects and during the course 

experiments, we see the main benefits of the Proem platform in the following areas:  

Reducing the Complexity of Building Applications 

Proem simplifies the development task by raising the level of abstraction. This 

is achieved by three interrelated measures. First, the Proem platform provides network 

transparency and hides specifics of the underlying communication network from 

programmers. Second, it provides programmers with an application framework and a 

powerful set of APIs. Third, it realizes a simple programming model with a uniform 

event-based mechanism for peer-to-peer communication, presence-awareness and user 

interface management    

Enabling Rapid Development 

Proem enables rapid prototyping through a combination of several measures: 

first, the amount of code that needs to be written for simple applications is small. This 

allows programmers to have a simple application up and running within a very short 

time frame and add to it gradually. Second, Proem supports code reuse through a virtual 

machine architecture and application plug-in modules (= peerlets). A complex 

application can be realized as a collection of communicating peerlets that all run on the 

same machine within the same peerlet engine. Third, because of Proem’s cross platform 

capabilities, developers can write and test applications on workstations and afterward 

deploy them on wearable computers.   
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Enabling Independent, Distributed Development 

Proem represents an open, distributed software infrastructure for wearable 

community applications. With Proem, multiple developers can define a community 

protocol and create independent yet compatible implementations. This is made possible 

by two interrelated measures: first, by providing a common communication substrate in 

the form of the Proem Transport Protocol; second, by enabling developers to specify 

interfaces between devices in the form of peerlet protocols.  

Enabling Long term Modification  

Because of the virtual machine architecture and high-level APIs, applications 

are shielded from specifics of the underlying technologies. Modifications necessary due 

to innovations in communication and device technology can be hidden by the peerlet 

engine and are transparent to applications.  

Interoperability among Heterogeneous Devices  

Finally, interoperability among heterogeneous devices is guaranteed by two 

interrelated measures. First, the cross-platform nature of the peerlet engine makes it 

possible to install and run existing applications on any devices with a peerlet engine. 

Second, the network independence of the XML-based Proem Transport Protocol makes 

it possible for two different Proem implementations to interoperate regardless of the 

programming language used to implement them.  
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VIII.2 Related Software Platforms 

The Proem software platform has not been developed in a vacuum, but has 

benefited from ongoing work in many areas including mobile ad hoc networking, peer-

to-peer computing, mobile middleware platforms and mobile groupware. This chapter 

describes software platforms that address similar issues and challenges as Proem. As 

decentralization and peer-to-peer communication is one of the primary attributes of 

wearable community systems, we limit out attention to decentralized and peer-to-peer 

platforms. This excludes, for example, many of the software infrastructures developed 

for smart environment and interactive workspaces like Stanford’s iRoom project 

(Ponnekanti et al. 2001). Similarly, this survey does not cover intelligent agent 

platforms or languages such as Jackal (Cost et al. 1999) or KQML (Genesereth and 

Ketchpel 1994; Finin et al. 1994). Although we make use of the term agent to describe 

wearable community software artifacts, Proem is not an intelligent agent platform. In 

particular, it does not employ a formal agent communication language and semantic 

content representations. Agent languages tend to restrict agent communication. We feel 

that such a formal definition provides few advantages in a platform mainly concerned 

with supporting human collaboration.  

VIII.2.1 Mobile Middleware Platforms  

Proem can be seen as an example of a mobile middleware platform. Mobile 

middleware aims at facilitating communication and coordination of distributed mobile 

components, concealing difficulties incurred by mobility from application engineers. 

Until now, very few middleware solutions have been designed for decentralized mobile 

systems and ad hoc network environments. Moreover, most such platforms focus on 

data management as the main problem area. Examples include Bayou (Demers et al. 
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1994; Edwards et al. 1997), TSpace (Wyckoff 1998) LIME (Picco et al. 1999; Murphy 

2000; Murphy et al. 2001) and XMIDDLE (Mascolo et al. 2001; Mascolo et al. 2002).  

One of the first mobile platforms to address data management in mobile systems 

was Bayou. The Bayou system was designed to support collaboration among mobile 

users who are not continuously connected. It employs weak consistency replication 

techniques to manage replicas of shared user data (for example calendar items, 

electronic mail messages, documents). Arbitrary read and write operations to any 

replica are permitted without the need for explicit coordination with other replicas: 

every computer eventually receives updates from every other, either directly or 

indirectly, through a chain of pair-wise interactions. Weakly consistent replicated data 

is not transparent to applications; instead, they are aware that they may read weakly 

consistent data and that their write operations may conflict with those of other users and 

applications.  

TSpace and LIME are representatives of a tuple-space approach first developed 

in Linda (Gelernter 1985). TSpace is a middleware system whose goal is to support 

communication and data management on hand-held devices. Unlike Proem, TSpaces 

makes a sharp distinction between clients and servers. The client side has a small 

footprint, as it is designed to run on devices with scarce resources. The server side is 

supposed to be resource richer and it may run a relational or object-oriented database to 

achieve persistence of tuple spaces.  

LIME uses multiple tuple spaces, called interface tuple space each permanently 

associated to a mobile unit, and introduces rules for transient sharing of the individual 

tuple spaces based on connectivity. Each interface tuple space contains tuples that the 

unit wishes to share with others and it represents the only context accessible to the unit 

when it is alone. Access to the interface tuple space takes place using conventional 

Linda primitives, whose semantics is basically unaltered. However, the content of the 

interface tuple space is dynamically recomputed in such a way that it looks like the 

result of the merging of the interface tuple space of other mobile units currently 
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connected. The advantage of this model is that applications only need to worry about 

the content of their local tuple space, but not about connectivity and data distribution. 

XMIDDLE is an XML-based mobile computing middleware designed for ad 

hoc networks. Relying on peer to peer networking, it allows applications on different 

hosts to share data, manipulation it remotely or off-line, and reconciles the changes 

upon reconnection in an application dependent manner. Shared data is represented in a 

tree data structure. In order to share data, a host needs to explicitly link to another host’s 

exported data branches. The data are cached on the target host, enabling disconnected 

operations. Hosts may explicitly disconnect from each other or may be separated 

through physical movement. Upon reconnection, the XMIDDLE platform automatically 

reconciles any changes to shared data, using application metadata to resolve any 

conflicts. In addition to simple data sharing, XMIDDLE supports a distributed 

versioning scheme based on snapshots of shared branches. Version information is 

stored on each host in a manner that minimizes storage requirements. Hosts reconciling 

changes can identify common versions and use the latest one as a basis for 

reconciliation, thus conserving computational power and network bandwidth. 

Anhinga (Kaminsky 2001; Kaminsky and Bischof 2002) is another mobile 

middleware platform specifically designed for ad hoc networks of small mobile wireless 

devices. In contrast to the above mentioned platforms it not only concentrates on data 

management issues but also addresses communication aspects of collaborative 

applications. The unique feature of Anhinga is the Many-to-Many Protocol (M2MP), a 

network protocol based on broadcast messages that is designed for many-to-many 

communication among proximal devices. M2MP does not use device addresses. Rather, 

all M2MP messages are broadcast to all devices at once. The M2MP protocol represents 

an alternative to traditional message routing in ad hoc networks and shares similarities 

with the broadcast capability of the Proem Transport Protocol. In contrast to Proem, 

Anhinga only offers a low-level communication abstraction based on the notion of 

method calling. 
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Proem differs from these middleware platforms in its scope. It does not aim at 

providing a generic solution for a narrow problem domain (data management or 

communication), but a broad functional and abstraction layer for a particular class of 

applications, namely applications to support spontaneous collaboration among 

individuals. Important capabilities provided by Proem but not addressed by the above 

middleware platforms are identity management, presence awareness, communication 

models based on human identity and not device identity, and models of cooperation. On 

the other hand, Proem currently does not address data management issues, mainly 

because the wearable community applications we investigated did not require data 

sharing among users. However, the models and algorithms developed as part of Bayou, 

TSpace, LIME, XMIDDLE and Anhinga could easily be integrated into the Proem 

platform and made available as yet another service component if called for by future 

applications.     

VIII.2.2 Peer-to-Peer Platforms 

The recent interest in peer-to-peer computing has spawned several efforts aimed 

at creating peer-to-peer development platforms. The most prominent example is Sun’s 

JXTA (Gong 2001). JXTA is a core services framework that developers can adopt to 

build a wide range of sophisticated peer-to-peer applications. It provides the most basic 

functionality required by any peer-to-peer application: peer discovery and peer 

communication. A mobile version of JXTA, called JXME (Arora et al. 2002), which is 

aimed at the mobile information devices platform contained within the Java 2 Platform 

Micro Edition is currently under development.  

Both Proem and JXTA follow a protocol-centric paradigm in which a standard 

set of XML-based message formats is designed to let devices discover each other and 

interact with each other. Since the message formats are programming language neutral, 

applications can be written in different languages to run on heterogeneous platforms 

and still collaborate.  
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The differences between JXTA and Proem lie in the following areas: 

Proem is a platform for applications to support collaboration among people. 

User profiles, the presence protocol and people-based addressing all support this goal. 

In contrast, JXTA only supports interactions between peers, but does not provide 

abstractions and concepts related to users.  Proem is tailored for highly dynamic ad hoc 

network environments where connectivity and resource availabilities change constantly. 

The Proem Transport Protocol defines a functional layer on top ad hoc networks that 

provides the foundation for communication among peers. The Proem messaging service 

provides developers with a simple communication model and hides details of the 

underlying network technology. In contrast, JXTA’s communication model is geared 

towards semi-stable environments like the Internet.  

Finally, JXTA is a generic peer-to-peer platform that integrates only the most 

basic functionality required by any peer-to-peer application (namely discovery and 

communication). In other words, JXTA provides broad but shallow application support. 

In contrast, Proem’s support is narrow, but deep. It is designed for a specific application 

class and the Proem service layer combines the right abstractions and common 

functions required for building applications within this class.  

In addition to JXTA, a number of collaborative peer-to-peer platforms have 

been developed: 

• Groove (Groove Networks 2002) is an enterprise collaboration platform which 

can be used to connect peer groups on the fly using its own set of protocols. 

Both the client and server pieces of the Groove application sit on the user PC, 

but Groove peer groups can include network-connected mobile devices. 

• Magi (Bolcer 2000) is a peer-to-peer collaboration platform which relies on 

Internet-standard protocols such as http for data serving and SSL for security. 

Magi supports the WebDAV standard and allows users to read and write to 

remote documents stored on other users' computers. Magi can run within a 

PocketPC operating system and thus supports the latest generation of handheld 

devices.  



220 

 

  

• Pocket DreamTeam (Roth 2002) is a mobile version of the groupware platform 

DreamTeam (Roth and Unger 1998). DreamTeam is an environment for 

developing synchronous shared applications. It makes collaboration aspects 

transparent to applications, thus allowing developers to built collaborative 

multi-user applications just as easy as traditional single user applications.  

These platforms support traditional collaborative activities like file sharing, 

instant messaging and collaborative document editing. Although they support mobile 

peers, they are more geared towards work-related activities within teams. They do not 

support the spontaneous, presence-aware activities typical for wearable community 

applications and supported by Proem. 

VIII.2.3 Other Platforms 

Hive (Minar et al. 1999) is a distributed agent platform developed at MIT that 

serves as software infrastructure for MIT’s “Things That Think” project. Although 

billed as agent platform, HIVE is actually much closer to a distributed object system.  

Hive is based on the idea of an “ecology of distributed agents”. A HIVE 

application is created out of the interaction of multiple agents across a network. A Hive 

agent is a small, autonomous, self- describing program. Each agent is located in a 

particular place (in Hive, called a cell), and uses various local resources (shadows). 

Agents communicate with each other to share information and access to resources. An 

application is made from the communications and actions of agents. Hive provides ad 

hoc agent interaction, ontologies of agent capabilities, mobile agents, and a graphical 

interface to the distributed system.  

Similarly to JXTA, Hive is a generic platform that with shallow support for a 

large class of applications. Hive is mainly concerned with providing a decentralized 

communication infrastructure and is more like a distributed object systems than a 

middleware platform.   
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The main differences between Hive and Proem can be summarized as follows: 

• Hive is deeply rooted in the Java programming language and uses Java types to 

encode agent capabilities. This makes it very hard to implement Hive in any 

other programming language or to build a heterogeneous Hive application that 

consists of agents implemented in different programming languages. Proem, in 

contrast, has been designed to enable interoperability between heterogeneous 

implementations. This goal has been achieved by defining a programming 

language neutral communication standard in form of the Proem Transport 

Protocol. Proem follows a protocol-centric paradigm in which a standard set of 

message formats is designed to let devices discover each other, exchange data 

and events, and otherwise interact with each other. Since the message formats 

are programming language neutral, applications can be written in different 

languages to run on heterogeneous platforms and still collaborate. 

• Hive does not provide a standard way for agents to dynamically detect who else 

is on the Hive network. Contrary to the idea of a decentralized system, Hive 

relies on a registry to maintain membership in the global Hive network. In order 

to find out who else is on the network Hive cells need to contact the registry. 

Hive does not allow agents to advertise their presence throughout a network and 

thus does not adequately support the ad hoc formation of federations of Hive 

agents. This makes it very difficult to deploy Hive in dynamic ad hoc network 

environment. In Proem, discovery is completely decentralized and ad hoc.   

• Most importantly, Hive is agnostic about users. While Proem supports user 

profiles, people-based addressing and user relationships, Hive is purely agent 

(or object) centric and does not provide any high level APIs for applications to 

support human collaboration.  
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VIII.2.4 Summary 

Proem provides a set of features that in this combination is not provided by any 

other platform. This includes 

• peer-to-peer communication 

• decentralized discovery 

• presence-awareness 

• human-centered communication 

• platform independence 

• interoperability 

• simple programming model 

• extensive set of APIs for applications supporting spontaneous human 

collaboration (identity management, presence-awareness, relationships, 

interaction histories etc) 

Related platforms either focus on a narrow problem domain (for example, data 

management) or provide generic support for a very large class of applications. More 

important, however, is the fact is that the related platforms lack an associated 

methodology for developing applications. Without a methodology, there is no support 

for conceptual design and specification of applications supported by these platforms. 

Furthermore, without a methodology, it is very difficult to reuse design and software 

artifacts across applications. By integrating design, specification and implementation 

support, the WearCoM methodology and the Proem platform are uniquely equipped to 

facilitate rapid, yet systematic development of wearable community applications.  
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VIII.3 Enhancements  

The WearCom methodology and the platform are work in progress. There are 

two important shortcomings: first, although trust among individuals is an important 

aspect of wearable communities, Proem does not provide any trust mechanism; second, 

although peer-to-peer dissemination of wearable community applications is part of the 

WearCoM methodology, it is not implemented in Proem. In the following, we will 

discuss possible solutions to these shortcomings.  

VIII.3.1 Trust in Wearable Communities 

Social interactions are built around trust and at any given time, the stability of a 

community depends on the right balance of trust and distrust. We trust our friends to 

honor their word, we trust a doctor to give us medical advice and we often trust 

complete strangers to help us when we are lost or need assistance.  Even more so, 

members of a wearable community need to be able to reason about trust, to facilitate 

their social interactions. This leads to the question of how to evaluate the 

trustworthiness of wearable community member. In this chapter, we propose a trust 

framework for wearable communities based on reputations. The framework is grounded 

in real-world social trust characteristics and mimics the word-of-mouth flow of personal 

recommendations in the real world. The trust framework is based on a decentralized 

model and exclusively relies on direct peer-to-peer interactions.  

The proposed trust framework is not integrated into the Proem platform but can 

easily be added due to its peer-to-peer nature. We will sketch a Trust API as extension 

to the Peerlet Framework. 
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Approaches for Managing Trust  

Although a small number of trust models have been proposed for the virtual 

medium, we find that they are largely impractical for dynamic wearable communities. 

The traditional solution to the issue of trust is that of a centralized reputation server. An 

example of a widely used centralized reputation server is the one used by e-bay.com to 

provide trust information (reputations) about potential buyers or sellers in their open 

market. 

The centralized approach has many shortcomings.  The most significant is its 

vulnerability to falsified information.  A user with a large number of positive reports 

and a small number of negative reports looks like a legitimate trader unless the positive 

reports have all been falsified. Another problem with centralized reputation servers is 

the ability of anyone to know their exact reputation.  This lets the bad trader know when 

to “flush” their old identity and to start again with a clean slate. Finally, there is the 

trustworthiness issue of a centralized reputation server.  A centralized trust server places 

a great deal of unsupported trust in the security of the centralized server.  Can an on-line 

auction-house’s trust server trust information be trusted when they themselves are the 

buyers or sellers?  What about the reputations provided regarding their advertisers?  

Can the security of their trust server be trusted? How they will use the personal 

information, contained in trust/distrust statements you make about other users. 

Evidence of the ineffectiveness of a centralize trust server can be seen by the 

almost 10,000 cases of fraud relating to on-line auctions reported in 1999 to the 

National Consumer League (NCL 1998).  The National Consumer League also posts the 

following warning regarding online auction sites: “Look at the auction site's feedback 

section for comments about the seller. Be aware that glowing reports could be "planted" 

by the seller“.   

Another approach to handling trust is the decentralized model used by PGP 

(Zimmermann 1995). The PGP system introduces does not use a centralized reputation 

server but rather it allows users to vouch for one another.  An example of this is having 
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user A vouch for user B, and user B vouches for user C, and thus someone who trusts 

user A will also trust user C based on the chain of recommendations.  This is the basic 

transitive trust property that decentralized trust servers are based upon. 

Disseminating Reputations in Wearable Communities 

We have developed a decentralized reputation framework (Schneider et al. 

2000) that uses opportunistic physical encounters to propagate trust data.  Each member 

in the wearable community stores database information containing the reputation 

information on everyone they have personally negotiated with or have had information 

regarding others negotiations distributed to them. This reputation database has the 

following structure:  

• userid: unique identifier of the user the reputation entry is about. 

• personal opinion value: personal opinion about user userid based on personal 

encounters.  

• number of personal encounters with that person  

• community reputation value: summarized opinions of other users about user 

userid.  

• number of users who contributed to the community reputation value.  

The opinion values range from –2.0 to 2.0 with 0.0 corresponding to no 

information.   

Whenever members of a wearable community complete a negotiation and can 

evaluate how well their negotiating partner fulfilled their part of an agreement, they 

record their opinion of their negotiation partner in their local reputation database.  This 

information is propagated through a mutual exchange of local reputation databases 

whenever a social encounter in the wearable community occurs. 

This exchange allows both parties to update their databases after reasoning 

about the information provided.  Providing reputation has the effect of telling every 

person you encounter “here are my feelings about the people I’ve traded with and here’s 
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what I’ve been told about them.” This information may then be passed on during 

subsequent encounters and will eventually spread throughout the entire wearable 

community.  

Reasoning about and applying reputation information involves several steps:   

3. If there has been a recent exchange with the same user, then we assume that the 

information will only reinforce old views and should be discarded. This 

prevents any specific user from too much weight.  

4. If another user’s opinion differs too greatly from the personal opinion value 

then the information provided is suspect and will be disregarded.  

5. Otherwise, the values from the other users’ personal opinion and community 

opinion will be averaged in to the local user’s community information values.  It 

is important not to base any reasoning on the number of recommenders or the 

number of encounters, as this could allow users to have a stronger “voice” in 

recommendations by artificially inflating these values. 

This system solves the key problem of the centralized reputation server as each 

person can only provide a single positive or negative feedback about any other 

individual in a category. To get 10,000 positive comments about an individual would 

require 10,000 different people to provide positive feedback.  This is as opposed to the 

centralized server where one person can say positive things 10,000 times. 

The problem of an individual knowing their exact status in the eyes of the 

community also vanishes under this system.  It is replaced with only a general 

knowledge of ones reputation.  The distributed reputation server also solves the need for 

trust in a foreign server.  Everyone maintains their own information and if part of the 

databases suffers due to negligence or intentional corruption it will be corrected by the 

valid information in the rest of the community. 

By using social interactions to trade entire trust set data we gain the advantage 

of a rapid propagation of information from the numerous encounters in an environment, 

yet we maintain the advantages of a system that mirrors the way real world reputations 
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spread – by word of mouth during daily encounters.  In addition, a decentralized system 

does not suffer from the issues that occur with traditional reputation servers. 

VIII.3.2 Peer-to-Peer Application Dissemination 

The sixth phase of the WearCoM methodology entails the dissemination of 

wearable community applications through a peer-to-peer distribution mechanism. The 

current implementation of Proem does not support such a mechanism; however it 

provides most of the features necessary to implement it. Most importantly, Proem 

features a virtual-machine architecture and supports the explicit loading (and unloading) 

of application components (= peerlets).  

The missing features are related to a safe execution environment for peerlets 

and a transport mechanism for peerlets. 

VIII.3.3 Safe Peerlet Execution Environment 

In order to prevent harmful code from being spread throughout a community 

and to ensure safe execution of peerlets, a secure runtime environment with the 

following properties is required:  

• Verification of application code - to unsure integrity of application code 

• Safe execution of application code (sand boxing) - to prevent malicious code 

from causing harm 

Clearly, the Java programming language provides most of the building blocks 

for a safe peerlet execution environment. It is similar to an execution environment for 

applets.  
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VIII.3.4 Peerlet Transport Mechanism 

A peerlet transport mechanisms can be realized through a combination of a new 

built-in Proem protocol and the implementation of a transport manager. The new 

protocol, called Proem Distribution Protocol (PDP), can easily be built on top of the 

Proem Transport Protocol. Because peers exchange metainformation during an 

encounter including a list of the peerlets each of the carries, the PDP protocol is a 

simple request-reply style protocol: in the first step, one peer (the client) request a 

particular peerlet from another peer (the server). In the second step, the server either 

sends the peerlet or sends a negative response.  

The protocol logic is implemented on both sides by a transport manager. This 

manager has a user interface that enables users to initiate a request and approve or 

disapprove a transmission. As a matter of fact, it would not be difficult to implement the 

transport manager as a peerlet. This would only require minimal changes to the 

underlying Proem system.  

 

VIII.4 Design Principles for Wearable Communities 

The Proem platform provides a software infrastructure for wearable community 

applications and the WearCoM methodology guides the design and development 

process of such applications. Yet these both elements do not guarantee that the 

applications we build will actually contribute to the formation of successful wearable 

communities. In Chapter  II.3 we asked: “When does a collection of individuals using 

wearable computers become a wearable community?” After having developed an 

infrastructure for wearable communities and having developed a number of wearable 

community applications, we can provide some preliminary answers.  
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Our projects have provided us with insight into what works and does not work 

when building wearable communities. We have codified our experiences in form of 

design principles for wearable communities.  Design principles are guidelines that may 

be applied to evaluate existing designs, guide the design process and educate designers 

about the characteristics of successful systems. In Sociology, there exists an extensive 

body of empirical research on the success and failures of online communities (Godwin 

1994; Kollock and Smith 1996; Kollock 1998; Preece 2000) and face-to-face 

communities (Ostrom 1990). While we have not done any empirical studies on 

dynamics of wearable communities and the behavior of their members, we have 

identified six preliminary design principles that we believe contribute to successful 

wearable communities.  

 

Principle 1: Make users aware of hidden benefits of random encounters. The 

WALID community application has been designed according to this principle. When 

two individuals meet, they are usually not aware of each others tasks and if they happen 

not to talk about their respective errands will never find out that they are able to benefit 

from a trade. The proactive personal applications employed by WALID, however, are 

designed to look out for possible trading partners and to make their respective users 

aware if there is a mutually beneficial opportunity. Determining the value of a trade for 

each individual requires slightly complex but straight-forward calculations based on the 

current location, the distance to each destination and the type of the tasks. This type of 

calculation can easily be performed by software, but is difficult to do by humans. Once 

they have been made aware of an opportunity, users have the liberty to act upon or 

ignore the advise of their applications. 

 

Principle 2: Reward users for social interactions. We followed this strategy 

when we designed the Genome game: the game is constructed in a way that the person 

who interacts the most frequently with other people and with the largest number of 

people has the greatest chance of winning.  
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Principle 3: Enable individuals to recognize each other. Without identity and 

mutual recognition, a group of people will always remain strangers. In order to promote 

altruistic behavior and cooperation, a social feedback mechanism is required that allows 

individuals to evaluate and keep track of the behavior of others. Such a feedback 

mechanism requires identity and mutual recognition.  

 

Principle 4: Support Expressiveness. Live Action Role Playing games have 

gained widespread international popularity. Such games are social events that involve 

gatherings of people who have taken on imaginary identities based on historical or 

mythical characters. The social interactions taking place during such a gathering are the 

key feature contributing to the players’ enjoyment. Similarly, wearable communities 

enable members to invent digital identities to augment their true identities. Wearable 

communities should promote such creativity and artistic expressiveness to the largest 

extent possible.  

 

Principle 5: Use knowledge about past encounters to enrich present 

interactions. One of the most important aspect of social encounters is our ability to 

recognize other people and to remember if, when, where and under which 

circumstances we have met the person before. Wearable computers can not only be 

made aware of the user’s current context (defined by the presence of other individuals), 

but can easily keep track of an individual’s interaction history (historical context). 

Bringing this knowledge to the table can augment encounters in a significant way as 

highlighted by our FriendFinder application.  

 

Principle 6: Include social feedback loops. Any community has members who 

show disruptive or unruly behavior. In newsgroups, these are people who consistently 

and inappropriately flame other members. On EBay, these are members who cheat by 

not paying for items they purchased from other members or by artificially inflating bid 
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prices of items they sell. Successful communities are successful in part they have found 

a way of policing the behavior of their members, but not by giving some members 

extraordinary powers, but by way of social feedback mechanism. For example EBay, 

uses reputations (= aggregated signed information from EBay users on a user’s past 

transaction history) for giving members a way of rating and judging other members’ 

trustworthiness. The community as a whole can thus choose to “exclude” members 

from their community. 

 

These principles are preliminary as they are the result of informal observations 

by developers and not of systematic empirical studies. The necessary studies are outside 

of the scope of this dissertation. For a brief discussion of future research in this 

direction, see Chapter IX.   

VIII.5 Summary 

 This chapter discussed the utility and novelty of the research presented in this 

dissertation. First of all, we presented an evaluation of the WearCoM methodology and 

Proem platform. Through a set of experiments in which we used Proem as development 

platform in software engineering courses, we were able to determine its key benefits. 

These are: 

• A reduction in the complexity of building applications achieved by a 

combination of network transparency, a high-level application framework and a 

simple, unified programming model.  

• The facilitation of rapid development achieved mainly by the very small amount 

of code that developers need to write even for moderately complex applications 

• The facilitation of independent, distributed development achieved by the 

support for peerlet protocols which define a clean interface between 

components on different machines.  
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Two additional benefits are: 

• The facilitation of long-term modification of wearable community applications 

through a combination of a virtual machine architecture and high-level APIs.   

• Interoperability among heterogeneous devices through the use of the network 

and programming language independent Proem Transport Protocol.   

Second, this chapter discussed the differences of Proem to existing software 

development platforms. We concluded that such platforms either focus on a narrow 

problem domain (for example, data management) or provide generic support for a very 

large class of applications and that none provided an associated methodology for 

developing applications. Without a methodology, there is no support for conceptual 

design and specification of applications supported by these platforms. By integrating 

design, specification and implementation support, the WearCoM methodology and the 

Proem platform are uniquely equipped to facilitate rapid, yet systematic development of 

wearable community applications.  

Third, this chapter explored limitations of the current Proem platform and 

presented two areas for future enhancements: trust management based on reputations 

and peer-to-peer application distribution. 

Finally, we presented a set of preliminary design principles that attempt to 

capture aspects of successful wearable communities.   
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Chapter IX 

 

CONCLUSION AND FUTURE WORK 

In this final chapter, we summarize our research and discuss future research 

directions. 

IX.1 Research Summary 

The use of mobile communication and computation technologies in our society 

has reached the critical mass necessary to induce large-scale modifications of our social 

behavior, norms and conventions. With the move from mobile to wearable computers - 

devices that are constant, aware, communicative and proactive - we can expect to see 

changes that are even more dramatic. The general availability and wide-spread use of 

wearable technology will create new opportunities for computer-mediated communities. 

William Gibson once famously described cyberspace as "A consensual hallucination 

experienced daily by billions of legitimate operators, in every nation … " (Gibson 1984, 

51). Wearable communities represent an alternative model of human communication 

that instead of on shared imaginations relies on embodied real-world encounters and 

first-hand experiences.  

The key challenge for wearable communities is that social and technical issues 

interact and co-evolve in such intimate ways that they often merge. The success or 

failure of communities hinges on its ability to promote lasting personal relationships. 

Yet without prior experience we cannot know how to design technology that leads to 



234 

 

  

the emergence of successful communities. While past research on online communities 

provides valuable insight into the dynamics of traditional computer-mediated 

communities, it is not clear if and in as much the results are applicable to wearable 

communities. Since there is no sound theoretical foundation for building wearable 

communities, we advocated an exploratory design process based on rapid prototyping 

and successive incremental refinement. An exploratory approach starts with an initial 

technology prototype that is refined over time in an incremental process based on the 

success or failure of emerging communities.   

The engineering of wearable community systems - the hardware, system 

software and application software to support wearable communities - represents a non-

trivial challenge. A wearable community system is a loosely coupled, dynamic, 

decentralized system composed of potentially large numbers of wearable devices. In 

order to support the formation of wearable communities anywhere at anytime, such 

systems must be independent of external communication and computing infrastructures, 

relying solely on the capabilities of devices carried by individuals. To tackle the 

complexity of such systems, we introduced the distinction between wearable 

community infrastructure and wearable community applications.  Wearable community 

infrastructure comprises system-level software components that are useful and 

necessary for the support of a large variety of wearable communities. This infrastructure 

is generic in a sense that it embodies fundamental aspects of the wearable community 

domain. A set of requirements for wearable community infrastructure was discussed at 

the end of Chapter III. Wearable community applications are community-specific 

software applications that are built on top of and make use of functionality provided by 

wearable community infrastructure. Developing wearable community applications is a 

difficult task that requires highly specialized knowledge in a variety of fields. It ranges 

from understanding of human-factors issues related to new collaboration paradigms 

based on opportunistic, proximity-based interactions to technical issues related to 

expertise in ad hoc networking and context-awareness. The fundamental problem in the 

development of wearable community applications is the semantic gap between the 



235 

 

  

application domain and system layer. As of today, there is little or no direct support for 

the variety of features that wearable community applications require. Likewise, there 

are no appropriate programming and building abstractions for developers. This results 

in a lack of generality, requiring each new application to be built from the ground up. 

This situation is fundamentally incompatible with an exploratory design process based 

on rapid prototyping.  

IX.2 Contributions 

To address this problem, this dissertation made the following contributions: 

1. The first contribution is the WearCoM wearable community methodology. Its 

purpose is to guide the design and development of wearable communities and 

wearable community applications. It consists of three components: (1) a 

conceptual model that defines terminology and an abstract architecture; (2) a 

design language that addresses the specification of important analysis and 

design decisions and enables developers to specify key aspects of the 

application design; and (3) a development process that outlines a sequence of 

development steps that result in the creation of specific artifacts.  

• The central concepts of the methodology are community agent, user profile, 

and community language. A community agent is a personal, proactive, 

presence-aware and communicative software application that functions as 

intermediary between a user and a community. A user profile is a typed data 

item that defines the identity of a user within a community. It contains 

information a user willingly discloses to other community members and 

may include any information that is defined useful or necessary to identify 

or describe a person. A community language defines interactions that can 

take place between agents and users during an encounter. The description of 

a community language consists of two components: (1) the community 



236 

 

  

vocabulary is a collection of messages types that actors can exchange (2) 

The community protocol defines message sequences.  

• The wearable community design language is a semi-formal notation for 

specifying the key aspects of the design of wearable community 

applications. It provides the modeling language for: scenarios, user profile 

templates, community vocabularies and community protocols 

• The purpose of the wearable community process is to guide the activities the 

lead to the implementation of a wearable community application and its 

deployment on user devices. The design process guides design and 

development activities ranging from the initial design to deployment of 

application software on a user's device. The process is an iterative, cyclic 

process divided into seven phases: assessment, conceptual design, 

specification, implementation, seeding, dissemination and review. Each 

phase defines specific activities to be performed by users, designers or 

developers; the outcome of the phase is a specific set of design artifacts.  

2. The second contribution is the Proem peer-to-peer platform. Proem is designed 

to tightly integrate with the WearCoM methodology and provides infrastructure 

and development support required for wearable community applications. The 

main focus of Proem is the information needs of applications and the provision 

of high-level programming abstractions. The three main platform components 

are: 

• The Peerlet application framework, a collection of libraries and APIs for the 

rapid development of wearable community applications.  

• The Proem Runtime System, a software environment for hosting and 

executing applications built with the Proem framework.  

• The Proem protocols, a set of peer-to-peer protocols that define the way in 

which Proem peers communicate and cooperate over the network.  
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3. The final contribution of this research is the evaluation of the WearCoM 

methodology and Proem platform. Through several case studies involving 

design and implementation of sample wearable community applications and 

through a set of experiments in which we used Proem as development platform 

in software engineering courses, we were able to determine the key benefits of 

the Proem platform as follows:   

• Reducing the complexity of building applications: Proem simplifies the 

development task by raising the level of abstraction. This is achieved by 

three interrelated measures. First, the Proem platform provides network 

transparency and hides specifics of the underlying communication network 

from programmers. Second, it provides programmers with an application 

framework and a powerful set of APIs. Third, it realizes a simple 

programming model with a uniform event-based mechanism for peer-to-

peer communication, presence-awareness and user interface management. 

• Enabling rapid development: Proem enables rapid prototyping through a 

combination of several measures. First, the amount of code that needs to be 

written for simple applications is small. This allows programmers to have a 

simple application up and running within a very short time frame and add to 

it gradually. Second, Proem supports code reuse through a virtual machine 

architecture and application plug-in modules (= peerlets). A complex 

application can be realized as a collection of communicating peerlets that 

run on the same machine within the same peerlet engine. Third, because of 

Proem's cross platform capabilities, developers can write and test 

applications on workstations and afterward deploy them on wearable 

computers.  

• Enabling independent, distributed development: Proem represents an open, 

distributed software infrastructure for wearable community applications. 

With Proem, multiple developers can define a community protocol and 
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create independent yet compatible implementations. This is made possible 

by two interrelated measures: first, by providing a common communication 

substrate in the form of the Proem Transport Protocol; second, by enabling 

developers to specify interfaces between devices in the form of peerlet 

protocols. 

• Enabling long-term modification: Because of the virtual machine 

architecture and high-level APIs, applications are shielded from specifics of 

the underlying technologies. Modifications necessary due to innovations in 

communication and device technology can be hidden by the peerlet engine 

and are transparent to applications.  

• Interoperability among heterogeneous device platforms: Finally, 

interoperability among heterogeneous devices is guaranteed by two 

interrelated measures. First, the cross-platform nature of the peerlet engine 

makes it possible to install and run existing applications on any devices with 

a peerlet engine. Second, the network independence of the XML-based 

Proem Transport Protocol makes it possible for two different Proem 

implementations to interoperate regardless of the programming language 

used to implement them.  

By providing a common ground for the development and execution of wearable 

community applications, the Proem platform serves as a catalyst for wearable 

communities. The quality of the student projects – both in conceptual and technical 

terms – validates the overall effectiveness of the WearCoM methodology and the utility 

of the Proem platform. 
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IX.3 Future Research Directions 

Future research falls into two categories:  

• technical improvements and additions of the Proem peer-to-peer platform 

• empirical research into social aspects of wearable communities 

IX.3.1 Prototyping Environment  

In Chapter VIII we discussed two shortcomings of the current Proem 

implementations: the lack of a trust framework and the inability to copy peerlets, i.e. 

community agents, from peer to peer.  

Another area for future work is an even tighter integration of methodology and 

platform. In particular, we envision a unified graphical prototyping environment for 

wearable community applications. Such an environment would provide built-in support 

for the design language and development process and allow designers and developers to 

interactively specify an application design. The major new aspect of the environment 

would be the automatic generation of a community agent implementation from high-

level specifications. With the current design language it would not be possible to 

generate a complete implementation because the language lacks the capability to 

express specific details about the internal behavior of community agents. Thus, we 

could either generate a partial implementation or leave it up to developers to fill in the 

missing parts or we could enrich the design language. The current language is 

purposefully simple, because it was designed to mainly address the aspects that are 

unique to wearable community applications. A prototyping environment, however, 

could easily make use of existing specification methods for more complex software 

behaviors. Two areas seem especially interesting: a tool for analyzing community 

protocols that is able to verify important protocol properties (such as liveliness); a tool 
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for specifying user interfaces for proactive application. Since the community language 

includes interactions between users and agents, these tools could as well be combined. 

IX.3.2 Wearable Community Trial 

The idea of wearable communities is a vision that in its totality has not yet been 

realized. The two primary reasons are: (1) there are not enough wearable computer 

users to reach the critical mass necessary for community building (2) there is a lack of 

development support for wearable community applications.  

In this dissertation, we have addressed the second problem; the first one will 

become less of an issue as a technology progresses. As result of the current situation, 

wearable communities are confined to small groups of experimentally minded 

individuals at University or industry research labs. Although these technical and social 

circumstances might not perfect, we nevertheless need to address the question we raised 

early one: "What are the success criteria for wearable communities?" This question 

concerns the social behavior of individuals and can only by answered through 

controlled empirical evaluation of wearable communities. The challenges of such an 

undertaking are tremendous:  

• The high mobility of individuals makes it impossible to observe social 

interactions in a restricted lab space. 

• Participants of a study might be concerned about their privacy and modify their 

behavior while being observed. 

• There are technical difficulties of automatically collecting data from a highly 

dispersed group of individuals. 

These are challenges which must and are faced by any researcher trying to study 

communities, whether computer-mediated or not.  

The result of such a study would provide insights into several crucial questions 

including:  
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• In which way are wearable communities different from or similar to online 

communities?  

• In which way are wearable communities different from or similar to unmediated 

face-to-face communities? 

The results of a wearable community trial could be condensed to a set of design 

principles. These principles may be similar to the ones discussed in Chapter VIII, yet 

they would be proven by empiry and would not rely on preliminary observations by 

developers. At the end, the results could also be used to enrich the WearCoM 

methodology with a set of built-in design rules. In any case, large scale deployment of 

wearable community systems and empirical evaluation of wearable communities are 

necessary prerequisites for the successful creation of wearable communities.  

IX.4 Conclusion 

This dissertation has described a research framework for development support 

of wearable communities consisting of a methodology and associated software 

platform. The methodology addresses the social and technical design of wearable 

communities and community applications, while the platform realizes a foundation for 

rapid implementation of applications. Together, the methodology and platform function 

as catalyst for the development of wearable communities. 
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