

A METHODOLOGY AND SOFTWARE PLATFORM

FOR BUILDING WEARABLE COMMUNITIES

by

GERD KORTUEM

A DISSERTATION

Presented to the Department of Computer and Information Science
and the Graduate School of the University of Oregon

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

December 2002

ii

“A Methodology and Software Platform for Building Wearable Communities,” a

dissertation prepared by Gerd Kortuem in partial fulfillment of the requirements for the

Doctor of Philosophy degree in the Department of Computer and Information Science.

This dissertation has been approved and accepted by:

Dr. Zary Segall, Chair of the Examining Committee

Date

Committee in charge: Dr. Zary Segall, Chair
Dr. Steve Fickas
Dr. Daniel Zappalla
Dr. John Orbell
Dr. Sharad Garg

Accepted by:

Dean of the Graduate School

iii

An Abstract of the Dissertation of

Gerd Kortuem for the degree of Doctor of Philosophy

in the Department of Computer and Information Science to be taken December 2002

Title: A METHODOLOGY AND SOFTWARE PLATFORM FOR BUILDING

WEARABLE COMMUNITIES

Approved: __

 Dr. Zary Segall

In recent years, two innovative computing and communication technologies

have emerged: wearable computers and wireless personal area networks. Wearable

computers advance an innovative form of personal computing based on continuously

worn, intelligent assistants that augment memory, intellect, communication, and

physical senses. Wireless personal area networks (WPAN) are a new class of wireless

networks that provide seamless ad hoc communication over short-range radio links.

The convergence of these technologies creates new opportunities for technological

support of social interactions and face-to-face communities.

While past research has provided a partial understanding of the social potentials

of wearable computers and wireless personal area networks, we know little about the

iv

software engineering aspects of such systems. This dissertation aims to remedy this

situation by exploring software infrastructure and architectural support for co-present

communities. In particular, the goal of this dissertation is to develop a generic wearable

software platform that (1) enables spontaneous interactions in face-to-face settings,

(2) aids developers in the implementation of ad hoc collaborative applications and

(3) supports building of co-present communities.

The contribution of this dissertation is a methodology and software platform for

building wearable communities; that is, co-present communities that emerge when

enough people use their wearable computers to form webs of personal relationships.

Wearable communities are based upon embodied real-world human encounters

augmented by wearable computers. The proposed methodology defines a conceptual

framework for software support of wearable communities, and specifies a design

language and development process. The software platform addresses the information

needs of applications and provides developers with high-level programming

abstractions. To address the utility and practicality of the methodology and software

platform, the design and implementation of a number of wearable community

applications are presented and experiences of using the methodology in software

engineering education are reported.

v

CURRICULUM VITAE

NAME OF AUTHOR: Gerd Kortuem

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:

University of Oregon
University of Stuttgart, Germany
Johann Wolfgang Goethe-University, Frankfurt am Main, Germany

DEGREES AWARDED:

Doctor of Philosophy in Computer and Information Science, 2002,
University of Oregon

Master of Science in Computer and Information Science, 1995,
University of Oregon

Diploma in Computer Science, 1991, University of Stuttgart, Germany

AWARDS AND HONORS:

Fulbright Fellow, University of Oregon, 1992 - 1993

vi

ACKNOWLEDGEMENTS

The research behind this dissertation could not have been accomplished without

the personal and practical support of numerous people. My sincere gratitude goes

foremost to my parents and all my friends for their love, support, and patience over the

last few years.

I am appreciative and thankful for the support of my dissertation chair, Dr. Zary

Segall. Without his encouragement, trust and support this dissertation would not have

been written. I also would like to thank the members of my committee, Dr. Steven

Fickas, Dr. Daniel Zappalla, Dr. John Orbell and Dr. Sharad Garg for their support.

Jay Schneider deserves special recognition for his creativity and imagination.

He has been an untiring source of inspiration and ideas which I taped into many times.

I would also like to express my thanks and appreciation to the many students

who assisted me in the development of the software for this dissertation. These are (in

chronological order): Thaddeus G. Cowan Thompson, Jim Suruda, Dustin Preuitt, Jason

Prideau, Christian Tan, Wonkey Shin, and Andrew Fortier. That so many of the ideas

and concepts described in this dissertation have been realized is because of their

enthusiasm and skills.

Kevin Matthews has shown me who far one can go with dedication and

determination. I would like to thank him for the opportunities he offered me.

vii

I would also like to express appreciation to my friend, Lance Barton, who has

introduced me to a world beyond the close confines of this research. I am lucky to have

met him.

Over the past seven years Cindy has been witness to the many ups and downs of

my own dissertation process and no one could ask for a better friend and partner in life

than she has been to me.

Thank you all.

viii

TABLE OF CONTENTS

Chapter Page

I INTRODUCTION.. 1

I.1 Problem Description ... 3
I.2 Contributions .. 4
I.3 Outline .. 5
I.4 Topics Not Covered in This Dissertation.. 7

II WEARABLE COMMUNITIES ... 8

II.1 Social Wearable Computing.. 9
II.2 Wearable Communities ... 17
II.3 Building Wearable Communities .. 32
II.4 Summary.. 43

III BACKGROUND AND RELATED WORK ... 45

III.1 Wireless Ad-Hoc Networking.. 45
III.2 Peer-to-Peer Computing... 54
III.3 Communityware... 62
III.4 Systems to Support Face-to-Face Interactions... 64
III.5 Summary .. 77

IV WEARABLE COMMUNITY METHODOLOGY... 78

IV.1 Conceptual Model.. 80
IV.2 Design Language ... 86
IV.3 Development Process... 99
IV.4 Tool Support .. 104
IV.5 Summary.. 108

V THE PROEM PLATFORM.. 109

V.1 Architecture... 110
V.2 Peerlet Engine ... 117
V.3 Proem Protocols .. 121

ix

V.4 Peerlet Controller .. 135
V.5 Summary ... 137

VI THE PEERLET FRAMEWORK .. 138

VI.1 Application Model ... 138
VI.2 Peerlets... 139
VI.3 Peerlet User Interfaces ... 144
VI.4 Application Lifecycle... 146
VI.5 Proem Services... 148
VI.6 Deployment and Distribution... 161
VI.7 Summary.. 161

VII CASE STUDIES: BUILDING WEARABLE COMMUNITY APPLICATIONS 163

VII.1 Overview .. 163
VII.2 FriendFinder ... 165
VII.3 Genie... 171
VII.4 PIRATÉ Collaborative Music Guide.. 176
VII.5 mBazaar .. 185
VII.6 WALID: Opportunistic Task Trading .. 193
VII.7 Summary... 203

VIII DISCUSSION... 204

VIII.1 Experiences of Using Proem in Software Engineering Education.............. 204
VIII.2 Related Software Platforms... 215
VIII.3 Enhancements.. 223
VIII.4 Design Principles for Wearable Communities .. 228
VIII.5 Summary ... 231

IX CONCLUSION AND FUTURE WORK.. 233

IX.1 Research Summary .. 233
IX.2 Contributions.. 235
IX.3 Future Research Directions.. 239
IX.4 Conclusion ... 241

BIBLIOGRAPHY ... 242

x

LIST OF TABLES

Table Page

1. Edward T. Hall's spatial zones ... 12

2. Personal wearable computing vs. social wearable computing 17

3. Wearable Communities.. 23

4. Differences between Groupware and Communityware ... 63

5. Systems to Support Face-to-Face Communication: Overview 66

6. Systems to Support Face-to-Face Communication: Technology............................... 73

7. Main Concepts of the Wearable Community System Model..................................... 85

8. Genie scenario.. 89

9. Genie profile template.. 91

10. Genie vocabulary ... 92

11. Case Studies ... 164

12. FriendFinder Scenario.. 167

13. FriendFinder User Profile Template .. 168

14. PIRATÉ scenario ... 179

15. PIRATÉ user profile .. 179

16. PIRATÉ vocabulary ... 181

17. mBazaar Scenario... 186

18. mBazaar vocabulary... 189

19. WALID Scenario ... 193

20. WALID user profile template .. 194

21. WALID vocabulary.. 199

22. Result Overview... 211

xi

LIST OF FIGURES

Figure Page

1. Augmenting Social Space .. 14

2. Wearable community design problem ... 34

3. The iterative prototyping cycle .. 35

4. Wearable Community System.. 37

5. Multi-hop routing in an ad hoc network .. 52

6. Clue Finder... 70

7. WearCoM methodology overview... 79

8. Scope of a Community Protocol .. 84

9. Genie wearable community (Step 1).. 88

10. Genie wearable community (Step 2).. 89

11. Sample community protocol diagram .. 94

12. Complex transitions ... 96

13. Genie community CPD .. 98

14. Relationship between WearCoM roles, phases and artifacts 100

15. Proem Network .. 111

16. Peer Horizon... 112

17. Peers, peerlets, peerlet engines and peerlet protocols .. 113

18. Peerlet Engine Software Architecture.. 118

19. Cooperative Message Delivery .. 126

20. Distribution of Profiles in the Proem Presence Protocol.. 129

21. Peerlet controller user interface with one visible panel ... 135

22. Peerlet panel grid.. 136

23. Proem event type hierachy ... 141

xii

Figure Page

24. FriendFinder user interface .. 169

25. Genie user interface (screen 1)... 172

26. Genie user interface (screen 2)... 172

27. PIRATÉ community protocol .. 180

28. mBazaar community protocol .. 188

29. WALID Task Trading Example... 195

30. WALID Community Protocol Diagram... 198

31. Infomediation Architecture .. 207

xiii

LIST OF PROGRAMS

Program Page

1. FriendFinder Peerlet... 170

2. Genie Message and User Profile Classes ... 173

3. Genie Peerlet .. 174

4. PIRATÉ message and user profile classes ... 182

5. PIRATÉ Peerlet Class .. 183

6. mBazaar message classes... 190

7. mBazaar peerlet class... 191

8. WALID Message and User Profile Classes ... 200

9. WALID Peerlet .. 201

1

Chapter I

INTRODUCTION

Wearable computing advances an innovative form of personal computing

brought about by continuously worn, intelligent assistants that augment memory,

intellect, communication, and physical senses (Mann 1997; Rhodes 1997; Starner 1999;

Starner 2001). As wearable computing technology is taking on a larger role in our daily

lives, one the most important questions is how this technology will influence people’s

social behavior and change the way wearable computer users interact, cooperate,

organize and act collectively. Will it merely make people “smarter” by providing them

with seamless, context-aware access to information or will it contribute to rich social

interactions? Unfortunately, wearable computing research for the most part ignores the

crucial interplay between wearable computing technology and people’s social

behaviors. Current systems and applications emphasize intellectual and sensory

capabilities over interpersonal interactions and social competence. As we want to

advance the wearable computing paradigm as an innovative form of personal

computing, we need to carefully consider the social mechanisms, social potential and

social constraints of this technology.

Important research questions in this respect are:

• What are the social potentials of wearable computers, if any?

• What are the requirements and characteristics of wearable systems to realize

these potentials?

• How can we systematically and effectively build such systems?

2

• How can we evaluate the success of failure of these wearable systems?

This dissertation focuses on the second and third question, provides some

insights into possible answers for the first question and ignores the last question.

The focus of this dissertation is the combination of wearable devices and

wireless personal area networks. Wireless personal area networks, such as Bluetooth,

are a new class of wireless networks that enable seamless ad-hoc communication over

short-range radio links (typically up to 10 m).

The convergence of wearable devices and wireless personal area networks

creates opportunities for a new family of wearable computing applications aimed at

fostering human connections, enabling cooperation and collaboration, and supporting

natural social behaviors. Such applications hold the potential to modify established

social relationships and create new ones. In particular, it provides new opportunities for

community-building in the world of face-to-face encounters by bringing together

strangers and by enhancing social interactions among acquaintances.

This dissertation introduces the notion of wearable community. By wearable

community we mean a social network that emerges when enough people use wearable

communication and computing technology throughout their daily lives. A wearable

community is a community that is defined by the use of a particular technology, namely

wearable computers, in the same way an online community is defined by the use of the

Internet. Similar to online communities, wearable communities are multiparty

conversation organized around affinities and shared interests, bringing together people

who do not necessarily know each other personally. Unlike online communities, they

are based upon embodied, co-located, real-world human encounters that are mediated

and augmented by wearable computers. The notion of wearable communities builds on

preceding research aimed at technology to support face-to-face communication. In

particular, systems like ThinkingTags (Borovoy et al. 1996), MemeTags (Borovoy et al.

1997), i-Balls (Borovoy et al. 2001), Hummingbird (Holmquist et al. 1999) and Geney

(Danesh et al. 2001) have shown how mobile and wearable devices can be used to

3

facilitate face-to-face communication among friends and strangers alike and support

social practices of sharing, cooperation, learning and story-telling.

While we have at least partial answers to the question of the social potentials of

wearable computers, we know almost nothing about the engineering aspects of systems

supporting social face-to-face interactions. This dissertation aims to remedy this

situation by exploring requirements and architectural support for wearable community

applications.

Wearable community applications are a form of wearable communityware.

Communityware (Ishida 1998a, Ishida 1998b) is software that fosters social exchanges

and contributes to community building among a loose collection of individuals with

shared interests but no common goal. Communityware stands in contrast to groupware,

software that enables task-oriented cooperation and collaboration among members of a

well-defined group who share a common goal or purpose.

I.1 Problem Description

While enabling technologies for the realization of wearable community

applications have become widely available over the last years, namely wearable

devices, short-range wireless networks, mechanisms for spontaneous networking, as

well as context technologies, there is a lack of high-level development support in the

form of design methods and software infrastructure. Wearable communities require

loosely coupled, dynamic, decentralized systems composed of communicating wearable

devices. In order to support the formation of wearable communities anywhere at

anytime, such systems must be independent of external communication and computing

infrastructures, relying solely on the capabilities of devices carried by individuals.

Developing wearable community applications for such environments is a difficult task

that touches upon a wide variety of issues. These range from human-factors issues

related to collaboration paradigms based on opportunistic, proximity-based interactions

4

to technical issues of communication and context-awareness in dynamic ad hoc

networks.

The fundamental problem in the development of wearable community

applications is the semantic gap between the application domain and system layer. As

of today, there is no direct support for the variety of features that wearable community

applications require. Likewise, there are no programming and building abstractions for

developers to leverage off when designing such applications. This results in a lack of

generality, requiring each new application to be built from the ground up in a manner

dictated by the underlying network technology and device platform.

This set of problems associated with the development of wearable community

applications makes it clear that there is a need for the uniform support of the design,

implementation and deployment of wearable community applications. Thus, the goal of

this dissertation is to develop a conceptual framework and concrete tools to enable rapid

development of wearable community applications.

The hypothesis of this dissertation is:

A software platform that provides support for key abstractions together with a

development methodology that defines a systematic, repeatable process will enable

developers to build wearable community applications within a short time frame and

with reduced effort.

I.2 Contributions

This dissertation makes three main contributions:

1. The first contribution is the WearCoM wearable community methodology. Its

purpose is to guide the design of wearable communities and wearable

community applications. It consists of three components: (1) a conceptual

model that defines terminology and an abstract architecture; (2) a design

language that addresses the specification of important analysis and design

5

decisions and enables developers to specify key aspects of the application

design; and (3) a development process that outlines a sequence of development

steps that result in the creation of specific artifacts.

2. The second contribution is the Proem peer-to-peer platform. Proem is designed

to tightly integrate with the WearCoM methodology and provides infrastructure

and development support required for wearable community applications. The

main focus of Proem is the information needs of applications and the provision

of high-level programming abstractions. The three main platform components

are:

• The Peerlet application framework, a collection of libraries and APIs for the

rapid development of wearable community applications.

• The Proem runtime system, a software environment for hosting and

executing applications built with the Peerlet framework.

• The Proem protocols, a set of peer-to-peer protocols that define the way in

which Proem peers communicate and cooperate over the network.

3. The final contribution of this research is the evaluation of the WearCoM

methodology and Proem platform. To address the utility and practicality of the

methodology and platform for the development of wearable community

applications, we present five case studies and report our experiences of using

the methodology in software engineering education.

I.3 Outline

This dissertation is structured as follows:

 Chapter II explores social and technical aspects of wearable communities. We

present a set of design principles for wearable communities that represent requirements

for technological support of wearable communities and survey related systems to

6

support face-to-face communication. The chapter concludes by identifying the need of

and the requirements for a wearable community methodology. The main outcome of

this chapter is an understanding of why existing development support for wearable

communities is not sufficient.

 Chapter III presents background for this work. We summarize the key concepts

of the following areas: wearable computing, ad hoc networking, virtual communities

and communityware.

 Chapter IV introduces the WearCoM methodology. We lay out the underlying

conceptual framework and describe the design process and design language.

Throughout the chapter we provide example to clarify key concepts. The chapter

concludes with a discussion of tool support for the methodology. The outcome of this

chapter is an understanding of the key requirements of a wearable community platform.

 Chapter V and Chapter VI describe the Proem peer-to-peer platform. Chapter V

starts by discussing basic assumptions and providing an architectural overview. It then

goes on to discuss the set of protocols that lie at the heart of Proem: The Proem

Transport Protocol which defines a common messaging layer for ad hoc networks and

the Proem Presence Protocol which implements a mechanism for devices and users to

announce their presence throughout a network of wearable computers. Chapter VI

describes the Peerlet application framework for building presence-aware ad hoc

collaborative applications.

 Chapter VII presents five wearable community case studies. In each case we

follow the whole development process as laid out by the methodology and present

design and implementation details. Each of these case studies highlights one particular

aspect of the Proem platform.

 Chapter VIII discusses the main lessons learned from our experiences of using

the Proem platform. We start with a brief overview of the highlights and shortcomings;

next we contrast Proem with related software platforms. The chapter ends with a

discussion of experiences of using Proem as educational tool in software engineering

education.

7

 Chapter IX summarizes the key results of this dissertation and presents

directions for future research.

I.4 Topics Not Covered in This Dissertation

Like any other, this dissertation necessarily must limit its scope to a narrow set

of questions. As a consequence, it leaves open many equally important related

problems. Two subject areas which we do not investigate in this dissertation are privacy

and security. Privacy is the right of individuals to control collection and use of personal

information about themselves. Unlike security, which deals with safeguarding of

information from unauthorized users, privacy is concerned with the amount of

information known about an individual. Both privacy and security are essential for

systems that broadcast personal information over wireless networks. Wearable

communities depend on a careful tradeoff between revealing and hiding personal data:

if users disclose too much personal data, their privacy might be violated; if they do not

disclose any data, wearable communities might not emerge. Privacy and security in

open decentralized systems are issues that by themselves warrant extensive exploration.

As the focus of this dissertation is on the design process of wearable community

applications, we will not elaborate on mechanism to ensure privacy and security. The

last chapter, however, includes a brief discussion of trust as an alternative social

mechanism for dealing with some of the aspects of privacy and security.

8

Chapter II

WEARABLE COMMUNITIES

This chapter lays the groundwork for this dissertation by presenting a

conceptual framework of wearable computing support for social groups and social

interactions. In order to highlight our emphasis on social aspects of wearable computers

we first introduce the notion of social wearable computing. Social wearable computing

is concerned with augmenting every-day social interactions and aims at wearable

technology systems that enable collaboration and support natural social behaviors. We

then explore wearable communities as a concrete example of the social wearable

computing idea. A wearable community is a social network that emerges when enough

people use their wearable computers to form webs of personal relationships. Similar to

online communities, wearable communities are multiparty conversation organized

around affinities and shared interests, bringing together people who do not necessarily

know each other personally. Unlike online communities, they are based upon embodied

real-world human encounters that are augmented by wearable computing technology.

The chapter concludes with a discussion of technological challenges of wearable

community systems, i.e. the hardware and software to facilitate and support wearable

communities. The main outcome of this chapter is the realization of the need for

software infrastructure and architectural support for wearable communities in the form

of a wearable community methodology and wearable community software platform.

9

II.1 Social Wearable Computing

In recent years, wearable computing has emerged as a new discipline in the field

of computer science. The applications of wearable computers are broad and encompass

a wide spectrum ranging from personal to professional applications. They include

augmented reality (Starner, Mann, Rhodes, Levine, Healey, Kirsch, Picard, and

Pentland 1997; Rekimoto et al. 1998; Höllerer, Feiner, and Pavlik 1999; Höllerer,

Feiner, Terauchi, Rashid, and Hallaway 1999; Bauer et al. 1998; Kortuem et al. 1998),

maintenance (Smailagic et al. 1994; Siewiorek et al. 1998; Siewiorek et al. 1994;

Kortuem, Bauer, Heiber and Segall 1999; Bauer et al. 1998; Bauer et al. 1999), personal

information management (Rhodes 1997), shopping (Randell and Muller 2000), tourist

information and guidance systems (Smailagic and Martin 1997; Höllerer, Feiner,

Terauchi, Rashid, Hallaway 1999; Feiner et al. 1997), affective computing (Picard and

Healey 1997; Healey and Picard 1998), personal imaging (Mann 1996; Mann 2001b),

and video conferencing (Billinghurst et al. 1997; Billinghurst et al. 1998).

Although there is no commonly accepted definition of the term “wearable

computing” we can identify two diverging strands of research: some (for example

(Smailagic et al. 1994; Siewiorek et al. 1998)) see wearable computers as tools designed

for particular industrial or military tasks while others (for example (Mann 1997; Starner

1999)) see wearable computing as a radical form of personal computing characterized

by a near symbiotic relationship between man and computer. This symbiotic

relationship is made possible by a modification of the physical and temporal boundaries

of computer usage: (1) moving the computer directly onto the body and (2) making the

device interactionally constant, that is, making the device's inputs and outputs always

potentially active. One of the best illustrations of the latter idea, which we will refer to

as personal wearable computing, is the Wearable Remembrance Agent (Rhodes 1997),

a system that augments a user’s memory by proactively searching for and presenting

potentially valuable information based on a person's situational context: his location,

people in the room, time of day, and subject of the current conversation. Processing is

10

performed on a shoulder-worn wearable computer and suggestions are presented on a

head-mounted display.

The personal wearable computing idea was inspired in part by the works of two

seminal researchers: In 1960, J.C.R. Licklider (1960) published a paper with the title

“Man-computer symbiosis” in which he described his vision of real-time cooperation

between man and computer. Two years later, Doug Engelbart (1962) wrote a report

entitled “Augmenting Human Intellect: A Conceptual Framework” in which he laid

down his vision of a synergistic man-machine system for improving the intellectual

effectiveness of the individual human. In accordance with Licklider’s and Engelbart’s

ideas, personal wearable computing is aimed at assisting the individual and the

amplification of his intellectual and sensory capabilities. The most radical expression of

this view was formulated by Steve Mann (Mann 2001a) who coined the term

“humanistic intelligence”. Humanistic intelligence is a computing style designed to

assist human intelligence by augmenting and mediating the human senses. The

proposed augmentation and mediation of human senses is enabled and fundamentally

depends on body-worn computing devices that are always on and always active.

II.1.1 A Social Computing View of Wearable Computing

The personal wearable computing model has lead to a number of innovative

applications: augmented memory systems (Rhodes 1997), augmented reality navigation

systems (Feiner et al. 1997) and assistive wearable technology (Starner, Weaver, and

Pentland 1997), to name just a few. Yet, this research has failed to realize the social

potentials of wearable technology. Although the term “collective intelligence” has been

around at least as long as wearable computers have become feasible, today’s wearable

users largely live a lonely and disconnected life. Other than email, interaction among

fellow cyborgs is limited to the old fashioned way – through unmediated and un-

augmented face-to-face conversation.

11

In this dissertation, we propose an alternative model of wearable computing,

called social wearable computing. Social wearable computing defines a research

framework that addresses the fact that wearable computing technology is taking on a

larger role in human social lives. It is concerned with assisting and augmenting every-

day social interactions and aims at wearable technology systems that enable

collaboration and support natural social behaviors and compelling and effective social

interactions. Social wearable computing is motivated and made possible by the recent

emergence of wireless personal area networks (WPAN), a new class of wireless

networks that enable seamless ad-hoc communication over short-range radio links

(typically up to 10 m). Wireless personal area networks such as Bluetooth make it

possible for wearable computers belonging to different individuals to communicate

during face-to-face encounters, thus enabling computer-mediated interactions among

co-located people.

In contrast to personal wearable computing, social wearable computing focuses

on supporting social groups, e.g. families, groups of friends, class mates etc, rather than

disconnected individuals. This includes support for group formation processes and

activities within already well-established groups. Aspects of social live that fall within

the reach of social wearable computing are social awareness, social identity, group

belonging and social curiosity.

II.1.2 Augmenting Social Space

The key mechanism of social wearable computing is the augmentation of social

interactions and social space. Social space is a concept introduced by Edward T. Hall as

part of his theory of proxemics (Hall 1959; Hall 1962; Hall 1966). He established the

idea that there are distinct levels of proximity in interpersonal communication. In

western society, he distinguished four concentric spatial zones, each one a region

around the body demarcated by invisible, though operative, boundaries determined by

the characteristics of sense organs, the length of limbs and cultural conditioning, and the

12

particular relationship with the other (Table 1) (Hall 1966): intimate space – where

touch happens – is the closest "bubble" of space surrounding a person; personal space is

used for conversations and among friends and family members; social space is the

space in which people feel comfortable conducting routine social interactions with

acquaintances as well as strangers; and public spaces is the area of space beyond which

people will perceive interactions as impersonal and relatively anonymous. The

particular zone that we use depends on situational conditions such as our relationship

with the others and the activity we are engaged in.

Table 1. Edward T. Hall's spatial zones

Distance
Appropriate Relationships
and Activities

Sensory Qualities

Intimate distance
(0 to 1.5 feet)

Intimate contacts (e.g.
making love, comforting)
and physical sports (e.g.
wrestling)

Intense awareness of sensory inputs
(e.g. small, radiant heat) from other
person: touch overtakes vocalization
as primary mode of communication.

Personal distance
(1.5 to 4 feet)

Contacts between close
friends, as well as
everyday interactions with
acquaintances.

Less awareness of sensory inputs
than intimate distance; vision is
normal and provides detailed
feedback; verbal channels account
for more communication than touch.

Social distance
(4 to 12 feet)

Impersonal and
businesslike contacts

Sensory inputs minimal; information
provided by visual channels less
detailed than in personal distance;
normal voice level (audible at 20
feet) maintained; touch not possible.

Public distance
(more than 12
feet)

Formal contacts between
an individual (e.g. actor,
politician) and the public

No sensory inputs; no detailed visual
input; exaggerated nonverbal
behaviors employed to supplement
verbal communication, since subtle
shades of meaning are lost at this
distance.

13

Social space varies across individuals according to factors such as culture, age,

and gender and is characterized by direct verbal communication, embodied co-presence,

mutual awareness and shared artifacts.

Wireless personal area networks make it possible to augment social space. They

generate a sphere-like digital space that envelops a wearable computer and its users.

This digital space is filled with information broadcast by the wearable computer. The

extension of the space depends on the transmission range of the wireless transceivers

and can range from a few inches to several feet. The digital space is invisible to the

human eye but can be sensed by wearable computers: as soon as the digital spaces of

two wearable computers overlap, they become aware of each other.

The digital field created by wireless personal area networks can is the alter ego

of human social space. Just as the concept of social space describes factors that

influence inter-personal activities, the concept of digital space describes factors that

influence interactions between wearable devices. Interactions in the social realm can

initiate interactions in the digital realm, and vice versa. For example, during a

conversation, two individuals may exchange electronic business card between their

Personal Digital Assistants (PDAs). Here, social interaction leads to digital interaction.

On the other hand, interactions between wearable devices can facilitate, promote or

even augment social interactions between their users. For example, wearable computers

connected by wireless personal area networks can inform their users about the presence

of nearby persons, suggest a conversation topic for two strangers meeting for the first

time or speculate about affinity relationships from repeated encounters (Terry et al.

2002). To refer to the combination of social space and corresponding digital space we

introduce the term augmented social space. In an augmented social space, human

interactions are augmented by digital interactions (Figure 1). In this context

“augmented” refers to the assistive and complementary nature of the interactions and

indicates a temporal, physical and semantic correlation.

14

Digital interaction

Human interaction

Wearable
computer

Wearable
computer

Figure 1. Augmenting Social Space

II.1.3 Wearable Computers

The personal wearable computing model is embodied by a very specific form of

wearable computer. Wearable computers are typically composed of a CPU and storage

unit attached to a belt or carried in a backpack, see-through head mounted display

(HMD), wireless communications hardware and an input device such as touchpad or

chording keyboard. Worn on the body, they provide constant access to computing and

communications resources. Over the years, there have been many attempts at defining

what distinguishes a wearable computer from a simple mobile or handheld device.

Rhodes (Rhodes 1997, 3) lists five essential characteristics of wearable computers:

(i) “Portable while operational: The most distinguishing feature of a wearable

is that it can be used while walking or otherwise moving around. This

distinguishes wearables from both desktop and laptop computers.

(ii) Hands-free use: Military and industrial applications for wearables

especially emphasize their hands-free aspect, and concentrate on speech

input and heads-up display or voice output. Other wearables might also use

15

chording-keyboards, dials, and joysticks to minimize the tying up of a user's

hands.

(iii) Sensors: In addition to user-inputs, a wearable should have sensors for the

physical environment. Such sensors might include wireless communications,

GPS, cameras, or microphones.

(iv) "Proactive": A wearable should be able to convey information to its user

even when not actively being used. For example, if your computer wants to

let you know you have new email and whom it's from, it should be able to

communicate this information to you immediately.

(v) Always on, always running: By default a wearable is always on and

working, sensing, and acting. This is opposed to the normal use of pen-

based PDAs, which normally sit in one's pocket and are only woken up

when a task needs to be done.”

According to Rhodes, the main distinguishing feature of wearable computers is

that they are designed to minimize the distraction from the wearer's real-world tasks. A

wearable computer is no longer the main center of user attention (as is the case with

desktop and handheld computers) but it takes on an active support role. A similar

definition was offered by Starner (Starner 1999) who lists the following attributes as

necessary requirements for achieving human-computer symbiosis: a wearable computer

persists and provides constant access, senses and models context, augments and

mediates, and interacts seamlessly with the user by adapting its input and output

modalities according to the context.

Social wearable computing defines new requirements for wearable computers.

In order to support the social wearable computing model, we believe a wearable

computer must satisfy the following operational characteristics:

16

1. Constant: A wearable computer should be always on and always running, it

should not need to be turned on every time the user wants to use it (this does not

exclude the possibility of low-power sleep modes).

2. Presence-aware: A wearable computer should be aware of the presence of

nearby people (i.e. wearable computer users). The term “presence-aware” refers

to the acquisition and use of knowledge about the availability and reachability

of people.

3. Communicative: Wearable computers should be able to communicate with each

other. Most importantly, wearable computers should be able to communicate

with other nearby wearable computers through the use of short-range network

technologies like Bluetooth or IEEE 802.15 Personal Area Networks.

4. Proactive: A wearable computer should be able to perform tasks autonomously

and proactively without requiring explicit user intervention (interactivity may

also be supported). Most importantly, a wearable computer should be able to

interpret and react to changes in its knowledge about the presence of wearable

computer users in the immediate environment.

This characterization of a wearable computer is consistent with previous

definitions, yet adds further functional requirements: it defines the ability to

communicate with nearby devices as important attribute and it replaces the generic term

context-awareness with the more specific term presence-awareness.

The differences between the traditional personal model of wearable computing

and our new social wearable computing model are summarized in Table 2. The models

differ in what interface they focus on (human-computer vs. human-human), whether

they focus on the individual or on social groups, the object of augmentation (intellectual

capabilities vs. social interactions), the necessary device characteristics, and finally, the

applications. In the following, we will discuss the new applications made possible by

social wearable computing.

17

Table 2. Personal wearable computing vs. social wearable computing

 Personal Wearable Computing

Social Wearable Computing

Interface

Human – computer Human – human

Focus Individuals

Social groups

Augmentation intellectual and sensor
capabilities

Interpersonal interactions and
social space

Device characteristics Constant, hands-free, sensors,
proactive, portable while
operational (Rhodes 1997)

Constancy, mediation,
augmentation (Mann 2001a)

Persistent and constant, senses
and models context, augments
and mediates, interacts
seamlessly with the user
(Starner 1999)

Constant, presence-aware,
communicative, proactive

Applications Augmented memory,
augmented reality

Wearable communities

II.2 Wearable Communities

The social wearable computing model creates opportunities for a new family of

wearable computing applications aimed at fostering human connections, enabling

cooperation and collaboration, and supporting natural social behaviors. Social wearable

18

computing holds the potential to modify established social relationships, and create new

ones. In particular, it provides new opportunities for community-building in the world

of face-to-face encounters by bringing together strangers and by enhancing social

interactions among acquaintances. We call the social networks that emerge when

enough people use wearable computers throughout their daily lives wearable

communities. A collection of wearable computer users becomes a wearable community

when enough people use their wearable computers to form webs of personal

relationships.

The term community has a long and rich tradition in sociology, anthropology

and psychology and in recent times has become popular with the emergence of online

or virtual communities (Rheingold 1993). It is thus not surprising that the term

“community” has many different uses and connotations. In addition, many different

types of communities have been identified over time (e.g., intentional communities,

communities of interest, and communities of practice). In the most general terms,

Mynatt et al. (1997, 16) define a community as “a social grouping which exhibit in

varying degrees: shared spatial relations, social conventions, a sense of membership and

boundaries, and an ongoing rhythm of social interaction." With a view towards online

communities Howard Rheingold offered in his book, The Virtual Community

(Rheingold 1993) the following definition: "Virtual communities are social

aggregations that emerge from the Net when enough people carry on those public

discussions long enough, with sufficient human feeling, to form webs of personal

relationships in cyberspace." Finally, Jennifer Preece (Preece 2000) defines online

communities as

• a collection of people

• with a shared purpose,

• guiding policies and

• a supporting computer system.

19

Within the community, people interact with each other and take roles; the

shared purpose is a common interest or need that provides a reason for belonging to the

community; policies are (implicit or explicit) protocols that guide people's interactions

or folklore and rituals that bring a sense of history and accepted social norms (Preece

1999).

An important distinction exists between co-present (or face-to-face)

communities (Ostrom 1990) and online communities. Most computer-mediated

communities are online communities and are characterized by the fact that members are

separated in time and space. On the other hand, most co-present communities are not

computer-mediated and are characterized by direct interactions in face-to-face settings.

A wearable community is a computer-mediated co-present community. It is defined by

the use of a particular technology, namely wearable computers, in the same way an

online community is defined by the use of the Internet. Similar to online communities,

wearable communities are multiparty conversation organized around affinities and

shared interests, bringing together people who do not necessarily know each other

personally. Unlike online communities, they are based upon embodied real-world

human encounters that are augmented by wearable computing technology. The notion

of wearable communities acknowledges and is based on the unique value of random

encounters and face-to-face interactions. We believe that fully embodied human

moments are essential for community building. While online communities on the

Internet have led to a separation of physical place and social space, wearable

communities attempt to reunite the two.

II.2.1 Examples

In order to clarify the concept of wearable communities, we will now present

some concrete examples. Over the last years, we have designed and implemented a

variety of wearable community applications with the goal to explore social and

technical aspects of wearable communities. Most of these applications are aimed at

20

University students. There are two important reasons why we choose to focus on

students. First, students already form a loosely knit community and are likely to share

certain interests. Second, the frequency of random encounters and casual social

interactions is relatively high among students. Finally, most of our developers are

students themselves and thus have a chance to use and evaluate their own technology.

The three wearable community applications we will describe are PIRATÉ, WALID and

mBazaar. We will discuss the implementation of these applications in detail in Chapter

VII.

PIRATÉ

PIRATÉ (Kortuem et al. 2001) takes ideas from peer-to-peer file sharing

applications like Napster and moves them to the wearable domain. PIRATÉ is a

collaborative music guide that enables users to exchange MP3 play lists and music

recommendations during brief random encounters. The goal of this application is (1) to

enable user to discover new music they want to listen to based on the playing habits of

the people they most often meet; (2) to provide awareness of the most favorite music

titles within the community; and (3) to let users discover with whom they share a

common taste in music. These goals are achieved by serendipitously exchanging and

accumulating information throughout the day.

PIRATÉ implements the following scenario:

“Kim is a 20 year old architecture student and an ardent music lover. She has

an extensive CD collection and has digitized all of them as MP3s. During most of her

waking hours she can be seen sporting an MP3 player and headsets, especially when

she is working in her studio at school.

As soon as the first generation of Bluetooth-enabled wearable MP3 players

appeared on the market she rushed out to buy one despite its steep price: she knew that

most of her friends at the University would do the same. Her new MP3 player has the

21

ability to detect other MP3 players in the vicinity and to trade play lists with them. Kim

has set up her player to recognize the MP3 players of all of her music-loving friends

and to automatically trade information about the songs she listens to. So while Kim and

her friends are having lunch or are working in their studio, their MP3 players exchange

play list and generate personalized music recommendations that take into account the

listening habit of the entire social group. Furthermore, she has enabled the privacy

mode of her MP3 player. As a result, her player emits an audible signal every time it is

trading play lists with another device.

After each day at school, Kim downloads the information she collected from her

friends’ players to her laptop computer that is connected to the Internet. She then

downloads freely available samples of the songs her friends listen to and copies some of

them to her MP3 player. On a good day she identifies two or three new CDs she plans

to buy as soon as she has enough money.”

This scenario stresses two important points: first, interactions within wearable

communities may be fully automated, not requiring direct interactions between users.

The general willingness to share information and the opportunities presented by

physical proximity suffice for successful collaboration. Second, existing personal

relationships (such as between friends or colleagues) can play an important part in

wearable communities.

WALID

The second wearable community application is WALID (Kortuem, Schneider,

Suruda, Fickas, and Segall 1999). WALID implements a digitized version of the

timeworn tradition of borrowing butter from your neighbor. You do a favor for others

because you know that one day they will do it for you. With WALID two individuals

use their wearable devices to semi-automatically negotiate about the exchange of real-

22

world tasks: dropping of someone’s dry cleaning, buying a book of stamps at the post

office, or returning a book to the local library.

WALID employs personal agent software to find community members close by

and to negotiate the exchange of favors. The agents maintain a user's task list, becoming

fully aware of the locations and activities involved. When an encounter occurs, the

agents produce a negotiation. If both users approve, a deal is struck. The role of the

agent in a negotiation is to evaluate the value of favors and to keep scores. Having to

run across town just to drop off someone’s mail, compares unfavorably with buying

milk for someone if the grocery store is just a block away. WALID agents employ ideas

from game theory to ensure that results of negotiations are mutually beneficial. They

cooperate only if there is the opportunity to enhance the users' goals.

WALID illustrates the importance of trust in wearable communities. It is

unlikely that people are willing to trade tasks unless they trust each other to a certain

extent. Thus, WALID works best for close-knit groups with established trust

relationships (for example groups of friends, classmates or colleagues).

mBazaar

mBazaar is a wearable community application developed to support students in

buying, selling and swapping of personal items like CDs, books, bikes, furniture, and

electronics. mBazaar employs personal agents that ‘advertises’ items a user wants to

buy or sell to nearby wearable users. The use of a short-range wireless network

guarantees that only people in the immediate vicinity of the advertising user can receive

these ‘virtual classifieds’. At the time of an encounter between two or more individuals,

for example when students meet after class at a local coffee shop, the personal agents

identify matches between advertised items and exchange the users’ contact information.

Depending on the privacy preference of each user, contact information might be a cell

phone number or pictures of the users. The picture enables users to identify each other

in a crowed and to verbally negotiate a possible transaction right on the spot.

23

The three wearable community applications are summarized in Table 3.

Many other wearable communities can be envisioned: computing communities

in which computational resources like network bandwidth and computing cycles are

shared; helper communities in which members pledge to assist each other when in

distress; bargain-hunter communities in which members collectively search out sale

items in local stores; marketplace communities in which goods are exchanged without

money; job market communities in which free applications offer their services to

passerby’s; knowledge communities in which members collectively accumulate

information to create shared understanding; and finally political communities in which

members create new forms of spontaneous democracy and local activism.

Table 3. Wearable Communities

 PIRATÉ WALID mBazaar

User population Music lovers, groups
of friends, classmates,
students, colleagues
who frequently listen
to music.

Close-knit groups
with established
trust relationships
(for example
groups of friends,
classmates or
colleagues)

Friends, students,
colleagues

Purpose (1) To generate
personalized music
recommendations
based on listening
behavior of
community members
(2) To discover
people with similar
music taste
(3) to discover most
popular music titles

(1) To strengthen
the social ties of a
group by
identifying
opportunities for
mutual assistance
(2) to enable users
to do daily tasks
more efficiently

(1) to match buyers
and sellers while
they are close to
each other and are
able to talk to each

Exchanged data Play lists Task descriptions Classifieds

24

II.2.2 From Online Communities to Wearable Communities

The idea of wearable communities has precursors in other forms of computer-

mediated communities. In the following, we will highlight the differences between

online, mobile and wearable communities.

Online Communities

The invention of the Internet and the beginning proliferation of personal

computers in the early 90ths created a new digital media that almost instantly was

adopted by its users as a tool for social interactions. Today, people use the Internet to

stay in touch with friends and family by sending greeting cards, sharing vacation

photos, and chatting about daily life. One of the most powerful features of the Internet

is its ability to enable total strangers to interact on a very personal and sometimes even

intimate level. People who have never met in their entire life (and are unlikely to ever

do so) use the Internet to discuss personal matters related to health, raising kids,

romance and many other topics of shared interest. In effect, the Internet provides the

connectivity for the "Global Information Community" envisioned in 1968 by J.C.R.

Licklider (Licklider 1968, 2) as being "... not of common location, but of common

interest." The fact that the Internet is a place that enables a new type of social network,

one mediated by computer terminals and networks, was vividly described by Howard

Rheingold who coined the term “Virtual Community” (Rheingold 1993). He defined

virtual communities as “social aggregations that emerge from the Internet when enough

people carry on public discussions long enough and with sufficient human feeling to

form webs of personal relationships.”

Examples of successful online or virtual communities include Slashdot,

Sourceforge, and The Well.

25

Peer-to-Peer Communities

Recently, a new form of online communities has emerged, namely peer-to-peer

file sharing communities. Applications like Napster, Gnutella (CLIP2 2002; Kan 2001),

Freenet (Clarke et al. 2001) and KaZaA (Sharman Networks 2002) have created

communities of users who anonymously trade MP3 files over the Internet. In contrast to

traditional web-based online communities which create a centralized shared space for

interaction, peer-to-peer file sharing occurs in a decentralized fashion via direct pair-

wise interaction between users (Napster uses a centralized directory of available music

titles, but file exchanges still occur in a direct peer-to-peer fashion). From a social point

of view, peer-to-peer communities can be seen as a special form of online communities

with the following unique characteristics: (1) they are very specific in their purpose

(trading MP3 files is the only supported activity), (2) they are anonymous (in contrast to

most web-based communities, users of peer-to-peer file sharing communities have no

(semi-)persistent identities such as user names or handles; exchanges occur between

computers with IP addresses but not between users), and (3) there are few guiding

policies to resolve conflicts of interests (free-riders, people who download MP3s from

others but do not share their own collection, are a constant problem in file sharing

communities).

Reuniting Virtual Space and Physical Space

With the advent of online and peer-to-peer file sharing communities, social

space and physical place have become separated to an unprecedented degree.

Communities have emerged without relation to physical place, enabling people to

connect across the globe at any time of the day or night without the need to leave the

house or office. In some cases, this convenience can lead to a reduction in authentic

psychological encounters or "human moments": when a person finds it easier to

communicate anonymously with a stranger in a virtual world rather than to engage the

neighbor next door, the consequences may include severe psychological problems

26

including isolation and depression (Kraut et al. 1998). The lack of fully embodied

human moments in such cases may compensate or even reverse the otherwise positive

character of online communities.

In face-to-face meetings, vocal inflection and gestures carry significant social

cues which are necessarily absent from web-based tools. Thus, numerous attempts have

been made to enrich the communication in online communities and to reproduce the

physical world’s rich set of social cues in the online world. Still, the vast majority of

online communities on the Internet today are text-based.

An interesting attempt to reunite virtual space and physical space was made

with the recent launch of the MEETUP web site (Meetup, LCC. 2002). MEETUP

provide a service that allows members to set up or find face-to-face meetings of like-

minded users in the same area. By telling the site where they are and what they are

interested in (quitting smoking, reading books, having pets), users can organize and find

meetings of other people in the same area and with the same interest. An important

aspect of MEETUP is that the early adopters of this service are people who are already

connected to a virtual community. Local meetups have already been scheduled for

people from the Slashdot, LiveJournal, and Plastic communities. This indicates how

interconnected virtual community members already are, and how much demand there is

to meet face-to-face.

Mobile Communities

With the advent of mobile technologies like cell phones and Internet-enabled

PDAs, online communities are slowly extending their reach to mobile users. Already,

chatting on mobile phones has become an important part of the lifestyle of certain

segments of the population. A recent study (Fox 2002) by the Social Issue Research

Centre in Oxford found that gossiping on mobile phones has become a vital “social

lifeline” for building relationships, solving conflicts, teaching social skills and making

friends. A similar conclusion can be drawn from observations of teenagers in some

27

Asian and European countries, where exchanging SMS text messages via mobile

phones has become a major part of adolescent rituals. Simultaneously, some online

communities have sprouted mobile extensions by giving users access to community

tools from their mobile devices, thereby allowing members to stay in touch with their

community at anytime from any place.

Despite their widespread and successful adoption, mobile phones and Internet-

enabled PDAs have serious flaws as tools for community building. Mobile phones

enable communication over long distances; they do not support many-to-many

communication and consequently do not facilitate random encounters (both virtual and

real) and anonymous relationships. Using cell phones it is difficult to create new

relationships, as they require the caller to have a fairly good idea who the callee is or a

good reason (and thus a relationship) to place a call in the first place. Moreover, the use

of mobile technology has the potential of decreasing real-world random encounters and

face-to-face interactions: by attending to people who are located elsewhere they may

reduce the amount of time and attention paid to strangers nearby and activities in public

places. All this makes current mobile technology good for maintaining existing

community relationships, yet ill suited for creating new ones.

With the mounting use of mobile communication and computing devices,

various successful mobile communities have emerged over time. One example is

Geocaching (Groundspeak Inc. 2002), a high-tech “treasure hunt” for users of the

Global Positioning System (GPS). The game involves a GPS user hiding “treasures” --

the cache and its contents (usually Tupperware with goodies inside) -- in public places

and publishing the exact coordinates on the Geocaching web site so other users can go

on a “treasure hunt” to find it. Users equipped with GPS receivers seek out nearby

caches and return back to the site to talk about it.

28

Differences between Virtual, Mobile and Wearable Communities

Wearable communities are different from online and mobile communities.

Similar to online and mobile communities, they are webs of relationships that grow

from computer-augmented social interactions. Yet, online and mobile communities

depend on indirect and remote interactions between users. In contrast, wearable

communities are based on direct face-to-face encounters. Thus, interactions in wearable

communities are situated and involve a rich social context.

The three wearable community applications described above highlight the

differences between traditional computer-mediated communities and wearable

communities:

Social context: In a wearable scenario involving WPANs exchanges are only

possible over short distances, that is, when people come face-to-face or are at least

within close physical proximity. Consequently, communication partners will be aware

of whom they are interacting with and be able to observe important social cues

including sex, clothing and gestures. In addition, they might even be able to talk to each

other. The addition of social context shapes people’s willingness to engage with

strangers and the particular manner in which they interact. For example, politeness and

trust are two aspects of human interactions that strongly differ when people interact

face-to-face vs. terminal-to-terminal across the Internet.

Usage context: The context in which wearable devices are used is different in

two important respects from using a stationary computer at home or in the office. When

wearable devices are involved, user attention is a scarce resource. Instead of sitting in

front of a computer where a user can pay full attention to the computer and its

operation, wearable computers are used in situations where the user’s attention is

occupied by demanding real-world task like driving, operating a machine, or simply

conversing with other people.

Furthermore, with wearable computers time becomes a critical resource as well.

When surfing the Internet at home or at the office people are less likely to care if an

29

operation takes just a few seconds or several minutes; they can always shift their

attention to another task. This is no longer true if exchanges occur between two

wearable devices. Since a connection can only be active while users are close to each

other, a lengthy interaction among two wearable computers is less likely to succeed

than a brief one.

Technical context: In comparison to wired computers networks, WPANs are

limited in terms of bandwidth and reliability. Using PIRATÉ as an example, this

suggests that rather than exchanging large-sized MP3 files, systems should be designed

to exchange metainformation, that is, URLs pointing to an MP3 file an a server or

recommendations about a song.

These observations make clear that wearable communities are significantly

different from traditional computer-mediated communities. Thus it becomes necessary

to rethink the whole system design and modify it in accordance with the social, usage,

and technical context.

II.2.3 Factors that Bind Wearable Communities Together

When does a collection of individuals using wearable computers become a

wearable community? A group of people comes together because each individual

recognizes there is something valuable that they can gain by banding together. This is

the theory of collective goods as formulated for example by Olson (Olson 1965) and it

applies to all types of communities, whether augmented by technology or not. Thus

looking for a group's collective goods is a way of looking for the elements that bind

isolated individuals into a community. What people find in a community varies and

may include knowledge, ideas, friendship, companionship, fun, excitement, money and

many other qualities that people value.

Yet, a community is not a perfectly organized group where everyone who

participates gains equally. One of the reasons is that peoples’ individual actions

typically serve their own self-interests. Although altruistic behavior is possible and

30

common, it is not the norm. In particular, when exchanges and transactions are

involved, conflicts can arise. How individuals deal with these obstacles and how they

adjust their behavior to overcome them makes the difference between a successful and a

non-successful community. In the following, we list some of the factors that are

relevant for wearable communities:

• Identity: All of our interactions, even those with strangers, are shaped by our

sense of with whom we are interacting. In interactions involving social space,

there are a wealth of cues of varying reliability to indicate our identity and our

intentions. Our clothes, voices, bodies, and gestures signal messages about

status, power, and group membership. We rely on our ability to recognize

fellow group members in order to know who we can turn to and what we can

expect. Our ability to identify others also allows us to hold individuals

accountable for their actions. Wearable technology enables people to define and

broadcast digital identities that may or may not be their true identities. In

contrast to online communities, these digital identities augment rather than

replace a person’s true identity as both are visible at the same time. Because

observers can match the digital identity to a person’s appearance and behavior,

it is difficult in wearable communities to switch identities at will.

• Privacy: Privacy and identity are two sides of the same coin. Privacy is the right

of individuals to control collection and use of personal information about

themselves. Unlike security, which deals with safeguarding of information from

unauthorized users, privacy is concerned with the amount of information known

about an individual. Privacy can be defined as an individual’s ability of

individuals to determine for themselves when, how and to what extent

information about them is communicated to others. Not all wearable

communities require members to disclose information about themselves.

Lurking and voyeurism are two behaviors that, within limits, are sanctioned by

social norms.

31

• Situational Context: Interactions in wearable communities take place within a

rich social and physical context and are thus subject to usual norms. Because

interactions occur in the real world, the location and the presence of other

people matter just as much as in non-augmented communities. The differences

between public and private space, crowded and empty rooms, meeting and

party, or intimate conversation and public lecture remain important just as in

unmediated situations (but unlike in online communities).

• Historical context: A wearable community is bounded in time and space. It has

a beginning and an end and is located within a limited physical space. Although

these boundaries might not be apparent to its members or outsiders, they

nevertheless exist. With an extension in time and space, each community has a

history and interactions that take place add to this history. In addition, each

community member has a very personal interaction history. Having a sense of

history and being able to learn from history is an important aspect of a wearable

community.

• Risks: As wearable communities are based on interactions taking place in the

real world, risks are real as well. In addition to risks of virtual communities like

being verbally assaulted or loosing money, wearable communities also include

risks to the person’s life and wellbeing. Fear of being assaulted and injured may

make people more careful than in virtual communities.

• Trust: Trust is an aspect of human interactions that strongly differs whether

people interact face-to-face or terminal-to-terminal across the Internet (Misztal

1999). Being able to look someone in the face, and observe gestures and mimic

can tell you a lot about another person. The reason why people place so much

importance in a handshake when completing a transaction - such as selling a car

- is that it is a sign of commitment and mutual trust. There is no equivalent of a

handshake in online communities, but in wearable communities a (possibly

digitally augmented) handshake is possible.

32

II.3 Building Wearable Communities

How can we build successful wearable communities? The success criteria for

wearable communities are not different from those of real world or virtual communities:

a wearable community is successful if it creates a rich social environment in which the

augmentation of random encounters and social space leads to psychologically satisfying

“human moments” and lasting personal relationships. What turns a loose collection of

individuals into a community, is persistent and ongoing conversations. Thus a collection

of wearable computer users becomes a wearable community when enough people use

their wearable computers to form webs of personal relationships. In other words, we

want wearable communities to foster social interaction and communal spirit. Yet this

observation doesn’t make it any clearer how we can achieve this goal. This is because

wearable communities, like all communities, are the result of self-organizing behavior

of a group of people. They emerge; they cannot be constructed from the outside by

following a simple recipe. Referring to online communities, Jennifer Preece expressed

this sentiment as follows:

“Software developers design software, thinking that they are designing

communities. Meanwhile, keen-eyed, reflective sociologists describe the emergence of

communities. But communities are neither designed nor do they just emerge. How

software is designed affects community development. The way people interact in a

community strongly contributes to its long-term evolution. People's behavior cannot be

controlled but it can be influenced“. (Preece 1999, 24)

Computer-mediated communities, in a very real sense, are self-organizing,

emerging in response to technology and the needs of its users.

33

II.3.1 An Exploratory Design Approach based on Rapid Prototyping

An important characteristic of wearable communities is that social concerns

become difficult to separate from technical practices: social and technical issues interact

and co-evolve in such intimate ways that they often merge. Thus in order to design a

wearable community, we need to simultaneously design technology and social

interactions.

A successful community design often hinges on what Wenger (Wenger 1998)

referred to as a “minimalist design”. The idea behind a minimalist design is to create a

provisional design and to facilitate the growing of community over time. While doing

so, designers must try to identify the attributes that make communities successful and

design technology to embody these attributes.

In building wearable communities, we are faced with a chicken-and-egg

problem which we refer to as the fundamental problem of wearable communities:

Wearable communities require hardware and software to support them, but

without experiences with actual wearable communities we don’t really know what the

success factors for wearable communities are and how to design systems to embody

them.

The cyclical interdependence between technological and social factors of

wearable communities is visualized in Figure 2: technology to support wearable

communities exhibits certain properties which define the kind of wearable communities

that can emerge. The success or failure of communities hinges on its ability to promote

lasting personal relationships. The attributes that make communities successful must be

embodied by the technology.

34

Figure 2. Wearable community design problem

How can we solve this problem?

One solution is to use an exploratory design approach based on rapid

prototyping. Rapid prototyping is a circular design process based on an initial

technology prototype followed by repeated evaluation and refinement. The initial

prototype represents the designers’ educated best-guess of what the final systems may

look like. Its design may be informed by prior experiences with similar systems or

theoretical insight.

A rapid prototyping approach can be divided into four distinct activities (Figure

3):

• Planning: this involves understanding the users (including goals, interests,

needs, etc.), understanding the available technology, the definition of the overall

purpose of a system, and the design of a prototype.

• Implementation. during implementation, a prototype is built

• Measuring: this involves observing the use of the system in a real-world setting

with real users. The goal is to identify shortcoming of the prototype.

• Learning: finally, results from the measurements must be analyzed with the goal

to determine in which way the prototype should be modified.

35

There can be many reasons that a prototype does not achieve its goals.

Sometimes these will be implementation issues, but more often the problem will be an

incorrect or insufficient understanding of the users. Thus it is important to go all the

way back to planning and to take a fresh look at a system from a user’s perspective. To

succeed, prototyping must be iterative and must support rapid creation and modification

of prototypes.

Rapid prototyping has successfully been used at Carnegie Mellon University for

the development of successive generations of the VuMan wearable computer

(Smailagic et al. 1998). Using this approach, interdisciplinary groups of students have

again and again succeeded to design and build the hardware and software components

of a wearable computer within just one semester.

Planning Implementing

MeasuringLearning

Time →

Figure 3. The iterative prototyping cycle

36

II.3.2 Wearable Community Systems

Building and maintaining computer-mediated communities involves the design

and manipulation of technologies in ways that foster human connection. Technologies

to support online communities include hardware (personal computers, networks, and

hosts) and software (web servers, email list servers, message boards, chat and instant

messaging software, online calendars, web browsers, newsreaders, etc.).

With regard to wearable communities the following questions arise:

• What are the characteristics and components of a wearable community system?

• What are the challenges in developing such systems?

• How can we systematically and rapidly build such systems?

In the remainder of this chapter, we will explore various aspects of wearable

community systems and discuss the need for a software infrastructure and architectural

support for wearable communities.

A wearable community system is a collection of wearable devices, distributed

software infrastructure and application software that enables people to interact with

fellow community members. By “system” we refer to software and hardware that sets

the context for interaction. The term “wearable” indicates the wearable nature of

devices and implies a usage model that is always on, communicate, proactive and

presence-aware.

Within a wearable community system, communication is established by a

wireless personal-area network that enables seamless connectivity among co-located

devices. Thus, a wearable community system is highly dynamic, loosely connected,

potentially large-scale distributed system made up of mobile host (Figure 4). In order to

support the formation of wearable communities anywhere at anytime, such a wearable

community system must be largely independent of external communication and

computing infrastructures, relying solely on the capabilities of devices carried by

individuals. Besides the obvious hardware components of the individual computers

37

(cpu, storage, input/output, etc.) it consists of system and application-level software that

performs functions essential to wearable communities: discovery of nearby devices and

users, initiating interactions across wireless links, managing user identities, handling

user input and output and much more.

In contrast to online communities, for which a mature and proven technological

foundation exists, wearable communities require advanced technologies that are subject

to intensive research: this includes wearable devices, wireless ad hoc networks,

mechanisms for spontaneous networking, as well as context technologies.

W W

W

W

W

W

W

W

W

Figure 4. Wearable Community System

38

The key technical challenges of wearable community systems are the result of

the decentralized system architecture and the independence and autonomy of

individuals. In the following, we will list the primary challenges of wearable

community systems. These are:

1. Creating presence-awareness in dynamic decentralized systems

2. Enabling human-centered communication

3. Enabling trust, cooperation and privacy in an open decentralized environment

4. Striking the balance between proactivity and user control

Creating Presence-Awareness in Dynamic Decentralized Systems

A Wearable community system is a highly dynamic, decentralized and self-

organizing network of autonomous, wearable devices. Connectivity is determined by

the distance between devices; as devices change their physical location they establish

pair-wise communication links based on proximity. Thus, a wearable community

system resembles a wireless peer-to-peer system in which human presence is the main

resource. Important questions regarding presence-awareness include:

• What kind of personal information will users want to disclose to others?

• How can we support multiple identities for the same person to be used in

different contexts?

• How can users determine who is around at a given moment and find out how

they can interact with other people?

• How can we distribute presence information in a dynamic decentralized peer-to-

peer network efficiently?

As individuals wander around and encounter each other, their devices must be

able to detect the presence of nearby devices and exchange metainformation.

Algorithms for presence-awareness must satisfy three conflicting requirements:

39

Expressiveness: They must allow users to create rich and possibly multiple

digital identities for themselves.

Efficiency: To prevent overloading the algorithms must be efficient and/or

adaptable.

Timeliness: To facilitate interactions among people in movement algorithms

must react fast. For example, if two individuals, each of them carrying a wearable

device, walk towards each other with a constant speed of 5 kilometers/hour and network

transmission radius is 10 meters, devices will be able to communicate for 15 seconds or

less.

Enabling Human-Centered Communication

Traditionally, addressing and naming schemes in distributed systems are

designed to enable communication among devices. However, in a wearable community

system the ultimate goal is communication among humans. Individuals may own and

operate more than one device at different times. In addition, individuals might want to

use alternative identities in order to protect their privacy. Thus, we must find answers to

the following questions:

• How can we define device-independent identities for users?

• How can we move identities from device to device?

• How can we route a message destined for a particular user to the device he or

she is currently using?

• How can we enable multi-hop communication among individuals in a dynamic

crowed?

• How can we prevent unauthorized users from intercepting messages not

destined for them?

40

Enabling Trust, Cooperation and Privacy in an Open Decentralized Environment

A wearable community system is an open environment without a well-defined

population of individuals and devices. Individuals may join or leave a community at

will. Therefore, encounters often occur between strangers who have never met before

and might not do so again in the future. There is no a priori agreement among members

of a community to cooperate. Instead, cooperation is the result of combined actions

taken by independent users in their own interest. Sharing of resources and access must

be granted between hosts who are unknown to each other. Developers cannot expect

that all hosts and users are benevolent; hosts may attempt to gain access to private data,

willingly corrupt data and messages, introduce wrong information or do harm in some

other way. One of the main privacy concerns is protecting a user’s anonymity.

Monitoring network traffic or gaining access to confidential personal data can

compromise a user’s anonymity. Not only must a system prevent spying and

monitoring, but users must also given control what information is disclosed, to whom,

and when.

In such an environment, we are faced with three related challenges:

• How can we enable users (i.e. devices) to spontaneously and effectively

cooperate if users (i.e. devices) are autonomous and non-trusted?

• How can we represent, codify and notions of trust and reputation?

• How can we enable individuals who have met before and have established

relationships to form secure trusted groups?

• How can we protect a user’s privacy and protect him/her from malicious

community members if we can’t trust anyone?

Striking the Balance between Proactivity and User Control

In a wearable community, digital interactions between devices are spontaneous

and numerous. In such a scenario, it is no longer feasible to expect from a user to direct

41

an application and the many ongoing interactions in real-time. Instead, in order to

perform acts of ad hoc cooperation, wearable devices must be able to reach out and

negotiate with each other autonomously and proactively, i.e. they must be able to

anticipate the requirements of the users and act accordingly. This requires a move from

an interactive model of human-computer interaction to a new model based on

supervision. Such supervisory interfaces will fundamentally rely on software agents that

act in the interest and on behalf of the user.

Some of the challenges of supervisory interfaces are:

• How can we maintain human control over agent-based applications?

• How can we enable users to define and modify their agents’ behavior?

• How should interfaces be designed that enable humans to supervise large

numbers of concurrent real-time actions?

In sum, developing wearable community systems is a difficult task that requires

highly specialized knowledge in a variety of fields ranging from human-factors issues

related to collaboration paradigms based on opportunistic, proximity-based interactions

to technical issues related to ad hoc networking and context-awareness.

II.3.3 Towards a Wearable Community Methodology

In recent years, the enabling technologies for the realization of wearable

community systems have become available, i.e. wearable devices, wireless networks,

mechanisms for spontaneous networking, as well as context technologies. As a

consequence, individual solutions to the above challenges exist and it is possible to

build wearable community systems today (see Chapter III). Yet, it is not possible to

42

build them rapidly and effectively. In particular, there is no support for the exploratory

design approach based on rapid prototyping advocated above.

This dissertation aims to remedy this situation by exploring software

infrastructure and architectural support for wearable communities.

As first step towards a solution, we introduce the distinction between wearable

community infrastructure and wearable community applications.

• Wearable community infrastructure comprises system-level software

components that are useful and necessary for the support of a large variety of

wearable communities. This infrastructure is generic in a sense that it embodies

fundamental aspects of the wearable community domain. Among other thing,

wearable community infrastructure should include mechanism for distributed

communication, discovery and presence-awareness, definition of user identities,

situational and historical context and trust (see Chapter II.2.3).

• Wearable community applications are community-specific software applications

that are built on top of and make use of functionality provided by wearable

community infrastructure. They are installed on and run by users on their

wearable computers.

As of today, there is no comprehensive wearable community infrastructure and

there is little or no direct support for the variety of features that wearable community

applications require. Likewise, there are no programming and building abstractions for

developers to leverage off when designing wearable community applications. This

results in a lack of generality, requiring each new application to be built from the

ground up in a manner dictated by the underlying network technology and device

platform. This situation is detrimental to an exploratory design approach and rapid

prototyping.

43

To deal with the intervening technological and social issues of wearable

communities we propose a wearable community methodology and associated wearable

community platform. The methodology should incorporate the following parts:

1. A well-defined conceptual framework is required as reliable foundation. It

should express the basic concepts and an abstract model of a wearable

community system.

2. Description techniques are required that allow designers to capture essential

design elements. They are necessary for communication between the designers

and between designers and developers. Examples for description techniques are

graphical notations like class diagrams and state transition graphs from

modeling languages like UML.

3. Development should be organized according to a process model. Such a process

model supports system development by clearly defining individual development

tasks, roles and results as well as the relationships between them.

The description techniques and the process model should be directly supported

by the associated wearable community platform. The platform realizes a wearable

community infrastructure and should provide support for rapid development of

wearable community applications. In particular, it must (1) enable spontaneous

interactions in face-to-face settings, (2) aid developers in the implementation of ad hoc

collaborative applications and (3) support formation of wearable communities.

If successful, the methodology and platform will function as catalyst for

wearable community applications and thus wearable communities.

II.4 Summary

People are social animals. We love to interact with other people and to a large

degree depend on social interactions for our psychological well-being. Social

44

interactions do not have to involve direct person-to-person conversations. Merely being

at the same place at the same time can be an important indicator for similarities in taste,

interests, preferences, and believes: concerts, street demonstrations, trade shows and

social venues like bars are proof of that. Social behavior in public places like coffee

shops and sidewalks can take the form of sending non-verbal signals and gestures and

making others aware of one’s preferences and personality, as well as observing and

interpreting signals from others. To be ‘seen’ and asserting one’s social role and group

identity is an important aspect of any community, whether virtual or real. The notion of

wearable communities is based on the idea that augmented random encounters and

augmented social interactions can nurture social networks. Wearable computers

connected by proximity networks increase the bandwidth for social messages. They

enable people to send and observe digital signals (in addition to non-digital), allowing

new forms of digital curiosity. Most importantly, however, interactions that take place

in digital space can facilitate and promote interactions in social space, and can lead to

rich human encounters. The assumption of this dissertation is that, if properly designed,

wearable technology can indeed beget community.

An important characteristic of wearable communities is that social concerns

become difficult to separate from technical practices. To deal with the complexity of

intervening technological and social issues we propose a methodology and associated

platform for building wearable community applications. In Chapter IV, we will describe

the WearCoM wearable community methodology, followed in Chapters V and VI by a

description of the Proem wearable community platform. Before that, in Chapter III, we

will explore the technological foundations of wearable community systems and discuss

precursors to wearable community systems. An evaluation will be presented in Chapters

VII and VIII, where we address the utility and practicality of the methodology and

software platform. In particular, we will present case studies and report on our

experiences of using both in software engineering education.

45

Chapter III

BACKGROUND AND RELATED WORK

The design and development of wearable community systems touches on a

number of research areas including wireless ad hoc networking, peer-to-peer

computing, and communityware. This chapter provides an overview of the issues and

challenges in these areas as they relate to wearable communities systems. The main

contribution of this chapter is a survey of systems to support face-to-face interactions.

Although the enabling technologies to support face-to-face interactions among co-

located individuals have become available over the last years only a few systems have

been realized. The main outcome of this chapter is an understanding of the technical

issues of wearable community systems.

III.1 Wireless Ad-Hoc Networking

Wireless ad hoc networks and wireless personal area networks are the most

important enabling technology for wearable communities. A wireless ad hoc network is

a self-organizing network comprised of autonomous nodes that cooperate in order to

dynamically establish communications. Nodes may be highly mobile or stationary, and

may vary widely in terms of their capabilities and uses. Each node in a wireless ad hoc

network functions as both a host and a router, and the control of the network is

distributed among the nodes. The network topology is in general dynamic, because the

46

connectivity among the nodes may vary with time due to node up and downtimes and

the possibility of having mobile nodes.

Wireless personal area networks (WPAN) are a special class of ad hoc

networks. They are used for interconnecting devices centered around an individual

person and are characterized by short-range communication links and a low cost, low

power design.

Ad hoc networks were initially developed for use in battlefields under the name

packet radio networks (Tornow 1987; Leiner and Nielson 1987). Today, there are two

major types of wireless ad hoc networks:

• A mobile ad hoc network (MANET) is an ad hoc network composed of mobile

nodes (IETF 2002). Since nodes can move, the network topology may change

rapidly and unpredictably. The network is decentralized, where all network

activity including discovering the topology and delivering messages is executed

by the nodes themselves. A mobile ad hoc network is typically used in

connection with mobile, handheld and wearable computers. Applications made

possible by mobile ad hoc networks include mobile patient monitoring,

emergence response, and distributed command and control systems.

• A smart sensor networks consists of sensors spread across a geographical area.

Each sensor has wireless communication capability and sufficient intelligence

for signal processing and networking of the data. Smart sensor networks are

used by the military to detect enemy movements, in environmental sciences to

monitor environmental changes (e.g., air quality), and in traffic control to

monitor vehicle traffic on highways or in a congested parts of a city.

In the following discussion, we will focus on mobile ad hoc networks as they

are the primary enabling technology for wearable communities.

Mobile ad hoc networks represent an alternative to the traditional infrastructure

model of mobile communication. The objective of this new network architecture is to

achieve increased flexibility, mobility and ease of management relative to infrastructure

47

wireless networks such as cellular voice and data networks. Compared to these

networks, mobile ad hoc networks have the following advantages:

• No required infrastructure: mobile ad hoc networks do not rely on wired base-

stations and for that reason can be deployed in places without existing

infrastructures. They can be created spontaneously and on as needed basis,

because they require little configuration to setup. As result, they can be

deployed in situations where no other communication infrastructure exists or

where such infrastructure cannot be used because of security, cost, or safety

reasons.

• Self-organization: In a wired network the connection topology of nodes is

determined by the physical cabling and thus is fixed. This restriction is not

present in mobile ad hoc network: as soon as two nodes are within hearing

distance of each other, an instantaneous link between them is automatically

formed. As a consequence, the network topology of a mobile ad hoc network

reflects the relative distance of its nodes and is continuously reconfigured as

nodes come within reach of each other.

• Fault tolerance: The self-organizing nature of mobile ad hoc networks and the

fact that they don’t rely on dedicated base stations makes them fault-tolerant. In

a traditional cellular network, a fault in the base station will impair all nodes in

its cell. In mobile ad hoc networks, a malfunction in one node can be easily

overcome through network reconfiguration.

The advantages of ad hoc networks come with certain drawbacks. Because

transmission range of ad hoc networks is limited by power constraints, frequency reuse

and channel effects, store-and-forward packet routing is required over multiple-hop

wireless paths. Because communication hosts can move freely and independently of one

another, routing is a difficult challenge and has become the major research topic related

to ad hoc networks.

48

III.1.1 Wireless Communication Technologies for Mobile Ad Hoc Networks

Mobile ad hoc networks can be implemented on a variety of communication

technologies including the IEEE 802.11 (IEEE 1999) and HiperLAN (ETSI 2002)

standards for wireless local area networks (WLAN), the IEEE 802.15 standard for

wireless personal area networks (WPAN) (IEEE 802.15) and future ultra-wideband

wireless networks (UWBWG 2002).

IEEE 802.11 Local Area Networks

The IEEE 802.11 standard (IEEE 1999) is a family of specifications created by

the Institute of Electrical and Electronics Engineers Inc. for wireless local area

networks. The specifications specify a shared media "over-the-air" interface between

wireless nodes and address both the Physical (PHY) and Media Access Control (MAC)

layers. The IEEE 802.11 standard is based on a single channel, broadcast media and is

the wireless equivalent of Ethernet. The IEEE 802.11 standard currently defines four

separate but backward compatible specifications: 802.11, 802.11a, 802.11b, and

802.11g. The most recently approved standard, 802.11g, offers wireless transmission

over relatively short distances (25 meter) at up to 54 megabits per second (Mbps) in the

x-GHz range of the radio frequency (RF) spectrum compared with the 11 megabits per

second of the 802.11b standard. The range of 802.11b can exceed 500 meters but is

typically no more than 150m outdoors and significantly less indoors.

802.11 networks can be operated in two different modes:

• Infrastructure mode is the most common operating mode. It connects the

wireless node to a wired network through one or more wireless access points

(bridge). If the range of the different access points overlap each other it is

possible to move from one cell to another without losing network connection

(roaming).

49

• The independent mode (or ad hoc mode) realizes a standalone ad hoc wirelesses

network in which all nodes share the same medium and are directly connected.

An access point is not required and communication is possible between all

nodes within direct transmission range.

HiperLAN

HiperLAN (ETSI 2002) is a set of wireless local area network communication

standards primarily used in European countries and provides features and capabilities

similar to those of the IEEE 802.11 WLAN standards. There are two specifications:

HiperLAN/1 and HiperLAN/2. HiperLAN/1 provides communications at up to 20 Mbps

in the 5-GHz range of the radio frequency (RF) spectrum. HiperLAN/2 operates at up to

54 Mbps in the same RF band. Similar to 802.11 networks, HiperLAN is based on

single channel, broadcast based wireless media.

Ultra-Wideband Radio

Ultra-wideband (see UWBWG 2002) (also known as UWB or as digital pulse

wireless) is a wireless technology for transmitting large amounts of digital data over a

wide spectrum of frequency bands with very low power for a short distance. Unlike

conventional radio systems including that operate within a relatively narrow bandwidth

(e.g., IEEE 802.11, HiperLAN, and Bluetooth) ultra-wideband operates across a wide

range of frequency spectrum by transmitting a series of very narrow and low power

pulses. Ultra-wideband radio not only can carry a huge amount of data over a distance

up to 80 meters at very low power (less than 0.5 milliwatts), but has the ability to carry

signals through doors and other obstacles that tend to reflect signals at more limited

bandwidths and a higher power. The combination of broader spectrum, lower power

and pulsed data means that ultra-wideband causes less interference than conventional

narrowband radio solutions, and delivers wire-like performance in an indoor wireless

environment.

50

Wireless Personal Area Networks

A wireless personal area networks (WPAN) is a short-range wireless network

for interconnecting devices centered around an individual person. The most prominent

WPAN example is Bluetooth (Bluetooth 2002), which was used as the basis for a new

IEEE 802.15 standard (IEEE 2002). Bluetooth is based on a low-cost, low-power

transceiver chip that transmits and receives data in the 2.45 GHz frequency band at a

maximal rate of 2 megabit per second. Transmission range is limited to 10 meters.

Unlike IEEE 802.11 and HiperLAN networks, which are based on single

channel, broadcast based wireless media, Bluetooth is based on a frequency hopping

physical layer. This fact implies that hosts are not able to communicate unless they have

previously discovered each other by synchronizing their frequency hopping patterns. In

contrast, for single channel networks in ad hoc mode the distance relationship between

the nodes implicitly (and uniquely) determines the topology of the ad hoc network. In a

Bluetooth network, only those nodes which are synchronized with the transmitter can

hear the transmission, even if all nodes are within direct communication range of each

other.

Bluetooth supports point-to-point, point-to-multipoint, and multi-hop

communication over wireless medium (any-to-any communication will be part of a

future release). Point-to-multipoint connections are referred to as piconets. A piconet

consists of one master (the owner or creator of the network) and up to seven slaves.

Several piconets can be established and linked together spontaneously creating what is

called a scatternet. A scatternet represents a Bluetooth-based mobile ad hoc network,

albeit one whose overall topology is divided into several piconets.

To support any-to-any communication among a set of Bluetooth devices that

have no knowledge of their surroundings requires to build a scatternet in which pairs of

nodes (which can communicate with each other) form a connected graph. Several

topology creation algorithms have been devised to achieve this goal (Salonidis et al.

2001a; Salonidis et al. 2001a; Záruba et al. 2001; Groten and Schmidt 2001).

51

III.1.2 Research Issues

The two most prominent research areas in ad hoc networking are routing and

multicasting.

Routing

Communication between arbitrary hosts in a mobile ad hoc network requires

routing over multi-hop wireless paths because of the limited propagation range of

wireless radios (Figure 5). Conventional routing is inadequate in ad hoc networks, as

the mobility aspect can cause rapid and frequent changes in network topology. The

main difficulty arises because (1) without a fixed infrastructure these paths consist of

wireless links whose end-points are likely to be moving independently of one another

(2) the capacity of a wireless link varies over time, and its utilization is often low due to

noise, interference and contention (3) nodes typically have very limited energy supplies

(batteries) and must transmit and receive sparingly to conserve energy (4) nodes may

temporarily disconnect from the network for a "sleep" period to save energy when

traveling out of network range. These issues make routing in an ad hoc network a

difficult problem which cannot be solved with current Internet routing protocols.

Routing protocols for ad hoc networks are responsible for maintaining and

reconstructing the routes in a timely manner as well as establishing the durable routes.

In addition, routing protocols are required to perform these tasks in a manner that is

efficient in bandwidth and energy consumption.

52

Source
Destination

Figure 5. Multi-hop routing in an ad hoc network

Routing protocols proposed for mobile ad hoc wireless networks can be divided

into three categories according to the routing strategy.

First, there are distance vector protocols. Protocols of this type include Wireless

Routing Protocol (WRP) (Murthy and Garcia-Luna-Aceves 1996), Destination

Sequence Distance Vector (DSDV) routing protocol (Perkins and Bhagwat 1994), and

Least Resistance Routing (LRR) (Pursley and Russel 1993).

Second, there are protocols that are based on link state algorithms. Protocols

such as Global State Routing (GSR) (Chen and Gerla 1998), Fisheye State Routing

(FSR) (Pei et al 2000a), Adaptive Link-State Protocol (ALP) (Garcia-Luna-Aceves and

Spohn 1998), Source Tree Adaptive Routing (STAR) (Garcia-Luna-Aceves and Spohn

1999), and Landmark Ad Hoc Routing (LANMAR) (Pei et al. 2000b) fall into this

category.

Third, there are on-demand routing protocols (Maltz et al. 1999) that are

proposed for ad hoc networks only. On-demand routing protocols do not maintain route

to each destination of the network on a continual basis. Instead, routes are established

on demand by the source. When a route is needed by the source, it floods a route

request packet to construct a route. Upon receiving route requests, the destination

selects the best route based on route selection algorithm. Route reply packet is then sent

back to the source via the newly chosen route. In on-demand routing protocols, control

53

traffic overhead is greatly reduced since no periodic exchanges of route tables are

required. Numerous protocols of this type have been proposed including Lightweight

Mobile Routing (LMR) (Corson and Ephremides 1995), Dynamic Source Routing

(DSR) (Johnson and Maltz 1996), Ad-Hoc On Demand Distance Vector (AODV)

routing (Perkins and Royer 1999), Associativity-Based Routing (ABR) (Toh 1997), and

Multipath Dynamic Source Routing (MDSR) (Nasipuri and Das 1999).

Multicasting

In a typical ad hoc environment, network hosts work in groups to carry out a

given task. Therefore, multicast plays an important role in ad hoc networks. In addition,

multicasting is important for efficient dissemination of data throughout a network. For

example, service discovery often relies on disseminating service advertisements to

interested partners. Multicast protocols used in static networks (e.g., Distance Vector

Multicast Routing Protocol (DVMRP) (Deering and Cheriton 1990)) do not perform

well in wireless ad hoc networks because multicast tree structures are fragile and must

be readjusted as connectivity changes, yielding excessive processing and network

overhead. Hence, the tree structures used in static networks must be modified, or a

different topology between group members (i.e., mesh) need to be deployed for efficient

multicasting.

Many different protocols for multicasting in mobile wireless networks have

been proposed in recent years. Acharya and Badrinath (Acharya and Badrinath 1996)

were the first to address the issue of wireless multicast. However, their protocol

assumes a fixed wired network component and mobile hosts that can only receive

multicast packages but not send. Many multicasting protocols have been recently

proposed for ad hoc networks. The Reservation-Based Multicast (RBM) routing

protocol (Corson and Batsell 1995) builds a core (or a Rendezvous Point) based tree for

each multicast group. RBM is a combination of multicast, resource reservation, and

admission control protocol where users specify requirements and constraints. The Ad

54

hoc Multicast Routing protocol utilizing increasing id numbers (AMRIS) (Wu and Tay

1999) builds a shared-tree to deliver multicast data. Each node in the multicast session

is assigned an ID number and it adapts to connectivity changes by utilizing the ID

numbers. A multicast extension of Ad Hoc On-Demand Distance Vector (AODV)

routing protocol has been newly proposed in (Perkins and Royer 1999). Its uniqueness

stems from the use of a destination sequence number for each multicast entry. The

sequence number is generated by the multicast grouphead to prevent loops and to

discard stale routes. Another multicast algorithm based on neighbor relationships is

described in (Lee and Kim 2000).

III.2 Peer-to-Peer Computing

Peer-to-peer computing has gained popularity thanks to the recent emergence of

file sharing applications over the Internet. Peer-to-peer computing leverages available

computing performance, storage, and bandwidth found on systems around the Internet.

With distributed computing applications like SETI@home (Korpela et al. 2001)

millions of users contribute their computing resources to work on a common

computational analysis. Instant messaging services enable users to communicate and

collaborate with their peers in real time. In addition, file-sharing applications like

Napster, Gnutella (CLIP2 2002) (Kan 2001), and Freenet (Clarke et al. 2001) offer a

compelling and intuitive way for Internet users to find and share files directly with each

other.

The term “peer-to-peer computing” can be interpreted in at least two different

ways. First, it can emphasize the users’ perspective and refer to a system where users

are at the same time users and providers of information. Such systems are based on the

principle that users who are willing to share files or resources with others may gain

benefits in the long run. Second, it can refer to the architecture of a distributed system.

This view emphasis the distinction of peer-to-peer computing from traditional client-

server computing by insisting that in order to qualify as a peer-to-peer system it must

55

not have a central server or coordinator and communication between hosts must be pair

wise. Proponents of the user-centered view see a peer-to-peer system as technology that

supports sharing and collaboration among independent users. This view was

popularized by Napster, a peer-to-peer file sharing application that enables pair wise

interactions between users although architecturally it relies on a central server.

Proponents of the technical point of view see a peer-to-peer architecture as a way to

tackle issues like system scalability, reconfigurability and user privacy and anonymity.

Ultimately, peer-to-peer is about overcoming the barriers to the formation of ad-hoc

communities, whether of people, of programs, of devices, or of distributed resources. In

this dissertation we follow a definition of peer-to-peer computing expressed by (Bolcer

et al. 2000) who describe peer-to-peer as “any relationship in which multiple,

autonomous hosts interact as equals. An autonomous host is useful in its own right even

in the absence of others. The peering relationship implies that additional functions are

available to other peers collectively as a consequence of their collaborations with other

hosts. Known as the network effect, the value and extent of these added powers

increases dramatically as the number and variety of peers grows” (Bolcer et al. 2000, 3).

Although the concept of peer-to-peer computing is far from new, its application

to modern distributed computing systems and applications brings in new problems and

research challenges including networking protocols, decentralized algorithms,

middleware, software architectures, coordination models, and security.

III.2.1 Mobile Peer-to-Peer Computing

Traditionally, mobile devices have been designed as thin clients as part of a

client-server system. For example, cell-phones and Internet-enabled PDAs use wireless

connections to gain access to resources such as data and computation provided by large

central servers. With the advent of wireless ad hoc networks, it becomes possible to

design mobile systems as peer-to-peer systems.

56

A mobile peer-to-peer system (MP2P) (Mascolo et al. 2001; Gold and Mascolo

2001; Kortuem et al. 2001; Kortuem 2002; Charas 2001) is a distributed mobile system

that consists of mobile hosts that continuously change their physical location and

establish peering relationships among each other based on proximity. Hosts interact

during brief physical encounters thereby engaging in short-haul wireless exchanges of

data. Mobile P2P applications take advantage of resources -- storage, cycles, content,

human presence – provided by mobile devices in the immediate physical proximity.

Such systems closely match Bolcer’s definition of peer-to-peer computing: mobile

devices are autonomous and provide great benefits to their users even when not

connected to other devices. However, as soon as two devices come within reach and a

communication link is established, they enter into a short-lived, yet mutually beneficial

partnership by exchanging data and accessing each other’s services.

Mobile peer-to-peer systems differ from client-server based distributed mobile

systems in the following respects:

• Mobile P2P systems are decentralized: there is no central node and all peers

have the same roles and responsibilities.

• Communication links are highly transient: disconnections and reconnections

occur frequent and unpredictably.

• Since mobile hosts can move frequently and independently of one another,

mobile P2P systems have rapidly and unpredictably changing topologies.

Similarly, there are important differences between traditional (non-mobile) and

mobile peer-to-peer system. (Bolcer et al. 2001) describe (non-mobile) peer-to-peer

computing as the natural and desirable outcome of three profound and pervasive trends:

• The ease of interconnection

• The expansion of bandwidth

• The wealth of cycles

57

“… in a world where (network access) interconnection is universal, (network)

bandwidth is plentiful, and (processor) cycles are inexpensive, peering among physical

unequals is both natural and desirable” (Bolcer et al. 2001, 3).

Traditional peer-to-peer systems such as Napster, Gnutella and Freenet, which

are intended to run on stationary hosts in wired networks, have been designed with this

view in mind. However, two of these trends do not apply to mobile peer-to-peer

systems: while ad hoc networks provide ease of interconnection, there is much less

expansion of bandwidth in wireless networks than there is in wired networks, and much

less wealth of cycles in mobile devices than there is in desktop units.

III.2.2 Challenges

The unique character of mobile peer-to-peer systems represents a significant

challenge for the designer. Not surprisingly, mobile peer-to-peer computing exhibits the

combined issues and challenges of ad hoc networking, mobile computing, distributed

computing and peer-to-peer computing. In the following, we will summarize these

challenges.

Mobile Device Limitations

Mobile devices present a more constrained computing environment compared to

workstations and desktop computers. Because of fundamental limitations of battery life

and form factor, mobile devices tend to have less powerful CPUs, less memory, smaller

and less reliable storage, restricted power consumption, smaller displays, and missing or

restricted input devices. The limitations in processing power and storage make it harder

to implement algorithms for distributed coordination and cryptographic security

measures.

58

Communication

Mobile peer-to-peer systems exhibit all the limitations (and advantages) of ad

hoc networks. Because of fundamental limitations of power, available spectrum, and

mobility, ad hoc networks tend to be low bandwidth and long latency. As bandwidth

increases, the device’s power consumption also increases further draining the already

limited battery life of mobile devices. Thus, even as wireless networks improve their

ability to deliver higher bandwidth, the power availability still limits the effective

throughput.

As discussed above, communication links in ad hoc networks are prone to

unexpected interruptions. Consequently, mobile peers must anticipate frequent network

failures and handle them gracefully. In addition, peer applications should provide for

disconnected operations (Kistler and Satyanarayanan 1992) such that a peer remains

operational even without network connection. The instability of multi-hop paths and the

limited lifetime of routes in ad hoc networks have a negative impact on the performance

on peer-to-peer routing. For example, the Gnutella file-sharing software uses routing as

a way to return search results to the peer that initiated a search. Search results travel

backwards on the same route the original search query took. If one of the intermediate

peers disappears from the network before the search result could be returned, the search

result will be lost. In our own experiments using Gnutella over the Internet we

experienced that about 2% of all search results could not be returned. In an ad hoc

network, this number would increase dramatically.

Naming

Traditional (non mobile) peer-to-peer systems are characterized by an

increasing decentralization and autonomy of hosts. Because accessing these

decentralized resources means operating in an environment of unstable connectivity and

unpredictable IP addresses, peer-to-peer systems often operate outside the DNS system.

59

The same must be true for mobile peer-to-peer systems. Additional reasons for not

relying on the DNS system are:

• In ad hoc networks, access to a central DNS server cannot be assumed

• Not all mobile devices support IP networking and thus do not have IP addresses

• Collaborative applications require the ability to identify not only devices, but

also users.

Resource Discovery

One of the things that makes current peer-to-peer system so powerful is that

they take advantage of resources -- storage, cycles, content, human presence -- available

at the edges of the Internet. In a mobile peer-to-peer system we want to take advantage

of resources provided by peers running on mobile devices in the immediate physical

proximity. Because of the unpredictable physical mobility of mobile devices,

discovering resources becomes a challenge.

The highly dynamic nature of mobile peer-to-peer systems requires similarly

dynamic mechanisms for device and resource discovery. In ad hoc networks, device

discovery is part of the network; resource discovery, however, is the task of the peer

system. We need algorithms through which a computing device can detect the presence

of neighboring devices, share configuration and service information with those devices,

and notice when devices become unavailable. Resource discovery must be timely (in

order to detect moving devices) and efficient (so not to overload the network). One such

algorithm has been developed as part of the DEAPspace project (Nidd 2000).

In contrast to peer-to-peer systems that are targeted at fixed networks,

decentralization is not a mere option for mobile peer-to-peer networks, but a necessity.

Even seemingly decentralized peer-to-peer systems such as Gnutella rely on centralized

servers for some tasks. For example, Gnutella clients use a central host cache for

determining initial entry points into the Gnutella network. In mobile peer-to-peer

systems all functions need to be decentralized.

60

Data Sharing and Synchronization

A mobile peer-to-peer system is basically a highly dynamic, decentralized

distributed system with weakly connected mobile hosts. In order to cooperate, peers

need to be able to share and synchronize data. The extreme decentralization and

unpredictability of mobile peer-to-peer system together with the fact that peers always

only establish pair-wise connections leads to the following conflicting requirements:

• High availability: mobile peers needs to be as autonomous as possible and they

should be able to perform computations even in the absence of connections with

other peers. This requirement can be achieved with a replicated data storage

scheme where each peer maintains a local copy of shared data object.

• Consistency: Replicated data storage introduces the problem that local copies

can be updated independently by different peers and thus might become

inconsistent over time. This requires a synchronization mechanism that is able

to handle weakly connected hosts and unpredictable network links.

• Timeliness: Any solution to the consistency problem has to deal with the fact

that data might be shared across a group of peers that rarely come together.

Even more, there is no guarantee that a specific group of peers will ever be

connected to each other at the same time. Consequently, updates must be

propagated throughout a network by passing information from peer to peer.

Because of the unpredictability of host mobility, it is impossible to guarantee

that each host receives update information in a timely manner.

Trust and Security

A particular security aspect of mobile peer-to-peer systems relates to the

question "how do we know we can trust somebody on the network?" In systems with a

centralized component, this problem can be handled by public key certificates issued

and cryptographically signed by globally trusted certification authorities (CA). A public

61

key certificate proves that its holder is trustworthy simply because the issuer, the trusted

CA, has signed it and can therefore vouch for the holder's credentials. A chain of CAs,

each trusting the next CA in the chain, may sometimes be necessary when a certificate

signed by an unknown CA is presented.

In a mobile peer-to-peer system global trust authorities are difficult or even

imposable to maintain, because connectivity is to such an authority cannot be

guaranteed. Thus a mobile peer-to-peer system requires distributed authentication

protocols. This, however, is made difficult by the fact that this must occur in a

completely decentralized environment with no or intermittent connection to a trusted

authority. Possible solutions might include the use of reputations (Schneider et al. 2000;

Abdul-Rahman and Hailes 2000).

In order to engineer a fully secure system it becomes necessary that the device

is able to authenticate the user. Otherwise digital certificates can easily be stolen by

taking the device itself. Depending on the required security level this might require

biometric identification.

Privacy

Privacy is the right of individuals to control collection and use of personal

information about themselves. Unlike security, which deals with safeguarding of

information from unauthorized users, privacy is concerned with the amount of

information known about an individual. One of the main privacy concerns is protecting

a user’s anonymity. Monitoring network traffic or gaining access to confidential

personal data can compromise a user’s anonymity. Not only must a system prevent

spying and monitoring, but users must also be given control what information is

disclosed, to whom, and when. In particular, it must be possible for an individual to stay

anonymous if so desired.

62

Building mobile peer-to-peer systems requires a variety of skill-sets ranging

from collaboration paradigms based on opportunistic proximity-based interactions to

highly dynamic wireless networks. As a consequence, the software infrastructure to

support mobile peer-to-peer applications is becoming critically important. Recognizing

this need researchers have started to develop mobile peer-to-peer platforms. Among

them are platforms that exclusively focus on data sharing aspects (XMIDDLE (Mascolo

et al. 2001), Lime (Murphy et al. 2001)), mobile groupware platforms (Pocket

DreamTeam (Roth 2002)), Bluetooth-specific platforms (BlueTalk (Pocit Labs 2001)),

and general purpose platforms (JXTA for J2ME = JXME (Arora et al. 2002)). We will

discuss these platforms in more detail in Chapter VIII.

III.3 Communityware

With the advent of online communities, an interest in communityware emerged.

Communityware, a term coined by Ishida (Ishida 1998a; Ishida 1998b), is software for

supporting and enabling communities. Communityware is intended to support diverse

and amorphous groups of people and focuses on the process of organizing people who

are willing to reach some mutual understanding.

Examples of communityware are:

• Recommendation systems and collaborative filtering systems (e.g., book

recommendations at Amazon.com)

• Matchmaking software (systems that identify similarities in user’s interests with

the purpose to facilitate direct communication)

• Collaborative information collection tools with awareness and notification

support (e.g. document repositories, shared bookmark applications)

• Comprehensive solutions for building community web sites

Communityware is related to the more familiar class of systems known as

groupware. Peter and Johnson-Lenz, who are credited by many as coining the term

63

groupware (Johnson-Lenz and Johnson-Lenz 1981), define groupware as "intentional

group processes plus software to support them" (Johnson-Lenz and Johnson-Lenz

1982, 4). This definition properly excludes multi-user databases and electronic mail that

are not designed particularly to enhance the group process. According to (Johnson-Lenz

and Johnson-Lenz 1981), a complete groupware infrastructure has three dimensions:

communication, collaboration (shared information and building shared understanding),

and coordination (delegation of task, floor control, etc.).

Communityware is intended to support social processes of diverse and

amorphous groups of people. This is in stark contrast to groupware which typically

focuses on work-related activities of already organized people, such as teams. Teams

are composed of members who know each other and collaborate to achieve a common

goal while community members have just common interests or preferences. Thus

communityware aims to support the process of organizing people who are willing to

reach some mutual understanding. In other words, communityware focuses on the early

stage of collaboration, which includes group formation, contact facilitation, finding

people, and building a common understanding.

The differences between groupware and communityware are summarized in

Table 4.

Table 4. Differences between Groupware and Communityware

 Groupware Communityware

User population Small Potentially large

Degree of cooperation
among users

High Low-high

Motivation for
participation

External pressure, Common
goal

Shared interests, Self interest

Relations between
users

Everyone knows everyone else Not everyone knows everyone

Collaboration means Shared artifacts Occasional exchange

64

III.4 Systems to Support Face-to-Face Interactions

The notion of wearable communities defines a research framework for

investigating computer support for social interactions in face-to-face settings. Such

interactions are often spontaneous (driven by chance encounters of mobile people) and

highly situated (embedded in the real world context in which people interact). In the

literature, spontaneous unstructured interactions are referred to as informal

communication (Whittaker et al. 1994; Fish et al. 1990; Fish et al. 1993). Typically

short, expressive, and frequent, informal communication may be initiated by one party

or serendipitously occur through chance meetings. (Fish et al. 1990) describe informal

communication as a social event that takes place ad hoc when there is an opportunity

for communication. It can be strongly related to work (Bergqvist et al. 1999; Kraut et al.

1990; Luff and Heath 1998; Belotti and Bly 1996), but it can also be purely social.

Informal communication has no pre-established agenda, and no pre-established topics

are discussed. Informal interactions play an important part in our social life and are vital

for coordination of work activities at the office.

Despite the importance of face-to-face and informal communication in our daily

lives information technologies to support interactions between people have mostly been

targeted at planned rather than spontaneous communication, in settings that are virtual

(shared virtual space) or artificial (instrumented meeting rooms) rather than part of

people’s everyday. For example, the CoLab (Stewart et al. 1999) project features an

electronic meeting room that enables a group of users to control a shared display at the

front of the room. The Pebbles project (Myers et al. 1998), investigates the use of

handheld Personal Digital Assistants (PDAs) as portable input devices for a single

shared display. In addition, up until recently research aimed at supporting informal

communication has focused on distributed (Dourish and Bly 1992; Fish et al. 1993;

Fitzpatrick et al. 1998; Nakanishi et al. 1996) rather than co-located groups.

With the advance mobile and wearable technology some researchers have

started to recognize the social potential of this technology and have build systems to

65

support face-to-face communication. Among the early proposals are match-making

technologies (e.g. LoveGety (CNN 1998)), awareness devices to provide roaming

groups with a sense of connectedness (e.g. HummingBird (Holmquist et al. 1999)), ad

hoc games and gaming platforms that seek to make real-world group mobility part of

digital entertainment (e.g. Pirates (Björk et al 2001), Mercantile (Pering and Pering

2001), Pervasive Clue (Schneider and Kortuem 2001)), educational software tools (e.g.,

Geney (Danesh et al. 2001)) and messaging devices that adopt ‘word of mouth’-

metaphors for proximity-based passing of information (e.g. ThinkingTags (Borovoy et

al. 1996), MemeTags (Borovoy et al. 1998), iBalls (Borovoy et al. 2001)).

The main characteristics of these systems are summarized in Table 5.

These systems represent important precursors of wearable community systems.

In our survey we limit our attention to systems that make use of mobile or wearable

devices. This excludes, for example, systems like AgentSalon (Sumi and Mase 2001)

where users interact in front of a shared display without devices on their own. In the

following we will provide a short description of the overall design and purpose of these

systems and then discuss technical and architectural aspects.

III.4.1 Design Overview

Thinking Tags

The Thinking Tag (Borovoy et al. 1996) is a small badge used to initiate

communication among co-located people at events involving large crowds. The purpose

of Thinking Tags is to determine if two users share common interests. The badge itself

consists of five LED signs and an IR-transceiver. Each user defines his or her interests

during an initial setup procedure by connecting the tag to a terminal and answering a

number of yes/no questions related to the event, e.g. “Are you interested in the Y2K

problem?” The tags compare the user preferences and indicate, by lighting one or

66

several LED signs, if the two persons have anything in common. The idea behind

Thinking Tags is that users can use the knowledge about shared interests to initiate a

conversation.

Table 5. Systems to Support Face-to-Face Communication: Overview

 User Population Interaction Type Objectives

MemeTags Community
(strangers)

Unplanned Creating common
ground, contact
facilitation

ThinkingTags Community
(strangers)

Unplanned Creating common
ground, contact
facilitation

iBalls Children Entertainment,
creating common
ground

Hummingbird Group (friend, Co-
workers)

Unplanned,
opportunistic

Group awareness,
contact facilitation

ProxyLady Co-workers Opportunistic Group awareness,
contact facilitation

NewsPilot Co-workers Opportunistic Group awareness,
contact facilitation

Pervasive Clue (no characteristics) Unplanned,
opportunistic

Entertainment

PIRATÉ s (no characteristics) Unplanned,
opportunistic

Entertainment

Mercantile (no characteristics) Unplanned,
opportunistic

Entertainment

Geney Children Planned Entertainment,
Education

67

Meme Tag

The Meme Tag (Borovoy et al. 1998) is a wearable display device worn around

the neck, its display facing a conversation partner rather than its wearer. The purpose of

Meme Tags is to propagate memes, contagious ideas, opinions or messages, throughout

a network of Meme Tags worn by participants of a large scale event. If one Meme Tag

has a meme that the other does not have, the wearer of that other device is offered to

accept a transfer of that message. The idea is that users will only accept memes they

like or agree with. Similar to Thinking Tags, the idea is to initiate conversations by

letting people know if they subscribe to the same memes or not.

A Meme Tag is proactive in that it initiates communication with other Meme

Tags without explicit user action, but ultimately the user authorizes the message transfer

by explicitly pressing a button. Hence, no messages can propagate over the “network”

unless users specifically agree to host them and, in fact, this is the main idea behind the

Meme Tag application.

Hummingbird

The Hummingbird (Holmquist et al. 1999) is a small wearable device equipped

with a short-range radio transceiver, through which it broadcasts its identity and receive

information about other Hummingbirds in the vicinity. The Hummingbirds were

developed to “give members of a group continuous aural and visual indications of

which other group members are in the vicinity” (Holmquist et al. 1999, 2). Whenever

two or more Hummingbirds are close enough to communicate, the devices give a subtle

audio signal and display the identity of the other devices in the proximity. The devices

are functionally self-contained, i.e. non-dependent of surrounding infrastructure. A

Hummingbird extends the range of our ordinary senses, allowing the user to know that a

colleague is nearby even though he or she is not close enough to be directly seen.

Inspired by what is often within “shouting distance”, the communication range is set to

68

approximately 100 meters (depending on the number and nature of obstacles like

people, walls etc.).

Hummingbirds are an example of an Inter-Personal Awareness Device (IPAD)

as defined by Holmquist (Holmquist et al. 1999). In contrast to a communication device

like the mobile phone, an IPAD facilitates contacts instead of mediating them. An

important basis for the IPAD concept comes from the observation that informal

communication may occur whenever people are in the same place, but that it does not

necessary matter which place they happen to be in. In this sense, IPADs seek to support

spontaneous interactions between people in vicinity.

ProxyLady

Proxy Lady (Dahlberg et al. 2001) is a mobile system which objective is to

foster opportunistic face-to-face communication, for example during unexpected

encounters in corridors and coffee rooms. An opportunistic meeting is an event

anticipated by one but not all parties involved (Kraut et al. 1990). Proxy Lady enables

user to associate information items such as email messages and text files with people,

called candidates for interaction. When a candidate is in the proximity of the proxy

lady’s users, the device notifies its owner, which can initiate a face-to-face conversation

with this person and (possibly) start a brief conversation or meeting relating to the

information item. The information items are downloaded to the PDA during

synchronization with a desktop computer. The use of email and files as trigger for

interactions implies that users are acquainted or have communicated prior to the

encounter. Typically, this limits Proxy Lady to use in workgroup and work-related

informal communication.

In its basic conception Proxy Lady is very similar to Hummingbirds, but

provides more flexibility. It extends the basic IPAD concept by supporting

opportunistic meetings, i.e. meetings expected by one but not the other party. In

response to privacy concerns voiced by users of Hummingbirds, Proxy Lady provides

69

an ‘invisible mode’. If a device is in invisible mode, nearby users are unable to detect

its presence. The range of the radio transmitters is fixed at approximately 20 meters.

NewsPilot

The NewsPilot (Dahlberg, Redström, and Fagrell 1999; Dahlberg, Fagrell, and

Redström 1999) is an Inter-Personal Awareness devices based upon Palm handheld

devices. Very similar to ProxyLady, NewsPilot uses radio transceivers to detect and

inform the user about nearby NewsPilot users. As triggers NewsPilot uses to-do action

items stored in a person’s calendar. Each to-do item in the to-do list of the Palm

handheld device can be associated with one or several person. When one of those

persons is nearby, the to-do item is shown and a small beep is emitted.

Pervasive Clue

Pervasive Clue (Schneider and Kortuem 2001) is a live-action role-playing

game based loosely on Hasbro's classic board game Clue augmented with short-range

radio frequency (RF) PDA devices. The goal of Pervasive Clue is to discover who

killed the host, Mr. Bauer, where it was done and what was the murder weapon. Solving

the murder is done through the discovery of clues, when a player feels they can solve

the crime they are allowed to make an accusation. If any of the crime facts (murderer,

location or weapon) are incorrect the player is eliminated. Players are each equipped

with a Cluefinder (Figure 6), an RF enabled PDA device with a large magnifying glass

attached. Although the magnifying glass is entirely cosmetic its design illustrates the

function of the device, how it is used and promotes use of the Cluefinder as a role-

playing prop. Each clue has a physical representation (i.e. knife, book, candlestick) as

well as a hidden short range RF beacon <1 foot, broadcasting its clue. Players find game

clues by searching a room with the Cluefinders and coming within 1 foot of the beacon.

Players may also gain clues by exchanging them with other players. The rules of the

game do not restrict a player’s ability to give or trade clues with other players.

70

Figure 6. Clue Finder

The Cluefinder PDA accomplishes its task of promoting sociability by:

identifying nearby people, semi-automatic support for trading clues and items,

capturing and disseminating reputation information about people for use in evaluating a

player’s trustworthiness based on his or her behavior (like cheating or lying) in past

games.

Geney

Geney (Danesh et al. 2001) is a collaborative problem solving application to

help children explore genetics concepts. The goal is to encourage players to collaborate

and share knowledge in order to complete the task. In Geney, students work together to

produce a fish with a particular set of characteristics by exchanging fish with their

friends through the handheld’s infrared port. Each Geney handheld contains a single

pond of fish and students can view the genetic traits of fish in their pond. Two fish in a

pond can be mated and the offspring will have genetic traits that are derived from their

parents’ genes. The goal of the game is to breed a specific creature. Only by

71

collaborating with other students playing the game can the group achieve the desired

goal.

Pirates

Pirates (Björk et al. 2001) is a multi-player computer game that takes place in a

fantasy archipelago setting, where each player is the captain of a ship. Game objectives

include solving different missions, such as finding treasures, trading with commodities

found on the islands, and fighting other players in sea-battles. As missions are

completed, the players gain experience points that translate into rank, and as goods are

traded for money, ships are upgraded to sturdier ones.

The game is implemented on handheld computers connected in a Wireless Local

Area Network (WLAN). A local server maintains and controls the virtual game

environment, and keeps a record of what events take place in the game. In addition to

the WLAN adapters, each handheld device is fitted with custom-made proximity

sensors, used to determine the players’ location in physical space. Although the game is

played on handheld computers and is maintained by a server, the players must roam a

physical environment, the game arena, in order to explore the virtual game

environment. To engage in a virtual battle with co-players, they must walk up to them,

forcing the players to not only watch the computer screen but also to look at other

players and the real world.

Mercantile

Mercantile (Pering and Pering 2001) is a mobile game designed to support face-

to-face interaction within an already existing social context, such as the office

workplace. In the game, each player represents a trading empire and the computer

system requires them to meet face-to-face to negotiate and affect a trade, instead of

allowing them to trade in a purely virtual world. The mobile device itself possess no

inherent display (e.g., LCD), and instead uses short-range wireless communication to

72

provide access to a user’s data and applications through already-existing nearby

displays, such as a desktop workstation or internet kiosk. Even in the virtual world,

players can only “see” the holdings of other players if they are physically co-located,

encouraging them to actually move around and seek out other players. The overall

concept intends to explore mobile computing and distributed gaming in a truly mobile

context by focusing on co-located social interaction, rather than relying on the

distributed virtual interaction typically supported by mobile game consoles.

III.4.2 Implementation and Architecture

Table 6 summarizes the technical attributes of the systems we examined. It lists

the device characteristics, the communication technology, the type of data exchanged

between devices, the proximity sensing technology and the overall system architecture.

Devices

The devices used in these systems fall into two categories: proprietary devices

and commercial off-the-shelf devices like PalmOS PDAs, Nintendo GameBoys and

Cybikos. The proprietary devices use by ThinkingTags, MemeTags are extremely small

and computationally not very powerful, while the “Personal Server” used by the

Mercantile project is in the same class as commercial PDAs. Most devices have regular

displays capable of displaying text and graphics, while others have very simple (LEDs,

ThinkingTags) or no (Mercantile) output capabilities at all.

73

Table 6. Systems to Support Face-to-Face Communication: Technology

 Device Data
Exchange
between
devices

Communication
Technology

Proximity
Sensing
Technology

System
Architecture

Thinking Tags Small,
proprietary,
output only,
5 LEDs
function as
display, no
input

Interests
(small text
snippets
representing
predefined by
answers to
five
predefined
opinion
questions;

IR (range < 5m) (communic
ation)

Decentralized
P2P

MemeTags Small,
proprietary,
output only,
2x16
character
display

Memes
(small, user
defined text
snippets)

IR (range < 5m) (communic
ation)

Decentralized
P2P

iBalls Key-chain
sized game
devices
from SEGA
DreamCast

Software
objects with
data and
behavior

RF (?),
range < 5m

(communic
ation)

Decentralized
P2P

Hummingbird Nintendo
GameBoy

User id RF, proprietary,
range < 5m

(communic
ation)

Decentralized
P2P

ProxyLady Casio
Cassiopeia
E-105 PDA

User id RF, 802.11
WLAN (no
direct
communication
between
devices),
range < 5m

(communic
ation)

Centralized
(for managing
database of
user ids and
email)

NewsPilot PalmOS
PDA

User tasks RF, proprietary
(?),range < 5m

Dedicated
RF
transmitter

Centralized

Pervasive Clue Cybiko
wireless
device

User IDs,
clues

RF, built into
device, range <
5m

(communic
ation)

Decentralized
P2P

Pirates HP Jornada
PDA

User photo RF (802.11
WLAN), range
< 5m

Dedicated
RF
transmitter

Centralized

Mercantile “Personal
Server”

Trading
items,

RF (Bluetooth),
range < 5m

(communic
ation)

Decentralized
client-server

74

(StrongAR
M-based
proprietary
mobile
device) w/o
display

holdings (Each device
is server that
connects to
shared public
display)

Geney Palm OS
PDA

Fish data
object

IR (IRDA),
range < 5m

(communic
ation)

Decentralized
p2p

Communication Technology

All devices are communication enabled, either via infrared (IR) or radio

frequency (RF) technology. Some systems use communication standards like IRDA,

IEEE 802.11b and Bluetooth, while the rest uses proprietary solutions. The maximum

transmission range varies from just under 5 meters to up to 100 meters.

Data Exchange

All systems support data exchange between devices either directly from device

to device or indirectly with the help of additional infrastructure. All but one system

exchanges data objects such as user ID and text strings: the i-Ball system allows the

transfer of small software object, i.e. programs that encapsulate data and behavior.

Proximity Sensing Technology

All devices have the ability to detect the presence of proximate devices. The

technologies used to determine if two devices are co-located fall into two categories.

Two system (Pirates, NewsPilot) use dedicated proximity sensors, while others combine

communication and proximity sensing. With a combined solution two devices are

considered to be co-located if they are able to communicate. Since Pirates and

NewsPilot are the only systems that do not use a short-range communication

technology, dedicated proximity sensors are a necessity. However, dedicated sensors

75

provide additional advantages: it is easier to modify the distance two devices have to be

apart before they are considered co-located.

System Architecture

The systems use three basic architectures:

• Centralized: all devices rely on and communicate with a central system

component, such as a database or email server.

• Decentralized, peer-to-peer: there is no centralized system component and all

device interaction occur peer-to-peer (i.e. without intermediary).

• Decentralized client-server: the Mercantile system uses an unusual architecture.

Mercantile devices do not have any display, but require users to walk up to a

shared public display. Only users who are connected to the same display can

exchange data. This architecture is decentralized because there is no central

system component. At the same time it is client-server, because devices act as

servers that provide computational services to a “dumb” display client.

The decentralized peer-to-peer solution has the advantage that the system does

not require external communication or computation infrastructure. Thus such a system

can bet set up at any place, inside and outside. Compared to a centralized architecture, a

decentralized system is usually more difficult to build but provides significantly more

freedom for users. The decentralized client-server solution of Mercantile makes it

possible to simplify the device (it doesn’t need to have a display), but users can only

interact in the presence of a shared display.

III.4.3 Problems

The fundamental problem in the development of system to support face-to-face

communication is that there is a semantic gap between the application layer and system

76

layer. As of today, there is little or no direct support for the variety of features that such

applications require. Likewise, there are no programming and building abstractions for

developers to leverage off when designing wearable community applications. This

results in a lack of generality, requiring each new application to be built from the

ground up in a manner dictated by the underlying network technology and device

platform. This direct dependency results in the following problems:

1. Lack of network transparency. Applications must be tailored towards specific

network technologies and device platforms. As result, the designer must have

intimate knowledge of the underlying technologies and deal with low-level

aspects.

2. Limited portability. For the same reason, applications are difficult to port to

other device or network technologies.

3. Lack of reuse. There is no code sharing among applications. Instead, each

application must be build from scratch requiring the programmers to solve the

same problems all over again.

4. Inability to evolve applications. If underlying network and device platforms

evolve so must applications. Currently it is nearly impossible to rearchitect or

evolve applications to incorporate changes in network and hardware or to

exploit new features.

5. Lack of interoperability. There are no established standards with regard to

communication in ad hoc networks and context awareness. Without

standardization every application is an island unto itself and applications created

by different developers are not able to talk to each other.

6. Limited feature set. Due to the time and skills required to build applications they

tend to be rather simple and only provide a very rudimentary set of

functionality.

This set of problems makes clear that there is a need for the uniform support for

designing, building and executing these types of applications.

77

III.5 Summary

The two fundamental technologies for wearable communities are ad hoc

networks and peer-to-peer computing. Despite that fact that ad hoc networking and

peer-to-peer computing deal with similar issues such as discovery and routing, there is

not much overlap in the research. Most research on ad hoc networks focuses on the

lower layer of the protocol stack including the link layer, network layer and transport

layer. On the other hand, current peer-to-peer systems are designed for an Internet-like

network infrastructure in which stationary hosts are connected by high bandwidth links.

The assumptions on which these peer-to-peer systems are built are no longer valid in

dynamic ad hoc networking environments. The unique characteristics of such networks

require highly adaptable peer-to-peer systems that can react to changes in connectivity

and resource availability in a timely and ongoing manner.

Emerging ad hoc and personal area networks open a rich field for innovative

groupware and communityware solutions for supporting face-to-face communication.

Yet as of today, only a small number of systems that exhibit important characteristics of

wearable community systems exist. Current systems suffer from a series of technical

shortcoming which must be overcome for the rapid and efficient development of

wearable community systems. The dynamic environment created by mobile ad hoc

networks together with the social and collaborative nature of wearable community

applications makes it hard to architect such systems. The fundamental problem is the

semantic gap between the application layer and system layer, and the lack of an

appropriate development infrastructure. Without it, each new application must be built

from the ground up in a manner dictated by the underlying network technology and

device platform. In the following we describe the WearCoM wearable community

methodology and associated Proem platform that have been designed to address the

problems of building wearable communities applications.

78

Chapter IV

WEARABLE COMMUNITY METHODOLOGY

The fundamental problem this dissertation addresses is how to build software to

support wearable communities. In Chapter II, we argued that it is beneficial to divide

the software part of a wearable community system into two layers: a generic distributed

software infrastructure, also called a wearable community platform, and community-

specific application software. A wearable community platform implements common

functionality, and provides services and capabilities required by a wide range of

wearable community application.

In this chapter, we present the WearCoM methodology for the design and

development of wearable community applications. The goal of the methodology is to

provide a framework that guides the design and development activities from initial

conception to implementation and deployment of an application on the users’ devices.

The methodology consists of three components: (1) a conceptual model that

defines terminology and an abstract architecture; (2) a design language that addresses

the specification of important analysis and design decisions and enables developers to

specify key aspects of the application design; and (3) a development process that

outlines a sequence of development steps that result in the creation of specific artifacts.

These artifacts include specification documents and software code. The WearCoM

methodology is supported by the Proem peer-to-peer platform described in Chapters V

and VI. An overview of the methodology is depicted in Figure 7.

Our primary goal in developing the WearCoM methodology and the Proem

platform is to enable an exploratory design approach based on rapid prototyping. Thus,

our main focus is a reduction of the complexity of the development process to a point

79

where it becomes possible for developers without extensive prior knowledge of wireless

networking and wearable computing to build wearable community applications. For that

purpose, we opted to employ an informal design language partially inspired by the

Unified Modeling Language (UML) (see OMG 2001). The idea is that be making it

easier to develop wearable community application, we will facilitate the exploratory

creation and investigation of wearable communities.

Figure 7. WearCoM methodology overview

80

IV.1 Conceptual Model

The conceptual model defines the key concepts and components of a wearable

community application. These include: community agent, user profile, and community

language.

IV.1.1 Community Agents

A wearable community application involves two types of actors: users and

community agents. A community agent (agent, for short) is a software application that

runs on a user’s wearable device. An agent functions as intermediary between a user

and a community. It has two primary tasks: it announces the presence of its user to

nearby agents and enables (indirect) communication between users. It does that by

discovering nearby agents and autonomously exchanging data with them. Each agent is

community-specific. A user ‘owns’ one agent for each community he or she is a

member of and only agents belonging to the same community can communicate.

We use the term ‘agent’ to emphasize autonomy both at design time and

runtime, and cooperation. An agent is not an interactive application that sits idle until

the user interacts with it by means of a graphical user interface. Instead, an agent is an

application that exhibits autonomous behavior and acts on behalf and in the interest of

its user without requiring direct user intervention: it is proactive and takes the initiative

when circumstances are opportune. For example, an agent may autonomously interact

with agents of nearby community members and may inform its user about nearby users.

In sum, a community agent is software that is personal, proactive, presence-aware,

communicative and to a certain extent autonomous. It is predictable and can be fully

controlled and monitored by its user.

81

IV.1.2 Encounters

The second fundamental concept is an encounter. We define an encounter as a

situation where

• two or more individuals are in close physical proximity to each other;

• the agents of these individuals have discovered each other’s presence; and

• the agents are able to communicate.

This definition does not say anything about how agents discover each other, or

how close users have to be for discovery to happen. Similarly, this definition does not

say whether discovery and communication are independent functions or can be

combined into one. Discovery and communication might be based on two different

technologies: for example discovery could use dedicated proximity sensors while

communication might rely on wireless communicating networks.

Encounters have several important properties:

• Encounters can occur between two, three or more individuals.

• Encounters are situations that last a certain time interval, not momentary events:

encounters can be short and last only a few seconds, or they can be long-lasting

and going on for hours. For example, the encounter between two individuals

passing each other in a hallway might last just a few seconds. Yet, two or more

people in a lengthy meeting encounter each other for the full duration of that

meeting.

• Encounters are not reflexive: if A encounters B, then B does not necessarily

encounter A.

• Encounters are non-transitive: if A encounters B, and B encounters C, then A

does not necessarily encounter C.

82

IV.1.3 User Profiles

A user profile is a typed data item that defines the identity of a user within a

community. It contains information a user willingly discloses to other community

members and may include any information that is defined useful or necessary to

identify or describe a person. For example, it may include a user’s (real or assumed)

name, contact information, a list of hobbies and a photo. While some interactions may

be anonymous, most communities depend on an exchange of personal information to

introduce community members to each other.

Each community uses a different profile template and all user profiles used

within one community have the same structure. The profile template standardizes the

structure and content of user profiles used within a community.

During an encounter, agents exchange profiles thereby disclosing their users’

identity to the other agent. Agents may perform different operation depending on the

content of a received profile: they might inform their owner about the presence of a

particular person, update an internal database that keeps track of encounters or simply

cache the profile for later use.

IV.1.4 Community Language

The most important concept of our system model is the community language. A

community language defines a way for actors to interact (communicate). It consists of

two components:

1. The community vocabulary. is a collection of messages types that actors can

exchange. A message type is a data structure that that provides a template for

messages that actors can exchange. A message is a single data object that is sent

by one actor (the sender) to another actor (the recipient). When an actor sends a

83

message, it has expectations about how the recipient will respond to the

message. Those expectations are not encoded in the message itself.

2. The community protocol defines the conversations actors can have. A

conversation is a pattern of message exchange that two or more actors are bound

to follow in communicating with one another. Typically, actors do not engage in

single message exchanges but they have more or less extended conversations,

i.e., sequences of message exchanges with a definite beginning and end. A

community protocol can be thought of as formalizing rituals that actors can

engage in

A conversation can contain two types of interactions:

1. Agent-Agent interactions: agents communicate by sending messages over a

wireless link.

2. Human-agent interactions: users interact with their agents, for example in order

to query the agent for information or to modify the agent’s behavior. Agents

interact with users, for example in order to inform the user about the status of

ongoing operations or about the presence of nearby users.

Agent-agent interactions can only occur during an encounter, because they are

dependent upon a direct wireless link between the users’ wearable computers and

because we assume the use of short-range wireless networks. Human-agent interactions

can occur before, during or after an encounter.

The scope of a community language is shown in Figure 8.

84

Agent - agent interaction

Human - agent
interaction

Human - agent
interaction

Wearable computer with
community agent

Wearable computer with
community agent

Figure 8. Scope of a Community Protocol

Human-human interactions happen outside of the scope of the wearable

community system. Direct exchanges between users are thus not part of a conversation

and are not covered by the community language. A community protocol creates rather

than constrain social protocols.

In groupware, there has been a longstanding controversy whether social

protocols should be determined only by the users, only by the software, or somewhere

in between. We believe that social protocols should not be determined by software, but

nevertheless should be reflected in the design.

A community language shares some similarities with a communication protocol

such as TCP/IP or an agent communication language (ACL) such as KQML

(Genesereth and Ketchpel 1994; Finin et al. 1994) or the Interagent Communication

Language (ICL) (Martin et al. 1999). First, it differs from both in that it regulates

communication between four entities, two of which are computational and two of which

are human users. Second, it differs from a communication protocol in that it does not

deal with the mechanism of communication but with its content, specifying the

vocabulary as well as the structure of interactions. Finally, it differs from an agent

85

communication language in that it is not concerned with providing a semantic

foundation for communication but only with the structure.

Examples of community languages and protocols are proximity-based

awareness of other users, ‘word of mouth’ message passing, and ad hoc voting in

temporarily connected groups – all these create opportunities for more additional social

interaction rather than narrowing the space of interactions.

Table 7. Main Concepts of the Wearable Community System Model

Community Agent A software application running on a
wearable computer that connects a user to a
community

Encounter A situation in which two or more people are
in close physical proximity and their
respective agents are aware of each other
and able to communicate

User Profile A typed data item that defines the identity of

a user within a community

Message A typed data item exchanged by actors

Conversation A sequence of message exchanges among
actors

Community Vocabulary A collection of message types that actors of
a community can exchange

Community Protocol A set of rules that defines the valid
conversation within a community

Community Language Community vocabulary + community
protocol

Wearable Community Application community agent + community language +
user profile

86

IV.1.5 Summary

The conceptual model as defined above enables us to formalize the notion of a

wearable community. From a system point of view, a wearable community is a

collection of users plus the collection of the users’ community agents plus a community

language. Within a wearable community, each user has exactly one community agent.

The community language describes the interactions between users and their agents and

between agents. The main concepts of the system model are summarized in Table 7.

In the following we will introduce a design language for specifying the key

aspects of a wearable community and outline a development process that defines the

activities from initial design to implementation of wearable community software.

IV.2 Design Language

IV.2.1 Purpose

The wearable community design language (WCDL) is a semi-formal notation

for specifying the key aspects of the design of wearable community software. The

WCDL provides the modeling language for:

• Scenarios

• User profile templates

• Community vocabularies

• Community protocols

87

IV.2.2 Scenarios

A scenario summarizes the essential elements of a community from the users’

perspective. Each scenario is described with the following pieces of information:

• NAME (unique name of community)

• PURPOSE (short description of the purpose of the community)

• POPULATION (short description of user population as it relates to purpose of

community)

• DEVICE (short description of required device capabilities)

• BEFORE (short description of actions performed by individual users before an

encounter)

• ENCOUNTER (short description of interactions that take place during an

encounter of two community members)

• AFTER (short description of actions performed by individual users after an

encounter)

Example

Let’s look at a concrete example. Genie is a simple wearable community system

whose purpose it is to improve the knowledge exchange within a dispersed group of

wearable computer users, for example employees working in a particular office building

or students attending the same college. The goal of Genie is to make the combined

expertise of the group available to every group member. Some people of the group

might be experts on soccer while other might by hobby gardeners with an extensive

knowledge on horticulture. If one member of the group needs to find the answer to a

 particular question (such as “Where do I find x?”, “How do I do y?”), it is often not

immediately obvious who is able to answer the question in a given situation. Thus

Genie members use their WPAN-equipped wearable computers to automatically find

fellow community members who are willing and able to answer particular questions.

88

Hi, this is Peter:
Who won the 1934

soccer world
championship?

Hi, this is Ann.
I know the answer!

Talk to me!

Figure 9. Genie wearable community (Step 1)

This is done in the following way: each user defines a set of questions which are

stored by the user’s Genie community agent. Whenever two or more wearable users

meet, their agents exchange their users’ questions. This may happen during informal

chance encounters occurring normally throughout a day (for example, during coffee

break, lunch, or an official company meeting). After receiving a question an agent alerts

its user and displays the question on the wearable computer’s display, allowing the user

to indicate if he or she knows the answer and is willing to talk to the person looking for

an answer. The response is relayed back in real-time from agent to agent and eventually

to the user (Figure 9). After a successful exchange among the user’s community agents,

the users can approach each other and discuss the topic of interest in a personal

conversation (Figure 10). In order to facilitate contact agents also exchange personal

user information including the users’ names and photos (photos facilitate contact by

people who do not know each other by name).

89

Hi, I’m
Peter.

Hi, I’m Ann.
In 1934, the championship was held
in Italy. In the final game, Italy beat

Czechoslovakia 2-1. The spectators had to
wait until the 70th minute for the first goal to
be scored: Antonin Puc sent the Czech team
into the lead. Ten minutes later, Raimundo
Orsi brought the game to a tie and sent the

game into overtime. Angelo Schiavio's scored
in the 95th minute marked the victory for host

country Italy.

Thanks!
I’m so glad
I met you!

Figure 10. Genie wearable community (Step 2)

The scenario description for the Genie is shown in Table 8

Table 8. Genie scenario

Name Genie
Purpose To improve knowledge exchange within a group of mobile people by

enabling them to find people who are willing and able to answer
particular questions

Population University students of a specific course OR employees of a company OR
members of a project team OR a group of friends

Device Device must allow users to input questions as text or speech and to
indicate that they are willing to talk to the person who poses a question
(via a button press or a verbal command)

Before Users define questions and input them into their computers where they
are stored persistently

Encounter Agents exchange questions and pose the other user’s question to their
own user. Users who know the answer and are willing to talk to the first
user, indicate this willingness to their computer. This information is
relayed back to the original user via both user agents together with
contact information (name and picture) which allows both users to find
each other

After -

90

IV.2.3 Profile Templates

The profile template of a community is described by a list of attribute

descriptors each of which contains the following fields:

• Attribute Name

• Implementation Type

• Description

The syntax of the attribute name and attribute type is defined as follows:

<attribute_name> ::= <attribute_name>+ |
 A | B | … | Z | 0 | … | 9 | _ | -

<implementation_type> ::= <primitive_type> |
 [<primitive_type>] |
 <implementation_type>* |
 <implementation_type>+ |
 <primitive_type> ; <implementation_type>

<primitive_type> ::= built-in type

An implementation type can either be a primitive type, an optional primitive

type (indicated by square brackets), a possibly empty list of implementation types

(indicated by *), a non-empty list of implementation types (indicated by +) or a

sequence of types (a list of types separated by ;).

A primitive type specifies the implementation and refers to the name of

programming language-dependent variable type. For example, the name of a Java class

or built-in type is a valid primitive type.

Example

The profile template for the Genie community is shown in

Table 9.

91

Table 9. Genie profile template

Attribute Name Implementation Type Description
Name String A real or assumed name of the

user, e.g. “Ann”
Subject String* A possibly empty list of subject

fields the user is willing and able
to answer questions about. For
example: “soccer”, “architecture”

In the Genie community, members disclose two pieces of personal information:

their name and a list of subjects they feel knowledgeable about and are willing to

answer questions. The name, which is mandatory and of type String, need not be the

user’s real name, but might be an assumed name similar to screen names people use in

online chat rooms. The subject is represented as a string. In the example, Ann’s subject

of expertise is soccer.

IV.2.4 Community Vocabulary

A community language consists of two components: the vocabulary and the

protocol. A vocabulary is a list of message types each of which is described by three

fields:

• Message Type Name

• Description

• Implementation

The specification of the implementation is a list of attribute type specifications

as described in Chapter IV.2.3.

92

Example

The vocabulary of the Genie Community contains three types: question, positive

and negative. Their definition is shown in Table 10.

Table 10. Genie vocabulary

Implementation Message Type Description

Attribute Name Implementation
Type

Description

Subject String* The subject
field this
question refers
to. For example
“soccer” or
“architecture”

Question A message of
this type
contains the
subject of the
question and the
text of the
question.

Text String The actual text
of the question.
For example
“Who won the
1936 soccer
world cup?”

Positive A message of
this type
indicates that a
user does know
the answer and
is willing to be
contacted

void (a message of this type does not carry any data)

Negative A message of
this type
indicates that a
user does not
know the
answer to a
question.

void (a message of this type does not carry any data)

93

IV.2.5 Community Protocol

A community protocol defines a set of allowed conversation each of which is a

finite sequence of message exchanges. Protocols are specified by community protocol

diagrams (CPD). A CDP models two aspects of a protocol:

• The states a conversation can be in (“not yet started”, “finished”, …)

• The flow of messages during a conversation.

A CDP emphasizes message sequences, i.e. the time ordering of messages.

Notation

A CDP is a graph with the following elements:

• A state is a conditions in which a conversation can reside during its lifetime

(visualized by labeled circles)

• A transition is a relationship between two states indicating that the conversation

can move from the first state to the second state. A transition is shown as a

rectangle connected by solid arrows to the source state and the target state.

Transitions are labeled with messages types indicating a communication event

that occurs at the time of the transition. On such a change of state the transition

is said to “fire”.

• States are organized into realms. Each realm is assigned to one actor and

indicates responsibility for the continuation of the conversation (visualized by

boxes)

• The initial state is the default starting place for a conversation (visualized by a

black circle)

94

Example

Figure 11 shows a simple CDP for a hypothetical community protocol (we will

discuss the protocol for the Genie community below). The vertical axis of the diagram

indicates time, while the horizontal axis indicates the actor which is responsible for the

continuation of the conversation. The diagram defines the following sequence of

interactions:

The conversation is initiated by Agent A, who sends a message of type t1 to

Agent B. Agent B sends a message of type t2 to User B who responds with message of

type t3. Agent B then sends a message of type t4 to Agent A who contacts its user by

sending message of type t5.

Figure 11. Sample community protocol diagram

95

A transition simultaneously indicates two related aspects of a protocol:

• Temporal succession: if a transition leads from state s1 to State s2 it means that

state s1 strictly occurs before state s2.

• Messaging: if a transition labeled t1 leads from state s1 in realm r1 to state s2 in

realm r2 it means that actor r1 sends a message of type t1 to actor r2.

Restrictions

The following additional restrictions apply to CDPs:

• There are exactly four realms, one for each of the four actors: User A, Agent A,

Agent B and User B.

• Realms are ordered as follows: User A, Agent A, Agent B, User B.

• Transitions may only connect states of consecutive realms (User A <-> Agent

A, Agent A <-> Agent B, Agent B <-> User B)

• Each state has only one outgoing transition (but may have multiple incoming

transitions)

• There is exactly one start state

• State labels are unique

• Transition labels need not be unique

Complex Transitions

A CDP is intended to model not just one possible conversation, but the space of

all allowed conversations at once. Thus, we introduce four types of complex transitions

(Figure 12):

• A branch indicates the splitting into two or more alternate paths. It can be

interpreted as logical OR. It is visualized by a triangle with one incoming

transition and multiple outgoing arrows. Only outgoing arrows carry labels.

96

• A merge indicates the convening of multiple alternate paths. It is visualized by a

triangle with multiple incoming transitions and one outgoing arrows. Only

incoming arrows carry labels.

• A fork represents the splitting of a single flow of control into two or more

concurrent flows of control. It can be interpreted as logical AND. It is visualized

by a horizontal bar with one incoming transition and multiple outgoing arrows.

Only outgoing arrows carry labels.

• A join represents the synchronization of two or more flows of control into one

sequential flow of control. It has multiple incoming transitions and one outgoing

arrows. It is visualized by a horizontal bar with multiple incoming transitions

and one outgoing arrows. Only incoming arrows carry labels.

Figure 12. Complex transitions

97

A complex transition is enabled when the source states is occupied. After a

complex transition fires its destination state is occupied.

Example

The protocol diagram for the Genie community is shown in Figure 13. It

captures two possible conversations:

The exchange is initiated by Agent A, who sends user A’s question to Agent B

(s1 -> s2). Agent B forwards the question to User B (s2 -> s3). If user B does not know

the answer she indicates this by sending a ‘no_answer’ message to her agent (s3 -> s4).

Agent B relays this negative result to Agent A (s4 -> s5). As User A should not be

interrupted with a negative response, no further message is send to User A and the

conversation has come to an end. If, however, User B knows the answer to User A’

question, then she sends an ‘answer’ message to her Agent B (s3 -> s6). Agent B then

informs Agent A (s6 -> s7) which in turn alerts User A that an answer has been found

(s7 -> s8).

98

Figure 13. Genie community CPD

99

IV.3 Development Process

IV.3.1 Purpose

The purpose of the wearable community development process (WCDP) is to

guide the activities the lead to the implementation of a wearable community application

and its deployment on user devices. The description of the development process is

divided into roles and development phases.

IV.3.2 Roles

The development process defines three roles: designer, developer and user.

• Designers define the overall purpose of a wearable community. They are

concerned with the social interactions that are to take place among members of

a wearable community.

• Developers create the software that runs on the users’ wearable computers.

Their main concern is the implementation of specific wearable community

applications.

• Users are the persons who use wearable computers to engage fellow community

members.

At least two different models of community development are possible. In the

first model, designers, developers and users are distinct individuals. Designers and

developers together develop a wearable community application that is then distributed

to users. This model is similar to the traditional software development model. In an

alternative model, users are at the same time designers and developers. A group of

individuals may collectively specify and design the application, but different individuals

may create their own interoperable implementation. This distributed development

100

model is possible because a community language defines a standard that promotes

interoperability.

IV.3.3 Development Phases

The design process guides design and development activities ranging from the

initial design to deployment of application software on a user’s device. The process is

an iterative, cyclic process divided into seven phases: assessment, conceptual design,

specification, implementation, seeding, dissemination and review (Figure 7). Each phase

defines activities performed by users, designers or developers; the outcome of some

phase is a specific set of design artifacts. The relationship between roles, phases and

artifacts is depicted in Figure 14.

Figure 14. Relationship between WearCoM roles, phases and artifacts

101

The seven process phases are defined as follows:

Phase 1. Assessment

The assessment phase is performed by designers and developers in cooperation

with users. The goal of this phase is to explore the purpose of a wearable community

and the user requirements.

The activities of the assessment phase include:

• Identify the user population

• Identify the user needs

• Define the overall purpose of a wearable community

• Identify high-level requirements of the wearable community application

The outcome is an understanding of the goal, purpose and scope of a wearable

community and wearable community application.

Phase 2. Conceptual Design

The design phase is performed by designers, possibly in cooperation with

users. The goal of this phase is to capture the user experience of interacting within a

community. The design activities are:

• Define scenarios that describe all possible interactions within a community

• Identify which personal information people are willing to disclose about

themselves.

The artifacts produced by the conceptual design phase are:

• A scenario description (Chapter IV.2.2)

• A user profile template (Chapter IV.2.3)

102

Phase 3. Specification

The specification phase is performed by designers and developers. The goal

of this phase is to specify the interactions that can take place during an encounter.

The activities of this phase are:

• Specify the conversation that can occur between actors (users and agents)

The artifacts produced by the specification phase are:

• A community vocabulary (Chapter IV.2.4)

• A community protocol diagram (Chapter IV.2.5)

Phase 4. Implementation

The implementation phase is performed by developers. The goal is to create

a software implementation of the community agent, the messages and the user

profile. The particular activities include:

• Implement the community agent

• Implement data structures representing the messages

• Implement data structure representing a user profile

Artifacts are:

• Agent implementation (source code and executable code)

• Profile implementation

• Vocabulary implementation (i.e. implementation of message types)

The community protocol is implemented by the community agent.

Phase 5. Seeding

The seeding phase is performed by users or developers. Seeding is the act of

distributing the agent to a small number of initial users. This can be done in a public

way by creating a community web site that enables users to download the agent or

in a more personal way by approaching prospective community members. Seeding

103

enables individuals to gradually start a new community by involving just a few

people. Seeding involves only one essential activity:

• Install the application on a user’s device

Phase 6. Dissemination

The dissemination phase is performed by the user. Dissemination is the

rumor-like spreading of copies of an agent throughout a user population during

face-to-face encounters. An individual who is already member of a particular

community transfers a copy of an agent to an individual who is not yet a member,

but wishes to become one. Therefore, all members will eventually share the same

agent implementation which originates/stems from the original seeders. This phase

is essential for a grass-root like growing of an initially small community and

represents an important and novel aspect of wearable communities. We envision an

ecosystem of wearable community agents, each one created by a different

developer, all together competing for the user’s attention. Only those agents that are

beneficial to users (because it connects them to a useful or fun community) will be

propagated to friends, family and colleagues. Agents that are not circulated will

eventually die out and disappear. The individual activities of the dissemination

phase are:

• Negotiate about access to the agent

• Transfer the agent from one device to another

• Install the agent on the user’s device

• Remove an agent from the user’s device

Phase 7. Review

The review phase is performed by designers in cooperation with users. The

goal is to evaluate:

• the technical quality of a community application prototype

• the success or failure of the design of a community application prototype

104

• the success or failure of the wearable community created by the application

prototype

As discussed in Chapter II, social and technical concerns of wearable

communities are difficult to separate. A wearable community application creates a

technical foundation from which a community might or not emerge. The success of an

application depends on the success of the community it creates. Thus, designers need to

simultaneously evaluate technology and social behavior. This can only be done through

empirical studies of real users using the technology in a real context.

If the results of the review phase are not satisfactory, a new development cycle

needs to be started beginning with either the assessment or the conceptual design phase.

The review phase is one of the least understood phases

IV.4 Tool Support

To help developers use the outlined methodology and to enable rapid

development of wearable community applications, infrastructure and tool support is

essential. For that purpose, we advocate the use of a wearable community platform, a

set of software technologies for designing, implementing and deploying wearable

community applications. The platform must be distributed in nature and provide high-

level abstractions and services for building applications. In particular, it must provide

three major support functions:

1. Development support: to manage this complexity during the application

development the platform must provide architectural and functional abstractions

for developers to leverage off when implementing wearable community

applications. These abstractions must closely match the concepts introduced by

the methodology.

105

2. Decentralized system support: to enable the spontaneous formation of wearable

community systems, the platform must provide infrastructure support for

presence-awareness and communication.

3. Runtime support: to support the dissemination of agents throughout a group of

users, the platform needs to enable transmission and guarantee safe execution of

community agents.

IV.4.1 Development Support

The primary task the wearable community platform is to simplify the

construction of community applications by providing programmers with commonly

needed functionality and appropriate abstractions. Thus, the platform should provide an

application framework, i.e., a set of libraries and application programming interfaces

(APIs) for constructing applications. Based on the discussion of the conceptual model at

the beginning of this chapter and of the challenges of wearable community systems in

Chapter II, we can identify the following required framework features:

• Identity Management – enable applications to define and manipulate user

identities; in order to address privacy concerns, applications (and thus users)

should at all times be in full control over the information given out to other

users.

• Presence awareness (situational context) – make applications aware of nearby

devices and users; to reduce the need for active and repeated inquiry by

applications, the framework should support a notification mechanism for

“presence events”.

• Human-centered Communication – enable human-addressable messaging (in

addition to device-addressable messaging); the framework should provide

flexible addressing modes including direct messaging between two individuals

as well as community-wide broadcasting of messages.

106

• Relationship Management (social context) – enable applications (and thus users)

to define personal relationship between users. Behavior of applications might

change depending on whether a friend, a colleague from work or a total stranger

is being encountered.

• Episodic Memory (historical context) – make applications aware of the

historical context; to reduce the need for applications to record individual

events, the framework should automatically record encounters and interactions

among users in a persistent database; applications should be able to query this

database using user identities and time as search keys.

• Trust Management (social context) – enable applications (and thus users) to

evaluate the trustworthiness of other users; for example, this may be done on the

basis of subjective personal experiences, aggregated experiences of the

community as a whole (reputation). Although not all application scenarios and

wearable communities require an explicit measure of trust (for example, Genie

knowledge community), some applications may benefit from it (for example,

the mBazaar “wearable eBay” community).

By addressing these features in a framework, we will enable programmers to

more easily and more rapidly build applications. Developers will be able to leverage of

the framework, rather than be forced to provide their own custom support in an ad hoc

manner.

IV.4.2 Decentralized System Support

A community system is a decentralized system in which hosts interact in a peer-

to-peer fashion. Thus, many of the requirements on the system level are similar to those

of mobile peer-to-peer systems. They include:

107

• Presence awareness – dissemination of presence information throughout a

system; network-based discovery of nearby devices, resources and individuals

through exchange of metainformation.

• Peer-to-peer communication – multi-hop message delivery in highly dynamic ad

hoc networks.

• Security – establishing of secure communication links between devices3.

• Transfer of applications from device to device – as support for the

dissemination phase, applications need to be passed from device to device

(application transport need not occur during runtime).

IV.4.3 Runtime Support

The dissemination phase requires that applications be transferred between two

user’s devices in a peer-to-peer manner. In order to ensure safe execution of

applications, a secure runtime environment with the following properties is required:

• Verification of application code – to unsure integrity of application code

• Safe execution of application code (sand boxing) – to prevent malicious code

from causing harm

• Persistent storage of application state – to enable reliability in the wake of

system failures

3 Although security is a requirement for a wearable community platform, we will not address security in

this dissertation. Security in dynamic decentralized mobile systems and wireless ad hoc networks is a

dissertation topic in itself.

108

IV.5 Summary

The methodology described in the chapter defines a conceptual model, a design

language and a development process for wearable communities. In order to enable an

exploratory design approach based on rapid prototyping of wearable community

applications and thus wearable communities, we need infrastructure and development

support in a variety of areas. To address these needs, we advocate the development of a

wearable community platform that focuses on the information needs of applications and

provides developers with high-level programming abstractions. The primary component

of such a platform is an application framework for building wearable community

applications. Although individual solutions exist for the identified requirements there is

currently no platform that combines the development, system and runtime support

required for adequate support of the WearCoM methodology. In the following section,

we describe the Proem platform that was designed to remedy this shortcoming.

109

Chapter V

THE PROEM PLATFORM

In this chapter, we present a solution to the development problem in the form of

the Proem peer-to-peer platform. Proem is a platform for building presence-aware, ad

hoc collaborative applications. The term “presence-aware” refers to the use of

knowledge about availability and reachability of people while “ad hoc collaborative”

refers to the fact that interactions between people are spontaneous and transient. This

type of applications increasingly gains importance as personal mobile devices and

wireless ad hoc networks become more popular. Wearable community applications are

one important example of ad hoc collaborative applications and Proem has been

designed to tightly integrate with the WearCoM development methodology. It offers an

extensive API that provides access to common application functionality and enables

developers to rapidly build feature-rich wearable community applications. By providing

a common ground for the development and execution of wearable community

applications, the Proem platform serves as an effective catalyst for wearable

communities.

The main components of the platform are:

1. The Peerlet application framework, a collection of libraries and APIs for the

rapid development of presence-aware, ad hoc collaborative applications.

2. The Proem Runtime System, a software environment for hosting and executing

applications built with the Proem application framework.

110

3. The Proem protocols, a set of peer-to-peer protocols that define the way in

which Proem peers communicate and cooperate over the network.

Proem is implemented in the Java programming language and runs on a variety

of mobile and wearable computers including PocketPC-based handheld devices like the

Compaq iPAQ series. The runtime and application framework consist of 135 Java

classes that have a total size of 75KB (250KB source code). Proem is independent of

network transport protocols and can be implemented on top of TCP/IP, HTTP,

Bluetooth, and many other protocols. This means that applications built with Proem

function in the same fashion when the system is expanded to a new networking

environment or to a new class of devices, as long as the Proem runtime system is ported

to the new operating environment.

In this Chapter, we describe the overall architecture of Proem and discuss the

runtime system and the communication protocols. In Chapter V, we describe the

application framework and discuss how the platform integrates with the WearCoM

development methodology. In Chapter VI, we discuss case studies of applications built

on top of Proem.

V.1 Architecture

V.1.1 Proem Network

Proem is an infrastructure for building decentralized peer-to-peer systems. It is

based on a family of peer-to-peer protocols that define the way in which autonomous

hosts, called peers, communicate and cooperate over a network. A collection of

cooperating Proem peers is called a Proem network (Figure 15). It builds, on the

application level, a virtual network with its own routing mechanisms on top of an

existing network infrastructure. Depending on the type of the communication network,

the virtual network topology may or may not match the underlying network topology.

111

Proem
Peer

Proem
Peer

Proem
Peer

Proem
Peer

Proem
Peer

Proem
Peer

Proem
Peer

Proem
Peer

Proem
Peer

Proem
Peer

Proem
Peer

Proem
Peer

Proem
Peer

Proem
Peer

Proem
Peer

Proem
Peer

Proem
Peer

Proem
Peer

Figure 15. Proem Network

Proem is primarily aimed at wireless proximity networks, i.e. local area and

personal area networks. This implies that hosts must be co-located in physical space in

order to establish a peer-to-peer relationship.

In a Proem network, each peer operates independently and asynchronously of

any other peer. Yet peers may choose to cooperate for a variety of purposes. On the

most fundamental level, they may act as mobile routers and cooperatively propagate

messages across the network. Cooperation in a Proem network is entirely voluntary and

there is no mechanism to enforce cooperation.

A Proem network is a dynamic, self-organizing, ad hoc network. In general, it is

partitioned and consists of multiple clusters. Due to the rapid and unpredictable

movement of hosts a Proem network does not have a stable topology; communication

links are repeatedly created and destroyed as side effect of host movement causing

peers to enter and leave each other’s transmission range. In a Proem network visibility

is limited: not every peer can communicate with every other peer. The set of peers that

are visible from a particular peer is called this peer’s horizon (Figure 16). At a

minimum, the horizon includes all immediate neighbors of a peer, i.e. all peers to which

112

it is connected by a direct network link. In addition, the horizon may include peers that

are two or more hops away. Due to the dynamic nature of a Proem network the horizon

is constantly changing: peers may unexpectedly and unpredictably enter or leave a

peer’s horizon at any moment. The horizon is thus mostly a theoretical concept and it is

impossible for a peer to know or compute its horizon with certainty.

V.1.2 Key Concepts

The architecture of a Proem network is based on a few fundamental concepts,

namely peer, peerlet, peerlet engine, protocol and message.

A peer is an autonomous, wireless host such as a mobile or wearable computer.

We assume peers to be personal devices that are owned and operated by users. A person

can simultaneously use any number of peers, but each peer belongs to only one

individual.

Each peer may host one or more peer-to-peer applications, called peerlets.

Peerlets are network enabled applications whose primary task is to interact with peerlets

running on other peers. Each peerlet implements an application-specific peerlet

protocol and only peerlets that support the same protocol are able to communicate. All

peerlet protocols are asynchronous messaging protocols. Proem developers specify and

implement peerlet protocols; they are not restricted to a set of built-in protocols.

PeerPeer

PeerPeer

PeerPeer

PeerPeer
Peer Horizon = Visibility

Messages

Messages

Figure 16. Peer Horizon

113

Peerlets

Peerlet Engine

Peerlets

Peerlet Engine

Messages

Events

Peer Peer

Figure 17. Peers, peerlets, peerlet engines and peerlet protocols

Peerlets are hosted and managed through their lifecycle by the peerlet engine. A

peerlet engine is the Proem runtime system and is installed on every Proem peer. It

provides core services such as discovery, communication and presence awareness. The

peerlet engine ensures interoperability and makes sure that peerlets can be installed and

safely executed on any peer.

The relationship between peers, Peerlet engine, Peerlets and protocols is

depicted in Figure 17.

V.1.3 Assumptions

Proem is an infrastructure for building collaborative peer-to-peer systems, i.e.

the ultimate goal is to support interactions and exchanges between people, not just

devices. In addition, Proem is primarily aimed at mobile network environments. In its

design we made the following assumptions about the operating environment:

Peers are personal mobile or wearable personal devices that are owned and

operated by people. They are battery-operated and posses capabilities for data

processing, data storage and communication. They are not fault-tolerant and may crash,

be turned off or run out of battery power at any time. Hosts do not need to be identical

and in general use a variety of hardware and operating system platforms. In contrast to

114

most mobile computing research, we do not assume that mobile hosts are severely

limited in processing power, memory capacity or storage. This reflects the fact that

speed of innovation in mobile device technology has increased so dramatically over the

last years that we can expect mobile devices soon to become as powerful as high-end

workstations were a few years back. For example, we expect that in the near future

mobile processors will run at speeds of several gigahertz and mobile storage solutions

will provide hundreds of gigabytes of storage, thereby effectively eliminating some of

the limitations currently associated with mobile devices. In sum, we assume mobile

devices that match or exceed the specifications of today’s PalmOS and PocketPC

handheld devices.

Short-range and ad hoc wireless communication technology is still relatively

new and significant progress can be expected for the future. As we want to

accommodate networks based on single channel, broadcast based wireless media (such

as 802.11 or IR LAN) and on multi-channel wireless media (such as Bluetooth) we

make only few assumptions about the capabilities of the wireless network. The

fundamental requirement on the communication technology is that it enables seamless

data communication via short-range links both inside and outside of buildings, and

allows connecting devices in an ad-hoc fashion (i.e., not requiring setup procedures or

user intervention). In particular, we do not make any assumptions about reliability,

routing capabilities and link topology of the network:

• The network may not support high-level network protocols such as IP.

Communication links may be unreliable, message transmission times may be

variable and message may be lost or corrupted during transmission. In

particular, there is no guarantee that replies will reach their destination.

• The network may not support multi-hop routing and there is no guarantee that

routes between arbitrary hosts exist, even if these hosts are co-located and

within transmission range. In addition, routes that do exist may disappear at any

moment.

115

• Communication links may be point-to-point, point-to-multipoint or broadcast-

based.

• Communication links may be unidirectional or bi-directional.

Unidirectional links are unknown in wireline networks but are common in

wireless networks. Links may be unidirectional due to the hidden terminal problem

(Tanenbaum 1996) or due to disparity between the transmission power levels of the

nodes at either ends of the link. Node A may be able to receive messages from node B

as there may very little interference in A’s vicinity. However, B may be near an

interfering node and, therefore, be unable to receive A’s messages. As result, the link

between A and B is unidirectional and directed from B to A. Link unidirectionality can

be a persistent or transient phenomenon and it is possible for a link to quickly and

repeatedly transition between unidirectional and bidirectional state (Prakash 1999).

Wireless communication and networking technologies that are covered by the

above definition include existing standards like Bluetooth, IrDA, Home RF, IEEE

802.11 and HIPERLAN, and experimental network technologies like Ultra-wideband

radio technology.

V.1.4 Distributed Object Identifiers

Peers manage, communicate about and manipulate distributed objects, which we

call entities. Within the architecture, entities have first-class status. The Proem

architecture defines six different entity types, namely user, peer, peerlet, peerlet

protocol, message type, message and user. Each entity is globally identified by a

uniform resource name (URNs) (see Moats 2001), i.e. a persistent and location-

independent identifier.

Proem does not provide a built-in naming system and does not guarantee that

each distributed entity has a unique ID. A mobile peer-to-peer system that does not

make use of central resources and in which peers interact during random encounters

116

does not have a global state. Thus there is no absolute way to guarantee uniqueness

across an entire community that may consist of a large number of peers. However,

because of the large identifier space and the high locality of interactions with a Proem

network, we do not expect many name clashes.

Proem entities may have multiple URNs. In particular, we do not require that

users and peers are known throughout a network by only one name. Multiple names

provide for pseudo-anonymity: since there is no central name repository it is impossible

to determine whether two different names refer to the same or two different identities.

Thus a user who wants to obfuscate his identity may switch to a different URN for

himself and his peer. The reason to allow multiple names for users and peers is to allow

users to change their identity at will and to make tracking of individual users more

difficult. Note, however, that certain collaborative applications depend on stable and

unique identities and switching URNs makes these collaborations impossible. It is up to

the designer and ultimately the user to make the tradeoff between privacy and

functionality.

The syntax of Proem URNs is defined as follows:

<Proem-URN> ::= "urn:proem:" <Proem-Type> “:” <Proem-UID>

<Proem-Type> indicates the type of the entity identified and <Proem-UID> is a

numerical identifier that is unique within each type. The syntax definition for the proem

type and uid are as follows:

<Proem-Type> ::= “peer” | “user” | “protocol” |

 “messagetype” | “message” | “peerlet”

<Proem-UID> ::= <symbol> [1,63<symbol>]

<symbol> ::= <number> | <upper> | <lower>

<number> ::= "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"

<upper> ::= "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" |

 "I" | "J" | "K" | "L" | "M" | "N" | "O" | "P" |

117

 "Q" | "R" | "S" | "T" | "U" | "V" | "W" | "X" |

 "Y" | "Z"

<lower> ::= "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" |

 "i" | "j" | "k" | "l" | "m" | "n" | "o" | "p" |

 "q" | "r" | "s" | "t" | "u" | "v" | "w" | "x" |

 "y" | "z"

Example

The following strings are valid Proem IDs:

“unr:proem:peer:12345678”, “unr:proem:user:00789”,

“unr:proem:protocol:genie”.

V.2 Peerlet Engine

The peerlet engine is the heart of the Proem platform. It provides a runtime

environment for peerlets and is responsible for

• Discovery of peers and users

• Hosting and execution of peerlets

• Enabling communication between peerlets

• Managing peerlet user interfaces

The peerlet engine realizes a Proem virtual machine that ensures interoperability

between peers and makes sure that peerlets can be installed and safely executed on any

peer. In addition, it provides core services to peer-to-peer application including

discovery, presence awareness, and messaging.

118

Proem Transport Protocol

Proem Presence Protocol

Proem Transport Protocol

Proem Presence Protocol

Presence
Service

Messaging
Service

History
Service

Relationship
Service

Identity
Service

Presence
Service

Messaging
Service

History
Service

Relationship
Service

Identity
Service

Peerlet Peerlet Peerlet PeerletPeerlet Peerlet Peerlet Peerlet

Peerlet Controller

Peerlet UI Peerlet UI Peerlet UI Peerlet UI

Peerlet Controller

Peerlet UI Peerlet UI Peerlet UI Peerlet UI

Protocol Layer

Service Layer

Peerlet Layer

User Interface Layer

Figure 18. Peerlet Engine Software Architecture

The architecture of the peerlet engine is shown in Figure 18. It is divided into

four functional layers:

Protocol Layer

The protocol layer encapsulates essential peer-to-peer computing functions. Its

task is to connect peers in a Proem network and to enable cooperation between them. It

is implemented as a protocol stack:

• The Proem Transport Protocol is the common messaging protocol for all Proem

peers. It hides the underlying network by creating a virtual network view.

Similar to the Internet Protocol (IP), the Proem Transport Protocol is an

unreliable, best-effort connectionless protocol. It assumes little from the

underlying network mechanisms, only that messages will “probably” (best-

effort) be transported to the addressed peer.

119

• The Proem Presence Protocol is implemented on top of the Proem Transport

Protocol. It is used by to advertise and discover information about peers and

users in a Proem network. As such it is the mechanism for realizing presence

awareness.

The Proem protocols are discussed in more detail in Chapter V.3.

Service Layer

The Service Layer implements a set of common application services. The most

important services are the identity service, presence service, communication service and

history service (searching and indexing, directory, storage, file sharing, distributed file

systems, resource aggregation and renting, protocol translation, authentication, and PKI

services). The primary goal of this layer is to provide developers with the right

abstractions for easy development of wearable community applications.

The service layer provides a set of common application services. These include

the identity service, presence service, messaging service, history service and

relationship service. The primary goal of this layer is to provide developers with the

right abstractions and a complete set of services for developing presence-aware ad hoc

collaborative applications.

• The identity service provides an API for specifying a user’s public identity in

the form of a public profile. A profile is a data structure similar to an electronic

business card which is used to advertise a user within a network. A user can

define one profile for each peerlet.

• The presence service provides information about nearby users. Applications can

query the service and get the profiles of all users who are reachable across the

network.

• The history service realizes an episodic memory and provides information about

past encounters and interactions. For example, applications can ask “When did I

120

last encounter user x?” The service automatically captures relevant information

about encounters thus simplifying the implementation of applications.

• The messaging service provides a message-based, network-independent

communication API that is used to send messages to peerlets on remote peers.

• The relationship service enables applications to define relationships that exist

between the user and other individuals. These relationships are stored

persistently and are available even after a restart of the peerlet engine.

The functionality of these services and their APIs are described in Chapter VI.5.

Peerlet Layer

This peerlet layer represents the actual execution environment for peerlets. It is

responsible for storage of peerlet binaries and the management of peerlets throughout

their lifecycle. The development of peerlets and their lifecycle are discussed in Chapter

 VI.2.

User Interface Layer

The user interface layer manages the interaction users and peerlets. Its main

component is the peerlet controller, a simple graphical user interface management

system. It displays the user interfaces of individual peerlets and allows users to switch

between running peerlets.

In the following two sections we describe the network and user interface layers

in more detail. The peerlet and service layers are presented in Chapter VI.

121

V.3 Proem Protocols

The Proem architecture defines two communication protocols, the Proem

Transport Protocol and the Proem Presence Protocol. These protocols are the

foundations for realizing presence-awareness ad hoc interactions of Proem-based

devices.

• The Proem Transport Protocol (PTP) is an unreliable, connectionless,

asynchronous messaging protocol that defines a common communication

substrate for Proem peers. All communication among peers is based on this

protocol. PTP is designed as lightweight XML-based messaging protocol. Its

design makes minimal assumptions about the underlying communication

infrastructures and can easily be implemented on top of a variety of mobile

network protocols. It is a connectionless, asynchronous messaging protocol and

supports point-to-point and multi-hop messaging.

• The Proem Presence Protocol (PDP) is used to announce and discover peers and

users within a Proem network. PDP uses the PTP as messaging layer.

Both protocols must be supported by Proem peer. The definition and use of

these protocols guarantees interoperability between different implementations of the

Proem platform.

V.3.1 Proem Transport Protocol (PTP)

The Proem Transport Protocol is the common messaging protocol for all Proem

peers. It hides the underlying network protocol by creating a virtual network view and

enables universal understanding of how to perform data exchanges between peers.

Similar to the Internet Protocol (IP), the Proem Transport Protocol is an unreliable,

122

best-effort connectionless protocol. It assumes little from the underlying network

mechanisms, only that messages will “probably” (best-effort) be transported to the

addressed peer. As result of using a common transport protocol Proem peers can be

implemented in any programming language and communication among Proem peers

can occur over a wide variety of network technologies.

Proem Transport Protocol (PTP) is a connectionless asynchronous messaging

protocol. Data is passed from peer to peer in one atomic unit, called a message. Peers

communicate by exchanging one-way messages. The same messages may be sent or

received more than once during the course of a protocol exchange. When an unreliable

transport protocol is used messages may be delivered more than once, may not arrive at

all, or may arrive in a different order than sent. In addition, message delivery is not

guaranteed: a sent message may or may not reach its destination. The simplicity of the

protocols implies that no protocol states are required to be maintained at either the

sending or receiving end.

Addressing

Addressing is based on unique Peer IDs. A Peer ID is transport independent and

uniquely identifies a peer, even if it uses different lower level network addresses.

Messages

The information transmitted between peers is packaged as XML-encoded

messages. Messages are fundamentally one-way transmissions from a sender to a

receiver. A Proem message is an XML document that consists of a header, delivery

hints and a body:

• The header contains a collection of XML elements indication among other

things the source and destination of a messages.

123

• The delivery hints are a collection of XML elements that define how a message

should be delivered to its destination. Delivery hints are interpreted by

intermediate peers that forward messages.

• The body is an application specific container of data intended for the application

on the destination host.

The header is mandatory, while delivery hints and message body are optional.

The XML representation of a message looks as follows:

<?xml version=”1.0” >
<Header>
 …
</Header>
<Hints>
 …
</Hints>
<Body>
 …
</Body>

Message Header

The message header contains the following elements:

Element Occurrence Type Purpose

<Message-id> 1 Proem ID A unique message id

<Source-id> 1 Proem ID The id of the peer where this
message originated

<Destination-id> 1 Proem ID The id of the destination peer

<Application-id> 1 Proem ID The id of the application this
message belongs to

<Message-type> 1 Proem ID The type of this message

124

• The message id is a (semi-unique) identifier for this message instance.

• The source id indicates the peer from which this message originates. Because

messages may be forwarded, this is not necessarily the sender.

• The destination id indicates the peer to which this message should be delivered

to

• The application id indicates the application this message belongs to. It is used to

determine to which peerlet application a message should be dispatched to once

it reaches its destination.

• The message type identifies the type of the message as defined by the peerlet

protocol.

Delivery Hints

The delivery hints consists of three components which are discussed below.

<TTL> 1, optional Integer Indicates the message’s time-to-
live

<Hop-count> 1, optional Integer Indicates the current hop count of
this message

<Expires> 1, optional Date Indicates expiration time of this
message (used in connection with
broadcast or communitycast)

125

Example

A complete message might look as follows:

<?xml version=”1.0”>
<Header>
 <Message-id>urn:proem:message:568767</Message-id>
 <Source-id>urn:proem:peer:0123487</Source-id>
 <Destination-id>urn:proem:peer:0123487</Destination-id>
 <Protocol-id>urn:proem:appplication:6565675 </Protocol-id>
 <Message-type>urn:proem:application:6565675:2</Message-type>
</Header>
 <Hints>
 <TTL>3</TTL>
 <Hop-count>0<Hop-count>
</Hints>
<Body>
 …………
</Body>

Cooperative Message Delivery

Message delivery from the source to the destination is done cooperatively, that

is with the help of intermediate peers. If a message destination is one hop away, it is

delivered directly to the destination peer. If that is not the case, the message is

forwarded to peers that are within reach of the sender. To that effect, messages may

carry a set of delivery hints that indicate how messages should be handled by

intermediate peers. The propagation of messages that cannot directly be delivered to

their destination is controlled by two delivery hints. The time-to-live element (TTL)

indicates how often a message should be forwarded. If a TTL is used, the hop-count

element must be present as well. The hop count indicates the number of times a

message has been forwarded. Each time a message is forwarded, the TTL is decreased

by one and the hop-count is increased by one. A message with a TTL of 0 must not be

forwarded.

126

Proem
Peer

Proem
Peer

Proem
Peer

Proem
Peer

Proem
Peer

Proem
Peer

Proem
Peer

Proem
Peer

Proem
Peer

Proem
Peer

Proem
Peer

Proem
Peer

Proem
Peer

Proem
Peer

Proem
Peer

Proem
Peer

Proem
Peer

Proem
Peer

Proem
Peer

Proem
Peer

Proem
Peer

Proem
Peer

Figure 19. Cooperative Message Delivery

In a Proem network cooperation is voluntary. No peer is required to forward

messages, but may do so at its own discretion. A peer may decide to drop a message

that is not addressed to itself. Similarly, delivery hints are mere hints: there is no

mechanism to guarantee that peers interpret them correctly and act accordingly. In

particular, intermediate peers can choose to ignore delivery hints entirely. This behavior

is a direct consequence of the fact that peers are independent and may act only in their

own (or their users’) best interest. Because of bandwidth, energy or privacy concerns,

peers might refuse to carry network traffic that does not concern them. Thus, there is no

guarantee that messages will be delivered beyond a peer’s horizon. In the worst case, a

peer might only be able to see and communicate with its direct neighbors.

Avoiding Transmission Loops

The network flooding algorithm used for delivering messages can result in a

peer receiving the same message more than once from two different peers. Such a

situation indicates a transmission loop. In order to prevent loops intermediate peers, i.e.

peers that forward messages, must maintain a cache holding the ids of messages that

they have received in the past. If a received message is already in the cache, it must be

dropped. The cache size can be fairly small because due to the high locality of a Proem

127

network loops, if they exist, are small and duplicated messages should arrive “fairly

soon” after the first arrival.

Retransmissions

It is valid for a message to be sent more than once. If a peer suspects that a

message might not have been received and needs to be retransmitted it may do so.

However, because of the way message are handled the message-id of the original

message and retransmitted message must be different.

Communitycast and Broadcast

In some situations it is necessary to send the same message to multiple

destinations, for example if one wants to disseminate a piece of information throughout

a network. Thus, Proem supports three addressing modes:

• Unicast: this is the default addressing mode. Such a message is destined for

exactly one peer.

• Broadcast: a broadcast message is intended to be delivered to every peer in the

network.

• Communitycast: a communitycast message is intended to be delivered to each

peer that supports a specified application.

A broadcast message is identified by using the special Proem id

proem:peer:broadcast as destination. A communitycast address is identified by using an

application id as destination. For example, the destination proem:application;029809

indicates that this message should be delivered to all peers supporting application

029809.

The intention of the broadcast and multicast addressing modes is that a message

be delivered to as many qualifying peers as possible. Network flooding as described

above is not appropriate as delivery method: first, flooding would lead to congestion

because traffic is no longer local. Second, Proem networks are typically divided into

128

many small clusters. The reach of flooding is limited to a single cluster and messages

thus would not be delivered to peers in a cluster different from the one the sending peer

is in.

Thus communitycast and broadcast are implemented by periodically sending the

message to all currently connected neighbors. The transmission rates used by peers are

independent: each peer can decide how often a message should be repeated. Each

community or broadcast message carries an expiration date (delivery hint ‘expires’)

which indicates when retransmission should be stopped.

Implementation

The implementation of the Proem Transport protocol may vary depending on

the capabilities of the underlying network. In particular, message delivery is different

whether the network supports one-to-one, one-to-many, broadcast or multicast. In the

current IP-based implementation, messages to direct neighbors are transmitted via IP

unicast while broadcast messages are transmitted via IP multicast.

The current implementation of the Proem Transport Protocol does not support

message routing along a particular path, but uses a controlled form of network flooding.

If source and destination peer are connected by a direct link the source peer sends the

message to the destination. If source and destination are not directly connected, the

source peer may forward its message to all peers it is connected to and ask them to

forward them on its behalf. Intermediate peers may, but are not required to forward

messages until a message finally reaches its destination. This effectively floods the

network. The reason for using this approach is twofold:

• Proem networks are dynamic ad hoc networks with potentially rapidly changing

topologies. In such a network, the cost of calculating routes can be prohibitive.

• Most or all communication within a Proem network is local with source and

destination being only a few hops away. Thus flooding does not incur a large

overhead.

129

V.3.2 Proem Presence Protocol (PPP)

The Proem Presence Protocol defines a decentralized discovery mechanisms for

peers and users, i.e. the process of advertising metadata describing peers and users and

allowing for their discovery.

One of the most important goals of the Proem platform is to realize proximity

awareness. Proximity awareness, in contrast to location awareness, describes a system’s

ability to determine the presence or absence of entities (users and devices) within the

immediate physical space surrounding the system. For wearable communities we are

interested in two form of proximity awareness: awareness of people and awareness of

devices. Proximity awareness of people can also be described as proximity-based

presence awareness.

Proximity awareness can be realized in at least two ways:

• Sensor based: Using dedicated sensor technology such as RFID tags and readers

• Network based: deriving locality information from topology information of

communication networks.

Proem
Peer

Proem
Peer

Proem
Peer

Proem
Peer

Proem
Peer

Proem
Peer

Proem
Peer

Proem
Peer

Proem
Peer

Proem
Peer

Proem
Peer

Proem
Peer

Proem
Peer

Proem
Peer

Proem
Peer

Proem
Peer

Proem
Peer

Proem
Peer

ProfileProfile

ProfileProfile

ProfileProfile

ProfileProfile

ProfileProfile

ProfileProfile

ProfileProfile

ProfileProfile

Figure 20. Distribution of Profiles in the Proem Presence Protocol

130

 A network-based approach has the advantage that it is essentially for free as it

does not require additional hardware components but instead relies on existing

communication infrastructure. The disadvantage of this approach is that in most cases

the topology of communication networks is independent of spatial arrangements of

communication nodes. This is not true, however, for short-range communication

technologies. Here, the existence of a direct link between two nodes implies their

physical nearness (the converse is not necessarily true, however).

Proem is agnostic about the method for determining proximity: the presence

service API is technology-independent and the presence service can be implemented in

various ways.

Discovery

The Proem Presence Protocol defines a decentralized discovery mechanisms

for Proem peers and users. It defines message formats and a process of advertising

metainformation throughout a network and allowing for its discovery.

The basic data unit of the presence protocol is the profile. A user profile

contains a description of a user’s identity with regard to a particular peerlet protocol. A

peer profile is a list of user profiles and describes the protocols a peer supports and the

associated user identities.

The presence protocol supports two discovery modes:

• Push: in this mode each peer periodically broadcasts its peer profile. The

broadcast is done uncoordinated and asynchronously. The rates with which

peers send out broadcasts are independent and may vary widely among peers.

• Pull: in this mode a peer periodically broadcasts a query. A query is a request to

peers to broadcast their peer profiles. Upon receiving a query peers may, but are

not required to, respond by sending a peer profile.

Push mode is the default discovery mode. It allows peers (and ultimately users)

to control and adapt the broadcast rate. A low rate may be used to minimize bandwidth

131

usage or energy consumption associated with sending of messages; a high rate may be

used to guarantee discovery of fast moving peers.

The simple push mode has the problem that it provides information about the

fact that two peers are within transmission range, but not when they are leaving

transmission range. A peer profile indicates the presence of a peer at the particular

moment when it is sent and received, but it doesn’t say anything about the time

immediately following the transmission. Because of the movement of peers

communication links are transient and short-lived. Two peers that were visible to each

other at one moment may be far apart only a few seconds later. In order to allow peers

to predict if they have lost contact with another peer, each peer profile contains a

number indication the expected future time interval between two consecutive

transmissions (EFTI = expected future transmission interval). A value of 10000

indicates that the sending peer promises to send the next message no later than 10

seconds from now. This information enables the receiving peer to predict when it

should receive subsequent messages. If within the specified time interval it does not

receive another message, it can assume that it has lost contact with the sending peer.

This may either be because the sender has traveled out of transmission range or it was

shut down.

Peers can change their EFTI at will. A long EFTI may be used if (1) energy and

bandwidth conversation is the primary goal (2) the peer is stationary and visibility

relationships are somewhat stable (3) it is not important to discover each and every

single peer. The decision about the most appropriate EFTI cannot be made by the

system alone, but must be determined in connection with the user’s intentions and

preferences. At present, the Proem system uses a fixed EFTI that can be adjusted

manually by the user.

The pull mode can be used in situations where it is crucial to have the most

accurate information. If a peer’s EFTI is very long (> 1 minute), it is difficult for other

peers to make accurate predictions. Thus if a peer needs to know for sure which peers

132

and users are in its immediate vicinity it can switch to pull mode and actively query its

environment.

Messages

The presence protocol utilizes the PTP transport protocol to route messages.

PeerProfile

The peer profile message contains three elements:

• The id of the peer that is described by this profile (represented as URN)

• An unsigned number indicating the EFTI (in seconds).

• A list of user profiles

Element Occurrence Type Purpose

<peer-id> 1 Proem ID ID of the peer whose identity is
described by this message

<update-interval> 1 Unsigned int The approximate expected time
interval between two identity
messages originating from the same
peer

<user-profile> * User profile A profile describing the user’s
identity

A user profile describes a user’s identity with regard to one application. A user may use

different identities for each application. The peer profile message contains one profile

per application.

133

A user profile contains three elements:

• The user id represented as URN

• The application id this profile relates to (represented as URN)

• An application specific attribute block containing attributes describing the user.

Element Occurrence Type Purpose

<user-id> 1 Proem ID ID of the peer whose identity is
described by this message

<application-id> 1 Proem ID ID of the application this profile is
associated with

<attributes> * Application specific attributes

Example

A complete identity message might look as follows:

<?xml version=”1.0”>
<Header>
 …
 <application-id>urn:proem:protocol:0</application-id>
 <message-type>urn:proem:protocol:0:0</message-type>.
 …
</Header>
<Body>
 <peer-profile>
 <peer-id>urn:proem:peer:12345</peer-id>
 <efti>20</efti>
 <user-profile>
 <user-id>urn:proem:user:0123487</user-id>
 <application-id>urn:proem:protocol:0987</protocol-id>
 <attributes>
 <name>Peter Pan</name>
 <age>29</age>
 </attributes>
 </user-profile>
 </peer-profile >
</Body>

134

Query

The query message contains two elements:

• The id of the peer from which this request originates (represented as URN)

• A list of protocol ids

Element Occurrence Type Purpose

<peer-id> 1 Proem ID The id of the peer from which
this request originates

<protocols> * Proem ID Indicates the applications the
sending peer is interested in.

Example

A query message might look as follows:

<?xml version=”1.0”>
<Header>
 …
 <application-id>urn:proem:protocol:0</application-id>
 <message-type>urn:proem:protocol:0:1</message-type>.
 …
</Header>
<Body>
 <query>
 <peer-id>urn:proem:peer:12345</peer-id>
 <application-id>urn:proem:protocol:234567</application-id>
 <application-id>urn:proem:protocol:19876</application-id>
 </query>
</Body>

Delivery Hints

The following delivery hints can be used in connection with the presence

protocol:

• TTL: If a peer is only wants to interact with its immediate neighbors, the TTL

should be set to 0.

• Expiration Time: this hint may not be used with identity or query messages

135

V.4 Peerlet Controller

The peerlet controller is a graphical user interface manager for peerlets. In its

functionality it is similar to a desktop window manager, yet it has been designed for the

requirements of mobile users and mobile and wearable computers. The main goal is

simplify the interaction with multiple running applications and to enable mobile users to

operate applications while on the go.

The user interface of each peerlet consists of a list of peerlet panels where each

panel is a fixed-size rectangle displaying common graphical user-interface widgets such

as text boxes, menus etc. Panels cannot overlap and only one panel is visible at once

(Figure 21 shows the PocketPC implementation).

Figure 21. Peerlet controller user interface with one visible panel

136

The peerlet controller organizes the panels of all peerlets in a 2-dimensional

grid (Figure 22). The panels belonging to a peerlet are organized horizontally while

peerlets are organized vertically. Four buttons (up, down, left, right) allow the user to

scroll through the grid: using the left and right buttons the user can scroll through all

panels belonging to one peerlet; using the up and down buttons the user can switch

between peerlets. For each peerlet, the peerlet controller remembers the current panel.

The current panel is the one that is visible when the user selects a peerlet. If the user

switches between peerlets using the up and down buttons, the peerlet controller jumps

from one peerlet’s current panel to the next peerlet’s current panel. When the user

moves left or right, the left or right panel becomes the peerlet’s current panel.

Figure 22. Peerlet panel grid

137

A peerlet’s panel list can be static or dynamic. Peerlets may programmatically

create new panels or destroy existing ones. In addition, a peerlet may request from the

peerlet manager that a particular panel becomes the current panel and is displayed in the

main window. For example, a temporary alert box can be realized by creating a new

panel and making it the current panel. After the user has acknowledged the panel, the

peerlet may remove the panel from the list.

V.5 Summary

This chapter described the architecture of the Proem peer-to-peer platform. In

particular, we described the Proem protocols and the structure of the peerlet engine. The

two Proem protocols, the Proem Transport Protocol and the Proem Presence Protocol

protocols, define the way in which Proem peers communicate and cooperate over the

network. A collection of Proem peers supporting these protocols form a Proem network.

The Proem Transport Protocol defines a common, ad hoc communication substrate for

Proem peers. It is programming language and network independent and can be

implemented on top of a variety of lower-level network protocols. The Proem Presence

Protocol defines a standard way for peers to discover each other in the network and to

exchange metainformation. Most importantly, it supports the exchange of user profile as

required by the WearCom methodology.

A peerlet is a Proem peer-to-peer application. The community agents defined in

the WearCoM methodology is implemented as Proem peerlet. Peerlets are hosted by the

peerlet engine. The peerlet engine provides runtime services for peerlets for messaging,

discovery and presence-awareness and managing of user identities, interaction histories

and relationships.

Thus far, the discussion of the Proem platform has focused on architecture,

protocols and algorithms. In the next chapter, we will discuss how to implement

peerlets and thus wearable community agents using the Peerlet application framework

138

Chapter VI

THE PEERLET FRAMEWORK

The Peerlet Framework is a Java class library for the rapid development of

peerlet applications. It consists of classes and interfaces for the construction of

applications and includes a service API providing common functionality for presence

aware ad hoc collaborative applications. This chapter presents the Peerlet Framework

and illustrates how to implement, deploy and run peerlet applications.

VI.1 Application Model

A peerlet application is separated along functional lines and consists of the

following required components:

• A peerlet class (derived from class GenericPeerlet4)

• A user interface controller class (derived from class GenericPeerletController)

• A set of message classes (derived from MessageBody)

• A user profile (an XML file describing the user’s identity)

The peerlet is the main component of an application; it defines the application

logic and its communication behavior. The peerlet controller manages the interaction

4 Class names with the prefix ‘Generic’ indicate abstract classes that implement an associated interface.

For example, proem.GenericPeerlet implements proem.Peerlet. Such classes define default behavior that makes

using them more convenient than the associated interface.

139

with the user; it is responsible for creating the user interface. The message classes

define the data that can be exchanged between peerlets on different hosts and between a

peerlet and its controller. The user profile is used to advertise a user’s identity

throughout a Proem network. For easy distribution a peerlet suite may be placed inside

a Java Archive (JAR) file.

VI.2 Peerlets

The central abstraction of the Peerlet API is the peerlet. All peerlets implement

the Peerlet interface either directly, or more commonly, by extending the class

GenericPeerlet that implements the interface.

The peerlet interface is defined as follows:

interface Peerlet
{
 /*
 * the getPeerletID method returns the id of this peerlet
 */
 public PeerletID getPeerletID ();

 /*
 * the getProtocolID method returns the protocol supported by this peerlet
 */
 public ProtocolID getProtocolID ();

 /*
 * the init method initializes the Peerlet and puts it into service
 */
 public void init ();

 /*
 * the destroy method is called just before unloads the Peerlet.
 */
 public void destroy ();

 /*
 * the handleProemEvent method gets called when a system event occurs.
 *
 */
 public void handleEvent(proem.Event event);

}

140

All methods defined in the Peerlet interface are called by the Peerlet engine at

various stages of the peerlet’s lifecycle. They are called in the following sequence:

1. getProtocolID: The peerlet engine constructs the peerlet and calls the

getProtocolID methods to determine which protocol this peerlet implements5. If

the peerlet engine already hosts a peerlet that implements the same protocol, the

start-up process is terminated.

2. init: The calling of this method signals to the peerlet that it has entered an active

state. This allows the peerlet to initialize data structures.

3. handleProemEvent: this method signals an event that should be handled by the

peerlet. The method is called exactly once for each event occurrence. Calls to

this method may occur concurrently and it is the responsibility of the

programmer to make sure that the code is reentrant.

4. destroy: this method signals that the peerlet instance is about to be destroyed. It

enables the peerlet to release resources and save persistent state information.

VI.2.1 Event Handling

Peerlets receive and react to events generated by the Peerlet engine. The Peerlet

Framework defines three event types (Figure 23):

1. Communication events: events of this type indicate a message from a remote

peer

2. Discovery events: events of this type indicate that a new peer has been

discovered or that a previously encountered peer has disappeared

3. User interface events: events of this type indicate input from the user

Each event type is represented by a Java interface.

5 All ID classes (PeerletID, ProtocolID, UserID, …) are simple wrapper classes that encapsulate a Java

String object.

141

Figure 23. Proem event type hierarchy

The IncomingMessageEvent Interface

An event of type IncomingMessageEvent is fired whenever the peerlet engine

receives a message that belongs to the same protocol as supported by the peerlet. The

event encapsulates the incoming messages which can be extracted using the getMessage

method (the structure of messages and the mechanisms for sending messages are

discussed in Chapter VI.5.3).

public interface IncomingMessageEvent extends proem.Event
{
 public proem.Message getMessage();

}

The UserInterfaceEvent Interface

An event of type UserInterfaceEvent is fired whenever there is new input from the

user. The event encapsulates a message object which can be extracted using the

getMessage method.

142

public class UserInterfaceEvent implements proem.Event
{
 public proem.Message getMessage()
}

The BeginEncounterEvent Interface

An event of type BeginEncounterEvent is fired whenever a new peer has been

discovered in the vicinity that supports the same peerlet protocol. The event

encapsulates an object of class Encounter which can be extracted using the getEncounter

method. An encounter object contains information about the peer and user encountered

when the encounter happened (encounter objects are discussed in Chapter VI.5.4)

public interface BeginEncounterEvent extends proem.Event
{
 public proem.Encounter getEncounter()
}

The EndEncounterEvent Interface

An event of type EndEncounterEvent is fired whenever a previously encountered

peer disappears i.e. is no longer visible. The event encapsulates an object of class

Encounter which can be extracted using the getEncounter method.

public class EndEncounterEvent implements proem.Event
{
 public proem.Encounter getEncounter()
}

143

VI.2.2 Example

The following code segment illustrates the basic structure of event handling

code in a peerlet.

public void handleEvent(proem.Event event)
{
 if (event instanceof BeginEncounterEvent)
 {
 Encounter encounter = ((BeginEncounterEvent)event).getEncounter();
 UserProfile profile = encounter.getProfile();
 UserID user = profile.getUserID();
 // action 1
 }
 else if (event instanceof EndEncounterEvent)
 {
 Encounter encounter = ((BeginEncounterEvent)event).getEncounter();
 UserProfile profile = encounter.getProfile();
 UserID user = profile.getUserID();
 // action 2

 }
 else if (event instanceof IncomingMessageEvent)
 {
 Message in = ((IncomingMessageEvent).event).getMessage();
 if (in.getBody() instanceof A)
 {
 //action 3
 }
 else if (in.getBody() instanceof B)
 {
 //action 4
 }
 }
 else if (event instanceof UserInterfaceEvent)
 {
 Message in = ((UserInterfaceEvent).event).getMessage();
 if (in.getBody() instanceof C)
 {
 //action 5
 }
 else if (in.getBody() instanceof D)
 {
 //action 6
 }
 }
}

The handleProemEvent consists of a sequence of if-then-else statements

differentiating between four cases. If the event indicates an encounter

(BeginEncounterEvent), the peerlet extracts the encounter object encapsulated in the

event; it then extracts the user’s profile from the encounter and the user’s id from the

profile. Knowing the user’s identity the peerlet may now perform any action such as

sending a message or alerting the user (action 1). The code is almost identical if the

144

event indicates the end of an encounter (EndEncounterEvent) instead of the beginning.

Of course, the actions performed are different (action 2).

If the event indicates a message (IncomingMessageEvent), the peerlet first

extracts the message object from the event and may then, depending on the type of the

message, perform any number of actions (action3 and 4). User interactions are handled

in exactly the same way as messages received from remote peers (UserInterfaceEvent).

All user input is represented and send to a peerlet in form of a message which can be

extracted from the event object. The message type, which indicates the nature of the

user input, can be used to decide which action should be performed (action 5 and 6).

VI.3 Peerlet User Interfaces

The Peerlet Framework strictly separates the user interface code from the main

application logic. The peerlet implements the application logic while the peerlet

controller implements the user interface. The controller is responsible for creating the

user interface, displaying of information and handling of user interactions. The interface

between peerlet and controller is message based and hides the details of the user

interface implementation. In particular, a peerlet is unaware of the user interface

technology. A controller may implement a graphical or speech-based user interface and

the peerlet code need not be changed.

The user interface component of a peerlet application implements the

PeerletController interface which is almost identical to the peerlet interface (it is missing

the getProtocolID method).

145

interface PeerletController
{
 /*
 * returns the id of the peerlet this controller belongs to
 */
 public PeerletID getPeerletID ();

 /*
 * the init method initializes the controller
 */
 public void init ();

 /*
 * the destroy method is called just before unloads the Peerlet.
 */
 public void destroy ();

 /*
 * the handleEvent method is called to handle messages from the peerlet.
 *
 */
 public void handleEvent(proem.Event event);
}

All methods are called by the peerlet engine at various stages of the application

lifecycle.

• getPeerletID must return the id of the peerlet this controller belongs to. This

information is used by the peerlet engine to match up peerlets and user interface

objects.

• The init method is called during initialization and is used to build the concrete

user interface.

• The handleEvent method is called to handle messages sent by the peerlet to the

user interface. The only event type that controllers must handle is

incomingMessageEvent (the sending of messages is discussed in Chapter

 VI.5.3).

• The destroy method is called by the peerlet engine to signal that the controller

instance is about to be destroyed. It enables the controller to release resources

and destroy the user interface.

146

VI.4 Application Lifecycle

Peerlet applications are managed throughout their lifecycle by the peerlet engine

which controls how they are loaded, initialized, and how they are taken out of service.

Each running application is an isolated process, defined by the peerlet, with possibly

multiple threads of execution. Applications running within the same peerlet engine are

not aware of other and cannot communicate.

Peerlet applications are continuously running processes within the peerlet

engine that are not started and stopped by the user. Instead, applications are loaded and

started when the peerlet engine starts and they are terminated when the peerlet engine

shuts down (see also Chapter VI.6).

The application lifecycle consists of four distinctive phases:

1. Loading and Instantiation

At system startup the peerlet container loads the peerlet and peerlet controller

classes of a peerlet suite (using normal Java class loading facilities) and creates one

instance of each class.

2. Initialization

Initialization consists of three steps:

1. The peerlet engine calls the peerlet’s and methods. The peerlet engine initializes

the peerlet by calling its getPeerletID, getProtocolID and init methods. The last

call enables the peerlet to read persistent configuration data, initialize costly

resources and perform other one-time activities.

2. The peerlet engine initializes the controller by calling its getPeerletID and init

methods. The later enables the controller to create the user interface.

147

3. Finally, the peerlet engine reads the user profile file and hands it to the

discovery manager. The discovery manager then distributes the profile to other

peers in order to advertise the user’s identity.

3. Event Handling

After an application is initialized it is ready to handle events. Event handling

occurs concurrently: the peerlet engine may send an event to a peerlet even if the peerlet

has not finished handling the previous event. To handle concurrent events properly the

developer of the peerlet must make adequate provisions for concurrent processing.

4. Termination

The peerlet container keeps an application loaded until the engine itself shuts

down. The peerlet engine terminates an application in the following way:

• The peerlet engine first calls the destroy method of the peerlet controller.

• It then calls the destroy method of the peerlet to allow the peerlet to release any

resources it is using and to save any persistent state. Before the peerlet engine

calls the destroy method, it allows any threads that are currently running in the

handleProemEvent method of the peerlet to complete execution, or exceed a

predefined time limit. Once the destroy method has been called on a peerlet

instance, the engine does not route other events to it.

• After the destroy methods complete, the peerlet engine releases the peerlet and

controller instance so that they are eligible for garbage collection.

148

VI.5 Proem Services

The Proem service API is a collection of interface and classes that provide

common application functionality. These services are the presence service, messaging

service, history service, relationship service, and reputation service.

Each service is defined by a Java interface and implemented by a single global

service object. The service objects are accessible through static methods in the Proem

system object:

class Proem
{

static public PresenceService getPresenceService();
static public CommunicationService getCommunicationService();
static public HistoryService getHistoryService();
static public RelationshipService getRelationshipService();
static public ReputationService getReputationService();

}

VI.5.1 Identity Service

The identity service enables applications to define and change a user’s profile.

This profile is used by the discovery mechanism to advertise a user throughout a

network.

public interface IdentityService
{

public UserProfile createProfile();
public void activate(UserProfile profile);
public UserProfile getActiveProfile(ProtocolID protocol);

}

149

• The createProfile method returns a new empty profile.

• The activateProfile method activates the supplied profile, i.e. it makes it the

current profile for the protocol associated with the profile. After activation, the

profile will be distributed by the discovery mechanism to other peers.

The UserProfile interface is defined as follows:

public interface UserProfile
{
 public UserID getUserID ();
 public void setUserID ();
 public ProtocolID getProtocolID ();
 public void setProtocolID ();
 public void setAttributeValue (String attributeName, java.io.Serializable
attributeValue);
 public java.io.Serializable getAttributeValue (String attributeName);
 public void deleteAttribute (String attributeName);
}

The getUserID returns the id of the user described by this profile while the

getProtcolID returns the protocol this profile is associated with. Each profile carries a

list of attributes which are name-value pairs. The last three methods set and get an

attribute value, and delete an attribute entirely.

Example

The following example code segment illustrates how to define and activate a

profile.

…
IdentityService is = Proem.getIdentityService();
UserProfile profile = is.createProfile();
Profile.setUserID(new UserID(“urn:proem:user:01234”));
Profile.setProtocolID(new UserID(“urn:proem:protocol:genie”));
Profile.setAttribute(“name”, “Howard”);
is.activateProfile(profile);
…

150

VI.5.2 Presence Service

The presence service provides information about proximate peers and users. It

allows peerlets to determine which peers and users are visible and can be communicated

with. The service is defined by the PresenceService Interface:

public interface PresenceService
{

public Collection getPeers(ProtcolID protocol);
public Collection getUsers(ProtcolID protocol);
public boolean isVisible(PeerID peer);
public boolean isVisible(UserID user);
public void forceUpdate(ProtcolID protocol, long wait);
public UserProfile getUserProfile(UserID user);

}

• The getPeers method returns a list of PeerID objects each one identifying one

nearby peer. Similarly, getUsers returns a list of UserID objects each one

identifying a currently visible user. The result only contains peers and uses

related to the specified protocol. The protocol argument might be null in which

case all peers or users are returned.

• The overloaded method isVisible enables a peerlet to test whether a particular

peer or user is currently visible. It true if the specified peer or user is visible,

false otherwise.

• The information maintained by the presence service and returned by these

methods is not guaranteed to be up to date. Because of the constant movement

of peers visibility can change rapidly. Two peers that can see each other one

moment may be too far apart to communication the next moment. The

forceUpdate enables peerlets to actively query their environment for the presence

of peers supporting a particular protocol. This method forces the discovery

mechanism to perform one pull operation, i.e. to send out one single query

message. In order to see the effect of this method, a peerlet should call getPeers

or getUsers right after a call to forceUpdate. The first parameter indicates the

151

protocol that peers must support. The second argument indicates how many

milliseconds should pass before a call to this method returns.

• The getUserProfile method returns the profile of a user that has been encountered

in the past or is currently visible. User profiles are automatically cached by the

presence service so that peerlets do not have to do it.

The UserProfile interface is defined as follows:

public interface UserProfile
{
 public UserID getUserID ();
 public ProtocolID getProtocolID ();
 public void setAttributeValue (String name, Serializable value);
 public java.io.Serializable getAttributeValue (String attributeName);
 public void deleteAttribute (String attributeName);
}

• The getID method returns the id of the entity described by this profile. The

remaining three methods set and get an attribute value, and delete an attribute

entirely.

Example 1

The following example code segment illustrates how to force an update

operation.

static ProtocolID pid = new ProtocolID(“proem:protocol:example99”);
…
PresenceService ps = Proem.getPresenceService();
ps.forceUpdate(pid, 10000); // wait for 10 seconds
Collection peers = ps.getPeers();
…

Example 2

The following code segment illustrates how to find and print the name of every

currently visible user (assuming the profile of the particular application includes a name

attribute represented as String).

152

…
PresenceService ps = Proem.getPresenceService();
Collection users = ps.getAllUsers();
Iterator it = users.iterator();
UserID id = null;
UserProfile profile = null;
while (it.hasNext())
{
 id = it.next();
 ps.getUserProfile(id);
 if (profile != null)
 {
 System.out.println(“The user’s name is: “ + profile.getAttribute(“name”));
 }
 it++;
}
…

VI.5.3 Messaging Service

The Messaging Service enables peerlets to send messages to remote peers.

Messaging is also used for communication with the user interface.

The Service Interface

The service interface defines three basic methods for sending messages, namely

send, broadcast and community. The interface does not contain any method for listening

for or receiving messages as messages are delivered to peerlets automatically via event

notification.

interface MessagingService
{

 public DeliveryHint newDeliveryHint(long ttl, Date expires);
 public Message newMessage(MessageTypeID mtype,
 ProtocolID pid,
 DeliveryHints hints,
 MessageBody body);
 public Message newMessage(MessageTypeID mtype,
 ProtocolID pid,
 MessageBody body);
 public void send(PeerID destination, Message mes);
 public void send(UserID destination, Message mes);
 public long broadcast(Message mes);
 public long communitycast(ProtocolID destination, Message mes);
 public void cancel(long);
}

153

interface Message
{
 public MessageTypeID getMessageType();
 public ProtocolID getProtocolID();

 public MessageBody getBody();
 public DeliveryHints getHints();
 public PeerID getDestination();
 public PeerID getSource();
 public UserID getSender();
 public void setBody();

}

interface DeliveryHint
{
 public long getTTL ();
 public Date getExpirationDate ();
}

• newMessageHint creates a new delivery hint object. The time-to-live indicates

how many hops a message should be forwarded, while the expiration time

indicates until time a broadcast or communitycast message remains valid.

• newMessage creates a new message object. The programmer must specify the

message type, the protocol ID, and a message body. The delivery hints

argument is optional and may be null.

• Send initiates the transmission of a unicast message to the destination peer. The

ttl delivery hint, if present, indicates that this message should be forwarded from

host to host. However, there is no guarantee that receiving peers interpret this

hint or act upon it.

• Broadcast sends a message to all peers in a network. If no expiration time is

specified in the delivery hint the message is sent immediately and only once. If

the delivery hint contains an expiration date and it lies in the future, the message

is repeatedly sent until the expiration data has been reached. The returned is a

unique number that can be used to stop a broadcast in progress (see Cancel).

154

• Communitycast sends a message to all peers supporting a particular application. If

no expiration time is specified the message is sent immediately and only once.

If an expiration date is specified and it lies in the future, the message is

repeatedly sent until the expiration data has been reached. The returned is a

unique number that can be used to stop a communitycast in progress (see

Cancel).

Cancel stops a broadcast and communitycast which is in progress, i.e. has not

reached its expiration date.

MessageBody Interface

The message body of a message represents the application specific payload.

Any Java object may be used as payload. A class intended as payload must implement

the (empty) MessageBody interface.

interface MessageBody
{
}

155

Example

The following code segment illustrates how a peerlet can send a message to a

peer it just encountered.

/*
 * defininition of message body class
 */
class MessageBody_Example implements proem.MessageBody
{
 public String someText;
 public MessageBody_Example(String initialText) { someText = initiualText;
};
};

/*
 * peerlet definition (implements protocol proem:protocol:example99)
 */
class Peerlet_Example implements proem.Peerlet
{
 static MessageTypeID mtid = new MessageTypeID(“proem:messagetype:01”);
 static ProtocolID pid = new ProtocolID(“proem:protocol:example99”);

 …
 public void handleProemEvent(proem.Event event)
 {
 if (event instanceof BeginEncounterEvent)
 {
 // get id of encountered peer
 PeerID peer = ((BeginEncounterEvent)event).getEncounter().getPeerID();
 // get handle to service object
 CommunicationService cs = Proem.getCommunicationService();
 // build message object
 DeliveryHints hints = cs.newDeliveryHints(2, null);
 MessageBody_Example body = new MessageBody_Example(“welcome”);
 Message welcome = cs.newMessage(mtid, pid, hints, body);
 // send message
 cs.send(peer, welcome);
 }
 …
 }
 …
}

156

VI.5.4 History Service

The history service provides information about past encounters. It allows

peerlets to make decisions based on historical data. For example, a peerlet may act in

one way if a peer or user is encountered for the first time ever and a different way if the

same peer or user has been encountered numerous times before. Similarly, a peerlet

may make different decisions depending on how long ago the last encounter occurred.

As another example, a peerlet may choose to interact with a particular peer only once a

day and ignore all subsequent encounters.

The history service listens to event generated by the discovery mechanism. It

maintains a global persistent database that is automatically updated for each event.

The Encounter Interface

The main concept of the history service is the encounter represented by the

encounter interface.

interface Encounter
{
 public PeerID getPeerID();
 public UserID getUserID();
 public Date getDate();
}

An encounter object is created whenever a BeginEncounterEvent is generated

by the discovery mechanism. It contains information about the identity of the involved

peer and user and the starting time and date of the encounter.

157

The history service is defined by the HistoryService interface.

interface HistoryService
{
 public Encounter getFirstEncounter(PeerID);
 public Encounter getFirstEncounter(UserID);

 public Encounter getLastEncounter(PeerID);
 public Encounter getLastEncounter(UserID);

 public long getSecondsSinceLastEncounter(PeerID);
 public long getSecondsSinceLastEncounter(UserID);

 public List getAllEncounters(PeerID);
 public List getAllEncounters(UserID);

 public long getNumberOfEncounters(PeerID);
 public long getNumberOfEncounters(UserID);

 public Set getAllPeers();
 public Set getAllUsers();
}

• getFirstEncounter returns an encounter object representation the first ever

encounter with the specified peer or user.

• getLastEncounter returns an encounter object representation the mot recent

encounter with the specified peer or user.

• getSecondsSinceLastEncounter returns the seconds since the last encounter with the

specified peer or user.

• getAllEncounters returns an unordered collection of all encounters with the

specified peer or user.

• getNumberOfEncounters determines how often the specified peer or user has been

encountered.

• Finally, getAllPeers and getAllUsers return a set of ids of all peers and users ever

encountered.

The information maintained by the presence service is stored persistently and is

available after a restart of the peerlet engine. However, if the amount of data becomes

too large to handle it may delete parts of the history. This is done with the following

guarantees:

158

1. The first and last encounters for each peer and user are always preserved.

2. If an encounter that dates from time ti is deleted, than all encounters with times

tj < ti, j ≠ 0 are also deleted.

3. In other words, the service may only purge the earliest part of history (excluding

the very first encounter with each peer and user), but not never the later or most

resent part.

Example

The following example illustrates how information about past encounters can be

used to implement different behaviors. In particular, the following code segment sends

a message whenever only if the last encounter with the same person occurred more than

24 hours ago.

class Peerlet_Example implements proem.Peerlet
{
 static MessageTypeID mtid = new MessageTypeID(“proem:messagetype:01”);
 static ProtocolID pid = new ProtocolID(“proem:protocol:example99”);

 …

 public void handleProemEvent(proem.Event event)
 {
 HistoryService hs = Proem.getHistoryervice();
 CommunicationService cs = Proem.getCommunicationService();

 if (event instanceof BeginEncounterEvent)
 {
 UserID user = ((BeginEncounterEvent)event).getEncounter().getUserID();
 PeerID peer = ((BeginEncounterEvent)event).getEncounter().getPeerID();

 if (hs.getSecondsSinceLastEncounter(user) > 24 * 60 * 60)
 {
 // more than 24 hours: send welcome message
 MessageBody_Example body = new MessageBody_Example(“welcome”);
 Message welcome = cs.newMessage(mtid, pid, null, body);
 cs.send(peer, welcome);
 }
 else
 {
 //less than 24 hours: do nothing
 }
 }
 …
 }
 …
}

159

VI.5.5 Relationship Service

Our interactions with other people differ depending on the type of relationship

we have with them. For example, we might be willing to trade MP3 files with almost

everyone (ignoring for the moment the legal ramifications), but we might want to share

our diary only with our best friends. Similarly, we probably want to receive music

recommendations only from people who we know have a good taste in music.

Thus for Proem applications it is crucial to be able to reliably remember certain

individuals. The relationship service enables applications to define relationships that

exist between the user and other individuals. These relationships are stored persistently

and are available even after a restart of the peerlet engine.

The relationship service is defined by the following interface:

interface RelationshipService
{
 public void defineRelationship(String name);
 public void removeRelationship(String name);
 public void addUser(String relationship, UserID id);
 public void removeUser(String relationship UserID id);
 public void isMember(String relationship, UserID user);
 public Collection getMembers(String relationship);
 public Collection getRelationships(UserID user)
}

A relationship is simply a named collection of users.

• defineRelationship creates a new empty relationship.

• removeRelationship deletes an existing relationship from the database.

• addUser adds a user to a relationship and removeUser removes it.

• isMember enables applications to determine if a particular user is part of a

relationship.

• getMembers returns an unordered collection containing all members of a

relationship.

• getRelationships returns an unordered collection containing the names of all

relationships a user is part of.

160

Example

The following example illustrates how relationships can be used to change the

behavior of a peerlet depending whether a friend or an unknown person is being

encountered. In particular, the following code segment sends a message whenever a

friend is encountered, but ignores strangers.

class Peerlet_Example implements proem.Peerlet
{
 static MessageTypeID mtid = new MessageTypeID(“proem:messagetype:01”);
 static ProtocolID pid = new ProtocolID(“proem:protocol:example99”);

 …

 public void init()
 {
 RelationshipService rs = Proem.getRelationship();
 rs.defineRelationship(“My Friends”);
 rs.addUser(“My Friends”, new UserID(“proem:user:1111”);
 rs.addUser(“My Friends”, new UserID(“proem:user:2222”);
 }

 public void handleProemEvent(proem.Event event)
 {
 RelationshipService rs = Proem.getRelationship();
 CommunicationService cs = Proem.getCommunicationService();

 if (event instanceof BeginEncounterEvent)
 {
 UserID user = ((BeginEncounterEvent)event).getEncounter().getUserID();
 PeerID peer = ((BeginEncounterEvent)event).getEncounter().getPeerID();

 if (rs.isMember(“My Friends”, user))
 {
 // this is a friend, send welcome message
 MessageBody_Example body = new MessageBody_Example(“welcome”);
 Message welcome = cs.newMessage(mtid, pid, null, body);
 cs.send(peer, welcome);
 }
 else
 {
 // ignore unknown user
 }
 }
 …
 }
 …
}

161

VI.6 Deployment and Distribution

VI.6.1 Bundling

A Proem application is bundled and distributed in form of a peerlet suite. A

Peerlet suite is the collection of classes and resources that are required to run the

application. The suite must contain the following items:

• A peerlet class (derived from class GenericPeerlet)

• A peerlet user interface (derived from class GenericPeerletController)

• A set of message classes (derived from MessageBody)

• A user profile (an XML file describing the user’s identity)

To facilitate distribution a peerlet suite may be stored in a JAR file.

VI.6.2 Installation

A peerlet suite is installed by placing it in the application directory inside the

peerlet engine installation directory of the peerlet engine. The application will

automatically be started after a restart of the peerlet engine.

VI.7 Summary

This chapter described the Peerlet Framework and illustrated how to implement,

deploy and run peerlet applications. The Proem platform and SDK enable developers to

work in a high-level environment that hides the intricacies of the underlying network

and device platform and frees developers from dealing with low-level issues unrelated

to their application. A set of specially designed services for communication, presence

162

awareness, history information provide the building blocks for powerful peer-to-peer

applications for ad hoc collaboration. Once an application is written, Proem provides a

common runtime environment across many makes and models of devices, enabling

developers to deploy their applications with ease and without the need of modifications.

Developed applications can be shielded from future changes in technology by making

necessary modifications once in the peerlet engine.

We can summarize the main features of the peerlet framework from a

programmer’s point of view as follows:

• Separation of concerns: The programming model enforces and simplifies the

separation of application logic and user interface code.

• Simple event-based programming model: The event mechanism provides a

uniform way for handling communication, discovery and user interface events.

• A rich library of common application functionality: The service API provides

the abstractions and building blocks for the development of presence aware, ad

hoc peer-to-peer applications.

• Network and device independence: Developers need not be aware of the

specifics of the underlying network and device platforms. In particular, they are

able to target multiple heterogeneous network technologies and devices

platforms.

• Tight integration with the WearCoM methodology: Proem directly supports

important concepts the WearCoM methodology: user profiles, community

protocols (via peerlet protocols), community agents (via peerlets)

In the following chapter, we will describe several case studies that show how

the WearCoM methodology and the Proem platform are used to build wearable

community applications.

163

Chapter VII

CASE STUDIES:

BUILDING WEARABLE COMMUNITY APPLICATIONS

In this chapter, we present a number of wearable community applications that

have been developed using the WearCoM methodology and implemented on top of the

Proem platform. Our goal is to demonstrate how the methodology is used in practice to

design and build wearable community applications. In particular, this chapter

demonstrates two things.

1. The reduction in the complexity of the development task achieved by the peerlet

framework.

2. The close relationship between design and implementation

VII.1 Overview

The wearable community applications presented in this chapter cover a large

spectrum of the wearable community application space:

• FriendFinder: this application was inspired by Holmquist’s notion of an Inter

Personal Awareness Device (Holmquist et al. 1999) (see Chapter III.4). The

purpose of this application is to determine affinity relationships between users

based on recurring encounters.

164

• Genie: this application was introduced in Chapter IV to demonstrate the

WearCoM methodology. It is one of the most simple wearable community

applications (Kortuem and Segall 2003).

• PIRATÉ: this application is a collaborative music guide that enables users to

share and collect music recommendations as side effect of encounters (see

Chapter II.2.1). PIRATÉ was first described in (Kortuem et al. 2001).

• mBazaar: a wearable eBay application that facilitates contacts between buyers

and sellers of goods and services (see Chapter II.2.1) (Kortuem and Segall

2003)

• WALID: this application was introduced in Chapter II.2.1. It represents one of

the first examples of a wearable community application and assists users by

negotiating the exchange of tasks with the agents of nearby community

members. WALID was first described in (Kortuem, Schneider, Suruda, Fickas,

and Segall 1999).

Each of the five applications highlights a particular specific aspect of the Peerlet

API (Table 11).

Table 11. Case Studies

Application Highlighted API Features

FriendFinder User profiles, event handling, history service

Genie User profiles, simple community protocols, messaging
service

PIRATÉ User profiles, community protocols, messaging service,
history service, relationship service

mBazaar User profiles, community protocols, messaging service,
history service, communitycasting

WALID User profiles, complex community protocols, messaging
service, history service, relationship service

165

The main part of this chapter consists of a presentation of the five case studies.

The description of the design and implementation of each application is organized as

follows:

• Overview: this section describes the general application idea

• Scenario: this section describes the usage scenario underlying the application

• Community language: this section describes the community language, i.e. the

community protocol and vocabulary.

• User profile: this section describes the personal data disclose themselves.

• User interface: this section describes how users interact with the application. In

general, we use screen shots to highlight the key aspects of the user interface.

• Implementation: this section describes the peerlet implementation the

community agent

VII.2 FriendFinder

VII.2.1 Overview

FriendFinder is a simple presence-aware community application inspired by the

notion of Inter-Personal Awareness Devices (IPAD) (Holmquist et al. 1999). In contrast

to a communication device like the mobile phone, an Inter-Personal Awareness Device

facilitates contacts instead of mediating them. The earliest example of an IPAD is the

Hummingbird (Holmquist et al. 1999) (see Chapter III.4). The Hummingbird gives

members of a group continuous aural and visual indication of which other group

members are in the vicinity. A Hummingbird broadcasts a unique signal and receives

information about other Hummingbirds in the vicinity. Each Hummingbird displays a

166

list of currently ‘visible’ devices. Whenever a Hummingbird discovers a new device in

its vicinity, it alerts its user with a subtle audio signal.

The Hummingbirds architecture is simple and effective, but suffers from several

limitations. Most importantly, it only supports awareness between members of a closed

user group. To provide social awareness between users (as opposed to devices) the

Hummingbird architecture uses an implicit static mapping from devices to users. This

mapping must be performed independently by each device making it difficult to add

new members to a group.

FriendFinder is an extension to the original IPAD idea. Contrary to what the

name might suggest, FriendFinder is not a tool for locating one’s friends, but for

discovering affinity relationships between users that might not be obvious to the users

themselves. The idea underlying FriendFinder is that the frequency, with which two

users meet is an important indicator for similarities in their taste, interests, preferences,

and believes. This idea has subsequently been explored in more depth in the Social Net

project (Terry et al. 2002). For example, if two people frequently attend the same events

(for example, gallery openings), then this might be an indication that they share an

interest in art.

The FriendFinder user profile contains a unique but arbitrary user id, a name

and a photo of the user. The photo helps to relate faces in a crowed with names

displayed by the application. The FriendFinder application records frequencies of

encounters with other people and displays a list of ‘suggested friends’ ordered by the

frequency with which they have been encountered.

167

VII.2.2 Scenario

The scenario description for the FriendFinder applications is shown in Table 12.

Table 12. FriendFinder Scenario

Name FriendFinder

Purpose To increase social awareness by identifying people with whom we might
share interests, preferences, or believes based on frequencies of
encounters

Population Students or teenagers

Device Device must be able to display a list of user names and photos. Device
must be able to persistently store a list of encountered people. Users
must be able to set up their user profile, preferably by downloading it
from a PC.

Before Users sets up their user profiles

Encounter Devices exchange user profiles and update list of most frequently
encountered users.

After -

168

VII.2.3 User Profiles

The user profile template for the FriendFinder application is shown in Table 13.

Table 13. FriendFinder User Profile Template

Attribute Name Implementation Type Description

ID UserID A semi-unique identifier for the
user.

Name [String] The user’s name (this might be the
user’s real first name or an
assumed name). This entry is
optimal.

Photo [Image] A photo depicting the user (this
allows for easy spotting of the
user in a crowed). This entry is
optimal.

The user profile consists of user id, user name and a photo. Name and photo are

optional.

VII.2.4 Community Language

The FriendFinder application does not use a community language, but solely

depends on the exchange of user profiles (which is automatically done by the discovery

mechanisms).

169

VII.2.5 Using the Application

The FriendFinder user interface is shown in Figure 24. It displays a list of users

ordered by frequency.

Figure 24. FriendFinder user interface

VII.2.6 Implementation

The FriendFinder application consists of two main Java classes:

• FriendFinderPeerlet is implements the community agent.

• FriendFinderUI displays the user interface.

In the following discussion, we will ignore the user interface details and limit

our attention to the application logic. The FriendFinderPeerlet class is shown in

Program 1.

170

Program 1: FriendFinder Peerlet

1. public class FriendFinder_Peerlet extends GenericPeerlet
2. {
3. static public PeerletID getPeerletID ()
4. {
5. return new PeerletID("proem:peerlet:friendfinder");
6. }
7.
8. static public ProtocolID getProtocolID ()
9. {
10. return null; // no protocol
11. }
12.
13. public void handleProemEvent(proem.Event event)
14. {
15. if (event instanceof BeginEncounterEvent)
16. {
17. Set users = Proem.getHistoryService().getAllUsers();
18. uimanager.updateDisplay(users);
19. }
20. }
21. }

The code of the FriendFinder peerlet consists of only three methods, two of

which simply return the peerlet ID (lines 3-6) and protocol ID (lines 8-11). Since the

FriendFinder application does not use a community protocol, the peerlet returns null as

value for the protocol ID (line 10). The handleProemEvent method (lines 13-20) is

called by the peerlet engine with an event of type BeginEncounterEvent whenever the

Proem discovery mechanism determines the beginning of a new encounter. This method

then calls the HistoryService to get the set of all users that have been encountered so far

(line 17) and forwards it to the user interface (line 18). The user interface object sorts

the set of previously encountered users and displays their information (code not

shown).

VII.2.7 Summary

The FriendFinder application is a simple community application that

demonstrates some of the core aspects of peerlet programming. In order to build this

application, the programmer needs to understand only a few concepts, namely

171

• how to implement a peerlet by deriving a new class from the class

GenericPeerlet;

• the basics of event handling;

• the functionality provided by the history service API.

As can be seen by the code shown in Program 1, the FriendFinder application is

extremely simple. The whole application logic (excluding user-interface code and

comments) comprises just 21 lines of code.

The FriendFinder case study is important because it shows how an application

described in the literature can be recreated using Proem and how easy it is to extend its

functionality without increasing the complexity of the implementation.

VII.3 Genie

VII.3.1 Overview

The second case study is the Genie application introduced in Chapter 3. As we

already described the scenario, user profile and community protocol in Chapter IV.2,

we will limit our discussion to the user interface and implementation.

VII.3.2 Using the Application

The user-interface of the Genie application consists of two screens. The first

screen allows a user to define a question that will be transmitted to other devices during

encounters (Figure 25). The second screen displays a question (including subject)

received from another device. By pressing the ‘Answer’ button the user can indicate

that he or she knows the answer (Figure 26).

172

Figure 25. Genie user interface (screen 1).

Figure 26. Genie user interface (screen 2)

173

VII.3.3 Implementation

The Genie application consists of several Java classes:

• Genie_UserProfile implements the user profile (Program 2)

• Genie_Question, Genie_Positive and Genie_Negative are classes representing

the three message bodies of the community protocol (Program 2)

• Genie_Peerlet is derived from GenericPeerlet and implements the user agent

(Program 3)

• Genie_UI displays the user interface and handles the user interaction (not

shown).

In our discussion, we will ignore the implementation of the user interface and

limit our attention to the agent implementation.

Program 2. Genie Message and User Profile Classes

1. class Genie_MessageBody_Question implements proem.MessageBody
2. {
3. public String subject;
4. public String text;
5. };
6.
7. class Genie_MessageBody_Answer implements proem.MessageBody
8. {
9. public String text;
10. };
11.
12. class Genie_MessageBody_No_Answer implements proem.MessageBody
13. {
14. };
15.
16. class Genie_UserProfile extends Proem.GenericUserProfile
17. {
18. public String name;
19. public String subject;
20. };

174

Program 3. Genie Peerlet

1. public class Genie_Peerlet implements GenericPeerlet
2. {
3. Genie_MessageBody_Question question; // this user's question
4. MessagingService ms = Proem.getMessagingService();
5.
6. static public PeerletID getPeerletID()
7. {
8. return new PeerletID("proem:peerlet:genie");
9. }
10.
11. static public ProtocolID getProtocolID ()
12. {
13. return return new ProtocolID("proem:protocol:genie");
14. }
15.
16. public void handleProemEvent(Event event)
17. {
18. if (event instanceof BeginEncounterEvent)
19. {
20. Encounter encounter = ((EncounterEvent)event).getEncounter();
21. Genie_UserProfile profile = encounter.getUserProfile();
22. remote_user = profile.getUserID();
23. if (profile.getSubject().equals(question.subject))
24. {
25. Message mes;
26. mes = ms.newMessage(“proem:messagetype:question”,

 getProtocolID(),question);
27. ms.send(remote_user, mes);
28. }
29. }
30.
31. else if (event instanceof IncomingMessageEvent)
32. {
33. Proem.Protocol.Message in = event.getMessage();
34. if (in.getMessageType().equals("proem:messagetype:question"))
35. {
36. Genie_UI.send(in);
37. }
38. if (in.getMessageType().equals("proem:messagetype:positive"))
39. {
40. Genie_UI.send(in);
41. }
42. if (in.getMessageType().equals("proem:messagetype:negative"))
43. {
44. // do nothing
45. }
46. }
47.
48. else if (event instanceof UserinterfaceEvent)
49. {
50. Proem.Protocol.Message in = event.getMessage();
51. ms.send(in.getSource(), in);
52. }
53.
54. else if (event instanceof EndEncounterEvent)
55. {
56. // do nothing
57. }
58. }
59. }

The code of the Genie peerlet consists of a variable declaration section (lines 3-

5) and four methods. The variables are:

175

• a variable for storing the user’s question (line 5)

• a variable for holding a reference to the global MessagingService object.

The main component of the peerlet is the handleProemEvent() method (line 16-

58). It directly reflects the community protocol as defined by the community protocol

diagram in Chapter IV.2.5. The method consists of one large if-statement with four

cases for handling events indicating (1) the beginning of an encounter (2) an incoming

message and (3) a user interface event and (4) the end of an encounter.

Upon receiving a BeginEncounterEvent, the peerlet constructs a message

containing the question and sends it to the encountered user (line 27).

Upon receiving an IncomingMessageEvent, the peerlet forwards the message to

the user interface (accessible through the class Genie_UI) unless it is a negative

response (line 44).

Upon receiving a UserInterfaceEvent, the peerlet forwards the message to the

original sender, i.e. the user who originally sent a question (line 51).

An EndEncounterEvent is ignored by the peerlet (line 56)

VII.3.4 Summary

The Genie application illustrates how agents implement (simple) community

protocols. In particular, it demonstrates that the structure of the handleProemEvent

method directly reflects the structure of the community protocol. In order to build this

application, the programmer needs to understand

• how to implement a peerlet by deriving a new class from the class

GenericPeerlet;

• how to handle events;

• how to send messages to either the user interface or a remote agent.

176

VII.4 PIRATÉ Collaborative Music Guide

PIRATÉ (Kortuem et al. 2001) (see Chapter II.2.1) takes ideas from peer-to-

peer file sharing applications like Napster and moves them to the wearable domain. It is

a collaborative music guide that enables users to exchange MP3 play lists and music

recommendations during brief random encounters.

PIRATÉ can be described as “Napster in reverse”. In contrast to MP3 file

sharing applications like Napster and Gnutella, PIRATÉ is not a tool for sharing MP3

files, but for discovering music one would like to listen to by trading recommendations.

The bandwidth limitations of wireless personal area networks make it unfeasible to send

large MP3 files across the network. PIRATÉ circumvents these restrictions by

exchanging meta-information about songs instead of the songs themselves.

PIRATÉ employs methods for “collaborative filtering” or “social filtering” of

information (Resnick et al. 1994) (Shardanand and Maes 1995) (Breese et al. 1998) for

generating recommendations. The main idea of PIRATÉ is to automate the process of

"word-of-mouth" by which people recommend music to one another. Faced with a

myriad of choices when it comes to deciding which music to listen to, people will often

rely on the opinions of others. These others can either be certified experts in the field,

i.e. professional music critiques, or members of the social circle, that is friends, family

and coworkers.

Collaborative filtering generates recommendations by identifying groups of

people with similar interests, that is, it uses a collective method of recommendation.

Collaborative or social filtering methods produce recommendations by computing the

similarity between a user’s music preferences and the ones of other people.

The task of the PIRATÉ community agents is to collect information about other

people’s music preferences and to generate personalized recommendations. The basic

mechanism behind the PIRATÉ collaborative filtering method is the following:

177

• Each community agent maintains an ordered MP3 play list where each MP3 file

is marked by how often the user has listened to a song within the last seven

days.

• Agents exchange play lists during encounters thus giving each user access to the

music preferences of a potentially large group of people.

• Using a similarity metric, the agent selects a subgroup of people whose

preferences are similar to the user’s preferences.

• Based on the collective taste of the subgroup, the agent recommends MP3s to

the user.

In contrast to Internet-wide collaborative filtering systems like Amazon,

PIRATÉ produces localized recommendations that reflect the taste of the user’s local

social circle. For example, with PIRATÉ students can get music recommendations

based on the collective music preferences of the campus population. Such a system

allows local bands that are relatively unknown to be included.

The main bottleneck with existing collaborative filtering systems is the

collection of preferences. To be reliable, the system needs a very large number of

people to express their preferences about a relatively large number of options. Since the

system becomes useful only after a "critical mass" of opinions has been collected,

people will not be very motivated to express detailed preferences in the beginning

stages (e.g. by scoring dozens of music records on a 10 point scale), when the system

cannot yet help them. One way to avoid this start-up problem is to collect preferences

that are implicit in people's actions (Nichols 1997). For example, people who order

books from an Internet bookshop implicitly express their preference for the books they

buy over the books they do not buy. Customers who have bought the same book are

likely to have similar preferences for other books as well. This principle is applied by

the Amazon web bookshop, which for each book offers a list of related books that were

bought by the same people. Another method – the on employed by PIRATÉ - uses MP3

play lists to gauge user’s music preferences. People who listen to some MP3s more

178

frequently express their preference for the MP3s they listen to over the MP3s they do

not listen to. The list of all MP3s the user has been listening to within the past few days

determines a preference function for this user. The preference of each MP3 is equal to

the frequency with which the user has listened to the song.

Another novel feature of PIRATÉ is a filter mechanism based on personal

relationships. A user might prefer to receive music recommendations only from a few

“trusted” sources, i.e. users who are known for their exceptional taste in music.

PIRATÉ enables users to set up a list of trusted users and have his or her agent ignore

play lists from all other users.

In sum, PIRATÉ differs in the following ways from traditional recommender

systems:

• decentralized architecture

• based on localized social groups

• implicit user interface: user is not required to rate songs, exchange occurs

automatically

• recommendations are constantly updated

• trusted sources, instead of anonymous recommendations

179

VII.4.1 Scenario

The scenario description for the PIRATÉ applications is shown in Table 14.

Table 14. PIRATÉ scenario

Name PIRATÉ

Purpose To generate personalized music recommendations based on listening
behavior of community members.

population Music lovers, groups of friends, classmates, students, colleagues who
frequently listen to music.

Device Wearable device that can play MP3 music files.
Input: MP3 player controls (play, forward, stop, rewind)
Output: display recommendation

Before -

Encounter Devices exchange play lists and generate personalized recommendations

After -

VII.4.2 User Profile

PIRATÉ user profiles are simple and only contain the user’s URI and a name

(Table 15).

Table 15 PIRATÉ user profile

Attribute Name Implementation Type Description

Name [String] The user name, e.g. the first name or nick name

Favorites String* A list of favorite artists or music genres, for
example “Blues”, “Talking Heads”.

180

VII.4.3 Community Language

Protocol

The PIRATÉ community protocol is depicted in Figure 27. The interactions are

rather simple: when an encounter occurs, agents exchange MP3 play lists. The data is

used by agents to compute a new set up recommendation which is sent to the users.

Although the interactions are symmetric, the recommendations generated by agents are

personalized and will differ for each user.

s1

s4

User A Agent A Agent B User B

s2

Play List Play List

s3

s5 s6

Recommendations Recommendations

Figure 27. PIRATÉ community protocol

181

Vocabulary

In PIRATÉ, MP3 files are identified by ID3 tags (ID3 2002). ID3 tags are fix-

sized 128-byte data fields embedded in MP3 files that carry information for identifying

songs. The ID3 format v1.1 is as follows:

Song title 30 characters

Artist 30 characters

Album 30 characters

Year 4 characters

Comment 30 characters

Genre 1 byte

The genre field holds the index into a predefined table. For example genre 0

represents Blues, 1 represents Classic Rock, 2 represents Country etc. In PIRATÉ, the

comment field is used for storing the rating information, i.e. the number of times a song

has been listened to. The PIRATÉ vocabulary definition is shown in Table 16. Play

lists and recommendations are lists of ID3 tags.

Table 16. PIRATÉ vocabulary

Implementation Message Type Description

Type Description

PlayList A message of this type
carries a list of songs,
each of which is
described by an ID3 tag.

ID3Tag* A list of ID3 tags each
of which represent one
song in the play list.

Recommendation A recommendation is a
list of songs each of
which is described by an
ID3 tag

ID3Tag* A list of ID3 tags each
of which represent one
song in the
recommendation list.

182

VII.4.4 Implementation

The PIRATÉ application consists of several Java classes.

• Two message classes (Program 4)

• The user profile class (Program 4)

• A user interface class derived from PeerletUserInterface (not shown)

• The class PIRATE_Peerlet which implements the application logic (Program 5).

Program 4. PIRATÉ message and user profile classes

1. class ID3Tag
2. {
3. String title;
4. String artist;
5. String album
6. String year;
7. String comment; // = number of times this song has been listened to
8. byte genre;
9. };
10.
11. class PIRATÉ _PlayList implements proem.MessageBody
12. {
13. public java.util.List songs;
14. };
15.
16. class PIRATÉ _Recommendation implements proem.MessageBody
17. {
18. public java.util.List songs;
19. };
20.
21. class Genie_UserProfile extends Proem.GenericUserProfile
22. {
23. public String name;
24. public List favorites;
25. };

183

Program 5. PIRATÉ Peerlet Class

1. public class PIRATE_Peerlet extends GenericPeerlet
2. {
3. PIRATE_PlayList playlist; // the user's current play list
4. PIRATE_Recommednation recommendations; // the user's cur. recommendations
5. HistoryService hs = Proem.getHistoryService();
6. MessagingService ms = Proem.getMessagingService();
7. RelationshipService rs = Proem.getRelationshipService();
8.
9. public PeerletID getPeerletID ()
10. {
11. return new PeerletID("proem:peerlet:PIRATÉ ");
12. }
13.
14. public ProtocolID getProtocolID ()
15. {
16. return new ProtocolID("proem:protocol:PIRATÉ ");
17. }
18.
19. public void init()
20. {
21. rs.defineRelationship(“PIRATÉ ”);
22. rs.addUser(“PIRATÉ ”, new UserID(“proem:user:peter01”));
23. rs.addUser(“PIRATÉ ”, new UserID(“proem:user:jim1786”));
24. rs.addUser(“PIRATÉ ”, new UserID(“proem:user:ann4711”));
25. }
26.
27. public void handleProemEvent(Event event)
28. {
29. UserID remote_user;
30.
31. if (event instanceof BeginEncounterEvent)
32. {
33. Ecounter encounter = ((EncounterEvent)event).getEncounter();
34. PIRATÉ _UserProfile profile = encounter.getUserProfile();
35. remote_user = profile.getUserID();
36. if (hs.getSecondsSinceLastEncounter(remote_user)) > 24*60*60) //24 hours
37. {
38. Message mes;
39. mes = ms.newMessage(“proem:messagetype:playlisy”,

 getProtocolID(),playlist);
40. ms.send(remote_user, mes);
41. }
42. }
43.
44. else if (event instanceof IncomingMessageEvent)
45. {
46. Message in = event.getMessage();
47. if (in.getMessageType().equals("proem:messagetype:playlist"))
48. {
49. remote_user = in.getSender();
50. if (rs.isMember(“PIRATÉ ”, remote_user)
51. {
52. PIRATÉ _PlayList remote_playlist = in.getMessageBody();
53. recommendations = computeRecommendations(remote_playlist);
54. Message mes;
55. mes = ms.newMessage(“proem:messagetype:recommedation”,

 getProtocolID(),recommendations);
56. PIRATE_UI.send(mes);
57.
58. }
59. }
60. }
61. }
62. }

184

The code of the PIRATÉ peerlet consists of a variable declaration section (lines

3-7) and three methods. The variables are:

• a variable for storing the user’s play list

• a variable for storing the recommendations generated by the agent

• a variable for holding a reference to the global MessagingService object.

• a variable for holding a reference to the global HistoryService object.

• a variable for holding a reference to the global RelationshipService object.

The init method (line 19-25) defines a personal relationship between this user

and three other users. This information will be used later on to filter incoming play lists.

A more flexible approach would be to implement a user interface screen for adding and

removing users from the relationship.

The main component of the peerlet is the handleProemEvent() method (lines 27-

61). The method consists of one large if-statement with just two cases for handling

events indicating the beginning of an encounter and an incoming message.

Upon receiving a BeginEncounterEvent, the peerlet first determines if the last

encounter with this particular person occurred more than 24 hours ago. If this is the

case, it constructs a message containing the play list and sends it to the encountered

user.

Upon receiving an IncomingMessageEvent (lines 44-56), the peerlet checks to

see if the received play list is one a person with whom the user has a special

relationship. If it is the case, the play list is used to generate new recommendations,

otherwise it is discarded. The recommendations are sent to the user interface for

display.

185

VII.4.5 Summary

The PIRATÉ application illustrates the use of the following APIs:

• How to set up and use relationships with the relationship service

• How to use the history service to access information about past encounters

VII.5 mBazaar

mBazaar (see Chapter II.2.1) is a wearable community application that supports

students in buying, selling and swapping of personal items like CDs, books, bikes,

furniture, and electronics. mBazaar employs community agents that advertise items a

user wants to buy or sell to other nearby mBazaar users. At the time of an encounter

between two or more individuals, for example when two or more students meet after

class at a local coffee shop, the community agents identify matches between advertised

and desired items and exchange contact information. Depending on the users’

preferences, contact information might include email addresses or pictures of the users.

The picture enables users to identify each other and to verbally negotiate a possible

transaction right on the spot.

The mBazaar application is designed to highlight an application that in some

important respects is different from the one employed by PIRATÉ. First, it does not use

user profiles: users exchange contact information only after their agents have

determined a match. Second, instead of waiting for an encounter, agents broadcast

classifieds to all nearby devices using the communitycast method of the messaging

service.

186

VII.5.1 Scenario

The scenario description for the mBazaar applications is shown in Table 17.

Table 17. mBazaar Scenario

Name mBazaar

Purpose mBazaar enables users to advertise products and services they wish to
buy or sell and to identify other users with complimentary desires.

population “Localized groups” such as students or employees without strong
personal relationships but a high frequency of chance encounters

Device Input capabilities for text and possible images to define classifieds and
users’ contact information
Output: display of classifieds and contact information

Before -

Encounter Devices exchange classifieds, identify possible match and if approved by
users’ exchange contact information

After -

VII.5.2 Community Language

Protocol

The mBazaar community protocol is depicted in Figure 28. An agent starts by

sending out a classified to a nearby agent. Upon receiving a classified, an agent

determines if there is a match between its user’s classifieds and the incoming classified.

The agent sends information about a match to the user to garner the user’s opinion. If

the user likes the match and is interested in contacting the other user, he or she replies

with a positive answer. If not, he or she replies with a negative answer and the exchange

187

terminates (states s7 and s8). In case of a positive response, the agent forwards the

user’s contact information to the remote agent which in turn informs its user. The user

can then decide if he or she wants to pursue the opportunity and contact the other

person. Note, that this scheme is asynchronous: one user sends contact information and

the other receives it. This scheme does not guarantee that both users have mutual

knowledge of each other.

If two simultaneous interactions occur (which may or may not be the case), each

user ends up receiving the other users contact information.

The asymmetry in the original exchange has the advantage that users are in full

control to whom they want to disclose their contact information. They will reply to a

classified if and only if their agent found a match and they are interested in pursuing it.

188

Figure 28. mBazaar community protocol

189

Vocabulary

The mBazaar vocabulary consists of four message types as shown in Table 18.

Table 18. mBazaar vocabulary

Implementation Message Type Description

Type Description

Classifieds A message of this
type carries a list of
individual classifieds

(boolean; String)*

Each classified consists
of two fields: a boolean
value indicating the
classified type (buy =
true; sell = false) and a
String for a textual
description of the
product or service.

Positive A message of this
type indicates the
user is interested in a
match and wants to
contact the other user

Void (carries no data)

Negative A message of this
type indicates the
user is not interested
in a match or does
not want to contact
the other user

Void (carries no data)

ContactInformation A message of this
type contains a user’s
contact information
(e.g. email, cell
phone number)

String A string containing an
unstructured textual
representation of the
contact information
(e.g. “This is Hanna.
Call me on my cell
phone at 541-456 4560
to discuss a deal”)

190

VII.5.3 Implementation

The mBazaar application consists of several Java classes.

• Four message classes (Program 6)

• A user interface class derived from PeerletUserInterface (not shown)

• The class mBazaar_Peerlet which implements the application logic (Program 7).

Program 6. mBazaar message classes

1. class Classified
2. {
3. public boolean buy;
4. public String description;
5. }
6.
7. class mBazaar_Classifieds implements proem.MessageBody
8. {
9. public java.util.List classifieds;
10. };
11.
12. class mBazaar_Positive implements proem.MessageBody
13. {
14. };
15.
16. class mBazaar_Negative implements proem.MessageBody
17. {
18. };
19.
20. class mBazaar_ContactInformation extends proem.MessageBody
21. {
22. public String description;
23. };

191

Program 7. mBazaar peerlet class

1. public class mBazaar_Peerlet extends GenericPeerlet
2. {
3. mBazaar_Classifieds classifieds; // the user's classifieds
4. mBazaar_ContactInformation contact; // the user's contact information
5. MessagingService ms = Proem.getMessagingService();
6.
7. public PeerletID getPeerletID ()
8. {
9. return new PeerletID("proem:peerlet:mBazaar");
10. }
11.
12. public ProtocolID getProtocolID ()
13. {
14. return new ProtocolID("proem:protocol:mBazaar");
15. }
16.
17. public void init()
18. {
19. // set up classifieds and contact information via UI
20. long ttl = 2;
21. Calendar cal = Calander.instance().roll(HOUR_OF_DAY); // now + 1 hour
22. Date later = cal.getTime(); // date indicating now + 1 hour
23. DeliveryHint hint ms.newDeliveryHint(ttl, later);
24. Message mes;
25. mes = ms.newMessage(“proem:messagetype:classifieds”,

 getProtocolID(),
 hint,
 classifieds);

26. ms.communitycast(mes);
27. }
28.
29. public void handleProemEvent(Event event)
30. {
31. UserID remote_user;
32.
33. if (event instanceof IncomingMessageEvent)
34. {
35. Message in = event.getMessage();
36. if (in.getMessageType().equals("proem:messagetype:classifieds"))
37. {
38. remote_user = in.getSender();
39. if (match(classifieds, in.getMessageBody())
40. {
41. mBazaar_UI.send(in);
42. }
43. }
44. }
45. else if (event instanceof UserInterfaceEvent)
46. {
47. Message in = event.getMessage();
48. if (in.getMessageType().equals("proem:messagetype:positive"))
49. {
50. Message mes;
51. mes = ms.newMessage(“proem:messagetype:contactinformation”,

 getProtocolID(),contact);
52. ms.send(in.getSender(),mes);
53. }
54. }
55. }
56. }

The code of the mBazaar peerlet consists of a variable declaration section (lines

3-5) and four methods. The variables are:

192

• a variable for storing the user’s classifieds

• a variable for storing the user’s contact information

• a variable for holding a reference to the global MessagingService object.

The init method (line 17-26) sets up the classifieds and contact information. Its

most important task is to initiate a communitycast that sends out the user’s classifieds to

all members of the community. It defines a delivery hint object with a TTL and an

expiration time. The TTL is set to 2, indicating a request to other Proem devices to

forward the message to other peers. The expiration time is set to one hour in the future,

guaranteeing the repeated communitycast of the same message for the next hour (the

user should be able to set the expiration date of the communitycast, but for sake of

simplicity has been fixed in this example. A more flexible approach would be to

implement a user interface screen for setting the expiration date).

The handleProemEvent() method only needs to deal with one type of user

interface event and one type of incoming message event.

Upon receiving an IncomingMessageEvent, the peerlet checks to see if there is a

match. If there is, it forwards the classifieds to the user interface for display. The user

can then respond.

Upon receiving a UserInterfaceEvent, the peerlet checks if it is a positive or a

negative response. If it is positive it sends out the user’s contact information.

VII.5.4 Summary

The mBazaar application illustrates a method of implementing community

agents without using user profiles. Contact information is sent after negotiations

between agents and, indirectly, between users has been successful. This approach is

preferable in situations in which user are concerned about privacy. In addition, this

example illustrates how to use communitycasting and delivery hints.

193

VII.6 WALID: Opportunistic Task Trading

WALID (Kortuem, Schneider, Suruda, Fickas, and Segall 1999) (see Chapter

II.2.1) is our last case study. Historically, it is actually one of the first wearable

community applications. It demonstrates how to define and implement a complex

community protocol.

VII.6.1 Scenario

The scenario description for the WALID applications is shown in Table 19:

Table 19. WALID Scenario

Name WALID

Purpose To strengthen the social ties of a group by identifying opportunities for
mutual assistance.

population Close-knit groups with established trust relationships, for example
groups of friends, classmates or colleagues.

Device Input: user enters and maintains task list
Output: display task list, alert user of a agent’s proposed trade
Sensors: determine user location (for example using GPS Global
Positioning System)

Before User defines tasks

Encounter Devices exchange task lists, identify if there is a mutually beneficial
trade and alert users

After If users accept a deal proposed by their agents, task lists must be updated
to reflect the trade

194

VII.6.2 User Profile

The WALID application is designed for a group of people who know and trust

each other. It is unlikely that people are willing to trade tasks with people they are not

familiar with. Therefore, user profiles are simple and only contain the user’s name

(Table 20).

Table 20. WALID user profile template

Attribute Name Implementation Type Description
name String The name under which the user is

known to friends. May be the first
name or an assumed name.

VII.6.3 Community Language

WALID employ ideas from game theory (Rosenschein and Zlotkin 1994) to

ensure that results of negotiations are mutually beneficial. The first step in developing a

community protocol is to formulize the task trading scenario. We use a variation of the

Postman domain (Nash 1950) as follows:

“Agents have to deliver sets of packages to destinations, which are

arranged on a graph G = G(V,E). The set V of vertices represents all possible

destinations while the set E of edges represents routes along which agents can

travel. Agents can exchange packages at no cost during encounters at any

vertex.

A task is a vertex v and indicates that an agent has to deliver a package

to the location represented by v. A task set is a set of vertices. If vertex v is in an

agent’s task set, it means that he has at least one package to deliver to v.

The cost of delivering a package from the agent’s current location to a

destination is defined by a cost function c: V x V -> N where c(v1,v2) is the

length of the minimal path from v1 to v2. The cost of a subset of destinations

195

X ⊆ V is the length of the minimal path that starts at the current vertex and

visits all members of X. Thus, the cost of a task set s is defined as the sum of

the cost of all tasks contained in s.”

The WALID community protocol is based upon Nash’s Product Maximizing

Mechanism (PMM). PMM is a three-step protocol: in the first step the two agents

disclose their task sets; in the second step each agent proposes a deal (division of tasks)

that is pareto-optimal6; in the third step the agents select and agree upon a winning deal.

The deal that is selected is the one that offers each of the agents the most benefits which

is the one with the highest combined cost savings.

Example

Let’s assume two agents are negotiating at point C of the graph shown in Figure

29. Landmarks are indicated by circles and paths between landmarks by arrows. For

sake of simplicity, distance between neighboring landmarks is assumed to be 1. Agent 1

must deliver packages to points A and D; Agent 2 must deliver a package to point A.

Figure 29. WALID Task Trading Example

6 Pareto-optimal: No agent could derive more from a different agreement, without some other agent

deriving less from that alternate agreement.

196

Step 1: In the first negotiation step, both agents disclose their respective tasks

sets. As result, the agents know their own and their opponents tasks and the costs for

each of them. This situation is shown in the following table:

Step 1.
Disclosure of Tasks
Sets

Agent Location Task set Cost = Length of
minimal path

Agent 1 C {A,D} 2 + 2 = 4

Agent 2 C {A} 2

Step 2: In the second step, both agents propose a deal, where a deal is a new

distribution of tasks. Let’s assume agent 1 proposes that agent 1 deliver packages to

point D and agent 2 deliver packages to point A. Let’s further assume agent 2 proposes

just the opposite (agent 1 delivers to A and agent 2 delivers to D). The following table

shows the costs and utilities for each of these deals from the perspective of each of the

two agents. The utility of a deal is defined as the cost saving of the proposed deal, that

is as the difference of the costs between of the original situation and the proposed deal:

Step 2.
Proposed
Deals

Task
distribution

Cost for
agent 1

Utility for
agent 1

Cost for
agent 2

Utility for
agent 2

Product of
utilities

Deal 1 Agent 1: D
Agent 2: A

1 3 2 0 0

Deal 2 Agent 1: A
Agent 2: D

2 2 1 1 2

The cost of a deal for an agent is the distance the agent has to travel. The utility

of a deal for an agent is the cost saving of the proposed task distribution. For example,

with deal 1 agent 1 needs to travel from C (its current location) to D. The distance and

thus cost is 1. The utility is 3, because without an exchange of task agent 1’s cost is 4.

197

The Product Maximizing Mechanism says that the winning deal is the deal with

the highest product of the two expected utility. Thus, in this example deal 2 is the

winning deal.

Step 3: The third step involves the actual trade of tasks according to the winning

deal. Since this scenario is about delivering packages a trade involves the physical

exchange of packages. The final result is that agent 1 will deliver two packages to

destination A, while agent 2 will deliver one package to destination D. The situation

after this trade is shown in the following table:

Step 3.
Final task
distribution

Agent Location Task set Cost = Length of
minimal path

Agent 1 C {A, A} ≅ {A} 2

Agent 2 C {D} 1

Protocol

The WALID community protocol diagram is shown in Figure 30.

198

Figure 30. WALID Community Protocol Diagram

199

Vocabulary

The WALID vocabulary is defined in Table 21.

Table 21. WALID vocabulary

Implementation Message
Type

Description

Attribute Name Implementation
Type

Description

Description String Textual description
of task

Location_x Int Map location
where tasks needs
to be performed

Tasklist A message of this
type represents the
tasks a user has to
do. It contains a
list of tasks, each
of which consists
of a textual
description and a
location.

Location_y Int Map location
where tasks needs
to be performed

UserA Proem.UserID ID of first user

UserB Proem.UserID ID of second user

TasksA java.util.Set The task set to be
performed by user
A

Deal A deal is
represented by
two sets of tasks
indicating an
assignment of
tasks to the two
agents

TasksB java.util.Set The task set to be
performed by user
B

Response A message of this
type indicates
whether a user
agrees to swap
tasks or not.

Accept Boolean A value of true
indicates that the
user accepts a deal,
false indicates the
use does not accept

200

VII.6.4 Implementation

The WALID application consists of several Java classes as listed in Program 8:

• WALID_UserProfile implements the user profile

• WALID_Tasklist, WALID_Deal and WALID_Response are classes

implementing the vocabulary

• WALID_Peerlet is derived from GenericPeerlet and implements the community

agent (Program 9).

• WALID_UI displays the user interface and handles the user interaction (not

shown).

In our discussion, we will ignore the implementation of the user interface and

limit our attention to the agent implementation.

Program 8. WALID Message and User Profile Classes

1. class Task
2. {
3. public int id;
4. public String description;
5. public int location_x;
6. public int location_y;
7. };
8.
9. class WALID_Tasklist implements proem.MessageBody
10. {
11. public Set tasks;
12. };
13.
14. class WALID_Deal implements proem.MessageBody
15. {
16. public UserID userA;
17. public UserID userB;
18. public Set tasksA; // tasks for user A
19. public Set tasksB; // tasks for user B
20. };
21.
22. class WALID_Response implements proem.MessageBody
23. {
24. public boolean response;
25. };
26.
27. class WALID_UserProfile extends proem.GenericUserProfile
28. {
29. public String name;
30. };

201

Program 9. WALID Peerlet

1. public class WALID_Peerlet implements GenericPeerlet
2. {
3. Set tasks; // this user's task set
4. HistoryService hs = Proem.getHistoryService();
5. MessagingService ms = Proem.getMessagingService();
6. int state = 0; // communication state according to CPD
7.
8. static public PeerletID getPeerletID ()
9. {
10. return new PeerletID("proem:peerlet:WALID_01");
11. }
12.
13. static public ProtocolID getProtocolID ()
14. {
15. return new ProtocolID("proem:protocol:WALID");
16. }
17.
18. public void handleProemEvent(Event event)
19. {
20. UserID remote_user;
21. WALID_Deal deal;
22.
23.
24. if (event instanceof BeginEncounterEvent)
25. {
26. Ecounter encounter = ((EcounterEvent)event).getEncounter();
27. WALID_UserProfile profile = encounter.getUserProfile();
28. remote_user = profile.getUserID();
29. if (hs.getSecondsSinceLastEncounter(remote_user)) > 60*60) //1hour
30. {
31. Message mes;
32. mes = ms.newMessage(“proem:messagetype:tasks”,getProtocolID(),tasks);
33. ms.send(remote_user, mes);
34. state = 1;
35. }
36. }
37. else if (event instanceof IncomingMessageEvent)
38. {
39. Message in = event.getMessage();
40.
41. if (in.getMessageType().equals("proem:messagetype:tasks") && state == 1)
42. {
43. deal = computeDeal(tasks, in.getBody().tasks);
44. in.setMessageBody(deal);
45. ms.send(in.getSender(), in);
46. state = 3;
47. }
48.
49. if (in.getMessageType().equals("proem:messagetype:tasks") && state != 1)
50. {
51. Message mes;
52. mes = ms.newMessage(“proem:messagetype:tasks”,getProtocolID(),tasks);
53. remote_user = in.getSender();
54. ms.send(remote_user, mes);
55.
56. deal = computeDeal(tasks, in.getBody().tasks);
57. in.setMessageBody(deal);
58. ms.send(in.getSender(), in);
59. state = 3;
60. }
61.
62. if (in.getMessageType().equals("proem:messagetype:deal"))
63. {
64. deal = pickWinningDeal(deal, in);
65. in.setMessageBody(deal);
66. WALID_UI.send(in);
67. }
68.

202

69. if (in.getMessageType().equals("proem:messagetype:response"))
70. {
71. WALID_UI.send(in);
72. }
73. }
74. else if (event instanceof UserInterfaceEvent)
75. {
76. if (in.getMessageType().equals("proem:messagetype:response"))
77. {
78. ms.send(in.getSender(), in);
79. }
80.
81. }
82. else if (event instanceof EndEncounterEvent)
83. {
84. // do nothing
85. }
86. }
87. }

The code of the WALID peerlet consists of a variable declaration section (lines

3-6) and three methods. The variables are:

• a variable for storing the user’s tasks (line 5)

• a variable for holding a reference to the global MessagingService object.

• a variable for holding a reference to the global HistoryService object.

• A state variable for keeping track of the communication state.

The main component of the peerlet is the handleProemEvent() method (line 17-

85). It directly reflects the community protocol as defined by the WALID community

protocol diagram shown in Figure 30. The method consists of one large if-statement

with four cases for handling events indicating (1) the beginning of an encounter (2) an

incoming message and (3) a user interface event and (4) the end of an encounter.

Upon receiving a BeginEncounterEvent, the peerlet constructs a message

containing the tasks and sends it to the encountered user (line 27).

Upon receiving an IncomingMessageEvent, the peerlet either forwards the

message to the user interface or, when receiving a task list, responds by sending a deal

back the encountered user’s agent (lines 45 and 58).

203

Upon receiving a UserInterfaceEvent, the peerlet forwards the user’s response

to the agent of the original sender (line 78).

An EndEncounterEvent is ignored by the peerlet (line 84)

VII.6.5 Summary

The WALID application illustrates how agents implement a reasonable

community protocols. In order to build this application, the programmer needs to

understand

• how to implement a peerlet by deriving a new class from the class

GenericPeerlet

• how to handle events

• how to use the history service

• how to send messages to either the user interface or a remote agent.

VII.7 Summary

This chapter has presented several case studies of applying the development

framework. In particular, it has shown two things:

• The use of the design language to capture key aspects of wearable community

applications.

• The use of the Peerlet application framework for implementing wearable

community applications.

The semi-automatic generation of code templates and the powerful service API

dramatically simply the development by reducing the amount of code that programmers

need to write.

204

Chapter VIII

DISCUSSION

This chapter discusses issues related to the utility and novelty of the research

presented in this dissertation. First, it described our experiences in using the Proem

platform in software engineering education. This will attest to the utility of our work.

Next we discuss the differences and similarities of Proem with existing software

development platforms. This will attest to the novelty of our work. Finally, we discuss

possible enhancements and additions. In particular, we will talk about reputations as

mechanisms for trust in wearable communities and peer-to-peer dissemination of

wearable community applications.

VIII.1 Experiences of Using Proem in Software Engineering Education

In the previous chapter, we demonstrated how to build wearable community

applications with the Proem platform. We were able to demonstrate that the amount of

code that needs to be written to create applications is fairly small and that the code

structure is straight forward. While we have successfully used Proem over the years as a

research test bed, our own experiences are of limited use when it comes to evaluating

utility of the WearCoM methodology and the Proem platform. Just as the usability of

application software can only be evaluated through empirical tests with real end users,

so can the utility of development tools only be evaluated by empirical tests with real

developers. Preferably, these developers should be independent developers who were

205

not involved in the design and implementation of the tool itself. Rather than performing

artificial experiments in a lab, we decided to study how Proem performed in practice by

using it as development platform in several software engineering courses at the

University of Oregon. This approach, while delivering more realistic results than mere

lab tests, has one important drawback: we more not able to perform comparative studies

of application development with and without Proem. In the following, we will outline

our methodology and the result of this study.

VIII.1.1 Methodology

Between spring of 2001 and spring of 2002 three different software engineering

courses were taught at the University of Oregon’s Computer Science Department using

Proem as development platform. These courses were:

• CIS 650: Software Engineering: Peer-to-Peer Computing, Spring 2001

• CIS 610: Mobile Information Systems, Fall 2001

• CIS 422/522: Software Methodologies, Spring 2002

600 courses are graduate level courses and 400/500 courses are mixed

undergraduate/graduate level courses. Each course ran ten weeks.

User Population

In total, 35 students participated in this study. Of these, 10 were undergraduates

and 25 were graduate students. All but 5 students were computer science majors. All

students had medium to advanced Java skills. None of the students had any prior

experience in wearable computing, peer-to-peer computing or wireless networking.

206

Projects

In total, 4 different projects were undertaken aimed at building 4 different

wearable community applications:

• mClique: a wearable community application aimed at group awareness. The

goal of this application is to determine groups (= cliques) of mutually connected

friends.

• mBazaar: a wearable eBay application that enables users to buy, sell and trade

goods and services.

• PIRATÉ : a collaborative music guide.

• Infomediation: a distributed application that enables users to access

infomediation services provided by other users. Each service enables users to

query the database that drives one of the major book sites (Amzon.com,

BarnesAndNoble etc.). As result, users were able to perform collaborate price

comparisons for books. This application is described in (Segall et al. 2002).

All projects were undertaken by one or more teams of between 3 and 4 students.

Both mClique and mBazaar were implemented by 1 team; PIRATÉ was implemented

twice (by two different teams) and the infomediation application was implemented by 5

teams. The infomediation application was unique in that it was developed using a

distributed development process. All teams specified a common community language

and then independently implemented interoperable service components. The end result

was a heterogeneous system. In contrast, all other systems were individually designed

and implemented by just one team.

207

ExtractorExtractor

CollectorCollector

Information
repository

Information
repository

Information
repository

Information
repository

Information
repository

Information
repository

CollectorCollector

CollectorCollector

ExtractorExtractor

ExtractorExtractor

ExtractorExtractor

Information
repository

Information
repository

ExtractorExtractor

Figure 31. Infomediation Architecture

Process

Each course ran for 10 weeks and was divided into three phases:

Introduction into the application domain (1 week = 2 lectures)

Introduction to the WearCom methodology and the Proem platform (1 lecture)

Project work (design, specification, implementation)

The introduction to the WearCom methodology and the Proem platform was

done using one 45 minute lecture. At the same time, students were provided with a

Proem User Guide that explains the installation and setup, a Programmer’s Manual that

teaches how to write peerlets, and a single rather simple example application.

The actual project work was divided into three iterations. At the beginning, each

group outlined the tasks they planned to complete, and the features they planned to

implement by the end of each iteration. At the end of each iteration, the groups

208

presented a demonstration of their progress, a summary of the challenges they

encountered, and a discussion of unanticipated problems. The end result of each project

consisted of design documentation and a running prototype implementation. The first 2

weeks of the project work were reserved for reading, drafting specifications and

software design. The actual implementation took between four and five weeks.

At the end of each course, a questionnaire was handed out asking about each

student’s experience with Proem, problems encountered and suggestions for

improvement.

Cooperation between teams was strongly encouraged, and extraordinarily

useful, as many teams were solving similar problems. The only rule was “You are

cheating if you do not acknowledge the contributions of others.” Throughout the

project, teams traded code, technical knowledge, and advice on using Proem.

Equipment and Tools

Development was performed in Java SE 1.3 on Sun workstations, PCs and

notebooks. Because of logistical problems and lack of hardware, none of the teams had

access to actual wearable hardware.

The teams were free in their choice of development tools, but encouraged to

utilize version control software, bug tracking software etc.

The Proem version used in all projects was 1.1. It is very similar to the one

described in this dissertation but lacked support for user interfaces. Thus, each team had

to implement a user interface from scratch using Swing and AWT.

Measured Variables

During the courses, we closely observed the progress of each team and

evaluated the final software implementation. We assessed Proem’s quality along the

following dimensions:

209

• Learning time: how long does it take each team to implement the very first

peerlet? The conceptual simplicity of Proem can be approximated by how long

it takes students to learn Proem before they are able to use it independently.

• Implementation time: how long does it take each team to implement their

prototype (excluding time spent on design and specification). The effectiveness

of the support provided by Proem can be measured by how long it takes

students to implement a full-featured application on top of Proem.

• Complexity of Developed Applications: Complexity of an application is hard to

measure. We thus relied on two objective measures: application size and

number of Proem API functions used (excluding user interface code).

• Support Requirements: how many support incidents (email, personal contact)

occurred over the entire project lifetime? In order for students to have timely

access to technical support related to the Proem platform, we set up a mailing

list. In addition, students had the opportunity to discuss questions with Proem

developers during weekly face-to-face meetings. For each project, we tracked

the number of support instances over the entire project lifetime.

• Subjective satisfaction: what is the level of satisfaction among students (based

on the questionnaire handed out at the end of class)?

210

VIII.1.2 Results

The results of the study are summarized in Table 22.

In our experiment, in under one week students were able to get the Proem

platform up and running, experiment with the example application and write their own

very simple tests (participating students carried a full work load with 3 to 4 classes and

thus were only able to spend a fraction of their time on this particular project). Data

extracted from informal interviews and the questionnaire indicates that it took

individual students between 1 and 5 hours to write their first application. Considering

that Proem consist of about 80 classes and interfaces this is a comparatively short time.

The implementation time was bounded by the set up of the courses. Each team

had about 4 weeks for the three iterations. The time estimates for individual students

vary widely and range from 0 hours to 15 hours per week. Some of the teams were

highly organized with some students responsible for only design and documentation and

others only for implementation. Considering the varying quality of the implementations

and the varying scopes of each project it is difficult to judge these numbers. In

comparison, two similar projects not based upon WearCoM and Proem took 3 month

each with a weekly time estimate of between 10 and 15 hours.

The application size ranged from 22 Java classes (120KB source code) to 39

Java classes (200KB source code). The overall complexity of most applications is high,

given the decentralized character and the nature of the interactions. Most of the

complexity, however, is hidden in the Proem network and service components.

211

Table 22. Result Overview

 Learning
time

Impl.
time

Complexity
(source code
size
excluding
user
interface)

Complexity
(percentage
of API used)

Support
requirements
(# support
incidents for
10 week
time period)

mClique 1 week 4 week 30 Java
classes
(~120KB)

~20% 4

mBazaar 1 week 4 week 25 Java
classes
(~110KB)

~17% 3

PIRATÉ
(version 1)

1 week 4 week 22 Java
classes
(~120KB)

~39% 5

PIRATÉ
(version 2)

1 week 4 week 39 Java
classes
(~200KB)

~21% 1

Infomediation
(averaged over
all teams)

1 week 4 week 30 Java
classes
(~150KB)

~20% 3

Average 1 week 4 weeks ~ 30 Java
classes
(~145KB)

~22% < 3

Somewhat disappointing is the low percentage of API calls used by the

application. In average, applications make use of only 22% of the API. After evaluating

the source code, we found that some of the teams reimplemented functionality that is

212

provided by Proem instead of using the built-in functionality. Informal discussions

revealed that some teams were not as familiar with the API as expected and thus they

were not aware that they could have used built-in API calls. Up to 50% of the APIs

could have been employed by each application, indicating that about half of the

required functionality had not been discovered by students. Subsequently, we modified

the names and signatures of some of the APIs in order to clarify the concepts and

abstractions represented by them. It has yet to be determined if this will increase the

clarity and usability of the API.

The support requirements is the area were Proem really shines. The numbers are

consistently low and never reach more than 5 support instances per project for the entire

10 week span of the course. A contributing factor to this surprisingly low number is that

students had been encouraged to share their understanding of the methodology and

Proem across teams. About half of the support incidents were questions related to if and

how a particular function is implemented by Proem, while about 25% were bug reports.

Overall, we are very satisfied with the stability of the Proem platform.

The evaluation of the subjective satisfaction suffered from a poor response to

the questionnaire. Only few students submitted answers to the free-form questions that

asked for particular good or bad experiences. However, when students answered the

questions, the response was overwhelmingly positive. For example, two students

answered the question “What do you particularly like about Proem?” as follows:

• “Its intuitiveness and good abstraction. We don't need to delve into its details

and still can do complex job.”

• “Working with Proem is just like working with JAVA APIs. Ease of use and

understanding. Easy to start and get going.”

Informal interviews after the end of each course indicated a very high

satisfaction level and about 80% of students were convinced that they could not have

done the project without Proem.

213

VIII.1.3 Key Benefits

Summarizing our experiences during research projects and during the course

experiments, we see the main benefits of the Proem platform in the following areas:

Reducing the Complexity of Building Applications

Proem simplifies the development task by raising the level of abstraction. This

is achieved by three interrelated measures. First, the Proem platform provides network

transparency and hides specifics of the underlying communication network from

programmers. Second, it provides programmers with an application framework and a

powerful set of APIs. Third, it realizes a simple programming model with a uniform

event-based mechanism for peer-to-peer communication, presence-awareness and user

interface management

Enabling Rapid Development

Proem enables rapid prototyping through a combination of several measures:

first, the amount of code that needs to be written for simple applications is small. This

allows programmers to have a simple application up and running within a very short

time frame and add to it gradually. Second, Proem supports code reuse through a virtual

machine architecture and application plug-in modules (= peerlets). A complex

application can be realized as a collection of communicating peerlets that all run on the

same machine within the same peerlet engine. Third, because of Proem’s cross platform

capabilities, developers can write and test applications on workstations and afterward

deploy them on wearable computers.

214

Enabling Independent, Distributed Development

Proem represents an open, distributed software infrastructure for wearable

community applications. With Proem, multiple developers can define a community

protocol and create independent yet compatible implementations. This is made possible

by two interrelated measures: first, by providing a common communication substrate in

the form of the Proem Transport Protocol; second, by enabling developers to specify

interfaces between devices in the form of peerlet protocols.

Enabling Long term Modification

Because of the virtual machine architecture and high-level APIs, applications

are shielded from specifics of the underlying technologies. Modifications necessary due

to innovations in communication and device technology can be hidden by the peerlet

engine and are transparent to applications.

Interoperability among Heterogeneous Devices

Finally, interoperability among heterogeneous devices is guaranteed by two

interrelated measures. First, the cross-platform nature of the peerlet engine makes it

possible to install and run existing applications on any devices with a peerlet engine.

Second, the network independence of the XML-based Proem Transport Protocol makes

it possible for two different Proem implementations to interoperate regardless of the

programming language used to implement them.

215

VIII.2 Related Software Platforms

The Proem software platform has not been developed in a vacuum, but has

benefited from ongoing work in many areas including mobile ad hoc networking, peer-

to-peer computing, mobile middleware platforms and mobile groupware. This chapter

describes software platforms that address similar issues and challenges as Proem. As

decentralization and peer-to-peer communication is one of the primary attributes of

wearable community systems, we limit out attention to decentralized and peer-to-peer

platforms. This excludes, for example, many of the software infrastructures developed

for smart environment and interactive workspaces like Stanford’s iRoom project

(Ponnekanti et al. 2001). Similarly, this survey does not cover intelligent agent

platforms or languages such as Jackal (Cost et al. 1999) or KQML (Genesereth and

Ketchpel 1994; Finin et al. 1994). Although we make use of the term agent to describe

wearable community software artifacts, Proem is not an intelligent agent platform. In

particular, it does not employ a formal agent communication language and semantic

content representations. Agent languages tend to restrict agent communication. We feel

that such a formal definition provides few advantages in a platform mainly concerned

with supporting human collaboration.

VIII.2.1 Mobile Middleware Platforms

Proem can be seen as an example of a mobile middleware platform. Mobile

middleware aims at facilitating communication and coordination of distributed mobile

components, concealing difficulties incurred by mobility from application engineers.

Until now, very few middleware solutions have been designed for decentralized mobile

systems and ad hoc network environments. Moreover, most such platforms focus on

data management as the main problem area. Examples include Bayou (Demers et al.

216

1994; Edwards et al. 1997), TSpace (Wyckoff 1998) LIME (Picco et al. 1999; Murphy

2000; Murphy et al. 2001) and XMIDDLE (Mascolo et al. 2001; Mascolo et al. 2002).

One of the first mobile platforms to address data management in mobile systems

was Bayou. The Bayou system was designed to support collaboration among mobile

users who are not continuously connected. It employs weak consistency replication

techniques to manage replicas of shared user data (for example calendar items,

electronic mail messages, documents). Arbitrary read and write operations to any

replica are permitted without the need for explicit coordination with other replicas:

every computer eventually receives updates from every other, either directly or

indirectly, through a chain of pair-wise interactions. Weakly consistent replicated data

is not transparent to applications; instead, they are aware that they may read weakly

consistent data and that their write operations may conflict with those of other users and

applications.

TSpace and LIME are representatives of a tuple-space approach first developed

in Linda (Gelernter 1985). TSpace is a middleware system whose goal is to support

communication and data management on hand-held devices. Unlike Proem, TSpaces

makes a sharp distinction between clients and servers. The client side has a small

footprint, as it is designed to run on devices with scarce resources. The server side is

supposed to be resource richer and it may run a relational or object-oriented database to

achieve persistence of tuple spaces.

LIME uses multiple tuple spaces, called interface tuple space each permanently

associated to a mobile unit, and introduces rules for transient sharing of the individual

tuple spaces based on connectivity. Each interface tuple space contains tuples that the

unit wishes to share with others and it represents the only context accessible to the unit

when it is alone. Access to the interface tuple space takes place using conventional

Linda primitives, whose semantics is basically unaltered. However, the content of the

interface tuple space is dynamically recomputed in such a way that it looks like the

result of the merging of the interface tuple space of other mobile units currently

217

connected. The advantage of this model is that applications only need to worry about

the content of their local tuple space, but not about connectivity and data distribution.

XMIDDLE is an XML-based mobile computing middleware designed for ad

hoc networks. Relying on peer to peer networking, it allows applications on different

hosts to share data, manipulation it remotely or off-line, and reconciles the changes

upon reconnection in an application dependent manner. Shared data is represented in a

tree data structure. In order to share data, a host needs to explicitly link to another host’s

exported data branches. The data are cached on the target host, enabling disconnected

operations. Hosts may explicitly disconnect from each other or may be separated

through physical movement. Upon reconnection, the XMIDDLE platform automatically

reconciles any changes to shared data, using application metadata to resolve any

conflicts. In addition to simple data sharing, XMIDDLE supports a distributed

versioning scheme based on snapshots of shared branches. Version information is

stored on each host in a manner that minimizes storage requirements. Hosts reconciling

changes can identify common versions and use the latest one as a basis for

reconciliation, thus conserving computational power and network bandwidth.

Anhinga (Kaminsky 2001; Kaminsky and Bischof 2002) is another mobile

middleware platform specifically designed for ad hoc networks of small mobile wireless

devices. In contrast to the above mentioned platforms it not only concentrates on data

management issues but also addresses communication aspects of collaborative

applications. The unique feature of Anhinga is the Many-to-Many Protocol (M2MP), a

network protocol based on broadcast messages that is designed for many-to-many

communication among proximal devices. M2MP does not use device addresses. Rather,

all M2MP messages are broadcast to all devices at once. The M2MP protocol represents

an alternative to traditional message routing in ad hoc networks and shares similarities

with the broadcast capability of the Proem Transport Protocol. In contrast to Proem,

Anhinga only offers a low-level communication abstraction based on the notion of

method calling.

218

Proem differs from these middleware platforms in its scope. It does not aim at

providing a generic solution for a narrow problem domain (data management or

communication), but a broad functional and abstraction layer for a particular class of

applications, namely applications to support spontaneous collaboration among

individuals. Important capabilities provided by Proem but not addressed by the above

middleware platforms are identity management, presence awareness, communication

models based on human identity and not device identity, and models of cooperation. On

the other hand, Proem currently does not address data management issues, mainly

because the wearable community applications we investigated did not require data

sharing among users. However, the models and algorithms developed as part of Bayou,

TSpace, LIME, XMIDDLE and Anhinga could easily be integrated into the Proem

platform and made available as yet another service component if called for by future

applications.

VIII.2.2 Peer-to-Peer Platforms

The recent interest in peer-to-peer computing has spawned several efforts aimed

at creating peer-to-peer development platforms. The most prominent example is Sun’s

JXTA (Gong 2001). JXTA is a core services framework that developers can adopt to

build a wide range of sophisticated peer-to-peer applications. It provides the most basic

functionality required by any peer-to-peer application: peer discovery and peer

communication. A mobile version of JXTA, called JXME (Arora et al. 2002), which is

aimed at the mobile information devices platform contained within the Java 2 Platform

Micro Edition is currently under development.

Both Proem and JXTA follow a protocol-centric paradigm in which a standard

set of XML-based message formats is designed to let devices discover each other and

interact with each other. Since the message formats are programming language neutral,

applications can be written in different languages to run on heterogeneous platforms

and still collaborate.

219

The differences between JXTA and Proem lie in the following areas:

Proem is a platform for applications to support collaboration among people.

User profiles, the presence protocol and people-based addressing all support this goal.

In contrast, JXTA only supports interactions between peers, but does not provide

abstractions and concepts related to users. Proem is tailored for highly dynamic ad hoc

network environments where connectivity and resource availabilities change constantly.

The Proem Transport Protocol defines a functional layer on top ad hoc networks that

provides the foundation for communication among peers. The Proem messaging service

provides developers with a simple communication model and hides details of the

underlying network technology. In contrast, JXTA’s communication model is geared

towards semi-stable environments like the Internet.

Finally, JXTA is a generic peer-to-peer platform that integrates only the most

basic functionality required by any peer-to-peer application (namely discovery and

communication). In other words, JXTA provides broad but shallow application support.

In contrast, Proem’s support is narrow, but deep. It is designed for a specific application

class and the Proem service layer combines the right abstractions and common

functions required for building applications within this class.

In addition to JXTA, a number of collaborative peer-to-peer platforms have

been developed:

• Groove (Groove Networks 2002) is an enterprise collaboration platform which

can be used to connect peer groups on the fly using its own set of protocols.

Both the client and server pieces of the Groove application sit on the user PC,

but Groove peer groups can include network-connected mobile devices.

• Magi (Bolcer 2000) is a peer-to-peer collaboration platform which relies on

Internet-standard protocols such as http for data serving and SSL for security.

Magi supports the WebDAV standard and allows users to read and write to

remote documents stored on other users' computers. Magi can run within a

PocketPC operating system and thus supports the latest generation of handheld

devices.

220

• Pocket DreamTeam (Roth 2002) is a mobile version of the groupware platform

DreamTeam (Roth and Unger 1998). DreamTeam is an environment for

developing synchronous shared applications. It makes collaboration aspects

transparent to applications, thus allowing developers to built collaborative

multi-user applications just as easy as traditional single user applications.

These platforms support traditional collaborative activities like file sharing,

instant messaging and collaborative document editing. Although they support mobile

peers, they are more geared towards work-related activities within teams. They do not

support the spontaneous, presence-aware activities typical for wearable community

applications and supported by Proem.

VIII.2.3 Other Platforms

Hive (Minar et al. 1999) is a distributed agent platform developed at MIT that

serves as software infrastructure for MIT’s “Things That Think” project. Although

billed as agent platform, HIVE is actually much closer to a distributed object system.

Hive is based on the idea of an “ecology of distributed agents”. A HIVE

application is created out of the interaction of multiple agents across a network. A Hive

agent is a small, autonomous, self- describing program. Each agent is located in a

particular place (in Hive, called a cell), and uses various local resources (shadows).

Agents communicate with each other to share information and access to resources. An

application is made from the communications and actions of agents. Hive provides ad

hoc agent interaction, ontologies of agent capabilities, mobile agents, and a graphical

interface to the distributed system.

Similarly to JXTA, Hive is a generic platform that with shallow support for a

large class of applications. Hive is mainly concerned with providing a decentralized

communication infrastructure and is more like a distributed object systems than a

middleware platform.

221

The main differences between Hive and Proem can be summarized as follows:

• Hive is deeply rooted in the Java programming language and uses Java types to

encode agent capabilities. This makes it very hard to implement Hive in any

other programming language or to build a heterogeneous Hive application that

consists of agents implemented in different programming languages. Proem, in

contrast, has been designed to enable interoperability between heterogeneous

implementations. This goal has been achieved by defining a programming

language neutral communication standard in form of the Proem Transport

Protocol. Proem follows a protocol-centric paradigm in which a standard set of

message formats is designed to let devices discover each other, exchange data

and events, and otherwise interact with each other. Since the message formats

are programming language neutral, applications can be written in different

languages to run on heterogeneous platforms and still collaborate.

• Hive does not provide a standard way for agents to dynamically detect who else

is on the Hive network. Contrary to the idea of a decentralized system, Hive

relies on a registry to maintain membership in the global Hive network. In order

to find out who else is on the network Hive cells need to contact the registry.

Hive does not allow agents to advertise their presence throughout a network and

thus does not adequately support the ad hoc formation of federations of Hive

agents. This makes it very difficult to deploy Hive in dynamic ad hoc network

environment. In Proem, discovery is completely decentralized and ad hoc.

• Most importantly, Hive is agnostic about users. While Proem supports user

profiles, people-based addressing and user relationships, Hive is purely agent

(or object) centric and does not provide any high level APIs for applications to

support human collaboration.

222

VIII.2.4 Summary

Proem provides a set of features that in this combination is not provided by any

other platform. This includes

• peer-to-peer communication

• decentralized discovery

• presence-awareness

• human-centered communication

• platform independence

• interoperability

• simple programming model

• extensive set of APIs for applications supporting spontaneous human

collaboration (identity management, presence-awareness, relationships,

interaction histories etc)

Related platforms either focus on a narrow problem domain (for example, data

management) or provide generic support for a very large class of applications. More

important, however, is the fact is that the related platforms lack an associated

methodology for developing applications. Without a methodology, there is no support

for conceptual design and specification of applications supported by these platforms.

Furthermore, without a methodology, it is very difficult to reuse design and software

artifacts across applications. By integrating design, specification and implementation

support, the WearCoM methodology and the Proem platform are uniquely equipped to

facilitate rapid, yet systematic development of wearable community applications.

223

VIII.3 Enhancements

The WearCom methodology and the platform are work in progress. There are

two important shortcomings: first, although trust among individuals is an important

aspect of wearable communities, Proem does not provide any trust mechanism; second,

although peer-to-peer dissemination of wearable community applications is part of the

WearCoM methodology, it is not implemented in Proem. In the following, we will

discuss possible solutions to these shortcomings.

VIII.3.1 Trust in Wearable Communities

Social interactions are built around trust and at any given time, the stability of a

community depends on the right balance of trust and distrust. We trust our friends to

honor their word, we trust a doctor to give us medical advice and we often trust

complete strangers to help us when we are lost or need assistance. Even more so,

members of a wearable community need to be able to reason about trust, to facilitate

their social interactions. This leads to the question of how to evaluate the

trustworthiness of wearable community member. In this chapter, we propose a trust

framework for wearable communities based on reputations. The framework is grounded

in real-world social trust characteristics and mimics the word-of-mouth flow of personal

recommendations in the real world. The trust framework is based on a decentralized

model and exclusively relies on direct peer-to-peer interactions.

The proposed trust framework is not integrated into the Proem platform but can

easily be added due to its peer-to-peer nature. We will sketch a Trust API as extension

to the Peerlet Framework.

224

Approaches for Managing Trust

Although a small number of trust models have been proposed for the virtual

medium, we find that they are largely impractical for dynamic wearable communities.

The traditional solution to the issue of trust is that of a centralized reputation server. An

example of a widely used centralized reputation server is the one used by e-bay.com to

provide trust information (reputations) about potential buyers or sellers in their open

market.

The centralized approach has many shortcomings. The most significant is its

vulnerability to falsified information. A user with a large number of positive reports

and a small number of negative reports looks like a legitimate trader unless the positive

reports have all been falsified. Another problem with centralized reputation servers is

the ability of anyone to know their exact reputation. This lets the bad trader know when

to “flush” their old identity and to start again with a clean slate. Finally, there is the

trustworthiness issue of a centralized reputation server. A centralized trust server places

a great deal of unsupported trust in the security of the centralized server. Can an on-line

auction-house’s trust server trust information be trusted when they themselves are the

buyers or sellers? What about the reputations provided regarding their advertisers?

Can the security of their trust server be trusted? How they will use the personal

information, contained in trust/distrust statements you make about other users.

Evidence of the ineffectiveness of a centralize trust server can be seen by the

almost 10,000 cases of fraud relating to on-line auctions reported in 1999 to the

National Consumer League (NCL 1998). The National Consumer League also posts the

following warning regarding online auction sites: “Look at the auction site's feedback

section for comments about the seller. Be aware that glowing reports could be "planted"

by the seller“.

Another approach to handling trust is the decentralized model used by PGP

(Zimmermann 1995). The PGP system introduces does not use a centralized reputation

server but rather it allows users to vouch for one another. An example of this is having

225

user A vouch for user B, and user B vouches for user C, and thus someone who trusts

user A will also trust user C based on the chain of recommendations. This is the basic

transitive trust property that decentralized trust servers are based upon.

Disseminating Reputations in Wearable Communities

We have developed a decentralized reputation framework (Schneider et al.

2000) that uses opportunistic physical encounters to propagate trust data. Each member

in the wearable community stores database information containing the reputation

information on everyone they have personally negotiated with or have had information

regarding others negotiations distributed to them. This reputation database has the

following structure:

• userid: unique identifier of the user the reputation entry is about.

• personal opinion value: personal opinion about user userid based on personal

encounters.

• number of personal encounters with that person

• community reputation value: summarized opinions of other users about user

userid.

• number of users who contributed to the community reputation value.

The opinion values range from –2.0 to 2.0 with 0.0 corresponding to no

information.

Whenever members of a wearable community complete a negotiation and can

evaluate how well their negotiating partner fulfilled their part of an agreement, they

record their opinion of their negotiation partner in their local reputation database. This

information is propagated through a mutual exchange of local reputation databases

whenever a social encounter in the wearable community occurs.

This exchange allows both parties to update their databases after reasoning

about the information provided. Providing reputation has the effect of telling every

person you encounter “here are my feelings about the people I’ve traded with and here’s

226

what I’ve been told about them.” This information may then be passed on during

subsequent encounters and will eventually spread throughout the entire wearable

community.

Reasoning about and applying reputation information involves several steps:

3. If there has been a recent exchange with the same user, then we assume that the

information will only reinforce old views and should be discarded. This

prevents any specific user from too much weight.

4. If another user’s opinion differs too greatly from the personal opinion value

then the information provided is suspect and will be disregarded.

5. Otherwise, the values from the other users’ personal opinion and community

opinion will be averaged in to the local user’s community information values. It

is important not to base any reasoning on the number of recommenders or the

number of encounters, as this could allow users to have a stronger “voice” in

recommendations by artificially inflating these values.

This system solves the key problem of the centralized reputation server as each

person can only provide a single positive or negative feedback about any other

individual in a category. To get 10,000 positive comments about an individual would

require 10,000 different people to provide positive feedback. This is as opposed to the

centralized server where one person can say positive things 10,000 times.

The problem of an individual knowing their exact status in the eyes of the

community also vanishes under this system. It is replaced with only a general

knowledge of ones reputation. The distributed reputation server also solves the need for

trust in a foreign server. Everyone maintains their own information and if part of the

databases suffers due to negligence or intentional corruption it will be corrected by the

valid information in the rest of the community.

By using social interactions to trade entire trust set data we gain the advantage

of a rapid propagation of information from the numerous encounters in an environment,

yet we maintain the advantages of a system that mirrors the way real world reputations

227

spread – by word of mouth during daily encounters. In addition, a decentralized system

does not suffer from the issues that occur with traditional reputation servers.

VIII.3.2 Peer-to-Peer Application Dissemination

The sixth phase of the WearCoM methodology entails the dissemination of

wearable community applications through a peer-to-peer distribution mechanism. The

current implementation of Proem does not support such a mechanism; however it

provides most of the features necessary to implement it. Most importantly, Proem

features a virtual-machine architecture and supports the explicit loading (and unloading)

of application components (= peerlets).

The missing features are related to a safe execution environment for peerlets

and a transport mechanism for peerlets.

VIII.3.3 Safe Peerlet Execution Environment

In order to prevent harmful code from being spread throughout a community

and to ensure safe execution of peerlets, a secure runtime environment with the

following properties is required:

• Verification of application code - to unsure integrity of application code

• Safe execution of application code (sand boxing) - to prevent malicious code

from causing harm

Clearly, the Java programming language provides most of the building blocks

for a safe peerlet execution environment. It is similar to an execution environment for

applets.

228

VIII.3.4 Peerlet Transport Mechanism

A peerlet transport mechanisms can be realized through a combination of a new

built-in Proem protocol and the implementation of a transport manager. The new

protocol, called Proem Distribution Protocol (PDP), can easily be built on top of the

Proem Transport Protocol. Because peers exchange metainformation during an

encounter including a list of the peerlets each of the carries, the PDP protocol is a

simple request-reply style protocol: in the first step, one peer (the client) request a

particular peerlet from another peer (the server). In the second step, the server either

sends the peerlet or sends a negative response.

The protocol logic is implemented on both sides by a transport manager. This

manager has a user interface that enables users to initiate a request and approve or

disapprove a transmission. As a matter of fact, it would not be difficult to implement the

transport manager as a peerlet. This would only require minimal changes to the

underlying Proem system.

VIII.4 Design Principles for Wearable Communities

The Proem platform provides a software infrastructure for wearable community

applications and the WearCoM methodology guides the design and development

process of such applications. Yet these both elements do not guarantee that the

applications we build will actually contribute to the formation of successful wearable

communities. In Chapter II.3 we asked: “When does a collection of individuals using

wearable computers become a wearable community?” After having developed an

infrastructure for wearable communities and having developed a number of wearable

community applications, we can provide some preliminary answers.

229

Our projects have provided us with insight into what works and does not work

when building wearable communities. We have codified our experiences in form of

design principles for wearable communities. Design principles are guidelines that may

be applied to evaluate existing designs, guide the design process and educate designers

about the characteristics of successful systems. In Sociology, there exists an extensive

body of empirical research on the success and failures of online communities (Godwin

1994; Kollock and Smith 1996; Kollock 1998; Preece 2000) and face-to-face

communities (Ostrom 1990). While we have not done any empirical studies on

dynamics of wearable communities and the behavior of their members, we have

identified six preliminary design principles that we believe contribute to successful

wearable communities.

Principle 1: Make users aware of hidden benefits of random encounters. The

WALID community application has been designed according to this principle. When

two individuals meet, they are usually not aware of each others tasks and if they happen

not to talk about their respective errands will never find out that they are able to benefit

from a trade. The proactive personal applications employed by WALID, however, are

designed to look out for possible trading partners and to make their respective users

aware if there is a mutually beneficial opportunity. Determining the value of a trade for

each individual requires slightly complex but straight-forward calculations based on the

current location, the distance to each destination and the type of the tasks. This type of

calculation can easily be performed by software, but is difficult to do by humans. Once

they have been made aware of an opportunity, users have the liberty to act upon or

ignore the advise of their applications.

Principle 2: Reward users for social interactions. We followed this strategy

when we designed the Genome game: the game is constructed in a way that the person

who interacts the most frequently with other people and with the largest number of

people has the greatest chance of winning.

230

Principle 3: Enable individuals to recognize each other. Without identity and

mutual recognition, a group of people will always remain strangers. In order to promote

altruistic behavior and cooperation, a social feedback mechanism is required that allows

individuals to evaluate and keep track of the behavior of others. Such a feedback

mechanism requires identity and mutual recognition.

Principle 4: Support Expressiveness. Live Action Role Playing games have

gained widespread international popularity. Such games are social events that involve

gatherings of people who have taken on imaginary identities based on historical or

mythical characters. The social interactions taking place during such a gathering are the

key feature contributing to the players’ enjoyment. Similarly, wearable communities

enable members to invent digital identities to augment their true identities. Wearable

communities should promote such creativity and artistic expressiveness to the largest

extent possible.

Principle 5: Use knowledge about past encounters to enrich present

interactions. One of the most important aspect of social encounters is our ability to

recognize other people and to remember if, when, where and under which

circumstances we have met the person before. Wearable computers can not only be

made aware of the user’s current context (defined by the presence of other individuals),

but can easily keep track of an individual’s interaction history (historical context).

Bringing this knowledge to the table can augment encounters in a significant way as

highlighted by our FriendFinder application.

Principle 6: Include social feedback loops. Any community has members who

show disruptive or unruly behavior. In newsgroups, these are people who consistently

and inappropriately flame other members. On EBay, these are members who cheat by

not paying for items they purchased from other members or by artificially inflating bid

231

prices of items they sell. Successful communities are successful in part they have found

a way of policing the behavior of their members, but not by giving some members

extraordinary powers, but by way of social feedback mechanism. For example EBay,

uses reputations (= aggregated signed information from EBay users on a user’s past

transaction history) for giving members a way of rating and judging other members’

trustworthiness. The community as a whole can thus choose to “exclude” members

from their community.

These principles are preliminary as they are the result of informal observations

by developers and not of systematic empirical studies. The necessary studies are outside

of the scope of this dissertation. For a brief discussion of future research in this

direction, see Chapter IX.

VIII.5 Summary

 This chapter discussed the utility and novelty of the research presented in this

dissertation. First of all, we presented an evaluation of the WearCoM methodology and

Proem platform. Through a set of experiments in which we used Proem as development

platform in software engineering courses, we were able to determine its key benefits.

These are:

• A reduction in the complexity of building applications achieved by a

combination of network transparency, a high-level application framework and a

simple, unified programming model.

• The facilitation of rapid development achieved mainly by the very small amount

of code that developers need to write even for moderately complex applications

• The facilitation of independent, distributed development achieved by the

support for peerlet protocols which define a clean interface between

components on different machines.

232

Two additional benefits are:

• The facilitation of long-term modification of wearable community applications

through a combination of a virtual machine architecture and high-level APIs.

• Interoperability among heterogeneous devices through the use of the network

and programming language independent Proem Transport Protocol.

Second, this chapter discussed the differences of Proem to existing software

development platforms. We concluded that such platforms either focus on a narrow

problem domain (for example, data management) or provide generic support for a very

large class of applications and that none provided an associated methodology for

developing applications. Without a methodology, there is no support for conceptual

design and specification of applications supported by these platforms. By integrating

design, specification and implementation support, the WearCoM methodology and the

Proem platform are uniquely equipped to facilitate rapid, yet systematic development of

wearable community applications.

Third, this chapter explored limitations of the current Proem platform and

presented two areas for future enhancements: trust management based on reputations

and peer-to-peer application distribution.

Finally, we presented a set of preliminary design principles that attempt to

capture aspects of successful wearable communities.

233

Chapter IX

CONCLUSION AND FUTURE WORK

In this final chapter, we summarize our research and discuss future research

directions.

IX.1 Research Summary

The use of mobile communication and computation technologies in our society

has reached the critical mass necessary to induce large-scale modifications of our social

behavior, norms and conventions. With the move from mobile to wearable computers -

devices that are constant, aware, communicative and proactive - we can expect to see

changes that are even more dramatic. The general availability and wide-spread use of

wearable technology will create new opportunities for computer-mediated communities.

William Gibson once famously described cyberspace as "A consensual hallucination

experienced daily by billions of legitimate operators, in every nation … " (Gibson 1984,

51). Wearable communities represent an alternative model of human communication

that instead of on shared imaginations relies on embodied real-world encounters and

first-hand experiences.

The key challenge for wearable communities is that social and technical issues

interact and co-evolve in such intimate ways that they often merge. The success or

failure of communities hinges on its ability to promote lasting personal relationships.

Yet without prior experience we cannot know how to design technology that leads to

234

the emergence of successful communities. While past research on online communities

provides valuable insight into the dynamics of traditional computer-mediated

communities, it is not clear if and in as much the results are applicable to wearable

communities. Since there is no sound theoretical foundation for building wearable

communities, we advocated an exploratory design process based on rapid prototyping

and successive incremental refinement. An exploratory approach starts with an initial

technology prototype that is refined over time in an incremental process based on the

success or failure of emerging communities.

The engineering of wearable community systems - the hardware, system

software and application software to support wearable communities - represents a non-

trivial challenge. A wearable community system is a loosely coupled, dynamic,

decentralized system composed of potentially large numbers of wearable devices. In

order to support the formation of wearable communities anywhere at anytime, such

systems must be independent of external communication and computing infrastructures,

relying solely on the capabilities of devices carried by individuals. To tackle the

complexity of such systems, we introduced the distinction between wearable

community infrastructure and wearable community applications. Wearable community

infrastructure comprises system-level software components that are useful and

necessary for the support of a large variety of wearable communities. This infrastructure

is generic in a sense that it embodies fundamental aspects of the wearable community

domain. A set of requirements for wearable community infrastructure was discussed at

the end of Chapter III. Wearable community applications are community-specific

software applications that are built on top of and make use of functionality provided by

wearable community infrastructure. Developing wearable community applications is a

difficult task that requires highly specialized knowledge in a variety of fields. It ranges

from understanding of human-factors issues related to new collaboration paradigms

based on opportunistic, proximity-based interactions to technical issues related to

expertise in ad hoc networking and context-awareness. The fundamental problem in the

development of wearable community applications is the semantic gap between the

235

application domain and system layer. As of today, there is little or no direct support for

the variety of features that wearable community applications require. Likewise, there

are no appropriate programming and building abstractions for developers. This results

in a lack of generality, requiring each new application to be built from the ground up.

This situation is fundamentally incompatible with an exploratory design process based

on rapid prototyping.

IX.2 Contributions

To address this problem, this dissertation made the following contributions:

1. The first contribution is the WearCoM wearable community methodology. Its

purpose is to guide the design and development of wearable communities and

wearable community applications. It consists of three components: (1) a

conceptual model that defines terminology and an abstract architecture; (2) a

design language that addresses the specification of important analysis and

design decisions and enables developers to specify key aspects of the

application design; and (3) a development process that outlines a sequence of

development steps that result in the creation of specific artifacts.

• The central concepts of the methodology are community agent, user profile,

and community language. A community agent is a personal, proactive,

presence-aware and communicative software application that functions as

intermediary between a user and a community. A user profile is a typed data

item that defines the identity of a user within a community. It contains

information a user willingly discloses to other community members and

may include any information that is defined useful or necessary to identify

or describe a person. A community language defines interactions that can

take place between agents and users during an encounter. The description of

a community language consists of two components: (1) the community

236

vocabulary is a collection of messages types that actors can exchange (2)

The community protocol defines message sequences.

• The wearable community design language is a semi-formal notation for

specifying the key aspects of the design of wearable community

applications. It provides the modeling language for: scenarios, user profile

templates, community vocabularies and community protocols

• The purpose of the wearable community process is to guide the activities the

lead to the implementation of a wearable community application and its

deployment on user devices. The design process guides design and

development activities ranging from the initial design to deployment of

application software on a user's device. The process is an iterative, cyclic

process divided into seven phases: assessment, conceptual design,

specification, implementation, seeding, dissemination and review. Each

phase defines specific activities to be performed by users, designers or

developers; the outcome of the phase is a specific set of design artifacts.

2. The second contribution is the Proem peer-to-peer platform. Proem is designed

to tightly integrate with the WearCoM methodology and provides infrastructure

and development support required for wearable community applications. The

main focus of Proem is the information needs of applications and the provision

of high-level programming abstractions. The three main platform components

are:

• The Peerlet application framework, a collection of libraries and APIs for the

rapid development of wearable community applications.

• The Proem Runtime System, a software environment for hosting and

executing applications built with the Proem framework.

• The Proem protocols, a set of peer-to-peer protocols that define the way in

which Proem peers communicate and cooperate over the network.

237

3. The final contribution of this research is the evaluation of the WearCoM

methodology and Proem platform. Through several case studies involving

design and implementation of sample wearable community applications and

through a set of experiments in which we used Proem as development platform

in software engineering courses, we were able to determine the key benefits of

the Proem platform as follows:

• Reducing the complexity of building applications: Proem simplifies the

development task by raising the level of abstraction. This is achieved by

three interrelated measures. First, the Proem platform provides network

transparency and hides specifics of the underlying communication network

from programmers. Second, it provides programmers with an application

framework and a powerful set of APIs. Third, it realizes a simple

programming model with a uniform event-based mechanism for peer-to-

peer communication, presence-awareness and user interface management.

• Enabling rapid development: Proem enables rapid prototyping through a

combination of several measures. First, the amount of code that needs to be

written for simple applications is small. This allows programmers to have a

simple application up and running within a very short time frame and add to

it gradually. Second, Proem supports code reuse through a virtual machine

architecture and application plug-in modules (= peerlets). A complex

application can be realized as a collection of communicating peerlets that

run on the same machine within the same peerlet engine. Third, because of

Proem's cross platform capabilities, developers can write and test

applications on workstations and afterward deploy them on wearable

computers.

• Enabling independent, distributed development: Proem represents an open,

distributed software infrastructure for wearable community applications.

With Proem, multiple developers can define a community protocol and

238

create independent yet compatible implementations. This is made possible

by two interrelated measures: first, by providing a common communication

substrate in the form of the Proem Transport Protocol; second, by enabling

developers to specify interfaces between devices in the form of peerlet

protocols.

• Enabling long-term modification: Because of the virtual machine

architecture and high-level APIs, applications are shielded from specifics of

the underlying technologies. Modifications necessary due to innovations in

communication and device technology can be hidden by the peerlet engine

and are transparent to applications.

• Interoperability among heterogeneous device platforms: Finally,

interoperability among heterogeneous devices is guaranteed by two

interrelated measures. First, the cross-platform nature of the peerlet engine

makes it possible to install and run existing applications on any devices with

a peerlet engine. Second, the network independence of the XML-based

Proem Transport Protocol makes it possible for two different Proem

implementations to interoperate regardless of the programming language

used to implement them.

By providing a common ground for the development and execution of wearable

community applications, the Proem platform serves as a catalyst for wearable

communities. The quality of the student projects – both in conceptual and technical

terms – validates the overall effectiveness of the WearCoM methodology and the utility

of the Proem platform.

239

IX.3 Future Research Directions

Future research falls into two categories:

• technical improvements and additions of the Proem peer-to-peer platform

• empirical research into social aspects of wearable communities

IX.3.1 Prototyping Environment

In Chapter VIII we discussed two shortcomings of the current Proem

implementations: the lack of a trust framework and the inability to copy peerlets, i.e.

community agents, from peer to peer.

Another area for future work is an even tighter integration of methodology and

platform. In particular, we envision a unified graphical prototyping environment for

wearable community applications. Such an environment would provide built-in support

for the design language and development process and allow designers and developers to

interactively specify an application design. The major new aspect of the environment

would be the automatic generation of a community agent implementation from high-

level specifications. With the current design language it would not be possible to

generate a complete implementation because the language lacks the capability to

express specific details about the internal behavior of community agents. Thus, we

could either generate a partial implementation or leave it up to developers to fill in the

missing parts or we could enrich the design language. The current language is

purposefully simple, because it was designed to mainly address the aspects that are

unique to wearable community applications. A prototyping environment, however,

could easily make use of existing specification methods for more complex software

behaviors. Two areas seem especially interesting: a tool for analyzing community

protocols that is able to verify important protocol properties (such as liveliness); a tool

240

for specifying user interfaces for proactive application. Since the community language

includes interactions between users and agents, these tools could as well be combined.

IX.3.2 Wearable Community Trial

The idea of wearable communities is a vision that in its totality has not yet been

realized. The two primary reasons are: (1) there are not enough wearable computer

users to reach the critical mass necessary for community building (2) there is a lack of

development support for wearable community applications.

In this dissertation, we have addressed the second problem; the first one will

become less of an issue as a technology progresses. As result of the current situation,

wearable communities are confined to small groups of experimentally minded

individuals at University or industry research labs. Although these technical and social

circumstances might not perfect, we nevertheless need to address the question we raised

early one: "What are the success criteria for wearable communities?" This question

concerns the social behavior of individuals and can only by answered through

controlled empirical evaluation of wearable communities. The challenges of such an

undertaking are tremendous:

• The high mobility of individuals makes it impossible to observe social

interactions in a restricted lab space.

• Participants of a study might be concerned about their privacy and modify their

behavior while being observed.

• There are technical difficulties of automatically collecting data from a highly

dispersed group of individuals.

These are challenges which must and are faced by any researcher trying to study

communities, whether computer-mediated or not.

The result of such a study would provide insights into several crucial questions

including:

241

• In which way are wearable communities different from or similar to online

communities?

• In which way are wearable communities different from or similar to unmediated

face-to-face communities?

The results of a wearable community trial could be condensed to a set of design

principles. These principles may be similar to the ones discussed in Chapter VIII, yet

they would be proven by empiry and would not rely on preliminary observations by

developers. At the end, the results could also be used to enrich the WearCoM

methodology with a set of built-in design rules. In any case, large scale deployment of

wearable community systems and empirical evaluation of wearable communities are

necessary prerequisites for the successful creation of wearable communities.

IX.4 Conclusion

This dissertation has described a research framework for development support

of wearable communities consisting of a methodology and associated software

platform. The methodology addresses the social and technical design of wearable

communities and community applications, while the platform realizes a foundation for

rapid implementation of applications. Together, the methodology and platform function

as catalyst for the development of wearable communities.

242

BIBLIOGRAPHY

Abdul-Rahman, Alfarez and Stephen Hailes. 2000. In Proceedings Hawaii
International Conference on System Sciences 33, Maui, Hawaii, 4-7 January 2000.

Acharya, A. and B.R. Badrinath. 1996. A Framework for Delivering Multicast
Messages in Networks with Mobile Hosts. ACM/Baltzer Mobile Networks and
Applications 1 (2):199-219.

Arora, A., Carl Haywood, Kuldip Singh Pabla. 2002. JXTA for J2ME – Extending the
Reach of Wireless with JXTA Technology. Whitepaper, Sun Microsystems, Inc.

Bauer, Martin, Gerd Kortuem, and Zary Segall. 1999. "Where Are You Pointing At?" A
Study of Remote Collaboration in a Wearable Video-Conference System.
Proceedings Third International Symposium on Wearable Computers (ISWC99),
18-19 October, 1999, San Francisco, California.

Bauer, Martin, Timo Heiber, Gerd Kortuem, and Zary Segall. 1998. A Collaborative
Wearable System with Remote Sensing. Proceedings Second International
Symposium on Wearable Computers (ISWC98), Oct 19-20, 1998, Pittsburgh, PA.

Belotti, V. and S. Bly. 1996. Walking Away from the Desktop Computer: Distributed
Collaboration and Mobility in a Product Design Team. Proceedings ACM 1996
Conference on Computer Supported Cooperative Work (CSCW’96), ACM Press.

Bergqvist, J., P. Dahlberg, F. Ljungberg and S. Kristoffersen. 1999. Walking Away
from the Meeting Room: Exploring Mobile Meetings. Proceedings European
Conference on Computer Supported Cooperative Work (ECSCW'99), Copenhagen,
Denmark.

Billinghurst, M., J. Bowskill, M. Jessop and J. Morphett. 1998. A Wearable Spatial
Conferencing Space. Proceedings Second International Symposium on Wearable
Computers (ISWC’98), Oct 19-20, 1998, Pittsburgh, PA.

243

Billinghurst, M., S. Weghorst, and T. Furness. 1997. Wearable Computers for Three
Dimensional CSCW. Proceedings First International Symposium on Wearable
Computers (ISWC’97), Cambridge, MA, October 13-14, 1997. IEEE Press, Los
Alamitos: 39-46.

Björk, S., J. Falk, R. Hansson and P. Ljungstrand. 2001. Pirates! - Using the Physical
World as a Game Board. Proceedings Interact 2001, IFIP TC.13 Conference on
Human-Computer Interaction, July 9-13, 2001, Tokyo, Japan.

 Bluetooth SIG Special Interest Group. 2002. The Bluetooth Specification. Available at
http://www.bluetooth.com/dev/specifications.asp, accessed 10 October 2002.

Bolcer, G. 2000. Magi: An Architecture for Mobile and Disconnected Workflow. IEEE
Internet Computing 4, no 2. (May/June): 46-54.

Bolcer, G., Michael Gorlick, Arthur S. Hitomi, Peter Kammer, Brian Morrow,
Peyman Oreizy, Richard N. Taylor. 2000. Peer-to-Peer Architecture and the
Magi Open Source Infrastructure. Endeavours Technologies White Paper.
Available at http://www.endeavors.com/pdfs/ETI%20P2P%20white%20paper.pdf.

Borovoy, R., B. Silverman, T. Gorton, J. Klann, M. Notowidigdo, B. Knep and M.
Resnick. 2001. Folk Computing: Revisiting Oral Tradition as a Scaffold for Co-
Present Communities. Proceedings of the CHI 2001 Conference on Human Factors
in Computing Systems, New York, ACM Press.

Borovoy, R., F. Martin, S. Vemuri, M. Resnick, B. Silverman, and C. Hancock. 1998.
Meme Tags and Community Mirrors: Moving from Conferences to Collaboration.
Proceedings 1998 ACM Conference on Computer Supported Cooperative Work
(CSCW’98), 1998, ACM Press.

Borovoy, R., M. McDonald, F. Martin, and M. Resnick. 1996. Things That Blink:
Computationally Augmented Name Tags. IBM Systems Journal 35 (3&4).

Breese, J.S., D. Heckerman and C. Kadie. 1998. Empirical Analysis of Predictive
Algorithms for Collaborative Filtering. Proceedings 14th Conference on
Uncertainty in Artificial Intelligence, Madison WI, Morgan Kauffman.

Charas, Philippe. 2001. Peer-to-Peer Mobile Network Architecture. Proceedings First
International Conference on Peer-to-Peer Computing (P2P2001), Aug 27-29,
2001, Linköpings, Sweden.

Che, T.-W. and M. Gerla. 1998. Global State Routing: A New Routing Scheme for
Ad-hoc Wireless Networks. Proceedings of the IEEE International Conference on
Communications (ICC), Atlanta, GA, June 1998, 171-175.

244

Clarke, I., O. Sandberg, B. Wiley, and T.W. Hong, Freenet: A Distributed Anonymous
Information Storage and Retrieval System. Proceedings Designing Privacy
Enhancing Technologies: International Workshop on Design Issues in Anonymity
and Unobservability, 2001, LNCS 2009, Springer, New York.

CLIP2. 2002. The Gnutella Protocol Specification, version 0.4. Available at
www9.limewire.com/developer/gnutella_protocol_0.4.pdf, accessed 10 October
2002.

CNN. 1998. Japan's lonely hearts find each other with 'Lovegety'. CNN online,
availavle at http://www6.cnn.com/WORLD/asiapcf/9806/07/fringe/japan.lovegety/,
accessed 10 October 2002.

Corson, M.S. and A. Ephremides. 1995. A Distributed Routing Algorithm for Mobile
Wireless Networks. ACM/Baltzer Wireless Networks 1 (1): 61-81.

Corson, M.S. and S.G. Batsell. 1995. A Reservation-Based Multicast (RBM) Routing
Protocol for Mobile Networks: Initial Route Construction Phase. ACM/Baltzer
Wireless Networks 1 (4):427-450.

Cost, R., T. Finin, Y. Labrou , X. Luan, Y. Peng, I. Soboroff , J. Mayfield and A.
Boughannam. 1999. An Agent-based Infrastructure for Enterprise Integration.
Proceedings 1st International Symposium on Agent Systems and Applications
(ASA'99), ACM Press.

Dahlberg, P., H. Fagrell, and J. Redström. 1999. The News Pilot - Exploring Proximity
Awareness. In Proceedings Information Systems Research Seminar in Scandinavia
(IRIS 22), 7-10 August, Keuruu, Finland.

Dahlberg, P., J. Redström, and H. Fagrell. 1999a. People, Places and the NewsPilot.
Proceedings of CHI Conference on Human Factors in Computing Systems
(CHI’99), 1999, ACM Press.

Dahlberg, Per, Fredrik Ljungberg and Johan Sanneblad. 2001. Proxy Lady: Mobile
Support for Opportunistic Interaction. Scandinavian Journal of Information
Systems 13(1).

Danesh, A., K. Inkpen, F. Lau, K. Shu, and K. Booth. 2001. Geney: Designing a
Collaborative Activity for the Palm Handheld Computer. Proceedings of CHI,
Conference on Human Factors in Computing Systems (CHI 2001), Seattle, USA,
April 2001, ACM Press.

Deering, S.E. and D.R. Cheriton. 1990. Multicast Routing in Datagram Internetworks
and Extended LANs. ACM Transactions on Computer Systems 8(2):85-110.

245

Demers, A., K. Petersen, M. Spreitzer, D. Terry, M.M. Theimer, and B. Welch. 1996.
The Bayou Architecture: Support for Data Sharing among Mobile Users. In
Proceedings Workshop on Mobile Computing Systems and Applications, Santa
Cruz, California, December 1994, IEEE Press.

Dourish, P. and S. Bly. 1992. Portholes: Supporting Awareness in a Distributed Work
Group. Proceedings of CHI, Conference on Human Factors in Computing Systems
(CHI 1992), Monterey, CA, 1992, ACM Press.

Edward T Hall. 1966. The Hidden Dimension. Garden City, N.Y.: Doubleday.

Edwards, W. Keith, Elizabeth Mynatt, Karin Petersen, Mike Spreitzer, Douglas Terry,
and Marvin Theimer. 1997. Designing and Implementing Asynchronous
Collaborative Applications with Bayou. Proceedings 10th ACM Symposium on
User Interface Software and Technology, Banff, Alberta, Canada, October 1997.

Engelbart, Douglas. 1962. Augmenting Human Intellect: A Conceptual Framework.
Research Report AFOSR-3223, Stanford Research Institute, Menlo Park,
California.

European Telecommunications Standards Institute (ETSI). 2002. HiperLAN
Specification. Available at http://www.etsi.org/, accessed 10 October 2002.

Feiner, S., B. MacIntyre, T. Höllerer, and T. Webster. 1997. A Touring Machine:
Prototyping 3D Mobile Augmented Reality Systems for Exploring the Urban
Environment. Proceedings First International Symposium on Wearable Computers
(ISWC '97), October 13-14, 1997, Cambridge, MA.

Finin, T. , R. Fritzson, D. McKay, and R. McEntire. 1994. KQML as an Agent
Communication Language. Proceedings 3rd International Conference on
Information and Knowledge Management (CIKM94), December 1994, ACM
Press.

Fish, R., R. Kraut, and B. Chalfonte, B. 1990. The VideoWindow System in Informal
Communications. Proceedings of ACM 1990 Conference on Computer-Supported
Cooperative Work (CSCW ’90), Los Angeles, CA, 1990, 1-11.

Fish, R., R. Kraut, R. Root, and R. Rice. 1993. Video as a Technology for Informal
Communication. Communications of the ACM 36(1):48-61, ACM Press.

Fitzpatrick, G., S. Kaplan, and S. Parsowith. 1998. Experience in Building a
Cooperative Distributed Organization: Lessons for Cooperative Buildings.
Proceedings of First International Workshop on Cooperative Buildings
(CoBuild'98), 25.-26. February, 1998, GMD, Darmstadt, Germany, 66-79.

246

Fox, Kate. 2002. Evolution, Alienation and Gossip - The Role of Mobile
Telecommunications in the 21st Century. Online report of the Social Issue
Research Centre, 2002. Available at http://www.sirc.org/publik/gossip.shtml.

Garcia-Luna-Aceves, J.J. and M. Spohn. 1998. Scalable Link-State Internet Routing.
Proceedings of the IEEE International Conference on Network Protocols (ICNP),
Austin, TX, October 1998, 52-61.

Garcia-Luna-Aceves, J.J. and M. Spohn. 1999. Source-Tree Routing in Wireless
Networks. Proceedings of the IEEE International Conference on Network
Protocols (ICNP), Toronto, Canada, October, 1999, 273-282.

Gelernter, D. 1985. Generative Communication in Linda. ACM Transactions on
Programming Languages and Systems 7(1): 80-112.

Genesereth, Michael R. and Steven P. Ketchpel. 1994. Software Agents.
Communications of the ACM 37(7):48–53.

Gibson, William. 1984. Neuromancer. Ace Books.

Godwin, Mike. 1994. Nine Principles for Making Virtual Communities Work. Wired
Magazine 2(6): 72-73.

Gold, R, and C. Mascolo. 2001. Use of Context-awareness in Mobile Peer-to-Peer
Networks. Proceedings 8th IEEE Workshop on Future Trends of Distributed
Computing Systems (FTDCS'01), Bologna, Italy, October/November 2001.

Gong, L. 2001. JXTA: A network programming environment. IEEE Internet Computing
5: 88-95.

Groove Networks. 2002. Groove collaboration software, available at
http://www.groove.net/, accesses 10 October 2002.

Groten, D. and J.R. Schmidt. 2001. Bluetooth-based Mobile Ad Hoc Networks:
Opportunities and Challenges for a Telecommunications Operator. In Proceedings
IEEE VTS 53rd Vehicular Technology Conference (VTC 2001), 1134-1138.

Groundspeak Inc. 2002. Geocaching web site, available at
http://www.geocaching.com/, accessed 10 October 2002.

Hall, Edward T. 1959. The Silent Language. New York, Doubleday.

Hall, Edward T. 1962. Proxemics: The Study of Man's Spatial Relations. Connecticut,
International Universities Press.

247

Healey, J. and R. W. Picard. 1998. StartleCam: A Cybernetic Wearable Camera.
Proceedings Second International Symposium on Wearable Computers (ISWC 98),
Pittsburgh, PA, October 1998.

Höllerer, T., S. Feiner, and J. Pavlik. 1999. Situated Documentaries: Embedding
Multimedia Presentations in the Real World. Proceedings Third International
Symposium on Wearable Computers (ISWC’99), San Francisco, CA, October 18-
19, 1999, 79-86.

Höllerer, T., S. Feiner, T. Terauchi, G. Rashid, and D. Hallaway. 1999. Exploring
MARS: Developing Indoor and Outdoor User Interfaces to a Mobile Augmented
Reality System. Computers and Graphics 23(6): 779-785.

Holmquist, Lars Erik, Jennica Falk, and Joakim Wigström. 1999. Supporting Group
Collaboration with Inter-Personal Awareness Devices. Personal Technologies
3(1):13-21.

ID3. 2002. id3v2 Specification. Available at http://www.id3.org/, accessed 10 October
2002.

IEEE. 1999. IEEE 802.11 Wireless Specification, ISO/IEC 8802-11: 1999. Available at
http://standards.ieee.org/getieee802/802.11.html, access 10 October 2002.

IEEE. 2002. IEEE 802.15 Working Group for WPAN, available at
http://www.ieee802.org/15/, accessed 10 October 2002.

IETF. 2002. IETF Mobile Ad-hoc Networks Working Group. Home page available at
http://www.ietf.org/html.charters/manet-charter.html, accessed 10 October 2002.

Ishida, T. 1998. Community Computing: Collaboration over Global Information
Networks, John Wiley and Sons.

Ishida, T. 1998. Towards Communityware. New Generation Computing 16(1):5–21.

Johnson, D.B. and D.A. Maltz. 1996. Dynamic Source Routing in Ad Hoc Wireless
Networks. In Mobile Computing, ed. Tomasz Imielinski and Hank Korth, Chapter
5, Kluwer Academic Publishers.

Johnson-Lenz, Peter and Trudy Johnson-Lenz. 1981. Consider the Groupware: Design
and Group Process Impacts on Communication in the Electronic Medium. In Hiltz,
S. and Kerr, E. (eds.). Studies of Computer-Mediated Communications Systems: A
Synthesis of the Findings, Computerized Conferencing and Communications
Center, New Jersey Institute of Technology, Newark, New Jersey.

248

Johnson-Lenz, Peter and Trudy Johnson-Lenz. 1982. Groupware: The Process and
Impacts of Design Choices. In Kerr, E. and Hiltz, S., Computer-Mediated
Communication Systems, Academic Press, New York.

Jubin, J. and J. Tornow. 1987. The DARPA Packet Radio Network Protocols. In
Proceedings of the IEEE, 75(1):21—32.

Kaminsky, Alan and Hans-Peter Bischof. 2002. Many-to-Many Invocation: A new
object oriented paradigm for ad hoc collaborative systems. In Proceedings 17th
Annual ACM Conference on Object Oriented Programming Systems, Languages,
and Applications (OOPSLA 2002), November 2002.

Kaminsky, Alan. 2001. Infrastructure for Distributed Applications in Ad Hoc Networks
of Small Mobile Wireless Devices. Technical Report, Rochester Institute of
Technology, IT Lab.

Kan, Gene. 2001. Gnutella. In Andy Oram (ed.) Peer-to-Peer: Harnessing the Power of
Disruptive Technologies, O’Reilly.

Kistler, J. J. and M. Satyanarayanan. 1992. Disconnected Operation in the Coda File
System. ACM Transactions on Computer Systems 10(1):3.

Kollock, Peter, and Marc Smith.1996. Managing Virtual Communities: Cooperation
and Conflict in Computer Communities. In Computer-Mediated Communication:
Linguistic, Social, and Cross-Cultural Perspectives, edited by Susan Herring.
Amsterdam: John Benjamins, 109-128.

Kollock, Peter. 1998. Design Principles for Online Communities. PC Update 15(5): 58-
60.

Korpela, Eric, Dan Werthimer, David Anderson, Jeff Cobb, and Matt Lebofsky. 2001.
SETI@home: Massively Distributed Computing for SETI. Computing in Science
and Engineering Magazine, January 2001: 78-83.

Kortuem, Gerd and Segall, Zary. 2003. Building Wearable Communities. IEEE
Pervasive Computing (to appear).

Kortuem, Gerd, Jay Schneider, Dustin Preuitt, Thaddeus G. Cowan Thompson, Stephen
Fickas, Zary Segall. 2001. When Peer-to-Peer comes Face-to-Face: Collaborative
Peer-to-Peer Computing in Mobile Ad-hoc Networks. In Proceedings First
International Conference on Peer-to-Peer Computing (P2P2001), Aug 27-29,
2001, Linköpings, Sweden.

249

Kortuem, Gerd, Jay Schneider, Jim Suruda, Steve Fickas, and Zary Segall. 1999. When
Cyborgs Meet: Building Communities of Cooperating Wearable Applications.
Proceedings Third International Symposium on Wearable Computers, 18-19
October, 1999, San Francisco, California.

Kortuem, Gerd, Martin Bauer, Timo Heiber, and Zary Segall. 1999. Netman: The
Design of a Collaborative Wearable Computer System. ACM/Baltzer Journal on
Mobile Networks and Applications 4 (1).

Kortuem, Gerd. 2002. Proem: A Middleware Platform for Mobile Peer-to-Peer
Computing. ACM SIGMOBILE Mobile Computing and Communications Review
(MC2R), Special Feature on Middleware for Mobile Computing (to appear).

Kraut, R.E., R. Fish, R. Root, and B. Chalfonte. 1990. Informal Communication in
Organizations: Form, Function, and Technology. In S. Oskamp and S. Scacapan
(Eds.) Human Reactions to Technology: Claremont Symposium on Applied Social
Psychology. Beverly Hills, CA, Sage Publications.

Kraut, R.E., V. Lundark, S. Kiesler, T. Mukopadhyay, and W. Scherlis. 1998. Internet
Paradox: A Social Technology that Reduces Social Involvement and Psychological
Well-being? American Psychologist 53:1017-1031.

Lee, Seungjoon and Chongkwon Kim. 2000. Neighbor Supporting Ad Hoc Multicast
Routing Protocol. In Proceedings MobiHoc 2000, August 11, 2000, Boston,
Massachusetts, USA.

Leiner, B. and D. Nielson. 1987. Issues in Packet Radio Network Design. In
Proceedings of the IEEE, Special Issue on Packet Radio Networks, 75(1):6-20.

Licklider, Joseph Carl Robnett. 1960. Man-Computer Symbiosis. IRE Transactions on
Human Factors in Electronics, Volume HFE-1: 4–11.

Licklider, Joseph Carl Robnett. 1968. The Computer as a Communication Device.
Science and Technology, April.

Luff, Paul and Christian Heath. 1998. Mobility in Collaboration. In Proceedings 1998
ACM Conference on Computer Supported Cooperative Work (CSCW’98), 305-
314, ACM Press.

Maltz, D.A. , J. Broch, J. Jetcheva, and D.B. Johnson. 1999. The Effects of On-Demand
Behavior in Routing Protocols for Multihop Wireless Ad Hoc Networks. IEEE
Journal on Selected Areas in Communications, Special Issue on Wireless Ad Hoc
Networks, 17(8):1439-1453.

250

Mann, Steve. 1996. Smart Clothing: Wearable Multimedia Computing and Personal
Imaging. In Proceedings of ACM Conference on Multimedia, November 1996,
163-174.

Mann, Steve. 1997. Wearable Computing: A First Step Toward Personal Imaging. IEEE
Computing 30(2).

Mann, Steve. 2001a. Humanistic Intelligence/Humanistic Computing: ‘Wearcomp’ as a
New Framework for Intelligent Signal Processing. IEEE Intelligent Systems and
Their Applications 16 (3), Special Issue on Wearable Computing and Humanistic
Intelligence.

Mann, Steve. 2001b. Intelligent Image Processing. John Wiley and Sons.

Martin D., A. Cheyer, and D. Moran. 1999. The Open Agent Architecture: A
Framework for Building Distributed Software Systems. Applied Artificial
Intelligence: An International Journal. 13(1-2):91-128.

Mascolo, Cecilia, Licia Capra and Wolfgang Emmerich. 2001. An XML-based
Middleware for Peer-to-Peer Computing. In Proceedings of the First International
Conference on Peer-to-Peer Computing (P2P2001). Linkopings, Sweden, Aug
2001.

Mascolo, Cecilia, Licia. Capra, S. Zachariadis, and Wolfgang Emmerich. 2002.
XMIDDLE: A Data-Sharing Middleware for Mobile Computing. In Personal and
Wireless Communications Journal 21 (1), Kluwer.

Meetup, LCC. 2002. Meetup web site, available at http://www.meetup.com, accessed
10 October 2002.

Minar, Nelson, Matthew Gray, Oliver Roup, Raffi Krikorian, and Pattie Maes 1999.
Hive: Distributed Agents for Networking Things. In Proceedings of the First
International Symposium on Agent Systems and Applications and Third
International Symposium on Mobile Agents (ASA/MA'99).

Misztal, B. 1996. Trust in Modern Societies. Polity Press, Cambridge MA.

Moats, R. 2001. URN Syntax. RFC2141. Available at
http://www.ietf.org/rfc/rfc2141.txt, accessed 10 October 10.

Murphy, Amy L. 2000. Enabling the Rapid Development of Dependable Applications in
the Mobile Environment. Washington University Technical Report WUCS-00-15,
Sever Institute of Washington University.

251

Murphy, Amy L., Gian Pietro Picco and Gruia-Catalin Roman. 2001. Lime: A
Middleware for Physical and Logical Mobility. In Proceedings of the 21st
International Conference on Distributed Computing Systems (ICDCS-21),
Phoenix, AZ, USA, 16-19 April 2001, 524-233.

Murthy, S. and J.J. Garcia-Luna-Aceves. 1996. An Efficient Routing Protocol for
Wireless Networks. ACM/Baltzer Mobile Networks and Applications 1(2):183-197.

Myers, B.A., H. Stiel, and R. Gargiulo. 1998. Collaboration using Multiple PDAs
Connected to a PC. In Proceedings 1998 ACM Conference on Computer Supported
Cooperative Work (CSCW’98), ACM Press, 285-294.

Mynatt, E. D., A. Adler, M. Ito, and V.L. O'Day. 1997. Design for Network
Communities. In Proceedings of CHI Conference on Human Factors in Computing
Systems (CHI’97), 22-27 March 1997, Atlanta, GA, ACM Press.

Nakanishi, H., C. Yoshida, T. Nishimura, and T. Ishida. 1996. FreeWalk: Supporting
Casual Meetings in a Network. In Proceedings 1996 ACM Conference on
Computer Supported Cooperative Work (CSCW’96), ACM Press.

Nash, John F. 1950. The Bargaining Problem. Econometricia 28:155-162.

Nasipuri, A. and S.R. Das. 1999. On-Demand Multipath Routing for Mobile Ad Hoc
Networks. In Proceedings of the IEEE International Conference on Computer
Communications and Networks (ICCCN), Boston, MA, October 1999, 64-70.

NCL's National Fraud Information Center and Internet Fraud Watch, 1998. Internet
Fraud Watch Online Auction Tip. Available at http://www.fraud.org/
news/1998/nov98/111698.htm, accessed 10 October 2002.

Nichols D.M. 1998. Implicit Rating and Filtering. In Proceedings Fifth DELOS
Workshop on Filtering and Collaborative Filtering, Budapest, Hungary, 10-12
November 1997, 31-36.

Nidd, Michael. 2000. Timeliness of Service Discovery in DEAPspace. In Proceedings
of the 2000 International Workshop on Parallel Processing, August 21 - 24, 2000,
Toronto, Canada, 73-81.

Object Management Group (OMG). 2001. Unified Modeling Language Specification,
Version 1.4. September 2001.

Olson, Mancur. 1965. The Logic of Collective Action: Public Goods and the Theory of
Groups. Cambridge, MA, Harvard University Press.

252

Ostrom, Elinor. 1990. Governing the Commons: The Evolution of Institutions for
Collective Action. New York, Cambridge University Press.

Pei, G., M. Gerla, and T.-W. Chen. 2000. Fisheye State Routing: A Routing Scheme for
Ad Hoc Wireless Networks. In Proceedings of the IEEE International Conference
on Communications (ICC), New Orleans, LA, June 2000, 70-74.

Pei, G., M. Gerla, and X. Hong. 2000. LANMAR: Landmark Routing for Large Scale
Wireless Ad Hoc Networks with Group Mobility. In Proceedings of the ACM/IEEE
Workshop on Mobile Ad Hoc Networking and Computing (MOBIHOC), Boston,
MA, August 2000, 11-18.

Pering, T. and C. Pering. 2001. Mercantile: Social Interaction Using a Mobile
Computing Platform. In Proceedings Ubicomp 2001 Workshop on Designing
Ubiquitous Computing Games, Atlanta, GA, USA, 30 September 2001.

Perkins, C.E. and E.M. Royer. 1999. Ad-Hoc On Demand Distance Vector Routing. In
Proceedings of the IEEE Workshop on Mobile Computing Systems and
Applications (WMCSA), New Orleans, LA, February 1999, 90-100.

Perkins, C.E. and P. Bhagwat. 1994. Highly Dynamic Destination-Sequenced Distance
Vector Routing (DSDV) for Mobile Computers. In Proceedings of the ACM
SIGCOMM Conference on Communications Architectures, Protocols and
Applications, London, UK, September 1994, 234-244.

Picard, R. W. and J. Healey. 1997. Affective Wearable. Personal Technologies 1(4):
231-240.

Picco, Gian Pietro, Amy L. Murphy, and Gruia-Catalin Roman. 1999. Lime: Linda
Meets Mobility. In Proceedings of the 21stInternational Conference on Software
Engineering (ICSE'99), Los Angeles, May 1999.

Pocit Labs. 2001. BlueTalk, available at www.pocitlabs.com, accessed 10 June 2001.

Ponnekanti, Shankar R., Brian Lee, Armando Fox, Pat Hanrahan, and Terry Winograd.
2001. ICrafter: A Service Framework for Ubiquitous Computing Environments. In
Proceedings Ubiquitous Computing Conference (UBICOMP 2001), Atlanta,
Georgia.

Prakash, Ravi. 1999. Unidirectional Links Prove Costly in Wireless Ad Hoc Networks,
In Proceedings 3rd International Workshop on Discrete Algorithms and Methods
for Mobile Computing and Communications (DIAL-M), August 1999, Seattle.

253

Preece, J. 1999. What happens after you get online? Information Impacts Magazine,
December.

Preece, J. 2000. Online Communities: Designing Usability, Supporting Sociability.
Chichester, UK, John Wiley & Sons.

Pursley, M.B. and H.B. Russell. 1993. Routing in Frequency-Hop Packet Radio
Networks with Partial-Band Jamming. IEEE Transactions on Communications
41(7):1117-1124.

Randell, C. and H. Muller. 2000. The shopping Jacket: Wearable Computing for the
Consumer. In Proceedings Second International Symposium on Handheld and
Ubiquitous Computing, Bristol, UK, September 2000.

Rekimoto, J., Y. Ayatsuka and K. Hayashi. 1998. Augment-able reality: Situated
Communications through Physical and Digital Spaces. In Proceedings of the 2nd
International Symposium on Wearable Computers (ISWC’98), Pittsburgh, PA,
October 1998, 68-75.

Resnick P., N. Iacovou, M. Suchak, A. Bergstrom, and J. Riedl. 1994. GroupLens: An
Open Architecture for Collaborative Filtering of Netnews. In Proceedings of ACM
1994 Conference on Computer Supported Cooperative Work (CSCW’94), Chapel
Hill, NC, ACM Press, 175-186.

Rheingold, Howard. 1993. The Virtual Community: Homesteading on the Electronic
Frontier. Perseus Books.

Rhodes, Bradley. 1997. The Wearable Remembrance Agent: A System for Augmented
Memory. Personal Technologies 2(1):218-224.

Rosenschein, Jeffrey S and Giliad Zlotkin. 1994. Rules of Encounter, Designing
Conventions for Automated Negotiation among Computers. MIT Press, Cambridge
Massachusetts.

Roth, Jörg (2002). Mobility Support for Replicated Real-time Applications. In
Proceedings Innovative Internet Computing Systems (I2CS), Kühlungsborn, June
2002, LNCS 2346, Springer,

Roth, Jörg and Claus Unger. 1998. DreamTeam - A Platform for Synchronous
Collaborative Applications. In Proceedings Groupware und Organisatorische
Innovation (D-CSCW'98), B. G. Teubner Stuttgart, Leipzig, 153-165.

Salonidis, Theodoros, Pravin Bhagwat, Leandros Tassiulas, and Richard LaMaire.
2001. Distributed Topology Construction of Bluetooth Personal Area Networks. In

254

Proceedings Twentieth Annual Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM 2001) 22-24 April 2001, Anchorage,
Alaska.

Salonidis, Theodoros, Pravin Bhagwat, Leandros Tassiulas, and Richard LaMaire.
2001. Proximity Awareness and Ad Hoc Network Establishment in Bluetooth.
Technical Report CSHCN 2001, Center for Satellite and Hybrid Communication
Networks, University of Maryland.

Schneider, Jay and Gerd Kortuem. 2001. How to Host a Pervasive Game: Supporting
Face-to-Face Interactions in Live-Action Roleplaying. In Proceedings Ubicomp
2001 Workshop on Designing Ubiquitous Computing Games, 30 Sept. – 2 Oct.
2001, Atlanta, Georgia.

Schneider, Jay, Gerd Kortuem, Joe Jager, Steve Fickas, Zary Segall. 2000.
Disseminating Trust Information in Wearable Communities. In Proceedings
Second International Symposium on Handheld and Ubiquitous Computing
(HUC2K), 25-27 Sept 2000, Bristol, England.

Segall, Zary, Andrew Fortier, Gerd Kortuem, Jay Schneider, Sean Workman. 2002.
Multishelf: An Experiment in Peer-to-Peer Infomediation. In Proceedings First
International Conference on Peer-to-Peer Computing (P2P2001), August 27-29,
2001, Linköpings, Sweden.

Shardanand, U. and Pattie Maes. 1995. Social Information Filtering: Algorithms for
Automating "Word of Mouth". In Proceedings of the CHI 1995 Conference on
Human Factors in Computing Systems, ACM Press.

Sharman Networks. 2002. The KaZaA Media Desktop. Available at
http://www.kazaa.com/en/index.php. Accessed on 10 October 2002.

Siewiorek, D., A. Smailagic, L. Bass, J. Siegel, R. Martin, and B. Bennington. 1998.
Adtranz: A Mobile Computing System for Maintenance and Collaboration. In
Proceedings Second International Symposium on Wearable Computers, Pittsburgh,
PA, October 1998, IEEE Computer Society Press.

Siewiorek, D.P. and A. Smailagic. 1994. The CMU Mobile Computers as Maintenance
Assistants. In Proceedings of the NSF Workshop on Mobile and Wireless
Information Systems, Rutgers University, N.J., October 1994.

Smailagic, A. and D.P. Siewiorek. 1994. The CMU Mobile Computers: A New
Generation of Computer Systems. In Proceedings of COMPCON '94, San
Francisco, 28 August – 3 September 3, 1994, IEEE Computer Society Press.

255

Smailagic, A. and R. Martin. 1997. Metronaut: A Wearable Computer with Sensing and
Global Communication Capabilities. In Proceedings First International
Symposium on Wearable Computers, Boston, MA, October 1997, IEEE Computer
Society Press.

Smailagic, A., D. Siewiorek, R. Martin, and J. Stivoric. 1998. Very Rapid Prototyping
of Wearable Computers: A Case Study of VuMan 3 Custom versus Off-the-Shelf
Design Methodologies. Journal on Design Automation for Embedded Systems
3(2/3): 217-230.

Starner, Thad, Joshua Weaver, and Alex Pentland. 1997. A Wearable Computing Based
American Sign Language Recognizer. In Proceedings First International
Symposium on Wearable Computers (ISWC '97), 13-14 October 13-14 1997.

Starner, Thad, Steve Mann, Bradley Rhodes, Jeffrey Levine, Jennifer Healey, Dana
Kirsch, Rosalind W Picard and Alex Pentland. 1997. Augmented Reality Through
Wearable Computing. Technical Report No. 397, M.I.T Media Laboratory,
Massachusetts Institute of Technology, Cambridge, MA,

Starner, Thad. 1999. Wearable Computing and Contextual Awareness. Ph.D.
Dissertation, Massachusetts Institute of Technology.

Starner, Thad. 2001. The Challenges of Wearable Computing. IEEE Micro 21(4): 44-
52, 21(5): 54-67.

Stewart, J., B. Bederson, and A. Druin. 1999. Single Display Groupware: A Model for
Co-present Collaboration. In Proceedings 1999 Conference on Human Factors in
Computing Systems (CHI 99), ACM Press.

Sumi, Y. and K. Mase. 2001. AgentSalon: Facilitating Face-to-Face Knowledge
Exchange through Conversations Among Personal Agents. In Proceedings of
Agents'01, Montreal, CA, 393-400.

Tanenbaum, A. 1996. Computer Networks (3rd Edition). Prentice Hall, Upper Saddle
River, N.J.

Terry, Michael, Elizabeth D. Mynatt, Kathy Ryall, Darren Leigh. 2002. Social Net:
Using Patterns of Physical Proximity Over Time to Infer Shared Interests. In
Proceedings 2002 Conference on Human Factors in Computing Systems (CHI
2002), ACM Press.

Toh, C.-K. 1997. Associativity-Based Routing for Ad-Hoc Mobile Networks. Wireless
Personal Communications Journal 4(2):103-139.

256

UWBWG. 2002. Ultra-Wideband Working Group web site, available at
http://www.uwb.org, accessed 10 October 2002.

Wenger, E. 1998. Communities of Practice: Learning, Meaning, and Identity.
Cambridge, UK, Cambridge University Press.

Whittaker, S., D. Frohlich, and O. Daly-Jones. 1994. Informal Workplace
Communication: What is it Like and How Might We Support it? In Proceedings
1994 Conference on Human Factors in Computing Systems (CHI 1994), ACM
Press.

Whitten, I. H., H.W. Thimbleby, H. G. Coulouris, S. Greenberg. 1991. Liveware - A
new Approach to Social Networks. In S. Greenberg (eds.), Computer-supported
Cooperative Work and Groupware, University Press, Cambridge, UK, 211-222.

Wu C.W. and Y.C. Tay. 1999. AMRIS: A Multicast Protocol for Ad hoc Wireless
Networks. In Proceedings of the IEEE Military Communications Conference
(MILCOM), Atlantic City, NJ, November 1999, 25-29.

Wyckoff, P. 1998. TSpace. IBM Systems Journal 37(3).

Záruba, Gergely V., Stefano Basagni, and Imrich Chlamtac. 2001. Bluetrees - Scatternet
Formation to Enable Bluetooth-Based Ad Hoc Networks. In Proceedings ICCS,
28-30 May 2001, San Francisco, CA, USA.

Zimmermann, P. 1995. The Official PGP User's Guide. MIT Press.

