
First International Conference on Peer-to-Peer Computing (P2P'01), 2001.

When Peer-to-Peer comes Face-to-Face:
Collaborative Peer-to-Peer Computing in Mobile Ad hoc Networks

Gerd Kortuem, Jay Schneider, Dustin Preuitt,
Thaddeus G. C. Thompson, Stephen Fickas, Zary Segall

Wearable Computing Group

Department of Computer and Information Science
University of Oregon

Eugene OR 97403, USA
kortuem@cs.uoregon.edu

Abstract

This paper motivates and describes the notion of ad hoc
mobile information systems. Such a system consists of a
decentralized and self-organizing network of autonomous,
mobile devices that interact as peers. Connectivity is
determined by distance between devices; as hosts change
their physical location they establish pair-wise peering
relationships based on mutual proximity. We describe
application scenarios for ad hoc collaboration with mobile
devices and identify technical challenges of mobile peer-
to-peer systems. Moreover, we present the goals and
architecture of Proem, a peer-to-peer system and
development platform for mobile ad hoc applications.
Proem has successfully been used as instructional tool in
an advanced Software Engineering course on Peer-to-
Peer Computing.

Keywords

Peer-to-Peer computing, mobile computing, groupware,
decentralized architecture, mobile ad hoc networks,
personal-area networks

1. Introduction

Recent advances in wireless technology and mobile
computing along with demands for greater user mobility
have provided a major impetus toward development of
mobile ad hoc networks (MANET). Ad hoc networks are
self-organizing networks that are comprised of wireless
nodes that cooperate in order to dynamically establish
communication. Any device with a microprocessor,
whether highly mobile or stationary, is a potential node in
an ad hoc network.

A special class of ad hoc networks are personal area
networks (PAN). They are low power, low range, wireless
networks that provide connectivity among devices within
or entering a personal operating space. This includes
devices that are carried, worn, or located near the body.
PANs enable devices to connect easily and with little
intervention from their user thereby facilitating
"unconscious" communications among personal devices.
Examples of personal area networks include Bluetooth
[14], Genuity’s BodyLAN [16], Zimmermann intra-body
network [17] and networks following the emerging IEEE
802.15 standard [15].

The combination of personal mobile devices (PDAs,
wearable computers etc.) with wireless ad hoc networks
allows the conception of ad hoc mobile information
systems. Such a system consists of a highly dynamic,
decentralized and self-organizing network of autonomous,
mobile devices that interact as peers. In such a network,
connectivity is determined by distance between devices;
as hosts change their physical location they establish pair-
wise peering relationships based on proximity. As result,
the network is continuously reshaped into multiple clusters
of two or more hosts. This model of ad hoc mobility
describes an extreme mobile environment in which no
fixed infrastructure exists to support communication.

Ad hoc mobile systems provide opportunities for a
range of novel and interesting peer-to-peer applications.
This includes collaborative systems for ad hoc meetings,
mobile patient monitoring, distributed command and
control systems and ubiquitous computing. In particular,
personal-area networks enable the creation of proximity-
aware applications in support of face-to-face collaboration.
Mobile devices like cell phones, PDAs and wearable
computers have become our constant companions that are
available wherever we go. They are small and unobtrusive,
and can be used most of the time and in most
circumstances. By storing private information about

First International Conference on Peer-to-Peer Computing (P2P'01), 2001.

people we know and the things we do, they function as our
personal assistants that help us manage our daily life and
our relations to other people. Personal-area networks open
the opportunity for these devices to take part in our social
interactions with people. Their ability to establish
communication links among devices during face-to-face
encounters can be used to facilitate, augment or even
promote human social interactions. Examples of possible
uses include applications that alert us to the presence of
friends at a crowded public space [6] or identify people we
want to meet using a match making algorithm that takes in
account our preferences and interests [7, 8], systems that
spread rumors [5], facilitate the exchange of personal
information [9], or support us in more complex tasks like
trading delivery tasks [10].

1.1. The Problem

In this paper we address the following questions:
What are useful and interesting peer-to-peer applications
for ad hoc networks? What are the characteristics of these
applications?
How are mobile peer-to-peer systems different from
conventional, non-mobile systems? How do we need to
redesign existing peer-to-peer systems and applications so
that they function in highly dynamic mobile ad hoc
environments?
What are the requirements for mobile ad-hoc middleware?
Can we define a generic peer-to-peer software architecture
for mobile ad-hoc computing?

The result of our research is Proem, a mobile peer-to-
peer platform for collaborative applications in ad hoc
networks. The key benefits of Proem are:
▪ High-level development support
▪ Platform independence
▪ Interoperability
▪ Extensibility
▪ Support for intermittent connections
▪ Built-in functions for naming, discovery,

communication, data sharing, event logging, security,
and privacy
Proem is currently used as instructional tool in an

advanced Software Engineering course on Peer-to-Peer
Computing [11] at the University of Oregon. An earlier
version of Proem was described in [9].

1.2. Outline

This paper is organized as follows: In Section 2, we
describe peer-to-peer applications for proximity-aware
mobile collaboration. Next, we identify challenges of
mobile peer-to-peer systems. In Section 3, we present the
goals and overall architecture of our peer-to-peer platform
Proem. In Section 4, we compare Proem to several other

peer-to-peer systems. We conclude with an outlook on
future research directions.

2. Mobile Peer-to-Peer Applications for
Augmenting Face-to-Face Interactions

Personal mobile devices are becoming an ever-larger
part of our social lives. Devices like cell phones, PDAs
and wearable computers have become our constant
companions that are available wherever we go. They are
small and unobtrusive, and can be used most of the time
and in most circumstances. By storing private information
about people we know and the things we do, they function
as our personal assistants that help us manage our daily
life and our relations to other people. Most of these
devices however, with the exception of cell-phones and
pagers, are designed as mere productivity tools for single
users. Despite the fact that these devices are often with us
when we meet and interact with other people, they do not
afford inter-personal exchanges. The limited infrared
capabilities of some devices merely emphasize this point.

2.1. The Importance of Social Encounters and
Face-to-Face Interactions

Social encounters of people play an important part in
our social life; they are also vital for collaboration at the
office and for coordination of work activities [13]. An
encounter with another person, whether we know the
person or not, is a chance for striking up a conversation
and for exchanging information. Sometimes we use
encounters to cooperate with other people and sometimes
to pursue and advance our own goals.

It has been argued [4] that in today’s world individuals
are suffering from a lack of authentic psychological
encounters or "human moments." For example, [39]
recognized that Internet use of as little as four hours per
week can result in higher level of depression and
loneliness. Face-to-face interactions, on the other hand,
have an immediate effect on hormones levels and have
thus the potential of reducing feelings of stress and fear,
and increasing feelings of trust, bonding and well being.

2.2. Mobile Technology for Augmenting Face-
to-Face Interactions

With the advent of personal area network technologies
our mobile and wearable device can participate with us in
face-to-face interactions. PANs establish communication
links among physically close mobile devices.. We can
interpret this as if a PAN creates a digital sphere (aura)
around every person. The extension of this aura depends
on the transmission range of the wireless transceivers and
can range from a few inches to several feet.

First International Conference on Peer-to-Peer Computing (P2P'01), 2001.

When two individuals come in close physical proximity
or meet face-to-face their respective auras overlap
enabling their personal mobile devices to interact. At that
point, the devices can exchange information and access
each other’s services. On the other hand, when these
individuals part and their auras no longer intersect,
connections between their devices are broken and inter-
device communication is no longer possible. This ability
to establish communication links among devices during a
face-to-face encounter can be used to facilitate, augment or
even promote human face-to-face interactions. Examples
of possible uses include applications that alert us to the
presence of friends at a crowded public space [6], identify
people we want to meet, using a match making algorithm
that takes in account our preferences and interests [7, 8],
spread rumors [5], facilitate the exchange of personal
information [9], or support us in more complex tasks like
trading delivery tasks [10].

2.3. Impromptu Collaboration

The focus of our research is in building mobile systems
that assist us in our every day social interaction with other
people, not only at the work place, but also during
informal activities like shopping, when we pursue our
hobbies or hang out with friends. In particular, we are
interested in how this technology can promote social
relationships among co-located persons during chance
encounters.

We refer to these proximity-based ad hoc interactions
using mobile devices as impromptu collaboration.
Impromptu collaboration can happen in the absence of any
enabling hardware other than what the collaborators
commonly carry with them and is thus possible at any time
and in any environment.

Impromptu collaboration is
▪ Opportunistic: it allows people to make take advantage

of and make use of an opportunity that presents itself
▪ Spontaneous: it requires no prior planning or

preparation on behalf of the human.
▪ Proximity-based: collaboration is made possible by

physical proximity of two or more individuals.
▪ Transient: interactions are short-lived, seldom lasting

more than a few minutes or even seconds.
In the following we will illustrate the concept of
impromptu collaboration with several usage scenarios. We
have successfully used these scenarios as requirements
definition in an advanced software engineering course at
the Department of Computer Science at University of
Oregon [11]. As part of this course, which focused on
peer-to-peer computing, eight second-year Master’s
students developed collaborative applications using the
Proem peer-to-peer platform (see Chapter 4).

2.4. Impromptu MP3 File Sharing (Version 1)

Despite legal problems MP3 file sharing remains one of
the most successful peer-to-peer applications. With the
increasing use of personal mobile devices it becomes
logical to think about a mobile version of Napster. We
anticipate that next generation MP3 players will be
integrated wearable devices (e.g., with phone, PDA, etc.)
supporting wireless exchange of MP3 files. Indeed,
companies like Parthus Technologies [12] have started to
think about Bluetooth-enabled MP3 players. This will
allow the following scenario:

“One evening Erik and Jennie decide to go out for
dinner at a fancy downtown restaurant. On the way out
they grab their ultra-portable Personal Mobile Assistants
and strap them on. As they arrive at the restaurant they
notice some friends among a large group of people and
after some introductions they decide to join them for
dinner.

While the appetizers are being served, Erik starts a
conversation with his neighbor and soon they discover that
they are both ardent fans of Cuban Jazz music. Since both
carry their personal MP3 music collection on their
Personal Mobile Assistants they immediately decide to
swap digital music clips. After turning on the
collaboration mode of their Personal Mobile Assistants
they engage in a heated discussion about various
musicians. Meanwhile, their mobile assistants create
personal recommendation lists and start exchanging
files.”

MP3 File sharing using mobile computers is different
from sharing files over the Internet for a number of
reasons:
▪ Social context: In a mobile scenario involving PANs

exchanges are only possible over short distances, that is
when people come face-to-face or at least are within
close physical proximity. Consequently, trading
partners will be aware of whom they are trading with
and be able to observe important social cues including
sex, clothing and gestures. In addition, they might even
be able to talk to each other. This is in stark contrast to
anonymous MP3 file sharing on the Internet provided
by Napster and Gnutella. It is clear that these
differences in social context can lead to a difference in
behavior regarding the general willingness to interact
with strangers and the way people interact. For
example, politeness and trust are two aspects of human
interactions that strongly differ whether people interact
face-to-face or terminal-to-terminal across the Internet.

▪ Usage context: The context in which mobile devices
are used is different in two important respects from
using a stationary computer at home or in the office.
When mobile devices are involved, user attention is a
scarce resource. Instead of sitting in front of a computer
where we can pay full attention to the computer and its
operation, handheld and mobile computers are often
used in situations where our attention is occupied by

First International Conference on Peer-to-Peer Computing (P2P'01), 2001.

demanding real-world task like driving, operating a
machine, or simply conversing with other people.
Furthermore, with mobile computers time becomes a
critical resource as well. When surfing the Internet at
home or at the office we are less likely to care if a
download takes just a few seconds or several minutes;
we will always find something else to do in the
meantime. This is no longer true if we exchange
information from one mobile device to another, because
this requires our physical presence. If a transfer takes
too long we are less likely to complete it, because we
might run out of patience or must hurry to the next
appointment.

▪ Technical context: Mobile devices and wireless
networks are severely limited in the following aspects:
processing power, storage capacity, and bandwidth.
This suggests that rather than exchanging mp3 files of
several megabytes, we might want to exchange URLs
that point to the files on a server. The actual download
of the music file might occur at a later time.
Another severe handicap of mobile devices relates to
the user interface. Some mobile devices are missing
simple and efficient ways to enter text or have a display
that is too small for effective browsing of large
amounts of data. Consequently, the traditional way of
finding music on the Internet, that is via keyword
search, is inappropriate for mobile settings. Imagine
entering the name of an artist or music song on a PDA-
like device in the dim light of a bar while conversing
with someone you just met.
These observations make clear that it does not suffice

to simply re-implement a Napster or Gnutella client for
mobile devices. Instead, it becomes necessary to rethink
the whole system design and modify it in accordance with
the social, usage, and technical context.

2.5. Impromptu MP3 File Sharing (Version 2)

A possible approach is to develop personal agents that
act on the behalf and in the interest of their users [10]. The
task of such agents would be to find and interact with
other peoples’ personal agents for a variety of well-defined
purposes, either automatically as side effect of a chance
encounter or when explicitly instructed to do so.

A personal agent for MP3 file trading could use a
number of criteria to determine which music to download:
most likely these criteria would contain a user’s wish list
and music preferences in terms of artists, music genre etc.
Likewise, it would be possible to employ matching
algorithms as described in Yenta [7] to determine people
with similar music taste and extract recommendations
from their music library. Moreover, a personal agent could
base its decisions on information about human
relationships and trust. For example, the agent could know
that we are inclined to download and listen to a song if it is

recommended by a friend who’s taste in music we trust.
This approach is highlighted in the next scenario:
“Kim is a 20 year old architecture student and an

ardent music lover. She has an extensive CD collection
and has digitized all of them as MP3s. During most of her
waking hours she can be seen sporting an MP3 player and
headsets, especially when she is working in her studio at
school. In order to stay up-to-date on what is going on in
the music scene and to hear about latest releases of her
favorite artists she subscribed to several mailing lists and
follows the discussion threads on several music web sites.

When the latest generation of Bluetooth-enabled
wearable MP3 players came out she could not resists to
buy one despite the steep price: she knew that most of her
friends at school would do the same. Her new MP3 player
has the ability to detect other MP3 players in the vicinity
and to trade play lists when she passes another person in
the hallway or when she sits at the same table in the
cafeteria. Kim set up her player to recognize the MP3
players of all of her music loving friends and to
automatically trade information about the songs she
listens to. Furthermore, she enabled the privacy mode of
her MP3 player. As a result, her player emits an audible
signal every time it trades song lists with another device.
However, more important is that fact that other people’s
players are prevented from accessing her private
information.

After each day at school, Kim downloads the
information she collected from her friends players to her
laptop computer that is connected to the Internet. She then
downloads freely available samples of the songs her
friends listen to and copies some of them to her MP3
player. On a good day she identifies two or three new CDs
she plans to buy as soon as she has enough money.”

This scenario stresses two important points:
First, impromptu collaboration with personal mobile

devices does not necessarily involve direct human
interaction. People might not be aware of the fact that their
respective devices interact. The general willingness to
share information and the opportunities presented by
physical proximity suffice for successful collaboration.

Second, privacy is very important for impromptu
collaboration. The very fact that exchanges can occur
without Kim’s knowledge makes it tantamount to provide
measures to protect her private data from unauthorized
access.

2.6. Impromptu MP3 File Sharing (Version 3)

Yet another version of the MP3 file-sharing scenario
further emphasizes the need for security:

“The Music Trading Organization, an industry
business group, has recognized both the need for
copyright protection and a business opportunity in
collecting royalties from digitally exchanged music. They

First International Conference on Peer-to-Peer Computing (P2P'01), 2001.

developed technology that makes it possible that a small
royalty gets automatically paid to the copyright owner
when two individuals exchange copyrighted music.
Further, both individuals involved in a trade will get a
small payment every time they generate royalty for the
copyright owner.

Eric and Jennie, both owners of copyright-enhanced
wearable MP3 players, meet at a party. After listening to a
song they both like, they begin discussing music and find
they have a similar interest in Latin Calypso music. At
Eric and Jennie’s request their wearable computers start
comparing music profiles and identify songs that Eric and
Jennie might want to exchange. As result, their wearable
computers wirelessly send selected songs to each other
and record the transaction in a tamper-resistant database
module.

When returning home from a long day, both Eric and
Jennie synchronize the database on their wearable
personal assistants with their desktop computer. As side
effect, MP3 transactions that happened throughout the day
are automatically uploaded to the server of the central
Music Trading Organization which in turns arranges
payments to and from Eric and Jennie’s bank accounts.”

In this scenario, Eric and Jennie, the copyright owner,
the producer of the wearable computer hardware, multiple
developers of software components, the e-commerce
service providers and perhaps many others, become part of
the wireless wearable e-business community and are
interested not only in the proliferation of the community
but also in the way the requirements for the system are
evolving.

This scenario stresses two additional aspects of
impromptu collaboration:

First, it points to the necessity of security in mobile ad
hoc networks. Users must be authenticated and payment
transactions must be processed and recorded.

Second, this scenario also indicates that impromptu
collaboration can span mobile ad hoc networks and wired
infrastructure networks like the Internet.

2.7. Task Trading

Our final scenario derives from our earlier work on task
trading in “Wearable Communities” as realized by the
WALID system [10]. WALID implements a digitized
version of the timeworn tradition of borrowing butter from
your neighbor. You do a favor for others because you
know that one day they will do it for you.

With WALID two individuals use their mobile devices
to negotiate about and to exchange real-world tasks:
dropping off someone’s dry cleaning, buying a book of
stamps at the post office, or returning a book to the local
library.

WALID employs personal agent software to find close-
by community members and to negotiate the exchange of

tasks. The agents maintain a user's task list, becoming
fully aware of the locations and activities involved. When
an encounter occurs, the agents produce a negotiation. If
both users approve, a deal is struck.

The role of the agent in a negotiation is to evaluate the
value of favors and to keep scores. Having to run across
town just to drop off someone’s mail compares
unfavorably with buying milk for someone if the grocery
store is just a block away. Agents employ ideas from game
theory to ensure that results of negotiations are mutually
beneficial. They cooperate only if there is the opportunity
to enhance the users' goals.

2.10. Conclusion

We are interested in the use of mobile and wearable
computing technology to enhance people’s social
interactions during unexpected and unplanned encounters
in the real world: when people meet on the way to the
office, in the elevator, or at the grocery store. Our research
is based on the premise that in the near future a large
percentage of the population will use handheld or wearable
computing devices with PAN capabilities. The ubiquity of
this kind of mobile technology will enable new forms of
computer-supported human interactions.

The primary aim of our research is to develop new
software technologies and to build practical applications
that function in the real world. In the next chapter we will
discuss the technical challenges for building such systems.

3. Challenges of Ad Hoc Mobile
Information Systems

In order to provide the style of mobile collaboration
described above, sophisticated mobile systems and
applications that can operate in mobile ad hoc networks
are required. We use the term ad hoc mobile information
systems in order to describe such a system. An ad hoc
mobile information systems consists of a highly dynamic,
decentralized and self-organizing network of autonomous,
mobile devices that interact as peers. Connectivity among
devices is determined by their relative distance; as hosts
change their physical location they establish pair-wise
peering relationships based on proximity. In this chapter,
we will discuss technical challenges of such systems.

3.1. Ad hoc Networks

Wireless ad hoc networks are self-organizing networks
that are comprised of wireless nodes that cooperate in
order to dynamically establish communication. Any device
with a microprocessor, whether highly mobile or
stationary, is a potential node in an ad hoc network.

Ad hoc networks have a number of advantages

First International Conference on Peer-to-Peer Computing (P2P'01), 2001.

compared to traditional wireless cellular networks. These
include:
▪ No Infrastructure required: Ad hoc wireless

networks don't rely on wired base-stations and for that
reason can be deployed in places without existing
infrastructures. They can be created spontaneously and
on as needed basis, because they require little
configuration to setup.

▪ Self-organization: In a wired network the connection
topology of nodes is determined by the physical cabling
and thus is fixed. This restriction is not present in ad
hoc network: as soon as two nodes are within hearing
distance of each other, an instantaneous link between
them is automatically formed. As a consequence, the
network topology of an ad hoc network reflects the
relative distance of its nodes and is continuously
reconfigured as nodes come into reach of each other.

▪ Fault Tolerance: The self-organizing nature of ad hoc
networks and the fact that they don’t rely on dedicated
base stations makes ad hoc networks fault-tolerant. In a
traditional cellular network, a fault in the base station
will impair all nodes in its cell. In ad hoc networks, a
malfunction in one node can be easily overcome
through network reconfiguration.
Personal area networks (PAN) are a particular class of

ad hoc networks optimized for low complexity, low
power, low range and low cost. PANs provide ease-of-
connectivity of personal wearable or handheld devices
thereby facilitating "unconscious" communications among
personal devices. They have small coverage, typically
about 10m, and allow only a limited number of devices to
be connected in the same geographic region. Examples of
PANs include Bluetooth [14], networks following the
emerging IEEE 802.15 standards [15], Genuity’s
BodyLAN [16], and Zimmermann’s intrabody network
[17].

3.2. Mobile Peer-to-Peer Systems

Traditionally, mobile devices have been designed as
thin clients as part of a client-server system. Mobile
devices such as cell-phones or Personal Digital Assistants
(PDAs) use wireless connections to gain access to
resources such as data and computation provided by large
central servers.

The emergence of wireless ad hoc networks and
powerful mobile devices has made it possible to design
mobile systems as peer-to-peer systems. Such a mobile
peer-to-peer system or network consists of personal
mobile devices that interact during brief physical
encounters in the real world thereby engaging in short-haul
wireless exchanges of data. Mobile peer-to-peer
applications take advantage of resources -- storage, cycles,
content, human presence – provided by mobile (or
stationary) devices in the immediate physical proximity.

Bolcer at al [18] describe peer-to-peer as “any
relationship in which multiple, autonomous hosts interact
as equals. An autonomous host is useful in it’s own right
even in the absence of others. The peering relationship
implies that additional functions are available to other
peers collectively as a consequence of their collaborations
with other hosts. Known as the network effect, the value
and extent of these added powers increases dramatically as
the number and variety of peers grows”.

This definition of peer-to-peer computing closely
matches our ideas as outlined in the previous section.
Personal mobile devices are autonomous and provide great
benefits to their users even when not connected to other
devices. However, as soon as two devices come within
reach and a communication link is established, they enter
into a short-lived, yet mutually beneficial partnership by
exchanging data and accessing each other’s services.

A mobile peer-to-peer system inherits many of the
features of ad hoc networks:
▪ Self-organizing: as side effect of the movement of

devices in physical space, the topology of a mobile
peer-to-peer system constantly adjusts itself by
discovering new communication links.

▪ Fully decentralized: each peer in a mobile peer-to-peer
system is equally important and no central node exists.

▪ Highly dynamic: Since communication end-points can
move frequently and independently of one another,
mobile peer-to-peer systems are highly dynamic.
However, despite this similarity in character there are

clear differences between traditional and mobile peer-to-
peer system when it comes to their realization. Bolcer at al
[18] describe (non-mobile) peer-to-peer computing as the
natural and desirable outcome of three profound and
pervasive trends:
▪ The ease of interconnection
▪ The expansion of bandwidth
▪ The wealth of cycles

“… in a world where (network access) interconnection
is universal, (network) bandwidth is plentiful, and
(processor) cycles are inexpensive, peering among
physical unequals is both natural and desirable.” ([18], p.
3).

Existing peer-to-peer systems such as Napster [40],
Gnutella [35,36], Freenet [41], and Groove [42], which are
intended to run on stationary hosts in wired networks, have
been designed with this view in mind. However, two of
these trends do not apply to mobile peer-to-peer systems:
while ad hoc networks provide ease of interconnection,
there is much less expansion of bandwidth in wireless
networks than there is in wired networks, and much less
wealth of cycles in mobile devices than there is in desktop
units.

The unique character of mobile peer-to-peer systems
represents a significant challenge for the designer. In the
following, we will discuss some of these challenges in

First International Conference on Peer-to-Peer Computing (P2P'01), 2001.

more detail.

3.3. Challenges

3.3.1. Networking
Wireless data networks present a more constrained

communication environment compared to wired networks.
Because of fundamental limitations of power, available
spectrum, and mobility, wireless data networks tend to
have less bandwidth, more latency, less connectivity
stability, and less predictable availability. Furthermore, as
bandwidth increases, the device’s power consumption also
increases further draining the already limited battery life of
mobile devices. Thus, even as wireless networks improve
their ability to deliver higher bandwidth, the power
availability still limits the effective throughput.

Communication links in proximity-based ad hoc
networks are prone to unexpected interruptions.
Consequently, mobile peers must anticipate frequent
network failures and handle them gracefully. In addition,
peer applications should provide for disconnected
operations [19] such that a peer remains operational even
without network connection.

Communication between arbitrary peers in a mobile
peer-to-peer network requires routing over multiple-hop
wireless paths. The main difficulty arises because without
a fixed infrastructure these paths consist of wireless links
whose end-points are likely to be moving independently of
one another. Consequently, node mobility causes the
frequent failure and activation of links, leading to
increased network congestion while the network routing
algorithm reacts to topology changes [19].

The instability of multi-hop paths and the limited
lifetime of routes in ad hoc networks have a negative
impact on the performance on peer-to-peer routing.
Gnutella uses routing as a way to return search results to
the peer that initiated a search. Search results travel
backwards on the same route the original search query
took. If one of the intermediate peers disappears from the
network before the search result could be returned, the
search result will be lost. In our own experiences using
Gnutella this happens in only about 2% of all cases. In an
ad hoc network, this number would increase dramatically.

3.3.2. Mobile Device Limitations
Mobile devices present a more constrained computing

environment compared to desktop computers. Because of
fundamental limitations of battery life and form factor,
mobile devices tend to have less powerful CPUs, less
memory, less storage, restricted power consumption,
smaller displays, missing or restricted input devices. In the
previous chapter, we discussed some techniques how an
agent-based approach can alleviate user-interface
problems. Less powerful CPUs make it harder to

implement CPU intensive cryptographic security
measures.

3.3.3. Naming
Traditional (non mobile) peer-to-peer systems are

characterized by an increasing decentralization and
autonomy of hosts. Because accessing these decentralized
resources means operating in an environment of unstable
connectivity and unpredictable IP addresses, peer-to-peer
systems often operate outside the DNS system. The same
must be true for mobile peer-to-peer systems. Additional
reasons for not relying on the DNS system are:
▪ In ad hoc networks, access to a central DNS server

cannot be assumed
▪ Not all mobile devices support IP networking and thus

do not have IP addresses
▪ Impromptu collaboration requires the ability to identify

not only peers, but also the people who run and use
these peers. For example, in our MP3 file-sharing
scenario from the last chapter, Kim authorized only her
friends to access her play lists. Since Kim does not
want to specify each friend’s MP3 player, the system
must be able to determine that a device belongs to a
particular user.

3.3.4. Resource Discovery
One of the things that makes current peer-to-peer

system so powerful is that they take advantage of
resources -- storage, cycles, content, human presence --
available at the edges of the Internet. In a mobile peer-to-
peer system we want to take advantage of resources
provided by peers running on mobile (or stationary)
devices in the immediate physical proximity. Because of
the unpredictable physical mobility of mobile devices,
discovering resources becomes a challenge.

The highly dynamic nature of mobile peer-to-peer
systems requires similarly dynamic mechanisms for device
and resource discovery. In ad hoc networks, device
discovery is part of the network; resource discovery,
however, is the task of the peer system. We need
algorithms through which a computing device can detect
the presence of neighboring devices, share configuration
and service information with those devices, and notice
when devices become unavailable. Resource discovery
must be timely (in order to detect moving devices) and
efficient (so not to overload the network) [31].

In contrast to peer-to-peer systems that are targeted at
fixed networks, decentralization is not a mere option for
mobile peer-to-peer networks, but a necessity. Even
seemingly decentralized peer-to-peer systems sometimes
rely on centralized servers. For example, many Gnutella
clients use a central host cache for determining entry
points into the Gnutella network. A mobile Gnutella client
could not rely on such a host cache, but would have to
discover appropriate peers in its surrounding.

First International Conference on Peer-to-Peer Computing (P2P'01), 2001.

3.3.5. Data Sharing and Synchronization
An ad hoc mobile information system is basically a

highly dynamic, decentralized distributed system with
weakly connected mobile hosts. In order to cooperate to
the fullest extent peers need to be able to share and
synchronize data. The extreme decentralization and
unpredictability of ad hoc mobile system together with the
fact that peers always only establish pair-wise connections
leads to the following conflicting requirements:

High availability: On the one hand we want peers to be
autonomous as much as possible. They should be able to
perform computations even in the absence of connections
with another peers. Thus we need to employ a replicated
object scheme where each peer maintains a local copy of
each shared data object.

Consistency: On the other hand, any replicated object
scheme introduces the problem that copies of a shared
object can be updated independently and thus might
become inconsistent.

Timeliness: Finally, any solution to the consistency has
to cope with the problem that data might be shared across
a group of peers that never meet all at the same time. It is
possible that all interactions in an ad hoc system always
only occur between two peers. This situation can lead to a
slow propagation of updates throughout the whole system.

3.3.6. Security
The security implications of mobile peer-to-peer

systems must be taken seriously. Without countermeasures
it is potentially possible to track every movement of an
individual as well as examine what they are doing, System
security cannot be restricted solely to the link layer, but it
must encompass every layer of communications, including
the applications and the data that these applications
manipulate. In ad hoc networks users may not even be
aware to which devices they are connected or, more
importantly, which devices are connected to theirs.
Someone in the next room or on the floor above may
connect to someone else's mobile device and gain access
to private data such as stored e-mail and meeting
schedules. As a consequence, it is not enough to employ
encryption to avoid eavesdropping, but robust
authentication procedures need to be established for
connecting both trusted and non-trusted devices with each
other.

A particular security aspect of mobile devices and
decentralized systems relates to the question "how do we
know we can trust somebody on the network?" In systems
with a centralized component, this problem can be handled
by globally trusted certification authorities (CA) that issue
public key certificates, cryptographically signed by the CA
itself. This certificate proves that its holder is trustworthy
simply because the issuer, the trusted CA, has signed it
and can therefore vouch for the holder's credentials. A
chain of CAs, each trusting the next CA in the chain, may

sometimes be necessary when a certificate signed by an
unknown CA is presented.

For ad hoc systems we need efficient distributed
authentication protocols. This, however, is made difficult
by the fact that this must occur in a completely
decentralized environment with no or intermittent
connection to a trusted authority. Possible solutions might
include the use of reputations [20].

In order to engineer a fully secure mobile system it
becomes necessary that the device is able to authenticate
the user. Otherwise digital certificates can easily be stolen
by taking the device itself. Commonly, passwords are used
for this task. Depending on the required security level it
might be necessary to employ biometric identification
instead.

3.3.7. Privacy
Privacy is the right of individuals to control collection

and use of personal information about themselves. Unlike
security, which deals with safeguarding of information
from unauthorized users, privacy is concerned with the
amount of information known about an individual. Privacy
can often be guaranteed through security measures.

One of the main privacy concerns is protecting a user’s
anonymity. Monitoring network traffic or gaining access
to confidential personal data can compromise a user’s
anonymity. Not only must a system prevent spying and
monitoring, but users must also given control what
information is disclosed, to whom, and when. In particular,
it must be possible for an individual to stay anonymous if
so desired.

3.4. Conclusion

Ad hoc mobile systems, characterized by
decentralization and peer-to-peer interactions, must be
engineered for a number of often-conflicting requirements.
For example, we need to define solutions for particular
problems like data synchronization or security. Answers
will most likely take the form of algorithms and protocols.

Yet another important aspect of ad hoc mobile systems
is related to software engineering and the question of how
we can support the application developer. In order to
simplify the task of the application developer we need
high-level development support in the form of tools and
platforms. Among other things, such a platform must
include support for naming, communication, discovery,
security and privacy. It must define an application
environment that facilities the development and
deployment of ad hoc applications. In the following
chapter we will discuss such a platform.

First International Conference on Peer-to-Peer Computing (P2P'01), 2001.

4. Proem: A Mobile Peer-to-Peer Platform

4.1. The Vision and Goals of Proem

Proem is an open computing platform targeted at ad
hoc mobile information systems. It provides a complete
solution for developing and deploying collaborative peer-
to-peer applications for mobile ad hoc networks and
personal area networks.

The motivation for developing Proem arose from our
experiences in implementing a series of mobile
applications for face-to-face collaboration [9,10]. Over
time we identified enough commonalities among these
applications to merit the development of a generic
software platform. The objectives for Proem include:
▪ Adaptability: Proem is designed to facilitate rapid and

timely response to changes in the operating
environment, for example regarding connectivity and
resource availability.

▪ Universality: Proem is an infrastructure for building
diverse mobile communities ranging from MP3 file
sharing to instant messaging. In contrast to systems like
Napster or Gnutella, which are designed for one
particular purpose (mp3 file sharing), Proem provides
the building blocks for a wide range of peer
applications..

▪ Interoperability: Proem is designed to allow
interoperability between heterogeneous hardware and
software platforms.

▪ Platform independence: Proem is designed to be
independent of programming languages, system
platforms and networking platforms. We achieved this
goal by leveraging open web standards and
technologies like http, xml, mime, etc.

▪ Extensibility: Developers should be able to modify the
internal working of Proem’s core components.

▪ High-level development support: The most prominent
goal in designing Proem was to provide a simple yet
powerful development platform that facilitates the
implementation of mobile peer-to-peer applications.

4.2. Important Concepts and Terminology

Before we go into details of the Proem platform we
must first clarify some concepts that are fundamental for
its understanding.

4.2.1. Entities
The Proem architecture defines the following four

entity types where an entity can be seen as a named object:
▪ Peer: A peer is any autonomous, mobile host or device

taking part in a peer-to-peer relationship. In Proem

each peer is uniquely identified by a Uniform Resource
Identifier (URI) of the form proem://<peer-
name>

▪ Individual: An individual is a person who owns and
uses one or more peers. We assume mobile devices to
be personal devices that are not routinely shared. Any
person might use any number of peers, but each peer
belongs to only one individual.

▪ Data Space: A data space is a collection of data items
that are cooperatively owned and managed by a set of
peers. Data spaces are stored in a replicated fashion on
all peers that share them.

▪ Community: A community is a set of entities (peers,
individuals, data spaces and other communities). Each
entity can be a member of several communities
(including none) and each community can contain
members of different type. Communities can be used to
define access rights to data and functionality or simply
as a way to group entities. Examples of common
communities include:
 - The set of peers owned by a particular user
 - A set of individuals who are friends and who grant
 each other special access rights
 - The set of data spaces related to a particular project
 - The set of all entities related to a particular project:
 individuals, peers, data spaces.
The concept of communities is different from the
notion of groups as commonly defined in distributed
systems (including the peer-to-peer platform JXTA []).
A community is an open set of entities. Membership is
not controlled by the owner of the group (which might
be one particular member or the collective of all
members), but can be passed on by any member to any
other entity. As a consequence it is impossible to
determine the complete set of members of a
community: no single authority controls membership
and members can join at any time. Membership is
conferred upon an entity by passing along a secret
membership token that is unique to the conferring
entity.
Communities represent realms of trust. In order to
‘prove’ membership in a society, an entity has to
produce a minimal number of valid tokens that are also
known to the verifying entity. However, it is up to the
verifying entity to accept or reject tokens as proof. It is
up to each individual entity how much proof it requires
before it trusts another entity. Communities only
provide a mechanism for trust, policies can be defined
by individual peers or applications.

4.2.2. Identities, Names and Profiles
Entities are identified by names. Names are expressed

by Uniform Resource Identifiers (URI). Each entity can
have one or more names. For example, one and the same
peer can be known as proem:peer:0101 or as

First International Conference on Peer-to-Peer Computing (P2P'01), 2001.

proem:peer:2222. Multiple names provide for pseudo-
anonymity: since there is no central name repository it is
impossible to determine whether two different names refer
to the same or two different identities. Each name,
however, is unique and can only refer to one entity.

Proem provides a second way to refer to entities
besides using explicit names. Entities can indirectly be
referenced by profiles. A profile is an XML-based data
structure for describing Proem entities, i.e. meta-data. A
profile for an individual might contain his real name,
address and email address while a peer profile could
include a list of data spaces it has access to. Profiles
function as intentional names and are used to advertise the
presence of entities with particular attributes throughout a
network.

4.2.3. Protocols and Messages
At the highest abstraction level, Proem simply can be

viewed as a set of communication protocols that define the
syntax and semantics of messages that peers can exchange.
The definition and use of peer protocols guarantees
interoperability between implementations of the Proem
system on different hardware and software platforms.

Proem defines four protocols, one low-level transport
protocol and three higher-level protocols.

The Proem Transport Protocol is a connectionless
asynchronous communication protocol. Data is passed
from peer to peer in one atomic unit. The Proem Protocol
uses XML for representation of messages and can be
implemented on top of a variety of existing protocols such
as TCP/IP, UDP or HTTP. When an unreliable transport
protocol is used messages may be delivered more than
once, may not arrive at all, or may arrive in a different
order than sent. The reception of a message is not
acknowledged unless explicitly specified by the protocol.

Messages are the basic unit of communication between
peers. Messages are addressed to and are sent from one
peer to another. Messages are encoded as XML
documents. This allows peers to implement the protocol in
a manner best suited to its abilities and role. In particular,
Proem peers can be implemented in any programming
language and do not require a specific transport protocol.

A collection of peers that communicates using the
Proem Transport Protocol form a Proem network. Each
host that implements the protocol can become part of a
Proem network. In a Proem network, each peer operates
independently and asynchronously of any other peer.

The Proem core protocols are:
▪ The Presence Protocol contains messages that allow

peers to announce their presence and the availability of
entities throughout a network. The primary message
type of the presence protocol is profiles.

▪ The Data Protocol contains messages that allows peers
to share and synchronize data by means of data spaces.

▪ The Community Protocol contains messages for
applying for, granting and verifying community
membership.
In addition to these built-in protocols, application

developers can define their own application- specific
protocols. This way, Proem can be extended to support
MP3 file sharing or any other peer-to-peer application as
an extension to the base Proem protocol.

PeerPeer

PeerPeer

PeerPeer

PeerPeer
Peer Horizon = Visibility

M
ess

ages

Messages

Figure 1. Peer HorizonProem Platform

The Proem platform is a collection of tools, APIs and
runtime structures for developing and deploying
applications within the Proem framework. It currently
exists in form of a Java implementation [34].

The Proem platform currently consists of two
components:
▪ The Proem Runtime System is a proof of concept

implementation of a peer that ‘speaks’ the Proem
protocols. It consists of an implementation of the
Proem protocol stack and the Peerlet Engine. Peerlets
are simple structured peer-to-peer applications similar
in purpose to Java servlets that follow an event-based
programming model. Peerlets are the locus of
computation and function as communication end-
points. They are designed as drop-in modules and can
be added to and removed from the Peerlet Engine at
runtime. The peerlet engine in turn controls the
execution of peerlets. Peerlets react to and
communicate via events. The peerlet engine fires events
to peerlets as reaction to changes in its internal state or
as reaction to messages received by remote peers.
Peerlets are notified of and handle events
asynchronously.

▪ The Peerlet Development Kit (PDK) is a set of high-
level Java APIs for developing peerlets. The PDK
provides an extensive set of high-level APIs for
communication, event handling, and management of
entities.
 shows the relationship between peers, peerlet engine,

peerlets, messages and events.

First International Conference on Peer-to-Peer Computing (P2P'01), 2001.

Peerlets

Peerlet Engine

Peerlets

Peerlet Engine

Messages

Events

Peer Peer

Figure 2. Peer Architecture

4.3.1. Proem Runtime System
The Proem Runtime System is a proof-of concept

implementation of a Proem peer. It implements the Proem
protocol and manages the execution of peerlets.

 The overall architecture of a peer is shown in Figure 3.
It consists of three components:
▪ The Communication and Network Manager handles

basic tasks such as communication and security.
▪ The Peerlet Engine (Peerlet Container) is the run-time

environment for peerlets. It controls the execution of
peerlets and provides them with access to Proem
Services.

▪ The final component is made up of a set of Proem
Services. Facilities provided by services include
mechanisms for naming, discovery, security and event-
logging as well as management of user and trust related
information.

Context Manager

Discovery Manager

Peer Database

Resource Manager

Event Bus

Communication & Network Manager

Peerlet Container

S
e

rv
ic

e
 I

n
te

rf
a

c
e

Figure 3. Peer Architecture (add profile

manager and protocol manager)

The Proem Services are implemented by a number of

system components. These are:
▪ The discovery manager is responsible for announcing a

peer’s presence and for discovering nearby peers. The
meaning of “nearby” depends on the current network

topology and includes all peers that are reachable either
directly or indirectly.

▪ The context manager maintains information on peers
that are visible at each moment.

▪ The peer database maintains a persistent log on
encounters with other peers and allows peerlets to store
custom meta-information on peers. This enables
peerlets to determine when and how often a particular
peers has been encountered in the past.

▪ The resource manager allows peerlets to define
resources that they want to share with other peers. The
resource manager maintains a version history for each
resource and generates update notifications. It also
performs access control.

▪ The event bus enables event-based communication
among systems componets including peerlets. It
provides a publish and subscribe model that allows
anonymous exchange of data. System components and
peerlets can announce the availability of data item and
express interest in data by subscribing to update and
event notifications. Events are used by the discovery
manager to inform peerlets about encounters by
reporting the appearing or disappearing of peers.

▪ The profile manager maintains information about the
user and his/her relations to other users. This
information is used, for example, for establishing trust
relationships.

▪ The protocol manager maintains specifications of the
application-specific protocol supported by this peer.

All of these components are themselves implemented
as peerlets. This enables independent developers to change
the implementation of these system components by
replacing a system peerlet with their own version. This is
possible since peerlets are plug-in modules that can easily
be removed or installed.

4.3.2. Peerlet Development Kit (PDK)
The Peerlet Development Kit (PDK) is a collection of

Java interfaces and classes for rapid development of
peerlets. It enables independent programmers to develop
peerlets that can be installed and executed by the the
Peerlet Engine.

Important classes and interfaces include:
▪ Peer
▪ Peerlet
▪ Encounter
▪ ProemEvent
▪ ProemProtocol
▪ ProemMessage
▪ ProemService

The Proem Development Kit is available online at
http://wearables.cs.uoregon.edu/proem.

First International Conference on Peer-to-Peer Computing (P2P'01), 2001.

5. Related Work

5.1. Proem and Ad hoc Networks

Proem is a peer-to-peer platform for mobile ad hoc
networks. An ad hoc network is a wireless network formed
by nodes that cooperate with each other to forward packets
in the network. Examples include Bluetooth [14],
networks following the emerging IEEE 802.15 standards
for PANs [15], Genuity’s BodyLAN [16], and
Zimmermann’s intrabody network [17]. Most research on
ad hoc networks focuses on the lower layer of the protocol
stack including the link layer, network layer and transport
layer. The application layer is an area that still needs much
attention and we have yet to see many compelling
applications that exploit this network technology. We view
our work on impromptu collaboration and the Proem peer-
to-peer platform as an important step in this direction.

The most important issue in the development of mobile
peer-to-peer systems such as Proem is the integration of
functions and services provided by underlying ad hoc
networks. Ad hoc networks provide low-level functions
that span the following four areas:
▪ Device Discovery
▪ Routing
▪ Multicasting
▪ Information Dissemination
▪ Security

5.1.1. Discovery
In general, existing ad hoc networks only support

discovery of devices, not of services provided by these
devices as required for peer-to-peer systems. An
interesting discovery algorithm for ad hoc networks that
combines device and service discovery is DEAPspace
[31,32]. DEAPspace can detect the presence of
neighboring devices, share configuration and service
information with those devices, and notice when devices
become unavailable. Targeted for wireless ad hoc, single-
hop networks, this algorithm reduces the number of
transmissions required from individual devices.

5.1.2. Routing
Communication between arbitrary peers in a mobile

peer-to-peer network requires routing over multiple-hop
wireless paths. The main difficulty arises because without
a fixed infrastructure these paths consist of wireless links
whose end-points are likely to be moving independently of
one another. Consequently, node mobility causes the
frequent failure and activation of links, leading to
increased network congestion while the network routing
algorithm reacts to topology changes [19]. Routing has
been the single most active area ad hoc networking

research. These include [5], [22] [23], [24], [25], [26],
[27].

5.1.3. Multicasting
Multicasting is important for efficient dissemination of

data throughout a network. For example, service discovery
often relies on disseminating service advertisements to
interested partners. In wired IP networks multicasting uses
public multicast groups. Any host can join or leave a
multicast group at will. In ad hoc networks we are
interested in multicasting data to hosts based on specific
host properties. For example, [28] describes a multicast
routing protocol based on neighbor relationships; [29] use
roles to form multicast groups; and [30] use content as
criteria.

5.1.4. Information Dissemination
SPIN [21] is one of the first works towards building

adaptive protocols for information dissemination in ad hoc
networks. Each node advertises to its set of neighbors
whenever it has some interesting information. SPIN
optimize on the power consumption in the nodes.

5.1.5. Security
Not many ad hoc networks provide built-in security.

Bluetooth [14] is the rare exception. It provides a number
of built-in security measures including authentication and
encryption at the link layer. Four different entities are
used: a public address which is unique for each user, two
secret keys, and a random number which is different for
each new transaction. Unfortunately, Bluetooth provides
security only for connection-oriented communication, not
for connectionless packets. More importantly, because
Bluetooth does not use a Public Key Infrastructure (PKI),
secure relationships between Bluetooth devices must be
setup a priori and cannot be established dynamically.

5.2. Proem, Gnutella and the Transient Web

Gnutella [35,36] is the most prominent example of a
decentralized peer-to-peer system. It was developed to
provide capabilities similar to the file-sharing network
Napster and is mostly used for trading music and image
files. Unlike Napster, Gnutella does not use a central
server to keep track of all user files. Instead, messages are
transmitted in a decentralized manner: a peer sends a
search request to its ‘neighboring’ peers, who in turn pass
that request along to their ‘neighbors’ and so on.

Proem and Gnutella are similar in some respects:
▪ Both Proem and Gnutella are protocol-based, i.e. they

define an application level communication protocol.
▪ Both systems have a decentralized architecture
▪ In both systems, connections among peers are transient

However, there are significant differences:

First International Conference on Peer-to-Peer Computing (P2P'01), 2001.

▪ Proem is a general-purpose platform for building
arbitrary mobile peer-to-peer applications. The Gnutella
network, on the other hand, has been designed as
distributed file storage and for sharing files. One could
implement a system similar to Gnutella, but designed
for mobile devices and ad hoc networks using Proem.
This is in fact what our Software Engineering students
did [].
It is true, however, that Gnutella can be used for
purposes other than file-sharing, because it’s protocol
specification only defines the structure of messages, but
not how messages are to be handled by peers. A peer is
free to interpret a search string any way it wants. For
example the Gnutella network has successfully been
used as chat application. Nevertheless, unlike Proem,
Gnutalla does not provide any support for application
developers.

▪ Proem is designed for highly dynamic mobile
environments in which the network topology and
availability of resource is changing constantly. The
physical mobility of peers causes links to be established
and broken on a regular basis and with a high
frequency. A link will only exist as long as two peers
are within ear’s shot. Although we do not yet have
experimental data, we expect the average duration of an
encounter to be quite small and not exceed several
minutes or even seconds.
In Gnutella connections are transient as well. However,
the average time a Gnutella peer stays connected to the
network is much longer and ranges from several
minutes to several days. The reason that Gnutella peers,
which are mainly computers at home, go offline is
simply that they are shut down.

▪ Because Gnutella runs over the Internet, individuals can
connect directly to someone who is geographically far
away just as easily as with their immediate neighbor.
Thus, the number of peers a host can reach is
potentially very large. To limit traffic on the Gnutella
network each message carries a Time-to-Life (TTL)
indicator. Most Gnutella peers will reject any messages
which have TTL's that are excessively high.

▪ In Proem, however, connections are only possible
between geographically close peers. This is important
because it guarantees that the number of reachable
hosts is relatively small which in turn makes it feasible
to use multicasting or broadcasting mechanisms
provided by the underlying network.

▪ Gnutella’s architecture is completely decentralized –
with one important exception. When a Gnutella peer
wants to join the network it needs to connect to a
handful of other peers. These peers will become its
neighbors and will be the ones forwarding messages on
its behalf. The question is: how does a peer know
which other peers are around and which of those should
it chose as entry points into the network? Obviously,

since peers can come online or go offline at any time,
there is no way to know a priori which peers are
available at any time. The solution employed by most
(all?) Gnutella applications (like BearShare and
LimeWire) is to use a central host cache that maintains
a list of available hosts. This host cache is kept up-to-
date by peers already connected to the network. In other
words, peers must contact a central server before they
can join the Gnutella network. This solution is valid
and viable on the Internet, but not in ad hoc networks.
Proem truly is decentralized and employs a discovery
mechanism that continuously checks for newly arriving
or disappearing peers.

▪ Finally, Proem features built-in security. Gnutella in
contrast provides no security, but only pseudo-
anonymity for its users: the only data that could
identify users, namely IP addresses, are not propagated
throughout the network.

5.3. Proem and JXTA

Sun Microsystems’s JXTA [37,38] is an open-source
peer-to-peer platform that aims at making building
distributed processes easier. It provides a platform to
perform the most basic functionality required by any peer-
to-peer application: peer discovery and peer
communication.

JXTA’s approach is similar to Proem, but its focus is
different and its scope is more narrow (the first version of
Proem was released before JXTA was made public).

First, let’s look at some of the similarities:
▪ Both JXTA and Proem are protocol-based, i.e. they

define an application-level communication protocol.
▪ Both provide built-in security measures, although

JXTA’s is more elaborate at this point.
▪ Finally, both JXTA and Proem peer-to-peer platforms

as opposed to specific applications.
The differences between JXTA and Proem lie in the

following areas:
▪ Proem is designed for highly dynamic environments of

ad hoc networks where connectivity and resource
availabilities change constantly. JXTA strength is in
peer-to-peer applications for semi-stable environments
like the Internet.

▪ Proem supports the development of adaptable
applications that are aware of and can react to changes
in the environment. This is achieved by providing
feedback to applications about the QOS of resources.
The major goal of Proem is to provide effective and

high-level support for developers of adaptable peer-to-peer
applications. Proem’s Peerlet Development Kit makes it
especially simple to create new peer-to-peer and
significantly reduces the time it takes to develop a peer
application.

First International Conference on Peer-to-Peer Computing (P2P'01), 2001.

6. Conclusion and Future Research
Directions

The combination of emerging mobile ad hoc networks
and personal mobile devices enables the creation of mobile
peer-to-peer applications for proximity-based
collaboration.

Despite that fact that ad hoc networking and peer-to-
peer computing deal with similar issues, namely
discovery, routing and information dissemination, there is
not much overlap in the research. Most research on ad hoc
networks focuses on the lower layer of the protocol stack
including the link layer, network layer and transport layer.
On the other hand, current peer-to-peer systems are
designed for an Internet-like network infrastructure in
which stationary hosts are connected by high bandwidth
links. The assumptions on which these peer-to-peer
systems are built are no longer valid in dynamic ad hoc
networking environments. The unique characteristics of
such networks require highly adaptable peer-to-peer
systems that can react to changes in connectivity and
resource availability in a timely and ongoing manner. We
view the Proem mobile peer-to-peer platform as a step
towards an integration of both research areas.

The main goal of the Proem platform is to provide
high-level support for mobile peer-to-peer application
developers. The early experiences of using a prototypical
implementation of Proem in an advanced Software
Engineering course at the University of Oregon are
encouraging. Preliminary results suggest that students
were able to realize complex collaborative peer-to-peer
applications with great success and within a short time
frame. Among other applications, students developed
several impromptu MP3 file-sharing systems based on the
scenarios from Chapter 2.

Our future research will focus on the following areas:
First, we are working on a tighter integration of Proem

with services provided by underlying ad hoc networks.
Second, we are in the process of specifying and

implementing a security architecture for Proem. One of
the focal points will be the development of a fully
decentralized trust mechanisms using a public key
infrastructure and the use of reputations. Work in this area
has already begun [20].

7. References

[1] A. Alwan, R. Bagrodia, N. Bambos, M. Gerla, L. Kleinrock,
J. Short, J. Villasenor. Adaptive Mobile Multimedia Networks.
IEEE Personal Communications Magazine, 3(2), April 1996.
[2] Z.J. Haas. Panel report on Ad hoc Networks. Mobile
Computing and Communication Review, 2(1), 1997.
[3] D. C. Dryer, C. Eisbach, and W. S. Ark. At what cost
pervasive? A social computing view of mobile computing
systems. IBM Systems Journal, Vol 38, No. 4 - Pervasive

Computing
[4] E. M. Hallowell, "The Human Moment at Work," Harvard
Business Review, 58-66 (January-February 1999).
[5] Bin Yu and Munindar P. Singh, A Social Mechanism of
Reputation Management in Electronic Communities, Proceedings
of Fourth International Workshop on. Cooperative Information
Agents, pages 154-165, 2000
[6] Holmquist, L.E., Falk, J. and Wigström, J. Supporting Group
Awareness with Inter-Personal Awareness Devices. In Journal of
Personal Technologies, Special Issue on Hand-Held CSCW,
Springer Verlag, 1999
[7] Lenny Foner. Yenta: A Multi-Agent, Referral Based
Matchmaking System, The First International Conference on
Autonomous Agents (Agents '97), Marina del Rey, California,
February '97. Yenta
[8] Iwatani, Y. Love: Japanese Style. In Wired News, 11 June
1998. http://www.wired.com/news/culture/story/12899.html
[9] Gerd Kortuem, Zary Segall, Thaddeus G. Cowan Thompson.
Close Encounters: Supporting Mobile Cooperation Through
Interchange of User Profiles. 1st International Conference on
Handheld and Ubiquitous Computing (HUC), September 1999,
Karlsruhe, Germany.
[10] Gerd Kortuem, Jay Schneider, Jim Suruda, Steve Fickas,
Zary Segall. When Cyborgs Meet: Building Communities of
Cooperating Wearable Agents. Proceedings Third International
Symposium on Wearable Computers, 18-19 October, 1999, San
Francisco, California.
[11] Department of Computer Science, University of Oregon,
Advanced Software Engineering on Peer-to-Peer Computing,
Spring 2001. Course home page:
www.cs.uoregon.edu/classes/cis650
[12] (http://www.parthus.com/)
[13] Belotti, V. and Bly, S. (1996) Walking Away from the
Desktop Computer: Distributed Collaboration and Mobility in a
Product Design Team. In Proceedings of CSCW ’96, ACM Press
[14] Bluetooth Consortium web site, http://www.bluetooth.org
[15] IEEE 802.15 Working Group for PANs,
http://grouper.ieee.org/groups/802/15/index.html
[16] Phillip Carvey. BodyLAN. IEEE Circuits and Devices, V4
No 12 July 1996
[17] T. G. Zimmerman. Personal Area Networks: Near-field
intrabody communication. IBM Systems Journal Vol. 35, No.
3&4, 1996
[18] Gregory Alan Bolcer, Michael Gorlick, Arthur S. Hitomi,
Peter Kammer, Brian Morrow, Peyman Oreizy, Richard N.
Taylor Peer-to-Peer Architectures and the Magi™ Open-Source
Infrastructure http://www.peer-to-
peerwg.org/downloads/collateral/proposals/ETI_peer-to-peer.pdf
[19] J. J. Kistler and M. Satyanarayanan. Disconnected Operation
in the Coda File System. ACM Transactions on Computer
Systems, 10(1):3, February 1992
[20] Jay Schneider, Gerd Kortuem, Joe Jager, Steve Fickas, Zary
Segall. Disseminating Trust Information in Wearable
Communities. 2nd International Symposium on Handheld and
Ubitquitous Computing (HUC2K), Sept 25-27, 2000, Bristol,
England.
[21] Wendi R.Heinzelman, Joanna Kulik and Hari Balakrishnan.
Adaptive
protocols for information dissemination in wireless sensor
networks. In
Proceedings of MOBICOM’99, Seattle, pp 174-185.

First International Conference on Peer-to-Peer Computing (P2P'01), 2001.

[22] Charles E.Perkins and Elizabeth Royer. Ad hoc on demand
distance
vector routing. Internet Draft. http://www.ietf.org/internet-
drafts/draft-ietf-manet-
aodv-05.txt
[21] Charles E.Perkins and P.Bhagwat. Highly dynamic
destination sequenced distance vector routing for mobile
computers. In Proceedings of SIGCOMM’94, October 1994.
[23] Vincent D.Park and M.Scott Corson. A highly adaptive
distributed routing algorithm for mobile wireless networks.
Inproceedings of INFO-COM’97, 1997.
[24] Sinha P., Sivakumar R. and Bhargavan,V. CEDAR: A core
extraction distributed ad hoc routing algorithm. In Proceedings of
INFOCOM’99.
[25] R.Sivakumar, B.Das and Bhargavan V., An improved spine
based infrastructure for routing in ad hoc networks. In
Proceedings of IEEE Sym-posium of Computers and
Communications, 1998.
[27] Piyush Gupta and P.R.Kumar. A system and traffic
dependent adaptive routing algorithm for ad hoc networks. In
Proc. IEEE 36 the Conference on Decision and Control, pp 2375-
2380, Sandiego 1997.
[28] Seungjoon Lee and Chongkwon Kim, Neighbor Supporting
Ad Hoc Multicast Routing Protocol, MobiHOC 2000 Advance
Program, August 11, 2000, Boston, Massachusetts, USA
[29] Linda Briesemeister and Gunter Hommel. Role-Based
Multicast in Highly Mobile but Sparsely Connected Ad Hoc
Networks. MobiHOC 2000 Advance Program, August 11, 2000,
Boston, Massachusetts, USA
[30] Hu Zhou and Suresh Singh. Content Based Multicast
(CBM) in Ad Hoc Networks. MobiHOC 2000 Advance Program,
August 11, 2000, Boston, Massachusetts, USA
[31] Michael Nidd, Timeliness of Service Discovery in
DEAPspace. Proceedings of the 2000 International Workshop on
Parallel Processing
[32] Reto Hermann, Dirk Husemann, Michael Moser, Michael
Nidd, Christian Rohner, Andreas Schade. DEAPspace - Transient
ad hoc networking of pervasive Devices. Computer Networks 35
(2001) 411±428
[33] Theodoros Salonidis, Pravin Bhagwat, Leandros Tassiulas,
and Richard LaMaire. Distributed Topology Construction of
Bluetooth Personal Area Networks. Twentieth Annual Joint
Conference of the IEEE Computer and Communications
Societies, April 2001.
[34] Gerd Kortuem. Proem Peer-to-Peer Platform:
http://wearables.cs.uoregon.edu/proem
[35] Gnutella Protocol, version 0.4.
http://dss.clip2.com/GnutellaProtocol04.pdf
[36] Gene Kan. Gnutella. In Andy Oram (ed.) Peer-to-Peer:
Harnessing the Power of Disruptive Technologies. March 2001.
[37] JXTA web site: http://www.jxta.org/
[38] Project JXTA. Technical Specification 1.0.
http://www.jxta.org/project/www/white_papers.html
[39] Kraut, R., Lundark, V., Kiesler, S., Mukopadhyay, T., &
Scherlis, W. (1998). Internet paradox: A social technology that
reduces social involvement and psychological well-being?
American Psychologist, 53, p. 1017-1031
[40] Napster. http://www.napster.com/
[41] I. Clarke, O. Sandberg, B. Wiley, and T.W. Hong, Freenet:
A Distributed Anonymous Information Storage and Retrieval
System in Designing Privacy Enhancing Technologies:

International Workshop on Design Issues in Anonymity and
Unobservability, LNCS 2009, ed. by H. Federrath. Springer:
New York (2001).
[42] Groove Networks. http://groove.net/

