
 
Multi-Level Sensory Interpretation and Adaptation in a Mobile Cube 

 
Kristof Van Laerhoven, Nicolas Villar and Hans-Werner Gellersen 

Department of Computing 
Lancaster University 

LA14YR Lancaster, United Kingdom 
{kristof, villar, hwg}@comp.lancs.ac.uk 

 
 

 
Abstract. Signals from sensors are often analyzed 
in a sequence of steps, starting with the raw 
sensor data and eventually ending up with a 
classification or abstraction of these data. This 
paper will give a practical example of how the 
same information can be trained and used to 
initiate multiple interpretations of the same data on 
different, application-oriented levels. Crucially, the 
focus is on expanding embedded analysis 
software, rather than adding more powerful, but 
possibly resource-hungry, sensors. Our illustration 
of this approach involves a tangible input device 
the shape of a cube that relies exclusively on low-
cost accelerometers. The cube supports calibration 
with user supervision, it can tell which of its sides is 
on top, give an estimate of its orientation relative to 
the user, and recognize basic gestures. 
 
 
INTRODUCTION 
 
In short, our hypothesis can be summarized as: 
simple sensors combined with machine learning 
and modeling techniques can pose an improved 
alternative to a better, but more demanding sensor. 
This is achieved by taking the same data and 
interpreting it in multiple ways. 
 
Focusing on Microcontroller-Level Algorithms 
Computing components and sensors are becoming 
increasingly smaller, the power they expect 
decreases as well, and so does the cost. Because 
of these factors, designers of small mobile or 
wearable devices tend to spend a lot of their efforts 
focusing on the hardware components, ‘solving’ 
their problems in hardware. The capabilities of 
microcontrollers are increasing equally fast, 
however, up to the point where it has become 
possible to integrate rather powerful machine 
learning algorithms and artificial intelligence 
methods.  
 
Batteries have improved too, but with the rise of 
wireless devices, power problems still remain 
challenging, especially in mobile devices. Also 
other components, like displays for instance, have 
evolved a great deal over the past years, but they 
still need a significant amount of power. Both 
power issues and size constraints lead in our view 

to realistic incentives for paying more attention to 
the processing part in a design, and the possibility 
of starting with implementing more powerful 
algorithms at microcontroller level.  
 
Potential benefits of this approach include a 
reduced need for taxing hardware components, 
such as replacing expensive sensors with simpler 
ones plus adequate analysis algorithms.   
 
Exploiting Ambiguity in Sensor Signals 
Sensors provide de facto ambiguous information in 
multiple ways; research in sensor fusion and 
machine learning defines these as:  

• Registration Problem: what source they 
observe (e.g., if two cameras in the same room 
spot a red ball, is it the same object)? 

 
• Cocktail Party Problem: multiple sources are 

being picked up by a single sensor [06] (e.g., 
focusing on one person when multiple people 
are talking).  

 
• Interference and noise: various causes can 

distort the signal that is being picked up by the 
sensor(s), ranging from other sources to 
imperfect sensor design.    

 
More specific, this paper will concentrate on 
accelerometers, sensors that measure acceleration 
relative to the earth’s gravitational field. Because of 
their specific implementation, they measure both 
acceleration and orientation, rooted in a single 
output signal. This property makes them very 
suitable for this study. 
 
Normally, applications that use the accelerometer 
will filter out one of the two, ending up with true 
acceleration or orientation.  Here however, our aim 
is to exploit the nature of this sensor and analyze 
both sources in the signal. 
 

Application in Mobile Input Devices 
The application that we use to illustrate this 
concept is situated in the area of tangible, mobile 
interfaces: A small cube, fitted with a low-power 
microcontroller, a wireless radio transceiver, and 



acceleration sensors is used for basic input and 
navigation [04].  
 
Selection is made by putting the cube with a pre-
defined side on top, basic navigation is achieved 
by rotating the cube left, right, up or down, while 
additional ‘cube-gestures’ such as shaking, twisting 
and knocking the cube enable alternative 
selection.  
 
Crucial properties that were defined during the 
design phase of the cube were: 

• It is expected to work on the same batteries for 
long periods (in the order of months). 

 
• No wires are allowed, i.e. it needs to be self-

sufficient for power and communication. 
 
• It needs to be accurate enough to enable basic 

interaction in ubiquitous environments. 
 
• It needs to be able to survive long-term 

deployment in real-world. 
  
Most of these requirements were directly 
responsible for rejecting otherwise obvious sensors 
such as gyroscopes or beacon-based approaches. 
Implementing the cube with gyroscopes, for 
instance, would add 120 USD to the cost and 
about 18 mA (while the accelerometer setup only 
costs 10 USD, 0.8 mA).  
 
 
THE HARDWARE 
 
As mentioned in the introduction, the cube as an 
object has to remain small and robust enough for 
the users to handle it, and its operation needs to 
be accurate and autonomous so it can work 
accurately for long periods without requiring 
cabling for power and communication.  
 
The hardware is built around a Microchip PIC 
microprocessor (PIC18F252), which is small, fast 
(10 MIPS), consumes little energy (25 µA or 0.2 µA 
in standby), and is easy to interface to the sensors 
and communication module. The downside of 
choosing a microcontroller is that the software for 
processing the sensor data and broadcasting it via 
a wireless protocol has to fit in a tiny program 
memory (32Kbyte) and only has access to a small 
amount of data memory (1536 bytes).  

The PIC 18F252 has fourteen inputs for binary 
sensors and an analog-to-digital conversion unit 
that allows five analog sensors to be attached. Our 
objective, however, to keep the peripheral 
hardware as simple and low-cost as possible 
without giving in too much on performance, means 
that we used only simple sensors: 

• Two dual-axis accelerometers (ADXL311, [01]) 
measure both dynamic acceleration (e.g., 
vibration) and static acceleration (e.g., gravity) 
in a plane. The sensors’ ability to measure 
gravity gives us the opportunity to discriminate 
in contexts where acceleration may be zero 
(such as different positions of the cube). We 
used two accelerometers to get acceleration in 
three dimensions (X-Y and X-Z). 

 
• A set of QT110 capacitive proximity sensors to 

check whether the user is holding the cube, 
mainly designed to wake up the microcontroller 
from its standby mode. 

 
 

 
 

  
Figure 1. The communications board (top left), the 
sensor board (top right), and the hardware in a 
transparent case (bottom).  
 
The communications module is a Radiometrix 
BIM2 chip that transmits and receives data 
wirelessly (via FM) over an approximate range of 
fifty meters indoors. Its relatively low power 
consumption for an RF transceiver (~8 mA) and 
considerable data rate (64 kbps) make it an ideal 
interface between the cube and its surrounding 
applications.  
 

The hardware used in this paper consists of two 
boards (as shown in Figure 1) that stack on top of 
each other: One board makes up the core section, 
containing the microcontroller, communications 
module, and a coin-size Lithium cell on the bottom. 
The second board has the accelerometers and 
proximity sensor, plus a few empty slots for future 
sensors, should they be required. The total setup 
for one cube, including the printed circuit board 
and all components, costs about 50 USD.  



Similar to wireless keyboards and mice, the cube 
will only output information about itself to its 
environment when its internal state has changed or 
when a gesture has been performed, thus 
preserving the batteries as much as possible. The 
entire system supports a three volt Lithium coin-
cell battery, or two AAA batteries. The latter were 
used in our experiments and give a lifetime of 
approximately four months with the current 
embedded software and normal usage. 
 
THE ALGORITHMS 
 
Three kinds of analysis are implemented as 
algorithms in the cube: (1) A Gaussian Model for 
the sensor data for each of the six sides pointing 
upwards, (2) A Finite State Machine modeled from 
symmetric properties of the cube, and (3) A simple 
classifier for gesture recognition (see Figure 2 for 
an overview). The first and last algorithms are 
furthermore re-trainable, while the second is 
derived straight from the symmetric properties from 
the cube.  
 
 

 
Figure 2. The static acceleration component in the 
signal provides the input for estimating which of the 
cube’s sides is on top, while the dynamic acceleration 
component is used for distinguishing gestures.  

 
 
Multivariate Gaussians 
Gaussians in high-dimensional spaces are a 
common way to model a certain class of sensor 
data. In [04], it was shown that they are also low-
cost and practical to implement on microcontroller-
based platforms if implemented as a maximum 
likelihood estimation.  
 
For the specific case of the cube, six classes need 
modeling: one for each side being the one that is 
on top, similar to a die. [08] gives a step-by-step 
account of how to get to a concise formula to 
calculate the most likely class, straight from the 
sensor data: 
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where i varies from 1 to 6 for each of the sides, x is 
the vector with the sensor data, and µi and Σi the 
average vectors and covariance matrices for side i.    
In the cube’s case, four-dimensional vectors were 
used (one for each accelerometer, Figure 3 shows 
typical data in a time-series plot for each of the six 
sides of the cube being on top), which makes it 
near-impossible to visualize the Gaussians. Using 
dimension reduction, however, one can see that 
the six are, as expected, well-distributed over the 
input space (see Figure 4).  
 
The retraining of the Gaussian parameters is 
slightly more complex to implement than the 
maximum likelihood formula above, mainly 
because the latter has the inverse and logarithm 
naturalis of the determinant of the covariance 
matrices stored as constants. It is exactly these 
that have to be re-calculated in the re-training 
phase (see Tables 1 and 2 for the source code). 
 
 
 

Figure 3. Time series from the cube’s sensors, while 
placed on all six sides successively (labeled in the plot). 

 

  

 
Figure 4. Visualization of the Gaussians for all six sides. 
The line trace on the bottom is a trace plot of the 
readings while the cube was turned around from side to 
side (as in Figure 3). 
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Table 1. Source code for finding the most likely side up. 
 
 

With this first algorithm in place, it is not only 
possible for the cube to estimate on which side it 
has been placed, but also to retrain itself with help 
from the user.  
 
At the moment, re-training is done by sending an 
explicit command to the cube, after which the cube 
will prompt the user six times to place it on a side. 
One can imagine however, that the triggering of 
the re-train function might be implemented with 
gestures, which would not require a ‘debug’ tool.  
 

Table 2. Main source code structure for retraining the 
maximum likelihood parameters. 

 

Modeling the cube’s state 
The cube is known in mathematics as a 
hexahedron, from the group of polyhedrons, or 
more precisely isohedrons, consisting of six square 
sides, 8 vertices, 12 edges, and having numerous 
interesting properties (see [09] for a concise 
introduction). In this paper we have the additional 
properties of a die: the cube has opposite faces, 
which are labeled by number to always sum to 
seven. This gives two possible mirror image 
arrangements in which the numbers 1, 2, and 3 
may be arranged in a clockwise or 
counterclockwise order about a corner; we chose 
the clockwise arrangement.  
 
We define the state of our cube by two sides: the 
top side (the side of the cube that faces upwards) 
and the south side (the side of the cube that points 
towards the user). Figure 5a shows a sketch of a 
state, with the other sides marked as well. Using 
the cube’s symmetry, knowing these two sides is 
sufficient to know the orientation of all other sides. 
 
We define the transition from one state to another 
as: left, right, forward, or back by turning the cube 
left, right, away from the user, or towards the user. 
Figure 5b shows a sketch with these 4 transitions 
in the form of rotational arrows. 
 

 
Figure 5. Illustrations for the definitions of the state (left) 
and the transitions (right) of a cube. 
 
 
With these definitions in place, we can model a 
finite state machine, as depicted in Figure 6. The 
most important property of this model is that we 
need to know only the previous state and the 
current top state to detect which transition was 
made and which is the current state. This allows us 
to keep track of the state at all times by just 
searching for the most likely top side, and by 
starting with a known state! 
 
Table 3 shows how the finite state machine was 
actually implemented in the microcontroller, using 
two look-up tables: one for linking states to a (top 
side, south side) tupel, and another one for storing 
the actual transitions.  
 

 
// calculate temporary means  
    mx1 = x1 - mean[k][0];    mx2 = x2 - mean[k][1]; 
    mx3 = x3 - mean[k][2];    mx4 = x4 - mean[k][3]; 
// calculate 4d Mahalanobis: 
    mah1  = mx1*inv11[k]; mah1 += mx2*inv12[k];   
    mah1 += mx3*inv13[k]; mah1 += mx4*inv14[k];  
    mah1*=mx1;   mah2=mx1*inv12[k]+mx2*inv22[k];   
    mah2 += mx3*inv23[k]+mx4*inv24[k];  
    mah2 *= mx2;  mah3  = mx1*inv13[k]+mx2*inv23[k];   
    mah3 += mx3*inv33[k]+mx4*inv34[k];  
    mah3 *= mx3;  mah4  = mx1*inv14[k]+mx2*inv24[k];   
    mah4 += mx3*inv34[k]+mx4*inv44[k];  
    mah4 *= mx4; 
// add ln(det): 
    res = mah1 + mah2 + mah3 + mah4 + ln[k]; 
 // get the minarg: 
    if (res < prev_res) {     
     prev_res = res;   
     temp_min = k + 1;   
    } 
 
 
 

 
// calculate means and covariance matrix 
    mean[current_class][j] = 0; 
    for(j=0; j<4; j++){ 
      for(k=j; k<4; k++) cov[current_class][j][k] = 0; 
      for(i=0; i<MAX_SAMPLES; i++){ 
    mean[current_class][j] += samples[i][j]; 
                for(k=j; k<4; k++) 
                cov[current_class][j][k] += samples[i][j]*samples[i][k]; 
      }    
      for(k=j; k<4; k++) { 
         cov[current_class][j][k] /= MAX_SAMPLES;                        
         cov[current_class][j][k]+=((mean[current_class][j]  
           *mean[current_class][j])/MAX_SAMPLES); 
      } 
      mean[current_class][j]=(mean[current_class][j] 
            /MAX_SAMPLES);  
    }  
// calculate the determinant of the covariance matrix: 
    calc_det(current_class); 
// calculate the ln of the determinant (using Borchardt's): 
    ln[current_class] = 6*(detcov-1)/(detcov+1+4*sqrt(detcov)); 
// calculate the adjoint (=transpose of cofactor matrix): 
    calc_adj(current_class); 
// calculate the inverse of the covariance:  
    calc_inv(current_class); 
 
 

a) b) 



 
 
Figure 6. All possible state transitions in two interlinked 
graphs: Links between a state (rectangles) to the left, 
right, up, and down another state indicate a transition 
after rotating the cube to the left, right, forward, and 
backward respectively. A cube’s state X,Y is 
characterized by the top side X, and the south side Y. 
The smaller states specify links between the two graphs. 
Open links should be linked to the state on the other side 
of the graph: a left transition from 3,1 (in the upper-left of 
the second graph) links to 2,1 for example (upper-right of 
the same graph). 
 
 
Distinguishing gestures 
So far, the accelerometers have been used to just 
measure the cube’s orientation. However, dynamic 
acceleration can provide additional information: a 
basic set of gestures (shaking the cube, twisting it, 
and knocking on it) that give distinct signal patterns 
is used as additional means of input.  
 
Note that these gestures do not pose any 
restrictions on the orientation or position of the 
cube: An important requirement for the gestures is 
that they must be independent of the orientation of 
the cube itself, i.e. the gestures must be 
recognized regardless of the cube’s states 
(although they might be combined for the 
application). The other restrictions that applied in 
previous sections due to the microcontroller-based 
platform, such as limited memory, power, and 
processing resources, are valid for the gesture 
recognition algorithms as well.  

Table 3. Source code for finding the current state and 
the last transition, using 2 look-up tables (states, trans).  
 
 
 
Ideally, the gestures should be straightforward and 
familiar enough to a person that is handed the 
cube for the first time and asked to perform 
gestures like shaking, twisting or knocking on the 
cube, hence the choice for these three particular 
gestures. 
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Figure 7a. An example of accelerometer data while the 
cube is being shaken. 
 

 
// get the state id from the top side and the south side 
signed int trans_state(int prev_top_side, int prev_south_side) { 
  int previous_state = 0; 
  int1 found = 0; // int1 is just one bit 
  // calculate previous state id: 
   previous_state=0; 
   while ((previous_state<NUM_STATES) && (found==0)) { 
       if ((prev_top_side==states[previous_state][SD_TOP]   )&& 
       (prev_south_side==states[previous_state][SD_SOUTH])){ 
                found = 1; 
         } 
         previous_state++; 
   } 
   if (previous_state == NUM_STATES)  
        return -1; // bad!! 
   else return previous_state; // good! 
} 
 
// estimate the transition using the finite state diagram  
int get_state(int previous_state, int top_side) { 
  int ret = TR_BAD;   
  // calculate the top side of ...  
   if ( states[ trans[previous_state][0] ][SD_TOP] == top_side)     
        ret = TR_UP; else 
   if ( states[ trans[previous_state][1] ][SD_TOP] == top_side)  
        ret = TR_DOWN; else 
  if ( states[ trans[previous_state][2] ][SD_TOP] == top_side)      

        ret = TR_LEFT; else 
  if ( states[ trans[previous_state][3] ][SD_TOP] == top_side)      

        ret = TR_RIGHT; else ret = TR_BAD; 
  return ret;  
} 
------------------------- in main(): ----------------------------------------- 
// get the complete state of the cube (using the transitions): 
           previous_state = trans_state(previous_top_side,  
                                            previous_south_side); 
           if (previous_state != -1) { 
              transition = get_state(previous_state, top_side); 
              if (transition != TR_BAD) { 
                    current_state = trans[previous_state][transition]; 
                    south_side = states[current_state][SD_SOUTH]; 
              } 
            }        
-------------------------------------------------------------------------------- 
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Figure 7b. An example of accelerometer data while the 
cube is being twisted. 
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Figure 7c. An example of accelerometer data while the 
cube is being knocked on. 
 
The patterns of these three gestures have certain 
characteristics that are distinguishable enough 
from one another, and from a non-gesture (i.e. 
normal use of the cube without performing an 
actual gesture). The three examples in Figure 7 
show a high variation across the signals whenever 
a gesture is carried out, which validates the use of 
variance or standard deviation as a feature. A main 
difference between the shaking gesture and the 
twisting gesture is the number of sensors that give 
a strong variation, as shaking tends to be more 
unidirectional. The variance over a shorter time 
span is also key to distinguishing the knocking on 
the cube. 
 
Microcontroller-specific implementation 
Certain choices can reduce the amount of required 
memory significantly. Apart from the obvious need 
for well-chosen data types (8 bit integer, floating 
point, etc.), there are a few things that allow 
implementation of more interesting algorithms and 
a swift execution of the microcontroller program. 
 
One of these is the use of Borchardt’s formula to 
approximate the logarithm function: 
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which proved to be accurate enough in our case. 
Another one is the use of a running sum and a 
running sum of squares instead of calculating the 
variances each time over the whole window of n 
past samples. This works because: 
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By implementing the required algorithms in such 
an efficient way, all three discussed algorithms fit 
effortlessly in the 18F525 microcontroller. 
 
 
APPLICATIONS 
 
Profile Switching in Ubiquitous Environments 
The Innovative Interactions Lab at Lancaster 
University is a ‘living lab’ casual meeting area 
which is fitted with several large-screen displays, 
sensors, and a high-end 8-channel audio system.  
 

 
Figure 8. The equipment for controlling the audio 
system in Lancaster’s innovative interactions lab, which 
generally requires expertise to operate.  
 
The audio system is controlled through a mixer that 
is hooked up to a number of devices, such as a 
TV, a net-meeting environment, MiniDisc player, 
CD player and several input sockets positioned 
around the lab space. The audio system is located 
in a dedicated room, and using it for any of these 
applications means going to the mixing panel, 
switching the appropriate channels and setting the 
sliders to the required volume on the mixer. In 
practice, this requires expertise with not only the 
mixer settings, but also the entire audio system 
(including a dedicated PC, and a rack of audio 
equipment, see Figure 8).  
 
The cube is used here as a simple, tangible 
interface: anybody in the lab can set the audio 
system to one of the six most popular settings by 
placing the cube so that the side that relates to the 
desired appliance faces upwards. The cube’s 
output is sent to a base station that redirects and 
converts the packets to a MIDI stream that controls 
the mixing panel (see Figure 9 for a picture of the 
lab setup). This application does not use the 
abilities the cube to its full extend, but is deployed 
for a period of several months and is being used 
extensively by people on a daily basis. 
 



 
Figure 9. The television area of Lancaster’s innovative 
interactions lab, with the cube in front of it. Placing it so 
that the side with the TV-icon is on top will switch the 
audio system to the TV-channels.  
 
Basic Navigation 
 

  
Figure 10. The demonstrator in action, where a dot on 
the screen can be moved by turning the cube.  If a 
gesture is detected, a notification is displayed. 
 
At this point, basic navigation (up/down/left/right) of 
a dot on the screen (see Figure 10) with 
recognition of the aforementioned basic gestures, 
exists as a demonstrator to show the full abilities of 
the cube. We hope to further this research by 
combining case studies and experiments in user 
experience, as started in [07]. 
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