

Multi-Level Sensory Interpretation and Adaptation in a Mobile Cube

Kristof Van Laerhoven, Nicolas Villar and Hans-Werner Gellersen

Department of Computing
Lancaster University

LA14YR Lancaster, United Kingdom
{kristof, villar, hwg}@comp.lancs.ac.uk

Abstract. Signals from sensors are often analyzed
in a sequence of steps, starting with the raw
sensor data and eventually ending up with a
classification or abstraction of these data. This
paper will give a practical example of how the
same information can be trained and used to
initiate multiple interpretations of the same data on
different, application-oriented levels. Crucially, the
focus is on expanding embedded analysis
software, rather than adding more powerful, but
possibly resource-hungry, sensors. Our illustration
of this approach involves a tangible input device
the shape of a cube that relies exclusively on low-
cost accelerometers. The cube supports calibration
with user supervision, it can tell which of its sides is
on top, give an estimate of its orientation relative to
the user, and recognize basic gestures.

INTRODUCTION

In short, our hypothesis can be summarized as:
simple sensors combined with machine learning
and modeling techniques can pose an improved
alternative to a better, but more demanding sensor.
This is achieved by taking the same data and
interpreting it in multiple ways.

Focusing on Microcontroller-Level Algorithms
Computing components and sensors are becoming
increasingly smaller, the power they expect
decreases as well, and so does the cost. Because
of these factors, designers of small mobile or
wearable devices tend to spend a lot of their efforts
focusing on the hardware components, ‘solving’
their problems in hardware. The capabilities of
microcontrollers are increasing equally fast,
however, up to the point where it has become
possible to integrate rather powerful machine
learning algorithms and artificial intelligence
methods.

Batteries have improved too, but with the rise of
wireless devices, power problems still remain
challenging, especially in mobile devices. Also
other components, like displays for instance, have
evolved a great deal over the past years, but they
still need a significant amount of power. Both
power issues and size constraints lead in our view

to realistic incentives for paying more attention to
the processing part in a design, and the possibility
of starting with implementing more powerful
algorithms at microcontroller level.

Potential benefits of this approach include a
reduced need for taxing hardware components,
such as replacing expensive sensors with simpler
ones plus adequate analysis algorithms.

Exploiting Ambiguity in Sensor Signals
Sensors provide de facto ambiguous information in
multiple ways; research in sensor fusion and
machine learning defines these as:

• Registration Problem: what source they
observe (e.g., if two cameras in the same room
spot a red ball, is it the same object)?

• Cocktail Party Problem: multiple sources are

being picked up by a single sensor [06] (e.g.,
focusing on one person when multiple people
are talking).

• Interference and noise: various causes can

distort the signal that is being picked up by the
sensor(s), ranging from other sources to
imperfect sensor design.

More specific, this paper will concentrate on
accelerometers, sensors that measure acceleration
relative to the earth’s gravitational field. Because of
their specific implementation, they measure both
acceleration and orientation, rooted in a single
output signal. This property makes them very
suitable for this study.

Normally, applications that use the accelerometer
will filter out one of the two, ending up with true
acceleration or orientation. Here however, our aim
is to exploit the nature of this sensor and analyze
both sources in the signal.

Application in Mobile Input Devices
The application that we use to illustrate this
concept is situated in the area of tangible, mobile
interfaces: A small cube, fitted with a low-power
microcontroller, a wireless radio transceiver, and

acceleration sensors is used for basic input and
navigation [04].

Selection is made by putting the cube with a pre-
defined side on top, basic navigation is achieved
by rotating the cube left, right, up or down, while
additional ‘cube-gestures’ such as shaking, twisting
and knocking the cube enable alternative
selection.

Crucial properties that were defined during the
design phase of the cube were:

• It is expected to work on the same batteries for
long periods (in the order of months).

• No wires are allowed, i.e. it needs to be self-

sufficient for power and communication.

• It needs to be accurate enough to enable basic

interaction in ubiquitous environments.

• It needs to be able to survive long-term

deployment in real-world.

Most of these requirements were directly
responsible for rejecting otherwise obvious sensors
such as gyroscopes or beacon-based approaches.
Implementing the cube with gyroscopes, for
instance, would add 120 USD to the cost and
about 18 mA (while the accelerometer setup only
costs 10 USD, 0.8 mA).

THE HARDWARE

As mentioned in the introduction, the cube as an
object has to remain small and robust enough for
the users to handle it, and its operation needs to
be accurate and autonomous so it can work
accurately for long periods without requiring
cabling for power and communication.

The hardware is built around a Microchip PIC
microprocessor (PIC18F252), which is small, fast
(10 MIPS), consumes little energy (25 µA or 0.2 µA
in standby), and is easy to interface to the sensors
and communication module. The downside of
choosing a microcontroller is that the software for
processing the sensor data and broadcasting it via
a wireless protocol has to fit in a tiny program
memory (32Kbyte) and only has access to a small
amount of data memory (1536 bytes).

The PIC 18F252 has fourteen inputs for binary
sensors and an analog-to-digital conversion unit
that allows five analog sensors to be attached. Our
objective, however, to keep the peripheral
hardware as simple and low-cost as possible
without giving in too much on performance, means
that we used only simple sensors:

• Two dual-axis accelerometers (ADXL311, [01])
measure both dynamic acceleration (e.g.,
vibration) and static acceleration (e.g., gravity)
in a plane. The sensors’ ability to measure
gravity gives us the opportunity to discriminate
in contexts where acceleration may be zero
(such as different positions of the cube). We
used two accelerometers to get acceleration in
three dimensions (X-Y and X-Z).

• A set of QT110 capacitive proximity sensors to

check whether the user is holding the cube,
mainly designed to wake up the microcontroller
from its standby mode.

Figure 1. The communications board (top left), the
sensor board (top right), and the hardware in a
transparent case (bottom).

The communications module is a Radiometrix
BIM2 chip that transmits and receives data
wirelessly (via FM) over an approximate range of
fifty meters indoors. Its relatively low power
consumption for an RF transceiver (~8 mA) and
considerable data rate (64 kbps) make it an ideal
interface between the cube and its surrounding
applications.

The hardware used in this paper consists of two
boards (as shown in Figure 1) that stack on top of
each other: One board makes up the core section,
containing the microcontroller, communications
module, and a coin-size Lithium cell on the bottom.
The second board has the accelerometers and
proximity sensor, plus a few empty slots for future
sensors, should they be required. The total setup
for one cube, including the printed circuit board
and all components, costs about 50 USD.

Similar to wireless keyboards and mice, the cube
will only output information about itself to its
environment when its internal state has changed or
when a gesture has been performed, thus
preserving the batteries as much as possible. The
entire system supports a three volt Lithium coin-
cell battery, or two AAA batteries. The latter were
used in our experiments and give a lifetime of
approximately four months with the current
embedded software and normal usage.

THE ALGORITHMS

Three kinds of analysis are implemented as
algorithms in the cube: (1) A Gaussian Model for
the sensor data for each of the six sides pointing
upwards, (2) A Finite State Machine modeled from
symmetric properties of the cube, and (3) A simple
classifier for gesture recognition (see Figure 2 for
an overview). The first and last algorithms are
furthermore re-trainable, while the second is
derived straight from the symmetric properties from
the cube.

Figure 2. The static acceleration component in the
signal provides the input for estimating which of the
cube’s sides is on top, while the dynamic acceleration
component is used for distinguishing gestures.

Multivariate Gaussians
Gaussians in high-dimensional spaces are a
common way to model a certain class of sensor
data. In [04], it was shown that they are also low-
cost and practical to implement on microcontroller-
based platforms if implemented as a maximum
likelihood estimation.

For the specific case of the cube, six classes need
modeling: one for each side being the one that is
on top, similar to a die. [08] gives a step-by-step
account of how to get to a concise formula to
calculate the most likely class, straight from the
sensor data:

()iii
T

i xx
i

Σ+−Σ− − ln)()(minarg 1 µµ

where i varies from 1 to 6 for each of the sides, x is
the vector with the sensor data, and µi and Σi the
average vectors and covariance matrices for side i.
In the cube’s case, four-dimensional vectors were
used (one for each accelerometer, Figure 3 shows
typical data in a time-series plot for each of the six
sides of the cube being on top), which makes it
near-impossible to visualize the Gaussians. Using
dimension reduction, however, one can see that
the six are, as expected, well-distributed over the
input space (see Figure 4).

The retraining of the Gaussian parameters is
slightly more complex to implement than the
maximum likelihood formula above, mainly
because the latter has the inverse and logarithm
naturalis of the determinant of the covariance
matrices stored as constants. It is exactly these
that have to be re-calculated in the re-training
phase (see Tables 1 and 2 for the source code).

Figure 3. Time series from the cube’s sensors, while
placed on all six sides successively (labeled in the plot).

Figure 4. Visualization of the Gaussians for all six sides.
The line trace on the bottom is a trace plot of the
readings while the cube was turned around from side to
side (as in Figure 3).

Gaussian Model

Finite State Machine

Gesture classification

orientation

top side

gesture

Algorithms: Output:

ac
ce

le
ro

m
et

er
s

retraining Gaussian parameters

retraining gesture prototypes

Time (±10 milliseconds)

Se
ns

or
va

lu
es

 1 2 3

4 5 6

Table 1. Source code for finding the most likely side up.

With this first algorithm in place, it is not only
possible for the cube to estimate on which side it
has been placed, but also to retrain itself with help
from the user.

At the moment, re-training is done by sending an
explicit command to the cube, after which the cube
will prompt the user six times to place it on a side.
One can imagine however, that the triggering of
the re-train function might be implemented with
gestures, which would not require a ‘debug’ tool.

Table 2. Main source code structure for retraining the
maximum likelihood parameters.

Modeling the cube’s state
The cube is known in mathematics as a
hexahedron, from the group of polyhedrons, or
more precisely isohedrons, consisting of six square
sides, 8 vertices, 12 edges, and having numerous
interesting properties (see [09] for a concise
introduction). In this paper we have the additional
properties of a die: the cube has opposite faces,
which are labeled by number to always sum to
seven. This gives two possible mirror image
arrangements in which the numbers 1, 2, and 3
may be arranged in a clockwise or
counterclockwise order about a corner; we chose
the clockwise arrangement.

We define the state of our cube by two sides: the
top side (the side of the cube that faces upwards)
and the south side (the side of the cube that points
towards the user). Figure 5a shows a sketch of a
state, with the other sides marked as well. Using
the cube’s symmetry, knowing these two sides is
sufficient to know the orientation of all other sides.

We define the transition from one state to another
as: left, right, forward, or back by turning the cube
left, right, away from the user, or towards the user.
Figure 5b shows a sketch with these 4 transitions
in the form of rotational arrows.

Figure 5. Illustrations for the definitions of the state (left)
and the transitions (right) of a cube.

With these definitions in place, we can model a
finite state machine, as depicted in Figure 6. The
most important property of this model is that we
need to know only the previous state and the
current top state to detect which transition was
made and which is the current state. This allows us
to keep track of the state at all times by just
searching for the most likely top side, and by
starting with a known state!

Table 3 shows how the finite state machine was
actually implemented in the microcontroller, using
two look-up tables: one for linking states to a (top
side, south side) tupel, and another one for storing
the actual transitions.

// calculate temporary means
 mx1 = x1 - mean[k][0]; mx2 = x2 - mean[k][1];
 mx3 = x3 - mean[k][2]; mx4 = x4 - mean[k][3];
// calculate 4d Mahalanobis:
 mah1 = mx1*inv11[k]; mah1 += mx2*inv12[k];
 mah1 += mx3*inv13[k]; mah1 += mx4*inv14[k];
 mah1*=mx1; mah2=mx1*inv12[k]+mx2*inv22[k];
 mah2 += mx3*inv23[k]+mx4*inv24[k];
 mah2 *= mx2; mah3 = mx1*inv13[k]+mx2*inv23[k];
 mah3 += mx3*inv33[k]+mx4*inv34[k];
 mah3 *= mx3; mah4 = mx1*inv14[k]+mx2*inv24[k];
 mah4 += mx3*inv34[k]+mx4*inv44[k];
 mah4 *= mx4;
// add ln(det):
 res = mah1 + mah2 + mah3 + mah4 + ln[k];
 // get the minarg:
 if (res < prev_res) {
 prev_res = res;
 temp_min = k + 1;
 }

// calculate means and covariance matrix
 mean[current_class][j] = 0;
 for(j=0; j<4; j++){
 for(k=j; k<4; k++) cov[current_class][j][k] = 0;
 for(i=0; i<MAX_SAMPLES; i++){
 mean[current_class][j] += samples[i][j];
 for(k=j; k<4; k++)
 cov[current_class][j][k] += samples[i][j]*samples[i][k];
 }
 for(k=j; k<4; k++) {
 cov[current_class][j][k] /= MAX_SAMPLES;
 cov[current_class][j][k]+=((mean[current_class][j]
 *mean[current_class][j])/MAX_SAMPLES);
 }
 mean[current_class][j]=(mean[current_class][j]
 /MAX_SAMPLES);
 }
// calculate the determinant of the covariance matrix:
 calc_det(current_class);
// calculate the ln of the determinant (using Borchardt's):
 ln[current_class] = 6*(detcov-1)/(detcov+1+4*sqrt(detcov));
// calculate the adjoint (=transpose of cofactor matrix):
 calc_adj(current_class);
// calculate the inverse of the covariance:
 calc_inv(current_class);

a) b)

Figure 6. All possible state transitions in two interlinked
graphs: Links between a state (rectangles) to the left,
right, up, and down another state indicate a transition
after rotating the cube to the left, right, forward, and
backward respectively. A cube’s state X,Y is
characterized by the top side X, and the south side Y.
The smaller states specify links between the two graphs.
Open links should be linked to the state on the other side
of the graph: a left transition from 3,1 (in the upper-left of
the second graph) links to 2,1 for example (upper-right of
the same graph).

Distinguishing gestures
So far, the accelerometers have been used to just
measure the cube’s orientation. However, dynamic
acceleration can provide additional information: a
basic set of gestures (shaking the cube, twisting it,
and knocking on it) that give distinct signal patterns
is used as additional means of input.

Note that these gestures do not pose any
restrictions on the orientation or position of the
cube: An important requirement for the gestures is
that they must be independent of the orientation of
the cube itself, i.e. the gestures must be
recognized regardless of the cube’s states
(although they might be combined for the
application). The other restrictions that applied in
previous sections due to the microcontroller-based
platform, such as limited memory, power, and
processing resources, are valid for the gesture
recognition algorithms as well.

Table 3. Source code for finding the current state and
the last transition, using 2 look-up tables (states, trans).

Ideally, the gestures should be straightforward and
familiar enough to a person that is handed the
cube for the first time and asked to perform
gestures like shaking, twisting or knocking on the
cube, hence the choice for these three particular
gestures.

0 10 20 30 40 50 60 70 80 90 100
100

200

300

400

500

600

700

Time (+/- 10ms)

S
en

so
rv

al
ue

s

Figure 7a. An example of accelerometer data while the
cube is being shaken.

// get the state id from the top side and the south side
signed int trans_state(int prev_top_side, int prev_south_side) {
 int previous_state = 0;
 int1 found = 0; // int1 is just one bit
 // calculate previous state id:
 previous_state=0;
 while ((previous_state<NUM_STATES) && (found==0)) {
 if ((prev_top_side==states[previous_state][SD_TOP])&&
 (prev_south_side==states[previous_state][SD_SOUTH])){
 found = 1;
 }
 previous_state++;
 }
 if (previous_state == NUM_STATES)
 return -1; // bad!!
 else return previous_state; // good!
}

// estimate the transition using the finite state diagram
int get_state(int previous_state, int top_side) {
 int ret = TR_BAD;
 // calculate the top side of ...
 if (states[trans[previous_state][0]][SD_TOP] == top_side)
 ret = TR_UP; else
 if (states[trans[previous_state][1]][SD_TOP] == top_side)
 ret = TR_DOWN; else
 if (states[trans[previous_state][2]][SD_TOP] == top_side)

 ret = TR_LEFT; else
 if (states[trans[previous_state][3]][SD_TOP] == top_side)

 ret = TR_RIGHT; else ret = TR_BAD;
 return ret;
}
------------------------- in main(): ---
// get the complete state of the cube (using the transitions):
 previous_state = trans_state(previous_top_side,
 previous_south_side);
 if (previous_state != -1) {
 transition = get_state(previous_state, top_side);
 if (transition != TR_BAD) {
 current_state = trans[previous_state][transition];
 south_side = states[current_state][SD_SOUTH];
 }
 }
--

5,3

3,2

4,5

2,4

1,3

1,4

2,3

3,5

4,2

5,4

6,3

6,4

4,1
6,5 6,2

3,1
6,2 6,5

3,6

3,6
1,5

3,1

4,6
1,2

4,6 4,1

1,5

1,2

5,6

6,2

1,5

2,1

3,6

3,1

2,6

6,5

1,2

5,1

4,6

4,1

1,3
4,5 4,2

6,3
4,2 4,5

6,4

6,4
3,5

6,3

1,4
3,2

1,4 1,3

3,5

3,2

0 10 20 30 40 50 60 70
350

400

450

500

550

600

650

Time (+/-10ms)

S
en

so
rv

al
ue

s

Figure 7b. An example of accelerometer data while the
cube is being twisted.

10 20 30 40 50 60 70 80 90 100
200

300

400

500

600

700

800

900

Time (+/- 10ms)

S
en

so
rv

al
ue

s

Figure 7c. An example of accelerometer data while the
cube is being knocked on.

The patterns of these three gestures have certain
characteristics that are distinguishable enough
from one another, and from a non-gesture (i.e.
normal use of the cube without performing an
actual gesture). The three examples in Figure 7
show a high variation across the signals whenever
a gesture is carried out, which validates the use of
variance or standard deviation as a feature. A main
difference between the shaking gesture and the
twisting gesture is the number of sensors that give
a strong variation, as shaking tends to be more
unidirectional. The variance over a shorter time
span is also key to distinguishing the knocking on
the cube.

Microcontroller-specific implementation
Certain choices can reduce the amount of required
memory significantly. Apart from the obvious need
for well-chosen data types (8 bit integer, floating
point, etc.), there are a few things that allow
implementation of more interesting algorithms and
a swift execution of the microcontroller program.

One of these is the use of Borchardt’s formula to
approximate the logarithm function:

()
).(41

)1.(6log
xx

xx
++
−

≅

which proved to be accurate enough in our case.
Another one is the use of a running sum and a
running sum of squares instead of calculating the
variances each time over the whole window of n
past samples. This works because:

()
n

x
xx

n

i
in

i
i

2

1

1

2~var

−
∑

∑ =

=

By implementing the required algorithms in such
an efficient way, all three discussed algorithms fit
effortlessly in the 18F525 microcontroller.

APPLICATIONS

Profile Switching in Ubiquitous Environments
The Innovative Interactions Lab at Lancaster
University is a ‘living lab’ casual meeting area
which is fitted with several large-screen displays,
sensors, and a high-end 8-channel audio system.

Figure 8. The equipment for controlling the audio
system in Lancaster’s innovative interactions lab, which
generally requires expertise to operate.

The audio system is controlled through a mixer that
is hooked up to a number of devices, such as a
TV, a net-meeting environment, MiniDisc player,
CD player and several input sockets positioned
around the lab space. The audio system is located
in a dedicated room, and using it for any of these
applications means going to the mixing panel,
switching the appropriate channels and setting the
sliders to the required volume on the mixer. In
practice, this requires expertise with not only the
mixer settings, but also the entire audio system
(including a dedicated PC, and a rack of audio
equipment, see Figure 8).

The cube is used here as a simple, tangible
interface: anybody in the lab can set the audio
system to one of the six most popular settings by
placing the cube so that the side that relates to the
desired appliance faces upwards. The cube’s
output is sent to a base station that redirects and
converts the packets to a MIDI stream that controls
the mixing panel (see Figure 9 for a picture of the
lab setup). This application does not use the
abilities the cube to its full extend, but is deployed
for a period of several months and is being used
extensively by people on a daily basis.

Figure 9. The television area of Lancaster’s innovative
interactions lab, with the cube in front of it. Placing it so
that the side with the TV-icon is on top will switch the
audio system to the TV-channels.

Basic Navigation

Figure 10. The demonstrator in action, where a dot on
the screen can be moved by turning the cube. If a
gesture is detected, a notification is displayed.

At this point, basic navigation (up/down/left/right) of
a dot on the screen (see Figure 10) with
recognition of the aforementioned basic gestures,
exists as a demonstrator to show the full abilities of
the cube. We hope to further this research by
combining case studies and experiments in user
experience, as started in [07].

ACKNOWLEDGEMENTS

This research was funded by Equator IRC
(GR/N15986/01 - "Technological Innovation in
Physical and Digital Life") and under grant
GR/S08848/01 ("Multi-Sensor Perceptive
Interfaces in Wearable and Ubiquitous
Computing"), both by the EPSRC.

REFERENCES

[01] Analog Devices Inc. ADXL311 dual axis

accelerometer datasheet, 2003.
http://www.analog.com/Analog_Root/product
Page/productHome/ADXL311.html

[02] A.Y. Benbasat and J. A. Paradiso. “An
Inertial Measurement Framework for
Gesture Recognition and Applications”. In
Ipke Wachsmuth, Timo Sowa (Eds.),
Gesture and Sign Language in Human-
Computer Interaction, International Gesture
Workshop, GW 2001, London, UK, 2001
Proceedings, Springer-Verlag Berlin, 2002.

[03] M. Brand, N. Oliver, and A. Pentland.
Coupled hidden Markov models for complex
action recognition. In Proceedings of the
IEEE International Conference on Computer
Vision and Pattern Recognition, pages 994–
999, San Juan, Puerto Rico, 1997.

[04] O. Cakmakci, J. Coutaz, K. Van Laerhoven,
and H.-W. Gellersen. "Context Awareness in
Systems with Limited Resources". In Proc.
of the third workshop on Artificial Intelligence
in Mobile Systems (AIMS), ECAI 2002,
Lyon, France. 2002. pp. 21-29.

[05] K. Camarata, E. Y.-L. Do, B. R. Johnson,
and M. D. Gross. “Navigational blocks:
navigating information space with tangible
media”. In Proceedings of the 7th
international conference on Intelligent user
interfaces, pp. 32-38. ACM Press, 2002.

[06] E. C. Cherry, “Some experiments in the
recognition of speech, with one and two
ears”. Journal of the Acoustical Society of
America, 25, pp. 975-979. 1953.

[07] J. G. Sheridan, B. W. Short, G. Kortuem, K.
Van Laerhoven and N. Villar. "Exploring
Cube Affordance: Towards A Classification
Of Non-Verbal Dynamics Of Physical
Interfaces For Wearable Computing". In
Proceedings of the IEE Eurowearable 2003;
ISBN 0-85296-282-7; IEE Press.
Birmingham, UK, pp. 113-118.

[08] K. Van Laerhoven, N. Villar, A. Schmidt, G.
Kortuem and H.-W. Gellersen. "Using an
Autonomous Cube for Basic Navigation and
Input". In Proceedings of ICMI/PUI 2003.
ACM Press. Vancouver, Canada. 2003. To
appear.

[09] Weisstein, E. The Cube. World of
Mathematics. Online web resource.
http://mathworld.wolfram.com/Cube.html
August 2003.

