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Abstract

Optimal Resource Allocation In Base Stations for Mobile Wireless

Communications

Zhaoyu Zhong, B.Sc., M.Sc.

PhD thesis, May 2018

Department of Management Science

Lancaster University Management School

Telecommunications provides a rich source of interesting and often

challenging optimisation problems. This thesis is concerned with a series

of mixed-integer non-linear optimisation problems that arise in mobile

wireless communications systems.

The problems under consideration arise when mobile base stations have

an Orthogonal Frequency-Division Multiple Access (OFDMA)

architecture, where there are subcarriers for data transmission and users

with various transmission demands. In such systems, we simultaneously

allocate subcarriers to users and power to subcarriers, subject to various

constraints including certain quality of service (QoS) constraints called

rate constraints. These problems can be modelled as Mixed Integer

Non-linear Programmes (MINLP).

When we began the dissertation, we had the following main aims:

• To design an exact algorithm for the subcarrier and power allocation

problem with rate constraints (SPARC), the objective of which is to

maximise total data transmission rate of the entire system.

• To design an exact algorithm for the fractional subcarrier and

power allocation problem with rate constraints (F-SPARC) problem

in order to maximise system efficiency, i.e.: total data transmission

rate divided by total power supplied to the system.



• To design a heuristic algorithm for the F-SPARC problem.

• To design a heuristic algorithm for the SPARC problem in dynamic

settings, where user demand changes very frequently.

Along the way, however, we discovered a new approach to a broad family

of problems, which includes the F-SPARC as a special case. These

problems are called mixed-integer fractional programs with indicator

variables, and they are dealt with in Chapter 3.

6



Contents

1 Introduction 1

1.1 Mobile Wireless Communication . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Evolution of Multiple Access Schemes . . . . . . . . . . . . . . 3

1.1.2 Single-user OFDMA systems . . . . . . . . . . . . . . . . . . . 6

1.1.3 Multi-user OFDMA systems . . . . . . . . . . . . . . . . . . . 7

1.1.4 More complex multi-user problemss . . . . . . . . . . . . . . . 8

1.2 Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.1 Linear programming . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.2 Non-linear programming . . . . . . . . . . . . . . . . . . . . . 11

1.2.3 Mixed integer linear programming . . . . . . . . . . . . . . . . 14

1.2.4 Mixed integer non-linear programming . . . . . . . . . . . . . 17

1.2.5 Perspective Function and Perspective Cuts . . . . . . . . . . . 19

1.3 Research Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.3.1 Research questions . . . . . . . . . . . . . . . . . . . . . . . . 22

1.3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.3.3 Overview of papers . . . . . . . . . . . . . . . . . . . . . . . . 23

2 An Exact Algorithm for a Resource Allocation Problem in Mobile

Wireless Communications 24

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.1 Single-user systems . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.2 Multi-user systems . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Problem Definition and MINLP Formulations . . . . . . . . . . . . . 27

2.3.1 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.2 Initial convex MINLP formulation . . . . . . . . . . . . . . . . 27

2.3.3 Modified convex MINLP formulation . . . . . . . . . . . . . . 28

2.4 An Exact Algorithm for the SPARC . . . . . . . . . . . . . . . . . . . 29

i



2.4.1 A simple outer approximation algorithm . . . . . . . . . . . . 29

2.4.2 Perspective cuts . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4.3 Pre-Emptive Cut Generation . . . . . . . . . . . . . . . . . . . 33

2.4.4 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4.5 Warm-starting . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5 Computational Experiments . . . . . . . . . . . . . . . . . . . . . . . 36

2.5.1 Test instances . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.5.2 Experimental results . . . . . . . . . . . . . . . . . . . . . . . 37

2.5.3 Comparison with BONMIN . . . . . . . . . . . . . . . . . . . 39

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Bi-Perspective Functions for Mixed-Integer Fractional Programs with

Indicator Variables 41

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.1 Perspective functions . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.2 Perspective cuts . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.3 Optimisation in mobile wireless communications . . . . . . . . 43

3.3 Bi-Perspective Functions and Cuts . . . . . . . . . . . . . . . . . . . 44

3.3.1 Bi-P functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.2 Concave envelope . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.3 Bi-P cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Bi-P cuts and Multiple-Choice Constraints . . . . . . . . . . . . . . . 49

3.5 Application to OFDMA Systems . . . . . . . . . . . . . . . . . . . . 51

3.5.1 The problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5.2 Reformulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5.3 Bi-P cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.6 Computational Experiments . . . . . . . . . . . . . . . . . . . . . . . 55

3.6.1 Test instances . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.6.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . 56

3.6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.7 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

ii



4 A Heuristic for Maximising Energy Efficiency in an OFDMA System

Subject to QoS Constraints 59

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 The Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 The Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.1 The Basic Idea . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3.2 Improving with Binary Search . . . . . . . . . . . . . . . . . . 63

4.3.3 Improving by Reallocating Power . . . . . . . . . . . . . . . . 63

4.4 Computational Experiments . . . . . . . . . . . . . . . . . . . . . . . 65

4.4.1 Test Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5 A Heuristic for Dynamic Resource Allocation in Overloaded OFDMA

Systems 68

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.3 A Stochastic Dynamic Version of the SPARC . . . . . . . . . . . . . 71

5.3.1 Instance data . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3.2 Objective function . . . . . . . . . . . . . . . . . . . . . . . . 72

5.4 The Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.4.1 Initial solution . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.4.2 Local search . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.4.3 Extension to the dynamic case . . . . . . . . . . . . . . . . . . 76

5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.5.1 Test Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6 Conclusions and Future Work 81

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.2 Suggestions for Future Work . . . . . . . . . . . . . . . . . . . . . . . 82

Bibliography 84

iii



Chapter 1

Introduction

Mobile wireless devices include cell phones, smartphones and tablets. Since the 1980s,

when the first generation of mobile wireless networks (1G) was established, the use

of such devices has become far more widespread, to the point that they are now an

indispensable part of a developed society.

1G networks were unstable, and only voice transmission was possible. 2G net-

works brought additional activities such as SMS and browsing text-only webpages.

However, 2G networks only allowed data transmission at a peak rate of around

0.5Mbps. These networks pale in comparison to the peak rate of the current 4G net-

works which can exceed 300Mbps. Thanks to the rapid evolution in infrastructure,

mobile devices are now capable of handling multi-media activities such as live stream-

ing. Another recent development is the Internet of Things (IoT), in which everyday

devices such as televisions, central heating systems or refrigerators, are connected to

the Internet.

As the demand for higher transmission rates continues to climb, access to useful

frequency bands in the electromagnetic spectrum (a.k.a. bandwidth) is becoming

scarce and expensive. In this context, mathematical optimisation is of critical im-

portance for finding improvements in both efficiency and effectiveness of bandwidth

use. This is true for long-term (so-called “strategic”), medium-term (“tactical”) and

short-term (“operational”) planning (see [64]).

In this thesis, we consider a family of operational problems which arise in mo-

bile wireless communications. These problems are concerned with the allocation of

resources (typically power and bandwidth) in order to handle incoming user requests.

In the following sections of this chapter, we introduce some essential background and

terminology for the two key subjects involved in the thesis: mobile wireless commu-

nications and optimisation. Concluding the chapter, an overview of the following

chapters is given.
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Figure 1.1: Cellular network model.

1.1 Mobile Wireless Communication

In mobile wireless networks, mobile devices (or users) transmit data over carrier

waves and are connected to each other by base stations. A base station is a device

(or building) with antennae to send and receive calls, texts and multi-media data to

and from all devices within its coverage. Mobile phones transmit data to the base

station which offers the strongest signal.

The coverage which base stations offer is dependent on many factors such as

power supply and graphical characteristics. For best coverage, each base station is

assigned a specific coverage area, called a cell. A mobile wireless network can be very

complicated due to base stations of various sizes and controllers manipulating data

transmission between regions. We show a cellular network model in Figure 1.1 with

macro base stations (m-BS) and small base stations (s-BS). The cells are represented

by small circles.

Cells of different base stations may slightly overlap in order to maximise inte-

grated coverage. However, a mobile phone can only be connected to one base station

at a time. Users may experience situations where calls are interrupted while travel-

ing from one region to another. It’s likely that the user is switching from one base

station to another, and the latter base station needs time to allocate resources to the

new user. Therefore, improving the allocation of resources such as power and carrier

waves in mobile telecommunications has been of great concern during the past few

decades.
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Figure 1.2: Principle of FDMA (with 5 sub-channels)

1.1.1 Evolution of Multiple Access Schemes

Multiplexing is the technology by which voice or data from multiple users can be

transmitted on a shared frequency spectrum. Multiple access schemes are the inter-

faces applied in mobile networks based on a multiplexing technique. There have been

a number of multiple access schemes applied during the history of mobile communi-

cations.

1G mobile networks used Frequency-Division Multiple Access (FDMA), which is

based on Frequency-Division Multiplexing (FDM). In an FDMA system, data from

each user are transmitted via one or several allocated individual sub-channels (see

Figure 1.2). Each sub-channel is on a dedicated frequency, and can be only used

by one user. In order to prevent interference between sub-channels, there are gaps

between each pair of sub-channels. These are called guard bands. Despite FDMA

having advantages such as simple implementation, its disadvantages far outweigh

them. Guard bands between sub-channels, used to avoid interference, result in a waste

of spectrum. Furthermore, the quality of transmission in 1G analogue networks was

not guaranteed when users were physically close to each other. FMDA soon became

redundant in mobile wireless communications.

The second generation of mobile wireless communications transited from ana-

logue to digital technology. Time-Division Multiple Access (TDMA), a scheme based

on Time-Division Multiplexing (TDM), was applied in 2G networks enabling simple

data transmission services. In TDMA systems, data of all users are transmitted over

the same frequency but in individual short time slots. In each time slot, the data

of only one user can be transmitted (see Figure 1.3. TDMA allowed transmission of

data from multiple users on the same frequency, but not simultaneously.

Code-Division Multiple Access (CDMA), based on Code-Division Multiplexing

(CDM), had been implemented in some 2G networks before it came into the main-

3



Figure 1.3: Principle of TDMA (with 5 time-slots)

Figure 1.4: Principle of CDMA (with 5 spreading codes)

Figure 1.5: Bandwidth utilisation in FDM and OFDM multiplexing
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Figure 1.6: OFDMA subcarriers allocation over time

stream during the 3G era. CDMA enables data of more than one user to be trans-

mitted on the same frequency, at the same time, by allocating a random spreading

code to each user (see Figure 1.4). In a CDMA network, data from all users are

transmitted at the same rate. This is not an optimal solution due to users having

varying demands.

As the demand for higher data transmission rate increased, the Orthogonal

Frequency-Division Multiplexing (OFDM) technique was proposed. OFDM is based

on FDM. However, a frequency is divided into many orthogonal carriers to carry

an information stream. All carriers are orthogonal to one another to avoid inter-

ference, so on a fixed bandwidth there can be more carriers than FDM carriers for

data transmission (see Figure 1.5). Meanwhile, the orthogonal distribution of carriers

eliminated guard bands between FDM carriers for interference prevention.

Orthogonal Frequency-Division Multiple Access (OFDMA) is an accessing scheme

based on the OFDM technique, and is widely applied in the current 4G Long Term

Evolution (LTE) networks. It is the multi-user version of OFDM. By further dividing

carriers into subcarriers and allocating subcarriers to different users, multiple access is

achieved. While OFDMA may assign an individual user more than one subcarrier, a

subcarrier can only be assigned to one single user. The allocation will vary depending

on the number of users in the system, and the demand of each user.

Figure 1.6 shows subcarrier allocation changes over time. We can see that, at the

initial time slot, 8 subcarriers were evenly allocated to User 0 and User 1. However,

5



the two users left the system in the next time slot and all subcarriers were allocated

to User 2. The adaptive subcarrier allocation in OFDMA systems is recognised as an

efficient multiple access approach for wireless networks.

All four papers in this thesis are based on the OFDMA scheme. The subcarrier

and power allocation problem in OFDMA systems will be introduced in subsection

1.1.2–1.1.4.

1.1.2 Single-user OFDMA systems

Data are transmitted over subcarriers in OFDMA networks and there are many factors

which affect the transmission rate. The commonly known Shannon-Hartley theorem

in information theory tells the capacity of a subcarrier (i.e. theoretical maximum

bit-rate that can be transmitted, see [45]) given its bandwidth and noise. It states

that:

C = B log2(1 +
p

N
) bits/second, (1.1)

where C is subcarrier capacity, B is subcarrier bandwidth measured in Hertz, p is

power in Watts supplied to the subcarrier and N is noise in Watts on that subcarrier.

For a given subcarrier, its bandwidth B is usually a known constant. Noise on

subcarriers varies from time to time, but for simplification we use the average noise

of that subcarrier, so that we will have a non-linear function of C against p.

Consider an OFDMA system where there is one user and a set |I| of subcarriers,
and each subcarrier i ∈ I has its own bandwidth Bi and noise power Ni. If we

allocate pi watts of power to subcarrier i, the data rate for that subcarrier will be

Bi log2(1+pi/Ni), which we denote by fi(pi). A natural optimisation problem is then

to maximise the total data rate subject to an overall power limit P . This can be

formulated as the following NLP:

max

󰀫
󰁛

i∈I

fi(pi) :
󰁛

i∈I

pi ≤ P, p ∈ R|I|
+

󰀬
. (1.2)

Since the functions fi(pi) are concave, this NLP can be solved efficiently by any

standard technique for convex optimisation (see, e.g., Boyd & Vandenberghe [8]).

It can also be solved by a specialised iterative technique called water filling; see,

e.g., [12, 27].The idea behind water-filling is to view the individual subcarriers as

containers and the available power as water that is to be poured into those containers.

Subcarriers with higher signal-to-noise ratio are viewed as larger containers. The

algorithm starts with all containers empty, and then iteratively pours water into
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non-full containers at a constant rate. From a formal point of view, water-filling

can be regarded as a variant of the steepest-ascent (a.k.a. gradient or hill-climbing)

method. For brevity, we do not introduce details of the algorithm, but one can find

a comprehensive example at [1].

1.1.3 Multi-user OFDMA systems

As mentioned in subsection 1.1.1, OFDMA systems are multi-user systems, and each

subcarrier can be assigned to an arbitrary user. Now we discuss problem 1.2 in a

multi-user scenario.

Suppose we have subcarrier set I and user set J , a bandwidth Bi > 0 and noise

Ni > 0 for each i ∈ I, and a power limit P > 0. The task is to allocate subcarriers

to users, and power to subcarriers, in order to maximise the total data rate, subject

to a constraint stating that the total power must not exceed P .

We formulate the problem as an MINLP (see 1.2.4 for an introduction). For all

i ∈ I and j ∈ J , let xij be a binary variable, taking the value 1 if and only if user j is

assigned to subcarrier i. Also let pij be a continuous variable, taking the value zero

if xij = 0, but otherwise representing the amount of power supplied to subcarrier i.

We then have:

max
󰁓

i∈I
󰁓

j∈J fi(pij) (1.3)

s.t.
󰁓

i∈I
󰁓

j∈J pij ≤ P (1.4)
󰁓

j∈J xij ≤ 1 (∀i ∈ I) (1.5)

pij ≤ Pxij (∀i ∈ I, j ∈ J) (1.6)

pij ∈ R+ (∀i ∈ I, j ∈ J) (1.7)

xij ∈ {0, 1} (∀i ∈ I, j ∈ J). (1.8)

The objective function (1.3) represents the total data rate. The constraint (1.4)

imposes the power limit. The constraints (1.5) ensure that each subcarrier is allocated

to one user at most. The constraints (1.6), called variable upper bounds (VUBs),

ensure that pij is zero whenever xij is zero. The remaining constraints are the usual

non-negativity and binary conditions.

Although this problem is an MINLP, it can be solved easily. Indeed, all we have

to do is solve the problem (1.2), and then assign each subcarrier to an arbitrary

user. In practice, however, one often encounters more complex variants of this basic

problem, which are much harder to solve in both theory and practice. We review the

main problem variants in the next subsection.
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1.1.4 More complex multi-user problemss

The first problem that we focus on in this thesis is that of simultaneously allocating

subcarriers to users and power to subcarriers, subject to certain quality of service

(QoS) constraints called rate constraints, in order to maximise the total data trans-

mission rate. We call this problem the subcarrier and power allocation problem with

rate constraints (SPARC) problem.

If we let J denote the set of users, then the total data rate for that user will

be
󰁓

i∈I fi(pi). The constraint 1.6 ensures that pij = 0 when i /∈ Sj, therefore
󰁓

i∈I fi(pi) =
󰁓

i∈Sj
fi(pi). We add an extra constraint to the multi-user OFDMA

problem so that data rate for user j should be at least the demand of user j, which

we denote by ℓj: 󰁛

i∈I

fi(pij) ≥ ℓj (∀j ∈ J). (1.9)

There are many papers on such optimisation problems in OFDMA systems.

Wong & Cheng [82] minimise total power subject to individual quality of service

(QoS) constraints that impose a lower bound on the data rate for each user. Rhee &

Cioffi [65] achieve QoS in a different way, by maximising the minimum data rate over

all users, subject to a limit on total power. Kim et al. [41] consider the problem of

maximising total data rate subject to a total power limit. Shen et al. [73] add a global

QoS constraint to that problem. Seung et al. [70] enforce QoS by giving each user

a weight, and maximising a weighted sum of the data rates. Yu & Lui [87] consider

an extension of the problem in [70], in which there is interference between channels.

Tao et al. [76] take the problem in [41], add rate constraints, and also consider an

extension in which transmissions can suffer delays.

More recently, perhaps driven by environmental considerations, authors have

focused on maximising energy efficiency, which is defined as total data rate divided

by total power (e.g., [23, 34, 79, 84, 85, 88]). Therefore, the second problem we will

introduce in this thesis is the fractional subcarrier and power allocation problem with

rate constraints (F-SPARC) problem, continuing this trend. The F-SPARC problem

is very similar to the SPARC problem, but with objective function being maximising

energy efficiency, which is defined as total data rate divided by total power supplied

to the system:

max

󰁓
i∈I

󰁓
j∈J fi(pij)

σ +
󰁓

i∈I
󰁓

j∈J pij
. (1.10)

Most of the aforementioned problems are proved to be NP-hard in the strong

sense (see [32, 52, 53]), we conjecture that both the SPARC and F-SPARC problems

8



are NP-hard in the strong sense as well. However, the function fi is concave over the

domain [0, P ] for all i ∈ I. As a result, the objective function (1.3) is concave. This

means that the problem is convex, therefore, its continuous relaxation can be solved

efficiently via convex programming techniques.

1.2 Optimisation

Optimisation, also known as mathematical programming, is a discipline branched from

applied mathematics, the goal of which is finding the best solutions for real-world

problems using mathematical tools.

Optimisation has been widely applied in a number of fields including transporta-

tion, manufacturing, inventory control, scheduling, and networking. Developments in

telecommunications has also provided a rich source of optimisation problems, includ-

ing our SPARC and F-SPARC problems (see [64]).

A typical optimisation problem often consists of an objective function, variables

and various constraints. Solving an optimisation problem means finding values of the

variables that maximise or minimise the objective function, subject to all constraints.

A basic optimisation problem takes the form

max f0(x)
s.t. fi(x) ≤ 0 i = {1, ...,m},

x ∈ X
(1.11)

where x is the variable vector, X is the domain of the variables (continuous, inte-

ger, binary, or some mixture), function f0 : Rn → R is the objective function, and

functions fi : Rn → R, i = {1, ...,m} are the constraints. A solution is feasible if

it satisfies all m of the constraints, and the area formed by all feasible solutions is

called the feasible region. If the problem is to minimise the objective function, one

can easily multiply the objective function by −1. Equation constraints can also be

added to an optimisation problem, but they are not covered in this thesis.

In this section, we will introduce common optimisation problems involved in this

paper.

1.2.1 Linear programming

The most fundamental optimisation problem is the linear programming (LP) problem,

which takes the form

9
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Figure 1.7: Feasible region of LP example bounded by five constraints

max cTx
s.t. Ax ≤ b

x ≥ 0,
(1.12)

where A is a matrix of constants, c and b are column vectors, x is the variable vector,

b and c are vectors of given coefficients.

We show an example of a maximisation LP problem here with its feasible region

plotted on a 2D graph shown in figure 1.7:

max x1 + x2

s.t. −2x1 + 2x2 ≤ 3
2x1 − 2x2 ≤ 5

−6x1 − 10x2 ≤ −15
2x2 ≤ 5

4x1 + 2x2 ≤ 15
x1, x2 ≥ 0

(1.13)

It is proven in [60] that if a linear programming problem has one or more points

which maximises (or minimises in minimisation problems) the objective function,

then at least one of those points is the extreme point. It is also shown that if an

extreme point is not the optimal solution, there must be an edge which has a better

solution on the other side connected to this point. Solutions on extreme points are

called corner point solutions. In the case of problem (1.13), the corner point solutions

are {(0, 1.5), (1, 2.5), (2.5, 0), (1
3
, 5
6
), (2.5, 2.5)}, and the optimal solution is (2.5, 2.5).

A very effective algorithm called the simplex method was proposed by Dantzig in 1947

to solve linear programming problems by searching corner point solutions.

The simplex method first finds a corner point solution by solving a system of

simultaneous linear equations, and then checks whether that solution is optimal. If it

10



is not, then it searches all edges connected to this point to find the one which offers

the best corner point solution and moves to that extreme point. The algorithm stops

once the optimal solution has been found.

Unfortunately, simplex method is not a polynomial-time algorithm (see [43]), and

can encounter difficulties when solving large-scale LP problems. A few techniques has

been proposed for those LPs.

Benders decomposition, also known as row generation, is a technique for solving

LP problems with block structures (see [4,14]). Firstly, it divides all variables into two

subsets, and solves a master problem based on one subset of variables. Some variable

values of the optimal solution from this stage will be fixed and a sub-problem will be

formulated with the other subset of variables. For those given fixed variable values,

if the subproblem is infeasible, Benders cut will be added to be master problem in

order to reduce searching space. The process will continue until no Benders cuts can

be generated.

Column generation is another technique widely used to solve LP problems with

a large number of variables (see [14]). A master problem is derived from the original

problem and only considers a subset of variables. A subproblem is then created to

identify a new variable to add to the master problem, utilising reduced cost in duality

theory. The algorithm keeps adding new variables when its reduced cost is negative

and will stop when no variables can be added to the master problem.

Several other algorithms have been proven to run in polynomial time (e.g.,

Khatchian’s ellipsoid method in [40], and the Karmarkar’s projective method in [36]).

Therefore, in computational complexity theory, LP problems are classified as P prob-

lems, which means they can be solved in polynomial time, such that the time to solve

the problem increases as a polynomial function as the size of the input increases. An

LP problem of reasonable scale is often easy to solve by most solvers available.

1.2.2 Non-linear programming

In contrast to linear programming, a problem is a non-linear programming (NLP)

problem if the objective function or any of the constraints in problem (1.11) is not

linear.

Non-linear programming problems are generally much more difficult to solve than

LP problems. For some NLP problems, there are no known algorithms to solve in

polynomial time, but if a solution is provided, it is possible to verify the solution

in polynomial time. Those problems are classified as NP problems. However, most

NLP problems are in the class of NP-hard, meaning they are at least as complex as

11
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Figure 1.8: A convex function (left) and a non-convex one (right)

the most difficult NP problems (NP-complete problems). Although not yet proven,

it is widely believed that there are no polynomial-time algorithms for NP-complete

problems.

One important type of NLP optimisation problem is the convex optimisation

problem. While convex optimisation is now a somewhat mature technique, it has been

proven in [61] that a non-linear programme with a non-convex quadratic function is

NP-hard even when the only constraints present are non-negativity constraints.

We now present definitions related to convex optimisation before we can explain

further.

Definition 1 A function f : X → R is convex if:

f
󰀃
tx1 + (1− t)x2

󰀄
≤ tf(x1) + (1− t)f(x2) ∀x ∈ X, ∀t ∈ [0, 1].

Definition 2 A function f : X → R is concave if -f is convex.

Definition 3 A set C is convex if for any two points x1, x2 ∈ C and any θ in [0, 1],

we have:

θx1 + (1− θ)x2 ∈ C.

Definition 4 A problem is a convex optimisation problem if it takes the form (1.11)

and functions fi, i = {0, ...,m} are all convex functions.

Definition 5 A point x∗ is a global maximum of f if f(x∗) ≥ f(x) ∀x ∈ S, where S

is the feasible region.

The property which makes convex optimisation problems easier to solve than

non-convex optimisation problems is that any one of its local optima is also the global

optimum (See Figure 1.8). Global optimum is referred to as the truly optimal solution

12
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over the whole feasible region, whereas local optima are the best solutions among a

subset of the feasible region. Therefore, when minimising a non-convex objective

function f , one can utilise a convex function which underestimates or equals f in the

same domain. The convex function is the convex envelope of the non-convex function

f . On the other hand, concave envelopes are applicable in maximisation problems

(see Figure 1.9).

An Outer approximation (OA) algorithm was designed for convex NLPs, pro-

posed by Kelley (see [38]) in 1960s. Suppose we have a convex NLP of the following

form:

max
󰀋
f(y) : y ∈ C ⊆ Rn

+

󰀌
, (1.14)

where f(y) is a convex non-linear function of the decision variable vector y, and

C is the domain of y.

The problem can be reformulated into:

max
󰀋
z : z ≤ f(y), z ∈ R, y ∈ C ⊆ Rn

+

󰀌
(1.15)

by introducing an extra continuous variable z.

The key idea of Kelley’s algorithm is to approximate the convex constraint with

a collection of linear constraints of the form:

z ≤ f(ȳ) + f ′(ȳ)
󰀃
y − ȳ

󰀄
, (1.16)

where f ′ denotes the first derivative of f . The constraints (1.16) are called Kelley

cuts. By approximating all non-linear constraints with Kelley cuts, the problem is

then an LP relaxation of the original NLP. The algorithm converges to a solution

with acceptable optimality gap when more and more Kelley cuts are added.

There have been some quite effective solvers (e.g.: Mosek, Ipopt, CVXOPT etc.)

for convex optimisation problems.
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1.2.3 Mixed integer linear programming

In real life there are always problems whereby solution spaces are discrete rather than

continuous. Problems of this type are called discrete optimisation which usually, but

not necessarily, involves integral variables. A particularly important application of

discrete optimisation is to model and solve combinatorial optimisation problems (see

[44]). These are optimisation problems that involving concepts from combinatorics

(such as sets, subsets, combinations and permutations) and graph theory (such as

nodes, edges, cliques, cuts and flows).

Most combinatorial optimisation problems can be modelled as Mixed integer pro-

grammings (MIPs) orMixed integer linear programmings (MILPs),in which some vari-

ables can only take integral values. MILP is itself a subset of discrete optimisation,

and takes the form of

max cTx + dTy
s.t. Ax + Ey ≤ b

x, y ≥ 0
y ∈ Z.

(1.17)

When x is an empty set, i.e., all variables are required to be integers, the prob-

lem is often called integer programming (IP). For brevity, we mention both types of

programmes as MIP below.

A special case of an MIP problem is called binary integer programming, where

some, or all, integral variables can only take the value 0 or 1. A binary variable is

often considered as a ”yes-or-no” variable: it takes value 1 when the answer is ”yes”

and 0 for ”no”.

We continue using the LP example in subsection 1.2.1 with an extra constraint

that both x1 and x2 are integers, so it becomes an IP problem. The feasible region of

the problem is then discrete due to the new integral constraint. As shown in Figure

1.10 as black dots, there are five integral solutions bounded by the five constraints.

Although MIP is similar in form to LP, the involvement of integrity of variables

makes the difficulty of an optimisation problem increase exponentially. IP problems

are proven to be NP-hard in general (see [37]). Since MILP problems are even more

general than ILP, they also tend to be NP-hard. Many efforts have been made to

solve MIP problems, and we will introduce some of the most successful algorithms in

the remaining part of this subsection.

One of the most successful MIP techniques is the cutting plane method put

forward by Gomory in 1958 (see [24]). The cutting plane method generates and adds
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Figure 1.10: Feasible region of IP example bounded by five constraints
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Figure 1.11: Cutting plane method for integer programming

new linear, non-redundant constraints to the original problem in order to reduce the

size of the feasible region.

Geometrically, a cutting plane is a hyperplane which separates all MIP feasible

solutions on one of its sides (see Figure 1.11). A cutting plane (or cut) is only valid

if it eliminates some of the feasible region and is satisfied by all feasible solutions of

the original MIP problem.

By keeping added cutting planes, the optimal integral solution will eventually

become an extreme point and can be obtained by solving the relaxation problem. It is

then critical to find strong cutting planes in order to cut off as much as possible. We

show two types of strong cuts in Figure 1.12. The cutting plane on the left touches

the polyhedron formed by all integral solutions, while the one on the right defines a

facet of the polyhedron and is the strongest possible cutting plane.

The cutting plane method is the first algorithm proposed for MIP which was

proven to converge. Although it is not considered efficient, it has inspired many

further algorithms.
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Figure 1.12: Strong cutting plane method for integer programming

Another successful method is the branch and bound (BB) method (see [46]). The

branch and bound method partitions the solution space of a problem into a tree

structure, and explores the solution space node by node until it finds the optimal

solution.

First, the branch and bound algorithm solves the relaxation of the original MIP

maximisation problem to get an upper bound, it then obtains a lower bound based on

the relaxed solution. Take the IP problem as an example, we know from subsection

1.2.1 that the optimal objective value is 5 when x1 = x2 = 2.5. However, this solution

is fractional, thus infeasible. However, the relaxed optimal value can be used as an

upper bound, since no solution of the original problem can yield an objective value

higher than 5. We can then round-down the two variables to 2, in order to obtain a

lower bound of this problem.

The algorithm then partitions the solution space based on a variable by gen-

erating two sub-problems. Suppose we choose variable x1 to partition the solution

space. We get two natural sub-problems, in each of which there exists an additional

constraint. In one of the sub-problems, the additional constraint is x1 − 2 ≤ 0; the

one in the other sub-problem is x1 − 3 ≥ 0. The two sub-problems are presented

in Figure 1.2.3. By solving the first sub-problem, we get a relaxed optimal solution

(2, 2.5). In the second sub-problem, the relaxed optimal solution is (3, 1.5).

The branch and bound keeps a record of upper bounds and lower bounds of all

nodes. When the upper bound of a node is smaller or equal to the lower bound of

another node, the former node will be eliminated. The algorithm keeps partitioning

generated nodes until the best lower bound found is the same as the highest upper

bound in un-eliminated nodes, or all nodes have been explored. A very detailed and

comprehensive branch and bound example can be found in [78].
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The branch and bound method is intelligent in four aspects:

1. The enumeration process stops when optimal solution is found

2. It recognises solution space where no optimal solution exists

3. It recognises solution space where no feasible solution exists

4. It searches the most promising solution space first

The branch and bound method is an exact algorithm which means it is guaran-

teed to find the optimal solution. However, it is an enumeration algorithm, it needs

to solve a huge number of sub-problems when facing complex problems, and that can

cause memory and time issues.

We remark that both Bendess Decomposition and Column Generation can be

applied to MILPs. By combining those algorithms with B&B, branch and cut (see

[62]) and branch and price (see [2]) are proposed and widely used for solving large

MILPs.

1.2.4 Mixed integer non-linear programming

The most difficult class of optimisation problem is formed by the mixed integer non-

linear programming problems (MINLP), which take the form

min f(x, y)
s.t. c(x, y) ≤ 0

x ∈ R
y ∈ Z

(1.18)

where f and c are twice continuously differentiable functions, x and y are the

vectors of continuous variables and integer variables respectively. If functions f and c

are both convex, the problem is called convex MINLP, otherwise non-convex MINLP.
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MINLP are optimisation problems which consist of both non-linear elements

(objective function and/or constraints) and integral variables. As a result, most

MINLP problems are NP-hard.

Solving an MINLP problem is usually very challenging due to the fact that it

combines the difficulties from both NLP and MIP problems. We now introduce some

of the algorithms available for MINLP problems.

1. Branch and bound can also be applied to MINLPs. The non-linear BB method

solves an NLP instead of an LP relaxation problem during its iterative routine,

it does not differ greatly from the linear BB method. However, as mentioned

in subsection 1.2.3, the BB algorithm is not efficient when there are too many

sub-problems to solve.

2. Outer Approximation algorithms can also be used to solve convex MINLP prob-

lems. By solving two sub-problems derived from the original MINLP problem,

the OA method obtains an upper bound and a lower bound. An MILP master

problem is then formulated, and cutting planes are added to it based on the

relaxation solution obtained from one of the sub-problems. The MILP master

problem is a relaxation of the original MINLP problem, but by adding cutting

planes effectively, it will approximate the non-linear feasible region and update

bounds in every iteration. The OA algorithm stops when the difference of the

two bounds becomes smaller than some criterion. Indeed, Kelley’s cuts can be

integrated with Gomory’s cuts to solve convex MINLPs.

3. Generalised Benders decomposition (GBD) is generalised from the Benders de-

composition method to solve convex MINLP problems. The GBD method does

not require sub-problems to be linear, but some issues have been found: in some

cases it may only converge to a local minima, in other cases it may not converge

at all.

4. LP/NLP based branch and bound is generally similar to branch and bound but

avoids solving expensive MILP relaxations. In each node of tree search in branch

and bound, if an integer solution is found, an NLP sub-problem with the fixed

integer solution values will be solved by adding cutting planes to the single tree

node. This method is often suited for convex MINLP problems where MILP

relaxations are too difficult to solve.
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MINLP problems are extremely difficult to solve. The OA, GBD and LP/NLP

based BB methods are all for convex MINLP problems only. For non-convex MINLP

problem, a comprehensive list of solvers can be found at [57]. There are some good

surveys available for both convex and non-convex MINLP problems, see [6, 9, 13, 19,

25, 29, 51].

1.2.5 Perspective Function and Perspective Cuts

A very importance concept we will use in this thesis is the perspective function (see

[31]). The perspective of a function f : Rn → R is the function g : Rn+1 → R, defined
by g(x, t) = tf(x/t). By definition, the perspective function g takes the value 0 when

t = 0. The perspective operation of a function preserves convexity (concavity) of the

original function f .

Obviously, the perspective function g is equivalent to the original function f

when t = 1. We show the perspective of f in Figure 1.13. One can see that the

variable t only scales the function f but has not effect on its shape.

One of the important applications of perspective functions is to solve fractional

programs, which takes the form:

max
󰁱
f(y)/g(y) : x ∈ C

󰁲
,

where C ⊆ Rn is convex, f(y) is non-negative and concave over the domain C, and

g(y) is positive and convex over the domain C. It is shown in [10,69] that by utilising

perspective function, such a problem can be reformulated as

max
󰁱
tf(y′/t) : tg(y′/t) ≤ 1, y′ ∈ tC, t > 0

󰁲
,
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Figure 1.14: Perspective cuts of a nonlinear function with an indicator variable

where t is a new non-negative variable representing 1/g(y), and y′ is a new vector

of variables representing y/g(y). The reformulated problem can often be solved effi-

ciently, since the objective function is concave and the feasible region is convex.

Frangione & Gentile also showed that perspective functions can be used to gen-

erate stronger cutting planes when solving MINLPs with indicator variables.

We now introduce an indicator variable x to the problem (1.14) so that if x takes

the value zero, then all of the components of y must also take the value zero. The

problem then becomes an MINLP as following:

max
󰀋
f(y) : yj ≤ Mx, x ∈ {0, 1} , yj ∈ C ⊆ Rn

+ ∀j ∈ {1, ..., n}
󰀌
, (1.19)

where M is the largest values y can take.

The continuous relaxation of the convex MINLP is strengthened if we replace the

function f(y) with the perspective function xf(y/x). The effect of this strengthening

on an OA algorithm is as follows. Let z be a continuous variable representing the

function f(y), and let

z ≥ f(ȳ) +∇f(ȳ) · (y − ȳ)

be the associated Kelley cuts. Letting z represent the perspective function xf(y/x)

instead, the Kelley cuts change to:

z ≥ ∇f(ȳ) · y +
󰀓
f(ȳ)−∇f(ȳ) · ȳ

󰀔
x.

These cutting planes are called perspective cuts (see [22]). Note that, when x = 1,

they reduce to Kelley cuts, but when x < 1, they are stronger.
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Geometrically, the original Kelley cuts are a collection of planes over the feasible

region of the NLP relaxation of problem (1.19), whereas the strengthened ones are

planes cutting thought that feasible region connecting the non-linear function f and

the grid origin so that the non-linear function f is projected into a point as x reduces

from 1 to 0 (see Figure 1.14). The strengthened cuts are very helpful when solving

the MILP or even LP relaxation of problem (1.19).

When dealing with a fractional program with indicator variables, we found that,

in order to obtain tight convex relaxations of such problems, perspective cuts can

also be applied, but one needs to study a new kind of function, which we call a

bi-perspective (Bi-P) function.

Let y be a vector of n continuous variables, let f(y) be a real function of y that is

defined over a convex domain C ⊆ Rn
+, and let t1 and t2 be non-negative continuous

variables. The Bi-P function of f(y) is defined as:

t1 t2 f

󰀕
y

t1 t2

󰀖
,

with domain t1, t2 ∈ R+, y ∈ t1 t2 C. (By convention, the Bi-P function takes the

value zero when t1 t2 = 0 and y is the origin.)

Whereas standard perspective functions preserve convexity and/or concavity, the

same is not true for Bi-P functions. So we need to obtain the concave envelope of the

Bi-P function as follows.

Define the following two auxiliary functions:

g1(t1, t2) = a2t1 + b1(t2 − a2)

g2(t1, t2) = a1t2 + b2(t1 − a1).

We prove in Chapter 3 that the concave envelope, over the domain t1 ∈ [a1, b1],

t2 ∈ [a2, b2] and y ∈ t1t2C, is:

min

󰀝
g1(t1, t2) f

󰀕
y

g1(t1, t2)

󰀖
, g2(t1, t2) f

󰀕
y

g2(t1, t2)

󰀖󰀞
. (1.20)

We then obtain the hypograph of the function (1.20) described by the linear

inequalities

z ≤ ∇f(ȳ) y +
󰀓
f(ȳ)−∇f(ȳ) ȳ

󰀔
gk
󰀃
t1, t2

󰀄
(1.21)

for ȳ ∈ C and k = 1, 2. We call the inequalities the Bi-P cuts.

We remark that when t2 is an indicator variable, the Bi-P cuts reduce to:

z ≤ ∇f(ȳ) y +
󰀓
f(ȳ)−∇f(ȳ) ȳ

󰀔
b1t2 (1.22)

z ≤ ∇f(ȳ) y +
󰀓
f(ȳ)−∇f(ȳ) ȳ

󰀔󰀓
t1 − a1(1− t2)

󰀔
. (1.23)
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1.3 Research Contribution

1.3.1 Research questions

As mentioned in subsection 1.1.4, a lot of the SPARC problem variants considered

in the cited papers are NP-hard in the strong sense. Accordingly, in all of the those

papers, the authors use relaxation techniques to compute bounds, and heuristics to

find feasible solutions. An issue arises in whether we can solve the SPARC problems

exactly using MINLP.

While exact algorithms put emphasis on optimality, we are also concerned with

heuristics that can solve SPARC problems both effectively and efficiently in realistic

scenarios. Moreover, we are also interested in a heuristic for dynamic and overloaded

systems, where total user demand changes frequently and is sometimes higher than

system capacity.

1.3.2 Methodology

As a kind of natural science, optimisation has had a somewhat standardised method-

ology since its inception in the 1950s when researchers started Operational Research.

Since then, the methodology used for optimisation has remained largely unchanged.

Approaches for optimisation follow specific steps, and for each step there corresponds

a specific methodology. Almost all researches in optimisation follow the specific steps

presented in this subsection.

1. Understanding and describing problem

2. Building a mathematical model

3. Development and refinement of the model

4. Algorithm design

5. Algorithmic complexity analysis

6. Coding and debugging

7. Design of test instances

8. Computational experiments

9. Solution analysis
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1.3.3 Overview of papers

We now present the structure of this thesis in this subsection.

In Chapter 2, we will introduce the SPARC problem and its variants in subsec-

tion 2.3. We will then present an exact algorithm in subsection 2.4, which uses a

combination of outer approximation [18] and perspective cuts [22, 26], together with

three implementation “tricks” of our own, which improve the running time by several

orders of magnitude. Computational experiment results given in subsection 2.5 show

that our algorithm is capable of solving SPARC problem instances of realistic size

and complexity, to proven optimality, in about one minute.

Following on, we will introduce an exact algorithm for the F–SPARC problem in

Chapter 3. In subsection 3.3, we will define bi–perspective (BP) function and char-

acterise the concave envelope of a BP function over a rectangular domain. We then

derive a family of linear inequalities, which we call BP cuts, that completely describe

the concave envelope. In subsection 3.4, we will demonstrate how to generalise the BP

cuts when there are “multiple-choice” constraints, stating that two or more indicator

variables cannot take the value 1 simultaneously. Computational experiment results

in subsection 3.6 show that the new cuts typically close over 95% of the integrality

gap.

In Chapter 4, we will present a heuristic algorithm which solves the same problem

as in Chapter 3. We then consider the SPARC problem in dynamic and overloaded

cases in Chapter 5. In subsection 5.3.2 we introduce an objective function which

takes fairness into consideration. A dynamic local search heuristic is then proposed

in subsection 5.4.

Finally, in Chapter 6, we conclude the thesis and give suggestions for future work.
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Chapter 2

An Exact Algorithm for a
Resource Allocation Problem in
Mobile Wireless Communications

2.1 Introduction

Telecommunications provides a rich source of interesting, and often challenging, opti-

misation problems (see, e.g., Resende & Pardalos [64]). This paper is concerned with

a mixed-integer convex optimisation problem that arises in mobile wireless commu-

nications systems. In such systems, mobile devices (such as smartphones or tablets)

communicate with one another via transceivers called base stations. Each base sta-

tion must periodically allocate its available resources (time, power and bandwidth) in

order to receive and transmit data in an efficient way (see, e.g., Fazel & Kaiser [17]).

The problem under consideration arises when the base stations have an Orthogo-

nal Frequency-Division Multiple Access (OFDMA) architecture. This means that the

base station divides the available bandwidth into a number of frequency bands called

subcarriers. Each subcarrier can be assigned to only one mobile device (or user) in

any given time period, but a given user may be assigned to more than one subcarrier.

The data transmission rate for any given subcarrier is a nonlinear function of the

power allocated to that subcarrier.

There are several distinct optimisation problems associated with OFDMA (and

related) systems, with differing objective functions, side-constraints and so on (e.g.,

[23,41,52,53,65,70,73,76,79,82,84,85,87,88]). The problem that we focus on in this

paper is that of simultaneously allocating subcarriers to users and power to subcar-

riers, subject to certain quality of service (QoS) constraints called rate constraints,

in order to maximise the total data transmission rate. We call this problem the
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subcarrier and power allocation problem with rate constraints (SPARC).

The SPARC has a natural formulation as a convex mixed-integer nonlinear pro-

gram (MINLP). Since we found that standard software for convex MINLP was un-

able to solve even small instances of our problem in reasonable computing times,

we developed our own specialised exact algorithm. It uses a combination of outer

approximation [18] and perspective cuts [22,26], together with three implementation

“tricks” of our own, which improve the running time by several orders of magnitude.

A novel ingredient of our algorithm, which turned out to be crucial, is what we

call pre-emptive cut generation. By this, we mean the generation of cutting planes that

are not violated in the current iteration, but are likely to be violated in subsequent

iterations.

It turns out that our exact algorithm is capable of solving SPARC instances

of realistic size and complexity to proven optimality in about one minute. In fact,

instances with relatively loose QoS constraints can be solved in a fraction of a second.

As far as we know, our algorithm is the first viable exact algorithm for a realistic

OFDMA optimisation problem. It is also the first algorithm to apply perspective

cuts to a problem in mobile wireless communications.

The paper is structured as follows. The relevant literature is reviewed in Section

2.2. In Section 2.3, we define the SPARC formally and present a convex MINLP

formulation for it. The exact algorithm is described in Section 2.4. The results

of some extensive computational experiments are given in Section 2.5, and some

concluding remarks are made in Section 2.6.

We assume throughout that the reader is familiar with basic concepts of MINLP,

such as continuous relaxation, convexity, lower and upper bounds, and branching.

For tutorials, see, e.g., [3, 13, 81].

2.2 Literature Review

Now we briefly review the literature on optimisation in OFDMA and related systems.

Good reference texts are [12, 17, 27].

2.2.1 Single-user systems

First, consider a single communications channel and a single user. The classical

Shannon–Hartley theorem [71] states that the maximum data rate (in bits per second)

that can be transmitted from a single channel is:

B log2 (1 + S/N) ,
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where B is the bandwidth of the channel in Hertz, S is the average received signal

power in watts, and N is the average noise power in watts. The quantity S/N is

called the signal-to-noise ratio.

Now suppose that we still have a single user, but we now have a set I of sub-

carriers, and each subcarrier i ∈ I has its own bandwidth Bi and noise power Ni. If

we allocate pi watts of power to subcarrier i, the data rate for that subcarrier will

be Bi log2(1 + pi/Ni), which we denote by fi(pi). A natural optimisation problem is

then to maximise the total data rate subject to an overall power limit P . This can

be formulated as the following NLP:

max

󰀫
󰁛

i∈I

fi(pi) :
󰁛

i∈I

pi ≤ P, p ∈ R|I|
+

󰀬
. (2.1)

Since the functions fi(pi) are concave, this NLP can be solved efficiently by any

standard technique for convex optimisation (see, e.g., Boyd & Vandenberghe [8]). It

can also be solved quickly by a specialised iterative technique called water filling; see,

e.g., [12, 27].

2.2.2 Multi-user systems

As mentioned in the introduction, OFDMA systems are multi-user systems, and each

subcarrier can be assigned to an arbitrary user. If we let J denote the set of users,

and Sj ⊂ I denote the set of subcarriers allocated to user j ∈ J , then the total

data rate for that user will be
󰁓

i∈Sj
fi(pi), and the total data rate for the system

will be
󰁓

j∈J
󰁓

i∈Sj
fi(pi). One then faces optimisation problems in which one must

simultaneously distribute the available power between the subcarriers, and allocate

each subcarrier to a user, in order to meet some objective.

There are many papers on optimisation problems of this type. Wong & Cheng

[82] minimise total power subject to individual quality of service (QoS) constraints

that impose a lower bound on the data rate for each user. (We will call them rate

constraints.) Rhee & Cioffi [65] achieve QoS in a different way, by maximising the

minimum data rate over all users, subject to a limit on total power. Kim et al. [41]

consider the problem of maximising total data rate subject to a total power limit.

Shen et al. [73] add a global QoS constraint to that problem. Seung et al. [70]

enforce QoS by giving each user a weight, and maximising a weighted sum of the

data rates. Yu & Lui [87] consider an extension of the problem in [70], in which there

is interference between channels. Tao et al. [76] take the problem in [41], add rate

constraints, and also consider an extension in which transmissions can suffer delays.
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More recently, perhaps driven by environmental considerations, authors have

focused on maximising energy efficiency, which is defined as total data rate divided

by total power (e.g., [23, 34, 79, 84, 85, 88]).

It is proved in [52,53] that many of the problem variants considered in the above

papers are NP-hard in the strong sense. Accordingly, in all of the above-mentioned

papers, the authors use relaxation techniques to compute bounds, and heuristics to

find feasible solutions. In this paper, we focus on exact methods.

2.3 Problem Definition and MINLP Formulations

We now formally describe the problem under consideration and give two MINLP

formulations of it.

2.3.1 Problem definition

Although the methods developed in this paper can be applied to several OFDMA

optimisation problems, we restrict attention to one specific problem, for the sake

of brevity and clarity. As mentioned in the introduction, we call this problem the

SPARC. A SPARC instance is given by sets I and J , a bandwidth Bi > 0 and noise

Ni > 0 for each i ∈ I, a user rate ℓj ≥ 0 for each j ∈ J , and a power limit P > 0.

As in [41, 73], the task is to allocate subcarriers to users, and power to subcarriers,

in order to maximise the total data rate, subject to a constraint stating that the

total power must not exceed P . In addition, however, we have rate constraints, as

in [76,82], stating that the total data rate for user j must be at least ℓj. We conjecture

that the SPARC is NP-hard in the strong sense.

2.3.2 Initial convex MINLP formulation

We formulate the SPARC as an MINLP as follows. For all i ∈ I and j ∈ J , let xij be

a binary variable, taking the value 1 if and only if user j is assigned to subcarrier i.

Also let pij be a continuous variable, taking the value zero if xij = 0, but otherwise
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representing the amount of power supplied to subcarrier i. We then have:

max
󰁓

i∈I
󰁓

j∈J fi(pij) (2.2)

s.t.
󰁓

i∈I
󰁓

j∈J pij ≤ P (2.3)
󰁓

j∈J xij ≤ 1 (∀i ∈ I) (2.4)
󰁓

i∈I fi(pij) ≥ ℓj (∀j ∈ J) (2.5)

pij ≤ Pxij (∀i ∈ I, j ∈ J) (2.6)

pij ∈ R+ (∀i ∈ I, j ∈ J) (2.7)

xij ∈ {0, 1} (∀i ∈ I, j ∈ J). (2.8)

The objective function (2.2) represents the total data rate. The constraint (2.3) im-

poses the power limit. The constraints (2.4) ensure that each subcarrier is allocated to

at most one user. The constraints (2.5) are the user rate constraints. The constraints

(2.6), called variable upper bounds (VUBs), ensure that pij is zero whenever xij is

zero. The remaining constraints are the usual non-negativity and binary conditions.

Note that, for all i ∈ I, the function fi is concave over the domain [0, P ]. As a

result, the objective function (2.2) is concave, and the constraints (2.5) are convex.

This means that the MINLP is convex, and therefore its continuous relaxation can

be solved efficiently via convex programming techniques.

Many other OFDMA optimisation problems can be formulated in a similar way.

For brevity, we give just three examples. If one wishes to give each user j ∈ J

a weight wj ≥ 0, as in [70, 87], then one changes the objective function (2.2) to
󰁓

j∈J wj

󰁓
i∈I fi(pij). If one wishes to impose an upper bound u on the power assigned

to each subcarrier, as in [34], one changes P to u in the VUBs (2.6). If one does not

have enough capacity to satisfy all of the users, and one wishes to maximise the

number of satisfied users, one changes the right-hand side of the rate constraints

(2.5) to ℓjzj, where zj is a new binary variable, and changes the objective function to
󰁓

j∈J zj.

2.3.3 Modified convex MINLP formulation

It is well known (see, e.g., Section 2 of [77]) that MINLPs can often be made easier to

solve by the addition of new variables, representing simple components of nonlinear

functions. This turned out to be the case for our problem. Accordingly, for i ∈ I and

j ∈ J , we introduce a new non-negative continuous variable, say rij, representing the
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quantity fi(pij). (We use rij because it represents the data rate of subcarrier i when

xij = 1.) We then modify the formulation to:

max
󰁓

i∈I
󰁓

j∈J rij (2.9)

s.t. (2.3), (2.4), (2.6)− (2.8) (2.10)
󰁓

i∈I rij ≥ ℓj (∀j ∈ J) (2.11)

rij ≤ fi(pij) (∀i ∈ I, j ∈ J). (2.12)

rij ∈ R+ (∀i ∈ I, j ∈ J). (2.13)

With these modifications, eveything is linear apart from the (convex) constraints

(2.12).

2.4 An Exact Algorithm for the SPARC

We now present our exact algorithm for the SPARC. Subsection 2.4.1 presents the

algorithm in its simplest form. Enhancements to the algorithm are presented in

Subsections 2.4.2 to 2.4.5.

2.4.1 A simple outer approximation algorithm

Since MILP solvers are more readily available (and often more reliable) than MINLP

solvers, we decided to solve the SPARC by means of Outer Approximation (OA),

which involves the solution of a series of progressively finer MILP relaxations of the

original convex MINLP [15,18]. The key idea is to approximate the convex constraints

(2.12) with a collection of linear constraints of the form:

rij ≤ fi(p̄) + f ′
i(p̄)

󰀃
pij − p̄

󰀄
, (2.14)

where the p̄ values are selected from the domain [0, P ], and f ′
i denotes the first

derivative of fi. The constraints (2.14) are called Kelley cuts, since they were first

developed by Kelley [38] to solve convex NLPs.

A high-level description of a rudimentary OA algorithm for the SPARC is given

in Algorithm 1. Here are some words of explanation:

• The algorithm requires two tolerance parameters. The parameter 󰂃1 is the

minimum acceptable violation of a Kelley cut, expressed as a percentage of

the right-hand side of constraint (2.12), and the parameter 󰂃2 is the maximum

acceptable relative gap between the final values of the bounds U and L.
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Algorithm 1: Outer Approximation for SPARC

input : power P , bandwidths Bi, noise powers Ni,
data rate limits ℓj, tolerances 󰂃1, 󰂃2.

Set lower bound L to 0 and construct initial MILP;
repeat

Solve the current MILP;
if the MILP is infeasible then

Output “The instance is infeasible.” and quit;
end
Let (x∗, p∗, r∗) be the optimal solution to the MILP;
Let U be the associated upper bound;
Solve an NLP to find the best p for the given x∗;
if the NLP is feasible then

Let p′ be the optimal NLP solution;
Let L′ be the associated profit;

end
if L′ > L then

Set L to L′ and save the incumbent solution (x∗, p′);
end
for all i ∈ I and j ∈ J such that x∗

ij = 1 do
if the constraint (2.12) is violated by more than 󰂃1 then

Let p̄ = f−1(r∗ij);

Generate the Kelley cut (2.14) for the given i, j and p̄;
Add the cut to the MILP;

end

end

until L > 0 and (U − L)/L ≤ 󰂃2;
output: A near-optimal solution (x∗, p′) or an infeasibility warning.

30



fi(pij)

pij
0 p∗ij f−1(r∗ij)

r∗ij 󰂼 󰂼

󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹
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󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹
󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹

󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹
󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹󰂹

Figure 2.1: Choosing p̄ in order to avoid numerical issues.

• For SPARC instances arising in practice, the Ni values can be very small (e.g.,

10−12). This means that the coefficient f ′
i(p̄) in the Kelley cut can be very large

when p̄ is close to zero, which can cause serious numerical difficulties. For this

reason, instead of setting p̄ to p∗ij, we set it to f−1(r∗ij), which is larger (see

Figure 2.1).

• To construct our initial MILP relaxation, we include the objective function

(2.9), the constraints (2.3), (2.4), (2.6)-(2.8), (2.11) and (2.13), and a collection

of |I| |J | Kelley cuts; namely, those Kelley cuts that are tight at the optimal

solution to the continuous relaxation of (2.9)–(2.13).

• The best SPARC solution found so far, if any, is called the “incumbent”. After

each MILP relaxation has been solved, we attempt to find a new incumbent by

solving the NLP:

max

󰀻
󰀿

󰀽
󰁛

i∈I

fi(pi) :
󰁛

i∈I

pi ≤ P,
󰁛

i∈Sj

fi(pi) ≥ ℓj (j ∈ J), p ∈ R|I|
+

󰀼
󰁀

󰀾 ,

where Sj = {i ∈ I : x∗
ij = 1} is the set of subcarriers that were allocated to

user j in the MILP solution. Since this NLP has only |I| variables, it is usually
solved very quickly.

Our preliminary experiments with this OA algorithm revealed that it struggled

to solve even very small SPARC instances. Fortunately, we were able to improve the

algorithm dramatically with four modifications. These are described in the following

four subsections.
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2.4.2 Perspective cuts

The main problem with the OA algorithm turned out to be that the MILPs had

extremely weak continuous relaxations. To strengthen them, we used the following

ideas of Frangione & Gentile [22].

Consider a convex MINLP in which the objective or constraints contain a term

f(y), where y is a vector of continuous variables and f is a convex function. Suppose

that the convex MINLP also contains a binary variable x, with the property that, if

x takes the value zero, then all of the components of y must also take the value zero.

Then the continuous relaxation of the convex MINLP is strengthened if we replace the

function f(y) with the perspective function xf(y/x). The effect of this strengthening

on an OA algorithm is as follows. Let z be a continuous variable representing the

function f(y), and let

z ≥ f(ȳ) +∇f(ȳ) · (y − ȳ),

be the associated Kelley cuts. Letting z represent the perspective function xf(y/x)

instead, the Kelley cuts change to:

z ≥ ∇f(ȳ) · y +
󰀓
f(ȳ)−∇f(ȳ) · ȳ

󰀔
x.

These cutting planes are called perspective cuts. Note that, when x = 1, they reduce

to Kelley cuts, but when x < 1, they are stronger.

To apply this idea to the SPARC, observe that, for all i ∈ I and j ∈ J , the

continuous variable pij must be zero whenever xij is zero. Accordingly, we can replace

the Kelley cuts (2.14) with the perspective cuts

rij ≤ f ′
i(p̄) pij +

󰀓
fi(p̄)− f ′

i(p̄) p̄
󰀔
xij (∀i ∈ I, j ∈ J, p̄ ∈ [0, P ]). (2.15)

We found that using perspective cuts in place of Kelley cuts improved the running

time of the MILP solver, and therefore of the whole OA algorithm, by two orders of

magnitude (for given values of the tolerance parameters 󰂃1, 󰂃2).

We believe that this is the first time that perspective cuts have been applied to

an optimisation problem from mobile wireless communications. For applications to

problems in wired communications, see, e.g., Frangioni et al. [20,21]. Applications in

location, scheduling, network design, finance and power generation are surveyed in

Günlük & Linderoth [26].
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2.4.3 Pre-Emptive Cut Generation

In our experiments with the OA algorithm, we noticed the following phenomenon.

The upper bound U would remain virtually unchanged for several iterations, then de-

crease, then remain virtually unchanged for several iterations, and so on. The cause

of this turned out to be symmetry, or, more precisely, near-symmetry, among users.

(See, e.g., Margot [54] for an introduction to symmetry issues in integer program-

ming.)

Consider a fixed subcarrier i ∈ I, and suppose that x∗
ij = 1 in the optimal

solution to the current MILP relaxation. If r∗ij > fi(p
∗
ij), then a perspective cut is

generated for the given i and j. In the next iteration, however, the MILP solver

simply selects a user j′ such that ℓj′ is similar to ℓj, sets xij′ = 1, and sets pij′ and rij′

to the values that pij and rij had before. If this happens for all i ∈ I, then the upper

bound does not decrease even after adding a whole round of perspective cuts. In the

worst case, when all of the ℓj values are similar, the upper bound will decrease only

after |J | MILPs have been solved, i.e., only after a perspective cut has been added

for all pairs i and j.

We experimented with several ways to address this symmetry problem. In the

end, the most effective approach was to generate more cuts in each major OA iteration.

Specifically, in Algorithm 1, we replaced the line

“Generate the Kelley cut (2.14) for the given i, j and p̄ ”

with the line

“For all j ∈ J , generate the perspective cut (2.15) for the given i, j and p̄ ”

Note that the additional cuts are not violated in the current iteration, but are likely

to be violated in future iterations. For this reason, we call this technique pre-emptive

cut generation (PCG). We found that PCG reduced the number of OA iterations,

and therefore the running time of the whole OA algorithm, by at least an order of

magnitude (again, for given values of 󰂃1, 󰂃2).

Figure 2.2 demonstrates the benefits of PCG. It shows the evolution of the per-

centage gap between the upper bound and the optimal objective value, for a random

instance with |I| = 36 and |J | = 10, both with and without PCG. Without PCG,

over 70 iterations are needed to obtain an upper bound within 0.1% of optimal. With

PCG, only 8 iterations are needed. A similar benefit is obtained with regard to run-

ning time. We remark that the benefit of PCG increases as the number of users

increases.
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Figure 2.2: Typical evolution of percentage gap between upper bound and optimum,
without pre-emptive cut generation (hollow circles) and with pre-emptive cut gener-
ation (filled circles).

2.4.4 Pre-processing

Thirdly, and perhaps most surprisingly, we discovered that many SPARC instances

can be solved very quickly with some (relatively) straightforward procedures, which

we refer to as pre-processing. Our pre-processing consists of three phases: an upper-

bound computation, an infeasibility test, and a primal heuristic.

In the first phase, we relax the SPARC by dropping the rate constraints. The

assignment of subcarriers to users then becomes irrelevant, and only the power al-

location matters. Accordingly, we can compute an upper bound for the SPARC by

solving the NLP (2.1). Given that the NLP is convex and separable, and has only

|I| variables, one can expect to solve it much more quickly than the SPARC itself.

We let p∗ denote the optimal solution of the NLP, and let U =
󰁓

i∈I fi(p
∗
i ) be the

associated upper bound.

The second phase is a quick test for infeasibility. The idea is that, if U <
󰁓

j∈J ℓj,

then the SPARC instance must be infeasible, since there is no way to satisfy all of

the rate constraints simultaneously. In that case, we can stop immediately.

The final phase is based on the following observation: since the fi(p
∗
i ) achieves

the optimal transmission rate, if we can find an allocation of subcarriers to users that

meets all rate constraints, it must be optimal, and we can again stop immediately.

We experimented with constructive heuristics for finding such a solution. In the end,

however, it turned out to be best simply to feed the following 0-1 LP into an MILP
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solver:

max
󰁓

i∈I
󰁓

j∈J fi(p
∗
i )xij

󰁓
j∈J xij ≤ 1 (∀i ∈ I)

󰁓
i∈I fi(p

∗
i )xij ≥ ℓj (∀j ∈ J)

xij ∈ {0, 1} (∀i ∈ I, j ∈ J).

One can check that this 0-1 LP is feasible if and only if there exists a SPARC solution

with profit equal to U . (Details on the MILP solver and parameter settings are given

at the start of Section 2.5.)

In general, one can expect our pre-processing routines to be effective when the

ℓj values are either very large (in which case the instance is quickly proven infeasible)

or reasonably small (in which case the pre-processing algorithm can easily find an

optimal solution). The results in Section 2.5 show that, in fact, the range of ℓj values

for which pre-processing fails is very narrow.

2.4.5 Warm-starting

Our fourth and final improvement is concerned with warm-starting the OA algorithm.

In our preliminary experiments with the algorithm, we noticed that some of the r∗ij

values started out very high and then decreased very slowly from one iteration to the

next. Investigation of the output revealed the following:

• The reason for the initial high r∗ij values is that, in the optimal solution to the

continuous relaxation of (2.9)–(2.13), all x variables take the value 1/|J |, and
all p variables take very small values (typically close to P/(|I| |J |)). This in

turn is due to the very high slope of the functions fi(pij) near zero. As a result,

the initial family of perspective cuts is generated with excessively small values

of p̄.

• The reason for the slow decrease was caused by our “cautious” rule for selecting

p̄ when generating additional cuts (see Subsection 2.4.1). That is, it tends to

generate cuts with rather large values of p̄ in the early iterations of the OA

algorithm.

In order to address this issue, we decided to use a different rule for selecting the

initial set of perspective cuts. Specifically, for a given i ∈ I and j ∈ J , we include

three cuts, with p̄ set to each of:
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• P , the maximum value possible;

• p∗i , where p
∗ is the vector obtained in the first pre-processing phase (see the last

subsection);

• the harmonic mean of p∗i and P , i.e.,
󰁳

p∗iP .

We found that this change led to a roughly 40% additional reduction in both the

number of OA iterations and the overall running time.

2.5 Computational Experiments

The enhanced Outer Approximation algorithm was coded in Julia v0.5 and run on

a virtual machine cluster with 16 CPUs (ranging from Sandy Bridge to Haswell ar-

chitectures) and 16GB of RAM, under Ubuntu 16.04.1 LTS. The program calls on

MOSEK 7.1 (with default settings) to solve the NLP (2.1) in the first pre-processing

phase, and on the mixed-integer solver from the CPLEX 12.6.3 Callable Library (again

with default settings) to solve the MILP relaxations. We also used the mixed-integer

solver to solve the 0-1 LP in the third pre-processing phase, but with the parameter

MIPemphasis set to “emphasize feasibility” and a time limit of 5 seconds imposed.

Finally, both tolerance parameters 󰂃1, 󰂃2 were set to 0.1%.

2.5.1 Test instances

For our batch of experiments, the number of subcarriers, |I|, was set to 72, the noise

powers Ni were set to random numbers distributed uniformly in (0, 10−11), and the

power limit P was set to 36W, i.e., 0.5W per subcarrier. These figures are typical

of a small (typically indoor) base station. Following the IEEE 802.16 standard, the

bandwidths Bi were all set to 1.25MHz. We considered four values for the number of

users, |J |: 4, 6, 8 and 10.

Generating suitable user demands (i.e., ℓj values) turned out to be more difficult,

for the following reason. Consider the initial upper bound U computed in the pre-

processing phase (Subsection 2.4.4), along with the quantity

󰁓
j∈J ℓj

U
,

which we call the demand ratio (DR) of the given SPARC instance. If the DR exceeds

1, then the instance is immediately detected to be infeasible in phase 2 of the pre-

processing procedure. On the other hand, if the DR is much smaller than 1, then
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Table 2.1: Number of instances not solved by pre-processing

Demand Ratio

|J | 0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

4 0 0 0 0 0 0 0 0 0 15
6 0 0 0 0 0 0 0 0 2 71
8 0 0 0 0 0 0 0 4 43 250
10 0 0 0 0 0 0 1 47 209 435

an optimal solution to the instance is easily found in phase 3 of the pre-processing

procedure. Thus, the DR is a critical parameter in determining the difficulty of an

instance. Unfortunately, the DR cannot be known without solving the NLP (2.1).

This led us to use the following rather complicated procedure to generate the ℓj

values. For a given |I|, |J |, B, N and P , we solve the NLP (2.1) to obtain U . Then,

for all j ∈ J , we generate a random number zj, which follows the unit lognormal

distribution. (That is, zj = etj , where tj is Normally distributed with zero mean and

unit variance.) We then use the formula:

ℓj =
zj ∗DR ∗ U󰁓

k∈J zk
.

One can check that this procedure yields instances with the desired DR. We considered

DR values from 0.90 to 0.99 in steps of 0.01. For each combination of |J | and DR,

we generated 500 random instances. This makes 4× 10× 500 = 20, 000 instances in

total.

2.5.2 Experimental results

We start by presenting results obtained with pre-processing alone. We were surprised

to find that all instances with DR below 0.96, and many instances with higher DR

value, could be solved by pre-processing within the 5s time limit. Table 2.1 shows,

for various combinations of |J | and DR, the number of instances (out of 500) that

could not be solved by pre-processing.

We see that, as expected, pre-processing grows less effective as the DR approaches

1 from below. Interestingly, it also tends to get less effective as |J | increases. This

is probably because, as |J | increases, each user is allocated fewer subcarriers, which

gives the pre-processing algorithm fewer opportunities to meet the demand of each

user.
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Table 2.2: Number of instances proved infeasible by OA algorithm

Demand Ratio

|J | 0.97 0.98 0.99

4 — — 9
6 — 1 24
8 — 2 56
10 — 8 81

Table 2.3: Number of instances solved / Mean time taken by OA algorithm

Demand Ratio

|J | 0.95 0.96 0.97 0.98 0.99

4 — — — — 4/35.65
6 — — — 1/30.93 40/36.77
8 — — 3/64.37 33/67.51 116/53.24
10 — 1/31.25 22/58.66 80/66.57 54/67.78

We remark that pre-processing was very fast for the majority of the instances.

In about 80% of the cases, it took less than 0.1s. In about 97% of the cases, it took

less than 1s. The time limit of 5s was rarely exceeded.

We call the instances that were unsolved by pre-processing hard. For each hard

instance, we ran our exact OA algorithm until either (a) the gap between the upper

bound U and the lower bound L, measured as a percentage of L, dropped below 0.1%,

(b) the instance was proved to be infeasible, or (c) we exceeded a time limit of 120

seconds.

In Table 2.2, we report the number of hard instances proved to be infeasible

by the OA algorithm. As expected, when DR and/or |J | take higher values, the

proportion of infeasible instances increases. We remark that the average time taken

to prove infeasibility of these instances was about 1.35s.

Finally, in Table 2.3, we report the number of feasible hard instances solved

within the time limit, and the mean time (in seconds) taken to solve them. We see

that the OA algorithm solves many of these instances quickly, but runs into difficulty

for large values of DR and/or |J |.
The upshot of all this is that the majority of the instances could be solved in less

than a second with the pre-processing algorithm, and most of the remaining instances

could be solved (or proved infeasible) in about one minute by the OA algorithm. This

means that our algorithms are potentially of practical use, especially in a so-called
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slow fading environment, where users switch base stations infrequently (as long as

DR is not unusually close to 1).

2.5.3 Comparison with BONMIN

Finally, we compared our algorithm with the open-source MINLP solver BONMIN [5].

In our initial experiments, we tried feeding four different formulations to BONMIN:

the original formulation (2.2)–(2.8), the modified formulation (2.9)–(2.13), and the

formulations obtained from those by replacing the functions fi(pij) with their per-

spective functions xijfi(pij/xij). It turned out that BONMIN consistently solved the

second formulation at least one order of magnitude faster than the first, and gener-

ated an error message (presumably due to division by zero) when attempting to solve

either of the perspective-based formulations.

Surprisingly, even with the best formulation, BONMIN struggled to solve most

of the 20,000 instances that we mentioned above. Thus, we created some simpler

instances. Specifically, for four combinations of subcarriers and users, we created

instances with DR set to 20%, 50% and 99%. This makes 12 instances in total.

Table 2.4 presents details of the 12 instances, along with the running times in

seconds for four algorithms: B-OA (Outer Approximation from BONMIN with MILP

sub-solver set to CPLEX), B-BB (simple branch-and-bound from BONMIN), our pre-

processing procedure, and our OA algorithm. A time limit of 12 hours was applied

to all the algorithms. We mark instances where the time limit was exceed as “TL”,

instances where BONMIN wrongly concluded that a local optimum was a global

optimum as as “LOC”, and instances not solved by pre-processing as “NS”.

Clearly, BONMIN struggles to solve the SPARC. We think that this is due mainly

to (i) the ill-conditioning of the functions fi(pij) at zero mentioned in Subsection 2.4.1,

and (ii) the high degree of near-symmetry, as discussed in Subsection 2.4.3.

2.6 Conclusion

Joint subcarrier and power allocation problems arise frequently in mobile wireless

communications. For one such problem, that we have called the SPARC, we have

shown that it is possible to devise an effective exact algorithm based on intelligent pre-

processing and a judicious use of known MINLP tools, including outer approximation,

perspective cuts and symmetry-breaking.

There are several interesting topics for future research. First, we would like to

prove that SPARC is NP-hard in the strong sense. Second, it would be interesting to
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Table 2.4: Running times of our algorithms compared with two algorithms of BON-
MIN (when using formulation (2.9)–(2.13))

Algorithm

|I|/|J | DR B-OA B-BB Pre-Processing OA Exact

10/2
20% 22.56 387.51 0.01 0.06
50% 115.75 352.10 0.01 0.14
99% 253.52 5328.88 0.01 0.19

10/4
20% 42390.65 TL 0.01 0.07
50% 11578.19 TL 0.01 0.31
99% 17806.97 TL NS 1.28

72/2
20% LOC TL 0.01 0.49
50% LOC TL 0.01 0.50
99% TL TL 0.01 0.70

72/4
20% LOC TL 0.01 1.45
50% LOC TL 0.01 1.50
99% TL TL 0.01 5.87

try using a “one-tree” approach, such as LP/NLP-based branch-and-bound, instead

of OA (see [5, 63]). Third, it would be worth trying to adapt our exact algorithm to

other resource allocation problems in mobile wireless systems, especially variants in

which one wishes to maximise energy efficiency (see Subsection 2.2.2), or in which

not all user demands can be met (see Subsection 2.3.2). Finally, one could consider

how to allocate OFDMA resources dynamically in a fast-fading environment, in which

users arrive and depart frequently in a stochastic manner.

40



Chapter 3

Bi-Perspective Functions for
Mixed-Integer Fractional Programs
with Indicator Variables

3.1 Introduction

Let y be a vector of n continuous variables, and let f(y) be a real function of y that is

defined over a convex domain C ⊆ Rn
+. The perspective function of f takes the form

tf(y/t), where t is a new continuous variable, and is defined over the domain t ∈ R+,

y ∈ tC [30, 66]. (By convention, the perspective function takes the value zero when

t = 0 and y is the origin.) It is known that the perspective function of f(y) is convex

(or concave) if and only if f(y) is convex (or concave) [66].

Perspective functions have a wide range of uses in, e.g., convex analysis, optimisa-

tion, statistics, signal processing and machine learning (see [11] for a recent survey).

In this paper, we focus on two uses in optimisation. The first is to convert frac-

tional programs into convex optimisation problems, and thereby render them easier

to solve [10,69]. The second is to reformulate certainmixed-integer nonlinear programs

(MINLPs), in such a way that the continuous relaxation is strengthened [22,26]. The

MINLPs in question are those with so-called indicator variables.

Recently, while studying certain problems arising in the context of mobile wireless

communications, we encountered an MINLP that exhibited both of these features (i.e.,

a fractional objective and indicator variables) simultaneously. It turns out that, in

order to obtain tight convex relaxations of such problems, one needs to study a new

kind of function, which we call a bi-perspective (Bi-P) function. These functions are

the topic of this paper.

Unfortunately, it turns out that the Bi-P function of a concave function is not
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concave in general. To deal with this, we characterise the concave envelope of a Bi-P

function over a rectangular domain. We then derive a family of linear inequalities,

which we call Bi-P cuts, that completely describe the concave envelope. We also show

how to generalise the Bi-P cuts when there are “multiple-choice” constraints, stating

that two or more indicator variables cannot take the value 1 simultaneously. Finally,

we report the results of some computational experiments. It turns out that, for our

particular problem, the new cuts typically close over 95% of the integrality gap.

The paper is structured as follows. The relevant literature is reviewed in Section

3.2. In Section 3.3, we present the theoretical results concerning Bi-P functions and

Bi-P cuts. In Section 3.4, we consider the multiple-choice case. In Section 3.5, we

give details of our practical application. Computational results are given in Section

3.6, and concluding remarks are made in Section 3.7.

3.2 Literature Review

Now we briefly review the relevant literature. We cover perspective functions and

perspective cuts in Subsections 3.2.1 and 3.2.2, respectively. In Subsection 3.2.3, we

give some background on optimisation in mobile wireless communications.

3.2.1 Perspective functions

As mentioned in the introduction, two particular uses of perspective functions will

turn out to be of importance to us. These are as follows.

1. Consider a fractional program of the form:

max
󰁱
f(y)/g(y) : x ∈ C

󰁲
,

where C ⊆ Rn is convex, f(y) is non-negative and concave over the domain C,

and g(y) is positive and convex over the domain C. It is known [10, 69] that

such a problem can be reformulated as

max
󰁱
tf(y′/t) : tg(y′/t) ≤ 1, y′ ∈ tC, t > 0

󰁲
,

where t is a new non-negative variable representing 1/g(y), and y′ is a new

vector of variables representing y/g(y). The reformulated problem can often be

solved efficiently, since the objective function is concave and the feasible region

is convex.
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2. Consider an MINLP of minimisation type, in which the cost function contains

a term f(y), where y is a vector of continuous variables and f is a convex

function. Suppose that the MINLP also contains an indicator variable, i.e., a

binary variable x with the property that, if x takes the value zero, then all of the

components of y must also take the value zero. Then the continuous relaxation

of the MINLP is strengthened, while maintaining convexity, if we replace f(y)

with the perspective function xf(y/x) [22, 26]. (For a generalisation, see [7].)

3.2.2 Perspective cuts

One problem with perspective functions is that they are non-differentiable at the

origin. Moreover, they become increasingly ill-conditioned as t approaches zero from

above. This can cause algorithms for convex optimisation (or indeed convex MINLP)

to run into serious numerical difficulties. To get around this, Frangioni & Gentile [22]

proposed to approximate perspective functions using linear inequalities. They show

that imposing a non-linear constraint of the form z ≥ xf(y/x), where f is a convex

function and x is an indicator variable, is equivalent to imposing the linear constraints

z ≥ ∇f(ȳ) · y +
󰀓
f(ȳ)−∇f(ȳ) · ȳ

󰀔
x (3.1)

for all ȳ in the domain of y. The constraints (3.1) are called perspective cuts. Although

the perspective cuts are infinite in number, they can be very useful as cutting planes

within an exact algorithm for convex MINLPs with indicator variables (see again

[22, 26]).

Note that the classical Kelley cuts [38] for the function f(y) take the form

z ≥ f(ȳ) +∇f(ȳ) · (y − ȳ).

Thus, the perspective cuts can be viewed as strengthened Kelley cuts.

3.2.3 Optimisation in mobile wireless communications

In mobile wireless communications, mobile devices (such as smartphones or tablets)

communicate with one another via so-called base stations. Each base station must

periodically allocate its available resources (time, power and bandwidth) in order to

receive and transmit data efficiently (see, e.g., [17, 28, 64]).

These days, many base stations follow an Orthogonal Frequency-Division Multiple

Access (OFDMA) architecture. In an OFDMA system, we have a set I of commu-

nication channels, called subcarriers, and a set J of users. Each subcarrier can be
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assigned to at most one user, but a user may be assigned to more than one subcar-

rier. If we let pi denote the power (in watts) assigned to subcarrier i, the classical

Shannon–Hartley theorem [72] states that the maximum data rate (in bits per second)

that can be transmitted from subcarrier i is:

fi(pi) = Bi log2 (1 + pi/Ni) ,

where Bi is the bandwidth of subcarrier i (in hertz), and Ni is the level of noise

in channel i (in watts). We remark that fi(pi) is concave over the domain pi ≥ 0.

Moreover, if we let Sj ⊂ I denote the set of subcarriers allocated to user j, the total

data rate for user j is just
󰁓

i∈Sj
fi(pi).

A wide variety of optimisation problems concerned with OFDMA systems have

been considered, with various objectives and side-constraints (see, e.g., [41,49,52,53,

70,79,84,85,87,88]). Recently, driven by environmental considerations, some authors

working on OFDMA systems have focused on maximising energy efficiency, which

is defined as total data rate divided by total power (e.g., [79, 84, 85, 88]). This leads

immediately to a fractional objective function, which is what led us to the present

paper.

3.3 Bi-Perspective Functions and Cuts

This section is concerned with bi-perspective (Bi-P) functions and cuts. In Subsection

3.3.1, we define Bi-P functions and point out that they are neither convex nor concave

in general. In Subsection 3.3.2, we show how to compute concave over-estimators of

Bi-P functions. Then, in Subsection 3.3.3, we present the Bi-P cuts.

3.3.1 Bi-P functions

To begin, we give a formal definition of Bi-P functions.

Definition 6 Let y be a vector of n continuous variables, let f(y) be a real function

of y that is defined over a convex domain C ⊆ Rn
+, and let t1 and t2 be non-negative

continuous variables. The function

t1 t2 f

󰀕
y

t1 t2

󰀖
,

with domain t1, t2 ∈ R+, y ∈ t1 t2 C, will be called the “bi-perspective” (Bi-P) function

of f(y). (By convention, the Bi-P function takes the value zero when t1 t2 = 0 and y

is the origin.)

44



Whereas standard perspective functions preserve convexity and/or concavity, the

same is not true for Bi-P functions.

Lemma 1 Even if n = 1, f(y) is linear and C = R+, the Bi-P function of f(y) may

be neither convex nor concave over its domain.

Proof. Just let f(y) = 1 for all y ∈ R+. The Bi-P function is t1 t2. Since it is

an indefinite quadratic function, it is neither convex nor concave over the domain

y, t1, t2 ∈ R+ (or indeed over any convex domain with non-empty interior). □

From now on, we let fB(y, t1, t2) denote the Bi-P function of f(y).

3.3.2 Concave envelope

Now suppose that f(y) is concave over the convex domain C. Since the Bi-P function

fB(y, t1, t2) is not guaranteed to be concave, it is natural to seek the strongest possible

concave over-estimating function (sometimes called the concave envelope). We will

do this for the case in which the domain of (t1, t2) is a square. We will need the

following lemma.

Lemma 2 Let y, f(y), t1, t2 and fB(y, t1, t2) be defined as in the previous subsection.

Let (y∗, t∗1, t
∗
2) lie in the domain of fB, and let z∗ = fB (y∗, t∗1, t

∗
2). Then, for any

constant λ ∈ R+,

λz∗ = fB (λy∗, λt∗1, t
∗
2) .

Proof. We have

λz∗ = λ fB (y∗, t∗1, t
∗
2)

= λ t∗1 t
∗
2 f

󰀕
y∗

t∗1t
∗
2

󰀖

= (λ t∗1) t
∗
2 f

󰀕
λy∗

λt∗1 t
∗
2

󰀖

= fB (λy∗, λt∗1, t
∗
2) .

□

Theorem 1 Let y, f(y), C, t1, t2 and fB(y, t1, t2) be as above, and suppose that f(y)

is concave over C. Also suppose that the domain of t1 is [a1, b1], where 0 ≤ a1 < b1,
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and the domain of t2 is [a2, b2], where 0 ≤ a2 < b2. Define the following two auxiliary

functions:

g1(t1, t2) = a2t1 + b1(t2 − a2)

g2(t1, t2) = a1t2 + b2(t1 − a1).

Then the concave envelope of the Bi-P function of f(y), over the domain t1 ∈ [a1, b1],

t2 ∈ [a2, b2] and y ∈ t1t2C, is:

min

󰀝
g1(t1, t2) f

󰀕
y

g1(t1, t2)

󰀖
, g2(t1, t2) f

󰀕
y

g2(t1, t2)

󰀖󰀞
. (3.2)

Proof. Let fB(y, t1, t2) denote the Bi-P function, and consider the hypograph of

the Bi-P function, i.e., the set of all quadruples (y, t1, t2, z) such that t ∈ [a1, b1],

t2 ∈ [a2, b2], y ∈ t1 t2 C and z ≤ fB(y, t1, t2). Lemma 2 implies that, if the point

(y∗, t∗1, t
∗
2, z

∗) lies on the boundary of the hypograph, then so does the point (λy∗,λt∗1, t
∗
2,λz

∗)

for all λ ∈ R+ such that λt∗1 ∈ [a1, b1]. In other words, the boundary contain a line

segment that connects a point with t1 = a1 and a point with t1 = b1. This implies

that all extreme points of the boundary satisfy t1 ∈ {a1, b1}. A similar argument

shows all extreme points also satisfy t2 ∈ {a2, b2}. Thus, the extreme points are of

four types:

• Type A: t1 = a1, t2 = a2;

• Type B: t1 = a1, t2 = b2;

• Type C: t1 = b1, t2 = a2;

• Type D: t1 = b1, t2 = b2.

One can check that:

• g1(t1, t2) is equal to t1t2 at all extreme points of type A, C and D, but larger

than t1t2 at all extreme points of type B;

• g2(t1, t2) is equal to t1t2 at all extreme points of type A, B and D, but larger

than t1t2 at all extreme points of type C.

This implies that:

• The function g1
󰀃
t1, t2

󰀄
f
󰀓

y
g1(t1, t2)

󰀔
is equal to fB

󰀃
y, t1, t2

󰀄
at all extreme points

of type A, C and D, and larger than fB
󰀃
y, t1, t2

󰀄
at all extreme points of type

B.

46



• The function g2
󰀃
t1, t2

󰀄
f
󰀓

y
g2(t1, t2)

󰀔
is equal to fB

󰀃
y, t1, t2

󰀄
at all extreme points

of type A, B and D, and larger than fB
󰀃
y, t1, t2

󰀄
at all extreme points of type

C.

Thus, the desired concave envelope must be the minimum of those two functions. □

Remark 1 Theorem 1 is a generalisation of the classical result of McCormick [56],

which (in our notation) states that the concave envelope of the quadratic function t1 t2

over the domain t1 ∈ [a1, b1], t2 ∈ [a2, b2] is given by the minimum of g1
󰀃
t1, t2

󰀄
and

g2
󰀃
t1, t2

󰀄
.

Remark 2 When t2 is an indicator variable, we have a2 = 0 and b2 = 1. Thus, in

this case, g1
󰀃
t1, t2

󰀄
and g2

󰀃
t1, t2

󰀄
reduce to b1t2 and t1 − a1

󰀃
1− t2

󰀄
, respectively.

3.3.3 Bi-P cuts

Observe that the nonlinear function (3.2) is non-differentiable not only when t1t2 = 0,

but also when g1
󰀃
t1, t2

󰀄
= g2

󰀃
t1, t2

󰀄
, i.e., when

󰀃
t1, t2

󰀄
is a convex combination of

󰀃
a1, a2

󰀄
and

󰀃
b1, b2

󰀄
. This suggests that standard NLP solvers could struggle to handle

functions of the form (3.2). Moreover, there are situations in which one might prefer

to use an LP (or MILP) solver rather than an NLP (or MINLP) solver. So, following

Frangioni & Gentili [22], we describe the concave envelope by linear inequalities. This

is explained in the following proposition.

Proposition 1 The hypograph of the function (3.2) is described by the linear inequal-

ities

z ≤ ∇f(ȳ) y +
󰀓
f(ȳ)−∇f(ȳ) ȳ

󰀔
gk
󰀃
t1, t2

󰀄
(3.3)

for ȳ ∈ C and k = 1, 2, where the functions gk are as defined in Theorem 1.

Proof. By definition, the hypograph is the set of quadruples
󰀃
y, t1, t2, z

󰀄
satisfying

z ≤ gk(t1, t2) f
󰀓

y
gk(t1,t2)

󰀔
(k = 1, 2)

tk ∈ [ak, bk] (k = 1, 2) (3.4)

y ∈ t1 t2 C. (3.5)

Now, let S denote the set of 6-tuples
󰀃
y, t1, t2, z, t

′
1, t

′
2

󰀄
satisfying (3.4), (3.5), and

t′k = gk(t1, t2) (k = 1, 2) (3.6)

z ≤ t′k f
󰀓

y
t′k

󰀔
(k = 1, 2).
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Given that the functions gk are linear, S is just an affine image of the hypograph.

Moreover, using exactly the same argument as in Frangioni & Gentile [22], one can

show that S is described by the trivial linear constraints (3.4) and (3.6), together

with following perspective cuts:

z ≤ ∇f(ȳ) y +
󰀓
f(ȳ)−∇f(ȳ) ȳ

󰀔
t′k (k = 1, 2, ȳ ∈ t1t2C).

Eliminating the t′k variables yields the result. □

We call the inequalities (3.3) Bi-P cuts. Note that, when k = 1, the Bi-P cuts pass

through all points satisfying a1 ≤ t1 ≤ b1, t2 = a2, y = t1a2 ȳ and z = t1a2 f
󰀃

ȳ
t1a2

󰀄
.

They also pass through the point t1 = b1, t2 = b2, y = b1b2 ȳ and z = b1b2 f
󰀃

ȳ
b1b2

󰀄
.

Thus, they define maximal faces of the hypograph of the concave envelope whenever

the point
󰀃
ȳ, f(ȳ)

󰀄
lies on a maximal face of the hypograph of the original function

f . A similar argument applies when k = 2.

We now make some remarks about Bi-P cuts.

Remark 3 If we reduce the domains of t1 and/or t2, then the functions g1 and/or g2

decrease in value. This in turn causes the Bi-P cuts to become stronger. Thus, if one

wishes to make the cuts as tight as possible, it may be worthwhile applying “domain

reduction” techniques (see, e.g., [67]) to t1 and/or t2.

Remark 4 Let t∗1 ∈ [a1, b1], t∗2 ∈ [a2, b2], y∗ ∈ C and z∗ ∈ R be given. To solve

the separation problem for Bi-P cuts, it suffices to compute the quantity (3.2) for the

given t∗1, t
∗
2 and y∗. If this quantity is less than z∗, then a Bi-P cut is violated. The

vector ȳ yielding the cut is either y∗/g1(t∗1, t
∗
2) or y

∗/g2(t∗1, t
∗
2), according to which term

in (3.2) is the minimum.

Remark 5 When t2 is an indicator variable, the Bi-P cuts reduce to:

z ≤ ∇f(ȳ) y +
󰀓
f(ȳ)−∇f(ȳ) ȳ

󰀔
b1t2 (3.7)

z ≤ ∇f(ȳ) y +
󰀓
f(ȳ)−∇f(ȳ) ȳ

󰀔󰀓
t1 − a1(1− t2)

󰀔
. (3.8)

We will call constraints (3.7) and (3.8) type-1 and type-2 Bi-P cuts, respectively. Note

that the type-1 cuts can be derived as standard perspective cuts from the modified

perspective function b1t2f(y/(b1t2)). The type-2 cuts, on the other hand, are harder

to interpret.
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3.4 Bi-P cuts and Multiple-Choice Constraints

It is very common in integer programming to encounter constraints which state that

at most one of a set of binary variables can take a positive value. Such constraints go

by various names, such asmultiple-choice constraints, clique constraints or generalised

upper bounds. In this subsection, we consider the case in which each of the variables

in the given set is an indicator variable.

To be more precise, suppose we have:

• positive constants a, b with a < b;

• an integer m ≥ 2 and positive integers n1, . . . , nm;

• a convex domain Cj ⊆ Rnj for j = 1, . . . ,m;

• a concave function fj : Rnj → R for j = 1, . . . ,m.

Let Q denote the set of quadruples (x, y, z, t) satisfying

t ∈ [a, b] (3.9)
󰁓m

j=1 xj ≤ 1 (3.10)

zj ≤ tfj(y
j/t) (j = 1, . . . ,m) (3.11)

xj ∈ {0, 1} (j = 1, . . . ,m) (3.12)

yj ∈ t Cj (j = 1, . . . ,m) (3.13)

zj ∈ R (j = 1, . . . ,m) (3.14)

xj = 0 ⇒ zj = 0 (j = 1, . . . ,m)

xj = 0 ⇒ yji = 0 (j = 1, . . . ,m; i = 1, . . . , nj).

Note that all points in Q satisfy the (non-convex) constraints

yj ∈ t xj Cj (j = 1, . . . ,m)

zj ≤ txjfj

󰀓
yj

txj

󰀔
(j = 1, . . . ,m),

provided that, as usual, we use the convention that the right-hand side evaluates to

zero when txj is zero. Together with Remark 2 in Subsection 3.3.2, this implies that

all points in Q satisfy the convex constraints:

zj ≤ bxj fj

󰀓
yj

bxj

󰀔
(j = 1, . . . ,m) (3.15)

zj ≤
󰀃
t− a(1− xj)

󰀄
fj

󰀓
yj

t−a(1−xj)

󰀔
(j = 1, . . . ,m). (3.16)
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From this, one can derive one family of type-1 and type-2 Bi-P cuts for each value of

j.

Perhaps surprisingly, the addition of the constraints (3.15), (3.16) to the system

(3.9)–(3.14) does not yield a complete description of the convex hull of Q. This is

shown in the following example.

Example3: Let 󰂃 be a small positive constant. Suppose that (i) a = 󰂃 and b = 1;

and (ii) nj = 1, Cj = [0, 1] and fj
󰀃
yj1
󰀄
=

󰀃
yj1
󰀄󰂃

for all j. Consider the fractional point

obtained by setting t to 󰂃, all x and y variables to 1/m, and all z variables to 󰂃/(m󰂃)󰂃.

One can check that this point satisfies (3.15) and (3.16) for all j, and therefore all

Bi-P cuts. Now, observe that all points in Q satisfy the following convex inequality:

m󰁛

j=1

zj ≤ t

󰀣󰁓m
j=1 y

j
1

t

󰀤󰂃

.

The above-mentioned fractional point does not satisfy this, since the left- and right-

hand sides evaluate to (m󰂃)1−󰂃 and 󰂃1−󰂃, respectively. Accordingly, the point cannot

lie in the convex hull of Q. □

Now, for any j ∈ {1, . . . ,m} and any ȳj ∈ Cj, let ||ȳj|| denote fj(ȳj)−∇fj(ȳ
j)·ȳj.

The following theorem presents a huge family of valid inequalities, which generalise

the type-2 Bi-P cuts (3.8).

Theorem 2 Let S be any non-empty subset of {1, . . . ,m}. For each j ∈ S, let ȳj be

any point in Cj such that ||ȳj|| > 0. Then the linear inequality

󰁛

j∈S

zj
||ȳj|| ≤

󰁛

j∈S

∇fj(ȳ
j) · yj

||ȳj|| + t− a

󰀣
1−

󰁛

j∈S

xj

󰀤
(3.17)

is satisfied by all points in Q.

Proof. We consider two cases:

Case 1: xj = 0 for all j ∈ S. This forces yji to be zero for all j ∈ S and for

i = 1, . . . , nj. This in turn forces zj to be zero for all j ∈ S. Thus, the inequality

reduces to t ≥ a, which is trivially valid.

Case 2: xj = 1 for some j ∈ S. This forces xk to be zero for all k ∈ S \ {j}, along
with the associated y and z variables. Thus, the inequality reduces to

zj
||ȳj|| ≤ ∇fj(ȳ

j) · yj
||ȳj|| + t.
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Multiplying this by ||ȳj|| we obtain:

zj ≤ ∇fj(ȳ
j) · yj + ||ȳj|| t.

This last inequality can be derived from the (convex) constraint zj ≤ tfj(y
j/t), in

exactly the same way as the perspective cuts. □

We call the constraints (3.17) multiple-choice Bi-P cuts, or MC cuts for short.

They reduce to type-2 Bi-P cuts when |S| = 1.

It can be shown that each MC cut defines a face of maximal dimension of the

convex hull of Q. It can also be shown that the separation problem for the MC cuts

can be solved in polynomial time (assuming that the functions fj and their partial

derivatives can be computed in polynomial time). We omit details, for brevity.

3.5 Application to OFDMA Systems

We now apply the theoretical results in the last section to an optimisation problem

associated with OFDMA systems. In Subsection 3.5.1, we define our problem formally

and model it as a mixed 0-1 fractional program with indicator variables. In Subsection

3.5.2, we use standard perspective cuts to reformulate the problem as a semi-infinite

mixed 0-1 linear program. In Subsection 3.5.3, we show how to strengthen the semi-

infinite formulation using Bi-P cuts.

3.5.1 The problem

Let I, J , Bi, Ni and fi be defined as in Subsection 3.2.3. Let P > 0 denote the

maximum power available, and let σ ∈ (0, P ) denote the system power, which is

the amount of power needed by the OFDMA system regardless of actual data rates.

Finally, suppose that each user j ∈ J has a non-negative demand dj. The task is to

maximise the energy efficiency, subject to the constraint that the total data rate for

each user j is at least dj.

We call this problem the fractional subcarrier and power allocation problem with

rate constraints (F-SPARC). (A related problem, called the SPARC, was studied

in [49]. The difference is that the objective in the SPARC was simply to maximise

the total data rate.)

A natural formulation of the F-SPARC is obtained as follows. For all i ∈ I and

j ∈ J , let xij be a binary variable, indicating whether user j is assigned to subcarrier
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i. Also let pij be a non-negative continuous variable, which represents the amount of

power supplied to subcarrier i (if xij = 1), or zero otherwise. We then have:

max
󰁓

i∈I

󰁓
j∈J fi(pij)

σ+
󰁓

i∈I

󰁓
j∈J pij

(3.18)

s.t.
󰁓

i∈I
󰁓

j∈J pij ≤ P − σ (3.19)
󰁓

j∈J xij ≤ 1 (∀i ∈ I) (3.20)
󰁓

i∈I fi(pij) ≥ dj (∀j ∈ J) (3.21)

pij ≤ Pxij (∀i ∈ I, j ∈ J) (3.22)

pij ∈ R+ (∀i ∈ I, j ∈ J) (3.23)

xij ∈ {0, 1} (∀i ∈ I, j ∈ J). (3.24)

The objective function (3.18) represents the total data rate divided by the total power

used (including system power). The constraint (3.19) ensures that the total power

used does not exceed the amount available. Constraints (3.20) ensure that each

subcarrier is assigned to at most one user. Constraints (3.21) ensure that the user

demands are met. Constraints (3.22)–(3.24) are self-explanatory.

The problem (3.18)–(3.24) is a mixed 0-1 fractional program. The x variables are

clearly indicator variables, since setting any x variable to zero forces the correspond-

ing p variable to zero. Moreover, the constraints (3.20) are clearly multiple-choice

constraints.

From now on, we let D =
󰁓

j∈J dj denote the total user demand. Note that an

upper bound for the F-SPARC can be computed by solving the following (continuous)

fractional program:

max

󰀫󰁓
i∈I fi(pi)

σ +
󰁓

i∈I pi
:
󰁛

i∈I

pi ≤ P − σ,
󰁛

i∈I

fi(pi) ≥ D, p ∈ R|I|
+

󰀬
.

This fractional program can be converted into a convex program using the transfor-

mation mentioned in Subsection 3.2.1. We denote the corresponding upper bound by

U .

3.5.2 Reformulation

We now reformulate the problem to make it easier to solve. This is done in three

steps.

The first step is to convert the fractional objective function into a concave func-

tion. To do this, we use the transformation mentioned in Subsection 3.2.1. Let t be a
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non-negative continuous variable, representing 1/(σ +
󰁓

i∈I
󰁓

j∈J pij), i.e., the recip-

rocal of the total power used. Also, for all i and j, let p̃ij be a non-negative continuous

variable, representing t pij. The problem is then equivalent to the following:

max
󰁓

i∈I
󰁓

j∈J tfi(p̃ij/t) (3.25)

s.t. (3.20), (3.24)

σt+
󰁓

i∈I
󰁓

j∈J p̃ij = 1 (3.26)

1/P ≤ t ≤ 1/σ (3.27)
󰁓

i∈I fi(p̃ij/t) ≥ dj (∀j ∈ J) (3.28)

0 ≤ p̃ij ≤ xij (∀i ∈ I, j ∈ J). (3.29)

The objective function (3.25) is now concave, and all constraints are linear, apart

from (3.28), which are convex.

The second step is the following. For i ∈ I and j ∈ J , define a new variable, say

zij, representing the quantity tfi(p̃ij/t). The problem then becomes:

max
󰁓

i∈I
󰁓

j∈J zij

s.t. (3.20), (3.24), (3.26), (3.27), (3.29)
󰁓

i∈I zij ≥ djt (∀j ∈ J)

zij ≤ tfi(p̃ij/t) (∀i ∈ I, j ∈ J) (3.30)

zij ∈ R+ (∀i ∈ I, j ∈ J).

Now, all of the nonlinearity has been “concentrated” in the (convex) constraints

(3.30).

Finally, we replace the constraints (3.30) with the following linear constraints:

zij ≤ f ′
i(p̄) p̃ij + (fi(p̄)− f ′

i(p̄) p̄) t (∀i ∈ I, j ∈ J, p̄ ∈ [0, P − σ]). (3.31)

These linear constraints can be derived in the same way as standard perspective

cuts. Since they are infinite in number, we have formulated the F-SPARC as a semi-

infinite mixed 0-1 linear program. It can be solved (to arbitrary fixed accuracy) with

an LP-based branch-and-cut algorithm.

3.5.3 Bi-P cuts

We now use the results in Section 3.3 to strengthen our semi-infinite formulation of

the F-SPARC.
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We start by reducing the domain of t. Recall that D denotes the total user

demand. We compute the following lower bound on the total amount of power used:

Pmin = σ + min

󰀫
󰁛

i∈I

pi :
󰁛

i∈I

fi(pi) ≥ D, pi ≥ 0 (i ∈ I)

󰀬
.

The upper bound on t in (3.27) can then be reduced from 1/σ to 1/Pmin.

Now, let i and j be fixed, and consider the constraints (3.24), (3.29) and (3.30).

It is clear that all feasible triples (xij, p̃ij, rij) satisfy

zij ≤ t xijfi

󰀕
p̃ij
txij

󰀖
,

where, as usual, the convention is that the function on the right-hand side takes the

value zero when p̃ij = txij = 0. The function is clearly a Bi-P function, in which

t plays the role of t1 and xij plays the role of t2. The only tricky part is that the

natural domain of p̃ij is [0, 1], which is not equal to t xij C for some convex domain

C. Despite this complication, we have the following result:

Proposition 2 For all i ∈ I, j ∈ J and p̄ ∈ [0, P − σ], the following type-1 and

type-2 Bi-P cuts are valid for the F-SPARC:

zij ≤ f ′
i(p̄) p̃ij +

󰀕
fi(p̄) − f ′

i(p̄) p̄

Pmin

󰀖
xij (3.32)

zij ≤ f ′
i(p̄) p̃ij + (fi(p̄)− f ′

i(p̄) p̄)

󰀕
t− 1− xij

P

󰀖
. (3.33)

Proof. We already know that t must lie in the interval [1/P, 1/Pmin]. Also, pij ≤
P − σ, or, equivalently, p̃ij ∈ t [0, P − σ]. In fact, given that p̃ij must be zero when

xij is zero, we can conclude that p̃ij ∈ t xij [0, P − σ]. We can now apply Remark 5.

□

Note that the type-2 cuts (3.33) dominate (3.31).

Finally, since the constraints (3.20) are multiple-choice constraints, we can also

generate MC cuts. In our preliminary experiments, we found that the most useful

MC cuts, by far, were those with (a) S = J and (b) p̄ij equal to the same (positive)

value for all j ∈ J . These cuts take the form:

󰁛

j∈J

zij ≤ f ′
i(p̄)

󰁛

j∈J

p̃ij +
󰀓
fi(p̄)− f ′

i(p̄)p̄
󰀔
t

󰀃
i ∈ I, p̄ ∈ [0, P − σ]

󰀄
. (3.34)
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A possible explanation for the effectiveness of the cuts (3.34) is that they collectively

enforce the following convex inequalities:

󰁛

j∈J

zij ≤ t fi

󰀕󰁓
j∈J p̃ij

t

󰀖
(i ∈ I). (3.35)

From this it can be shown that the upper bound obtained by adding all of the cuts

(3.34) to the continuous relaxation of the semi-infinite formulation is equal to U , the

upper bound mentioned at the end of Subsection 3.5.1. In practice, this bound tends

to be quite tight.

We remark that the separation problem for the cuts (3.34) can be solved simply

by setting p̄ to the current value of
󰁓

j∈J p̃ij, and checking the inequality (3.35) for

violation. This can be done in O(|J |) time for a given i.

3.6 Computational Experiments

In the previous section, we described three families of cutting planes for the F-SPARC:

the type-1 cuts (3.32), the type-2 cuts (3.33), and the special MC cuts (3.34). In this

section, we present some computational results to shed light on the relative usefulness

of these different kinds of cuts.

3.6.1 Test instances

To construct our test instances, we used the procedure described in [49], which is

designed to produce instances typical of a small base station. In detail, the instances

have |I| = 72, |J | ∈ {4, 6}, and P set to 36 watts. The noise powers Ni are random

numbers distributed uniformly in (10−6, 10−5), and the bandwidths Bi are all set to

1.25MHz. The user demands follow a lognormal distribution.

Let D be the total demand, as before, and let M be the maximum possible data

rate of the system. As in [49], we call the quantity D/M the demand ratio (DR)

of the given instance. The user demands are scaled so that the DR takes values in

{0.75, 0.8, 0.85, 0.9, 0.95}. (The closer the DR is to 1, the harder the instance tends to

be.) For each combination of |J | and DR, we constructed 10 random instances. This

makes 2× 5× 10 = 100 instances in total. These instances have been made available

at:

http://www.research.lancs.ac.uk/portal/en/datasets/search.html

under “OFDMA Optimisation”.
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3.6.2 Experimental setup

For each instance, we did the following. We began by computing the upper bound

U mentioned at the end of Subsection 3.5.1, using MOSEK. We then ran the heuristic

described in [50] to compute a lower bound. If the bounds differed by more than 0.1%,

we ran an exact algorithm, similar to the one described in [49], until the difference

between the lower and upper bounds dropped below 0.1%. We remark that this exact

algorithm took a long time (sometimes several minutes) to converge for some of our

test instances.

The next step was to solve, for each instance, the continuous relaxation of the

formulation described in Subsection 3.5.2. To do this, we used a (fairly standard)

LP-based cutting-plane algorithm, in which the inequalities (3.31) were added dy-

namically as cutting planes. In each major iteration, all inequalities violated by more

than 10−4 were added to the LP. A time limit of two minutes per instance was also

imposed. (In most cases, tailing off occurred well before the time limit.)

The cutting-plane algorithm was coded in Julia v0.5 and run on a virtual machine

cluster with 16 CPUs (ranging from Sandy Bridge to Haswell architectures) and

16GB of RAM, under Ubuntu 16.04.1 LTS. The program used the LP solver from the

CPLEX 12.6.3 Callable Library (with default settings). More specifically, we used

primal simplex to solve the initial relaxation and dual simplex to re-optimise after

adding cuts.

Finally, we ran the cutting-plane algorithm again for each instance, switching on

and off various combinations of the cuts (3.32)–(3.34). The purpose of this was to

enable us to identify the cuts that tend to be most useful in practice.

3.6.3 Results

We present results for six versions of the cutting-plane algorithm:

• “∅”: Constraints (3.31) alone, without any Bi-P cuts.

• “T1”: Constraints (3.31) plus type-1 Bi-P cuts (3.32).

• “T2”: Type-2 Bi-P cuts (3.33) alone.

• ‘MC”: Constraints (3.31) plus MC cuts (3.34).

• “T1+T2”: Type-1 cuts (3.32) and type-2 cuts (3.33).

• “All”: Type-1 cuts (3.32), type-2 cuts (3.33) and MC cuts (3.34).
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Table 3.1: Average percentage gaps when |J | = 4

Demand Ratio

Cuts 0.75 0.80 0.85 0.90 0.95

∅ 165 165 168 172 175
T1 0.00 0.00 0.09 0.03 0.02
T2 0.01 0.01 0.03 0.01 0.03
MC 2.19 1.39 1.06 0.25 0.06

T1, T2 0.00 0.00 0.03 0.01 0.01
All 0.00 0.00 0.02 0.01 0.01

Table 3.2: Average percentage gaps when |J | = 6

Demand Ratio

Cuts 0.75 0.80 0.85 0.90 0.95

∅ 275 276 279 286 291
T1 0.08 0.08 0.14 0.15 0.05
T2 0.01 0.01 0.04 1.64 0.81
MC 2.30 2.41 1.63 0.33 0.15

T1, T2 0.01 0.01 0.04 0.15 0.03
All 0.01 0.01 0.04 0.14 0.03

Tables 3.1 and 3.2 show, for each set of 10 instances and each combination of cutting

planes, the average gap between the upper bound from the cutting-plane algorithm

and the lower bound from the exact algorithm, expressed as a percentage of the lower

bound.

From the tables, we see that the unstrengthened cuts (3.31) lead to extremely

poor upper bounds in all cases. Moreover, the gaps for |J | = 4 are much worse than

the gaps for |J | = 6. Type-1, type-2 and MC cuts all close the gap considerably,

but type-1 and type-2 cuts appear to be more effective than MC cuts. Using type-1

and type-2 cuts in combination is particularly effective. In fact, the benefit gained

by including MC cuts as well is rather small.

3.7 Concluding Remarks

Perspective reformulations and cuts are an invaluable tool for both fractional pro-

gramming and MINLP with indicator variables. We have shown that, when one is

dealing with a mixed-integer fractional program with indicator variables, one needs

to use “bi-perspective” reformulations and cuts in order to obtain bounds that are
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useful within an exact solution algorithm. We believe that extensions of perspective

reformulations and cuts to other classes of problems would be a valuable topic for

future research.

As for our specific application, to optimisation in OFDMA systems, we plan to

look next at stochastic dynamic variants of the problem, in which users arrive and

depart at random over time.
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Chapter 4

A Heuristic for Maximising Energy
Efficiency in an OFDMA System
Subject to QoS Constraints

4.1 Introduction

In many mobile wireless communications systems, mobile devices communicate with

one another via transceivers called base stations. Many base stations follow the so-

called Orthogonal Frequency-Division Multiple Access (OFDMA) scheme to code and

transmit messages (see, e.g., [17]). In OFDMA, we have a set of communication

channels, called subcarriers, and a set of users (i.e., mobile devices that are currently

allocated to the given base station). Each subcarrier can be assigned to at most one

user, but a user may be assigned to more than one subcarrier. The data rate achieved

by any given subcarrier is a nonlinear function of the power allocated to it.

Several different optimisation problems have been defined in connection with

OFDMA systems (e.g., [41,47–49,52,53,70,79,84,85,87,88]). Unfortunately, it turns

out that most of these problems are NP-hard [32,52,53]. Thus, most authors resort

to heuristics. In our recent papers [48, 49], however, we presented exact solution

algorithms based on mixed-integer nonlinear programming (MINLP). The problem

considered in [49] is to maximise the total data rate of the system subject to certain

quality of service (QoS) constraints called user rate constraints. The one considered

in [48] is similar, except that the objective is to maximise the energy efficiency (defined

as the total data rate divided by the total power used).

The algorithm in [49] is capable of solving many realistic problem instances to

proven optimality (or near-optimality) within a couple of seconds. The algorithm

in [48], however, is a lot slower, taking several minutes in some cases. This makes
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it of little use in a highly dynamic environment, when users may arrive and depart

frequently at random. Thus, we were motivated to devise a fast heuristic for the

problem described in [48]. That heuristic is the topic of the present paper.

Our heuristic is based on a combination of fractional programming, 0-1 linear

programming and binary search. It turns out to be remarkably effective, being able

to solve realistic instances to within 1% of optimality within a few seconds.

The paper has a simple structure. The problem is described in Section 4.2, the

heuristic is presented in Section 4.3, the computational results are given in Section

4.4, and concluding remarks are made in Section 4.5.

To make the paper self-contained, we recall the following result from [68] (see

also [10, 69]). Consider a fractional program of the form:

max
󰁱
f(y)/g(y) : y ∈ C

󰁲
,

where C ⊆ Rn is convex, f(y) is non-negative and concave over the domain C, and

g(y) is positive and convex over C. This problem can be reformulated as

max
󰁱
tf(y′/t) : tg(y′/t) ≤ 1, y′ ∈ tC, t > 0

󰁲
,

where t is a new continuous variable representing 1/g(y), and y′ is a new vector of

variables representing y/g(y). The reformulated problem has a concave objective

function and a convex feasible region.

4.2 The Problem

The problem under consideration is as follows. We have a set I of subcarriers and a

set J of users, a (positive real) system power σ (measured in watts) and a total power

limit P (also in watts). For each i ∈ I, we are given a bandwidth Bi (in megahertz),

and a noise power Ni (in watts). Finally, for each j ∈ J , we are given a demand dj

(in megabits per second). The classical Shannon-Hartley theorem [72] implies that,

if we allocate p units of power to subcarrier i, the data rate of that subcarrier (again

in Mb/s) cannot exceed

fi(p) = Bi log2 (1 + p/Ni) .

The task is to simultaneously allocate the power to the subcarriers, and the subcarriers

to the users, so that energy efficiency is maximised and the demand of each user is

satisfied.

In [48], this problem was called the fractional subcarrier and power allocation

problem with rate constraints or F-SPARC. It was formulated as amixed 0-1 nonlinear
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program, as follows. For all i ∈ I and j ∈ J , let the binary variable xij indicate

whether user j is assigned to subcarrier i, let the non-negative variable pij represent

the amount of power supplied to subcarrier i to serve user j, and let rij denote the

associated data rate. The formulation is then:

max
󰁓

i∈I

󰁓
j∈J rij

σ+
󰁓

i∈I

󰁓
j∈J pij

(4.1)
󰁓

i∈I
󰁓

j∈J pij ≤ P − σ (4.2)
󰁓

j∈J xij ≤ 1 (∀i ∈ I) (4.3)
󰁓

i∈I rij ≥ dj (∀j ∈ J) (4.4)

rij ≤ fi(pij) (∀j ∈ J) (4.5)

pij ≤ (P − σ)xij (∀i ∈ I, j ∈ J) (4.6)

xij ∈ {0, 1} (∀i ∈ I, j ∈ J)

pij, rij ∈ R+ (∀i ∈ I, j ∈ J).

The objective function (4.1) represents the total data rate divided by the total power

(including the system power). The constraint (4.2) enforces the limit on the total

power. Constraints (4.3) ensure that each subcarrier is assigned to at most one user.

Constraints (4.4) ensure that user demands are met. Constraints (4.5) ensure that

the data rate for each subcarrier does not exceed the theoretical limit. Constraints

(4.6) ensure that pij cannot be positive unless xij is one. The remaining constraints

are just binary and non-negativity conditions.

The objective function (4.1) and the constraints (4.5) are both nonlinear, but

they are easily shown to be concave and convex, respectively. The exact algorithm

in [48] starts by applying the transformation mentioned at the end of the introduction,

to make the objective function separable. After that, it uses a well-known generic

exact method for convex MINLP, called LP/NLP-based branch-and-bound [63], en-

hanced with some specialised cutting planes called bi-perspective cuts. As mentioned

in the introduction, however, this exact method can be too slow on some instances of

practical interest.

4.3 The Heuristic

We now present our heuristic for the F-SPARC. We will show in the next section

that it is capable of solving many F-SPARC instances to proven near-optimality very

quickly.
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4.3.1 The Basic Idea

Let D =
󰁓

j∈J dj be the sum of the user demands. We start by solving the following

NLP:

max

󰀫
󰁛

i∈I

fi(pi) :
󰁛

i∈I

pi ≤ P − σ, p ∈ R|I|
+

󰀬
. (NLP1)

This gives the maximum possible data rate of the system, which we denote by M . If

D > M , the F-SPARC instance is infeasible, and we terminate immediately.

We remark that NLP1 can be solved extremely quickly in practice, since its ob-

jective function is both concave and separable. (In fact, it can be solved by the

well-known water-filling approach; see, e.g., [12, 28].)

Now consider the following fractional program:

max
󰁓

i∈I fi(pi)/(σ +
󰁓

i∈I pi)
s.t.

󰁓
i∈I fi(pi) ≥ D󰁓
i∈I pi ≤ P − σ

pi ≥ 0 (i ∈ I).

This is a relaxation of the F-SPARC instance, since it ignores the allocation of subcar-

riers to users, and aggregates the user demand constraints. Using the transformation

mentioned in the introduction, it can be converted into the following equivalent con-

vex NLP:
max

󰁓
i∈I tfi(p̃i/t)

s.t. σt+
󰁓

i∈I p̃i = 1
1/P ≤ t ≤ 1/σ󰁓
i∈I tfi(p̃i/t) ≥ D t

p̃i ≥ 0 (i ∈ I).

(NLP2)

The solution of NLP2 yields an upper bound on the efficiency of the optimal F-SPARC

solution, which we denote by U .

Now, if we can find an F-SPARC solution whose efficiency is equal to U , it must

be optimal. In an attempt to find such a solution, one can take the optimal solution

of NLP2, say (p̃∗, t∗), construct the associated data rate r∗i = fi(p̃
∗
i /t

∗)/t∗ for all i ∈ I,

and then solve the following 0-1 linear program by branch-and-bound:

max
󰁓

i∈I
󰁓

j∈J xij

s.t.
󰁓

j∈J xij ≤ 1 (i ∈ I)󰁓
i∈I r

∗
i xij ≥ dj (j ∈ J)

xij ∈ {0, 1}

(01LP)

Note that 01LP, having |I| |J | variables, is of non-trivial size. On the other hand, all

feasible solutions (if any exist) represent optimal F-SPARC solutions. Thus, if any

feasible solution is found during the branch-and-bound process, we can terminate

branch-and-bound immediately.
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4.3.2 Improving with Binary Search

Unfortunately, in practice, 01LP frequently turns out to be infeasible. This is because

the sum of the r∗i is frequently equal to D, which in turn means that a feasible solution

of 01LP would have to satisfy all of the linear constraints at perfect equality. Given

that the r∗i and dj are typically fractional, such a solution is very unlikely to exist.

(In fact, even if such a solution did exist, it could well be lost due to rounding errors

during the branch-and-bound process.)

These considerations led us to use a more complex approach. We define a mod-

ified version of NLP2, in which D is replaced by (1 + 󰂃)D, for some small 󰂃 > 0. We

will call this modified version “NLP2(󰂃)”. Solving NLP2(󰂃) in place of NLP2 usually

leads to a small deterioration in efficiency, but it also tends to lead to slightly larger

r∗i values, which increases the chance that 01LP will find a feasible solution.

We found that, in fact, even better results can be obtained by performing a binary

search to find the best value of 󰂃. The resulting heuristic is described in Algorithm

2. When Algorithm 2 terminates, if L and U are sufficiently close (say, within 1%),

then we have solved the instance (to the desired tolerance).

4.3.3 Improving by Reallocating Power

Algorithm 2 can be further enhanced as follows. Each time we find a feasible solution

x∗ to 01LP, we attempt to improve the efficiency of the associated F-SPARC solution

by solving the following fractional program:

max
󰁓

i∈I fi(pi)/(σ +
󰁓

i∈I pi)
s.t.

󰁓
i∈I pi ≤ P − σ󰁓

i∈I:x∗
ij=1 fi(pi) ≥ dj (j ∈ J)

pi ≥ 0.

This is equivalent to a convex NLP that is similar to NLP2, except that we replace

the single constraint
󰁓

i∈I r̃i ≥ D t with the “disaggregated” constraints

󰁛

i∈I:x∗
ij=1

r̃i ≥ dj t (j ∈ J).

We call this modified NLP “NLP2dis”. We found that this enhancement leads to a

significant improvement in practice. Intuitively, it “repairs” much of the “damage”

to the efficiency that was incurred by increasing the demand by a factor of 1 + 󰂃.
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Algorithm 2: Binary search heuristic for F-SPARC

input: power P , bandwidths Bi, noise powers Ni,
demands dj, system power σ, tolerance δ > 0.

Compute total user demand D =
󰁓

j∈J dj;

Solve NLP1 to compute the maximum possible data rate M ;
Output D and M ;
if D > M then

Print “The instance is infeasible.” and quit;
end
Solve NLP2 to compute upper bound U on optimal efficiency;
Output U ;
Set L := 0, 󰂃ℓ := 0 and 󰂃u := (M/D)− 1;
repeat

Set 󰂃 := (󰂃ℓ + 󰂃u)/2;
Solve NLP2(󰂃). Let (p̃∗, r̃∗, t∗) be the solution and L′ its efficiency;
Solve 01LP with r∗ set to r̃∗/t∗;
if 01LP is infeasible then

Set 󰂃ℓ := 󰂃;
else

Let x∗ be the solution to 01LP;
if L′ > L then

Set L := L′, p̄ := p̃∗/t∗ and x̄ := x∗;
end
Set 󰂃u := 󰂃;

end

until 󰂃u − 󰂃ℓ ≤ δ or L ≥ U/(1 + δ);
if L > 0 then

Output feasible solution (x̄, p̄);
else

Output “No feasible solution was found.”;
end
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4.4 Computational Experiments

We now report on some computational experiments that we conducted. The heuristic

was coded in Julia v0.5 and run on a virtual machine cluster with 16 CPUs (rang-

ing from Sandy Bridge to Haswell architectures) and 16GB of RAM, under Ubuntu

16.04.1 LTS. The program calls on MOSEK 7.1 (with default settings) to solve the

NLPs, and on the mixed-integer solver from the CPLEX Callable Library (v. 12.6.3)

to solve the 0–1 LPs. In CPLEX, default setting were used, except that the parameter

“MIPemphasis” was set to “emphasize feasibility, and a time limit of 1 second was

imposed for each branch-and-bound run. We also imposed a total time limit of 5

seconds for each F-SPARC instance.

4.4.1 Test Instances

To construct our test instances, we used the procedure described in [49], which is

designed to produce instances typical of a small (indoor) base station following the

IEEE 802.16 standard. These instances have |I| = 72, |J | ∈ {4, 6, 8} and P set to 36

watts. The noise powers Ni are random numbers distributed uniformly in (0, 10−11),

and the bandwidths Bi are all set to 1.25MHz.

The user demands dj are initially generated according to a unit lognormal dis-

tribution, and are then scaled to create instances of varying difficulty. Recall that,

for a given instance, D denotes the total demand and M denotes the maximum

possible data rate of the system. The quantity D/M is called the demand ratio

(DR) of the instance. The user demands are scaled so that the DR takes values in

{0.75, 0.8, 0.85, 0.9, 0.95, 0.98}. As the DR approaches 1 from below, the instances

tend to get harder.

For each combination of |J | and DR, we generated 500 random instances. This

makes 3×6×500 = 9, 000 instances in total. For each instance, we first ran the exact

algorithm in [48], with a tolerance of 0.01%, to compute tight upper bounds on the

optimal efficiency. Although this was very time-consuming, it was necessary in order

to assess the quality of the solutions found by our heuristic. We remark that some of

the instances with high DR were proven to be infeasible by the exact algorithm.

4.4.2 Results

Table 4.1 shows, for various combinations of |J | and DR, the number of instances

(out of 500) for which the heuristic failed to find a feasible solution within the 5

second time limit. We see that the heuristic always finds a solution when the DR
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Demand Ratio

|J | 0.75 0.80 0.85 0.90 0.95 0.98

4 0 0 0 0 5 9
6 0 0 0 7 22 29
8 0 0 0 10 59 82

Table 4.1: Number of instances where heuristic failed to find a feasible solution

Demand Ratio

|J | 0.75 0.80 0.85 0.90 0.95 0.98

4 0.00 0.00 0.30 0.24 0.33 0.38
6 0.00 0.00 0.31 0.32 0.48 0.54
8 0.00 0.00 0.33 0.41 0.67 0.90

Table 4.2: Average percentage gap between lower and upper bounds.

is less than 0.9, but can fail to find one when the DR is close to 1, especially when

the number of users is high. This is however not surprising, since a high DR leads to

fewer options when solving problem 01LP, and an increase in |J | increases the number

of user demands that the heuristic needs to satisfy. Also, as mentioned above, some

of the instances are actually infeasible.

Table 4.2 shows, for the same combinations of |J | and DR, the average gap

between the efficiency of the solution found by the heuristic, and our upper bound on

the optimal efficiency. The average is taken over the instances for which the heuristic

found a feasible solution. We see that the heuristic consistently finds an optimal

solution when the DR is less than 0.85. Moreover, even for higher DR values, the

solutions found by the heuristic are of excellent quality, with average gaps of well

under 1%. (Closer inspection of the date revealed that the gap exceeded 1% only for

some instances with DR equal to 0.9 or higher.)

Finally, Table 4.3 shows the average time taken by the heuristic, again averaged

over the instances for which the heuristic found a feasible solution. We see that, when

the DR is less than 0.85, the heuristic finds the optimal solution within a fraction of

a second. Moreover, even for higher DR values, the heuristic rarely needed the full

5 seconds allocated to it to find a solution of good quality. (Closer inspection of the

data revealed that, in the majority of the cases in which the time limit was met, it

was because the heuristic had not found a feasible solution by that time.)

All things considered, the heuristic performs very well, both in terms of solution

quality and running time. Although we have not given detailed running times for the
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Demand Ratio

|J | 0.75 0.80 0.85 0.90 0.95 0.98

4 0.07 0.06 0.11 0.13 0.28 0.38
6 0.07 0.06 0.36 0.57 1.10 1.40
8 0.07 0.09 0.58 0.90 2.00 2.83

Table 4.3: Average time (in seconds) taken by the heuristic when it succeeded.

exact algorithm, we can report that the heuristic is typically faster by at least two

orders of magnitude.

4.5 Concluding Remarks

Due to environmental considerations, it is becoming more and more common to take

energy efficiency into account when designing and operating mobile wireless communi-

cations systems. We have presented a heuristic for one specific optimisation problem

arising in this context, concerned with maximising energy efficiency in an OFDMA

system. The computational results are very promising, with optimal or near-optimal

solutions being found for the majority of instances in less than a second.

We believe that our heuristic is suitable for real-life application in a dynamic

environment, as long as users arrive and depart only every few seconds. However,

there is one caveat: our heuristic involves the solution of nonlinear programs (NLPs)

and 0–1 linear programs (0-1 LPs), which in itself consumes energy. We believe that

the NLP subproblems could be solved more quickly and efficiently using a specialised

method (such as water-filling). As for the 0-1 LP subproblems, note that they are

actually only feasibility problems, rather than optimisation problems per se. It may

well be possible to solve them efficiently using a simple local-search heuristic, rather

than invoking the “heavy machinery” of an exact 0-1 LP solver. This may be the

topic of a future paper.
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Chapter 5

A Heuristic for Dynamic Resource
Allocation in Overloaded OFDMA
Systems

5.1 Introduction

In modern mobile wireless communication systems, the base stations often use a cod-

ing scheme called Orthogonal Frequency-Division Multiple Access or OFDMA (see,

e.g., [17]). In OFDMA, there are a number of transmission channels, called subcarri-

ers. At any given point in time, there is a set of users with known demands. Each

subcarrier must be assigned to only one user, but a user may be assigned to more

than one subcarrier. The data rate for each subcarrier is a nonlinear function of the

power allocated to it, and there is a limited amount of power available.

There are actually many different optimisation problems associated with OFDMA

systems, with various objective functions, side-constraints and planning horizons (see,

e.g., [16, 41, 42, 47–50, 55, 59, 65, 70, 74–76, 80, 83, 84, 86, 88]). Most of them have been

shown to be NP-hard [32, 52, 53].

In our earlier paper [49], we considered a relatively simple problem, in which the

set of users is treated as fixed. The problem is to allocate the power to the subcarriers,

and the subcarriers to the users, in order to maximise the overall data rate, subject

to satisfying the demand of each user. We called this the joint subcarrier and power

allocation problem with rate constraints (SPARC), and presented an exact algorithm

for it.

Now, letM be the maximum data rate achieveable by the system (in megabits per

second, Mb/s), and let D be the total demand (again in Mb/s). When D/M ≤ 0.93,

the algorithm in [49] is very fast, taking only a fraction of a second. On the other hand,
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when D/M > 0.93, the algorithm becomes unacceptably slow, sometimes taking

minutes to find a feasible solution (or prove infeasibility).

In this paper, we address the high-demand case. More precisely, let D(t) denote

the demand at time t. We are concerned with the situation in whichD(t)/M regularly

exceeds 0.93. In this case, we say that the system is overloaded. It turns out that a

very different approach is needed for the overloaded case. This is for several reasons:

1. At certain points in time, the system may not have the capacity to satisfy all

of the users.

2. Thus, we may need to be content with only partially satisfying the users at

certain times.

3. This in turn means that we must ensure that users are treated in a manner that

is perceived to be fair.

4. Since an exact approach is likely to be too slow, we must use a heuristic ap-

proach.

5. To be of practical use, the heuristic must be able to re-optimise quickly, as users

arrive and depart. (Equivalently, it must be suitable for a stochastic dynamic

optimisation problem rather than a static one.)

To address these considerations, we devise a heuristic, based on the solution of a

single small convex program, followed by the periodic application of local search. The

neighbourhoods are specially designed so that we can search them within a fraction

of a second. Extensive simulations on realistic data indicate that the heuristic is fast

enough to be used in real-time, and consistently delivers allocations of very good

quality (according to various quality measures).

We remark that our heuristic is most appropriate for so-called non-delay-constrained

traffic (such as emails and file requests), for which occasional delays are acceptable.

For delay-constrained traffic (such as phone calls and live video), our heuristic may

be less useful. (See Tao et al. [76] for more on these two kinds of traffic.)

The paper is structured as follows. Section 5.2 contains a brief literature review.

Section 5.3 describes the new problem in detail, and Section 5.4 describes the heuristic

itself. The computational results are given in Section 5.5 and some final remarks are

made in Section 5.6.

Throughout the paper, we let I denote the set of subcarriers. Each subcarrier

i ∈ I has a known bandwidth Bi (measured in MHz) and a known noise power Ni (in
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watts). The set of users at time t is denoted by J(t). The demand of user j ∈ J(t),

in Mb/s, is denoted by dj. The total demand at time t is denoted by D(t). That

is, D(t) =
󰁓

j∈J(t) dj. When we are considering only a single time period, we drop

the index t and just write J and D, respectively. The amount of power available, in

watts, is denoted by P . We assume that the demand process is stationary, so that

the expected value of D(t) is constant over time. Borrowing from queueing theory

parlance, we call the expected value of D(t)/M the traffic intensity and denote it by

ρ.

5.2 Literature Review

As mentioned in the introduction, there is by now an extensive literature on optimi-

sation in OFDMA systems. For the sake of brevity, we review here only a few works

of direct relevance.

Consider a single subcarrier i ∈ I. The classical Shannon-Hartley theorem [72]

states that, if we allocate p watts of power to subcarrier i, then the maximum possible

data rata achievable via subcarrier i, in bits per second, is

fi(p) = Bi log2

󰀕
1 +

p

Ni

󰀖
.

We remark that this function is concave (over the domain R+).

Now consider the case of multiple subcarriers, and recall that M denotes the

maximum data rate achievable by the system. One can computeM quickly by solving

the following NLP:

max

󰀫
󰁛

i∈I

fi(pij) :
󰁛

i∈I

pi ≤ P, p ∈ R|I|
+

󰀬
. (5.1)

This NLP can be solved quickly using a method called water filling (see, e.g., [12,17,

28]).

Now we recall the formulation of the SPARC presented in [49]. This formulation

considers only a single time period. For each i ∈ I and j ∈ J , let xij be a binary

variable, taking the value 1 if and only if subcarrier i is assigned to user j, and let pij

be a continuous variable, taking the value zero if xij = 0, but otherwise representing

the amount of power supplied to subcarrier i. The SPARC is then formulated as the
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following mixed 0-1 convex program:

max
󰁓

i∈I
󰁓

j∈J fi(pij)

s.t.
󰁓

i∈I
󰁓

j∈J pij ≤ P (5.2)
󰁓

i∈I fi(pij) ≥ dj (j ∈ J) (5.3)
󰁓

j∈J xij ≤ 1 (i ∈ I) (5.4)

pij ≤ Pxij (i ∈ I, j ∈ J) (5.5)

pij ∈ R+ (i ∈ I, j ∈ J)

xij ∈ {0, 1} (i ∈ I, j ∈ J).

The constraint (5.2) imposes the limit on the total available power. The constraints

(5.3) ensure quality of service (QoS). The constraints (5.4) ensure that each subcarrier

is allocated to at most one user. The constraints (5.5), which are the variable upper

bounds, ensure that xij takes the value 1 if pij > 0. The remaining constraints are

self-explanatory.

As mentioned in the introduction, the algorithm in [49] works well when D/M ≤
0.93, but is slow otherwise. Moreover, when 0.93 < D/M ≤ 1, there is a chance that

the SPARC is infeasible. We conclude that the approach in [49] is suitable only when

(a) the user demands are more-or-less static, and/or (b) D(t)/M rarely exceeds 0.93.

Finally, we mention that there is a stream of literature on fairness in multi-user

communications systems (see, e.g., [16, 33, 35, 39, 55, 58, 59, 74, 75, 80]). As mentioned

above, fairness will be relevant to us because, when the traffic intensity is high, we

may not be able to satisfy the demands of all users.

5.3 A Stochastic Dynamic Version of the SPARC

It turns out that some thought is needed before one can formally define a stochastic

dynamic version of the SPARC. In particular, one must consider (i) what constitutes

an instance of the problem, and (ii) which function is to be optimised. These issues

are covered in the following two subsections.

5.3.1 Instance data

As in the standard SPARC, we assume that the set of subcarriers I is fixed, and that

we are given the bandwidths Bi, noise powers Ni, and power limit P . (In real-life

systems, the Ni may fluctuate a little over time. Our approach can be extended to
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cover that case, but we do not give details, for brevity.) As for the users, we make

the following assumptions:

• User arrivals are Markovian with known average rate λ (per second).

• The durations of the user requests are i.i.d., with known probability distribution

and known mean t̄ (in seconds).

• The user demands follow a known probability distribution with known mean d̄

(in Mb/s).

One can check that, at steady-state, the expected number of users is λ t̄ and the

expected total user demand is D̄ = λ t̄ d̄. For the traffic intensity, we have ρ = D̄/M .

In our preliminary experiments, we found that ρ is a reasonably reliable measure of

the difficulty of an instance. (Other obvious potential drivers of difficulty are the

variances of the user durations and user demands, but we did not find these to be so

important in our simulations.)

5.3.2 Objective function

Some thought also needs to be paid to the objective function. In particular, one must

address the issue of fairness mentioned in the introduction.

Now, let us temporarily consider the static case, in which all user demands are

known. Let p ∈ R|I| |J |
+ be a fixed power allocation. For each user j ∈ J , we define the

user rate rj =
󰁓

i∈I fi(pij) and the satisfaction sj = rj/dj. Then, the demand of a

user is met if and only if the satisfaction is at least one. A natural objective is then

to maximise the mean of the sj.

Unfortunately, the use of this “max-mean” objective can lead to very unfair so-

lutions when the user demands have a wide range.

Example: Suppose that |J | = 2, and that the demands are 10 and 1. Suppose that

|I| = 3, and the subcarriers have data rates of 8, 2 and 1, respectively. If we assign

subcarriers 1 and 2 to user 1 and subcarrier 3 to user 3, the mean satisfaction will

be 1. But if we assign only subcarrier 1 to user 1 and subcarriers 2 and 3 to user

3, the mean satisfaction will be 1.9. So the second vector is preferable according to

the “max-mean” criterion, even though the first allocation completely satisfies both

users. □
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To avoid such unfair solutions, one could attempt to maximise the minimum

satisfaction instead. Unfortunately, ‘max-min’ optimisation problems are notoriously

difficult to solve, by either exact or heuristic methods, because the objective function

is ‘flat’ (i.e., small changes in p may lead to no change in the value of the objective).

After some experimentation, we discovered the following alternative objective

function:

Definition 7 The “weighted harmonic mean satisfaction” (WHMS) is:

D󰁓
j∈J djs

−1
j

=
D󰁓

j∈J d
2
j/rj

.

In our experience, maximising the WHMS tends to lead to solutions that perform

very well according to the max-min criterion. Indeed, in the above example, the first

solution has a WHMS of 11/(10+1) = 1, whereas the second (unfair) solution has a

WHSM of 11/
󰀃
100
8

+ 1
3

󰀄
= 6/7. The following proposition gives a partial explanation

for this phenomenon.

Proposition 3 Let d ∈ R|J |
+ be a demand vector and let R be a positive constant.

Consider the following two continuous optimisation problems: the “max-min” problem

max

󰀫
min
j∈J

{rj/dj} :
󰁛

j∈J

rj = R, rj > 0 (j ∈ J)

󰀬

and the “max WHMS” problem

max

󰀫
D󰁓

j∈J d
2
j/rj

:
󰁛

j∈J

rj = R, rj > 0 (j ∈ J)

󰀬
.

These two problems have the same optimal solutions.

Proof. The solution to the max-min problem is to set rj to djR/D for all j. This

gives each user a satisfaction of R/D. Now, since D is fixed, the max WHMS problem

is equivalent to

min

󰀫
󰁛

j∈J

d2j/rj :
󰁛

j∈J

rj = R, rj > 0 (j ∈ J)

󰀬
.

We solve this last problem using the method of Lagrange multipliers. We give the

constraint
󰁓

j∈J rj = R a Lagrange multiplier λ and consider the Lagrangian

L(r,λ) =
󰁛

j∈J

d2j/rj + λ

󰀣
󰁛

j∈J

rj −R

󰀤
.
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We now have

∂L(r,λ)/∂rj = λ− d2j/r
2
j (j ∈ J).

Setting these partial derivatives to zero, we obtain d2j/r
2
j = λ for all j, or, equivalently,

rj =
√
λ/dj for all j. Thus, the optimal r values are proportional to 1/dj. In other

words, rj is set to djR/D for all j, just as in the max-min solution. □

Now let us return to the stochastic dynamic case. In light of the above, one might

wish to compute a policy that maximises the expected WHMS, where the expectation

is taken over an infinite number of time periods. Unfortunately, this looks like an

extremely difficult task, especially in the overloaded case. So, as mentioned in the

introduction, we content ourselves with a heuristic approach that updates the resource

allocation in each time period.

5.4 The Heuristic

In this section, we present a heuristic for maximising the expected WHMS when the

system is overloaded.

5.4.1 Initial solution

Before one can apply local search, one needs an initial solution to start from. To

construct an initial solution, we use the greedy heuristic described in Algorithm 3.

During the course of the algorithm, rj is the current data rate given to user j. The

choice of the factor of
󰁳

dj is designed to make it more likely that channels with high

data rate will be allocated to users with high demand, yet still ensure that at least

some of the demand of each user is satisfied.

5.4.2 Local search

To improve the initial solution, we use a straighforward local search heuristic. This

heuristic consists of two main phases, as described in Algorithms 4 and 5.

In the first phase, we take each subcarrier and check if it should be assign it to

another user. This phase can be implemented to run in only O(|I| |J |) time. Indeed,

maximising the WHMS is equivalent to minimising

󰁛

j∈J

d2j󰁓
i∈I fi(pij)

. (5.6)
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Algorithm 3: Greedy Constructive Heuristic

Input: bandwidths Bi, noise powers Ni, initial demands dj.
Solve the NLP (5.1) and let p∗ be the optimal solution;
Sort the channels in non-increasing order of fi(p

∗
i ) and let L be the sorted list;

for each user j ∈ J do
Set rj := 0;

end
for each channel i in the list L do

Assign channel i to the user with the smallest value of rj/
󰁳

dj;
(In case of ties, assign it to the user with highest dj);
Increase rj by fi(p

∗
i );

end
Output: Initial allocation of channels to users.

Algorithm 4: First Improvement Phase

Input: bandwidths Bi, noise powers Ni, demands dj,
fixed power allocation vector p∗,
current subcarrier allocation, current data rates rj.

for each subcarrier i ∈ I do
Let k be the user to which subcarrier i is currently allocated;
for each user j ∈ J \ {k} do

if the WHMS can be improved by re-allocating i to j then
Re-allocate subcarrier i to user j;
Update rk and rj;

end

end

end
Output: Improved subcarrier allocation.

Algorithm 5: Second Improvement Phase

Input: bandwidths Bi, noise powers Ni, demands dj,
fixed power allocation vector p∗,
current subcarrier allocation, current data rates rj.

for each pair of subcarriers {i, i′} ⊂ I do
Let k, k′ be the users to which the subcarriers are currently allocated;
if k ∕= k′ and the WHMS can be improved by swapping the allocation of
subcarriers i and i′ then

Swap the allocation of subcarriers i and i′;
Update rk and rk′ ;

end

end
Output: Improved subcarrier allocation.
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If we take channel i and assign it to user j instead of user k, the function (5.6) will

increase by
d2k

rk − p∗i
− d2k

rk
+

d2j
rj + p∗i

−
d2j
rj
.

If this is negative, then we can accept the proposed move. We can check this in

constant time for a given i and j.

In the second phase, we take pairs of subcarriers and swap the users. This phase

can be implemented to run in O
󰀃
|I|2

󰀄
time. Indeed, if subcarriers i and i′ are assigned

to users k and k′, respectively, and we swap the allocation, the function (5.6) will

increase by
d2k

rk + p∗i′ − p∗i
− d2k

rk
− d2k′

rk′ + p∗i − p∗i′
+

d2k′

rk′
.

5.4.3 Extension to the dynamic case

To adapt our heuristic to the dynamic case, we basically run the local search heuristic

periodically. Details are given in Algorithm 6. The key idea is that, if the set of

users has changed, we restore feasibility and re-optimise as quickly as possible. In

particular, we do not call Algorithms 4 and 5 more than once in any given time

period. Then, with appropriate data structures, the time taken by the algorithm in

each time period is only O(|I|2). This limit on the running time is necessary, since,

in the real system, one needs to decide how to re-allocate the subcarriers in a fraction

of a second.

5.5 Experiments

In this section, we report on some computational experiments that we conducted.

The heuristic described in the previous section was coded in Julia v0.5 and run on

an intel Core i7 3.1 GHz CPU, with 16GB of RAM, under Ubuntu 16.04.1 LTS. The

program calls on MOSEK 7.1 (with default settings) to solve the initial NLP.

5.5.1 Test Instances

We took particular care to make our test instances as realistic as possible, based on

the IEEE 802.16 standard. With regard to subcarriers, we set |I| ∈ {72, 180, 300}.
The noise powers Ni are random numbers distributed uniformly in the open interval

(0, 10−10), and the bandwidths Bi are all set to 2.5MHz. As for users, we assume

that (a) the inter-arrival times follow a negative exponential distribution, (b) the
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Algorithm 6: Dynamic Local Search Heuristic

Input: bandwidths Bi, noise powers Ni, initial set of users J(0),
initial demands dj, number of time periods T .

Construct an initial solution using Algorithms 3, 4 and 5;
for t = 1, . . . , T do

Let J(t) be the current set of users;
Let J− = J(t− 1) \ J(t);
if J− ∕= ∅ then

for j ∈ J− do
for each subcarrier that was allocated to user j do

Re-allocate the subcarrier to an arbitrary user in J(t);
end

end

end
Let J0 be the set of users in J(t) that currently have no subcarriers
allocated to them;
if J0 ∕= ∅ then

Let J+ contain all users in J(t) that currently have two or more
subcarriers assigned to them;
for j ∈ J0 do

Let j+ be the user in J+ with the highest satisfaction;
Let i be a subcarrier that was allocated to user j+;
Re-allocate subcarrier i to user j;
if user j+ now has only one subcarrier then

Remove j+ from J+;
end

end

end
Re-optimise by calling Algorithms 4 and 5;

end
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service times (in seconds) are uniformly distributed in [1, 4], and (c) the demands dj

are obtained by sampling random numbers from a unit lognormal distribution, and

multiplying by a positive constant c. Finally, the power limit P is set to |I|/2, in
watts.

Note that, if the mean arrival rate (in users per second) is λ, then the expected

number of users in the system at any given point in time is 2.5λ. Thus, we could

control the expected number of users by varying λ. For |I| = 72, we considered three

scenarios, in which the expected number of users is 4, 6 or 8. For |I| = 180, we set

the expected number of users to 10, 15 and 20. For |I| = 300, we set it 20, 30 and

40. This leads to nine scenarios in total (see the two left-most columns in Table 5.1).

In a similar manner, by careful selection of the scaling constant c, we could

implicitly control the traffic intensity ρ. We considered four different values for c,

corresponding to setting ρ ∈ {0.90, 0.95, 1.00, 1.05}. This means a total of 36 simula-

tions. Each simulation was run for 1100 time periods, where the first 100 were used

to allow the system to settle into steady state. So, we view T as being equal to 1000

in what follows.

5.5.2 Results

Recall that J(t) denotes the set of users at time t and sj denotes the satisfaction of

user j. We first considered the following three performance measures.

• The mean-min satisfaction 1
T

󰁓T
t=1 minj∈J(t){sj}.

• The mean-mean satisfaction 1
T

󰁓T
t=1

1
|J(t)|

󰁓
j∈J(t) sj.

• The mean-max satisfaction 1
T

󰁓T
t=1 maxj∈J(t){sj}.

We will call these simply “min”, “mean” and “max” in what follows.

Table 5.1 shows the values taken by these three performance measures for various

values of |I| and various (expected) values of |J |, when ρ = 1. The columns headed

“phase 1” concern a version of the heuristic in which the second improvement phase

was omitted. We see that the heuristic performs remarkably well, with values close

to or exceeding 1 in all cases. Interestingly, the second improvement phase has little

effect on the mean satisfaction, but it improves the fairness of the solutions noticably.

Note also that all three performance measures improve as the number of subcarriers

increases, but worsen slightly as the expected number of users increases.

Table 5.2 reports the average time taken by each of our two improvement phases

(i.e., Algorithms 4 and 5) in one time period, for the same simulations that were used
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Phase 1 Phase 2

|I| |J | min mean max min mean max

4 1.111 1.132 1.154 1.132 1.132 1.135
72 6 1.055 1.094 1.133 1.090 1.094 1.105

8 1.012 1.065 1.118 1.055 1.065 1.083

10 1.021 1.047 1.074 1.047 1.047 1.049
180 15 0.983 1.025 1.067 1.023 1.025 1.034

20 0.961 1.017 1.075 1.012 1.017 1.038

20 0.986 1.019 1.053 1.019 1.019 1.021
300 30 0.960 1.012 1.065 1.009 1.012 1.029

40 0.939 1.008 1.079 1.002 1.009 1.041

Table 5.1: Average values of performance measures during simulation (ρ = 1)

Phase 1 Phase 2

|I| |J | min mean max min mean max

4 0.00005 0.00049 0.00207 0.00572 0.00811 0.01699
72 6 0.00005 0.00077 0.00258 0.00590 0.00897 0.01860

8 0.00005 0.00102 0.00311 0.00561 0.00898 0.01304

10 0.00014 0.00371 0.01154 0.04673 0.08529 0.12025
180 15 0.00134 0.00620 0.01530 0.07202 0.09597 0.15561

20 0.00206 0.00933 0.02383 0.08515 0.10873 0.17201

20 0.00528 0.01797 0.07447 0.30598 0.38317 0.91077
300 30 0.01075 0.03051 0.10703 0.34284 0.42251 0.96528

40 0.01781 0.04402 0.14996 0.34618 0.44667 1.09267

Table 5.2: Average values of running time (ρ = 1)

for Table 5.1. We see that, in most scenarios, the routine is extremely fast, taking

less than 0.2 seconds. The exception is the case |I| = 300, for which phase 2 can

take up to a second. This suggests that phase 2 may not be appropriate when one is

dealing with a large base station.

Finally, we make some comments about the traffic intensity, ρ. As one might

expect, changing the value of ρ affected all three performance measures. Interestingly,

in all cases we tried, the net effect was simply to multiply each number in Table 5.1

by approximately 1/ρ. As for running times, varying ρ had no noticeable effect. (This

is probably because the bottleneck of the algorithm is phase 2, whose running time,

O(|I|2), does not depend on ρ.) For these reasons, and also for the sake of brevity,

we do not report detailed results for different values of ρ. In any case, the main
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conclusion is that the performance of the heuristic is not very sensitive to the traffic

intensity.

5.6 Conclusion

In this paper, we have considered how to allocate resources in an OFDMA system

when (a) the system is overloaded (i.e., the expected demand is close to or higher than

the system capacity), and (b) users arrive and depart every few seconds, in a stochastic

manner. Since an exact approach for this case seems to be out of the question, we

have proposed a dynamic local search heuristic. The computational results indicate

that our heuristic consistently achieves allocations that are both efficient and fair.
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Chapter 6

Conclusions and Future Work

6.1 Summary

Mobile wireless communications provides a rich and important source of challenging

and fascinating optimisation problems. In this thesis, we have focused on joint subcar-

rier and power allocation problems in OFDMA systems. These particular problems

are both combinatorial and non-linear, and most of them have been shown to be NP-

hard ( [32,52,53]). Moreover, in practice, one typically needs to compute solutions of

good quality within a fraction of a second. For this reason, up to now, most research

papers have focused on the development of fast heuristics for such problems. In this

thesis, we have developed and tested some sophisticated exact algorithms for two

problem variations, in addition to some new and effective heuristics.

In the first paper, presented in Chapter 2, we introduced the joint subcarrier

and power allocation problem with rate constraints (SPARC). The purpose of the rate

constraints is to ensure quality of service (QoS). To develop an exact algorithm for the

SPARC problem, we added cutting planes generated by perspective functions, which

we call perspective cuts, to reduce the feasible region of the continuous relaxation.

By iteratively adding cutting planes, we obtained a tight polyhedron containing the

feasible region. Our experiments show that this outer approximation method with

perspective cuts can significantly reduce the running time of solving the SPARC

problem. To further speed up our algorithm, we utilised three additional techniques:

pre-emptive cuts, pre-processing and warm-starting. These techniques reduced both

the number of iterations and running time by orders of magnitude. The exact algo-

rithm we proposed is potentially of practical use, especially in a so-called slow fading

environment, where users switch base stations infrequently.

We presented another variation problem in our second paper (Chapter 3). The

fractional subcarrier and power allocation with rate constraints (F-SPARC) problem,
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which is similar to the SPARC problem with the objective being to optimise energy

efficiency instead of overall transmission rate. The change in objective function made

the problem non-convex, thus more difficult to solve. We found that when dealing

with such mixed-integer fractional programs with indicator variables, one needs to

use bi-perspective reformulations and cuts in order to obtain bounds which are useful

within an exact solution algorithm. We also believe that extensions of perspective

reformulations and cuts to other classes of problems would be a valuable topic for

future research.

In Chapter 4, we presented our third paper which proposes a heuristic algorithm

for solving the F-SPARC problem more efficiently. The heuristic is based on a com-

bination of fractional programming, 0-1 linear programming and binary search. The

combination is remarkably effective, realistically solving within 1% of optimality, in

a few seconds. We believe that our heuristic is suitable for real-life application in

a slow-fading dynamic environment, where users arrive and depart only every few

seconds.

Finally, our fourth paper in Chapter 5 considered the SPARC problem in dynamic

overloaded cases where user demand often exceeds the system capacity. We addressed

solving the SPARC problem in scenarios where users arrive and depart much more

frequently. Furthermore, we also took fairness into consideration so that all users will

receive transmission rates related to their demands. Our experiments show that our

heuristic algorithm is both efficient and effective when dealing with realistic problems

for small or medium base stations.

6.2 Suggestions for Future Work

In conducting our research, we formulated suggestions for further related research.

The suggestions are as follows:

1. We assumed that the SPARC and F-SPARC are NP-hard, based on the fact

that many similar problems associated with OFDMA systems have been shown

to be NP-hard. A formal proof of hardness would however be desirable.

2. In the first paper, we used the OA method to solve the SPARC problem. We

solve a series of MILPs, and therefore create and destroy several branch-and-

bound trees along the way (see [5,63]). This could be wasting potentially useful

information, as well as time. It would be interesting to design and code a more
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sophisticated exact algorithm, in which there is only one branch-and-bound

tree, and perspective cuts may be added to the subproblems within the tree.

3. We introduced pre-emptive cuts in Chapter 2 for symmetry breaking. Pre-

emptive cuts are generated for all users once a cut has been generated for a

specific subcarrier i and user j. This may result in a lot of redundant constraints

and slower the solving process of the MILP relaxation. Therefore, one may try

generating pre-emptive cuts only for users with similar demands.

4. In Chapter 3, we programmed our algorithm in Julia, which turned out to be

a lot slower than C language. Also, due to precision issues in Julia, data for

subcarrier noise are much higher than normal values. We believe coding the

algorithm in C language will save running time and generate more accurate

experiment results.

5. We used binary search in our third paper, presented in Chapter 4. We found

that although the heuristic performed well, ranges of 󰂃 could be affected by

random instances. In general, higher values of 󰂃 make the “NLP2(󰂃)” problem

easier to solve. However, it also depends on the values of subcarrier noise and

user demands. In bad cases during the binary search, the range of 󰂃 could be

made too high due to some random infeasible “NLP2(󰂃)” problems. One could

solve this problem by implementing a simulated annealing method inside the

binary search. However, it should be noted this could lead to an increase in

running time.

6. The heuristic method for the dynamic SPARC, that we described in Chapter

5, is suitable in practice only when the base station is relatively small (with,

say, no more than 144 active subcarriers). This is due to the fact that, in many

real-life settings, solutions are required within a fraction of a second. We are

therefore interested in further research on more efficient heuristic algorithms,

that can be used for instances with larger base stations (which, at the time of

writing, can have up to 1440 active subcarriers).
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J. Lee, A. Lodi, F. Margot, N. Sawaya et al. (2008) An algorithmic framework for

convex mixed integer nonlinear programs. Discrete Optimization, 5(2), 186–204.
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[31] J.B. Hiriart-Urruty & C. Lemaréchal (2012) Fundamentals of convex analysis.

Springer Science & Business Media.

[32] P.H. Huang, Y. Gai, B. Krishnamachari & A. Sridharan (2010) Subcarrier al-

location in multiuser OFDM systems: complexity and approximability. In 6th

International Conference on Wireless Communications and Networking. IEEE.

[33] K. Illanko, M. Naeem, A. Anpalagan & D. Androutsos (2014) Frequency and

power allocation for energy efficient OFDMA systems with proportional rate

constraints. IEEE Wireless Communications Letters, 3(3), 313–316.

[34] C. Isheden, Z. Chong, E. Jorswieck & G. Fettweis (2012) Framework for link-level

energy efficiency optimization with informed transmitter. IEEE Transactions on

Wireless Communications, 11(8), 1–12.

[35] R. Jain, D.M. Chiu & W.R. Hawe (1984) A quantitative measure of fairness and

discrimination for resource allocation in shared computer system, volume 38.

Eastern Research Laboratory, Digital Equipment Corporation Hudson, MA.

[36] N. Karmarkar (1984) A new polynomial-time algorithm for linear programming.

Combinatorica, 4(4), 373–395.

86



[37] R.M. Karp (1972) Reducibility among combinatorial problems. In Complexity of

computer computations, 85–103. Springer.

[38] J. Kelley J (1960) The cutting-plane method for solving convex programs. Jour-

nal of the Society for Industrial and Applied Mathematics, 8(4), 703–712.

[39] F.P. Kelly, A.K. Maulloo & D.K. Tan (1998) Rate control for communication

networks: shadow prices, proportional fairness and stability. Journal of the

Operational Research society, 49(3), 237–252.

[40] L.G. Khachiyan (1979) A polynomial algorithm in linear programming. Doklady

Akademii Nauk SSSR, 244, 1093–1096.

[41] K. Kim, Y. Han & S.L. Kim (2005) Joint subcarrier and power allocation in

uplink OFDMA systems. IEEE Communications Letters, 9(6), 526–528.

[42] D. Kivanc & H. Liu (2000) Subcarrier allocation and power control for OFDMA.

In Signals, Systems and Computers, 2000. Conference Record of the Thirty-

Fourth Asilomar Conference on, volume 1, 147–151. IEEE.

[43] V. Klee & G.J. Minty (1972) How good is the simplex algorithm? In O. Shisha

(ed.) Inequalities, volume III, 159–175. New York: Academic Press.

[44] B. Korte & J. Vygen (2012) Combinatorial Optimization: Theory and Algo-

rithms. Springer Publishing Company, Incorporated, 5th edition.

[45] H.R.V. L. Transmission of information1. Bell System Technical Journal, 7(3),

535–563.

[46] A.H. Land & A.G. Doig (1960) An automatic method of solving discrete pro-

gramming problems. Econometrica, 28(3), 497–520.

[47] X. Lei & Z. Liang (2015) Joint time-frequency-power resource allocation algo-

rithm for OFDMA systems. In 5th International Conference on Electronics In-

formation and Emergency Communication, 266–271. IEEE.

[48] A.N. Letchford, Q. Ni & Z. Zhong (2017) Bi-perspective functions for mixed-

integer fractional programs with indicator variables. Technical report, Depart-

ment of Management Science, Lancaster University, UK.

87



[49] A.N. Letchford, Q. Ni & Z. Zhong (2017) An exact algorithm for a resource allo-

cation problem in mobile wireless communications. Computational Optimization

and Applications, 68(2), 193–208.

[50] A.N. Letchford, Q. Ni & Z. Zhong (2018) A heuristic for maximising energy

efficiency in an OFDMA system subject to QoS constraints. In J. Lee, G. Rinaldi

& A.R. Mahjoub (eds.) Combinatorial Optimization, 303–312. Cham: Springer

International Publishing.

[51] S. Leyffer, J. Linderoth, J. Luedtke, A. Miller & T. Munson (2009) Applications

and algorithms for mixed integer nonlinear programming. In Journal of Physics:

Conference Series, volume 180, 012014. IOP Publishing.

[52] Y.F. Liu & Y.H. Dai (2014) On the complexity of joint subcarrier and power

allocation for multi-uuser OFDMA systems. IEEE Transactions on Signal Pro-

cessing, 62(3), 583–596.

[53] Z.Q. Luo & S. Zhang (2008) Dynamic spectrum management: complexity and

duality. IEEE Journal of Selected Topics in Signal Processing, 2(1), 57–73.

[54] F. Margot (2010) Symmetry in integer linear programming. In M. Jünger, T.M.
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[55] W.V.F. Mauŕıcio, F.R.M. Lima, D.A. Sousa, T.F. Maciel & F.R.P. Cavalcanti

(2016) Joint resource block assignment and power allocation problem for rate

maximization with QoS guarantees in multiservice wireless systems. Journal of

Communication and Information Systems, 31(1).

[56] G.P. McCormick (1976) Computability of global solutions to factorable non-

convex programs: Part i — convex underestimating problems. Mathematical

Programming, 10(1), 147–175.

[57] H.D. Mittelmann (2018). Decision tree for optimization software.

http://plato.asu.edu/sub/nlores.html#mixedinteger.

[58] J. Mo & J. Walrand (2000) Fair end-to-end window-based congestion control.

IEEE/ACM Transactions on networking, 8(5), 556–567.

88



[59] M.K. Muller, S. Schwarz & M. Rupp (2013) QoS investigation of proportional

fair scheduling in lte networks. In Wireless Days (WD), 2013 IFIP, 1–4. IEEE.

[60] K.G. Murty (1983) Linear programming. (1983).

[61] K.G. Murty & S.N. Kabadi (1987) Some np-complete problems in quadratic and

nonlinear programming. Mathematical programming, 39(2), 117–129.

[62] M. Padberg & G. Rinaldi (1991) A branch-and-cut algorithm for the resolution of

large-scale symmetric traveling salesman problems. SIAM Review, 33(1), 60–100.

[63] I. Quesada & I.E. Grossmann (1992) An LP/NLP based branch and bound

algorithm for convex MINLP optimization problems. Computers and Chemical

Engineering, 16(10), 937–947.

[64] M.G.C. Resende & P.M. Pardalos (eds.) (2006) Handbook of Optimization in

Telecommunications. Boston, MA: Springer US.

[65] W. Rhee & J.M. Cioffi (2000) Increase in capacity of multiuser OFDM system

using dynamic subchannel allocation. In Vehicular Technology Conference Pro-

ceedings, 2000. VTC 2000-Spring Tokyo. 2000 IEEE 51st, volume 2, 1085–1089.

IEEE.

[66] R.T. Rockerfeller (1970) Convex analysis.

[67] H.S. Ryoo & N.V. Sahinidis (1996) A branch-and-reduce approach to global

optimization. Journal of Global Optimization, 8(2), 107–138.

[68] S. Schaible (1974) Parameter-free convex equivalent and dual programs of frac-

tional programming problems. Zeitschrift für Operations Research, 18(5), 187–

196.

[69] S. Schaible (1983) Fractional programming. Zeitschrift für Operations Research,

27(1), 39–54.

[70] K. Seong, M. Mohseni & J. Cioffi (2006) Optimal resource allocation for OFDMA

downlink systems. In 2006 IEEE International Symposium on Information The-

ory, 1394–1398. IEEE.

[71] C.E. Shannon (1949) Communication in the presence of noise. Proceedings of the

IRE, 37(1), 10–21.

89



[72] C.E. Shannon (1949) Communication in the presence of noise. Proceedings of the

IRE, 37(1), 10–21.

[73] Z. Shen, J.G. Andrews & B.L. Evans (2005) Adaptive resource allocation in

multiuser OFDM systems with proportional rate constraints. IEEE transactions

on wireless communications, 4(6), 2726–2737.

[74] Z. Shen, J.G. Andrews & B.L. Evans (2005) Adaptive resource allocation in

multiuser OFDM systems with proportional rate constraints. IEEE transactions

on wireless communications, 4(6), 2726–2737.

[75] Z. Song, Q. Ni, K. Navaie, S. Hou, S. Wu & X. Sun (2016) On the spectral-energy

efficiency and rate fairness tradeoff in relay-aided cooperative OFDMA systems.

IEEE Transactions on Wireless Communications, 15(9), 6342–6355.

[76] M. Tao, Y.C. Liang & F. Zhang (2008) Resource allocation for delay differ-

entiated traffic in multiuser OFDM systems. IEEE Transactions on Wireless

Communications, 7(6), 2190–2201.

[77] M. Tawarmalani & N.V. Sahinidis (2005) A polyhedral branch-and-cut approach

to global optimization. Mathematical Programming, 103(2), 225–249.

[78] B.W. Taylor III (2007) Introduction to Management Science. Upper Saddle River,

NJ, USA: Prentice-Hall, Inc.

[79] T.O. Ting, S.F. Chien, X.S. Yang & S. Lee (2014) Analysis of quality-of-service

aware orthogonal frequency division multiple access system considering energy

efficiency. IET Communications, 8(11), 1947–1954.

[80] T.O. Ting, S.F. Chien, X.S. Yang & S. Lee (2014) Analysis of quality-of-service

aware orthogonal frequency division multiple access system considering energy

efficiency. IET Communications, 8(11), 1947–1954.

[81] F. Trespalacios & I.E. Grossmann (2014) Review of mixed-integer nonlinear and

generalized disjunctive programming methods. Chemie Ingenieur Technik, 86(7),

991–1012.

[82] C.Y. Wong, R.S. Cheng, K.B. Lataief & R.D. Murch (1999) Multiuser OFDM

with adaptive subcarrier, bit, and power allocation. IEEE Journal on selected

areas in communications, 17(10), 1747–1758.

90



[83] C.Y. Wong, R.S. Cheng, K.B. Lataief & R.D. Murch (1999) Multiuser OFDM

with adaptive subcarrier, bit, and power allocation. IEEE Journal on selected

areas in communications, 17(10), 1747–1758.

[84] X. Xiao, X. Tao & J. Lu (2013) QoS-aware energy-efficient radio resource schedul-

ing in multi-user OFDMA systems. IEEE Communications Letters, 17(1), 75–78.

[85] C. Xiong, G.Y. Li, S. Zhang, Y. Chen & S. Xu (2011) Energy- and spectral-

efficiency tradeoff in downlink OFDMA networks. IEEE Transactions on Wire-

less Communications, 10(11), 3874–3886.

[86] C. Xiong, G.Y. Li, S. Zhang, Y. Chen & S. Xu (2011) Energy-and spectral-

efficiency tradeoff in downlink OFDMA networks. IEEE transactions on wireless

communications, 10(11), 3874–3886.

[87] W. Yu & R. Lui (2006) Dual methods for nonconvex spectrum optimization of

multicarrier systems. IEEE Transactions on Communications, 54(7), 1310–1322.

[88] C.C. Zarakovitis & Q. Ni (2016) Maximizing energy efficiency in multiuser mul-

ticarrier broadband wireless systems: convex relaxation and global optimization

techniques. IEEE Transactions on Vehicular Technology, 65(7), 5275–5286.

91


