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Abstract  
The advent of Internet of Things (IoT) technology has the potential to generate a 

huge amount of heterogeneous data at different geographical locations and with 

various temporal resolutions in environmental science. In many other areas of IoT 

deployment, volume and velocity dominate, however in environmental science, the 

more general pattern is quite distinct and often variety dominates. There exists a 

large number of small, heterogeneous and potentially complex datasets and the key 

challenge is to understand the interdependencies between these disparate datasets 

representing different environmental facets. These characteristics pose several data 

challenges including data interpretation, interoperability and integration, to name but 

a few, and there is a pressing need to address these challenges. The author postulates 

that Semantic Web technologies and associated techniques have the potential to 

address the aforementioned data challenges and support environmental science. The 

main goal of this thesis is to examine the potential role of Semantic Web 

technologies in making sense of such complex and heterogeneous environmental 

data in all its complexity.  

The thesis explores the state-of-the-art in the use of such technologies in the context 

of environmental science. After an in-depth assessment of related work, the thesis 

further examined the characteristics of environmental data through semi-structured 

interviews with leading experts. Through this, three key research challenges emerge: 

discovering interdependencies between disparate datasets, geospatial data integration 

and reasoning, and data heterogeneity. In response to these challenges, an ontology 

was developed that semantically enriches all sensor measurements stemmed from an 

experimental Environmental IoT infrastructure. The resultant ontology was 

evaluated through three real-world use-cases derived from the interviews. This led to 

a number of major contributions from this work including: the development of an 

ontology tailored for streaming environmental data offering semantic enrichment of 

IoT data, support for spatio-temporal data integration and reasoning, and the analysis 

of unique characteristics of environmental science around data. 
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1 Introduction 

The advent of advanced computer and information technologies has changed almost 

every scientific and engineering field, introducing new ways of research based on data 

which has converted many disciplines from “data-poor” to “data-rich” environments 

[1]. There is a spectrum of how data underpins contemporary science. At one end of 

this spectrum, usually termed as the head, lies big science or data-intensive science, in 

which survey satellites, modern telescopes, high-throughput instruments, sensor 

networks, accelerators and supercomputers have been generating enormous amount of 

data in various disciplines like High Energy Physics, Astronomy, Life Sciences, just 

to name but a few [2]. These datasets, usually held by a few custodians, are: very 

large in size, most likely homogeneous collections with standard data format and 

uniform procedures, receive proper curation and maintenance, provide open access 

and reused effectively [3]. In contrast, the other end of the spectrum is commonly 

termed as the long tail of science which contains a large number of potentially small 

and heterogeneous collections of datasets [3]. These datasets are usually collected by 

individual scientists, small laboratories and/or projects. When combined together, 

they form a big portion of the data spectrum.  

The long tail data exists in many sciences and environmental science is one such good 

example. Environmental science is an integrative, interdisciplinary and collaborative 

discipline which entails interaction between the four segments of environment, i.e. 

atmosphere, hydrosphere, lithosphere and biosphere [4]. It encompasses various sub-

disciplines like biology, ecology, ethology, hydrology, soil science, biogeochemistry, 
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climatology, meteorology, oceanography and geography. Environmental scientists 

have been facing complex and unique challenges pertinent to human society, for 

instance, modelling future climate change scenarios, considering impacts of extreme 

events and maintenance of biodiversity [5]. However, the recent advancement in 

information science and technology in general and the environmental sensors and the 

Internet of Things (IoT) technology in particular has shaped environmental science 

considerably [6]. These contemporary technologies, providing real-time spatio-

temporal data, have been playing a key role in understanding and managing the 

aforementioned environmental issues [7]. These in situ sensors, usually part of a 

wireless sensor network, monitor different environmental facets in the environment 

and generate enormous amount of data. On the one hand, there lies significant value 

in this data by enabling the discovery of hidden patterns in it. On the other hand, this 

data deluge leads to computational and statistical problems [8]. The analysis of this 

data (via data science) is distinct in environmental science, with its own particular 

challenges. In the data science literature, the three ‘V’s are often discussed, i.e. 

volume (the size of the datasets), velocity (the rate at which the data is generated) and 

variety (the range and heterogeneity of data sources). In many areas, volume and 

velocity dominate and computer scientists face the challenge of efficient processing of 

potentially massive datasets. But in environmental science, the more general pattern is 

quite different and often variety dominates. This equates to the long tail of science 

introduced above where data is obtained from diverse data sources with different data 

formats, at different geographical locations, and with various temporal resolutions. 

These key features pose several data challenges including data interpretation, 

interoperability and integration, to name but a few. These challenges arise in 

environmental science in particular because of its integrative, data intensive, 

interdisciplinary and collaborative nature. This thesis examines the problem of 

making sense of such complex and diverse sensor data in the field of environmental 

science, including understanding the long tail and geospatial characteristics of the 

environmental data.  

The author postulates that Semantic Web technologies and associated techniques have 

the potential to address the aforementioned data challenges and support environmental 

science. The Semantic Web is defined by Tim Berners Lee as [9]: 
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“The Semantic Web is not a separate Web but an extension of the current one, in 

which information is given well-defined meaning, better enabling computers and 

people to work in cooperation.”  

The vision of the Semantic Web is to shift the current World Wide Web from the 

medium of documents, designed for human consumption, to the medium of data and 

information so that computers can understand and process information without human 

intervention. In order to achieve this vision, the Semantic Web introduces several 

technologies and techniques briefly summarised below: 

Ø Semantic annotation of data provides machine-readable and machine-interpretable 

metadata about different resources. The process of semantic annotation attaches 

additional meaningful information to different data resources. However, it does 

not make data machine understandable. Thus, it would require additional 

intelligent methods and effective reasoning and processing techniques for 

seamless data integration [10].  

Ø Linked data is a mechanism that provides a set of best practices for publishing and 

interlinking structured data on the web [11]. It is defined as, “data published on 

the Web in such a way that it is machine-readable, its meaning is explicitly 

defined, it is linked to other external datasets, and can in turn be linked to from 

external datasets.” [12]. This is a paradigm to improve an integrated mechanised 

access to and processing of datasets. Hence, applications can retrieve data easily 

across the web, irrespective of the underlying format. It can be exploited to 

retrieve data from multiple distributed repositories.  

Ø An ontology is a formal specification of a shared conceptualisation [13]. It 

represents knowledge of a particular domain, comprised of concepts, their 

properties and the relationships between them. Ontologies introduce machine-

interpretable meanings across different datasets. New facts and knowledge can be 

inferred from existing concepts/ontologies using software like reasoners that 

provide support for inferencing and deducing new knowledge.  

Ø Before accessing and sharing the data first, a consistent underlying data model is 

required to represent data in a standard common structured format. This data 

model is called the Resource Description Framework (RDF). RDF represents data 

in the form of a statement called a triple which consists of a subject, a predicate 
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and an object. A collection of triples, usually stored in a triplestore, is expressed 

as a directed labelled graph. 

Ø Finally, in order to access and search effectively through these triples, we need a 

common query language. SPARQL, a recursive acronym for the SPARQL 

Protocol and RDF Query Language, performs this task.  

In short, with the help of Semantic Web technologies we can potentially: introduce 

well-explained and machine-encoded definitions of the vocabularies, integrate 

different datasets, deduce new facts from the existing ones and resolve the issue of 

data heterogeneity among the data.  

The author further postulates that Semantic Web technologies have not been realised 

at its full potential in the field of environmental science. There have been some 

interesting examples, including information retrieval and management, data 

discovery, resolving data heterogeneity, data integration and scientific analytical 

workflows [14-19]. However, compared to other areas of science, the uptake of these 

technologies in environmental science is lower. In addition, environmental science 

brings major opportunities but also unique challenges to data scientists because of its 

inherent nature of complexity, data diversity, interdisciplinarity, and scale. Hence, 

there is a need for further research into the characteristics of environmental science 

and also how to adopt or adapt Semantic Web technologies and associated techniques 

in this area. 

This work is carried out in the context of the Environmental Internet of Things project 

[20], an EPSRC-funded collaboration between Lancaster University, the Centre for 

Ecology and Hydrology (CEH), the University of Bangor and the British Geological 

Survey (BGS). The goal of the project is to design, deploy and use an IoT 

infrastructure for environmental monitoring and management in real-life conditions. 

The IoT infrastructure, deployed ‘in the wild’, examines a range of environmental 

facets in a particular catchment in North Wales, around the Conwy valley. The author 

focusses on designing and developing both a semantic data model for this project and 

a set of Semantic Web techniques which could represent environmental data in a 

potentially more unified, sharable, intelligent and reusable way. Hence, environmental 

science can be a good test bed for Semantic Web technologies. 
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1.1 Research Goals and Questions 

The main goal of this research is to examine the potential role of Semantic Web 

technologies and their applicability in supporting a deeper understanding of the 

natural environment as derived from a plethora of sources of environmental data. This 

goal can be further divided into the following more specific objectives. 

Ø Exploring particular characteristics of environmental science from the perspective 

of the underlying data stemming from the long tail of environmental science  

Ø Designing a semantic data model to represent environmental data stemming from 

the Environmental IoT [20] data, including capturing the complex 

interrelationships across disparate datasets representing different environmental 

facets and their impact on each other 

Ø Exploring the role of Semantic Web technologies and associated techniques to 

achieve such a semantic data model offering semantically enriched sensor data for 

performing interoperability, data integration and spatio-temporal reasoning over 

geospatial data, and identifying strengths and limitations of this approach 

Ø Evaluating the overall approach through real-world scenarios/use-cases derived 

from the analysis of the literature coupled with semi-structured interviews carried 

out with leading environmental scientists  

The overarching research questions that drive the research are then: 

Ø What are the particular characteristics of data associated with environmental 

science, and what are the associated data challenges in terms of making sense of 

that data? 

Ø What is the role of Semantic Web technologies in building a data model for the 

Environmental IoT Infrastructure to represent its data in all its complexity? 

Ø What implications does this have for a technological infrastructure underpinning 

environmental science to exploit the potential of streaming data from IoT 

technology? 
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1.2 Research Methodology 

In this work, the methodology would proceed along the following three phases 

(Figure 1.1), representing a mixed methods approach blending semi-structured 

interviews and experimental development. 

 

Figure 1.1: Phases of Methodology 

1.2.1 Phase I: Conducting In-depth Semi-structured Interviews with 
Domain Experts 

To gain an insight and knowledge of the unique characteristics of environmental 

science and to explore deeper the data challenges faced by environmental scientists, a 

series of in-depth semi-structured interviews will be conducted with domain experts. 

The domain experts will be chosen due to their experience and considerable expertise 

in their discipline. Additionally, they will be at the forefront of data-driven 

environmental research. Semi-structured interviews will be used for the following 

reasons. Firstly, this approach supports predetermined but open-ended questions in 

order to allow a fair degree of freedom and flexibility, allowing new questions to 

emerge from the dialogues. Secondly, semi-structured interviews allow the 

interviewer to delve deeply into the topics so that detailed knowledge of the domain is 

gained. Finally, this technique keeps the interview focused, conversational and 

allowing two-way communication. The interviews are planned to contain a number of 

questions covering five categories i.e. data role and practices, trends in data 

• Data Roles and Practices
• Trends in Data Management
• Focus on Interdependencies
• Technological Opportunities
• Technological Barriers 

Conducting Semi-
structured Interviews

• Upper Ontology 
• Domain Ontology
• Environmental IoT Ontology

Ontology Framework 
Development 

• Identify Potential Risk of 
Pollution

• Integrate Geospatial Data and 
Understand Spatio-temporal 
Trends

• Achieve Metri Units 
Interoperability

Use-case 
Experimentation
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management including openness, collaboration, and integration, focus on 

interdependency, technological opportunities and technological barriers. Some of the 

key findings are then fed into the later phases of the research, around use-cases 

(Figure 1.2). 

 

Figure 1.2: Some of the Key Findings from the Semi-structured In-depth Interviews 

1.2.2 Phase II:  Ontology Framework Development for the 
Environmental IoT Data 

The goal of the ontology framework development is to represent different concepts 

and characteristics of the target domain, the relationships between them and then 

transforming environmental IoT data accordingly. Thus, the real-time data has to be 

semantically enriched with the vocabulary used in the ontology. A collaborative and 

incremental approach is proposed to build an ontology for the target domain of the 

natural environment. It is collaborative because, during the ontology design process, 

the input of environmental scientists will be required. It is incremental because an 

initial version of ontology will be developed from the domain knowledge that would 

have been acquired in the previous phase. The ontology will be evaluated with real-

time use-cases. To conceptualise the related characteristics (such as temporal, spatial, 

and thematic) of environmental data, not covered by the initial ontology, it will be 

further modified by adding new concepts and evaluated. This process will repeat until 

an improved ontology is achieved. The proposed ontology framework in this work 

will adopt the generic model introduced by Guarino [21], which provides a top-down 
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approach for developing ontologies according to the level of ontological generality. 

Guarino’s model is based on modular design that provides an easy integration of 

different ontologies making it suitable to be adopted in this work. The target ontology 

is an integrated model, which will be comprised of an upper ontology, a domain 

ontology and an application ontology, collectively called Environmental IoT 

Ontology, as shown in Figure 1.3. 

 

Figure 1.3: Environmental IoT Ontology Framework 

1.2.3 Phase III: Use-cases Experimentation 

After the qualitative analysis of the semi-structured interviews and drawing upon the 

main key findings, three key use-cases will be developed (Figure 1.1). These use-

cases will be based on real-time data captured by the Environmental IoT 

Infrastructure [20]. They will be evaluated to test and enhance the applicability of 

both ontological and application framework. An iterative approach will be again 

adopted to incrementally enhance the ontology. This phase is iterative because, first 

the environmental data will be semantically enriched by the ontology, developed in 

the previous phase. This process of data enrichment by ontology is called data 

transformation. The data along with the ontology will be fed into the application 

framework to evaluate the real-world use-cases. If the desired results are not achieved, 

the process will go back to the ontology development phase so that it is modified. It 

will be followed by changes in the transformation of data to reflect the modified 
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ontology. Both the transformed data and the modified ontology will be again fed back 

into the application. Thus, the ontology would improve after every iteration and the 

process will repeat until the results are achieved. 

1.3 Research Contribution 

The thesis leads to the following contributions. 

1.3.1 Characteristics of Environmental Data 

The thesis provides some key insights into the nature of environmental data related to 

the long tail of science and the particular challenges associated with this area of 

science. These challenges include: i) discovering interdependencies between disparate 

datasets representing different environmental facets; ii) geospatial data integration and 

reasoning; iii) data heterogeneity; iv) data discovery and access; v) data quality and 

provenance. 

1.3.2 Current Practices in Environmental Science 

The thesis also contributes insights into current practices in data management in 

environmental science, including an important exploration of technological 

opportunities and barriers. Perhaps the most important result from this study though is 

the need for cross-disciplinary dialogue between environmental science and computer 

science so that technological opportunities can be delivered and barriers overcome. 

1.3.3 Role of Semantic Web Technologies in Environmental Science 

Through the iterative development of an ontology for streaming environmental data, it 

shows that Semantic Web technologies have a significant role to play in overcoming 

three key challenges including: 

Ø Interdependencies between disparate datasets, overcome by semantically 

enriching those low-level sensor measurements using the ontology and then 

reasoning over the resultant enriched datasets deriving new knowledge  

Ø Geospatial data integration and reasoning issue, resolved by again semantically 

enriching all sensor measurements using the ontology  
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Ø Interoperable metric units conversion, addressed by semantically assigning all 

sensor measurements their associated metric units using the ontology and then 

performing translation through inference rules. 

The overall ontology is also a contribution in its own right providing a proof of 

concept of how a given ontology can address the needs for a given environmental 

project, in this case dealing with streaming data from an Environmental Internet of 

Things [20] deployed in North Wales. 

1.3.4 Implications for Technological Infrastructure 

The experimental work in this thesis provides extra insights into the technological 

needs of environmental science and in particular the underlying infrastructure needed 

to support scientific discovery. In particular, this thesis shows how existing 

technologies including ontologies, RDF, OWL, linked data and SPARQL are 

successfully used in underpinning environmental science around IoT data. 

1.4 Thesis Outline 

Chapter 2 provides a background overview of Semantic Web technologies and 

explores the state-of-the-art on the use of such technologies and techniques in the 

context of eScience. The chapter provides a more in-depth assessment of related work 

and concludes with the argument that there is pressing need to apply Semantic Web 

technologies for IoT/streaming data in the natural environment because there is 

limited research at the intersection of the said three areas and hence further research is 

required particularly in terms of meeting the needs of environmental science. 

Chapter 3 examines the unique characteristics of environmental science in the 

context of environmental data, through semi-structured in-depth interviews. The 

chapter aims particularly at exploring and collecting qualitative data covering 

different aspects including: the role of data and practices, data trends, interdependence 

between disparate but interlinked datasets, and technological opportunities and 

barriers in environmental science. The chapter provides the analysis of the qualitative 

data using the Ground Theory methodology and concludes with the key findings, 

some of which are fed into the later phases of the work, around use-cases. 
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Chapter 4 introduces the ontological framework for the environmental IoT data. The 

chapter provides an overall design of the ontology as well as the integration of other 

ontologies imported and extended in this work. The chapter concludes with the 

argument that the ontology in environmental science should aim for more lightweight 

but extensible model that communities can agree with and which can be extended 

over time as concepts are deemed missing.    

Chapter 5 provides an evaluation of the work through three different real-world use-

cases, derived from the analysis of the semi-structured interviews. The evaluation is 

carried out to demonstrate the applicability and limitations of these techniques in the 

target discipline(s) of environmental science. 

Chapter 6 presents concluding remarks, highlighting the major contributions of the 

research and discussing future work. In addition, the chapter reviews the research 

goals and questions that have been addressed in the thesis. 
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2 Background and Related 
Work 

2.1 Introduction 

The World Wide Web has been evolved from the Web of documents to the Web of 

data (the Semantic Web) with the vision to create a globally connected data space 

[22]. The Semantic Web has been applied in various fields where there is a wide 

deployment of heterogeneous information of different quality, for instance eScience 

[23]. The need for Semantic Web technologies in environmental sciences has been 

growing and has already gained acceptance in other fields such as solar-terrestrial 

physics [24-25], ocean and marine sciences [26] and health care and life sciences [27-

28]. Because of the growing need of shared semantics and the heterogeneous nature of 

environmental data, environmental science can be a good test bed for Semantic Web 

technologies. 

The main goal of this chapter is twofold: to review technological developments and to 

assess the state-of-the-art in Semantic Web for environmental science. To place this 

work in context, the chapter also offers a broader perspective on science, introducing 

eScience and its related trends including open science and the fourth paradigm of 

science.  

This chapter is structured as follows. Section 2.2 provides a background on 

eScience/cyberinfrastructure and its related trends. Sections 2.3 provides an overview 
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of the underlying Semantic Web technologies. Section 2.4 provides a more in-depth 

analysis of the related work. Finally, Section 2.5 provides an analysis of the state-of-

the-art and concludes with the argument that there is pressing need to apply Semantic 

Web technologies for IoT/streaming data in the natural environment because there is 

limited research at the intersection of these three areas and hence further research is 

required particularly in terms of meeting the needs of environmental science. 

2.2 Background on eScience 

2.2.1 Introduction 

The Internet has played an overarching role in the advancement of modern science 

which has become more complex, rapidly scalable and increasingly dependent on data 

[29]. Because of this large scale, complex and data intensive nature of science, it 

demands more distributed, collaborative and interdisciplinary research groups [30] so 

that scientists could process and share their data, experiments and results. To 

undertake scientific research in this new paradigm, computer scientists need to 

develop advanced scientific, methodological, and computational information 

processing techniques and a new powerful supporting cyberinfrastructure over the 

Internet [31]. To refer to such computing infrastructure, a new term ‘eScience’ was 

introduced in the UK to enable scientific exploration accomplished through world-

wide collaboration and multidisciplinary and interdisciplinary research (with an 

equivalent term ‘e-Infrastructure’ used in Europe and Cyberinfrastructure in the US) 

[31]. 

The idea of doing collaborative research on the Internet can be traced back to William 

Wulf’s vision of ‘collaboratory’ in 1989 [32]. He coined this new term by combining 

the words collaboration and laboratory and defined it as a: 

“Centre without walls, in which the nation’s researchers can perform their research 

without regard to geographical location- interacting with colleagues, accessing 

instrumentation, sharing data and computational resource, and accessing information 

in digital libraries.” 
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The term eScience was first coined in 1999 by Dr. John Taylor, then Director General 

of Research Council in the UK Office of Science and Technology (OST) [33]. He 

defined the term as: 

“eScience is about global collaboration in key areas of science and the next 

generation of infrastructure that will enable it.” 

He also claimed: 

“eScience will change the dynamics of the way science is undertaken.” 

The term cyberinfrastructure was first used in the NSF’s 2003 final report, also called 

the ‘Atkins Report’ entitled “Revolutionising Science and Engineering through 

Cyberinfrastructure” [34]. The report defines infrastructure vis-à-vis 

cyberinfrastructure as: 

“The term infrastructure has been used since the 1920s to refer collectively to the 

roads, power grids, telephone systems, bridges, rail lines, and similar public works 

that are required for an industrial economy to function. Although good infrastructure 

is often taken for granted and noticed only when it stops functioning, it is among the 

most complex and expensive thing that society creates. The newer term 

cyberinfrastructure refers to infrastructure based upon distributed computer, 

information and communication technology. If infrastructure is required for an 

industrial economy, then we could say that cyberinfrastructure is required for a 

knowledge economy”. 

The NSF’s Cyberinfrastructure Council 2007 report, titled, ‘Cyberinfrastructure 

vision for 21st century discovery’ [35], defined cyberinfrastructure as: 

“Cyberinfrastructure integrates hardware for computing, data and networks, 

digitally-enabled sensors, observatories and experimental facilities, and an 

interoperable suite of software and middleware services and tools. Investments in 

interdisciplinary teams and cyberinfrastructure professionals with expertise in 

algorithm development, system operations, and applications development are also 

essential to exploit the full power of cyberinfrastructure to create, disseminate, and 

preserve scientific data, information and knowledge”. 



Chapter 2: Background and Related Work 

28 

The types of services and facilities provided by a cyberinfrastructure layer (shaded) to 

enable new knowledge environments for research are illustrated in Figure 2.1 [34]. 

 

Figure 2.1: Integrated Cyberinfrastructure Services [34] 

The commonalities across these views are significant, with the main focus being on 

salient characteristics of eScience including interdisciplinary collaboration, the data-

centric nature of the science and openness [36]. Furthermore, interoperability is 

crucial to enable research in an interdisciplinary and open environment, where a huge 

amount of complex and heterogeneous data is generated. 

2.2.2 eScience Challenges 

The vision of eScience promises new prospects of undertaking scientific research 

through collaborative and interdisciplinary scientific processes over the Internet. 

Through this paradigm shift in scientific research, scientists would be able to 

generate, process, analyse, share and discuss their data, understanding, experiments 

and results in a more effective way [23]. However, to achieve this vision, some 

technical challenges need to be overcome. There are many challenges [37] but in the 

context of this thesis, the most relevant ones are summarised below: 

Ø To meet the requirements of open data-rich information system that demands both 

semantic information and services to perform data processing and reasoning. 
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Ø To resolve interoperability among geographically distributed heterogeneous 

resources in order to fulfil the requirements of a composite scientific process.  

Ø To attain high-quality and domain-specific metadata for automatic data integration 

and interpretation that plays a key role in knowledge discovery over a huge 

amount of data. 

Ø To develop intelligent software applications that must be able in understanding 

and interpreting the correctness and right context of data and associated metadata. 

There has been a serious effort to address the aforementioned challenges in order to 

make the e-Science vision viable. The driving force comes from the recent 

advancement in information and communication technology and the new computing 

paradigms including High Performance Computing, Grid and cloud computing. These 

eScience enabling technologies provide opportunities to undertake eScience research 

in a distributed, collaborative and integrative manner. On the other hand, to process, 

integrate, and analyse this huge amount of data leads to challenges including data 

discovery, heterogeneity, integration, to name but a few. Hence, not only is there a 

need for Semantic Web technologies in eScience research to potentially address the 

aforementioned challenges but also there needs to be the community pull supporting 

interdisciplinary data-driven and open research to turn the data into knowledge. 

2.2.3 Trends in eScience 

Open Science 

Modern science is characterised by its public character which promises cooperation in 

research and free access to knowledge among the researchers [38]. According to John 

Ziman, scientific knowledge does not exist “by the moral authority or literary skilsl 

of its creator, but by its recognition and appropriation by the whole scientific 

community.” [39] It aims at developing a consensus of views on the basis of facts and 

theories. The consensus, achieved through peer review, empirical evidences and 

critical analysis of highly intellectual researchers, establishes “scientific objectivity.” 

This has led to the establishment of open science that makes the scientific information 

and research results open and free to the community. Open science as defined by [40] 

“is the optimal sharing of knowledge and supporting tools, such as publications, 

research data, software, educational resources and infrastructures, across 
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institutional, disciplinary and national boundaries”. Openness strengthens the 

scientific method and knowledge can be improved, or rejected through scrutiny and 

critical analysis [41]. Releasing scientific theories along with their experimental data 

to public allows them to be strictly and thoroughly examined and corrected for the 

errors if possible, making them refined or rejected [42]. Thus, the scientific 

knowledge progresses further through this open scrutiny and challenge. Open access 

to scientific knowledge has been practiced by many preprint servers, scientific 

journals, researchers’ websites and worldwide institutional repositories and facilitated 

by Science Commons for licencing.  

The Fourth Paradigm of Science 

The data intensive science, also called “the fourth paradigm”, was proposed by the 

Turing award winner, the late Jim Gray in 2007 working for Microsoft. Gray’s vision 

of highly sophisticated algorithms and tools to visualise, mine, analyse and 

manipulate scientific data can bring solution to the complex research problems of 

modern science [43]. The first two paradigms of scientific discovery, experimentation 

and theory which have been dominant for centuries have a long history. Experimental 

science goes back to ancient Greece and China, when people used observations, 

descriptions and experimentations to do science. The second paradigm is that of 

developing a theory to explain a new phenomenon of natural world such as Newton’s 

theory of gravitation and laws of motion and Maxwell’s equations etc. With the 

advent of modern high performance digital computers in the latter half of the 20th 

century, the third paradigm of science, computation and simulation for scientific 

discoveries, was introduced by the Nobel Prize winner Ken Wilson. These extensive 

simulations enabled the scientists to discover those areas of discovery which were 

difficult to reach by experimentation and theory such as weather forecasting, climate 

modelling and galaxy formation. The fourth paradigm of science, also called ‘Big 

Data Science’ does not replace the other three methodologies but demands for a 

distinct set of skills. This paradigm exploits the large volumes of data generated by 

simulations or sensor networks and processed by advanced software tools for 

visualisation, data mining and statistical analysis to progress the scientific discovery 

process (as shown in Figure 2.2) [44]. 
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Figure 2.2: Paradigms of Science [44] 

2.3 Background on the Semantic Web 

2.3.1 Introduction 

Tim Berners-Lee introduced the idea of the Semantic Web in his keynote at the first 

World Wide Web conference in 1994 [45]. A few years later, he expressed the vision 

of the Semantic Web as: 

“I have a dream for the Web [in which computers] become capable of analysing all 

the data on the Web – the content, links, and transactions between people and 

computers. A "Semantic Web", which makes this possible, has yet to emerge, but when 

it does, the day-to-day mechanisms of trade, bureaucracy and our daily lives will be 

handled by machines talking to machines. The "intelligent agents" people have touted 

for ages will finally materialise.” 

This vision was developed further in his first article published in Scientific American 

in May 2001 [9]. In the aforementioned article, he defined the Semantic Web as: 

“The Semantic Web is not a separate Web but an extension of the current one, in 

which information is given well-defined meaning, better enabling computers and 

people to work in cooperation.” 
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The vision of Semantic Web is to shift the current World Wide Web from the medium 

of documents, designed for human consumption, to the medium of data so that 

computers can understand and process information without human intervention. The 

reasons why this shift is required are the facilitation of reusing the data in new 

context, the alleviation of costly information extraction from documents done by 

humans, and the release of vast amount of relational database tables and spreadsheets 

data, presently inaccessible, through automatic processing by machines [46]. 

2.3.2 Underlying Technologies 

This section provides an introduction of Semantic Web technologies. 

(a) Resource Description Framework (RDF) 

One of the main problems of the World Wide Web is that it only supports human 

interaction; in other words, it is primarily built for human browsing and searching 

HTML documents [47]. This model is lacking in precision and is inadequate for 

browsing a huge amount of information to locate the desired document rapidly 

because it searches the documents on the basis of text string matching. Thus, the 

current model of web search and information retrieval is inefficient in looking for the 

required web documents. Furthermore, the information extraction from documents by 

humans involves mental fatigue. Therefore, it has been proposed that we need a 

framework based on metadata which enables the description of web documents in a 

more precise manner, to enhance the web search efficiency and precision and turn the 

current web of documents from machine-readable to machine-understandable [48]. 

More specifically, the Resource Description Framework (RDF) model has been 

proposed to provide the necessary underlying support for the above challenges. In 

addition, it provides interoperability among web applications that transfer machine-

understandable information. 

RDF [49] is a data model and XML-based language that represents information in the 

web and enables data integration by resolving semantic differences. It is a metadata 

framework and a knowledge representation scheme that provides encoding, exchange 

and reuse of structured metadata [50]. Through RDF, we can publish both human-

readable and machine-processable vocabularies which are developed in order to 

support the reusability and extension of metadata semantics among different 
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information groups. It also allows metadata interoperability among different metadata 

frameworks. It provides a syntax independent representation to describe web 

resources. A resource is an object which can be anything in the world such as a web 

page, a web site, or anything having some information about something. Every 

resource is recognised by a unique identifier called Uniform Resource Identifier 

(URI). Resources have attributes which are described by property names and their 

corresponding values. Values might be either atomic (text, strings, numbers, et.) or 

other resources having their own properties. A collection of properties describing the 

same resource is called a description. Thus, RDF has three main components i.e. 

resources, properties which describe a resource and a statement which is a 

combination of a resource, its properties and their corresponding values. These three 

individual components of a statement are also known as subject, predicate and object 

respectively. These RDF triples can be expressed through a graph notation with nodes 

representing web resources and labelled edges representing properties. RDF has a 

number of application areas such as resource discovery, content cataloguing, 

electronic commerce, intelligent software agents, digital signatures, content rating, 

intellectual property rights and privacy preferences and policies etc.  

(b) Ontology 

The concept of an ontology was coined in 1613 and its origin dates back to Aristotle. 

In philosophy, it is defined as “the study of being” or “the study of what might exist” 

or “the subject of existence”. In other words, it is a branch of philosophy that deals 

with the nature of existence. In the context of computer science, Thomas Gruber 

defined an ontology as [13]: 

“In the context of knowledge sharing, I use the term ontology to mean a specification 

of a conceptualisation. That is, an ontology is a description (like a formal 

specification of a program) of the concepts and relationships that can exist for an 

agent or a community of agents. This definition is consistent with the usage of 

ontology as set-of-concept-definitions, but more general. And it is certainly a different 

sense of the word than its use in philosophy.”  

Gruber described the idea of conceptualisation in accordance with Genesereth and 

Nilsson [51] who said: “A body of formally represented knowledge is based on a 
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conceptualisation: the objects, concepts, and other entities that are assumed to exist 

in some area of interest and the relationships that hold among them. A 

conceptualisation is an abstract, simplified view of the world that we wish to 

represent for some purpose. Every knowledgebase, knowledge-based system, or 

knowledge-level agent is committed to some conceptualisation, explicitly or 

implicitly.” 

In 1997, Borst, with a little modification to Gruber’s definition, defined ontologies as: 

“Ontologies are defined as a formal specification of a shared conceptualisation.” 

[52]. In 1998, Studer et al. [53] combined these two (Gruber and Borst) definitions 

and defined ontologies as: “An ontology is a formal, explicit specification of a shared 

conceptualisation. A ‘conceptualisation’ refers to an abstract model of some 

phenomenon in the world by having identified the relevant concepts of that 

phenomenon. ‘Explicit’ means that the type of concepts used, and the constraints on 

their use are explicitly defined. ‘Formal’ refers to the fact that the ontology should be 

machine readable, which excludes natural language. ‘Shared’ reflects the notion that 

an ontology captures consensual knowledge, that is, it is not private to some 

individual, but accepted by a group.”  

Some researchers take Gruber’s article as the beginning of ontology research in 

computer science but its role in Artificial Intelligence for knowledge engineering goes 

back to the 1980’s article by John McCarthy [54] followed by Hayes [55] in 1985 and 

Alexander et al. [56] in 1986. Alexander et al. for the first time, presented a 

knowledge engineering methodology, called ontological analysis. They developed a 

family of languages collectively called SPOONS (SPecification of Ontological 

Structure) that encompassed tools based on domain equations, equational logic, and 

semantic grammars respectively. This was perhaps the first departure of ontology 

from philosophy to computer science; that is taking it from the nature of existence to 

the collection of abstract objects, relationships and transformations in order to use it 

as an AI tool for knowledge engineering in a particular domain of interest. Since then, 

the ontologies have been played a key role in information systems, natural language 

understanding, knowledge based systems, database design, software engineering and 

the Semantic Web. 
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Why do we need to develop ontologies? 

One of the main purposes behind ontology development is that it plays an important 

role in information sharing [57] among people or software agents. For instance, in the 

medicine field, the Unified Medical Language System is a large, standardised 

structured vocabulary which can be used by software agents to share, extract and 

aggregate medical information with other applications or answer user queries.  

Noy et al. [58] described other important reasons which are briefly described. 

Ø Ontologies allow reusing domain knowledge which makes it one of the primary 

reasons in rushing into ontology research. For example, in our research, we are 

going to integrate and extend several existing ontologies including SSN (Semantic 

Sensor Network), Time, Geo, GeoSPARQL and MUO/UCUM. Similarly, in Earth 

Sciences, SWEET (Semantic Web for Earth and Environmental Terminology) 

[59] is a collection of ontologies in earth and environmental sciences that has been 

(re)used by other research groups doing ontology development in the same or 

relevant areas. 

Ø Furthermore, ontologies help in making the domain assumptions clear and easy to 

understand and can be changed very easily if the domain knowledge changes.  

Ø Ontologies enable us to separate the domain knowledge from the operational 

knowledge.  

Ø Finally, ontologies enable us to analyse domain knowledge and help in clarifying 

the structure of knowledge which is very important in case of reuse and extending 

the existing ontologies [25]. 

What are the different types of ontologies? 

There are different kinds of ontologies including: 

Ø Generic or upper ontologies - capture knowledge that can be used in multiple 

domains. Typically, generic ontologies describe concepts including space, time, 

matter, state, object, event etc. [60] 

Ø Domain ontologies which are developed for representing knowledge in a 

particular area of interest or domain (for example earth sciences, bioinformatics, 

e-commerce etc.).  
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Ø Method or task ontologies describe how domain knowledge can be used to 

perform specific tasks (e.g. diagnosis or selling). Methods are used to describe the 

functionality of an application thus application ontologies can hardly be used for 

other applications.  

Ø Application ontologies are those which can be used to design an application and 

contain both domain ontologies and methods from method ontologies [61].  

How to represent knowledge in an ontology? 

To represent knowledge in an ontology is a design decision that requires an objective 

criterion in order to guide and evaluate such design. Gruber [62] suggested five 

ontology design principles for the purpose of knowledge sharing and interoperation 

among applications which are briefly described here.  

Ø The first design criterion is the clarity of the definitions which says the meaning of 

the defined terms should be effective, objective, with no or less ambiguity and 

independent of social or computational context. All definitions should be recorded 

in natural language and if possible, complete definitions should be preferred over 

partial definitions.  

Ø The second design principle is the coherence which says ontologies should allow 

only those inferences which are consistent with the definitions. Coherence should 

also be applicable to the informal definitions used in natural language 

documentation.  

Ø The third design rule says ontologies should be extendible in order to 

accommodate the anticipated tasks so that one can easily extend and specialise the 

existing shared vocabulary without revising the existing definitions.  

Ø The fourth principle is about minimal encoding bias which states the 

conceptualisation should be specified at the knowledge level irrespective of the 

convenience of notation or implementation.  

Ø Finally, ontologies should need the minimal ontological commitment enough to 

support the desired knowledge sharing activities. Ontologies should commit as 

few claims as possible in order to permit other parties to specialise and instantiate 

the ontologies according to their needs.  
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What are the application areas of ontology in Computer Science? 

Ontologies play a vital role in computer science including modelling complex areas of 

knowledge, resolving interoperability issues, searching large datasets and systems 

engineering. These application areas are briefly described below. 

Firstly, in some knowledge domains, representation of knowledge is not a difficult 

task to describe the fundamental characteristics of well-defined and local areas of 

interest. Nevertheless, there used to exist some complex areas of knowledge in which 

knowledge representation was such a challenging task. One such example is the 

description of mutant phenotype which was not easy to describe it in a simple way 

[63]. It is defined as “the observable and measurable characteristics of an organism, 

which result from the interaction of the organism’s generic ‘blueprint’ (its genotype) 

and the environment.” In most biological databases, phenotype information was 

stored in free-text form [64-66], though some structured ways of storing information 

also existed, which was not easy to query and compare these free-text descriptions. 

This issue of phenotypic descriptions was tackled effectively through developing 

ontologies in different ways such as designing dedicated ontology specific for an 

organism, or through a composite annotation using several simpler ontologies, or by 

combining the defined terms in multiple orthogonal ontologies to create a single new 

ontology. 

Secondly, another promising application of ontologies in computer science and 

information science is the provision of interoperability support gained by translating 

between different modelling methods, computing paradigms, languages, 

representations and software tools. The researchers in Semantic Web community 

usually tackle the problem of interoperability on the basis of reasoning principles or 

inference rules, using ontologies as a cross-cutting technology [67]. In ontologies, the 

knowledge base might contain effective and complete operational defined terms and 

the relationship between those terms; thus, one term can be expressed accurately in 

terms of another using equality based axioms or mappings and therefore can support 

more “intelligent” interoperability [68].  

Thirdly, the current web is a huge semi-structured database consisting of billions of 

documents. It has been continuously growing rapidly over the past many years 
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making both information retrieval and knowledge management challenging tasks [69]. 

With the deployment of ontologies in Semantic Web applications, information 

retrieval has become very effective to a great extent. Ontology is a best means of 

arranging or organising an information repository and can be used as a sophisticated 

indexing mechanism in order to facilitate searching large datasets [70]. Information 

repositories, structured on the basis of ontologies and semantic annotations, add 

meaning to the web pages, thus refine and aid web search. The inference engine, 

using background ontologies, further enhances these semantic annotations on the 

basis of inference rules. Hence, it adds all properties that can be deduced/induced 

from the semantic annotations and ontologies [71]. 

Finally, ontologies have also drawn attention from software engineering community, 

where the software engineers design the ontology to characterise and specify the 

entities of a knowledge domain and use it as a base for software specification and 

development [72]. For example, ontology can be used as a reusable or shared 

component in an application to achieve software reusability; it can perform 

consistency checking on the basis of properties and value restrictions to develop more 

reliable software; it can help in guiding knowledge acquisition and designing the 

software requirements and specification document for a knowledge-based systems; 

moreover, ontology-based systems also help in improving software documentations 

which result in reduced software maintenance cost. 

(c) Linked Data 

Linked data is a mechanism to describe a set of best practices for publishing and 

interlinking structured data on the Web. It is defined as [11]:  

“To make the Web of Data (Semantic Web) a reality, it is important to have the huge 

amount of data on the Web available in a standard format, reachable and 

manageable by Semantic Web tools. Furthermore, not only does the Semantic Web 

need access to data, but relationships among data should be made available, too, to 

create a Web of Data (as opposed to a sheer collection of datasets). This collection of 

interrelated datasets on the Web can also be referred to as Linked Data.” 

Bizer et al. [12] defined linked data as: 
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“Linked data refers to data published on the Web in such a way that it is machine-

readable, its meaning is explicitly defined, it is linked to other external datasets, and 

can in turn be linked to from external datasets.” 

Berners Lee described the significance of linked data as [22]: 

“The Semantic Web isn't just about putting data on the web. It is about making links, 

so that a person or machine can explore the web of data. With linked data, when you 

have some of it, you can find other, related, data.”  

What is the rationale of Linked Data? 

Linked data plays a key role in sharing and reusing data on the Web. The main factor 

in data reusability is to what extent it is structured [73]. If the structure of data is well 

defined and regular, it can easily be processed by different application tools for reuse. 

As the Web documents in the classical Web are unstructured or loosely structured, 

software applications find it very difficult to extract meaning from HTML pages and 

could use it for smart purposes. One of the solutions to resolve this issue is 

microformats [73-74] which promote publishing structured data on the Web by 

embedding data about people, organisations, events, reviews and ratings in HTML 

pages through class attributes. The downside of microformats is the support of limited 

number of different types of entities, attributes describing these entities, and often the 

inability of expressing relationships between entities because of having no identifiers. 

The second mechanism to provide structured data on the Web is through Web APIs 

which enable access to data through querying over the HTTP protocol [73-75]. A 

couple of well-known examples of Web APIs are the Amazon Product Advertising 

API (http://docs.amazonwebservices.com/AWSECommerceService/latest/DG/) and 

the Flickr API (http://www.flickr.com/services/api/). Thousands of Web APIs are 

maintained in a directory by a website named ProgrammableWeb [76]. Web APIs 

resulted in numerous specialised web applications such as mashups that combine 

contents into an integrated experience from more than one source; each of which is 

accessed through a public interface or API. Though Web APIs provide a number of 

advantages to access structured data on the Web, still this mechanism has some 

serious shortcomings [75]. First, these APIs provide proprietary interfaces and cannot 

be accessed using generic data browsers. Second, they fragment the Web into separate 
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data silos and mashup developers are restricted to fixed set of data sources. Finally, 

the scope of Web APIs’ identifiers to refer to data items is local, hyperlinks can’t be 

set between data objects provided by different APIs. Consequently, the data in the 

Web is not linkable and discoverable at their full potential.  

To overcome these problems, Tim Berners Lee introduced four main rules in his Web 

architecture note entitled ‘Linked Data’ to publish and interlink structured data on the 

Web [22]. These practices are also known as Linked Data Principles which are 

described as under: 

1. Use URIs as names for things. 

2. Use HTTP URIs so that people can look up those names. 

3. When someone looks up a URI, provide useful information, using the standards 

(RDF, SPARQL). 

4. Include links to other URIs, so that they can discover more things. 

What are the advantages of Linked Data? 

Linked data provides some promising benefits discussed below [77].  

Ø Linked data relies on RDF which is particularly designed for global data sharing. 

In RDF, information is expressed by unique identifiers called URIs. Hence, linked 

data provides a unifying data model.  

Ø By using RDF, it enables syntactic and semantic data integration of different 

linked datasets through schema and instance matching techniques and by relying 

on shared vocabularies and ontologies and connecting different definitions 

through vocabulary links.  

Ø It provides coherence in which data items, represented by URIs in a triple (from 

different namespace) are effectively interlinked.  

Ø It provides a standardised data access mechanism by using a world-wide standard 

HTTP protocol, thus allowing generic data browsers for accessing data and search 

engines for crawling the global data space.  

Ø It provides data discovery at runtime by using URIs to connect different data 

sources and following RDF links to create a global data graph. 
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Where does Linked Data apply? 

There are numerous applications that leverage the web of data which can be 

categorised into linked data browsers, linked data search engines and specialised 

applications.  

Linked data browsers enable users to surf the web of data by following links in RDF 

triples. New data can be discovered and merged automatically through owl:sameAs 

links. Examples of linked data browsers are Tabulator [78], Marble [79], Disco-

Hypermedia Browser [80], Fenfire [81], and Humboldt [82] etc.  

Linked data search engines that crawl Linked Data through RDF links are of two 

types. One, which is human-oriented, serves users on keyword basis and follows the 

interaction mechanism of Google and Yahoo, includes Falcons [83], SWSE (Semantic 

Web Search Engine) [84]. Another category is application-oriented Indexes which 

serve the requirements of other applications through APIs, includes Swoogle [85], 

Sindice [86] and Watson [87].  

Linked Data specialised applications that are developed to serve particular domain 

include DBpedia Mobile [88], a location-aware Linked Data browser developed for 

smart phone users to discover a city; Revyu [89], a reviewing and rating website to 

help users improve their experience; and Talis Aspire [90], a web-based resource list 

management application developed to help university lecturers and students. 

What is the Linked Data lifecycle? 

Soren Auer et al. [91] describe different stages involved in the linked data lifecycle as 

illustrated in Figure 2.3. The steps involved in the lifecycle need not be sequential. 

These stages are summarised below. 

Extraction- The first step in Linked data lifecycle is the information extraction in 

which the information is mapped from unstructured (e.g. text), semi-structured (e.g. 

XML), and structured (e.g. relational tables) representations to the RDF data model. 

Storage/Querying- Once sufficient RDF triples are gathered, the next step is to store 

these triples and query them efficiently through a querying language. 
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Figure 2.3: The Linked Data Lifecycle 

Authoring- Here the users create, modify, and extend the structured information by 

exploiting some Semantic Wiki technologies such as OntoWiki. 

Linking- Perhaps the most important concept in the Semantic Web is linking between 

entities if the information provided by different data publishers refers to the same or 

related web resources. 

Classification/Enrichment- to transform linked data from raw form into a regular 

structure, schema and classification for efficient data integration, querying and search 

purposes. Through enrichment methods (e.g. reasoning), we can increase the 

expressiveness and semantic richness of a knowledge base. 

Quality Analysis- mechanisms to assess the quality of data (if it is inconsistent, 

incomplete, inaccurate or obsolete) on the basis of different parameters such as 

provenance, context, and structure etc. 

Evolution/Repair - ensuring transparency when changes occur to knowledge bases, 

vocabularies and ontologies and fixing them if problem arises in result of those 

changes. 

Extraction

Storage/Queryi
ng

Authoring

Linking

Enrichment

Quality 
Analysis

Evolution/Repa
ir

Search/Explore



Chapter 2: Background and Related Work 

43 

Search, browsing and exploration - developing better techniques for searching, 

browsing, exploring and visualisation to use linked data efficiently and easily. 

2.3.3 Summary 

Semantic Web technologies are emerging in underpinning environmental science to 

understand this multi-disciplinary, integrative and data-driven science. Various 

eScience areas (most notably disciplines include health care and life science) are 

much further on accepting Semantic Web technologies. Furthermore, the Semantic 

Web community has widely focused on formal aspects of semantic representation 

languages or general-purpose semantic application development. However, as 

mentioned in the previous chapter, they have done little research to address the data 

challenges in the natural environment. This little uptake leaves a semantic gap in (a) 

understanding highly complex and heterogeneous environmental data (b) turning this 

underlying data into knowledge and (c) integrating and interlinking it with other data 

sources to make a unified view of the data (and by exploration knowledge). Hence, 

there is a need to further explore these technologies to understand the characteristics 

of this integrated and data-driven science around data in all its complexity. The next 

section therefore looks in more detail at the related work in these technologies to 

determine the current state-of-the-art.  

2.4 Related Work 

2.4.1 Dimensions of the state-of-the-art 

To perform a systematic comparison of related initiatives and developments, this 

section introduces a set of dimensions in order to capture key features in a consistent 

manner. These dimensions are described below. 

i) The purpose of the ontology: The main purpose of the ontology is to capture 

knowledge of a particular domain in order to enable semantic applications and 

machines to better understand the target domain and the relationships among different 

concepts of the domain. This dimension is important in the context of the 

Environmental IoT project and beyond to develop an ontology for describing data and 

also capture complex interrelationships across disparate datasets representing different 

environmental facets.  
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ii) The coverage of the ontology: The coverage, also called scope, of the ontology 

determines the potential maximum range of concepts describing a particular domain. 

In the context of a semantic sensor network, an ontology may specify sensor 

descriptions, observations and measurements. An ontology can be either mainly 

sensor-centric or observation-centric or both. The coverage of ontology is very 

significant in this work because not only the sensor ontology should describe sensors 

and observations but other important features including thematic, spatial and temporal 

dimensions of the domain should also be modelled. 

iii) Expressiveness of the ontology: The expressiveness dimension demonstrates the 

ability of an ontology language to capture certain aspects of a particular domain. More 

expressive ontology languages can conceptualise a large variety of knowledge about a 

domain, however at the cost of computational complexity. This dimension is 

significant in the context of this work because a sufficiently rich language is required 

to capture a wide variety of concepts while at the same time preserving efficient 

reasoning support. 

iv) Using existing standards: One of the main reasons of ontology development is that 

others can use the existing standards to save time and efforts. Using and instantiating 

existing standards also help in the provision of interoperable solutions. This 

dimension is taken into account to both adopt and adapt existing standards to achieve 

portability and semantic interoperability on a wider scale. 

v) Semantic annotation of data: Semantic modelling and ontologies attach additional 

meaningful information to data resources to provide machine-interpretable 

descriptions. Semantic annotations of sensor data and IoT devices using sensor and 

domain ontologies is necessary in this work in order to support querying, searching 

and reasoning over environmental data in a sensor network.  

vi) Semantic data integration: In the context of a semantic sensor network, data 

usually stem from a variety of sources and hence requires combining it with other data 

sources to facilitate context awareness. This dimension is essential because it enables 

environmental scientists to form a unified view of the structure and more importantly 

semantics of heterogeneous environmental data.  

vii) Semantic reasoning: The Semantic Web technologies formalise knowledge in a 

way that enable reasoning over data that is implicitly declared to infer new 

knowledge. Semantic reasoning in the context of IoT data for the natural environment 

is an important tool to derive high-level knowledge from low-level sensor 
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measurements, for instance, deducing the risk of a pollution, soil saturation or a storm 

event. 

viii) Semantic interoperability: The exchange and interpretation of data in an 

unambiguous way by different software and machines to support automated or semi-

automated interaction. In the context of IoT data for the natural environment, 

providing interoperability is one of the most important dimensions owing to the issues 

of heterogeneous nature of devices, data models, and software tools. 

ix) Effective querying support: Once the data is semantically enriched and stored in a 

triplestore, users require access to and searching the data effectively to enhance 

further interaction with the resources. This dimension is taken into account because 

extended and effective querying support would be required to address the complex 

questions of users (scientists) in the target domain. 

2.4.2 Survey of the state-of-the-art 

This section applies the aforementioned dimensions to survey the related work in the 

area of the Semantic Web, particularly ontology design specifically for IoT/streaming 

data for the natural environment, as shown in the diagram (Figure 2.4, marked in 

red). The section surveys the related work by examining research in the different 

regions of the diagram with emphasis on work that lies at the intersection of the areas 

of: a) Semantic Web for IoT data (marked in black); b) Semantic Web in 

environmental science (marked in purple); and c) Semantic Web for IoT data in 

environmental science (marked in red). The work that lies at the intersection of 

IoT/streaming data in environmental science (marked in green) [92-108] is mostly 

technology-oriented focusing on issues related to resource-constrained IoT devices 

and communication, and hence is beyond the scope of this thesis. 
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Figure 2.4: Target Area of Research (marked in red) 

(a) The Semantic Web and IoT/Streaming Data 

The Internet of Things has become a reality today connecting billions of devices and 

things in numerous fields including industry, health, infrastructures and the natural 

environment, to name but a few [109]. One of the overarching goals of IoT by 

connecting these devices and capturing data from them is to create situation or context 

awareness, and enable applications, machines and humans to better understand their 

surrounding environment [10]. However, to achieve this goal, it raises some 

technological issues at semantic level because the data collected from these devices is 

diverse, heterogeneous and may be spatio-temporal. These characteristics make 

challenging several tasks including capturing complex interrelationships, data 

integration and reasoning, and interoperability. Applying Semantic Web technologies 

to IoT devices can potentially achieve the above-mentioned goal of IoT, provided the 

said data challenges are addressed. This section surveys existing work that used 

Semantic Web technologies including ontologies and linked data for resolving the 

issues of capturing complex interrelationships, data integration and reasoning, and 

data interoperability in a sensor network. 
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Ontologies have been playing an important role in addressing the aforementioned 

challenges in a sensor network. For instance, the work of Avancha et al. [110] 

proposed an ontology for sensor networks to capture important features of a sensor 

node including both functionality and current state. The ontology focused mainly on 

high level descriptions of components of nodes and functional descriptions of sensors. 

However, it did not provide good coverage, i.e. it gave little attention to sensors, 

systems and measurement procedures. The OntoSensor [111-112] ontology was built 

to enable applications for advanced inference methods to be used over heterogeneous 

sensor data. It adopted the concepts and properties from SensorML, the IEEE SUMO 

ontology, ISO 19115 and some constructs from the Web Ontology Language. 

OntoSensor covered a broad range of concepts; however, it lacks a proper data 

description model to provide interoperability for data representation and observation. 

Kim et al. [113] later extended the OntoSensor ontology for web services. Their 

ontology comprised three main components: ServiceProperty, LocationProperty, and 

PhysicalProperty. However, their system did not specify the description and 

interpretation of sensor data in a sensor network application. Moreover, due to poor 

ontology modelling of concepts it was not reused or extended in other applications. 

The SWAMO project proposed an ontology for an intelligent agent based framework 

to describe physical devices, processes and tasks [114].  Unlike the ontologies 

proposed by Avancha et al. that focused primarily on data and measurements, the 

SWAMO ontology included the systems aspect e.g. survival and operating range, and 

deployment, in addition to sensors and measurements. Its main benefit was providing 

interoperability with SensorML, and Sensor Web Enablement standards. However, 

the overall approach lacked cohesion that is the relatedness of elements in an ontology 

which measures modularity. Low cohesion can lead to modularity issues. The A3ME 

(Agent-based Middleware approach for Mixed Mode Environments) ontology was 

developed to classify the discovery of sensor devices and their capabilities in 

heterogeneous networks having resource constrained sensor nodes [115-116]. The 

A3ME ontology covered a wide range of concepts; however, it was mainly designed 

for low-power devices and did not support complex reasoning. CSIRO developed a 

sensor ontology to describe and reason about sensors, observations and scientific 

models [117-118]. The main objective was the usage of sensor reasoning and 

querying approaches for enabling data integration, searching, and classification. It 

was relatively an expressive ontology, however faced some issues. The processes 
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defined in the ontology could not express their functions and hence an external 

reasoning mechanism was required. Furthermore, the types of inputs, outputs and 

what a sensor measures could not be expressed properly in OWL. Sheth et al. [119] 

presented the idea of a Semantic Sensor Web (SSW) framework to give enhanced 

meaning and descriptions to sensor observations in order to enable situation 

awareness. In their paper, they explained how a Semantic Sensor Web can enable 

interoperability, advanced analytics and reasoning over heterogeneous sensor data for 

situation awareness by using semantic annotation, ontologies and rule-based 

reasoning. However, their work focused on achieving interoperability between 

sensors rather than data. Besides, their writing does not explain how SSW could relate 

to existing knowledge on the Web. To understand and conceptualise the information 

processes involved in observations, Kuhn in [120] proposed a general ontology to 

formalise the semantics of observations. The ontology modelled both human and 

technical sensors and the role of an observer in order to cover a wide range of current 

and evolving Semantic Sensor Web standards. It represented a first step towards an 

ontological foundation to deal with observations; however, it did not identify 

reasoning requirements for sensor data integration. 

Building on the experience of this work, the W3C Semantic Sensor Network 

Incubator group (SSN-XG) developed a general, domain independent ontology known 

as the Semantic Sensor Network (SSN) ontology [121-122]. The SSN ontology is 

based on the Stimulus-Sensor-Observation (SSO) pattern [123] and describes sensors 

and their capabilities, observations, systems and deployments. The SSN ontology has 

some important features, for instance, it is compatible with other standards including 

OGC SensorML at the sensor level and O & M at the observation level. Moreover, as 

the SSN is a generic ontology, it can be adopted in many scenarios and domains. 

However, the SSN ontology does not provide concepts to describe temporal, spatial, 

units of measurements and domain knowledge. In addition, it does not provide 

specifications for features or types of observed properties.  

There is now a body of work on using or adopting the SSN ontology in various areas 

of applications. Gray et al. [124] described Semantic Sensor Web architecture to 

discover and integrate multiple heterogeneous datasets. The good feature about their 

architecture lies in the provision of support for semantic sensor web applications both 
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for discovering and integrating spatio-temporal and thematic data. However, the 

approach lacks reasoning capability over sensor data. Wang et al. in [125] developed 

a lightweight semantic description model for knowledge representation in the IoT 

domain and reused some existing ontologies including SSN. The design of their 

ontology followed the recognised best practices in ontology engineering and 

modelling. However, their approach focused mainly on service discovery, testing and 

dynamic composition and not on actual observation data. Barnaghi et al. in [126] used 

the SSN ontology in their framework for translating low-level sensor data to high-

level abstractions to infer perceptions using OWL reasoner. However, their paper 

reported an ongoing work and the results were at an early stage. Besides, their 

solution was limited to predefined inference models. Roda and Musulin [127] 

presented an ontology-based framework, reusing SSN, to perform intelligent data 

integration and analysis on sensor measurements. The positive feature of their 

framework is the modular design enabling integration, exchange and reuse of its 

constituent parts. However, their framework has some weaknesses including limited 

querying and reasoning capabilities. Taylor et al. [128] presented a prototype for 

smart farming using Semantic Web standards to support real-time alerts for on-farm 

situation awareness. Their approach adopted SSN and other ontologies to represent 

knowledge of events over streaming data at runtime, publishing their summaries as 

linked open data. However, their research on enriching alerts with semantic linked 

data information is not complete.  

Semantic annotations of sensor data enable applications to utilise enriched sensor data 

for different purposes including information exchange, reasoning, and creating 

context-aware applications etc. The work of Bernaghi et al. in [129], proposed a 

semantic data model to represent large heterogeneous data in a sensor network. They 

identified a major challenge in introducing semantics to sensor networks which is the 

addition of metadata to be exchanged alongside the measured data. However, their 

approach was based on O & M and SensorML specification which lacks explicit 

semantic interoperability. Wei and Barnaghi in [10], took the idea of semantic 

annotation a bit further and focused on using domain ontologies based on linked data 

principles. However, their work just advocated the idea and did not provide any 

details about the semantic enrichment process and data transformation to RDF using 

linked data principles. Broring et al. [130] presented a roadmap towards semantically 
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enabled sensor plug and play within the Semantic Sensor Web. Their approach 

focused mainly on semantic annotation of service requests which were made for 

adding new sensors and observations to the Sensor Observation Service. However, it 

lacked data integration and reasoning services. Huang and Javed in [131] proposed an 

architecture named SWASN, to describe and process sensor data to make it 

meaningful for other applications and to extract high level information from it. To 

demonstrate their work, they used a case study of a fire emergency scenario in a 

building. However, their approach lacked querying real-time data. Moreover, it was 

not scalable. Moraru and Mladenic [132] proposed a framework for enriching sensor 

data to improve its usability and accessibility. They built a semantic repository of 

sensor data containing both sensor descriptions and measurements that can be used by 

semantic browsers and inference engines. Their work provided a good conceptual 

framework, however did not provide any implementation. 

Analysis 

This section has surveyed Semantic Web technologies as they address some of the 

challenges in the IoT domain. There is a strong body of work in this area and hence a 

significant amount of experience and interest in applying Semantic Web technologies 

in this domain. However, all these research efforts have limitations in terms of 

fulfilment of the dimensions described in section 2.4.1. Firstly, the coverage of the 

ontologies is limited. For instance, some of the ontologies focus on data and 

measurements, with little mention of describing sensors, systems or measurement 

procedures, while others focus on sensors, systems and procedures but overlooking 

data and observations [133]. Hence, the coverage dimension is not fully satisfied. 

Secondly, some of the ontologies are not expressive enough. Though the SSN 

ontology is an important stepping stone and is relatively expressive, it needs to be 

extended and reused with other domain ontologies to provide a comprehensive 

solution for sensor networks. Thus, the expressiveness dimension is also partially 

addressed. Thirdly, a proportion of the work lacks semantic interoperability, data 

integration and querying support. This leads to the semantic gap for data 

interoperability, integration and querying dimensions. Finally, the semantic 

annotation and reasoning mechanisms are very basic and still require further research 
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Table 2.1: The dimensions of the Related Work and their support in the survey of Semantic Web technologies for IoT/streaming data. The tick 

mark ( ) represents that the dimensions are fully satisfied, the cross symbol ( ) shows that the dimensions are not supported at all, and the 

asterisk symbol (*) shows the partial fulfilment of the dimensions.   
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to convert low-level sensor measurements into high-level knowledge. Hence, the 

dimensions of semantic annotation and reasoning are partially fulfilled. In short, there 

is a lot of good work and experience in this area, but most of the dimensions are not 

fully addressed. Hence, more research is needed especially developing a sensor 

ontology providing good coverage and reasoning capabilities and enabling integration 

and interoperability of different data sources effectively. The analysis is summarised 

in Table 2.1. 

(b) Semantic Web in Environmental Science 

Environmental data can play an important role in addressing the key challenges such 

as climate change, loss of biodiversity and sustainability of environmental ecosystem 

services to name but a few. As environmental science encompasses various other 

disciplines, it requires multidisciplinary collaboration and access to diverse data from 

interconnected sub-disciplines. In order to solve difficult research questions 

collaboratively, environmental scientists also need to access, use and share the data. 

Unfortunately, environmental data is usually stored in non-standardised formats, 

placed in geographically scattered locations and managed by different local, national 

and international authorities. These characteristics ultimately provide a hindrance to 

capturing complex interrelationships across datasets, wider data discovery and access, 

interoperability, data integration and reuse [134]. The Semantic Web offers the 

potential to introduce machine understandable semantic metadata with the help of 

ontologies and linked data mechanisms to address these challenges. 

Researchers have developed controlled vocabularies, community thesauri and formal 

ontologies to potentially resolve the data challenges including discovery and access, 

data integration and interoperability. Controlled vocabularies and community thesauri 

can enable seamless description and presentation of data. They are used to 

characterise datasets and can be helpful in data discovery and integration process. 

This practice has been documented in, for instance, [135]. These approaches are a 

good starting point but they cannot provide rich and unambiguous semantics to infer 

new terms and knowledge.  

Ontologies have been introduced to achieve precise and formal semantics. SWEET 

(Semantic Web for Earth and Environmental Terminology) [136], developed by 
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NASA Jet Propulsion Laboratories, is a set of more than 200 ontologies in the field of 

earth sciences. SWEET ontologies have been developed to improve the discovery and 

usage of earth sciences data through semantically enabled software. These ontologies 

conceptualise several categories of information including the earth realm, living and 

non-living elements, physical properties and spatio-temporal concepts. However, 

some of the SWEET concepts are interdependent within or across the ontologies and 

reusing or extending them would be overwhelming unless a structured approach is 

followed by the domain experts to analyse the gaps in the upper-level design [137]. 

Moreover, SWEET ontology represents broad information focussing on the taxonomy 

of domain specific events and provides fundamentally class hierarchies but limited 

expression of properties. The Extensible Observation Ontology (OBOE) is another 

approach that provides a semantically enabled metadata paradigm to facilitate 

discovery and interoperability of different geoscience datasets [138-139]. OBOE was 

used in the context of the Science Environment for Ecological Knowledge (SEEK) 

project that aimed at developing technologies (e.g. scientific workflows) for 

discovery, integration and analysis of distributed ecological data and information. 

Though the OBOE ontology model provides better interoperability, its reasoning 

performance is limited. Moreover, it does not support higher level context or 

constructs to describe a sequence of observations, e.g. in capturing an extreme 

weather event. The Network of Excellence project, ALTET-Net, developed the 

SERONTO (Socio-Ecological Research and Observation Ontology) ontology to 

integrate biodiversity data from distributed data sources [140]. SERONTO was tested 

through a biodiversity use-case; however it has some unsatisfiable concepts/classes 

which is fundamentally a modelling error leading to barriers in extending the 

ontology. Moreover, reasoning and inconsistency issues can arise because of these 

classes. In the field of biology and biomedical studies, the Environmental Ontology 

(ENVO) was developed to enable retrieval and integration of broader biological data 

[141]. The interesting feature of ENVO is the ability to annotate any environmental 

terms/components, however it mainly focuses on biological terms/data, and hence it 

cannot readily be used more widely in environmental science. Later, due to the 

growing need of environmental semantics, the authors attempted to extend the 

coverage of ENVO ontology to meet the requirements of other disciplines including 

ecology and biodiversity [142]. However, the extension raised other issues including 

ontology mapping, consistency etc.  
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A number of approaches based on ontologies and Semantic Web tools have also been 

adopted to address capturing complex interrelationships across datasets, data 

discovery, integration and interoperability challenges. Parekh et al. [143] proposed a 

semantic metadata management system using ontologies to address the data discovery 

issue and provide a basis for interoperability. The good aspect of their work is using 

existing domain ontologies including SWEET. However, the approach is not based on 

any standard temporal or spatial ontologies and does not support any reasoning or 

inferencing. Furthermore, the ontology has not yet been fully evaluated. The 

approaches described by [144] and Madin et al. [139], both based on the OBOE 

ontology, are examples of relatively better data discovery and integration techniques. 

These approaches provide better interoperability but are limited in terms of search and 

reasoning facilities. Berkely et.al in [17], presented a semantic search system and 

described how ontologies such as OBOE and formal reasoning can be exploited to 

enhance keyword search by applying semantic annotations in order to provide 

semantic descriptions of scientific observations. They extended the previous work on 

EML [145] and Madin et al. [139].  However, their approach does not support 

advanced search and data integration. The work of [146] introduced a semantic based 

approach, based on mark-up languages and domain ontologies, for integrating 

different geoscience datasets. As a proof of concept, they implemented a semantically 

enabled service oriented computational infrastructure called DIA (Discovery, 

Integration, Analysis) to support earth scientists to discover, analyse and integrate 

their data. Though it is a good research effort for data integration in geoscience, it 

suffered from performance issues with large datasets. [147] developed an approach, 

based on OBOE, to enhance the discovery and integration of heterogeneous 

ecological datasets. Extending the Ecological Metadata Language (EML) and 

supporting tools, they used semantic annotations to express and represent datasets 

with terms and vocabularies from domain specific ontologies. However, their 

approach provides a very preliminary form of data integration and does not involve 

reasoning mechanisms to provide compatibility of annotated measurements. This 

further leads to lacking support for automated data integration. The work of [148] 

applied data mining techniques in conjunction with an ontology of causation to help 

domain experts in identifying possible causal relationships between fish movement 

patterns and environmental drivers such as moon cycles, high river flow or high/low 

temperature. However, their ontology is a general conceptual model, which is not 
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based on formal axioms and reasoning, hence the approach lacks the reasoning 

capability.  

Because of the variety of sub-disciplines (e.g. biology, ecology, hydrology, 

climatology, meteorology, oceanography and biodiversity), interdisciplinarity and 

collaborativeness in environmental science, data heterogeneity and integration issues 

occur [149]. Environmental scientists connected to these subfields use their own 

terminologies, different measurement units, different data models and experimental 

designs that exacerbate such data heterogeneity problems. To cope with the data 

heterogeneity challenge, the research community have provided some potential 

solutions through applying structured and standardised metadata approaches including 

standardised mark-up languages, for instance, the Ecological Metadata Language 

(EML) [150], the Earth Science Mark-up Language (ESML) [151], and the Water 

Mark-up Language (WML) [152]. However, these approaches cannot completely 

resolve the semantic interoperability issues. To overcome the limitations of these 

approaches, researchers have proposed the use of controlled vocabularies and 

ontologies to semantically integrate heterogeneous data, e.g. see [153] and [154]. The 

former approach benefited from using ontologies regarding heterogeneous data 

integration and querying and retrieval support. However, it lacks comprehensive 

reasoning and inferencing support. Besides, the approach is not fully evaluated. The 

good feature of the work in [154] is that it provided both more granular representation 

of environmental data and flexible methods of integration and querying. However, it 

suffers from scalability issue and becomes impractical for large amounts of data.  

Linked data approaches are potentially useful in supporting data integration and 

interoperability by providing a homogeneous view of distributed data and making this 

view available for other researchers, e.g. see [155].  The contribution of the said 

approach is the integration of different ecological resources using linked data 

principles and the provision of reasoning capacity to infer new information from the 

stored data. However, the approach is based on neither any existing standards nor 

their own designed ontology, rather uses local data published in RDF, which is 

rewritten as an application ontology. Moreover, the reasoning capability of the 

approach is very rudimentary and is not comprehensive enough. The work of [156] 

also adopted the linked data approach to integrate and share ecological data stored in 
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underlying distributed databases. Exploiting linked data principles, they improved 

slightly data integration and sharing beyond the existing metadata capability with 

databases. However, their approach is not based on an associated ontology, hence 

suffered from drawbacks including insufficient descriptions of the datasets, 

difficulties in schema-level integration, and no support for reasoning capability. 

Shaon et al. [157] is an example of an open-source linked data framework for 

integrating and publishing heterogeneous geospatial data as linked data, developed 

under the UK Location Strategy [158]. The framework, developed by the GeoTOD-II 

project, implemented a set of draft guidelines which were released by the UK Cabinet 

Office for promoting and publishing geospatial linked data. The authors also intended 

to address the challenges associated with these guidelines, for instance, designing 

implementable URI sets for location, representing legacy geospatial data and 

developing ontologies for this data. The candidate framework was a good effort to 

provide a flexible means for integrating and publishing both current and new datasets 

in the linked data format. However, it does not use any existing standard ontologies, 

thus leading to semantic data integration issues. Their approach also lacks a 

developed mechanism for mapping geospatial data to RDF schema and ontologies, 

that can further create mapping problems. Moreover, the work is as yet not fully 

evaluated. 

Analysis 

In this section, the Semantic Web approaches have been surveyed which were 

proposed to address data challenges including capturing complex interrelationships 

across datasets, data integration and reasoning, interoperability, and data discovery in 

environmental science. There is an important body of work in this area and hence a 

considerable amount of effort in applying ontology-driven approaches in this domain. 

However, all these approaches have limitations in terms of satisfying the dimensions 

described in section 2.4.1. Firstly, there is a lack of domain ontologies to provide 

enough breadth to capture concepts across a range of sub-disciplines in environmental 

science. This leads to the partial fulfilment of the coverage dimension. Secondly, most 

of the approaches are not standardised. Hence, the dimension of using existing 

standards in not satisfied. Thirdly, the data integration and interoperability 

mechanisms for heterogeneous environmental datasets are still not well-established. 
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Reference	 Purpose	 Coverage	
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*	
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*	

	
*	

Parekh	et	al.	 Semantic	
Metadata	 	 *	 *	 *	 *	 *	 *	 *	 *	 *	

Berkely	et	al.	 Semantic	Search	 	
	

	
	
	
*	

	
*	

	
*	

	
	

	
*	

	
*	

	
*	

	
*	

Malik	et	al.	 Semantic	
Integration	 	 *	 *	 *	 *	 	 	 *	 *	 *	

Leinfelder	et	
al.	

Semantic	
Integration	 	 	 *	 *	 	 	 *	 *	 *	 *	

Bleisch	et	al.	 Causal	
Relationships	 *	 	 *	 	 	 *	 *	 *	 *	 	
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Reference	 Purpose	 Scope	 Expressiveness	 Using	
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Fox	et	al.	 Semantic	
Integration	 	 	 *	 *	 *	 *	 	 *	 *	 *	
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	 *	 *	 *	

Moura	et	al.	 Linked	Data	 	
	

	
	

	
*	
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*	
	

	
	

*	 *	 *	

Mai	et	al.	 Linked	Data	 	 	 *	
	
*	
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*	
	

	
*	
	

	
*	
	

	
*	
	

	
*	
	

Shaon	et	al.	 Linked	data	 *	 	
	
*	
	

	
*	
	

	
*	
	

	
*	
	

*	
	 *	 *	 *	

Table 2.2: The dimensions of the Related Work and their support in the survey of Semantic Web technologies in environmental science. The 

tick mark ( ) represents that the dimensions are fully satisfied, the cross symbol ( ) shows that the dimensions are not supported at all, and the 

asterisk symbol (*) shows the partial fulfilment of the dimensions.  
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Thus, semantic integration and interoperability dimensions are partially qualified. 

Fourthly, a large proportion of the work performs rudimentary reasoning and lacks 

comprehensive inference mechanisms to derive further new knowledge from the 

existing one. This leaves a semantic gap for holistic reasoning approaches and hence 

the dimension of semantic reasoning is not fully addressed. Finally, as compared to 

other disciplines, for instance, health care and life sciences, the uptake of Semantic 

Web technologies in environmental science is lower. Hence, further research is 

required to fill this semantic gap in understanding the highly complex and 

heterogeneous environmental data. In terms of this thesis, there is a particular need to 

further explore Semantic Web technologies to understand the characteristics of 

environmental science around data. The analysis is summarised in Table 2.2. 

(c) The Semantics Web for IoT/Streaming Data in Supporting Environmental 
Science 

As discussed above, the research in this thesis sits at the intersection of all three areas, 

i.e. the Semantic Web, IoT/streaming data and environmental science (Figure 2.4, 

marked in red). The related work in this area is summarised below. 

Although there has been quite a lot of research on ontologies for sensor networks (as 

discussed in section 2.4.1 (a) above), there is very little research specifically targeting 

environmental science. There exist a few ontologies for IoT/streaming data in 

supporting environmental science. In oceanography, the Marine Metadata 

Interoperability (MMI) ontology was developed to describe oceanographic devices, 

including both sensors and samplers [159]. The ontology specified system concepts, 

its components and organisation of these components. MMI was used to enable users 

or applications to discover sensors and exchange and integrate marine data. This is an 

interesting initiative but the work is relatively immature in terms of development or 

evaluation. 

The Coastal Environment Sensor Network (CESN) project designed and developed an 

ontology [160] as part of the Semantic Data Reasoner project for coastal observation 

to infer ecosystem events. The ontology was built to encode sensor types and was 

based on Description Logic and logic rules to deduce inferences about sensor data and 

also detect anomalies. The strength of CESN lies in covering a wide range of 
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ontology concepts and the capability of reasoning domain knowledge from data. 

However, the project encountered knowledge modelling issues including an excess 

number of classes, which limited the scalability of the model. Another issue was 

conflating observation data with the properties of sensors potentially leading to 

semantic data integration issues. 

The work of [161] described the AEMET (Agencia Estatal de Meteorologia) ontology 

network, developed for meteorological forecasting by the Spanish meteorological 

bureau, to transform the meteorological data into linked data. The goal of the 

approach was to describe sensor measurements, generated by the network of 

meteorological stations. The AEMET ontology also reused the SSN ontology. The 

good feature of the AEMET ontology is that it is a modular ontology that describes 

time and location concepts in addition to sensors and measurements. However, as the 

approach of [161] was performed in parallel to the development of SSN ontology, 

some of the design decisions of the approach for transforming meteorological data are 

not completely compliant with the existing SSN ontology. 

Once the sensor data is enriched with semantics, it can help ontology to reason over it 

and deduce new knowledge from it. The work of [119] reasoned over heterogeneous 

data to infer a blizzard event. In a similar approach, Wei and Barnaghi [10] performed 

rule based reasoning over semantically enriched sensor data to derive the condition of 

‘potentially icy’ road. Henson et al. [162] proposed an ontological model of time 

series observations to add value to sensor data on the Semantic Sensor Web. Using 

rule based reasoning over sensor data, they specified weather events in the 

environment including ‘blizzard’. Devaraju and Kauppinen [163] developed an 

ontology and reused the DOLCE ontology to capture different weather properties and 

investigate how blizzard events can be inferred in regard to observed atmospheric 

properties. However, their approach used only upper ontologies with no other 

ontology to specify sensors and measurements. Su et al. [164] proposed an approach 

for reasoning over sensor measurements by taking a use-case from the fishery IoT 

system to deduce alerts and reminders. In [165], Thirunarayan et al. illustrated to 

represent and enhance raw sensor data with spatial, temporal and thematic annotations 

to detect inconsistent sensor data. Their approach formalised data from the Weather 

domain and reasoned over it using a meta-interpreter in Prolog. To summarise, all the 
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above semantically-enabled inference approaches were interesting initiatives of 

reasoning over sensor data to deduce new knowledge. However, they performed very 

preliminary reasoning and none of them provided a holistic approach to spatio-

temporal inference of knowledge or events. Furthermore, these approaches were not 

based on a standard spatial and temporal ontology having controlled terms to describe 

either complex interval-based temporal or spatial events and perform reasoning over 

spatio-temporal operators.  

Yu and Taylor in [166], proposed the Event Dashboard, a web based user application 

capturing semantics for events of interest in a sensor network. The Event Dashboard 

provides an ontology-driven user interface for detection of algal bloom events over 

sensor data in a sensor network. The authors aimed at resolving the data heterogeneity 

issue of sensor networks by using a domain ontology. Their work extended the SSN 

ontology and used a case study in the water quality domain to model observations 

around the chemical properties of water. This work is a good initiative to enable users 

to express event constraints using the SSN ontology, however the drawback of their 

approach is both the high degree of complexity that lies in the underlying set of 

ontologies driving the user interface (UI) and an overhead over defining queries in an 

event processing engine.  

Roussey et al. [167] described the process of publishing RDF datasets from 

meteorological stations. Their work aimed at reusing existing standards and tools. 

This work was a good example of using existing ontologies but the work did not 

provide any new insights or methodologies for this area. Lefort et al. [168] described 

a similar approach of transforming and publishing ACORN-SAT climate data as 

linked data. They captured and integrated their temperature time series datasets using 

the SSN ontology and published them as linked data. The publication of ACORN-

SAT datasets is the first initiative of linked data published by the Australian 

government. However, their approach lacks reasoning and deducing new knowledge. 

Analysis 

As can be seen from the work above, there is an interest in the use of Semantic Web 

technologies for IoT/streaming data and supporting environmental science. However, 

the state-of-the-art is still limited in terms of fulfilment of the dimensions described in 

section 2.4.1. The analysis is summarised here. i) The ontologies do not provide 
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Reference	 Purpose	 Coverage	
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Lefort	et	al.	 Transforming	
Climate	Data	
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*	
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Table 2.3: The dimensions of the Related Work and their support in the survey of Semantic Web technologies for IoT/streaming data in 

supporting environmental science. The tick mark ( ) represents that the dimensions are fully satisfied, the cross symbol ( ) shows that the 

dimensions are not supported at all, and the asterisk symbol (*) shows the partial fulfilment of the dimensions. 
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enough coverage to support both the IoT and environmental science domains. This 

leads to the partial fulfilment of the dimension of ontology coverage. ii) The above 

work provides reasoning either at a very basic level and/or has limitations in terms of 

their support for ontological reasoning and therefore does not provide a 

comprehensive solution for drawing inferences over environmental sensor data. Thus, 

the dimension of semantic reasoning is not fully addressed. iii) Some of the proposed 

solutions focus on providing interoperability between sensors instead of the (higher 

level) data collected from the sensors. Hence, the dimension of semantic 

interoperability is partially satisfied. iv) Some approaches impose limitations on 

querying support while others on heterogeneous data integration and interoperability. 

v) There is less research on integrating, reasoning and querying real heterogeneous 

data from sensor networks deployed in the natural environment. Hence, the uptake of 

Semantic Web technologies for IoT/streaming data in supporting environmental 

science is not fully realised, leaving this dimension partially addressed. The analysis 

is summarised in Table 2.3. 

2.5 Summary 

As mentioned in the introduction, the aims of the chapter were twofold: to give an 

overview of technological developments and to examine the state-of-the-art in the 

Semantic Web for environmental science. Therefore, we reviewed the background 

knowledge, placing this work in context, by offering a broader perspective on 

eScience and one of its enabling underlying technologies, underpinning 

environmental science. Then, we surveyed the state-of-the-art in the areas of the 

Semantic Web, IoT/streaming data and environmental science, in accordance with the 

research goals mentioned in Chapter 1. To summarise, the chapter concludes with the 

following key points: 

Ø Work to date remains relatively tightly focused on single dimensions of the 

environment, lacking a broader view that can integrate and reason over data across 

multiple scientific sub-domains to build a holistic environmental perspective. 

Ø A large proportion of the above work is technology-oriented and often fails to 

study the emerging trends and events stemming from the real environmental data. 
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Ø A body of the related work in sensor networks focuses on underlying networking 

technologies, sensor discovery mechanisms and the development of services but 

there is less research on interoperability, data integration and reasoning, and 

querying real heterogeneous data from sensor networks deployed in the natural 

environment. 

Ø The state-of-the-art has limitations in terms of their support for ontological 

reasoning and hence do not provide a comprehensive solution for drawing 

inferences to deduce new knowledge. 

Ø In environmental science, there is a lack of both sensor and domain ontologies that 

can provide enough breadth to capture thematic, spatial and temporal dimensions 

of environmental data across a range of sub-disciplines.  

Ø The uptake of Semantic Web technologies in the context of IoT/streaming data 

underpinning environmental science is low and examines mostly single facets of 

the natural environment. 

From the analysis, we further conclude that all of the above work suggests a strong 

need for further exploration of Semantic Web technologies and associated techniques. 

In contrast to these points, there is a need for research to take a multi-dimensional 

perspective on environmental IoT data understanding it in all its complexity. Hence, 

further research is required to apply Semantic Web technologies allowing new 

scientific insights to be gained through examining environmental data in novel ways. 

The next chapter further examines the characteristics of environmental science around 

data, through semi-structured interviews, to develop further the research questions and 

surrounding perspectives for this thesis. 
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3 Qualitative Study of Data 
Challenges in 
Environmental Science: 
Understanding the Long 
Tail of Science 

This chapter reports on a qualitative study of environmental data and shares insights 

gained from the interviews with leading environmental scientists. More specifically, 

the main goal of the chapter is to examine the unique characteristics of environmental 

science in the context of environmental data, through semi-structured in-depth 

interviews. This goal can be further divided into the following more specific 

objectives: 

Ø Learning how embracing open data approach can bring benefits to environmental 

science and further enhance interdisciplinary and multi-disciplinary collaboration 

between environmental scientists. 

Ø Gaining knowledge and understanding of the data needs, limitations, frustrations 

and technological barriers the environmental scientists are facing. 

Ø Achieving new academic understanding of discovering data and the 

interdependencies across disparate datasets. 
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Ø Informing how to develop a generic semantic data model of integrative 

environmental science, allowing the examination of different environmental 

datasets in novel ways. 

This chapter investigates: the role of data and data practices in environmental science; 

a potential paradigm shift in science towards open data; interdependency between 

disparate datasets representing different environmental facets; technological 

opportunities the environmental scientists gain from collaboration with computer 

scientists and engineers; and barriers such as data discovery and access, data 

heterogeneity, data integration and interoperability. The overarching purpose is to 

provide deeper understanding of the area to inform the approach developed in the 

thesis in terms of applying Semantic Web technologies to the natural environment, 

both in terms of the overall context of trends in data needs, and also in terms of 

identifying specific requirements.  

3.1 Methods 

The methodology adopted is a mixed methods approach based on semi-structured in-

depth interviews coupled with a Grounded Theory approach [169] to extract insights 

and meaning from the resultant transcripts.  

This study has been assessed and approved by the Research Ethics Office, Lancaster 

University. We provided the consent form to all participants which they returned after 

signing them. All their information has been treated with confidentiality. They have 

the right to withdraw permission from the study within two months of data collection, 

and if required, to have their data collected withdrawn from the study. If they 

withdraw before the deadline, their data will be destroyed and will not be used or 

remain in the study but if they do after the deadline, their data will remain in the 

study. Data will be stored in ways to make sure their identity cannot be inferred. 

The method is discussed and justified in detail below. 

3.1.1 Semi-structured In-depth Interviews 

This work has been done in close collaboration with environmental scientists who 

own and use rich environmental data. A series of semi-structured in-depth interviews 
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have been conducted with environmental scientists from three different universities in 

the UK and the Centre of Ecology and Hydrology (CEH). Semi-structured interviews 

have been used for the following reasons.  

Ø This approach supports predetermined but open-ended questions in order to allow 

a fair degree of freedom and flexibility, allowing new questions to emerge from 

the dialogues.  

Ø Semi-structured interviews allow the interviewer to delve deeply into the topics so 

that detailed knowledge of the domain is gained.  

Ø This technique keeps the interview focused, conversational and allowing two-way 

communication. 

The domain experts (interviewees) have been chosen due to their experience and 

considerable expertise in their disciplines. They are not data naïve, but rather have 

already transitioned into data science and have been using data in a sophisticated way. 

Furthermore, they are at the forefront of data-driven environmental research and bring 

the sort of broad and holistic perspective of environmental data the thesis is looking 

for.  

The domain experts spanned a wide range of environmental science including 

ecology, hydrology, soil science, environmental chemistry, volcanology, climatology, 

molecular and microbiology, limnology and meteorology. All these interconnected 

sub-disciplines have been chosen to get an integrative understanding of different 

environmental datasets, how they are related to each other and how development in 

one discipline can impact the other.  

A total of 18 semi-structured interviews were carried out and, at that point, it was 

determined that saturation had been achieved [170], and hence no further interviews 

were deemed necessary. 

The interviews were planned to contain a number of questions covering five 

categories, i.e. data role and practices, trends in data management including openness, 

collaboration, and integration, focus on interdependency between disparate datasets, 

technological opportunities and technological barriers. These broad areas are not 

arbitrary, but rather have been extracted from the author’s reading and understanding 
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of the literature as described in Chapter 2 and they make a comprehensive set of 

fundamental top-level issues around data management in environmental science. 

Interviews ranged from 50 minutes to one and half hours with an average of one hour 

per interview. All interviews were audio recorded and later transcribed. The interview 

questions, classified into five categories, are shown in Box 3.1. However, the 

interviews are not restricted to only these sets of questions following the semi-

structured approach. 

3.1.2 Grounded Theory 

To interpret and analyse these in-depth interviews, a grounded theory approach was 

used [169]. Grounded theory is defined by Strauss and Corbin as a qualitative 

research methodology for developing theory that is inductively grounded in data 

systematically gathered and analysed [171-172]. The evolution of theory occurs 

during actual research through continuous interaction between analysis and data 

collection which is the key feature of this analytical approach referred to as constant 

comparative method [172-173]. The grounded theory approach consists of several 

analytical steps that are non-linear and recursive. The steps in this research are based 

on the works of Glaser’s [174], Charmaz [175], Chesler [176], and Strauss and Corbin 

[171] analytical method of theory development that are shown in Figure 3.1 and 

Figure 3.2. These steps are described below. 

The first step is about collecting data that was captured from the semi-structured 

interviews (section 3.1.1). After collecting and examining a rich set of data (resultant 

transcripts) from the interviews, the data was broken down into discrete chunks and 

coding was performed which is the key part of grounded theory methodology. Codes 

are shorthand devices that are used to label and organise the data [175]. The author 

highlighted key phrases in the data and assigned different codes to those key terms 

[176]. For instance, the participant’s data, “Data is the ‘lifeblood’ of climate science 

and is central to understand atmospheric composition and climate change” is 

assigned the code “data is the lifeblood of environmental science”. Similar code 

phrases were grouped together to be reduced and then organised into clusters. Clusters 

were reduced and labels were attached to them. These labels are called concepts. 

Similar concepts were grouped together to form categories (classification of 

concepts). Glaser and Strauss’ [173] method of constant comparison was performed to 
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compare codes and categories for similarities and to identify different categories and 

reflect on different potential relationships across categories. These categories and 

concepts were interlinked and core categories were identified which are the central 

themes of the data [171,175]. From these core categories, observations (cf. mini-

theories) were generalised which led to the emergence of overarching themes about 

the unique characteristics of data in environmental science.  

 
 

 

Figure 3.1 Ground Theory Analysis based on the work of Glaser [174] 
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The detailed diagram describing grounded theory analytical method based on the 

works of Charmaz [175], Chesler [176], and Strauss and Corbin [171] is given in 

Figure 3.2. 

 

 

Figure 3.2 Ground Theory Data Analysis based on Charmaz [1983], Chesler 

[1987], and Strauss and Corbin [1990] 

Figure 3.2 Ground Theory Data Analysis based on Charmaz [175], Chesler [176], and 

Strauss and Corbin [171] 

A sample of emergent core category, sub-category and initial codes are given below. 

 

 

The results of the interviews are organised into five different sections on the basis of 

research questions in Box 3.1. The author presents findings from these interviews and 

then reflects on overall messages with respect to the context of this thesis. 
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The Role, acquisition and storage of Data 

- What is the role of data in your science?  
- What practices and technologies do you currently use to capture your data? 
- How do you go about storing data? 

Trends in Data management: Openness, collaboration and integration 

- Do you personally offer open access to your data and if not, why not? 
- What problems do you face in open data approach? 
- Do you think an open data approach can bring benefits to environmental science 

generally? 
- Do you see open data as being a focal point to enhance collaboration between 

environmental scientists? 
- Is this something you currently do and, if not, why not? 
- How important is the integration of datasets in your work? 
- Do you see this as becoming more or less important in the future? 

Interdependencies in the Long Tail of Environmental Science 

- What other kinds of data would you like? 
- Have you heard about the long tail of science and to what extent this applies to your 

work? 
- More specifically, how important is inter-dependency in your work, e.g. identifying 

causal-like relationships between datasets (could you provide example)? 
- When you work with data, do you typically take a positivist approach, seeking to prove or  
       disprove a hypothesis, or do you see room for more emergent approaches? 

Technology: Opportunities 

- Do you see collaboration with computer scientists is important in your work and, if so, 
what would you like to gain from this? 

- What are the potential barriers to collaboration with computer scientists? 
- Is this something you currently do, and what benefits have you got from this? 
- How important is it generally for you to have a unified view of the structure and 

semantics of heterogeneous datasets? 
- Which of the following techniques are you aware of, and which ones do you see as 

potentially contributing to your work in the future: 

Semantic Web Technologies (Ontologies, Linked Data), Statistical Methods, Data Mining 

and Machine Learning. 

Technology: Barriers 

- To what extent are the following real barriers in your work? 

Data discovery and access, problems with the quality of data, the heterogeneity of data     
sets, the lack of metadata or provenance information around data. 

- What other technological barriers or frustrations do you face in your work as an 
environmental scientist, particularly around data? 

- What single technological advance would you wish for (and you are encouraged to think 
big here), that would support you as an environmental scientist in the science you would 
like to do over the next 10 years? 

Box 3.1: Interview Questions 
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3.2 The Role, Acquisition and Storage of Data in 
Environmental Science 

 

 

Figure 3.3 Data Role and Practices 

3.2.1 Background 

Data is critically important to understand and predict global environmental changes as 

well as the impacts of these changes. Environmental scientists use and analyse such 

data to address different challenges including among others loss of biodiversity, 

climate change and also to inform policy design and decision-making. In short, 

environmental data is required to understand and manage overall ecosystems. Hence, 

it is essential to archive environmental data, which involves acquisition, storage and 

preservation of data. In this section, findings have been drawn from the interviews by 

selecting responses to questions to gain insights into the role of data in environmental 

science, and the data practices and technologies environmental scientists use for data 

acquisition and storage, as shown in Figure 3.3. 

3.2.2 Main Findings 

One of the first main themes that emerged is the criticality of data across all the areas 

of environmental science under consideration. One of the participants, working in the 

•What is the role of data in your science?

•What practices and technologies do you
currently use to capture your data?

•How do you go about storing data?

The role, 
Acquisition and 

Storage of Data in 
Environmental 

Science
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field of sustainable land use systems, summarises how data plays a key role as 

evidence for decisions: 

“Data is hugely important in my science because a lot of work I have done and still doing 

is to provide evidence for policy makers, for instance, in the management of livestock 

manures and other organic resources to optimise nutrient utilisation while minimising 

impacts on water and air quality. This includes mitigating greenhouse gas emissions, 

reducing the risk of transfers of pollutants such as nutrients and pathogens to 

watercourses, and understanding the secondary impacts of mitigating diffuse agricultural 

pollution. So, we collect data about these variables which are then used for validating 

models and calibrating models… whether they are mechanistic models or whether they are 

statistical models to try and explain some of the variability we see.” 

Another participant, working in the development of long-term ecological research 

networks, explains how important data in their science is: 

“Data is absolutely essential because we work in an environment where you have to 

provide evidence for decisions, and evidence primarily comes from data. Data is often 

collected in the scientific field using some measurement technologies old or new which can 

be summarised into information and knowledge which feeds into the evidence process. 

You can’t really have evidence without data backing it up some way.” 

A climate scientist identifies the role of data in climatology: 

“Data is the ‘lifeblood’ of climate science and is central to understand atmospheric 

composition and climate change, and links between the two. I use computer models and 

simulations and use the output data to work on stratospheric and tropospheric ozone, 

multi-climate models’ analyses, biosphere-atmospheric links, analysing temperature data 

and modelling novel pollutants. So, I can’t pursue my research without data.” 

A soil scientist recognises the essential role of data in her science: 

“We can’t do anything without data. We mainly use data for quantifying environmental 

responses to evaluate whether there is environmental change essentially, for instance, 

understanding below-ground processes with specific focus on nutrients and human 

pathogen behaviour in soil-plant-microbial systems. So, what we do is quantitative 
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science where you need to have data. Then you need to analyse it in a way that you can see 

the variability in different responses from the environmental stimulants. So, we use data 

in statistical analyses to understand, for example, the use of wastes for land restoration, 

controlling bacteria such as E. coli in agricultural systems, enhancing food safety, carbon 

sequestration in grasslands and ways to improve nutrient use efficiency in cropping 

systems.”  

The following environmental chemist who has a deep interest in how synthetic 

organic chemicals behave in the environment talks about the significance of data in 

his research: 

“The role of data is to make sense of environmental processes that govern the fate of 

pollution, for instance, industrial chemicals, pesticides and pharmaceuticals and those 

factors that affect their longevity in the environment, including in remote regions like the 

Arctic. I do contribute data to international programs so one example that I work with is 

the Arctic Monitoring Assessment Programme (AMAP) so this is looking at the 

industrial and agrochemical pollutants that have been washed or wafted into the arctic. 

The AMAP tries to bring together all the datasets that are being generated and provide 

an assessment report every three or four years. So, my data will go into that assessment.” 

One of the participants, working as a hydrologist, describes the role of data in 

hydrological modelling and decision making for water management under 

uncertainty: 

“I am interested in data both observables, different types of observables as input to models 

and also as a constraint on uncertainty in models after we get some output from the 

models. We do a very large number of runs of models to try and investigate the 

uncertainties in the outputs. So, in part, my interest is how you put models’ output and 

observe a boost together and in particular when because of time and space scales variables 

have the same names where they actually mean different things both as parameters in 

models and the outputs from models what you could actually observe, so soil moisture is a 

good example.” 

The data used by all these participants has been playing an essential role in 

understanding and managing the environment such as benefitting human life for their 
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welfare and safety, reducing human losses caused by natural and anthropogenic 

calamities, helping in responding to climate change and its implications, better 

management of the ecosystem, protecting water resources from pollutants, enhancing 

the agriculture and conserving biodiversity. Some participants use their data to 

examine and monitor the meteorological and climatological variables to understand 

the climate system functions and predict the future. Using their analytical skills, they 

process and analyse these datasets to get knowledge of underlying - physical, 

chemical and biological processes. A few participants are undertaking research based 

on their data for the management and control of atmospheric and water pollution 

which is threatening human and animal health, vegetation and the overall ecosystems. 

They analyse their data to understand, assess and reduce risks posed by the organic 

chemicals and to examine critically the interaction between environmental pollutants 

and local communities. Some of the participants, working as soil scientists, use their 

data to understand plant-soil-microbe interactions, soil quality and how different 

environmental pollutants such as nutrients, pathogens, and sediments can affect the 

water quality and aquatic life. A couple of participants use their data to deal with 

extreme events such as flooding and predicting ecohydrological responses to future 

changes in catchments. They work with sparse datasets that may be subject to 

epistemic rather than aleatory error and uncertainties [177]. Two participants working 

in the area of environmental risk management evaluate the outputs of some very large 

ensembles of potential model representations as hypotheses in reproducing the 

characteristics of the test data, while allowing for potential uncertainties. In summary, 

environmental data is used by all participants not only for their own research but it 

also helps resource managers (water, land, health and marine resources) and policy 

makers to shape their decisions and develop strategies about environmental change 

respectively. 

Practices and Technologies 

Data in environmental science is acquired to produce and validate research results. 

Most of the participants use their own data collected from field observations through 

environmental sampling. They go out to the field site, collect a sample of some 

chemical, physical or biological phenomena (e.g. water, soil, plants, carbon flux, air, 

species, rainfall or temperature) using different sampling techniques and bring the 
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sample back to the laboratory for investigation and data analysis. One of the 

participants explained this practice:  

“We go out to the catchment area and collect soil samples using different sampling 

techniques and bring them back to the laboratory for experimentation and analysis.” 

Environmental scientists use various ways to acquire the data. One of the participants, 

a climatologist, collects most of his research data from the Centre for Environmental 

Data Archival (CEDA) archive: 

“I download the data from CEDA archive with a file transfer program such as lftp script 

and then process the files using a mixture of Unix (bash) scripting and scientific software 

(NCO, Ferret and IDL). Climate model output is stored in a format called netCDF, and 

I generally convert observations to the same format, if they are not in that form already.” 

The next set of comments highlights the increasing variety of sources of data. 

Sometimes environmental scientists engage citizen scientists for data collection 

because it is relatively a cost-effective way to acquire environmental data over large 

spatio-temporal scales. According to [178] citizen science is the “volunteer collection of 

biodiversity and environmental information which contributes to expanding our knowledge 

of the natural environment, including biological monitoring and the collection or 

interpretation of environmental observations.” One of the participants below explains the 

role of citizen scientists in their data collection process: 

“We have other systems within our organisation that make a lot of useful field observations, 

for instance, species compositions, plants, water quality and structure in the landscape, from 

citizens; generally, we call them citizen scientists. These are experienced people that know and 

can identify plant species. They send a lot of records of particular species and contribute 

something to our centre called biological record centre which is based at the other branch of 

our organisation.” 

The combination of low cost miniaturised embedded microprocessors, advanced 

sensing hardware, improved networking and communication technology and 

sophisticated data integration software have enabled environmental scientists to 

measure and monitor environmental variables over temporal and spatial scales which 

were impossible or expensive before [20]. The following ecologist, being part of a 
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project using sensor networks for measurements, describes entering in the era of 

sensor networks for data collection in their organisation: 

“And finally, we are moving into the world of sensor networks where we have an 

increasing use of sensors for measuring different facets of the environment. The sensors 

themselves are not necessarily new but the way they are deployed and the way data are 

being telemeterised to become the real-time picture of what’s going on is an increasingly 

important part of the work we do.”   

The following participant, serving as an environmental chemist, identifies the problem 

with his new automated sampling techniques: 

“We developed some automated novel sampling techniques but they won’t actually give us 

the raw chemical data, those samples still had to be brought back to the laboratory to 

actually measure the chemicals which should have been captured by those samplers. So, it’s 

quite a laborious technique. We can’t just put out some automated instruments in the field 

that generate numbers and then by telemetry it sends packets of data back to me. No – I 

have got to actually take the sample, perhaps concentrate them in the field in some way 

and then take some media that might be a filter paper or whatever I use to capture that 

aspect of the environment, bring it back to the laboratory and then undertake chemical 

analysis of that media.” 

Sometimes one technology might be useful for acquiring data in one environmental 

area but not in other scenario. One of the participants in the hydrology discipline 

illustrates this point: 

“Many of these remote sensing techniques are limited for hydrologists because they only 

review what’s happening out in the first few centimetres of the soil and of course most of 

our interest happens at the greater depth than that. So, remote sensing technology in 

hydrology has not been useful yet, though it has the potential and promise that it would be 

more useful in the future. It could only be useful if you are working at global scales, then 

of course remote sensing is the only information you have to work from and so people do 

and use vegetation map, soil map and geological information from remote sensing.” 

In summary, participants’ data can be classified into different categories which 

include: observational data (including spatio-temporal measurements from various 
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sources e.g. field observations, weather station readings, satellite data etc.), 

experimental data (usually generated in a controlled or semi-controlled environment 

e.g. greenhouse experiments, chemical analysis etc.), simulation data (generated from 

models e.g. climate models), and derived data which is usually generated from other 

data files. Scientists acquire data through a number of methods and instruments such 

as hand-written notes, tape recorders, digital cameras, smart phones, laser scanning, 

close-range photogrammetry, mm-wave radar, infrared and remote time-lapse 

imaging, UAVs, data loggers, environmental sensors and satellites platforms. A 

couple of participants collect their data from the existing freely available electronic 

databases or archives. One of the hydrologists said that his subject area is lacking 

advanced measurement techniques, though there are a lot of theories around but most 

of them are not very good. They are waiting for new measurement techniques that 

become available in particular on large scale. As one of the hydrologists said, “I made 

the argument, for example, that if we had the measurement technique that would measure the 

total storage in the profile at sort of 100 metre scale then we’d have different models and 

theories but that technique doesn’t exist. Well, there is a technique using gravity anomaly but 

it’s very expensive, takes a lot of maintenance and couldn’t be widely applied. If somebody 

took, say the gravity anomaly technique and made that cheap which could be widely applied 

and easily maintainable that would revolutionise my subject area. So, in the future, I’d like to 

have new measurement technique but I’ve no idea what they can look like. Nothing is going to 

change very much in hydrology until new measurement technique comes along. 

In spite of advancements in automated measurements and environmental sensor 

technologies, some participants prefer to stay with their own reliable and easy to 

handle manual data acquiring and measurements techniques, as one of them 

explained, “Well, I don’t say we don’t need advanced environmental sensing technology but 

they bring a lot of issues with them, for instance, increased complexity, reduced reliability, low 

trust in accuracy of data and sometimes they do not serve our purpose appropriately. 

However, to measure and monitor the complex environmental phenomena 

appropriately, which change drastically over spatio-temporal scales, most of the 

participants recognise the need and importance of advanced automated technologies 

because of the methodological limitations in their current measurement techniques. 

They raised a valuable point that there is a need of increased multidisciplinary 

collaboration between environmental scientists, computer scientists and engineers to 
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contribute in the improvement of advanced sensing technology which could transform 

and expand the field of environmental science. If the technological challenges posed 

by these advanced sensor networks including energy efficiency, appropriate 

communication protocols, QA/QC, real-time data management and analysis are 

overcome, the measurements and monitoring in environmental science can be 

extended over larger spatio-temporal scales. 

Data Storage 

Data storage is a really important part of data-driven research and an important 

prerequisite to data sharing. If proper storage mechanisms and policies are not 

adopted, this may lead to the phenomenon of data decay and might further lead to less 

or no accessibility over time. In order to avoid this situation, best practices of data 

storage and management are required. Most of the data in the long tail of 

environmental science is collected either through hand-sampling methods or using 

some automated instruments. The data is recorded either in structured form such as 

database tables and spreadsheets, in semi-structured form such as XML files or in an 

unstructured form like plain text, images, sounds, videos and blogs etc. Asking about 

storage methods, one of the participants storing his data on portable devices said, “I 

just store my data on regular portable storage devices and it’s not too excessive. I guess all my 

data would be around one Gigabytes or something like that but it’s not huge volumes”. 

The participant below explains how their data is stored in their new project: 

“Well, usually I store most of my data on hard drive of my PC, flash drives and laptop 

disk but in this project, we just secured some additional funding to get all of our data into 

the right format that can then be uploaded and will be uploaded onto a data portal or 

data archive. So, we are planning to buy some additional hard drives and server 

machines to provide data backups for long term use.” 

One of the participants, working in the data centre group, stores most of the scientists’ 

data on their proper data servers using different types of database software (DBMSs): 

“We store our data in a variety of different formats and different infrastructures. So, 

spatial data will probably go into ArcInfo spatial database, NetCDF files are stored in a 

threaded data store called threads or gridded data store called threads I should say. And 
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then of course we do handle spreadsheets, image files, Matlab files and anything you can 

think of. So, we tend to store that information into non-proprietary formats and will turn 

into something like csv files. In short, we store our data in PostgreSQL databases, Oracle 

databases, gridded databases and spatial databases like ArcInfo etc.” 

One of the participants, working at the data centre of a public-sector organisation, 

identifies the significance of data preservation for long term:  

“We have a data systems group where not only we store our data on different servers but 

we also make sure that our data are stored in a correct and consistent way along with 

their backups, they are safe over a long period of time I’ll say an infinite period of time. 

So, it’s hugely important that the data are 100 percent secure for a long term so that it 

could be (re)used by other scientists to promote new research and investigation in science.” 

To conclude, most of the participants store their data on laptops, external hard drives, 

USB sticks, CD ROMs. Few of them use institutional data servers or centres. Most of 

the datasets they collect are usually small and heterogeneous. After data collection, 

the participants manage and organise their data using a number of applications and 

software including Microsoft Excel and MS Word, scripting languages such as R, 

Matlab and Python, statistical packages including SPSS, SAS and some database 

software e.g. Oracle DBMS, Microsoft SQL Server, PostgreSQL and MySQL. Most 

of the participants are facing challenges of persistent storage, data curation and 

preservation because often they do not get funding for data management, and cannot 

afford to develop a data curation infrastructure themselves. The participants raised 

another serious concern of who will take the responsibility of supporting the 

preservation of data in the longer term. The participants from the Centre of Ecology 

and Hydrology (CEH) are supported financially by the government to provide and 

manage data centres. This is due to the fact that the CEH data is of national interest 

and provides societal benefits to the public related to, for instance, land use, water, 

soil, and agriculture. In contrast, most of the other participants generate a lot of 

environmental data that can have a high impact on science and on communities but, 

due to cultural issues and the lack of funding for data management, those data become 

inaccessible to other researchers. In order to make this data accessible, there is a 

strong argument that the responsibility of data curation should be shared in trusted 

bodies such as universities, and institutional repositories. Hence, both universities and 



Chapter 3: Qualitative Study of Data Challenges in Environmental Science: Understanding the Long Tail 
of Science 

83 

institutional repositories collectively can play an important role to preserve 

environmental data for long term (re)use and research. 

3.2.3 Overall Reflections 

The overarching theme that emerges from this section is the obvious importance of 

data in modern environmental science. This breaks down into the following three key 

observations: 

Ø Data is the lifeblood of contemporary environmental science and plays a key 

role not only in understanding the overall ecosystems but also helping 

resource managers (water, land, health and marine resources) and policy 

makers to shape their decisions and develop strategies about climate change 

respectively. 

Ø The practices and technologies are clearly insufficient and suffer from either 

methodological limitations (old technologies) or technical and financial issues 

(particularly related to environmental sensors and IoT technology). 

Ø There is an increasing variety of sources of data, which may lead to different 

levels of veracity around the resultant data. 

Ø There is a lack of integrated solutions (e.g. distributed data repositories) for 

long term data preservation in environmental science; hence, data can lead to 

‘dark data’ where it is not accessible or available to other researchers and 

hence is of low value. 
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3.3 Trends in Data Management: Openness, Collaboration 
and Integration 

 

 

Figure 3.4 Trends in Data Management 

3.3.1 Background 

According to the Bromley Principles [179], “full and open sharing of the full suite of 

global datasets for all global change researchers is a fundamental objective. Data 

should be provided at the lowest possible cost to global change researchers in the 

interest of full and open access to data. This cost should, as a first principle, be no 

more than the marginal cost of filling a specific user request. Agencies should act to 

streamline administrative arrangements for exchanging data among researchers.” In 

order to exploit open data at its full potential it demands four essential requirements to 

be met. [180] describes these four requirements: 

Ø Accessible - Data must be stored in such a way that it can be accessed quickly and 

without difficulty.  

Ø Intelligible - The data must have a written description of the results of scientific 

work which should be comprehensible to those interested researchers who want to 

understand or possibly correct them.  

•Do you personally offer open access to your
data and if not, why not?

•Do you think an open data approach can bring
benefits to environmental science generally?

•Do you see open data as being a focal point to
enhance collaboration between environmental
scientists?

•What problems do you face in open data
approach?

•Is this something you currently do and, if not,
why not?

•How important is the integration of datasets in
your work?

•Do you see this (trend) as becoming more or
less important in the future?

Trends in Data 
Management: 

Openness, 
Collaboration and 

Integration
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Ø Assessable - The recipients of data should be able to assess the data, for instance, 

not only they are able to judge and scrutinise the nature of the claims the scientific 

work possesses on the basis of data but the competence and reliability of the 

claimant as well.  

Ø Usable - Data should be available in a format which can be reused easily for many 

other functions. Contextual information such as metadata plays important role in 

usability of the data. 

Open access to scientific knowledge has been practiced by many preprint servers, 

scientific journals, researchers’ websites and worldwide institutional repositories and 

facilitated by the Science Commons for licencing. Funding bodies, policy makers 

including research councils, journal publishers, educators, and the general public are 

now pressurising researchers to adopt an open data approach [180-181].  

In this section, we present findings on different trends in data management in 

environmental science, particularly focusing on openness, collaboration and data 

integration, as shown in Figure 3.4. 

3.3.2 Main Findings 

In response to questioning about the culture and trend of open data, the 

participant below explains how research councils persuade researchers to adopt an 

open data approach: 

“There is now a requirement that if you apply for funding to research councils in the UK, 

they want to know how about data will be managed not necessarily QC/QA on that data 

but how can it be accessed by other scientists or even general public which I think is right. 

The journals and research councils are pushing the environmental scientists hard into 

doing open data approach. Now most environmental scientists realise that they can’t 

continue to get awards and grant money if they clearly not making their data freely 

available.” 

Open science more generally makes the scientific information, methods and research 

results open and free to the interested researchers. Releasing scientific theories along 

with their experimental data to the public allows them to be strictly and thoroughly 

examined and corrected for errors if possible, making them refined or rejected [180-
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181]. Thus, scientific knowledge progresses further through this open scrutiny and 

challenge.  

The following participant recognises the role of open data in science scrutiny and 

progress: 

“I’d love to share my data with other interested researchers in my discipline. Because 

when you provide open access to your data along with your hypothesis and the procedure, 

the other researchers could validate, verify and sometimes rectify your hypothesis which is 

the best way of scrutinising and improving science.” 

Sharing research data with others can enable the scientists: to reproduce or verify 

research, to ask new questions, to advance the state of research and innovation and to 

make available the results of publicly financed research to wider community [180].  

The following participant explains the potential role of open data approach in 

endorsing the aforementioned rationale of data sharing: 

“I think there is an increasing expectation and of course demand of transparency in access 

to data, reusability of data and reproducibility and auditability of research results to 

underlying data. This is evidenced by science journals requiring DOIs to reference data 

behind submitted papers.” 

All participants also agree with the fact that if a project is funded by the NERC or any 

other government funded body then the data collected in such projects should be 

freely available to the public. One of the participants identified this fact: 

“We absolutely agree with open data policy. We provide open access to almost all our data 

and encourage this approach. We accept it is a NERC policy which requires in principle 

that we’ve collected data at public expenses and it should be made open to all including 

the general public.” 

Another participant identified the need of open data culture: 

“Yes, I’m a big supporter of open data approach and we want it desperately because the 

causes of environmental change and the response for the environment need a wide range 

of data to investigate. This can’t be achieved within a close data culture.” 



Chapter 3: Qualitative Study of Data Challenges in Environmental Science: Understanding the Long Tail 
of Science 

87 

In response to a question whether open data can bring benefits to environmental 

science, one participant said, “I think that’s too obvious. The more you share your data the 

more you learn. When open data is advertised enough everybody knows about it then you can 

access data to help test a hypothesis or answer big questions. The more data you have the 

better ways you have manipulating those data the more insight you gain in science. So, I think 

there is no argument about that.” The following participant emphasises how important is 

open data culture in order to avoid duplication of research: 

“Oh yes, it’s long overdue when people just having to collect their own data every time 

they start on a research project was a silly idea when they were not only duplicating work 

it was done elsewhere in a lot of cases but also not being able to compare and contrast 

data or linking it up with other data. Well, you can see what happened but it was not a 

good way of doing things.” 

Another participant pointed out the same benefit in terms of saving money on 

duplicating research: 

“Well, I say yes to open data because I’m concerned openness promotes better research, for 

scientists use each other data and know what other scientists or research groups doing at 

the same time. This can also save public money by avoiding duplicating experiments.” 

Open data can also be useful in those situations where research is based on data that is 

not available or accessible yet. There are several reasons of this data unavailability, 

for instance, insufficient data, cost, scarce data collection instruments, and lack of 

advanced automated instruments or supercomputers etc. One of the participants, doing 

research on air quality based on ozone layer datasets, illustrates this case: 

“Yes, definitely we should have an open data culture in general and in environmental 

science in particular. One specific example I have in my research based on ozone datasets. 

There are several areas of the globe where there are no ozone data available. In some 

places, the scientists are not making measurements or can’t do it for any reason. So, we 

don’t have any information about the ozone air quality about those areas. But in other 

cases, such as China they are making measurements. Some of these datasets are made 

available online in real time so we could start grabbing air quality data from their web 

site today and undertake our research but we have no such information in the past years.” 
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Answering the question of whether open data can be a focal point to enhance 

collaboration, most of the participants were of the opinion that the more open you 

make data, the better it would bring together people to collaborate, as the following 

participant indicates: 

“The more scientists are prepared to be open about their data the more they are likely to 

collaborate. So, I think openness and collaboration are very much closely related, though 

I’m not sure which is cause and which is effect but yes open data should drive 

collaboration.” 

The participant below explains how open data projects can potentially enhance 

collaboration among different environmental scientists: 

“I think there is increasing number of projects out there where people are realising that 

there exist some datasets that have not been fully utilised yet and so there is a value 

bringing back to order those datasets and extract meaning from them. Now that could be 

possible if scientists collaborate and look at these multiple datasets and do their own meta-

analysis and then combine the results to get some interesting emergent results out of it and 

create a unique product or piece of research.” 

Another participant pointed out when open data be a focal point to enhance 

collaboration: 

“I think it will be more like a paradigm shift that people need to embrace it. It will be a 

focal point when you are a part of a larger network (e.g. a EU grant) comprising 10-15 

scientists who all produce different data and working hard to resolve data integration, 

compatibility and data quality issues around data. To collaborate in such environment to 

get the goals of the project open data could be a focal point.” 

One of the participants identified the risks or fears involved in openness which could 

impede the process of collaboration among scientists but further concluded these risks 

are outweighed by the potential advantages: 

“There is a big risk and that is one of the fears why many scientists have been very 

reluctant in the open data game and that fear is it wouldn’t result in collaboration, it 

would just result in anonymous scientists somewhere out in the world exploiting others’ 
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data not giving them any credit or acknowledgment instead misusing their data. That is 

a threat which can’t be ignored but I think the benefits of open data and the collaboration 

arises from it outweigh that.” 

Only two participants disagreed with the idea that open data could enhance 

collaboration. One of them said, “I don’t think it will increase it any further. You 

collaborate with people because you know about their work; you may have built up a rapport 

with them. I don’t think it will work as a focal point unless someone on the Web sees someone 

data that they never worked with before and say, ‘oh instead of just taking your data I’d like 

to work with you’ which is very rare.”  

The other one rather made a contradictory statement that it will pose a threat to 

collaboration: 

“I think it might discourage collaboration if actually the data is just out there. If I could 

access the data freely and openly why would I need to go to the individual and collaborate 

with him or her? I could just exploit his/her datasets. So, I don’t think it will initiate or 

enhance it. I think it would rather discourage it and will lead to less collaboration.” 

In spite of all these benefits, open data also poses some challenges and concerns. 

The participant below raised the concern of requiring large data space and lack of 

computing skills to share data openly: 

“I would provide access to my data (processed files and scripts) if contacted, and I say this 

in publications. If I had a dedicated, large file space that could be accessed from the 

Internet, and some technical computing knowledge and skills of using application tools for 

providing access to data, I would have uploaded the data there. At least one of my PhD 

students is using GitHub for his code, and I would like to encourage this practice.” 

Another participant expressed his concern that it would be an additional burden on 

him to spare time and make effort to distribute his data openly and freely with others 

while doing science and administrative duties at the same time: 

“I often don’t provide open access to my data and the reason is because it takes a heck of a 

long time and effort to package data appropriately to be distributed. We already have 

awful administrative burden and other things we do then we can’t do the science which is 
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why we do the job in the first place. So potentially if a job like data sharing or 

management takes a lot of time that would be an extra overhead on any sort of 

campaign.” 

If data is not shared in a methodical and systematic way to extract meaning from it 

easily, it will be open and interpretable to only a small group of people having 

technical expertise [182] which could ultimately lead to poor data with no use or the 

issue of data quality. One participant pointed out this concern: 

“But it’s not done in a systematic way. I don’t follow a formulaic approach to say, ‘right 

I’ve generated a data set, this is how it’s going to be laid out and whatever data 

management program, these are quality control flags conforming to some national 

standards’. So, this is an issue come back to quality control.” 

Sometimes data in one domain might be very helpful to one researcher but it might be 

very complex for researchers in a related or interconnected domain. In addition, if 

data is provided without procedural or contextual information it becomes very hard to 

understand. This concern was raised by the following participant: 

“I managed somehow using my social contacts to collect data from a researcher in a 

related sub-discipline in my research. But gosh, I can’t understand the data, not at all. 

The data is provided as an Excel sheet having no descriptions of the results or procedure 

or any other contextual information. The data talks gibberish in my discipline and sounds 

like only numeric values which I can’t understand what those numbers mean.”   

Scientists live in a competitive world where they are working hard for personal 

promotion and incentives, financial benefits and winning research grants. They are 

governed by the number of publications and they do not necessarily want to give 

intellectual capital away, so this could constrain open access to their data until they 

publish their work. The following participant explains this: 

“There is always a competition for publications that you want to be the person whose 

name is against that piece of science. So, we don’t share that particular data with anybody 

else until we publish it and then it’s available unless we are working in a consortium 

where you need to pass the data around to get the final publication. So, we are very selfish 

on our data until we get our names against it.” 
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Cost is another issue when it comes to provide free and open data access. The 

participant below explains this: 

“We’ve never been compelled to have open access until now, that’s only coming within 

certain funding streams of research. Everything is going to open up here and everything is 

the norm. So yes, we’ll go toward open access but the barrier to that is cost. So, in some 

cases we go free to journals but it costs us a huge amount which is the main impediment in 

providing open access to our data.” 

In addition to an embargo period mentioned earlier, which was the main concern of 

all participants, the participant below identified one of the privacy issues that can arise 

while releasing contextual information related to data that can deanonymise the 

location of the sample and status of individuals (for instance farmers or land owners) 

where it is collected:  

“There are few caveats to open data approach. One is usually the embargo period where 

it’s one or two years to enable scientists to publish before their data becomes publicly 

available. Secondly, when it’s not in public interest to do that. An example of that would 

be a countryside survey which is a 1km2 randomised survey across the UK and the 

dilemma there is in revealing the location of sample square. It would create a situation 

where a lot of other researchers would want to go to those squares and start taking 

additional information or measurements. Now that actually would be a breach of an 

agreement with land owners about releasing data. But more importantly it begins to give 

a biased sample square because a lot of people are working in the same square and that 

would have influence on what’s recorded. So, it would no longer be a valid random 

sampling square. Also, it would piss the land owners off and they are more likely not to 

give us permission to go back to that square.” 

Licensing becomes a tricky issue in provision of open data access when scientists are 

working in an environment where data belongs to other individuals, groups, 

consortiums or any third party. The participant below is willing to share his data but 

can’t practice it because the data is not their own but belongs to third party having 

licencing restriction on them: 
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“As a NERC Centre, some of our datasets are available under open government licence 

which means free to use just acknowledge. But a lot of our data is still under a separate 

licence. That because primarily we might use third party datasets to produce it, we might 

use our own survey data, we might use Met office data to produce datasets. So, licencing 

is a bit tricky issue because if we might have taken say Met office data and created some 

derived products from that then we will have to include the particular licencing setup so 

that is taken care of. So, we’ve to deal with a number of restrictions that may be necessary 

just because of the nature of the data.” 

Some organisations sell their data for commercial interests or any other financial 

sustainability and the scientists have to pay for it to pursue their research. The 

following participant mentioned this: 

“One of the problems regarding open data access in this country is that some organisations 

like Met office would only release data as a cost or if you have research arrangement with 

them. So not all data in this country is open access, even some has been collected on public 

funds like the countryside survey data the CEH do is not generally available openly. I 

think now the older versions are available but not the current one.” 

The above participant went on explaining the reason when he was asked why some 

organisations charge for their data sharing with others when it has been collected on 

public funds:  

“Because going back over successive governments some of these organisations would 

require funding their activities by selling their products, for example, the Met office will 

charge for weather forecast for specific purposes, it will also charge for his rainfall data 

even though a lot of data collected by volunteers would provide them without payment. 

They used to have processing cost so they are required to compensate some of their 

processing cost in order to make them financially less dependent on government funding.” 

Environmental science is an integrative, collaborative and interdisciplinary field 

which comprises many other sub-disciplines. To perform collaborative and large-scale 

synthesis for answering complex environmental questions, it requires integration of 

data from different sources. The results of these synthetic analyses play a key role to 

inform decisions regarding sustainable management of the natural environment [139]. 
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Therefore, it is important to effectively integrate different datasets from different 

environmental sub-domains to gain insights. However, such integration is challenging 

because it needs to understand differences in methodology, representation formats, 

and terminologies [144]. 

To discover the significance of data integration, participants were asked about how 

important data integration is in their interconnected sub-disciplines. All of them 

emphasised and recognised the value of data integration in their work, as explained by 

an environmental chemist below: 

“It’s very important. Thinking about some of the international reports about the state of 

certain pollutants, integrating datasets from different regions around the planets is 

essential to make sense of the global atmospheric issues. We also really need a handle on 

one of the quality controls and ultimately quality assurance that the data you’re viewing 

in one dataset is compatible with another dataset of the same pollutant but acquired by 

different labs in different location.” 

A soil scientist mentioned how important data integration in his research is: 

“It’s very important because we bring together a whole range of datasets, e.g. hydrological 

data, soil data, climate data, data on population changes, land used changes to come up 

with a single coherent model of the soil sub-surface and make predictions about the 

future.” 

The participant below, working on the delivery of long-term, large scale monitoring 

and experiments for the collection, provision and modelling of biodiversity data, 

noted the significance of data integration in his research: 

“It’s hugely important because we are being expected to address complex issues related to 

the social and economic drivers of change and also the consequences. It’s not good to 

saying ‘well, UK’s system is changed in a certain way and we know what’s causing it and 

that’s very interesting, thank you very much. We’ve to answer the so what question and 

the so what question, involving linking different data up to other areas of science in terms 

of what’s the downstream impact of the change on an upland peatland area and who’s it 

affecting and even worse what’s the economic benefit or disbenefit of what’s going on, 

poses enormous challenges in terms of data collection in the blackout of valuation.” 
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A climate scientist mentioned the significance of data integration in his research: 

“Data is usually central to my work, and I need to be able to integrate climate model data, 

and satellite and ground based observations. Even if I am improving or developing a new 

model, I will need bringing different datasets together to test that.” 

Some of the participants identified the reasons of complexity around integrating 

different datasets. One of them noted: 

“Integrating different datasets from various sources is a complex task for us because we 

use different methodologies, a variety of instruments, and record different types of 

observations. Converting such disparate data into a common data representation model 

and then understanding the meaning of those datasets is an arduous task.” 

All participants need combining different datasets together from various sources to 

have a unified view in analysing a research question. However, they also raised 

concerns about the complex task of data integration. All participants noted that data 

integration requires a lot of technical skills, effort and time. The following participant 

identified these concerns: 

“The number and types of data we produce are vast. Our science strategy is based on 

multi-disciplinary research which requires bringing different datasets together but what 

we haven’t conquered is how to bring interconnected areas of research together easily on 

the basis of those data. You can do it on a science project using some semantic web 

techniques such as linked data, vocabularies and ontologies but that requires considerable 

skills, time and cost which makes it hard to persuade funders to spend a lot of time (5-10 

years) and money to see a fruitful result. If we have a short-term gain in one area of 

science and show them (the funders) the benefits of data integration the other science areas 

will say we don’t want to do this, we want to do this. So, it’s very difficult to persuade not 

only the funders but the research groups as well because we are vastly different having a 

large number of heterogeneous datasets.” 

In summary, all participants realise the fact that they need to study the interconnected 

disciplines of environmental science in an integrative and collaborative manner. 

However, to do so, they recognise that they must share their data with others. To 

address complex questions of environmental science around data, they want to 
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integrate different datasets from various interconnected sub-disciplines to get a 

unified view. However, for most of these participants data integration from such 

disparate sources is an arduous and time-consuming process due to certain reasons. 

Some of these reasons include the differences in their methodologies for data 

collection, types of observations they record, conversion into a common data 

representation model, different metadata associated with data and finally 

understanding the semantics of data.  

3.3.3 Overall Reflections 

To summarise this section, all participants realise the need for a paradigm shift in 

environmental science towards open data. They noted that open data can strengthen 

the way science is done and scientific knowledge can be improved or (rejected) 

through scrutiny and critical analysis. Most of the participants were willing to 

embrace an open data culture and recognised the potential benefits it would bring to 

environmental science and in enhancing collaboration among scientists. However, 

they identified that this approach also raises some technical, sociological, financial 

and legal challenges and concerns they are confronted with. Some participants 

mentioned the issues including the lack of technical skills, time investment, efforts 

requirement, publication rights, data misinterpretation, receiving no proper credit, 

incentives or attribution, and cost; others were more concerned about legal issues such 

as licencing and privacy issues involved. 

Regarding the open data paradigm, they recognise the need to change the way science 

is recognised and the whole cultural aspect of the organisations and institutions. It is 

true that scientists have some serious concerns about open science but it is equally 

true that they do not practice it just because of the lack of understanding and 

awareness about the benefits of doing it. In order to adopt an open culture and make it 

common practice, all participants recognise the need to motivate, educate and train all 

those communities having or generating data. 

The important theme that emerges from this section is the shift towards open data 

culture in modern environmental science. This breaks down into the following three 

key observations: 
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Ø Environmental scientists realise both the need and importance of open data 

culture and get benefits from this, however this also raises some technical, 

sociological, financial and legal challenges and concerns. This is rooted in 

observations across all interviews. 

Ø There is a trend from data silos and individual working practices towards more 

integrative, collaborative and open science, and to enable and realise such a 

shift is a hard but important challenge to address.  

Ø The underlying process of integrating different datasets from various sources 

is an essential task in analysing the data to make sense of it; however, this 

poses technical challenges and hence requires computing and computational 

skills and inevitably extra training. 

3.4 Interdependencies in the Long Tail of Environmental 
Science 

 

Figure 3.5 Interdependencies in the Long Tail of Environmental Science 

3.4.1 Background 

In environmental science, there is a need to investigate the key differences in 

environmental data where datasets tend to be smaller, more heterogeneous and where 

the main interest may rely on interdependencies between datasets representing 

•Have you heard about the long tail of science
and to what extent this applies to your work?

•More specifically, how important is
interdependency in your work, e.g.
identifying causal-like relationships between
datasets (could you provide an example)?

•When you work with data, do you typically
take a positivist approach, seeking to prove
or disprove a hypothesis, or do you see room
for more emergent approaches?

Interdependencies 
in the Long Tail of 

Environmental 
Science
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different environmental facets. This long tail data is characterised by wide diversity, 

hand sampling methods, non-uniform (unique) procedures, mostly individual curation 

and lacking community standards for data structures and metadata with no 

maintenance and seldom reuse [3]. One of the key challenges in the long tail of 

environmental science is to gain a better insight into interrelationships between 

different environmental facets and hence to understand the interdependencies in 

environmental ecosystems. Different industries, for instance, agriculture, water, 

tourism and urban development, among others, have conflicting demands which arise 

usually from the ‘silo management’ and consequently result in a development by one 

industry negatively impacting the other. Furthermore, due to the availability of 

advanced measurement technologies, a large amount of data has been generated. 

There is value in this data if it is examined in an innovative way. Hence, there is a 

need to seek more emergent approaches to deal with such complexities and 

interdependencies around data. 

The aim of this section is to draw on three key aspects: (a) investigating where does 

the data in environmental science fall in the big-data-small-data spectrum (in other 

words, does environmental science fall in the long tail of science or is it in the 

transition phase towards big science because of automated instrumentations and 

increasingly large collaboration groups)? (b) discovering and understanding the 

associations between different environmental ecosystems and how they affect each 

other; (c) examining whether scientists still practice the scientific method of (dis) 

proving a hypothesis or seeking some emergent approaches to discover new facts and 

patterns in environmental data? These questions are summarised in Figure 3.5. 

3.4.2 Main Findings 

Most of the participants were not familiar with the phrase ‘the long tail of 

science/data’ but when it was explained to them it became clear. When asked to what 

extent does it apply to their work, mostly said, “yes, it does absolutely”. As one of the 

participants, a geologist, explained his data: 

“I think it’s probably very typical of the work that we do. There are probably some larger 

datasets that we also work with but the majority of data we have is fragmented, small 

and are spread across in various data types and formats.”  
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The following ecologist described his long tail data by pointing out one of the 

important characteristics of it: 

“The volume of data that we have is probably small but the variety of it might be quite 

big. We don’t do terabytes of data; they mostly exist in climate science. So, the volume is 

not an issue but the real issue we are facing is the vast heterogeneity among datasets.”  

Another ecologist, who was already aware of the long tail science, characterised his 

science: 

“Yes, I’ve heard about the long tail of science and most of our science we do is typified by 

all characteristics of small science which is usually short term, done by individual 

scientists or small research teams, diversified data, mostly hand data collections and 

personal computer data storage. So, the science we do is the real epitome of the long tail of 

science.” 

An environmental chemist, similar to the above, has already got an idea of the long 

tail of science. As he explained: 

“I have heard of the long tail of science and it definitely applies to my work. I’m in that 

tail, i.e. I don’t produce large datasets but very small one, mostly generated through 

traditional and manual sampling methods and unique procedures and consisting of many 

different kinds. These datasets often give the most interesting and valuable science 

regarding pollutants in the environment.” 

The following soil scientist provided a very good explanation of both aspects of his 

science: 

“I haven’t heard the long tail of science before but the way you described it finds my 

science mainly in the long tail. Though, I’m also part of a research project collecting 

global datasets on soil, I won’t say the datasets are too large but it’s collected through a 

mechanised way with uniform procedures and stored in internationally agreed formats 

and prescriptions. So, there is some element of the head (big science) but probably the 

majority of my science lies in the tail with small and heterogeneous data, collected usually 

through hand generated field sampling and processed through our own methods.” 

A limnologist narrates her science in this way: 
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“I think the long tail of science definitely applies to my work. We have a kind of big span 

of heterogeneous data where we have really some small datasets for very small projects 

having tens of data collection points. I’m also currently involved in a project where we’ve 

sensor networks which is generating huge amount (probably terabytes) of data because it’s 

collected every four minutes. But this project is not part of any international collaboration 

or big project teams (like high energy physics or astronomy data) who have uniform 

procedures and central data curation. So, I’d say yes a lot of our work tends to fall 

towards this long tail.” 

The volcanologist below explains the long tail of science in his research: 

“I generally work in the long tail. My datasets are usually small having different types 

because most of my work is field based, I’m restricted. I collect these datasets from various 

sources using different equipment. The problems I look at are relatively spatially small 

because I’m trying to understand small scale volcanic processes implying spatio-temporal 

changes which are geographically limited instead of global.” 

A scientist in biodiversity relates his work completely with the long tail: 

“My work or research entirely fits in this long tail of science. The only new thing which is 

starting to move away toward slightly big science is our next big greenhouse gas project 

which is a multidisciplinary research involving several research teams on national scale. 

We’ll generate a huge amount of data through a mechanised approach and uniform 

procedures and will curate it in a central data archive.” 

A biogeochemist briefly summarises her science in big science- small science 

spectrum: 

“Most environmental science is in the tail and ‘dark matter’, a few exceptions such as 

climate science. I work mostly in the tail and trying to develop platforms to get stuff more 

in the tail. To be honest, environmental science is so fragmented, there are still a lot of 

individuals in different sub-disciplines who haven’t had collaborated in big projects nor 

generated massive data, so, they are horribly down in the tail.” 
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To discover the interdependencies between disparate datasets, we asked participants, 

“do they identify causal-like relationships between their datasets and how much 

it is important for them”, one of them, an ecologist, pointed out its significance:  

“It’s an inefficient use of the data resource if we don’t discover the causality among 

environmental variables and it’s essential to understand these relations because the 

questions we’ve to ask are more and more complex and do have a necessity involved in 

linking up disparate areas looking at the interdependencies between them.  

 Another ecologist describes the importance of interdependencies in his research: 

“It’s absolutely essential to understand the drivers of change, the interactions between 

those drivers which are often very complex and the affects that have on ecosystems and the 

environment and the affects that have on the benefits to society.”  

The above participant continued: 

“So, you can see there are a lot of interactions, a lot of interdependencies between data that 

need to be modelled and understood, for instance, the association between agricultural 

change and water quality. We broaden this out in terms of needing to understand how 

patterns of land use change in the landscape. There are many different stakeholders in the 

landscape be they foresters, tourists, nature conservationists, agriculture people, just 

businesses or people living there. So, you have this broad range of people who not only 

drive change in an area but also reaping benefits from it.” 

The microbiologist below identifies the need of discovering interdependencies 

between disparate datasets in his research: 

“It’s very important actually. The studies we do on catchments require data generated by 

molecular and microbiologists. We then relate that data with environmental data 

collected by the environmental agency, Met office, farmers and Defra. So, in our study we 

have got data about rainfall, river flow, river height, nutrients in water, number of 

animals in the catchment etc. We also move to do a kind of epidemiology as well where we 

are asking people about the diseases in the catchment and then looking for their potential 

causes and associations by analysing those data. So, getting all these different types of 
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datasets and joining up together to derive some interrelationships is very crucial in our 

study.” 

The soil scientist below describes the relationship of soil with water and explains how 

much soil science affects hydrology: 

“What we’ve in water depends on the soil entirely and also things that go along with the 

water like sediments, nutrients and other pollutants depend completely on the interactions 

with the soil.” 

Another soil scientist noted the interactions between land use, rainfall and water: 

“The interrelationship in our study is very important because we are working in all 

scales. So, in our national scale work, we are looking at changes in land use, driving 

micronutrient cycles, e.g. in our diffuse pollution work we are looking at changes in 

hydrology, rainfall events that drive sediments, nutrients etc. To interpret the nutrients 

data, we need the hydrology data, we need the rainfall data i.e. the intensity of rainfall 

and quantity of rain water. So, if there is a big rainfall event you’ll get more water 

flowing through the channels, you’ll get more sediments mobilised which end up with 

more phosphorous moving in rivers.”  

The scientist below undertakes his research on the association between atmospheric 

science and soil science: 

“There is a big link between atmospheric science and soil science. For instance, we collect 

a lot of data on the pH of rainfall where we are interested in the measurement of 

sulphuric acid and nitric acid in the atmosphere. The acid gases e.g. sulphur dioxide and 

nitrogen oxide come from vehicles, fossil fuels and factories and are released in the 

atmosphere. When it rains these gases are deposited in rain and acidify the soil which 

leads to aluminium toxicity in soil which negatively affect plants. These waters come out 

of the soils and get into the rivers make the rivers very acidic and ultimately harm the 

aquatic life.” 

The following climate scientist is looking for the interdependent relations between 

different facets of the climate: 
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“This is very important e.g. in climate model evaluation. For instance, can we infer or 

even describe causal relationships between atmospheric composition change and climate 

change? If we can identify mechanisms that these links operate through, we can use this to 

see if the same mechanisms operate in the models and are the models right for the right 

reason. To find answers of these questions is very essential for us.” 

A biogeochemist, looking at the interrelationships between land management, soil and 

water, identifies the significance of interdependencies in her work: 

“That’s our job, that’s what we do all the time. For instance, what is the change in land 

management that has degraded or improved soil quality and how that has benefited or 

changed water quality. So, these are three separate datasets that we are looking at to 

understand the interrelationships between them. This is what ecosystem science is, that is 

what biogeochemistry is, understanding that these things are all linked together and how 

they impact each other either positively or negatively.” 

When participants were asked about their philosophy/methodology they take around 

environmental data and whether they adopt hypothesis driven approach or 

looking for some emergent approaches, most of them replied, “both”, as one of them 

mentioned: 

“Mostly we try to take a hypothesis driven approach. But to be honest, sometimes we just 

collect data and then will look at it to derive some interesting things. And some people 

argue that you’ll not discover very much if you constrain yourself just to do hypothesis 

driven research that a lot of new discoveries are made by just measuring a lot of things. I 

agree with them, so, I’ll say we do both.” 

The following participant quite often practices hypothesis driven science but mentions 

the fact that hypothesis-driven science is not the only way to do science and there is 

always scope for emergent approaches: 

“I constantly do a positivist approach and a lot of my science is hypothesis driven that 

usually starts off with a sort of general question and then we shape it into a hypothesis 

and go for its testing. Though I’m a bit weak in emergent approaches but sometimes I 

follow a grounded theory where you build up data that tells you something without 
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necessarily challenging those data. So, I think there is room for emergent approaches but 

I’m very much rooted in driving hypotheses most of the times.” 

One of the reasons shifting towards data-driven science is the availability of huge 

data. The participant below does hypothesis driven research mostly but in his new 

project having collected a lot of data he is seeking more emergent approaches to 

discover new facts: 

“The way I work is I setup an experiment with a specific experimental design that allows 

me to test a specific hypothesis with the statistical methods. So that’s very much a 

formulated kind of way but now we’ve been creating so much data that we have had not 

in before. We have greater opportunity to mine data how can I call it exploratory kind of 

work looking at relationships and patterns in data so the things are moving forward for 

us from hypothesis driven approach to more emergent approaches.” 

One of the participants more often starts off with a hypothesis but then further 

explores the data for some interesting patters: 

“Most of the times, we’ve a hypothesis we should do so we collect data to prove it using 

some statistical methods. However, there are cases where we’ve just curiosity so we just 

collect data and see what happens looking for some patterns and associations among 

different variables to see their response and then we create a story based on those 

analyses.” 

The participant below is flexible and adopts the scientific method on the basis of 

question in hand: 

“I guess it depends on the data a bit really or what’s the question you are looking for. 

Some things suit to hypothesis driven approach whereas others you can end up with doing 

more analysing data and looking for some interesting facts not discovered before and 

things you may find completely different that you didn’t really realise that it’s going to be 

there and that’s very interesting that the things you really began with. I think it’s good to 

be flexible and dynamic. So, I do both.” 
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Most of the scientists generally prove or disprove a hypothesis; however, because of 

the availability of more data, scientists are now looking for emergent approaches. One 

of the participants identified the need of emergent approaches in ecology: 

“Our science is based on hypothesis driven approach that still is an effective and easy way 

of doing things but it’s quite limited when it comes to understanding complex ecological 

interactions. Now increasingly we have been looking at techniques which enable us to deal 

with that kind of environmental complexities. So, I think we are open to new approaches 

to do this. I was brought up with in terms of experimental design and sampling design 

which were helpful at times but really don’t help solving some of the more complicated 

problems in environmental science. So, there is a need of looking for more emergent 

approaches.” 

Because of using automated digital instruments, which collect large data over spatio-

temporal scale, the following participant seeks more emergent approaches instead of 

doing hypothesis based science: 

“We spend our lives on fishing trips which you’d call it emergent approaches. So 

sometimes we go and test a hypothesis but now having large volumes of data using 

automated instrumentations we very often go and what’s called fishing trips where we 

look for unexpected trends or relationships that will tell you something new that you 

didn’t even think about before and I think that’s perfectly acceptable way of doing science. 

You know it comes from unexpected surprises that people alert to and then go and explore 

it further. So, we do both but mostly emergent approaches.”  

One of the participants truly supported emergent approaches: 

“We’ll very much take emergent approaches or look to develop those kinds of approaches 

but I think culturally there are a lot of scientists who are quite suspicious of those 

approaches. You’ve to work hard to convince them of the need for things like data 

mining.” 

The following participant noted the usefulness of emergent approaches: 

“Sometimes I work purely descriptively, for example, say the modelled and observed trend 

in surface ozone concentrations is X. However, emergent approaches are useful. Finding 
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new relationships and patterns between climate variables in a model (almost 

serendipitously), which then are also found in observations is a holy grail.” 

3.4.3 Overall Reflections 

In the big-science-long-tail-science data spectrum, most of the science done by these 

participants fits in the long tail of environmental science. The majority of the 

participants are doing science on a small scale spanning individual scientists to small 

research groups or small laboratories. Most of these scientists do not follow standard 

or uniform procedures. More often, they use local research methods varying from one 

sub-field to another with some adaptation. In terms of bigness, their datasets are small 

in most of the disciplines, except climate science which can produce relatively large 

datasets through simulations. In terms of diversity, the data is very heterogeneous 

with no widely accepted standard data format. Regarding the interdependencies, our 

findings also identified how important is to understand the complex interactions in the 

environmental ecosystems and some of the interdependencies which negatively 

impact each other, for instance, how intensification of agriculture can reduce water 

quality and ultimately affect aquatic life. Furthermore, it is true that most of the 

scientists still practise the hypothesis driven approaches. However, it is equally true 

that because of their curiosity and having a rich set of data from advanced 

measurement instrumentations they are now seeking room for more emergent 

approaches to find some hidden facts and significant patterns among the data. They 

are now looking for more collaboration with computer scientists and technologists to 

exploit data science techniques to get more insight into their environmental data. 

The fundamental theme that emerges from this section is the clear significance of long 

tail data in environmental science. This breaks down into the following three key 

observations: 

Ø The long tail of science is absolutely the core of environmental science and is 

coming up in all these interviews. 

Ø To discover and understand interdependencies among disparate datasets 

representing different environmental facets is increasingly important in 

understanding overall ecosystems. Again, this is consistent across all 

interviews. 
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Ø Because of the advanced measurement instruments that generate more data, 

there is now a trend towards more data-driven science to look for interesting 

and emergent patterns among different datasets and turning them into 

knowledge. 

3.5 Technology: Opportunities  

 

 

Figure 3.6 Technological Opportunities 

3.5.1 Background 

There is a real potential in interdisciplinary collaboration between environmental 

science and computer science owing to the issues of complex and heterogeneous 

nature of environmental data. This collaboration is very crucial because 

environmental scientists’ knowledge of computational techniques lags behind the 

state-of-the-art in computer science. Hence, there is a need of bringing both 

communities together. 

•Do you see collaboration with computer
scientists is important in your work and, if so,
what would you like to gain from this?

•What are the potential barriers to
collaboration with computer scientists?

•Is this something you currently do, and what
benefits have you got from this?

•How important is it generally for you to have a
unified view of the structure and semantics of
heterogeneous datasets?

•Which of the following technologies are you
aware of, and which ones do you see as
potentially contributing to your work in the
future: Semantic Web Technologies (e.g.
Ontologies and Linked Data), Statistical
Methods, Data Mining and Machine Learning

Technology: 
Opportunities 
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In this section, we present findings from the interviews, selecting responses to open-

ended questions regarding collaboration between the two communities, benefits and 

potential barriers of this collaboration and the computing technologies the 

environmental scientists are benefiting from or aware of their use, as shown in Figure 

3.6. 

3.5.2 Main Findings 

To investigate to what extent environmental scientists can exploit potential 

computational opportunities, participants were asked about the importance of 

collaboration with computer scientists and the potential gains it can bring to 

environmental science. All of them were in favour of working with computer 

scientists, as one of them stated: 

“Definitely, I see some value in computer science especially in understanding about ways 

in which different types of data might be available in my field and you might get access to 

those kinds of data.” 

Usually, most of environmental scientists are not adept at computing skills to 

integrate different datasets and expedite their work. This fact was identified by one 

the participants: 

“Yes, it’s very important because they have got skills we don’t have and we are very 

unlikely to get those (skills) very quickly. I’d hope by collaboration we can start to create 

integrated systems that can speed up my work and my workforce and join together 

datasets in a way that is new and imaginative leading to new insights.” 

Data management is one of the important aspects in data-driven environmental 

science. Because of the wide use of advanced instrumentations and IoT technology, 

environmental scientists want to collaborate with computer scientists to leverage these 

resources and manage their data effectively. As one of the participants mentioned this 

fact: 

“I need to work with computer scientists because they are the experts potentially in terms 

of data management, deploying environmental sensor networks, and how to program and 

the whole gamut of computer services or instruments and interactions with GPS etc.”  
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Efficient and new ways of data analysis is really important to environmental 

scientists. They have started looking for innovative techniques for dealing with the 

data to save their time, effort and money. As one of the participants explained its 

significance: 

“Absolutely it is critical. We might understand how environmental sensors and data 

loggers work but our experience and knowledge is rubbish in comparison with computer 

scientists. They can tell us new computing opportunities for data processing, analysis and 

research. They can also tell us what will work and trying to find things that won’t work 

which will save not only time but also money. In addition, they are also better 

mathematically skilled than we are.” 

Another participant, who has already worked with computer scientists and benefited 

from it, identified almost the same reason for collaboration: 

“We have spent some time with computer scientists working on one of our projects and 

definitely it brought some benefits to us. I guess they bring new ways of working with 

data and new tools to process those data we won’t be aware of and that’s useful because 

you can do things you hadn’t thought you could do before. So, the biggest gain is just 

having somebody who’s got computing skills to play with your data in an efficient and 

innovative way.” 

It is not only data processing and analysis techniques but computational technologies 

such as cloud are also important to store environmental data and models. The 

following scientist, working in the data centre at the CEH, explains the importance of 

both computational and data processing techniques: 

“It’s very important mainly because of our interest in developing capabilities with data 

centre. There are two aspects of that (a) there are still just basic computational approaches 

in use to data representations and (b) there has been the informatics side. So, overall 

computational technologies and techniques are emerging in terms of how to store and 

access information either semantically or through some sort of big data techniques.” 

A climate scientist, who used HPC and other advance computational technologies to 

run their simulations, recognises the growing need of these technologies in their 

research and the dependence of their work on computer scientists:  
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“Oh yes because the need for middleware in terms of accessing stuff across the cluster, 

cloud and high-performance computing systems for processing capabilities in our research 

has been increasingly growing. So, there is both that computational capability side and 

middleware side because we are not the people to write that sort of code so we are much 

more dependent on computer scientists.” 

A key area of innovation known as data science is emerging in environmental science 

to achieve new scientific insights through a new integrative science. The participant 

below identified the need of data science in their discipline: 

“Yes, I think it’s absolutely important because the computer scientists now are bringing a 

lot of techniques and tools that offer greater opportunities for exploiting the data and the 

environmental scientists may be aware of this but may not be. So, I think that 

environmental science is in need of a new kind of science which is to some extent the 

hybrid of traditional science and data science and I believe the scientists are now showing 

signs of trending towards this which is really good.” 

Answering the question regarding potential barriers to collaboration with 

computer scientists, all participants identified technical jargon as a major hindrance 

to collaboration, as one of them mentioned: 

“There is always a problem in interdisciplinary project and that is understanding each 

other’s vocabulary. You have to spend time to understand the technical jargon and the 

different platforms the scientists work with.” 

Another participant, similar to the above, raised the same concerns in collaboration 

between the two communities: 

“Sometimes it requires both sides understanding new terminologies, the jargon that has 

become so abundant in both sciences requires a long time for your brain to remember all 

those terms. So, that’s one of the biggest problems - this small technical jargon problem 

becomes the biggest, I think.” 

Some of the participants identified a very important factor that environmental 

scientists are oblivious of the benefits of computer science in their discipline. In 
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addition to the language barrier, this fact was identified by a few scientists as another 

reason for the lack of collaboration between the two disciplines. As one of them said: 

“I think firstly it’s the lack of knowledge what can be gained from computing sciences. So 

most environmental scientists have very poor understanding of what computer scientists 

can do for them in order to be benefited. Secondly, they are obviously two different 

disciplines and whenever you get that there is always a language barrier in terms of how 

they discuss particular issues.”  

Another scientist, similar to the above one, termed it as ‘ignorance’ of the 

environmental scientists: 

“Ignorance is one of the main problems, we don’t know what the computer scientists can 

do and what do they can offer and vice versa. So, it’s all about the lack of communication 

between the two communities. Language barrier is the second main issue when you work 

with people from other disciplines.”  

Most of the participants have just started collaboration with computer scientists; some 

will start in near future and a few have done in the past. All these participants have 

either benefited in the past or are likely to get benefits, as the participant below 

explained: 

“We’ve got a lot of benefits from this collaboration. I don’t think we can do the projects 

having data without somebody technically very skilled having innovative ideas to analyse 

the data in a better way.” 

The participant below, similar to the above, has benefited a lot from collaborative 

projects with computer scientists, as she explained: 

“Definitely we have benefited from collaboration mainly in computational approaches, 

data representation, semantics, and data science. We do collaborate with computer 

scientists to get new insights into computational issues and skills we don’t have in 

environmental science.”  

When the participants were asked how important is for them to have a unified 

view of the structure and semantics of heterogeneous datasets, most of them said, 

“extremely important”, as one of them mentioned: 
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“It is very important. A lot of work we are doing nowadays is about dealing with 

different formats of our heterogeneous datasets and the inconsistencies involved in it.” 

Some scientists find the interpretation of their heterogeneous data really hard if there 

is no unified view of both the structure and semantics. A limnologist explained: 

“I think that’s very important in terms of understanding what you are looking at when 

you’ve got the data. I mean a lot of the problems that I had recently with my datasets was 

just knowing how to interpret my data without having a unified view of both the 

structure and semantics.” 

The majority of participants recognise the significance of a unified view of the 

structure and semantics of heterogeneous data but at the same time they also raise 

their concerns about the difficulty coming with it. Talking about the importance of a 

unified view of semantics and the difficulties involved in it, an ecologist mentioned 

her concern: 

“It would be lovely to get it but I know it’s a nightmare. If you go and look into ecology 

and soil science, it’s absolutely a nightmare. I agree it is very important but I also agree it 

is a lot of work to get it done in a complex area like ecology.” 

Similar to the above, another scientist emphasised the importance of the unified view 

as well as raised the concern about this cumbersome task. 

“It is massively important to be able to bring different datasets together because the science 

that we are doing now to answer society’s big challenging questions needs us to work in 

the interdisciplinary ways and make use of integrating different datasets in a unified 

way.” 

He further continued and identified the difficulty: 

“The difficulty comes when you want to bring very different data streams together 

regarding one environmental problem in an effective and unified way to understand that 

data easily.” 

One of the scientists raised another concern that getting a unified view of semantics of 

different datasets is a time-consuming job. He further said that however it is so 



Chapter 3: Qualitative Study of Data Challenges in Environmental Science: Understanding the Long Tail 
of Science 

112 

important to them that they cannot even work with their data unless a unified view is 

achieved: 

“Obviously it is very important but people working for me spend a lot of time to work out 

a unified view of the datasets. So, the work that we do is vital because you need to be able 

to work with multiple sets of data in a unified way and if you don’t have that view of the 

structure and not getting the semantics involved in those disparate datasets you can’t do 

anything with it.” 

Some of the scientists are getting frustrated w.r.t. the semantics annotation of their 

data because they really need it but they cannot do it owing to the issues of lack of 

computing skills. Getting this unified view of semantics looks almost impossible for 

them, as one of the ecologists termed it a Babel fish: 

“Well, I would say it’s very important but not practical in my discipline to expect that to 

happen very quickly. It would be like asking for the Babel fish. The Babel fish was 

something you put in your ear and it will give you an instantaneous translation of tons of 

languages spoken across the universe, yes, it is very important but I don’t believe that it 

could happen in my science in near future.” 

The participants were asked about how much they are aware of different 

computing technologies/tools and techniques (dealing with the data) including 

ontologies, linked data, data mining, statistical methods and machine learning. 

They were further probed which of these technologies have they used or are currently 

using and do they see any of these technologies potentially contributing to their work 

in near future. There was a mixed response. Five participants already knew all these 

technologies, as one them said: 

“I am aware of all of the technologies you mentioned.” 

Regarding practicing and utilising the above technologies, statistics is the only tool 

that has been used by all participants, as one of them said: 

“We use loads of statistics, it is one of the main things for a lot of data analysis, and for 

most of environmental scientists, the only way to get publish all our data is analysed using 

these techniques.” 
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Some of the scientists were not aware of Semantic Web technologies particularly 

ontologies and Linked data. However, once the definitions of these technologies were 

explained and made their meaning clear to them, all of them said they definitely need 

these technologies: 

“I have not heard of these technologies but after your explanation of these terms I can see 

the value of its exploration in my area. There is a real potential of these technologies in 

my area of research.” 

A soil scientist explained: 

“I have not heard of all these but these technologies, particularly ontologies and Linked 

data, sound really important and we need someone who could explore these technologies in 

our science. It could be someone from computer science like you who could work it out for 

us.” 

He further continued: 

“I am sure there is a potential but I need someone who has got these skills to interlink soil, 

land use, hydrology and other datasets in my work. There are some attempts e.g. NERC 

is trying to link some environmental data together but whether they are using these 

technologies or not, I don’t know.” 

Half of the scientists are already aware of Semantic Web technologies including 

ontologies and Linked data but they have not used it yet in their areas. As one them 

mentioned: 

“Yes, I have heard of it. In fact, we have used ontologies in a collaborative project with 

bioinformatics. I think it is more widely used in life sciences but we have not used it yet in 

our research.”  

One of the scientists, who already knew about ontologies, identified their significance 

in his area of science: 

“In my work, understanding semantics of heterogeneous data is extremely important. I 

need to know the meaning of the datasets and the relationships between them to make 

sense of it.” 
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Some of the scientists, in collaboration with computer scientists, are going to start 

using ontologies and Linked data in their new projects: 

“We are starting to use it in a project to have linking, trying to develop a platform for 

data for catchment management. We are trying to use or probably develop ontologies 

which would make our data kind of consistent. So, yes, we are starting to use it.”   

Some scientists are desperate to develop ontologies in their area but due to the lack of 

computing skills and the heterogeneity of data they cannot do it themselves. They are 

just waiting for collaboration with computer scientists to accomplish this important 

task: 

“We are very much interested in developing ontologies but we can’t develop it without the 

help of computer scientists because of the lack of computing skills and having so much 

disparate data.” 

One of the scientists, an ecologist, identified a concern of not seeing any practical use 

of ontologies or linked data in his discipline: 

“I have heard a lot about ontologies and would be really happy to have one in my area. 

But I have a serious concern that people have invested time and effort and are doing 

something but have not yet seen any of much practical use. I have not seen it delivering 

anything of much practical use yet.” 

He further explained and raised the same concern about linked data as well: 

“I would love to have inked data in my area and I would like to see any implementation 

of linked data but again so far no practical working example exists that can prove the 

concepts. It never seems to happen a real demonstration of linked data in ecology.”  

When the participants were asked about the usage of data mining and machine 

learning, only a few of them know about these technologies: 

“Yes, I have seen potentially machine learning could be used. I have not really used it but 

people use it trying on various datasets e.g. seismology is one area where that sort of 

things has been approached e.g. using cluster analysis trying to look at signals and group 
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them into families which represent specific processes but it is not the sort of the things I 

do.” 

A biogeochemist explained that she has not used data mining or machine learning in 

her research but her colleagues have been using it: 

“I haven’t done it myself but quite a lot some of my colleagues have done it for, say, what 

is changing in the data, what are the interdependencies between datasets. They are getting 

data and turning it into some new knowledge.”   

Similar responses were observed regarding data mining and machine learning 

techniques. There is a real potential for both these techniques but again less awareness 

and lack of knowledge came up across all interviews. 

3.5.3 Overall Reflections 

All of the participants interviewed showed their willingness and enthusiasm to 

collaborate with computer scientists. They see certain reasons for this collaboration: i) 

environmental scientists get benefits and potential gains both in terms of 

technological use and deployments, for instance, environmental sensor networks and 

IoT technology, and in terms of computing skills and advanced data analytics; ii) 

however, they face difficulties to resolve technical issues particularly around data and 

get frustrated because of their lack of computing knowledge to overcome these issues; 

iii) their computing skills and the knowledge they have lag behind the current state-

of-the-art in computer science; iv) finally, there is an emerging trend in modern 

environmental science towards more data-driven science, which is rooted in 

observations across all interviews and scientists are now looking for new data 

analytical techniques to discover interesting and hidden patterns in their data and 

make sense of it. 

The barriers of collaboration between computer science and environmental science 

are partly cultural, partly organisational. In addition, the lack of understanding and 

language barriers are another major hindrance to collaboration.  
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Most of the participants are aware of Semantic Web technologies and are interested in 

their implementation in environmental science. They see a real value and potential in 

these technologies. However, still there is a lack of understanding and experience. 

The essential theme that emerges from this section is the obvious importance of 

collaboration between the two disciplines and the real potential and need of Semantic 

Web technologies in environmental science. This breaks down into the following 

three key observations: 

Ø There is an opportunity in terms of collaboration between environmental science 

and computer science to understand this interdisciplinary, data-driven and 

integrative science. However, there is a challenge of breaking the cultural, 

organisational and technical jargon barriers. 

Ø Getting a unified view of the structure and more importantly semantics of 

complex and heterogeneous environmental data is very important. 

Ø  There is a real potential of Semantic Web technologies to understand complex 

and heterogeneous data in environmental science. 
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3.6 Technology: Barriers 

 

 

Figure 3.7 Technological Barriers 

3.6.1 Background 

Environmental science is an interdisciplinary field and comprises many other sub-

disciplines. Because of its complexity, scale and heterogeneity, environmental 

scientists face some technological challenges including data discovery and access, 

data heterogeneity, data quality and data provenance, to name but a few. Data 

discovery enables us to locate the pertinent and available information in a particular 

knowledge domain and is one of the issues in science in general and environmental 

sciences in particular because of the vast scope and complexity of the discipline. 

Furthermore, making data available on the web does not mean easy discovery. One of 

the factors that causes data heterogeneity issues in environmental science, is the 

variety of interconnected sub-disciplines and the shift of contemporary research 

towards interdisciplinarity and collaborativeness. Data quality issues in environmental 

science arise when scientists get inaccurate or missing data in a dataset owing to the 

•To what extent are the following real barriers in 
your work?                                                          
Data discovery and access, problems with the 
quality of data, the heterogeneity of datasets, 
the lack of metadata or provenance information 
around data.

•What other technological barriers or
frustrations do you face in your work as an
environmental scientist, particularly around data?

•What single technological advance would you
wish for (and you are encouraged to think big
here), that would support you as an
environmental scientist in the science you would
like to do over the next 10 years?

Technology:	
Barriers
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use of different types of sources including malfunctioning instrumentation, inadequate 

documentation of data values and data entry errors. Data provenance, also known as 

lineage or pedigree, is described in databases as the description of the origins of data 

and the process by which it arrived at the database [183]. Data provenance in 

environmental science is of paramount importance, which enables researchers to 

determine the authenticity, quality and reproducibility of the data.  

In this section, findings are presented regarding data challenges in environmental 

science including data discovery and access, data heterogeneity, data quality and 

provenance, any other technological issues or frustrations and any single 

technological advance environmental scientists would wish for to support their 

science, as shown in Figure 3.7. 

3.6.2 Main Findings 

The participants were probed whether data discovery and access is an issue in 

environmental science, most of them answered, “yes, it is a barrier”: 

“Yes, it is a problem. Data is very disparate; it is stored in different places so people don’t 

know where it is. You learn over time and your career. It is getting better where people 

are trying making data available but it is still a barrier.”  

A couple of scientists mentioned that it is not an issue in their research. One of them 

said they create their own data and their research is not dependent on data from 

others. The other one said it was an issue in his research ten years ago but it got better 

now due to their local data management centre. However, it could be an issue for 

wider data access: 

“No issue for me, but may be for others. Ten years ago, it was a big problem but now it is 

getting better because of our local data centre. It could be a problem for a wider data 

access.” 

The other one said:  

“It is not an issue for me; we generate a lot of our own data so we don’t wait for other 

people’s data.” 
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If data is available on the web, it does not make it easily accessible or discoverable. It 

still requires a lot of time, efforts and energy to find the desired data one is looking 

for. This concern was raised by one of the participants:    

“Today everyone is saying data is available on the Internet. Well, it might be true that 

most of the data is there but putting simply data on the Internet does not mean it is 

discovered easily. Mostly I find it so taxing and laborious. For instance, sometimes when 

I look for particular specie on the web, I find hundreds of results, which is so hard to find 

data about my own. There should be an efficient and automated way to find the data of 

your interest quickly and easily.” 

A couple of participants reported that they can access only that data which is 

published or uploaded on the web and freely available: 

“Yes, it is an issue. We have access to data that is either published or went up on the 

internet but still not all data is out there, I mean not accessible. We are limited with the 

amount of data all the time, we have access to what is there and we don’t have access to 

what is not there.”  

When participants were asked about data quality to know whether it is a real 

issue, everyone responded, “yes, it is a major issue”, particularly in case of (re)using 

other people’s data because they do not know a lot of things regarding this data, e.g. 

what instrument was used, who collected the data, what QA/QC mechanism was used, 

what was the confidence interval, etc. Environmental scientists collect data in 

different environmental conditions using a variety of instruments, methods and 

sources. Due to these factors data quality issue occurs: 

“It is really a big issue, particularly reusing other people data because you don’t always 

get all the information you need to understand, e.g. how the data was collected, what 

methods have been used, so those kinds of things, so it hard to know how things are 

comparable.”  

Some of the participants mentioned technical malfunction as a very important reason 

of getting incorrect data which further leads to data quality issues, as one of them 

said: 
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“Some sensor networks create bad data at certain times, how do you know that the sensors 

are working correctly and how they were calibrated. Such kind of issues lead to data 

quality issues.” 

One of the participants identified that environmental conditions is one of the main 

factors that results in data quality issues: 

“Quality of data is always an issue and entirely varies. I work outside if the 

environmental conditions are good then you have great data and you don’t have to worry 

about it, you have to check the quality once you have got back. Others day you go out and 

the conditions are dreadful and the data quality is not good because the instruments do 

not work correctly. It is not just good and bad instruments; it is also environmental 

conditions which can affect the quality.” 

Environmental scientists usually contact the person who generated the data regarding 

data quality issues. However, the problem gets worse when scientists do not know the 

originator of the data and the anomalies in data are hard to correct them without the 

originator’s help: 

“Normally we analyse the data and find the problem and contact the person directly via 

email and just have a discussion how the data was collected. Sometimes you don’t find out 

the originator of the data and spend years trying to work out which datasets are good and 

which are bad.”  

Data heterogeneity is another major issue that has been reported by all 

participants. One of the reasons for arising this issue is using different data formats 

and models: 

“Yes, it is a serious issue specially if there are different frequencies of data. That is a real 

hassle, when you have got an important dataset having different formats and data 

models, it is tricky for those who don’t understand the best way to deal with it 

programmatically, then it a real issue. And it would not be an issue for me, it would be an 

issue for all environmental scientists.” 
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Some of the participants said data heterogeneity issue arises because of using different 

data capturing instruments and methods. Maintaining data having different data 

formats is hard for them: 

“It is coming our way and yes, it is a big issue. We have to take all forms of data and 

store it in a much common way as we can. We can’t keep disparate data formats because 

it makes it harder to maintain. What worries us is the various data capturing 

instruments and methods and I think that may lead to big issues in terms of 

heterogeneity.”  

Sometimes environmental scientists use different terminology for the same physical 

quality, for instance, one scientist would use the term, say, nitrate, other would use 

No3. Contrary to this, some scientists would use the same term for different concepts 

e.g. using the term temperature for air temperature and soil temperature. One of the 

participants identified this issue of semantics while integrating different datasets 

together: 

“It is a huge issue when you want to integrate different datasets and want to know the 

meaning of different terms or concepts involved in while bringing those datasets together 

because scientists sometime use different terms for the same concept or same term for a 

different concept.” 

Data heterogeneity is a big issue technologically for environmental scientists, 

particularly when they want to bring different datasets together, because they need to 

have computing skills to address this issue, which they usually do not have: 

“It is a big issue technologically because bringing together very diverse datasets is a skilled 

task and I think environmental scientists don’t have those skills typically to do that.”  

The same participant continued: 

“So, heterogeneity brings two problems: either descriptions of what the heterogeneity is, or 

secondly, the technical skills required to actually integrating those datasets when they are 

typically in a range of different data formats and most scientists don’t have the skills to 

bring those datasets together.” 
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A few participants identified the time and effort factors involved, in addition to 

computing skills, to address this challenge: 

“Yes, it is an issue and it takes a lot of time and effort to handle with such heterogeneous 

datasets. There have been some attempts in soil and land use to produce some standard 

formats for recording data but a lot of data has some bespoke type problems because of the 

lack of computing skills.” 

Another participant noted that he writes his own code in Matlab to resolve this issue; 

however, it takes a long time and requires proper computing skills because the 

solution he has is not sufficient to handle all types of data: 

“To resolve heterogeneity among different datasets, I write code in Matlab to process 

different datasets because there isn’t any standard software or tool. So, this is the sort of 

things that I would find working with computer scientists very useful because it takes me 

quite a long time, and obviously the code is still not sufficient to deal with all types of 

data.” 

Some participants identified the fact that there is lack of techniques to address this 

‘nightmare’ in any effective way. It stops them from doing their science: 

“Well, it is a nightmare that prevents you from even going there if you want to deal with. 

It is rather like the problems we talked about before we don’t know any really good 

example so far where really heterogeneous datasets have been brought together in any 

effective way. So, it is such a problem that I am not really sure we would be able to tackle 

it at the moment.”   

The interview continued with questions around the lack of metadata or 

provenance information. Most of the participants said that lack of metadata results 

in both provenance and quality issues. There is no standard way to produce reliable 

metadata and it would take a long time to have one such standard: 

“The data provenance is one of the first fields in your metadata because it ultimately 

affects the data quality and also if it is good the provenance would also take the standard 

that has used to produce it. In environmental science, we are a long way from having a 

reliable or standard way to do it.” 
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Most of the participants noted that when they draw data from other people or 

literature, they face a lot of lack of metadata issues. 

“Yes, it is a big issue, as I mentioned earlier there are very often many datasets from 

external sources which often have no metadata et all or not sufficient, so you won’t be able 

to properly interpret it.”  

Some participants identified a very important fact that if they get metadata that comes 

with a published paper, even that does not fulfil the criteria and hence is not at the 

level they need: 

“Everyone says it is in the paper and you go and look at the published paper but it is not 

nearly the level that you actually need. It doesn’t serve our purpose.”  

Only two participants mentioned that they do not have such issues because they either 

use the national datasets in their work, which are well-documented, or generate their 

own data: 

“We have been using national datasets in our current work. So, we are not really having 

any data provenance issue because they tend to be well documented data. Also, we have 

generating our own data so we haven’t been relying on data from others.”  

Another participant said he does not have any issue because the metadata is available: 

“It is not usually a problem in the kinds of things that we do because mostly people have 

recorded reasonably metadata, I think. In our area, more often people will know the people 

who have collected the data and metadata and will often go back to them and will ask 

them follow up questions.” 

The provenance issue gets worse when the data is very old and does not come with 

sufficient metadata. It takes a long time to amend or recreate such data: 

“These days we are trying capturing metadata that we got 50 years of data which does 

not have the right metadata behind it and it is very time consuming to recreate that 

metadata.” 

One of the participants noted a very important point: 
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“Yes, it is an issue, but we are publishing guidance to researchers nowadays, these are the 

minimum info that you have to provide. If we had stuck with a really strict criterion we 

wanted, it would get better.” 

When participants were asked a question about other technological barriers or 

frustrations around data, most of them said they have already described the issues 

they are facing. However, there are still a few issues some of the participants had not 

mentioned yet: 

“A lot of the sensors are not reliable, in terms of telemetry the signal quality is appalling, 

you can’t actually implement it in the real world, particularly in harsh conditions. There 

are challenges all the way along that loop.” 

A few participants, especially from climate science and soil science, mentioned their 

real frustration regarding the lack of high performance computational facilities such 

as cloud technology, cluster or HPC, to run their climate and soil models respectively. 

They noted that processing large datasets on desktops computers takes a long time to 

get done. Lack of efficient algorithms is another barrier in their science: 

“Processing large data is the biggest challenge we are facing. We need powerful 

computers and efficient algorithms to deal with it. Normal desktops are not efficient 

enough. We try to predict things that happen over large areas e.g. to calculate water flow 

in a big catchment area, we can’t run that on a standard desktop computer, it might take 

a long time, and that is our huge frustration.” 

To some participants, understanding interesting patterns among datasets and then 

turning them into knowledge in an innovative way is really important. One of the 

participants mentioned her real challenge about the significance of looking for new 

patterns and making sense from different datasets:  

“My frustration is, I don’t have computing skills to deal with data analysis on different 

sets of data. I want to understand interesting patterns between different but related 

datasets, what is it showing, and converting it in a form to make sense from it, is a huge 

challenge for me in my research.” 
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One of the ecologists identified his frustration of adopting an old way of doing 

science: 

“So, my frustration is we are often enforced to adopt the old system for doing science, 

which does not give us time to step back and say, well look it is stupid if we kind of design 

the system properly we wouldn’t have to keep doing this, we would be able to join up our 

datasets properly, we wouldn’t be constrained by the current approaches which is archaic 

really. So, that is the frustration if I have time to step back and look at it that we don’t 

move forward quickly enough on this to provide those usable methods that can be used by 

people who are not computer scientists and they are not necessarily technically adept but 

they do know what to do with the data whey they get it.” 

One of the participants wants to maintain a sustainable backup of his data. He has lost 

his valuable data in the past. His real frustration is maintaining all different copies of 

his data trackable. He further says the technology is there but he does not have funds 

to do that: 

“Yes, maintaining a sensible and sustainable back up and maintaining all different copies 

of the data trackable is my real frustration because I do my best but I am not formally 

trained in that. I guess there might be some software or techniques for people like myself 

and we don’t need necessarily the rigidity of a formal database and then getting data in 

and out needs to be quick and easy.” 

One of the participants working at the data centre identified a very important barrier 

regarding the mismatch between data compliance requirements and the way scientists 

want the data: 

“We have to have structured things we are legally obliged to deliver the data in this form. 

The scientists don’t like this, they want the data in the form they want to use it and it is 

not necessarily always in that form. This is where we are moving away from compliance 

to satisfy environmental scientists as much as possible.”  

The last question of the interview is about a single technological advance 

environmental scientists would wish for to support them in their science over the 

next ten years. We collected one of most important findings, based on the answers to 
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this question, around data, techniques and the associated technologies to deal with the 

data. One of the participants said: 

“I'm not sure it should be a new advance, it would be more applying what is already 

known in environmental science and it would be creating a middle layer between myself 

such that when data came in, it could be analysed and integrated in a more efficient way. 

We need software that could automatically integrate datasets and if required interlinking 

it with other data so that scientists could focus on science rather than data manipulation 

analysis.” 

Another scientist said almost the same thing: 

“We need a smart kind of database that could integrate and interlink our datasets in an 

easy and automated way, I don’t know whether there exists such a database.” 

Some scientist wished for software that could intelligently find some new patterns and 

derive new knowledge from the existing data captured from the sensors in the 

environment: 

“You cannot beat the impact that you have when you are trying to illustrate and see 

patterns, new knowledge and relationships between different datasets; and that would be 

really healthy in my work.” 

Another participant wished for better environmental sensors, in addition to intelligent 

decision support system: 

“I want better environmental sensors that could collect data about the natural 

environment in real time, and then an intelligent decision support system to use that data 

and is able to reason over the data to inform some decisions at the end of the day.”  

A soil scientist, working in collaboration with hydrologists, mentioned the 

significance of geospatial reasoning in their collaborative project. She said she wants 

to have software that could reason over spatio-temporal data to discover and 

understand spatio-temporal trends in the environment in order to be able to respond to 

these events in time: 
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“My single technological wish is about having a smart system to perform geospatial 

reasoning about different events occurring in the natural environment regarding weather 

monitoring, land usage, geographic events, hydrology and soil science and pollution 

monitoring. We are always interested to discover and understand the spatio-temporal 

trends in the environment in order to be able to respond to the emerging trends or 

geographic events.” 

One of the biogeochemist mentioned that they want a technology and intelligent 

software to perform geospatial reasoning for finding the answers of complex 

questions:   

“We need an intelligent system and a smart knowledgebase to find the answers of various 

kinds of complex queries anytime we want to retrieve, for instance, when is the right time 

to apply the fertiliser at the right place, when is the right time to sow the seed, have sheep 

been in the field and for how long, what was the soil moisture value during the intensive 

rainfall or flood and how long the flood did last for, what is the status of soil, I mean has 

it saturated or hydrophobic, and where are the high risk pollutants’ zones etc.” 

One of the participants wished to have all the data in his science at one place: 

“Ideally I need an access to all the data in my science and all the data at one place and 

that would really help me to focus more on my research.” 

Another scientist wished for a technology to perform data integration and spatio-

temporal reasoning of different datasets: 

“I want automatic integration of heterogeneous datasets and then reasoning over those 

data spatially and temporally. Imagine you have an intelligent software that is capable of 

say, you press a button and the datasets will be integrated with other datasets and also 

capable of spatio-temporal reasoning.”  

When data is published using open W3C standards such as RDF and SPARQL, and 

can be linked to other people’s data to discover more interlinked information is called 

five star linked data. One of the participants wished for five star linked data in his area 

of science: 



Chapter 3: Qualitative Study of Data Challenges in Environmental Science: Understanding the Long Tail 
of Science 

128 

“I would like to have a five star linked data in my research and discipline and is a way 

forward.” 

A volcanologist wished for a technology to automate different procedures and link 

disparate datasets for easy access and backup: 

“I would love the automation of procedures and linking my disparate datasets for easy 

access and backup mechanisms, e.g. where are my images from volcanoes from 1999 and 

it says you have 500 images and they are here.”  

3.6.3 Overall Reflections 

In this section, we report findings based on responses to the interview questions about 

different technological challenges and frustrations around environmental data. Firstly, 

most of the participants have real data discovery and access issues. Participants raised 

some technical, financial and cultural concerns regarding discovery and accessibility 

to data. A couple of participants mentioned that it is not an issue for them because 

their research is mostly based on their own generated data. Tackling data 

heterogeneity and quality of data are two core challenges reported by all participants. 

The main reason of their frustration to resolve data heterogeneity issue and achieve 

interoperability across datasets is the lack of computing skills. This has come out from 

observations across all interviews. The issues around data quality are partly technical 

and partly cultural. The cultural issues occur mostly because of following bad 

practices and getting no incentives or attribution for authoring well-documented 

metadata. Most of the scientists’ metadata is not well documented. Lack of standards 

for data quality control and assurance is another reason in the long tail of 

environmental science. The real frustration of environmental scientists in their work, 

particularly around data, is dealing with integrating heterogeneous and complex 

datasets because they cannot focus on their research and most of their time is wasted 

to work out technical issues around their integration. Some of the participants are 

really curious to understand the spatio-temporal dimension of the natural phenomena. 

Spatio-temporal reasoning across disparate datasets is a real challenge and 

substantially important to understand the emerging trends in the environment to be 

able to respond to those potential events.  
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The overarching theme that emerges from this section is the obvious importance of 

data challenges in environmental science. This breaks down into the following three 

key observations: 

Ø Variety, veracity, discovery and interlinking of environmental data are crucial and 

central challenges in the long tail of environmental science. 

Ø The real frustration of environmental scientists is the lack of computing 

knowledge and skills to deal with complex and heterogeneous data in 

environmental science particularly w.r.t. integration. This is rooted in observations 

across all interviews. 

Ø Reasoning about geographic events across space and time to discover and 

understand the spatio-temporal trends in the natural environment is another 

significant and fundamental challenge. 

3.7 Overall Discussion 

From the qualitative data analysis reported in this chapter, some important findings 

have been identified. First of all, there has been an emerging understanding of the role 

and potential of Semantic Web technologies in underpinning environmental science. 

From the study, it can be seen that Semantic Web Technologies can potentially play a 

key role in understanding complex and heterogeneous environmental data. Semantic 

Web technologies including ontologies and linked data can be used to describe these 

complex concepts and the relationship between them. Furthermore, as described in 

Chapter 2, Semantic Web technologies have the potential to reason over different data 

to deduce new knowledge, hence making sense of the data. This fact was also 

mentioned by one of the scientists working at the data centre of the CEH, “We have a 

huge interest in semantics approaches and new techniques for processing disparate datasets to 

look for some interesting patterns or infer new facts from the data.” Both ontologies and 

linked data can also potentially be used to integrate disparate datasets and to interlink 

the datasets with other external data sources, hence making an integrative, linked and 

open environmental data science. 

Secondly, there is an obvious lack of understanding and experience of Semantic Web 

technologies in environmental science. Furthermore, there is insufficient awareness 

about these technologies, partially because of the lack of communication and contact 
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with computer scientists. Other disciplines including Life Sciences and most notably 

Bioinformatics have benefited more from such collaboration. The good thing that can 

be observed is the emerging trend toward more interdisciplinary collaboration 

between the two disciplines. The need for this came across in all interviews, as one of 

the scientists noted, “the key frustration of almost all environmental scientists is the lack of 

technological skill set in environmental science addressing some often quite complex 

environmental challenges around data.” Hence, further research is required to investigate 

systematically Semantic Web technologies to understand environmental science 

around data in all its complexity. 

Thirdly, there are some unique characteristics of environmental data that need to be 

considered in a solution based on Semantic Web technologies: 

1. Interdependencies between Disparate Datasets 

There often exist causal-like relations between disparate datasets representing 

different real-world phenomena and how one phenomenon can negatively impact the 

other. For instance, how the intensification of chemical fertilisation and/or the 

movement of livestock into lowland areas, combined with high rainfall and spring 

tides, can cause a significant transfer of nutrients and faecal bacteria into coaster 

waters and ultimately affecting water quality and aquatic life. Therefore, to exploit 

environmental measurement data at its full potential, there is a need to convert these 

low-level descriptions about the real-world phenomena into meaningful knowledge to 

get an insight into those events about the physical world. 

2. Geospatial Data Integration and Reasoning 

Geospatial data plays a key role in understanding our natural environment and is 

critical in application areas such as weather monitoring, land usage, understanding 

geographic events, hydrology and soil science and pollution monitoring to name but a 

few. The environmental scientists always want to discover and understand the spatio-

temporal trends in the environment in order to be able to respond to the emerging 

trends or geographic events in a timely manner. The geospatial observations collected 

from sensors, if integrated and processed intelligently, can help in informing the 

decision making about the natural hazards. 



Chapter 3: Qualitative Study of Data Challenges in Environmental Science: Understanding the Long Tail 
of Science 

131 

3. Interoperability 

Environmental science is a multi-disciplinary science, which comprises several 

interconnected sub-disciplines including ecology, hydrology, soil science, 

biogeochemistry, climatology, meteorology, oceanography and geography. There is a 

potential shift in this discipline where individual research scientists, working in silos, 

have been transformed into more integrative, interdisciplinary and collaborative 

research groups. In such environment, environmental scientists connected to these 

related subfields, work on a complex environmental problem and need to access and 

use data. They use their own terminologies, different measurement units, different 

data models and experimental designs, which leads to data heterogeneity issue. Data 

is obtained from diverse sources such as individual scientists, research groups, sensor 

networks, observatories and experimentations. Data might be stored in a structured 

form such as database tables, semi-structured such as XML and unstructured such as 

plain text, blogs and images. These scientists need to combine and understand datasets 

from connected fields in order to have a uniform view of the structure and semantic of 

heterogeneous datasets. There could be many approaches to resolve data 

heterogeneity issues. One approach is using the Semantic Web technologies that has 

the potential to help in addressing interoperability problems. 

4. Data Discovery and Access 

Data discovery enables scientists to locate the pertinent and available information in a 

particular knowledge domain. The issue of data discovery and access arises in 

environmental sciences because of the vast scope and complexity of the discipline. 

Data is available in a number of forms such as biological, physical and/or chemical; 

captured from observational, experimental and field data measurements; stored in 

different places such as Internet databases, CD-ROMs, institutional records, journal 

articles, national museums, public archives. Majority of the valuable data have no 

web connection and hence is unavailable to the broader community because of the 

ownership of data by individual scientists, national or international funded projects 

and public or government institutions. On the contrary, making data available on the 

Internet does not mean easy discovery, for example, looking for a particular data 

might bring tons of results in which the desired data is hardly found. Data access is 

restricted owing to the issues of geographically scattered environmental data, the 
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temporally sparse data, restricted access to numerical models, institutional hindrance 

to data access, for instance, compatibility issues, and financial hurdles such as paying 

huge amount to access the data. 

5. Data Quality and Provenance 

Data quality is another major issue that arises because of many factors including 

faulty instruments, naïve data collectors, bad environmental conditions, bad practices 

and lack of standards. Scientists do not follow a standard method of documenting 

metadata. They do manipulation of data and then it is not cross checked. Usually, data 

is not accompanied by rich and well-documented metadata. The issue exacerbates 

when the originator of data is not known. Finally, there is a lack of standard quality 

assurance and quality control methods that can absolutely prevent the introduction of 

errors and possibly correct the anomalies in data with minimal human involvement in 

the loop. A related issue that arise because of the lack of metadata is data provenance 

that serves as a foundation for data quality.  

3.8 Conclusion 

This chapter has examined the unique characteristics of environmental science around 

data through semi-structured in-depth interviews. The overarching themes that 

emerged from this study are: 

Ø Data is the ‘lifeblood’ of modern environmental science. 

Ø  There is a potential shift in environmental science from ‘data silos’ toward more 

integrative and open data science. 

Ø The long tail of science is a key characteristic of data related to environmental 

science. 

Ø Collaboration between environmental science and computer science is important 

in order to overcome the technological barriers identified in the study above. 

Ø Semantic Web technologies have the potential to understand complex and 

heterogeneous data in environmental science. 

Ø Data heterogeneity, geospatial reasoning, interdependency between disparate but 

related datasets, discovery and access, and data quality and provenance are the key 



Chapter 3: Qualitative Study of Data Challenges in Environmental Science: Understanding the Long Tail 
of Science 

133 

data challenges in environmental science that must be addressed in any data 

management approaches going forward. 

The work in this thesis focuses in particular on Semantic Web approaches specifically 

for streaming data targeting the data needs of the Environmental Internet of Things 

project. The work particularly addresses the first three of the five challenges (Section 

3.7), electing to leave data discovery and access, and data quality and provenance as 

future work given the size and complexity of these topics. The next chapter introduces 

a systematic way of exploring Semantic Web technologies in terms of building an 

ontological model as a basis for addressing these three key research challenges around 

environmental data. 
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4 Ontology Design 

To address the three key research challenges derived from the qualitative analysis of 

in-depth interviews in the previous chapter, an ontology has been developed. This 

chapter provides an overall design of the ontology, which involves integrating and 

extending existing standard ontologies to form an overall framework.  

More specifically, the goal of this chapter is to develop an ontological framework to 

describe the data stemming from the Environmental IoT Infrastructure (target 

domain), described in Chapter 1. The proposed ontology conceptualises various 

concepts and characteristics of the target domain and the relationships between them. 

The ontology is used to enable low-level sensor descriptions to be used as 

semantically enriched datasets. These sensor measurements have been captured from 

the sensor nodes deployed in the Conwy catchment, North Wales.  Through this, the 

near real-time sensor data will be semantically enriched using the vocabulary of the 

ontology.  

A collaborative and incremental approach has been used. The approach is 

collaborative because, during the ontology design process, the input of environmental 

scientists was used extensively. Initial domain knowledge was acquired from semi-

structured in-depth interviews. In addition, several meetings were held with 

environmental scientists regarding the ontology design. It is incremental because an 

initial version of ontology was developed from the domain knowledge, acquired in the 

previous phase. The ontology was evaluated with real-time use-cases and refined. To 
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conceptualise related additional characteristics (such as thematic, temporal, and 

spatial) of environmental data, not covered by the initial version of ontology, it was 

further modified by adding new concepts and evaluated. This process was repeated 

until an improved ontology was achieved. The ontology is developed in OWL 2 (Web 

Ontology Language) using the ontology editor Protégé 5.2. 

The rest of the chapter is structured as follows. Section 4.1 describes the goals of the 

ontology. Section 4.2 discussed the design criteria that have been adopted in the 

ontology. The proposed modular design of the ontology has been described in section 

4.3. Section 4.4 discusses different dimensions of the ontology in terms of 

representation (thematic, spatial and temporal) of metadata in this work. The core 

modules of the ontology are described in section 4.5. Section 4.6 provides a summary 

of the chapter. Finally, section 4.7 concludes the chapter. 

4.1 Goals of the Ontology  

To perform a systematic investigation of Semantic Web technologies, an ontology is 

developed. The main goal of the ontology is to represent different concepts and 

characteristics of the target domain, and the relationships between them to get 

semantically enriched sensor measurements. This goal can be further divided into the 

following more specific objectives. 

Ø To describe the thematic, spatial and temporal concepts of the data stemming from 

the Environmental IoT infrastructure in order to discover possible 

interrelationships and higher-level insights between disparate but related datasets. 

Ø To resolve data heterogeneity issue by defining unambiguous ontological terms of 

data and their meanings and relationships in order to achieve semantic 

interoperability between different terms. 

Ø To integrate and reason over different sensor measurements regarding different 

environmental facets enabling scientists to answer complex questions in 

environmental science. 

4.2 Design Criteria of the Ontology  

In this section, we briefly discuss the design criteria that have been adopted by the 

ontology. Four main design decisions have been made, which are described below. 
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Reusing Existing Standards 

As described in Chapter 2, one of the main reasons of ontology development is to 

reuse existing standards if available in a knowledge domain instead of building an 

ontology from scratch, and hence reducing the engineering cost and enhancing the 

potential for uptake. In this ontology framework, several existing standard ontologies 

including the SSN, Geo, GeoSPARQL, and Time have been reused and extended. 

Modularisation and Extensibility 

In order to keep the ontology extensible and possibly to offer a high-level structure, a 

modular approach has been used where the ontology at lower layer uses/inherits the 

ontology at the upper layer, as shown in Figure 4.1. The main feature of modular 

approach is decomposing the process of building an ontology into more manageable 

components, hence enabling easy import of other ontologies in the existing model. 

Extensibility is another key feature of the ontology so that new concepts and modules 

can be easily added or removed while reducing time and effort. For instance, if the 

ontology requires the description of provenance information, the PROV-O ontology 

can easily be imported in the ontology. Similarly, the measurement unit ontology can 

easily be removed from the ontology framework and a new lightweight ontology of 

metric units can be built.  

Expressiveness, Reasoning Support and Performance 

Expressiveness is one of the most important features of ontology design and 

development. The more expressive an ontology is the more reasoning support it 

provides. However, there is a direct relationship between expressiveness and 

computational performance. Increasing expressiveness will directly affect 

computational complexity, and hence will lead to inefficiencies. As mentioned above, 

OWL 2 (Web Ontology Language) [184] has been adopted, which is designed and 

standardised by the W3C. OWL 2 provides strong expressive power in comparison to 

other Semantic Web languages [185]. In order to keep a good balance between 

expressiveness, reasoning support and performance, the OWL 2-DL sublanguage has 

been used because it provides both sufficient expressiveness and reasoning support 

while preserving good performance. OWL 2-DL retains computational completeness 
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(all conclusions are guaranteed to be computable) and decidability (all computations 

will finish in finite time) [186]. 

Lightweight Ontologies 

Another design criteria regarding the ontology design is the size of the ontology, i.e. 

how big and complex the ontology is. Keeping minimal and lightweight ontologies in 

the IoT domain is very important for the efficient management of heterogeneous data 

and devices. In practice, we could have a large, complex ontology that might lead to 

computational problems, for example, reasoning. Nevertheless, making ontological 

commitment is more important [62], i.e. the ontology should be based on the 

consistent use of vocabulary to achieve consensus across communities. Hence, the 

purpose of the ontology in this work is to aim for more lightweight but extensible 

model that communities can agree with and which can be extended over time as 

concepts are deemed missing. 

4.3 Ontology for the Environmental IoT Data 

One of the main reasons of developing ontologies is the reuse of knowledge. When 

ontology is built in a specific domain, others can reuse it in the same domain for their 

own purpose and application. As said above, a modular design is the best approach 

where the ontologies are layered according to their scope. The proposed ontology in 

this work has adopted the generic ontology model introduced by Guarino [21], which 

provides a top-down approach for developing ontologies according to the level of 

ontological generality. Guarino’s model is based on modular design that provides an 

easy integration of different ontologies making it suitable to be adopted in this work. 

The target ontology is an integrated model that is comprised of an upper ontology, a 

domain Ontology, a method/task ontology and an application ontology, as shown in 

Figure 4.1. 
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Figure 4.1: Environmental IoT Ontology Framework 

The upper ontology, also called the generic ontology, captures knowledge that can be 

used across multiple domains. The main purpose of the upper ontology in the 

ontology framework is to provide wider semantic interoperability among domain 

specific ontologies [187]. The upper ontology, adopted and extended in the ontology, 

is DUL (DOLCE Ultralite) [188] that stems from the alignment of the Descriptive 

Ontology for Linguistic and Cognitive Engineering (DOLCE) [189] and the 

Descriptions and Situations (DnS) [190] ontology. DUL describes concepts like 

object, event, process, situation, region, and quality, to name but a few. DUL is a 

lightweight version of DOLCE and DnS ontologies, which provides a set of upper 

level concepts that can serve as the basis for easier interoperability among many 

middle and lower level ontologies. 

The domain ontology is developed for representing knowledge in a particular area of 

interest or domain (for example, environmental science, the IoT domain, 

bioinformatics etc.). In the ontology framework, several domain ontologies have been 

reused and extended to describe: information in the IoT domain (e.g. sensors, devices, 

observations, and feature of interests), information in the time domain (e.g. instant, 

interval, and duration), information in the space domain (feature, geometry), and 

information related to the metric unit system. The domain ontologies that have been 

reused and extended in the ontology framework include the Semantic Sensor Network 
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(SSN) ontology, the GeoSPARQL ontology, the Geo ontology, the Time ontology 

and the MUO/UCUM ontology. 

The method ontology describes how domain knowledge can be used to perform 

specific tasks (e.g. diagnosis or scheduling). That is why this ontology is also called 

the task ontology. No method/task ontology has been imported in the ontology 

framework because the method/task ontology usually focuses on the problem-solving 

domains to accomplish a particular goal, for instance, expert systems. 

The application ontology is designed to represent knowledge in a specific application 

and this usually contains both the domain ontology and methods from the method 

ontology [61]. The application ontology has been developed for streaming data 

stemming from the Environmental IoT Infrastructure. This IoT infrastructure targeted 

specifically local and regional environmental applications using inexpensive off-the-

shelf technologies to understand the functioning of natural systems based on a 

network of sensors deployed widely across the landscape. 

In the above modular design the upper level ontology can be reused across diverse 

applications because the more general an ontology is the more chances of reusability. 

The lower level ontology imports the upper ontology to extend knowledge and further 

enhance reuse.  

4.4 Dimensions of the Ontology  

In this section, different dimensions of the ontology for the Environmental IoT 

architecture are described. These dimensions describe different representations of 

knowledge of the target domain, for instance, where a particular event occurred, in 

which geographical location and at what time it occurred [191]. These dimensions 

include thematic, spatial and temporal. Consider an event: the sheep have been found 

in the field during Storm Desmond. The thematic dimension in this event describes 

what did occur (the sheep have been found), the spatial dimension describes where 

did the event occur (in the field), and the temporal dimension describes what time did 

the event occur (during Storm Desmond). 

One of the core ontologies that is imported in the ontology is SSN. The SSN ontology 

is reused and further extended with additional classes, properties and relationships to 
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represent the information about the deployed sensor network such as sensors and their 

measurement capabilities, properties and feature of interests, observations and 

deployment and provenance of the sensors. To capture spatial and temporal 

characteristics and metric units of the measurements, the GeoSPARQL, Time and 

MUO/UCUM ontologies are extended respectively. The description of all these 

ontologies is given below. 

4.4.1 The W3C Semantic Sensor Network (SSN) Ontology 

In order to describe sensors and observations comprehensively, the W3C Semantic 

Sensor Network Incubator Group (SSN-XG) developed the SSN ontology in OWL2 

[121-122]. The resultant ontology has 41 concepts and 39 object properties. The 

ontology is aligned with the DUL ontology, a lightweight ontology for modelling 

physical or social contexts. The SSN ontology inherits 11 concepts and 14 object 

properties from the DUL ontology for the alignment purpose. The conceptual 

modules, key concepts and relations of the SSN ontology are shown in Figure 4.2.  

 

Figure 4.2: The SSN Ontology Conceptual Modules, Concepts and Relations [121-

122]. The dashed rectangular boxes indicate modules, solid rectangular boxes indicate 

classes/concepts, solid lines (linking a class to another class) represent 

rdfs:subClassOf relations and dashed lines represent properties.  

As can be seen from Figure 4.2, the SSN ontology is based around four main 

perspectives that are briefly described below. 
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Ø Sensor Perspective: where a sensor is characterised with a stimulus, sensing 

method, observation and capabilities, for instance, what is sensed, how it is sensed 

and what senses. 

Ø Observation Perspective: where the main focus is on the observation that connects 

the incoming stimuli, the sensor and the sensor output.   

Ø System Perspective: focuses on the system of sensors and their deployment. 

Ø Feature and Property Perspective: where focus is on the sensed properties or the 

observations that have been made about them. 

The SSN Ontology is based on the SSO (Stimulus-Sensor-Observation) ontology 

design pattern [123], which follows the principle of minimal ontological commitment 

[62] that means that the ontology should make as few claims as possible about the 

domain being modelled. This allows the ontology stake holders to specialise and 

instantiate the ontology as required, enabling reusability in a range of applications. 

The SSO pattern represents the relationship between sensors, stimuli and 

observations, as shown in Figure 4.3. Stimuli are changes or states detected by sensors 

in the environment. Sensors are physical objects used to perform observations by 

transforming incoming stimuli into digital representations. Observation serves as the 

nexus between the stimuli, the sensor, and the output of the sensor. 

 

Figure 4.3: The Stimulus-Sensor-Observation Ontology Design Pattern. The solid 

rectangular boxes indicate classes/concepts and dashed lines represent properties. 
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4.4.2 Representation of Environmental IoT Metadata 

The ontology developed in this work describes different features of data/metadata in 

terms of theme, space, time, and metric units. These representations are described 

below. 

(a) Thematic Metadata Representation 

The thematic metadata represents the main concepts or entities in a domain of interest. 

In our research, thematic metadata have been created mostly by sensors, for instance, 

about soil moisture, soil temperature, air humidity, air temperature, rainfall, and sheep 

etc., as shown in Figure 4.4. 

 

Figure 4.4: Sensor Measurements Stemmed from the Environmental IoT Project 

(b) Spatial Metadata Representation 

Spatial data plays a key role in our research to represent and analyse the geospatial 

dimensions of the environmental variables, for instance, where are sensors deployed, 

what is the location of sheep, what is the location of soil sensing node, what types of 

sensors are there in the river bank, what is the value of soil moisture at hilltop etc.  

To capture geospatial coordinates and features, several ontologies exist to model 

spatial characteristics of sensor data. The ontology reuses and extends the WGS84, 

also called the Basic Geo ontology [192], because it is a standard lightweight 
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ontology defining a minimal set of vocabulary to represent the latitude, longitude and 

altitude of the GPS system. It has only one class called ‘Point’ whose instances can be 

described using the properties ‘lat’, ‘long’, and ‘alt’. The benefit of Geo ontology, as 

said above, is its lightweight nature and simplicity, however this ontology cannot 

capture complex geospatial features such as polygon, rectangle etc. In order to 

overcome this limitation, the GeoSPARQL ontology [193], an Open Geospatial 

Consortium (OGC) standard, has been reused and extended in the ontology. The 

GeoSPARQL ontology describes information about spatial features and geometries 

and their relationships. In addition, GeoSPARQL provides some SPARQL querying 

functions and predicates for spatial reasoning [194]. This further extends the basic 

Geo ontology and provides different types of geometrical features, for instance, point, 

polygon, rectangle, triangle, line etc. These geometrical features use an object 

property including ‘hasGeometry’ and two literals including GML (Geography 

Markup Language) and WKT (Well Known Text), as shown in Figure 4.5. 

 

Figure 4.5: Geosparql Ontology. The solid rectangular boxes indicate 

classes/concepts, solid lines (linking a class to another class) represent 

rdfs:subClassOf relations and dashed lines represent properties. 

In order to capture the geospatial features of the target catchment area, the area is 

divided into three different zones on the basis of geometry of the catchment. These 

three zones are named as Hilltop, Swale, and Riverbank. Three sensor nodes, namely 

A7, A8 and A9, are deployed in the Hilltop area. The Swale zone is instrumented with 
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seven sensor nodes, namely A3, A6, AB, AC, AD, AE, and AF. Sensor nodes A0, A1, 

A2, A5 and AA are deployed in the Riverbank zone. These three areas along with 

their deployed sensor nodes are shown in Figure 4.6. 

 

 

Figure 4.6: Sketch Map of the Sensor Nodes Deployed in the Catchment 

(c) Temporal Metadata Representation 

Temporal characteristics of sensor data represent knowledge about time zones and 

measurement timestamps. These attributes are as important as spatial in this research 

describing the information about the Environmental IoT infrastructure, for instance, 

when have the sheep been in the field, when did the flood or intensive rainfall event 

occur, what was the duration of the flood, when was the soil saturated etc. To address 

such queries about real world phenomena, the ontology reuses and extends the OWL-

Time [195] ontology because of its lightweight nature and standardisation by the 

W3C. The Time ontology provides vocabularies to describe the temporal properties 

and relationships. The ontology also expresses the facts about the time interval and 

duration along with the datetime information. The Time ontology has two main 

classes called Instance and Interval with some additional properties like time: year, 

time: month and time: hour etc. The two main classes are shown in Figure 4.7. 
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Figure 4.7: Main Classes in Time Ontology. The solid rectangular boxes indicate 

classes/concepts and solid lines (linking a class to another class) represent 

rdfs:subClassOf relations. 

(d) Metric Units Representation 

Quantitative measurements are incomplete if they are not presented alongside their 

associated metric units. Metric units are basic scientific tools to provide meaning to 

these measurements. Unit ontologies are also used to perform semantic 

interoperability and help in data integration. Currently, several unit ontologies exist 

and there is no consensus on a standard ontology. In the ontology, the MUO 

(Measurement Unit Ontology) and UCUM (Unified Code for Unit of Measure) 

ontologies are reused and extended to represent measurement units for physical 

qualities such as soil temperature, soil moisture, air humidity, acceleration, and 

rainfall etc.  

Namespaces of Existing Ontologies Used in the Ontology 

The ontology namespaces used in the ontology framework are listed in Table 4.1. 

Prefix	 Description	 Namespace	

SSN	 The	SSN	Ontology	 http://purl.oclc.org/NET/ssnx/ssn 

DUL	

DOLCE+DnS	

Ultralite	Ontology	

http://www.loa-cnr.it/ontologies/DUL.owl# 
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Geo	

Geographical	

Location	 (Basic	

Geo)	Ontology	

http://www.w3.org/2003/01/geo/wgs84_pos# 

GeoSPARQ

L	

The	 OGC	 Geospatial	

Ontology	

http://www.opengis.net/ont/geosparql#  

Time	

The	 W3C	 Time	

ontology	

http://www.w3.org/TR/owl-time/ 

MUO/UCU

M	

Metric	 Units	

Measurement	

Ontology	

http://purl.oclc.org/NET/muo/ucum/   

enviot	

Environmental	 IoT	

Project	Ontology	

http://www.environmental-

iot.com/enviot_ontology/IotSemanticM

odel#	

Table 4.1: Ontology Namespaces Used in the Ontology Framework 

4.5 Design of Core Modules of the Ontology 

This section describes the design and development of core modules of the ontology, 

which extend the imported ontologies including SSN, GeoSPARQL, Time and 

MUO/UCUM. An ontology module is a small and interlinked conceptual fragment 

(component) of the ontology that can be considered as a self-contained and reusable 

component of the ontology preserving relationships to other ontology modules [196]. 

The ontology has been edited in Protégé 5.2 version. The core modules of the 

ontology are discussed below. 

4.5.1 The Sensor Module 

To represent different sensors of the Environmental IoT Infrastructure, the ssn:Sensor 

class of the SSN ontology is extended the to capture the descriptions of three main 

categories of sensors. These three categories of sensors are modelled as the subclasses 

of the ssn:Sensor class including AcclimarSensor, CampbellSensor and GroveSensor. 
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These three sensors along with the description of one particular type of GroveSensor 

sensor, i.e. enviot:GroveSoilMoistureSensor,(highlighted) are shown in Figure 4.8.  

 

Figure 4.8: Description of the GroveSoilMoistureSensor Class 

The ssn:Sensor class has two object properties: ssn:hasMeasurementCapability that 

describes  the measurement capabilities of a sensor, which are expressed as an 

instance of a class, and ssn:observes that describes what property a sensor observes, 

for instance, soil moisture, air humidity, air temperature etc. In order to describe the 

measurement capabilities of a particular sensor, an instance of the class 

ssn:MeasurementCapability is defined, e.g. 

enviot:GroveSoilMoistureMeasurementCapability. To link this instance to its 

measurement capabilities, the property ssn:hasMeasurementCapability is used by 

creating an assertion on a particular sensor, e.g. enviot:GroveSoilMoistureSensor. As 

an example, the measurement capabilities of the enviot:GroveSoilMoistureSensor 

class are shown in Figure 4.9. 

 

Figure 4.9: Description of enviot:GroveSoilMoistureMeasurementCapability Class 

4.5.2 The Observation Module 

Observation (ssn:Observation) is a situation (DUL:Situation) , which is produced by a 

sensor using some sensing method. Obsevation describes both an observed property 

or a feature of interest and a value attributed to that property by a particular sensor. 
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Hence, the result of observation is the output of a sensor. Several properties for the 

instace of the ssn:Observation class are defined, some of them are summarised below. 

Ø ssn:featureOfInterest: points to the observed feature of interest, which can be any 

observed real-world phenomenon, for instance, soil, saturated soil, weather etc. 

Ø ssn:observedProperty: points to any property observed by a paritcular sensor, e.g. 

soil moisture, soil temperature, air humidity etc. 

Ø ssn:observeBy: points to a paritcular sensor that observed the observation, e.g. 

enviot:GroveSoilMoistureSensor. 

Ø ssn:observationResult: points to the result of an observation, which is the output 

of a sensor, e.g. enviot:GroveSoilMoistureSensorOutput. 

Ø ssn:observationResultTime: points to the time the result of observation became 

available at. 

Extending the ssn:Observation class, a sub-class, called 

enviot:GroveSoilMoistureObservation is defined that describes the observation of the 

soil moisture property, observed by enviot:GroveSoilMoistureSensor sensor, as 

shown in Figure 4.10. 

 

Figure 4.10: Description of enviot:GroveSoilMoistureObservation Class 

4.5.3 The Data Module 

In order to manage the data, two classes of the SSN ontology including 

ssn:SensorOutput and ssn:ObservationValue are extended. The output of a sensor, 

which is actually the result of an observation, is represented by an instance of the 

class ssn:SensorOutput, as shown in Figure 4.11. 
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Figure 4.11: Description of the GroveSoilMoistureSensorOutput Class 

The actual data value is the result of an observation, which is represented by an 

instance of the class ssn:ObservationValue, as shown in Figure 4.12. 

 

Figure 4.12: Description of the GroveSoilMoistureValue Class 

4.5.4 The Device Module 

To represent a sensor network comprising different sensors, the ssn:Device class is 

reused and extended, which is the sub-class of the ssn:System class. three sub-classes 

of the ssn:Device class are defined, i.e. enviot:SoilSensingNode, 

enviot:SheepTrackingNode, and enviot:WeatherMonitoring Device to describe its 

corresponding constituent sensors. Hence, one instance of the class 

enviot:SoilSensingNode would include six different sensors, i.e. 

GroveSoilMoistrueSensor, GroveSoilTemperatureSensor, GroveAirHumiditySensor, 

GroveandAirTemperatureSensor, GroveSurfaceFlowSensor, and AcclimaSensor. In 

order to connect a particular instance of the enviot:SoilSensingNode device with its 

constituent six sensors, the DUL object property , i.e. DUL:isDesbribedBy is used to 

point to all the constituent sensors of the device, as shown in Figure 4.13. 
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Figure 4.13: Description of the SoilSensingNode Node and its Constituent Sensors 

To show the output of the devices/nodes defined in the previous step, a subclass 

named enviot:SoilNodeOutput of the class DUL:InformationObject is defined to 

represent the output of the einviot:SoilSensingNode node. To classify the output of a 

node/device that comprises different several sensors, a new object property named 

enviot:isClassifiedBy is defined to point to a particular sensor classifying the output, 

as shown in Figure 4.14. 

 

Figure 4.14: Description of the SoilNodeOutput Class 

4.5.5 The Feature of Interest and the Property Module 

Features of interest (ssn:FeatureOfInterest) are real-world entities that are defined as 

either events or objects and hence the target of sensing. Features of interests are 
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described in the SSN ontology by the ssn:FeatureOfInterest class that is defined as 

either DUL:Event or DUL:Object. Properties (ssn:Property) are qualities 

(DUL:Quality) or observable characteristics of the real-world entities 

(ssn:FeatureOfInterest). They do not exist independently and are the natural part of 

the feature of interest, for instance, in th eontology, enviot:Soil is the feature of 

interest and enviot:SoilMoisture is its property. The relationship between these two 

classes, i.e. ssn:FeatureOfInterest and ssn:Property is shown in Figure 4.15. 

 

Figure 4.15: The Relationship between ssn:Propterty and ssn:FeatureOfInterest 

In the ontology, several features of interest and their related properties are defined. 

Figure 4.16 shows the enviot:Soil as one of the features of interests and its properties 

pointed to by the ssn:hasProperty property. 

 

 

Figure 4.16: The Relationship between Feature of Interest and Property using 

ssn:hasProperty 
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Figure 4.17: The Relationship between Feature of Interest and Property using 

ssn:isPropertyOf 

4.5.6 The Geospatial Feature Module 

The Basic Geo and the OGC GeoSPARQL ontologies are reused and extended in the 

ontology for two main purposes: to capture complex geospatial features of both the 

catchment area (field) and the sensor nodes deployed in it (Figure 4.6), and to track 

the movement of livestock in the field, for instance, whether sheep have been in the 

field. The geosparql:Feature class is extended and its sub-class named enviot:Field is 

defined to model the catchment area in the ontology. Three different types of sensor 

nodes in the field are deployed for sheep tracking, soil sensing and weather 

monitoring whose corresponsing sensor nodes are defined in the ontology as 

enviot:SheepTrackingNode, enviot:SoilSensingNode, and 

enviot:WeatherMonitoringDevice respectively. To point to the said three sensor 

nodes, the ssn:hasDeployment object property is used. As explained in 4.5.2 (b), the 

field is modelled in terms of nodes deployment into three main zones, i.e. Hilltop, 

Swale and Riverbank. These zones are defined as sub-classes of the enviot:Field class 

as enviot:Hilltop, enviot:Swale, and enviot:Riverbank, as shown in Figure 4.18. 

 



Chapter 4: Ontology Design 

153 

 

Figure 4.18: Description of the Field (Catchment area) and Its Three Zones 

The instance of the class enviot:Hilltop  is assigned  the geometry as ‘Line String’ by 

using the geosparql:hasGeometry object property that points to the class 

geosparql:LineString. Similarly, the instance of the class enviot:Swale is assigned the 

‘Polygon’ geometry that points to the class geosparql:Polygon. Finally, the instance of 

the class enviot:Riverbank is also assigned the ‘Line String’ geometry. 

4.5.7 The Phenomenon Module 

One of the main objectives of the ontology is to conceptualise different phenomena or 

events including risk of pollution, storm, and soil saturation, so that the ontology 

reasoner can infer or classify if such an event occurs. One of the major advantages of 

building ontologies using the OWL-DL sub-language is the automatic inferencing of 

class hierarchies using a reasoner. Without a reasoner, it becomes really hard to keep 

ontologies in a consistent and correct state. In order to classify the above said 

phenomena, two types of classes are defined in the ontology, i.e. Primitive Classes 

and Defined Classes. A primitive class, defined as a super class, is one that has only 

necessary conditions. Necessary conditioned are described as: if A is a 

member/instance of class B, then it is necessary for A to fulfil the conditions of B. 

Fulfilling necessary conditions alone by any instance, say C, would not make C 

necessarily a member of class B. In this chapter, the classes discussed so far are all 

primitive classes. On the other hand, a defined class is one having at least one set of 

both necessary and sufficient conditions. Any instance of the primitive class that also 

satisfies the definition of the defined class will be classified/inferred by the reasoner 

as an instance of the defined class. Defined classes in Protégé are distinguished from 

the primitive classes by having three white horizontal lines in it.  
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In the ontology, three phenomena are modelled and are defined as 

enviot:RiskOfPollution, enviot:SoilSaturation, and enviot:StormOrFloodingEvent as 

shown in Figure 4.19.  

 

 

Figure 4.19: Description of the enviot:RiskOfPollution Defined Class 

To check the consistency (the ontology does not include or allow for any 

contradictions) and functionality of these primitive and defined classes and whether 

the reasoner successfully infers any of the above phenomena, an instance of the class 

enviot:Phenomenon is created, which fulfils the definition of the defined class 

enviot:RiskOfPollution. After running the reasoner over the ontology, the reasoner 

has successfully classified (inferred) the instance of the class enviot:Phenomena under 

the class enviot:RiskOfPollution. Hence, this confirms the consistency and correct 

functionality of these classes. 

4.5.8 The Metric Units Module 

To represent quantitative measurements of the physical qualities, initially the 

MUO/UCUM ontology was reused and extended in the ontology. However, later this 

ontology was dropped for two main reasons. First, there were a lot of malfunctional 

xml literals leading to failure in the reasoner. The malfunctional literals were 

corrected, however the reasoning performance was very low. Second, the 

MUO/UCUM ontology populated the ontology with a large number of instances and 

this led to low reasoning performance. Hence, a minimal ontology is developed to 

overcome the above problems while describing the metric units. Two main classes are 

defined, i.e. the enviot:PhysicalQuality class to describe all physical qualities used in 

the ontology, and the enviot:UnitOfMeasurement class for representing the metric 

units of those physical qualities. In order to connect these two classes, two object 

properties are defined, i.e. enviot:MeasuresQuality and 
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enviot:hasUnitOfMeasurement. The domain of the enviot:MeasuresQuality is 

enviot:UnitOfMeasurement class and its range is enviot:PhysicalQuality class. The 

physical qualities are defined as the instances of the enviot:PhysicalQuality class 

(Figure 4.20). Then the measurement units for all physical qualities, used in the 

ontology framework, are defined as instances of the enviot:UnitOfMeasurement class, 

as shown in Figure 4.21.  

 

 

Figure 4.20: Instances of the Class enviot:PhysicalQuality 

 

Figure 4.21: Metric Units Defined by the enviot:UnitOfMeasurement Class 
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4.6 Summary 

The final generic block diagram and a sample of the ontology are shown in Figure 

4.22 and Figure 4.23 respectively. The ontology has integrated and extended existing 

standard minimal domain and upper ontologies. The core of the ontology is the 

extended versions of these standard ontologies including SSN, GeoSPARQL, Time, 

and Geo, coupled with the applicaton ontology for describing streaming data derived 

from the Environmental IoT infrastructure. However, the ontology has not used any 

task/method ontology that usually focuses on the problem-solving domains to 

accomplish a particular goal, for instance, expert systems, which is not the purpose of 

this work. Furthermore, the MUO/UCUM has been removed owing to the issues of 

having malfunctional xml literals and a large number of individuals/instances, leading 

to both reasoning failure and low performance. Hence, a minimal lightweight unit 

ontoloy is devloped. The consistency of the classes in the ontology has been checked 

successfully using the Pellet reasoner. The ontology owl file can be downloaded from 

the link given below. 

https://lancaster.box.com/s/zhbwidfd03gulhqtkojgebsfrdyza8i8 

  

Figure 4.22: Environmental IoT Ontology  
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Figure 4.23 A sample diagram of the ontology. The rectangular boxes represent 

classes/concepts, the solid lines (linking a class to another class) represent 

rdfs:subClassOf relations and the dashed labelled lines represent the object properties. 

4.7 Conclusion 

This chapter has discussed in depth the design and development of an integrated 

ontology for the semantic enrichment of environmental data stemmed from the 

Environmental IoT infrastructure deployed in the natural environment. The ontology 

has taken into account various key design criteria including reusing existing 

standards, modularity and extensibility, expressiveness and reasoning support and 

aiming for a lightweight design. The chapter has discussed the core modules of the 

ontology focussing on three main themes of sensor metadata representation, i.e. 

thematic, spatial and temporal. Though the ontology has not demonstrated yet the 

underlying functionality, strengths and limitations in the target domain, it is checked 

against anomalies and inconsistencies using the Pellet reasoner and has found 

consistent. No inconsistencies have been detected in the ontology itself (super-

class/sub-class relationships), or in the set of individuals (instances) of the classes that 

have been defined to test the working of the ontology. The domain and range 

definitions have found compatible, cardinality properties are consistent and the 

requirements on properties’ values do not conflict with domain and range restrictions. 

The ontology does not conflate observational data with the properties of sensors 
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which was one of the limitations of CESN [160] ontology potentially leading to data 

integration issues. The ontology has described the knowledge in the target domain 

along with space and time concepts, covering all thematic, spatial and temporal 

dimensions which have not found in the work of [163]. The ontology has extended 

existing standard ontologies leading to better semantic interoperability support 

contrary to the approach in [129] using O & M and SensorML specification which 

lacks explicit semantic interoperability. Moreover, the ontology provides strong 

querying support that was lacked in the approach used in [168].   

The next chapter provides an evaluation of the ontology through three different real-

world use-cases, derived from the analysis of the semi-structured interviews and IoT 

project meetings with environmental scientists. 
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5 Evaluation 

This chapter provides an evaluation of the ontology through three different real-world 

use-cases, derived from the analysis of the semi-structured interviews, and the 

Environmental IoT project meetings with environmental scientists. These use-cases 

are based on near real-time data stemming from the Environmental IoT Infrastructure 

[20]. The ontology design and evaluation are intrinsically linked through the iterative 

approach as introduced in Chapter 4. 

The rest of the chapter is structured as follows. Section 5.1 describes three real-world 

use-cases, which are the risk of a pollution event, geospatial data integration and 

reasoning, and interoperable metric units. Section 5.2 looks more closely at the 

framework that has been set up to carry out the evaluation of the use-cases. In section 

5.3, the evaluation criterion is briefly described. Section 5.4 and 5.5 then provide a 

more in-depth assessment of the work through evaluation of the use-cases and 

addresses the research questions associated with the aims of this thesis. Section 5.6 

discusses the analysis and the lessons learned from this work. Finally, section 5.7 

presents concluding remarks. 
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Figure 5.1: Use-cases Derivation 

5.1 Real-world Use-cases 

This section describes the three use-case scenarios derived from the semi-structured 

interviews and drawing upon the main key findings, and the Environmental IoT 

project meetings with environmental scientists, as shown in Figure 5.1. These use-

cases are described below. 

5.1.1 Use-case 1: Risk of Pollution Event 

Sara is a senior soil scientist at the Centre of Ecology and Hydrology (CEH) whose 

areas of research are soil, biogeochemical and ecosystem science. She is also very 

interested in knowledge systems exploiting advances in computer science.  She 

investigates the impact of land management on ecosystem services, change in soil 

structure, and impacts of nitrogen pollution on soils. Currently, she has been working 

on a research project with her colleague George, a hydrologist, investigating the 

interdependencies among different environmental facets such as soil, livestock 

movement, weather, chemical fertilisers and water quality and their impact on each 

other. Their focus is on one specific geographic region around the Conwy in North 
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Wales, typical of many rural areas supporting important industries including 

agriculture, forestry, tourism and fishing. They want to identify the potential 

anomalous events regarding pollution which may occur, for instance, the movement 

of livestock into lowland areas, combined with intensive rainfall, can cause a 

significant transfer of nutrients and faecal bacteria into coastal waters. Their research 

questions are: Is there a risk of occurrence of pollutants in water? If yes, what could 

be the cause of the pollution that occurred in water? They believe that the usage of 

Internet of Things technology along with techniques based on richer knowledge-

driven use of data would possibly help in predicting the occurrence of these events 

(with a sample reasoning framework shown below in Figure 5.2). 

 

Figure 5.2: The Use-case of a Potential Risk of Pollution Event in the Catchment 

5.1.2 Use-case 2: Geospatial Data Integration and Reasoning 

Sara and George want to discover and understand the spatio-temporal trends in their 

catchment area in order to be able to respond to such emerging trends or geographic 

events in a timely manner. To do so, they are trying to understand the geospatial and 

temporal dimensions of several environmental variables and need to integrate these 

observations collected from the sensors. They want to merge these measurements 
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captured at different locations and times to get a unified view of the data and an 

understanding of how different environmental variables are related to one another. 

They require a richer knowledge-driven database and smart data retrieval techniques 

to manage their data more effectively and to add meaning to their metadata that the 

traditional database management systems they previously used cannot do. They also 

need to find the answers of various kinds of complex queries anytime they want to 

retrieve from the smart knowledge base, for instance, what are the features and 

geometries of the catchment where sensors are deployed, where exactly the sheep 

have been found in the field (e.g. hilltop, swale, and riverbank), what was the soil 

moisture value when the storm, say, Storm Desmond, occurred and how long the 

flood did last for, what is the location of soil sensing node where the soil has been 

saturated, what types of and how many sensors are deployed on the river bank 

measuring soil moisture, soil temperature, and sheep movement and where are the 

high risk pollutants’ zones etc.  

5.1.3 Use-case 3: Interoperable Metric Units 

Sara and George have been collecting different measurements from a sensor network 

deployed in the catchment such as soil moisture and temperature, electric conductivity 

and permittivity of soil, air humidity and temperature, cattle movement in the field, 

rainfall measurements, flow detection of water etc. They have also got some data 

regarding soil nutrients and pH from hand sampling method and analysing it in the 

lab. In order to provide meaning to these quantitative measurements they are using 

several metric units. The collected data is sent to the cloud-based server in a remote 

site via GSM for storage and further processing where it has also been accessed and 

used by their collaborators working in the same or connected area of environmental 

science. Sara, being a soil scientist, is interested in one aspect of the data and is using 

her own chosen metric units, George, being a hydrologist, is interested in another 

aspect of the data and is representing it with different units while their collaborators, 

working in soil science, hydrology and biogeochemistry, are looking for different 

aspects of the same data with different metric units. This situation is exacerbated 

when all these scientists and modellers do not follow uniform metric units. Using 

different metric units for the same physical qualities has arisen the issue of 

heterogeneity. To cope with this metric unit conflict, they have decided to use 
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common measurement units e.g. SI units but this approach is not viable in situation 

when they need an automated integration of different measurement datasets from 

these various connected subdomains so there is a need to recognise such heterogeneity 

in metric units and manage the consequent need for interoperability in a more 

automated manner. 

5.2 Evaluation Framework 

A framework has been set up to evaluate the real-world use-cases. Figure 5.3 

describes the steps involved in the iterative approach. The data is stemming from the 

Environmental IoT Infrastructure, deployed in the natural environment to monitor 

different environmental facets. Data is collected in JSON format from the IoT devices 

and is stored in a MongoDB NoSQL database installed on a cloud server. The JSON 

format is adopted because of its advantages including ease of use, compatibility and 

lightweight syntax. The data is then semantically enriched with the vocabularies of 

the ontology designed and developed in the previous chapter. The Python scripts are 

written by one of the project collaborators to perform data transformation 

(RDFization). The result of the semantic enrichment is the JSON-LD data that is one 

of the serialisations of the RDF. These JSON-LD triples are loaded in the GraphDB 

triplestore for processing. The triples along with the ontology are fed into a Jena 

application framework to perform the intended tasks including deducing new 

knowledge by using its inference engine (e.g. deriving the pollution event), geospatial 

data integration and interoperability. If the target tasks are not accomplished, the 

process goes back to the ontology development phase where the ontology is modified 

(according to the iterative approach described in Chapter 4). The data is then 

semantically enriched with the modified ontology to reflect the changes. The newly 

transformed data along with the modified ontology are fed back into the Jena 

application. Hence, both the ontology and the semantically enriched sensor 

measurements are refined in every iteration until the intended tasks are done. 

As can be seen in Figure 5.3, there are four main tasks: i) ontology refinement that is 

done after every iteration; ii) semantic enrichment of data and then converting data to 

JSON-LD serialisation (an example of JSON-LD data after semantic enrichment of 

one particular sample of soil sensing node can be seen in Figure 5.4); iii) storing and 

retrieving RDF triples in the GraphDB [197] triplestore (GraphDB is a highly 
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efficient and robust graph database with RDF, SPARQL and GeoSPARQL ontology 

support and the advantages of GraphDB over other triplestores are its compliance to 

W3C standards and support for highly efficient reasoning); iv) access to GraphDB 

through the Jena application framework using an API (Jena is an open source java-

based application framework for building Semantic Web applications, which provides 

a programming interface for RDF, OWL and SPARQL). Jena also includes a rule-

based inference engine. In Semantic Web approaches, inference is used to deduce 

further knowledge based on existing RDF triples and a set of inference rules using an 

inference engine (reasoner). In this work, a Jena application has been developed, 

which takes RDF triples as an input along with a set of rules and the ontology to infer 

new knowledge. 

 

 

Figure 5.3: Evaluation Framework of the Overall Approach 
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Figure 5.4: JSON-LD Representation of One Particular Soil Sensing Node 

5.3 Evaluation Criteria 

From Figure 5.3, it can be seen that the evaluation framework revolves around the 

ontology that is designed and developed on top of the Environmental IoT 

Infrastructure (see Chapter 4).  To remind the reader, the main goal of the ontology is 

to accomplish three main tasks, i.e. discovering the interdependencies across disparate 

datasets, spatio-temporal data integration and reasoning and metric units 

interoperability. To achieve these objectives, the ontology is plugged into an 

application built in the Jena programming framework. As the ontology is a major 

component of this application framework, the evaluation of the results of the 

application is mainly dependent on the ontology but also partly on the application 

framework.  

The evaluation criterion is based on the following key reflective qualitative aspects. 

Ø Functional – accomplishing the above said three key tasks that are important to 

the data needs of the Environmental IoT Infrastructure.  

Ø Expressive – how well does the approach do the job, e.g. is a query natural for an 

environmental scientist to write? 

Ø The overall strengths and limitations of the approach. 

{"_id":"55fbf0a270b2d7302700002a","rdf:type":"enviot:SoilSensingNode","geosparql:hasGeometry":{"sf:asW
KT":"POINT(-3.133015 53.225369)","@id":"sf:Point","xsd:type":"geosparql:wktLiteral"}, 
"ssn:hasSubSystem":{"rdfs:subClass":"enviot:HardwarePlatform","@id":"enviot:ArduinoMega2560"},"ssn:dep
loyedOnPlatform":{"rdf:type":"ssn:Platform","@id":"enviot:Soil"},"enviot:hasAddress":"\"A1\"","DUL:isDescr
ibedBy":[{"ssn:hasMeasurementCapability":"enviot:GroveSoilMoistuMeasurementCapability","rdfs:subClass":
"ssn:Sensor","@id":"enviot:GroveSoilMoistureSensor"},{"ssn:hasMeasurementCapability":"enviot:GroveAirTe
mperatuMeasurementCapability","rdfs:subClass":"ssn:Sensor","@id":"enviot:GroveAirTemperatureSensor"},{"
ssn:hasMeasurementCapability":"enviot:GroveSoilTemperatuMeasurementCapability","rdfs:subClass":"ssn:Sen
sor","@id":"enviot:GroveSoilTemperatureSensor"},{"ssn:hasMeasurementCapability":"enviot:GroveAirHumidi
tyMeasurementCapability","rdfs:subClass":"ssn:Sensor","@id":"enviot:GroveAirHumiditySensor"}], 

"@context":{"owl":"http://www.w3.org/2002/07/owl#","wgs84_pos":"http://www.w3.org/2003/01/geo/wgs84_
pos#","DUL":"http://www.loa-cnr.it/ontologies/DUL.owl#","xsd":http://www.w3.org/2001/XMLSchema# 
,"geosparql":"http://www.opengis.net/ont/geosparql#","rdf":"http://www.w3.org/1999/02/22-rdf-syntax-
ns#","rdfs":"http://www.w3.org/2000/01/rdf-schema#","sf":"http://www.opengis.net/ont/sf#", 
"ssn":"http://purl.oclc.org/NET/ssnx/ssn#","enviot":"http://www.environmental-
iot.com/enviot_ontology/IotSemanticModel#","time":"http://www.w3.org/2006/time#","enviot:TimeStamp":{"e
nviot:hasQuantityValue":{"@type":"xsd:dateTime"},"time:inDateTime":{"time:inDateTime":"time:DateTimeD
escription","@id":"time:Instant"}}},"DUL:hasLocation":{"rdf:type":"DUL:SpaceRegion","@id":"enviot:Hiraet
hlyn"},"@id":"55fbf0a270b2d7302700002a","@type":"enviot:SoilSensingNode"} 
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In summary, the evaluation is carried out to evaluate the applicability, strengths and 

limitations of the adopted approach in the target domain. 

5.4 Use-cases Evaluation 

This section describes the in-depth evaluation of the overall approach through the 

above real-world use-cases. Use-cases are based on sensor measurements that are 

semantically enriched with the vocabulary of the ontology. This semantically enriched 

data is intended to provide support to achieve the objectives of environmental 

scientists (e.g. Sara and George, mentioned in the use-cases) regarding environmental 

data. More specifically, the approach is designed to enable Sara and George: to 

discover the interdependencies between disparate datasets representing different 

environmental facets, to answer their complex geospatial queries by integrating their 

datasets in a unified way, and to provide unambiguous automated interoperability 

between different metric units. All these use-cases are briefly evaluated one by one, 

with an overall evaluation then carried out across all the use-cases and against the 

above criteria. 

5.4.1 Evaluating Use-case 1: Risk of Pollution Event  

To infer the risk of pollution event in the catchment, first it is important to identify a 

pollution event and the scenario through which it occurs. In the proposed approach, 

the pollution event is conceptualised in the ontology (see section 4.5.7). The 

description of the scenario for the pollution event is derived from Figure 5.2, which is 

defined by environmental scientists who collaborated in the project. From the figure, 

it can be seen that deducing the risk of a pollution event is a complex event which 

further depends on the knowledge about soil saturation, high intensive rainfall, 

existence of sheep in the field and existence of any riparian zones. Deriving such a 

complex event would require further support from the OWL language. Though OWL-

DL provides considerable expressive power, it has some limitations, particularly in 

terms of describing properties and individuals [198]. In order to overcome this 

limitation, SWRL (Semantic Web Rule Language) [199] rules are defined to provide 

additional expressive power. SWRL is an expressive OWL-based rule language, 

which allows users to define rules in the ontology providing powerful deductive 

reasoning capabilities [200]. Hence, to deduce the potential pollution event in the 
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ontology, initially SWRL rules are defined which are based on the conditions 

described in Figure 5.2. 

SWRL Rules 

A SWRL rule contains an antecedent (body) and a consequent (head), each of which 

is formed from a set of atoms, and has the form: antecedent => consequent 

A SWRL rule can be read as if the antecedent is true, then the consequent must also 

be true. Using atoms in a SWRL rule would become: 

atom ^ atom => atom ^ atom 

The above rule can be read as if all the atoms in the antecedent are true, then the 

atoms in the consequent must also be true. An atom is an expression of the form: 

D (x), P (x, y), or built-in (r, x,…) 

In the above expression, D is an OWL description or data range, P is an OWL 

property, r is a built-in relation, x and y are either variables, OWL individuals, or 

OWL data values [201]. Atoms can represent classes, instances, data literals, 

individual variables or data variables. All variables are preceded by a question mark 

(?) in the rule. 

The following four SWRL rules are defined in the ontology to deduce the risk of a 

pollution event. Rule 1 is defined to infer the high intensive rainfall that is modelled 

in the ontology. An instance of the class enviot:Weather is created with the name 

‘WeatherRainfall’ and is assigned a rainfall value ‘100’. In the ontology, a sub-class, 

called enviot:HighIntensiveRain, of the class enviot:Weather is defined. An assertion 

is put on the enviot:Weather class, which defines the range of the rainfall values, as 

shown in Figure 5.9. After modelling the required information, the rule is defined as: 

Rule 1: Soil Saturation 

Rule 1 is defined to infer a soil saturation event that is modelled in the ontology as a 

sub-class of the enviot:Phenomenon class. In the ontology, three types of soil 

moisture conditions are described which characterise the current status of soil: i) dry 

soil is the one whose soil moisture value lies in the range 0-299; ii) humid soil’s 
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moisture value falls in the range 300-599; iii) saturated soil is one whose soil moisture 

value is measured in the range 600-900. If any sensor measurement of soil moisture 

falls in this third category, the reasoner would classify the status of soil as saturated. 

To derive a soil saturation event, rule 1 is defined as:  

enviot:Soil(?s) ^ enviot:hasSoil(enviot:Hiraethlyn, ?s) ^ enviot:hasSoilMoisture(?s, 

?m) ^ enviot:hasSoilMoistureValue(?m, 900) -> enviot:SoilSaturation(?s) 

After adding the above rule to the ontology, the Pellet reasoner is selected and started 

to reason over the ontology. The output of the reasoner is shown in Figure 5.5. From 

the description view in the figure, it can be seen that an individual named ‘Soil1’ 

(shaded in yellow), which is an individual of the class enviot:Soil, is correctly 

classified as an individual of the class enviot:SoilSaturation. 

 

 

Figure 5.5: Individual (Soil1) Classified as being an Individual of 

enviot:SoilSaturation 

Rule 2: Sheep in the Field 

In order to derive whether sheep are found in the field, a sub-class named 

enviot:FieldWithSheep of the class enviot:Field is defined. Note that field is situated 

in the region named Hiraethlyn. An individual of the class enviot:Field is defined 

having an object property enviot:hasSheep, that would point to sheep in that field. If 

that individual has got sheep located with it, it would be classified as being an 

individual of the class enviot:FieldWithSheep. The rule is defined as: 
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enviot:Field(?f)^enviot:Sheep(?s)^enviot:hasField(enviot:Hiraethlyn,?f)^enviot:hasSh

eep(?f, ?s) -> enviot:FieldWithSheep(?f) 

The result of the reasoning is shown in Figure 5.6. From the figure, it can be seen that 

the individual named SheepyField1 is correctly classified as the individual of the class 

enviot:FieldWithSheep. 

 

 

Figure 5.6: Individual (SheepyField1) Classified as being an Individual of the class 

enviot:FieldWithSheep 

Rule 3: High Intensive Rainfall 

To infer whether there is high intensive rainfall, different types of precipitation are 

modelled in the ontology with particular rainfall measurement ranges. These types 

include light rain, moderate rain, heavy rain, intensive rain and high intensive rain. 

All these types of rain are assigned value ranges. To define rainfall ranges for these 

different types of rain, data type restrictions are used. The rainfall range for high 

intensive rain is defined between 50 and 400 inclusive. An individual of the class 

enviot:Weather is created in the ontology and is assigned an arbitrary rainfall value 

100. This value is compared against the rainfall value and falls in the category of 

enviot:HighIntensiveRain. The rule is defined as: 



Chapter 5: Evaluation 

170 

enviot:Weather (?w) ^enviot:hasWeather (enviot:Hiraethlyn, ?w) ^ enviot:hasRainfall 

(?w, ?r) ^ enviot:hasRainfallValue (?r, 100.0)  ->  enviot:HighIntensiveRain (?w) 

After adding the above rule to the ontology, the Pellet reasoner is invoked to infer 

high intensive rain if the conditions in the antecedent are true. The result of the 

reasoning process is shown in Figure 5.7. From the figure, the individual 

(WeatherRainfall shaded in yellow) that is a member of the class enviot:Weather is 

inferred as an individual of the class enviot:HighIntensiveRain, which confirms that 

the rainfall event is modelled in the ontology accurately. 

 

Figure 5.7: Classification of WeatherRainfall as a High Intensive Rain 

Rule 4: Risk of Pollution 

Finally, rule 4 is defined to infer the risk of a pollution event if all the above rules are 

met. Hence, this rule checks if the above three events are met along with a Boolean 

data type enviot:hasRiparianZone that must be false. An individual of the class 

enviot:Phenomenon is created having three property restrictions regarding the above 

three sub-events. If the conditions in the antecedent are met, the individual will be 

classified as the member of the class enviot:RiskOfPollution. To deduce this event, 

the SWRL rule is defined as: 
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enviot:Phenomenon(?p)^enviot:hasField(?p,enviot:FieldWithSheep1)^enviot:hasRain

fall(?p,enviot:HighIntensiveRain1)^enviot:hasSoilMoistureCondition(?p,enviot:Satur

atedSoil1) ^ enviot:hasRiparianZone(?p, false) => enviot:RiskOfPollution(?p) 

After running the Pellet reasoner over the ontology, the atoms in antecedent in Rule 4 

are found to be true, hence the atoms in the consequent are fired. Consequently, the 

reasoner classifies the individual, named PhenomenonPollution, of the class 

enviot:Phenomenon as the individual of the class enviot:RiskOfPollution. Figure 5.8 

illustrates the result of the reasoner. The inferred individual PhenomenonPollution is 

shaded in yellow. 

 

Figure 5.8: Illustration of Inference of the Risk of Pollution Event 

From the evaluation above, it can be seen that using SWRL rules has two main 

advantages: i) SWRL extends the expressiveness power of OWL in a simple way 

allowing us to check the consistency of the classes and the inference of new 

knowledge; ii) SWRL is compatible with OWL syntax and semantics. However, this 

approach has two main limitations: i) the additional expressive power that comes from 

the SWRL rules leads to inefficiency in reasoning; ii) SWRL does not have a 

mechanism to access external data sources, thus requiring all the data to be brought 
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into the ontology. This could lead to a huge overhead. Hence, there is a need of more 

flexible and efficient rule-based approach that could deduce new knowledge while not 

affecting the reasoning efficiency. 

Jena Inference Rules 

In order to overcome the limitations of SWRL rules, a set of inference rules is defined 

and implemented in the Jena application on top of the ontology and RDF triples using 

the general-purpose rule-based reasoner [202]. The set of rules along with the 

ontology and RDF triples (JSON-LD files) are given as an input to the Jena 

application. The application uses the in-built general-purpose rule engine and infers 

new facts if the rules are triggered (‘fired’) successfully. Like SWRL, the rules in Jena 

follow the same antecedent -> Consequent form, however the syntax is based on 

SPARQL. The inference rules in Jena are defined below. 

Rule 1 is about inferring the soil saturation event. Environmental scientists have 

calibrated soil moisture sensors for three different ranges of soil moisture values, as 

described above which are ‘Dry Soil’, ‘Humid Soil’, and ‘Saturated Soil’. All these 

concepts have been specified in the ontology. The property restriction range of 

enviot:SaturatedSoil is shown in  Figure 5.9. 

 

Figure 5.9: Description of the class enviot:SaturatedSoil 

If the soil moisture value, collected by a particular soil moisture sen`sor, exceeds 599, 

the Jena reasoner should classify the soil moisture condition as ‘Saturated Soil’. The 

inference rule to derive this event is defined below. 

[rule1SoilSaturation:(?s rdf:type enviot:SoilNodeOutput), (?s enviot:isClassifiedBy 

?senout),(?senout rdf:type enviot:GroveSoilMoistureSensorOutput), (?senout 

ssn:hasValue ?gmval), (?gmval rdf:type enviot:GroveSoilMoistureValue), (?gmval 

enviot:hasSoilMoistureValue ?val), ge(?val, 600), le(?val, 900) -> print (?val,’Soil is 

Saturated’)] 
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In the above rule, ‘s’ is an instance of type output which is produced by the soil 

sensing node. This output is classified by a particular sensor output that has a 

particular soil moisture quantity value. If that value exceeds 599 then the above rule 

should ‘fire’ and derive that fact that soil is saturated. The result of the above rule is 

shown below: 
'825'^^http://www.w3.org/2001/XMLSchema#integer <’Soil> <is> <Saturated’>  
'612'^^http://www.w3.org/2001/XMLSchema#integer <’Soil> <is> <Saturated’>  
'742'^^http://www.w3.org/2001/XMLSchema#integer <’Soil> <is> <Saturated’>  

For the sake of simplicity, the URIs of the above triples are not shown in the results. It 

can be seen from the above results that only those instances are inferred whose soil 

moisture values are greater than 599 and less than 900, which indicate that soil has 

been saturated. The soil saturation phenomenon is important for soil scientists because 

it gives an indication of one of the factors of risk of pollution. When this condition is 

satisfied, scientists want to know more about the rainfall measurements in the 

catchment. 

The second rule infers the high intensive rainfall event, which is defined as: 

[rule2HighIntensiveRainfall: (?w rdf:type enviot:WeatherMonitoringDeviceOutput), 

(?w enviot:isClassifiedBy ?senout), (?senout rdf:type 

enviot:CampbellRainfallSensorOutput), (?senout ssn:hasValue ?crval), (?crval 

rdf:type enviot:CampbellRainfallValue), (?crval enviot:hasRainfallValue ?val), (?hir 

rdf:type enviot:HighIntensiveRain), (?hir enviot:hasRainfallValue ?hirval) , ge (?val, 

?hirval) -> print (?val, ‘Rain is High Intensive’)] 

In the above rule, ‘w’ is defined as an individual of the device output, which is 

generated by a weather monitoring device. This output is classified by a rainfall 

sensor output generated by a particular rainfall sensor. The sensor output has a 

particular rainfall value which is compared with the measurements of high intensive 

rainfall ranges described in the ontology (Figure 5.10). If the rainfall value is greater 

or equal than the range of the high intensive rain value, it should be classified as high 

intensive rain. 
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Figure 5.10: Description of the class enviot:HighIntensiveRain 

The result of the above Jena inference rule is shown below: 
'51.0'^^http://www.w3.org/2001/XMLSchema#decimal <‘Rain> <is> <High> 
<Intensive’>  
'60.0'^^http://www.w3.org/2001/XMLSchema#decimal <‘Rain> <is> <High> 
<Intensive’>  

Two instances are inferred from the triples, which clearly indicate the rainfall values, 

i.e. 51, and 60.0. These instances are inferred as the instances of high intensive rain.  

The Jena rule engine gives the same result as the SWRL rule did, however the 

difference is the reasoning efficiency and the scalability of Jena over SWRL 

approach. The Jena inference rule-based system is more scalable in terms of addition 

of other rules because the rules are not written in an ontology instead defined in a text 

file and fed into the application. Hence, inference rules serve as a modular unit of 

knowledge and gives better performance than the SWRL rules.  

The third condition that needs to be met to derive the risk of pollution event is to 

check whether sheep are found in the field. An instance of the output of the sheep 

node is defined, which is classified by sheep location sensor output. This output has a 

value in the form of geo coordinates which captures the latitude and longitude of 

sheep in the field. These coordinates are compared with the geo coordinates of the 

field. If the sheep coordinates are matched or found within the field coordinates, then 

it means sheep are in the field. The inference rule in Jena is written as below:   

[rule3SheepInField:(?s rdf:type enviot:SheepNodeOutput), (?s enviot:isClassifiedBy 

?senout),(?senout rdf:type enviot:GroveGPSSheepLocationSensorOutput), (?senout 

ssn:hasValue ?slval), (?slval rdf:type enviot:GroveGPSSheepLocationValue), (?slval 

enviot:hasLongitude ?slong), (?slval enviot:hasLatitude ?slat), (?f rdf:type 

enviot:Field), (?f wgs84_pos:location ?point), (?point rdf:type wgs84_pos:Point), 

(?point enviot:hasLongitude ?flong), (?point enviot:hasLatitude ?flat), equal(?slong, 
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?flong), equal(?slat, ?flat) -> print(?slong, ?slat, ‘Sheep’ Coordinates’, ‘found in the 

Field’s Coordinates’, ?flong, ?flat)] 

A sample of the result of the above rule is shown below: 
'-3.783065'^^http://www.w3.org/2001/XMLSchema#float 
'53.202158'^^http://www.w3.org/2001/XMLSchema#float  
<‘Sheep’> <Coordinates’> <‘found> <in> <the> <Field’s> <Coordinates’>  
'-3.783065'^^http://www.w3.org/2001/XMLSchema#float 
'53.20216'^^http://www.w3.org/2001/XMLSchema#float 
 
In the above result, the first two lines show the geo coordinates of a particular sheep. 

The last two lines show the geo coordinates of the field. As the two coordinates 

match, hence are inferred by the Jena reasoner as the same. Hence, the sheep are 

found in the field. 

Another advantage of this approach is the appropriateness of the inference rules which 

provides a flexible way of reasoning. Inference rules can easily be modified without 

affecting the ontology or application. Similarly, new rules can easily be added once 

new knowledge in the ontology is described. 

The fourth rule is about deducing the risk of a pollution event. The first three sub-

events in the definition of the pollution event (Figure 5.2) have been defined in the 

above three inference rules. Now these conditions need to be combined in one 

inference rule, in addition to a condition about the riparian zone. The inference rule is 

defined below: 

[rule4RiskOfPollution:(?s rdf:type enviot:SoilNodeOutput),(?s enviot:isClassifiedBy 

?soilsenout), (?soilsenout rdf:type enviot:GroveSoilMoistureSensorOutput), 

(?soilsenout ssn:hasValue ?gmval), (?gmval rdf:type 

enviot:GroveSoilMoistureValue), (?gmval enviot:hasSoilMoistureValue ?smval), 

greaterThan(?smval, 600), (?w rdf:type enviot:WeatherMonitoringDeviceOutput), 

(?w enviot:isClassifiedBy ?wsenout), (?wsenout rdf:type 

enviot:CampbellRainfallSensorOutput), (?wsenout ssn:hasValue ?crval), (?crval 

rdf:type enviot:CampbellRainfallValue), (?crval enviot:hasRainfallValue ?rval), (?hir 

rdf:type enviot:HighIntensiveRain), (?hir enviot:hasRainfallValue ?hirval) ,ge(?rval, 

?hirval), (?sno rdf:type enviot:SheepNodeOutput), (?sno enviot:isClassifiedBy 

?sheepsenout),(?sheepsenout rdf:type enviot:GroveGPSSheepLocationSensorOutput), 

(?sheepsenout ssn:hasValue ?slval), (?slval rdf:type 
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enviot:GroveGPSSheepLocationValue), (?slval enviot:hasLongitude ?slong), (?slval 

enviot:hasLatitude ?slat), (?f rdf:type enviot:Field), (?f enviot:hasRiparianZone 

'false'^^xsd:boolean), (?f wgs84_pos:location ?point), (?point rdf:type 

wgs84_pos:Point), (?point enviot:hasLongitude ?flong), (?point enviot:hasLatitude 

?flat), equal(?slong, ?flong), equal(?slat, ?flat)  -> print(?smval,’Soil is 

Saturated’,?rval, ‘Rain is High Intensive’,?slong, ?slat, ‘Sheep Coordinates match 

with Fields’, ?flong, ?flat, ?f, ‘has no riparian zone’,’ALARM, Risk Of Pollution’)] 

The result of the above rule is shown below: 
'625'^^http://www.w3.org/2001/XMLSchema#integer <’Soil> <is> <Saturated’> 
'60.0'^^http://www.w3.org/2001/XMLSchema#decimal <‘Rain> <is> <High> <Intensive’>  
'-3.783065'^^http://www.w3.org/2001/XMLSchema#float 
'53.202158'^^http://www.w3.org/2001/XMLSchema#float  
<‘Sheep> <Coordinates> <match> <with> <Fields> 
'-3.783065'^^http://www.w3.org/2001/XMLSchema#float 
'53.202158'^^http://www.w3.org/2001/XMLSchema#float  
http://www.environmental-iot.com/enviot_ontology/IotSemanticModel#Field1 
<‘has> <no> <riparian> <zone’>  
<’ALARM> <Risk> <Of> <Pollution’> 
  

In the above result, the first value (625) is about the soil moisture condition which is 

greater than 600 and hence the rule is fired saying the soil is saturated. The second 

line shows the rainfall measurement value (60.0) which falls in the range of high 

intensive rain defined in the ontology, and hence the condition of high intensive rain 

is also met. The sheep’s coordinates are shown in the fourth and fifth lines, which are 

the same as that of the field’s coordinates in the seventh and eighth lines. Hence, 

sheep are found in the field. The last condition is about the field’s riparian zone which 

is also met. All the conditions in the antecedent are met and the inference rule is fired 

inferring the risk of pollution in the catchment by printing the message <’ALARM> 

<Risk> <Of> <Pollution’>. 
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Figure 5.11: Inferring Storm Desmond  

5.4.2 Evaluating Use-case 2: Geospatial Data Integration and 
Reasoning 

RDF and SPARQL provide support to retrieve data where the relationships are 

explicitly mentioned. However, sometimes the data is implicitly related to other data, 

e.g. geospatial data. This leads to a challenge when such data requires integration and 

reasoning support while retrieving the implicit relationships between disparate 

datasets [203]. Such data requires indexing and spatial properties and functions to be 

retrieved. Hence, there is a need to integrate spatial indexing with the inferential 

power of linking RDF data. To address this challenge, an ontology is required to 

describe spatial objects supplemented by spatial predicates and functions to retrieve 

these objects. For this purpose, the OGC GeoSPARQL ontology is adopted and 

extended in the ontology (see Chapter 4, section 4.4.2(b) and 4.5.6).  

In order to perform geospatial data integration and reasoning to fulfil the needs of 

environmental scientists for the underlying Environmental IoT Infrastructure, a 

comprehensive set of questions is made. This set of questions is based on the 

requirements of scientists in the catchment area and contains complex hierarchies and 

geospatial relations, which can be expressed completely by a geospatial database 

system. These questions are derived from meetings with environmental scientists and 
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comprise spatial, temporal and spatio-temporal relations. Some of the questions from 

each category are given below. 

Spatial Queries: 

Ø Are soil sensing nodes deployed in the field? 

Ø How many soil sensing nodes are deployed in the field? 

Ø How many soil sensing nodes are deployed in each zone of the field? 

Ø Which soil sensing nodes are deployed in which zone of the field? 

Ø Find soil nutrients in the Hilltop zone. 

Ø Find soil nutrients along with their quantities and measurements units in the Swale 

region. 

Ø Which geographic zone shows the most likely concentration of Nitrogen? 

Temporal Queries: 

Ø Find the Storm Desmond start date, end date and rainfall value on those days. 

Ø How long did the Storm Desmond last for? 

Ø What are the rainfall measurements for the month of October? 

Ø Which day recorded the maximum rainfall value during the Storm Desmond? 

Spatio-temporal Queries: 

Ø Are sheep found in the field during the Storm Desmond? 

Ø How many sheep were found in each zone of the field? 

Ø In which geographic region (zone) the highest number of sheep was recorded 

during the Storm Desmond? 

As mentioned in section 5.2, to store and retrieve RDF triples, GraphDB is used, 

which is accessed through a Jena application via APIs. Again, the ontology is plugged 

into the Jena application framework along with the triples. There are 0.2 million 

triples stored in GraphDB. To see how this approach supports the above complex 

geospatial queries, the evaluation from each of the spatial, temporal and spatio-

temporal queries is carried out in turn. 
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Spatial Queries 

Query-1: Find whether Soil Nodes are deployed in the field. 

In order to check whether sensor nodes are deployed in a given field, the query 

fetches the geometry of the soil sensing node and compares it with the geometry of 

the field using the topological function geof:sfIntersects. The hasGeometry property 

links the node with its geometry using the class geosparql:Point. An individual of the 

class geosparql:Point takes the geometry form as Point(longitude latitude). The query 

is written below: 

ASK WHERE { 

         ?node rdf:type enviot:SoilSensingNode; 

         geosparql:hasGeometry ?geo. 

  ?geo rdf:type sf:Point; 

  geosparql:asWKT ?gwkt.         

 ?feature rdf:type enviot:Field; 

          geosparql:hasGeometry ?fgeo. 

  ?fgeo geosparql:asWKT ?fwkt.         

  FILTER (geof:sfIntersects (?gwkt,?fwkt)) } 

The output of the query is shown in Figure 5.12. 

 

Figure 5.12: Asking a Question 

ASK query gives the output as a Boolean value which is either Yes or No. It can be 

seen that this approach of retrieving complex geospatial data is not only powerful but 

also easy to understand and to use. Furthermore, the time taken by this query is shown 

in the top right corner of the output.  

Query-2: How many Soil Sending Nodes are deployed in each zone of the field, 

i.e. Hilltop, Swale and Riverbank? 
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SELECT ?feature   (COUNT (?node) AS ?nodecount) WHERE {    

         ?node rdf:type  enviot:SoilSensingNode; 

         geosparql:hasGeometry ?geo . 

  ?geo rdf:type  sf:Point; 

  geosparql:asWKT ?gwkt .         

 ?feature rdf:type enviot:Field ; 

          geosparql:hasGeometry ?fgeo . 

  ?fgeo  geosparql:asWKT ?fwkt.         

  FILTER (geof:sfIntersects(?gwkt,?fwkt)) 

 } 

         GROUP BY ?feature 

         ORDER BY ASC(?nodecount) 

To remind the reader, the class enviot:Field is defined as the sub-class of 

geosparql:Feature class in the ontology as described in Chapter 4 (section 4.5.6). As 

mentioned in Chapter 4 (section 4.4.2), the field is divided into three zones, i.e. 

Hilltop, Swale, and Riverbank having in total 15 soil sensing nodes. The above spatial 

query retrieves all this knowledge modelled in the ontology. The result is shown 

below in Figure 5.13. 

 

Figure 5.13: Illustration of Soil Sensing Nodes in Each Zone of the Field 

The above result endorses the sketch map of the sensor nodes deployed in the 

catchment, as shown in Chapter 4 (see Figure 4.6). An important point to mention 

here is the use of the filter function geof:sfIntersect in the above query, which can be 

replaced by geof:sfWithin. The filter function geof:sfWithin in the above query in fact 

makes more sense instead; however geof:sfIntersect is used owing to the issue of lack 

of geo coordinates of the field. 

Query-3: Find soil nutrients in the Hilltop region. 
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SELECT ?soilnutrient ?geo ?feature WHERE  

  { 

   ?soilnode rdf:type enviot:Soil ; 

   enviot:hasSample  ?handsample. 

   ?handsample  enviot:hasVariable ?soilnutrient; 

   geosparql:hasGeometry ?ngeo. 

   ?ngeo geosparql:asWKT ?geo .     

   ?feature rdf:type  enviot:Hilltop; 

   geosparql:hasGeometry ?fgeo. 

   ?fgeo geosparql:asWKT ?fwkt.   

  FILTER(geof:sfIntersects(?geo, ?fwkt))     

  } 

  LIMIT 09 

One of the potential strengths of the proposed approach is the rich knowledge 

modelling capability of the ontology about the domain. In order to test the quality of 

soil sensor measurements, soil scientists also collect the hand sample about soil 

nutrients in the catchment and bring them back to the lab for analysis. This knowledge 

is described in the ontology using the classes enviot:SoilHandSample and 

enviot:SoilVariable. The result shows all soil nutrients along with their geometries 

and the region (Hilltop) where they are collected (Figure 5.14). 

 

Figure 5.14: Soil Nutrients in the Hilltop Zone 
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Query-04: Find soil nutrients in the Swale region along with their quantities and 

measurement units? 

SELECT  DISTINCT ?feature ?soilnutrient ?quantity ?unit WHERE 

{ 

   ?soilnode rdf:type  enviot:Soil ; 

   enviot:hasSample ?handsample. 

   ?handsample  enviot:hasVariable ?soilnutrient; 

   geosparql:hasGeometry ?ngeo. 

   ?ngeo   geosparql:asWKT ?nwkt. 

   ?soilnutrient  enviot:hasQuantityValue ?quantity; 

   enviot:hasQuantityUnitOfMeasurement ?unit. 

   ?feature  rdf:type  enviot:Swale; 

   geosparql:hasGeometry ?fgeo. 

   ?fgeo    geosparql:asWKT ?fwkt.     

   FILTER(geof:sfIntersects(?nwkt, ?fwkt)) 

 } 

 ORDER BY ?soilnutrient 

A sample of the result of the above query is shown in Figure 5.15. 

 

 

 

 

 

 

 

 

 

 

feature soilnutrient quantity unit 

1 enviot:A-

Swale 

enviot:Calcium "8.287E1"^^x

sd:double 

"enviot:parts-per-

million" 

2 enviot:A-

Swale 

enviot:ElecConductivity "1.4E1"^^xsd:

double 

"enviot:parts-per-

million" 

3 enviot:A-

Swale 

enviot:ElecConductivity "1.4E1"^^xsd:

double 

"enviot:parts-per-

million" 

Figure 5.15: Soil Nutrients in Swale along with Quantities and Metric Units 
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Another important potential quality feature of this approach is the assignment of 

accurate and automated associated metric units alongside their quantities. Not only 

sensor measurements are semantically enriched but the associated metric units are 

also enriched with the ontology. This feature is discussed in more detail in use-case 3. 

Query-05: Which geographic feature shows the most likely concentration of 

Nitrogen? 

   SELECT  DISTINCT ?feature (MAX(?nitrate) AS ?MaxConcentration) WHERE { 

   ?soilnode rdf:type enviot:Soil ; 

   enviot:hasSample ?handsample. 

   ?handsample enviot:hasVariable ?soilnutrient; 

   geosparql:hasGeometry ?ngeo. 

   ?ngeo geosparql:asWKT ?nwkt. 

   enviot:Nitrate enviot:hasQuantityValue ?nitrate.     

   ?feature rdf:type enviot:Field; 

   geosparql:hasGeometry ?fgeo. 

   ?fgeo geosparql:asWKT ?fwkt. 

   FILTER(geof:sfIntersects(?nwkt, ?fwkt)) } 

   GROUP BY ?feature 

The result of the above query is shown below in Figure 5.16: 

 

Figure 5.16: The Most Likely Concentration of Nitrogen in the Field 

One of the great potential features of this approach is combining the strength of both 

the ontology reasoning support with GeoSPARQL topological relationships functions. 

Using GeoSPARQL filter functions, e.g. geof:sfIntersect, geof:sfWithin etc. for 

topological comparisons between different geometries, makes the cumbersome task of 

complex data integration and geospatial reasoning really easy. 

The next couple of examples show temporal queries. 
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Temporal Queries 

Query-06: Storm Desmond Start and End Date and Duration 

 SELECT ?storm ?startdate ?enddate ?durationdays ?durationhours WHERE { 

 ?storm rdf:type enviot:Storm ; 

 time:hasBeginning ?begin; 

 time:hasEnd ?end; 

 time:hasDurationDescription ?duration. 

 ?begin time:inXSDDateTime ?startdate. 

 ?end time:inXSDDateTime ?enddate. 

 ?duration time:days ?durationdays; 

 time:hours ?durationhours. } 

In order to show the temporal characteristics of the domain, a storm event, i.e. Storm 

Desmond was modelled in the ontology and was successfully inferred in the previous 

section. To conceptualise the information about the storm event, the W3C Time 

ontology is used, which provides temporal properties to describe such events. The 

result of the query is shown in Figure 5.17. 

 

Figure 5.17: Retrieval of Storm Desmond 

The result provides information about Storm Desmond that started on 4th December 

2015 and ended on 6th December that year, lasting for two days (48 hours). From the 

result, it is confirmed that the structure of the ontology not only provides support to 

reason over events but also to retrieve temporal information about those events.  

Query-07: What Rainfall Measurements were recorded on start and end dates of 

Storm Desmond? 

  SELECT ?storm ?startdate ?enddate ?rainfallstartvalue ?rainfallendvalue WHERE {   

  ?storm rdf:type enviot:Storm; 

  time:hasBeginning ?begin; 

  time:hasEnd ?end; 
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  time:hasDurationDescription ?duration. 

  ?begin time:inXSDDateTime ?startdate; 

  enviot:hasRainfallValue ?rainfallstartvalue. 

  ?end time:inXSDDateTime ?enddate; 

  enviot:hasRainfallValue ?rainfallendvalue. } 

The result of the above query is shown in Figure 5.18. The result shows the rainfall 

measurements collected by the sensors during the storm’s dates. 

 

Figure 5.18: Rainfall Measurements on Storm Desmond Dates 

It can be seen from the results that the knowledge represented in the ontology 

provides strong support to not only spatial (successful information retrieval of first 

five queries) but also temporal (last two temporal queries) events. The approach also 

provides querying support to retrieve temporal properties about these events on a 

more fine-grained level including hours, minutes and seconds. This allows that other 

complex extreme events can also be formalised in the ontology and can successfully 

be retrieved by using this approach.  

So far, the examples have shown the spatial and temporal knowledge retrieval from 

the system about the domain. The next set of examples show some more complex 

queries, which would combine both the spatial and temporal characteristics of 

knowledge in one query to perform spatio-temporal data integration and reasoning 

about the events occurring in the catchment area. 

Spatio-temporal Queries 

Query-08: Are sheep found in the field during the Storm Desmond? 

   ASK WHERE {     

         ?sheep rdf:type enviot:SheepNodeOutput ; 

                time:inDateTime ?instant; 

             geosparql:hasGeometry ?sgeo. 

     ?sgeo geosparql:asWKT ?swkt. 
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         ?instant time:inXSDDateTime ?sdate.     

   ?storm rdf:type enviot:Storm; 

          time:hasBeginning ?begin. 

   ?begin time:inXSDDateTime ?stormdate.  

     ?feature rdf:type enviot:Field; 

     geosparql:hasGeometry ?fgeo. 

     ?fgeo geosparql:asWKT ?fwkt.       

      BIND(xsd:date(concat(str(year(?sdate)),"-", str(month(?sdate)),"-", 

                str(day(?sdate)))) AS ?sheepdate)          

       FILTER (geof:sfIntersects(?swkt, ?fwkt)) 

       FILTER (?sheepdate = ?stormdate) } 

The above query combines all three dimensions of knowledge representation 

described in Chapter 4 (see section 4.4.2), i.e. thematic (sheep), spatial (field) and 

temporal (storm’s instant). Furthermore, in the query a new function Bind () is also 

introduced, which takes different parts of the date, which is in the form of string, and 

converts those parts separately to correct date format and then concatenates all these 

constituent parts. The reason for doing this conversion is that the scripts converted the 

data from JSON to JSON-LD format but due to some reason the date was expressed 

in the string format. The result of the query is shown in Figure 5.19. 

 

Figure 5.19: Sheep Found in the Field during the Storm Desmond  

The above successful retrieval of the complex event, in addition to reasoning 

performed in use-case 1, further confirms that the knowledge modelled in the 

ontology is functional. The ease of use of querying support provided by the approach 

is another huge advantage. 

Query-09: How many Sheep were found in each zone of the field (i.e. Hilltop, 

Swale, and Riverbank) during Storm Desmond? 
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SELECT DISTINCT ?feature (COUNT(?sheep) AS ?sheepcount) WHERE {     

         ?sheep rdf:type enviot:SheepNodeOutput ; 

                time:inDateTime ?instant; 

             geosparql:hasGeometry ?sgeo. 

     ?sgeo geosparql:asWKT ?swkt. 

         ?instant time:inXSDDateTime ?sdate.     

   ?storm rdf:type enviot:Storm; 

          time:hasBeginning ?begin. 

   ?begin time:inXSDDateTime ?stormdate.  

     ?feature rdf:type enviot:Field; 

     geosparql:hasGeometry ?fgeo. 

     ?fgeo geosparql:asWKT ?fwkt.       

BIND(xsd:date(concat(str(year(?sdate)),"-", str(month(?sdate)),"-", 

str(day(?sdate)))) AS ?sheepdate)        

FILTER (geof:sfIntersects(?swkt, ?fwkt)) 

FILTER (?sheepdate = ?stormdate)} 

GROUP BY ?feature ?sheep ?sdate  

ORDER BY ASC (?sheepcount) 

So far, this is the most highly complex query which performs data integration and 

reasoning over thematic, spatial and temporal data and involves almost all predicates 

of the SPARQL query. The result of the query is shown in Figure 5.20. 

 

Figure 5.20: Sheep in the Field during Storm Desmond 

The result accurately finds the number of sheep in each zone of the field, i.e. Hilltop, 

Riverbank and Swale, during Storm Desmond. The query further validates the 

consistent structure of concepts and their relationships and the precise modelling of 

knowledge about the domain in the ontology. However, the query takes relatively 

more time to perform this complex spatio-temporal reasoning. There are a few 

reasons for this inefficiency: i) as mentioned above, the query involves all three 
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dimensions of knowledge representation; ii) the date data is in string format due to 

which the Bind function () introduces additional complexity; iii) almost all predicates 

of SPARQL query are used; iv) the query involves the topological comparison of 

geospatial function (geof:sfIntersects). The efficiency can be improved to some extent 

by using the correct date format, however further algorithmic techniques are required 

to optimise the performance of information retrieval, which is beyond the scope of 

this work. 

Query-10: Which geographic region (i.e. Swale, Hilltop and Riverbank) observes 

the maximum number of sheep in the field during the Storm Desmond? 

SELECT DISTINCT ?feature (COUNT(?sheep) AS ?sheepcount) WHERE { 

             ?sheep rdf:type enviot:SheepNodeOutput ; 

             time:inDateTime ?instant; 

                geosparql:hasGeometry ?sgeo. 

     ?sgeo geosparql:asWKT ?swkt. 

         ?instant time:inXSDDateTime ?sdate.     

     ?feature rdf:type enviot:Field; 

     geosparql:hasGeometry ?fgeo. 

     ?fgeo geosparql:asWKT ?fwkt.         

         ?storm rdf:type  enviot:Storm; 

          time:hasBeginning ?begin. 

   ?begin time:inXSDDateTime ?stormdate.     

    BIND (xsd:date(concat(str(year(?sdate)),"-", str(month(?sdate)),"-", 

    str(day(?sdate)))) AS ?sheepdate)        

    FILTER(geof:sfIntersects(?swkt, ?fwkt)) 

    FILTER (?sheepdate = ?stormdate) } 

    GROUP BY ?feature ?sheep ?sdate 

    ORDER BY DESC(?sheepcount) 

    LIMIT 1 

It can be noted that the query does not involve the Max () function. This is because 

this function is not fully supported in some cases particularly in this case.  

The result of the above query is shown in Figure 5.21. 
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Figure 5.21: Maximum Sheep Count in the Region during Desmond Storm 

The functional correctness of the ontology can be confirmed from the result of the 

above query in Figure 5.21 that can further be confirmed from the result of the 

previous query shown in Figure 5.20. 

5.4.3 Evaluating Use-case 3: Interoperable Metric Units 

In order to evaluate the ontology to provide unambiguous interoperable metric units, 

initially the MUO/UCUM is used and extended for the metric units of those physical 

qualities that are not described in the MUO ontology. After importing the 

MUO/UCUM ontology, several SWRL rules are written which would unambiguously 

translate one unit to another. Initially, the SWRL rules are written to test the 

conversion process, followed by then the corresponding Jena inference rules. The first 

SWRL rule is written to translate the measurement value of air temperature in degree 

Celsius to degree Fahrenheit. In the rule, ‘x’ is an instance of the class which 

represents an air temperature value in degree Celsius. The value is then multiplied by 

1.8 and is stored in another variable ‘product’. The resultant value is then added with 

32 and is stored in a variable ‘sum’.  

SWRL Rule1: Converting Degree Celsius to Degree Fahrenheit 

GroveAirTemperatureValue(?x)^hasTemperatureInCelsius(?x,?tempval)^hasUnitOf

Measurement(?x, DegreeCelsius)^swrlb:multiply(?product, ?tempval, 1.8) ^ 

swrlb:add(?sum, ?product, 32) -> enviot:hasTemperatureInFahrenheit(?x, ?sum) ^ 

hasUnitOfMeasurement(?x, DegreeFahrenheit) 

In order to perform the above unit conversion, the Pellet reasoner is selected and is 

computed to reason over the ontology. It is observed that the reasoning efficiency is 

very low due to a large number of instances/members in the MUO/UCUM ontology. 

Hence, keeping in account the ontology design guidelines (Chapter 4, section 4.2), it 

is decided that instead of using and extending MUO/UCUM, a minimal lightweight 
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ontology should be designed for metric units. Thus, MUO/UCUM ontology is 

dropped and a new lightweight ontology is developed (see Chapter 4, section 4.5.8). 

In order to reason over the new metric units ontology for metric unit conversion 

interoperability, the reasoner is started again. The result of the reasoning is shown 

Figure 5.22. 

 

Figure 5.22: Conversion of Degree Celsius to Degree Fahrenheit 

As can be seen from the result in Figure 5.22. above, the actual value of the instance 

GroveAirTemperatureValue in the ontology is stored in degree Celsius, which is 0.0 

(f represents that the value is float) degree centigrade. After the reasoner is run, it can 

be seen (in yellow) that both the equivalent unit and quantity value are classified and 

converted as ‘DegreeFahrenheit’ and 32.0f respectively.  

Similarly, the corresponding rule from Fahrenheit to degree Celsius is defined as: 

SWRL Rule 2: Converting degree Fahrenheit to degree Celsius 

enviot:GroveAirTemperatureValue(?x) ^ enviot:hasUnitOfMeasurement(?x, 

enviot:DegreeFahrenheit) ^ enviot:hasTemperatureInFahrenheit(?x, ?tempval) ^ 

swrlb:divide(?div, ?sub, 1.8) ^ swrlb:subtract(?sub, ?tempval, 32)                                 

-> enviot:hasUnitOfMeasurement(?x, enviot:DegreeCelsius) ^ 

enviot:hasTemperatureInCelsius(?x, ?div) 

The result is show in Figure 5.23. An individual named GroveTemperatureValue2 is 

defined having a temperature measurement value 212.0 in degree Fahrenheit, which is 
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accurately converted to 100.0 degree Centigrade along with the metric unit 

DegreeCelsius. Both these inferred facts are shaded in yellow. 

 

Figure 5.23: Conversion of Degree Fahrenheit to Degree Celsius 

One of the strengths of this approach is the semantic annotation of measurement 

quantities in a simple, efficient and unambiguous way. The measurement quantities 

about different environmental physical qualities are collected by sensors without 

associated metric units. These measurements are then assigned their associated metric 

units with the help of the ontology. Environmental scientists are not concerned 

anymore regarding the unit conversion interoperability. They can use any standard SI 

units they want. This assignment is modelled in the ontology as shown in Figure 5.24. 

 

 

Figure 5.24: Description of the class enviot:GroveSoilTemperatureValue 

 

The alternative flexible and efficient way to metric unit conversion interoperability is 

using Jena rules. The above SWRL rule 1 is defined in Jena as under: 
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[JenaRule1: (?t   rdf:type  units:GroveAirTemperatureValue), (?t 

enviot:hasTemperatureInCelsius ?tempval), (?t enviot:hasUnitOfMeasurement 

enviot:DegreeCelsius), product(?tempval, 1.8, ?prod), sum(?prod, 32, ?add)                

-> (?t enviot:hasTemperatureInFahrenheit ?add), (?t enviot:hasUnitOfMeasurement 

units:DegreeFahrenheit)] 

The result of the Jena rule that converts both metric units and its quantity value from 

degree Celsius to degree Fahrenheit is shown below: 
 
<http://www.environmental-
iot.com/enviot_ontology/IotSemanticModel#GroveAirTemperatureValue1> 
<http://www.environmental-
iot.com/enviot_ontology/IotSemanticModel##hasTemperatureInFahrenheit> 
"32.0"^^<http://www.w3.org/2001/XMLSchema#double>; 
<http://www.environmental-
iot.com/enviot_ontology/IotSemanticModel#hasUnitOfMeasurement> 
<http://www.environmental-
iot.com/enviot_ontology/IotSemanticModel#DegreeFahrenheit>. 

The quantity value of the individual GroveAirTemperatureValue1 is 0 degree 

Centigrade which is successfully converted to 32.0 degree Fahrenheit. Similarly, like 

rule 1, a set of Jena inference rules is written which performs unambiguous metric 

unit conversion for all the physically qualities used in this work.  

5.5 Overall Evaluation 

This section presents the overall evaluation of the approach across all use-cases with 

regard to the evaluation criteria described in section 5.3.  

Regarding the functional qualitative parameter, the ontology is evaluated to check 

whether it accomplishes all the tasks for which it is designed. In both use-case 1 and 

use-case 3, the functional parameter is evaluated by looking at its inference ability in 

the tasks of deriving a pollution event and unambiguous metric units conversion 

respectively. The definitions of all events were defined by environmental scientists, 

and were modelled accordingly in the ontology by the author. Two types of rules were 

defined: the SWRL rules and the Jena inference rules. The conditions used in the 

antecedent of the rules were matched against the triples in the knowledgebase and the 

actions in the consequent were fired and inferred the required new facts. The SWRL 

rules were processed by the in-built Pellet reasoner in the Protégé ontology editor and 

the Jena inference rules were processed by the general-purpose rule-based engine in 
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the Jena application framework. The results showed that all the events were inferred 

successfully. The results further showed that all metric units were converted 

unambiguously and correctly to other metric system along with their quantities. 

Regarding the functional parameter of use-case 2, all three dimensions of knowledge 

representation of the target domain were defined in the queries to fulfil the 

information needs of environmental scientists. SPARQL queries were used with the 

geospatial predicates and functions of the GeoSPARQL ontology. The results clearly 

showed that the queries retrieved the knowledge and answered complex questions of 

environmental scientists. The spatio-temporal data was effectively integrated from a 

wide variety of sources and the geospatial reasoning was performed successfully. 

Minor deficiencies were found during all the three use-cases regarding the formation 

of the rules and queries. However, the deficiencies were addressed during the iterative 

process as part of the ontology development. The evaluation showed that the ontology 

fulfilled the functional purpose.  

Expressiveness, in the context of this thesis, is defined as how well the ontology 

performs the full range of tasks when used within the target domain.  The expressive 

parameter of the ontology is evaluated by looking at its natural support it provides to 

environmental scientists, e.g. in terms of writing an inference rule or a query. The 

inference rules followed the ‘If Then Else’ form of structured English, and hence were 

really easy to understand and write. Most of the scientists knew already about such 

rules. To keep the approach simple, the Jena inference rules were written in a separate 

text file instead of writing them in Jena application. This served two main purposes: i) 

easy addition of other rules and maintenance; ii) making the rules easy for scientists to 

understand and write their own rules with little technical knowledge. From the 

evaluation, it can be seen that the inference rules were natural to expressing the 

knowledge of events in the domain. Most scientists would understand both the 

ontology and inference rules but, still they would need some time and technical 

knowledge to understand both. Regarding SPARQL queries, the GraphDB triplestore 

was used for storing and retrieving triples. Although GraphDB was accessed from the 

Jena application through APIs, however because of the Workbench support of 

GraphDB, its user-friendly GUI interface made it natural for scientists to understand 

the queries. The syntax of SPARQL query is very similar to SQL, which further 

simplified the querying component and information retrieval for scientists to write 
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their own queries with little SQL and RDF knowledge. Furthermore, due to the simple 

structure of RDF triples in the form of subject, predicate and object, it would be quite 

natural for most of the scientists to understand the queries and RDF triples.  

To take the evaluation further, how well the ontology serves the purpose in terms of 

supporting other pertinent events in the catchment, the ontology was evaluated for 

deriving an extreme event, i.e. Storm Desmond that occurred from 4th to 6th December 

2015. To check whether the system deduces a given storm event, a sub-class called 

enviot:Storm of the  enviot:Phenomenon class was created and was made as a defined 

class.  The purpose of this modelling was to see whether the ontology infers a storm 

event (e.g. Storm Desmond). A SWRL rule was defined in the ontology to infer this 

event. Similar to the risk of pollution event, the storm event was also dependent on 

some other events, e.g. high intensive rainfall, soil saturation, and some temporal 

characteristics. These events were described in the ontology with some additional 

temporal knowledge. An instance, named PhenomenonStorm, of the class 

enviot:Phenomenon was created, which satisfied the definition of the defined class 

enviot:Storm. To deduce the storm event, the rule was defined as: 

enviot:Phenomenon(?p)^enviot:hasRainfall(?p,enviot:HighIntensiveRain2)^ 

enviot:hasSoilMoistureCondition(?p,enviot:SaturatedSoilStorm)^ 

time:hasBeginning(?p,enviot:StormDesmondStart) ^ time:hasDurationDescription(?p, 

enviot:StormDesmondDurationDescription)^time:hasEnd(?p,enviot:StormDesmondE

nd)  –> enviot:Storm(?p) 

After running the reasoner over the ontology, the result illustrated that the instance 

(PhenomenonStorm) was classified successfully under the class enviot:Storm 

descriptions, as shown in Figure 5.25. 
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Figure 5.25: Inferring Storm Desmond 

From the evaluation of the results, it is demonstrated that the approach has some 

strengths, however the major one is its ability of modularisation and appropriateness 

for the target domain. Modules can easily be added in the ontology to conceptualise 

other extreme events, for instance, storm. This factor has already evaluated in terms of 

adding a module describe a storm event and then inferring one particular instance of a 

storm, i.e. the Storm Desmond event. Based on this evaluation, the author postulates 

that the ontology can be adopted in other sub-domains of environmental science with 

minimal addition of domain knowledge in the ontology. For instance, it can be 

extended in the hydrology domain for deriving the risk of water pollution.  

To summarise, from the evaluation it can be seen that the ontology largely satisfies 

the primary data needs of environmental scientists for the underlying Environmental 

IoT Infrastructure. This has been observed in evaluating the results of all three use-

cases. However, the approached suffered from some limitations that are described 

below. 

The major limitation of the approach is the efficiency of the system when it performs 

particularly spatio-temporal reasoning on SPARQL queries over large data. The time 

of geospatial reasoning increases as the size of data increases. Though in this work, a 

full quantitative evaluation of geospatial reasoning was not performed, in general it is 
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clear that the efficiency needs to be improved. How scalable will the system be when 

huge heterogeneous data is integrated involving both many spatial and temporal 

comparisons? There is a need to further improve the proposed approach for spatio-

temporal data integration and reasoning particularly for huge data. 

The evaluation also discovered some other limitations of the approach regarding use-

case 2. One of the limitations of this approach is that it does not perform qualitative 

geospatial reasoning. In such reasoning systems, the RCC (Region Connection 

Calculus) topological inference is enabled for features having unknown geometries. 

Another limitation is the low efficiency of the approach that arises in the information 

retrieval of only highly complex spatio-temporal queries. Further research is required 

to address the above said limitations, however, this lies outside the scope of this thesis 

and is left as a future work. 

Regarding use-case 3, the approach works well for providing an unambiguous 

exchange of quantities alongside their associated units. However, the main limitation 

of this approach is that it provides unit conversion interoperability only for those 

physical qualities that have a standard conversion formula, e.g. SI units. The approach 

lacks support for dealing with more complex phenomena where the mapping between 

two representations are not well defined. For example, from one of the interviews 

with a soil scientist, it was discovered that representing measurements of physical 

qualities using two different models in two sub-disciplines of environmental science 

(biogeochemistry and plant ecology) encountered issues. In this specific case, simple 

formula conversion would not work and this instead requires some sophisticated 

transfer functions to be developed which is lacking in this approach. For the said 

complicated phenomena, there is a mismatch between the real needs of the scientists 

and what the approach has been able to show so far. So, the unit conversion 

interoperability which is a bigger point, is partially solved and can be further 

improved as a future work to address such complex unit conversion phenomena in 

environmental science. 

5.6 Overall Analysis and Lessons Learned 

This work provides a wealth of experience in the potential of Semantic Web 

technologies applied to understand the complex and heterogeneous data in 
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environmental science. Key lessons were learned from the overall approach, which 

are described below. 

1. The potential of Semantic Web technologies in underpinning environmental 

science is significant and the approach can provide a much richer and interoperable 

representation of complex and heterogeneous data. Through ontologies, RDF, linked 

data and SPARQL, environmental data can be combined and interlinked with external 

data sources, leading to a data-rich linked open data cloud for environmental science. 

2. The combination of Semantic Web and IoT technologies is overarching and 

natural in underpinning environmental science – with IoT providing a rich set of 

streaming data covering thematic, spatial and temporal dimensions of the ecosystems, 

and Semantic Web technologies offering significant capacity in terms of making 

sense of the rich volumes and variety of data in all its complexity. 

3. Designing and developing ontologies for an interdisciplinary and integrative 

domain like environmental science is very challenging owing to the issue of agreeing 

on the consistent vocabulary of all interconnected sub-disciplines. Hence, the 

ontology in environmental science should make minimal ontological commitment, i.e. 

the ontology should make as few claims as possible about the disciplines being 

modelled, allowing the communities committed to the ontology development to 

extend and specialise the ontology as required [62]. The communities should agree on 

the usage of vocabulary that is consistent (but not complete) in terms of the concepts 

or theory described by the ontology.  

4. Data integration and reasoning have been performed over a small number of 

triples (0.2 millions) which gives some good results in terms of data integration and 

inference (takes time in seconds both in integration and reasoning when the query is 

simple, and a couple of minutes when the query is extremely complex involving 

thematic, spatial and temporal matching patterns). Thus, increasing the number of 

triples and filters (in a query) might increase data integration and inference time. 

Hence, efficiency might be an issue over a huge number of triples (say triples in 

millions). 

5. Data integration and reasoning have been performed taking into account only 

qualitative parameters because this is required by the scientists (collaborators) in the 
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context of Environmental IoT Project. However, to check data integration and 

reasoning efficiency, scalability and reasoning complexity of the approach over 

millions of triples for the IoT infrastructure may also be technically important.    

6. Another important lesson that has been learned regarding reusability of the 

ontology is that there is a trade-off between usability and reusability of the ontology 

designed especially for a particular application. The more you describe concepts of a 

particular domain in an ontology design, the more the ontology becomes specialised 

and hence less reusable for other applications. In the ontology developed in this thesis 

for the Environmental IoT Project, some of the concepts (or modules), for instance, 

sensor modules, device modules, temporal modules, spatial modules and metric unit 

modules, can be reused in other sub-disciplines of environmental science. However, 

those modules that are designed specifically for the target application, for instance, 

the ‘phenomenon module’ to find the risk of pollution, cannot be reused in other 

disciplines. Hence, it is hard to achieve both designing an ontology for a specific use 

or application in a particular domain while preserving reusability of that ontology in 

other domains simultaneously [204]. This is one of the limitations of an application 

ontology.   

7. SWRL rules provide an additional expressive power to ontological 

reasoning. However, the more you add SWRL rules, the more it affects reasoning 

efficiency. Furthermore, SWRL cannot access external data sources and hence the 

data has to be brought into the ontology. On the other hand, Jena rules are more 

flexible and powerful in terms of reasoning efficiency and do not add any extra 

complexity to the ontology. 

8. To discover interdependencies between disparate datasets representing 

different environmental facets, more instrumentation is required in the natural 

environment to capture rich and ubiquitous streaming data of a vast variety of 

environmental variables at different geographical locations and at different scale. Due 

to restricted funding and resources in the Environmental IoT project, there was 

limitation on the number of environmental variables that could be captured. A 

subsequent large-scale evaluation would be very interesting. 
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9. Metric units in any scientific domain are extremely important and 

quantitative measurements would be incomplete without their associated metric units. 

To provide semantic interoperability and data integration, the metric units ontology 

can play a key role. During the ontology design phase, a key decision was made 

whether to develop a minimal lightweight units ontology from scratch or reuse and 

extend existing complex unit ontology that are designed for covering a lot of domains. 

Evaluating the use-case about metric units, it was found that existing unit ontologies 

have a large number of individuals that lead to inefficiencies in reasoning and 

computations. On the other hand, a minimal lightweight unit ontology designed for 

one particular domain performs better in terms of efficiency. 

10. When compared to other disciplines like life sciences and bioinformatics, the 

uptake of Semantic Web technologies, particularly ontologies and linked data in 

underpinning environmental science, is still low. More research is required to further 

explore these technologies in combination with other techniques including web 

services to offer standardised interfaces and machine learning to form intelligent 

decision support systems in order to make sense of this complex and heterogeneous 

environmental data. 

11. Last but not least, developing a diverse set of skills is required for working in 

a collaborative multi-disciplinary environment particularly when designing ontology 

in environmental science. Input of domain experts is really important in the design 

phase when an application ontology is aimed at accomplishing a particular task 

especially specifying real-world scenarios, for example, modelling extreme events. 

Communication and regular contacts with domain experts are crucial to get insights 

into the domain and break the inevitable language barriers. 

5.7 Conclusion 

This chapter has presented an evaluation of the proposed overall framework 

comprising the ontology and the Jena application. The experimental evaluation 

through three real-world use-cases has shown that the framework achieves the main 

objectives of the thesis, i.e. using Semantic Web technologies to discover 

interdependencies between disparate datasets, to perform geospatial data integration 

and reasoning, and to provide interoperability. The work has demonstrated that the 
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approach is able to identify causal-like relations between different events in the 

catchment (here inferencing the risk of a pollution event in the catchment), to 

integrate spatio-temporal data addressing complex queries of environmental scientists 

and to provide unambiguous interoperable metric units. This evaluation also validates 

the overarching role of the ontologies in all these three use-case scenarios. 

Furthermore, the role of the rule-based inference techniques in the application 

framework is found to be important. In summary, the overall approach described in 

the experimental evaluation is able to address the three research challenges and that 

the objectives of the research have been met to a great extent. 

  



Chapter 6: Conclusion 

201 

6 Conclusion 

6.1 Introduction 

This thesis has investigated Semantic Web technologies for IoT/streaming data in 

underpinning environmental science. More precisely, an ontology was developed and 

used along with associated Semantic Web techniques to discover the 

interdependencies between disparate but interlinked datasets, to perform data 

integration and geospatial reasoning and to provide interoperable unambiguous metric 

units as an example of dealing with heterogeneity.  

This chapter concludes the research by providing a summary of the narrative within 

the thesis, highlighting the major contributions of the research, and discussing 

potential areas of future work. 

6.2 Thesis Summary 

Chapter 1 introduced the thesis by presenting the context of the research and its 

relevance to the area of Semantic Web technologies. The chapter described the key 

objectives and the overarching research questions that drove this research. 

Furthermore, the chapter also discussed briefly the research methodology and finally 

concluded with the presentation of the thesis’s outline. 

Chapter 2 provided a background overview of Semantic Web technologies and 

explored the state of the art in the use of such technologies and techniques in the 
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context of eScience. The chapter provided a more in-depth assessment of related work 

that lies at the intersection of three key areas including the Semantic Web, 

IoT/streaming data, and environmental science. Finally, the chapter concluded with 

the argument that there is limited research at the intersection of these three areas and 

hence further research is required in terms of meeting the particular data needs of 

environmental science. 

Chapter 3 examined the unique characteristics of environmental science in the 

context of environmental data, through semi-structured in-depth interviews. The 

chapter aimed particularly at exploring and collecting qualitative data covering 

different aspects including: the role of data and practices, data trends, 

interdependencies between disparate but interlinked datasets, and technological 

opportunities and barriers in environmental science. The chapter provided the analysis 

of the qualitative data using a Grounded Theory methodology and concluded with 

three key findings that then shape the next phase of the research, namely the 

interdependencies between disparate datasets, geospatial data integration and 

reasoning, and interoperability. 

Chapter 4 introduced the ontological framework for the environmental IoT data. The 

chapter provided an overall design of the ontology as well as the integration of other 

ontologies imported and extended in this work. The chapter also described various 

key design criteria of the ontology including reusing existing standards, modularity 

and extensibility, expressiveness and reasoning support and aiming for a lightweight 

design. Finally, the chapter concluded with the argument that the ontology in 

environmental science should aim for more lightweight but extensible model that 

communities can agree with and which can be extended over time as concepts are 

deemed missing. 

Chapter 5 provided an evaluation of the work through three different real-world use-

cases, derived from the analysis of the semi-structured interviews and meetings with 

environmental scientists. This evaluation was carried out to demonstrate the 

applicability, strengths and limitations of the ontology and the overall approach in the 

target discipline(s) of environmental science. The experimental evaluation through 

three real-world use-cases showed that the approach achieves the main objectives of 

the thesis, i.e. using Semantic Web technologies to discover interdependencies 
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between disparate datasets, to perform geospatial data integration and reasoning, and 

to provide unambiguous metric units interoperability. The evaluation also validated 

the overarching role of the ontologies in all these three use-case scenarios. 

6.3 Contributions of the Thesis 

The main goal of this research has been to examine the potential role of Semantic 

Web technologies and their applicability in supporting a deeper understanding of the 

natural environment as derived from a plethora of sources of environmental data. The 

thesis has adopted a mixed methods approach involving a literature review, 

substantive semi-structured interviews and the development of an experimental 

ontology with environmental streaming data. This has led to the following 

contributions. 

6.3.1 Characteristics of Environmental Data 

This thesis provides some key insights into the nature of environmental data and the 

particular challenges associated with this area of science. In particular, the thesis has 

identified: 

Ø The importance of the concept of the long tail of science as it applies to 

environmental data. In environmental science, there exists a large number of 

small, heterogeneous and potentially complex datasets that are usually collected 

by individual scientists, small laboratories and/or projects. When combined 

together, they form a big portion of the data spectrum. 

Ø Five key challenges associated with environmental data have been highlighted that 

make this area quite distinct from other areas of science and which demand a 

different technological response. These challenges are: i) discovering 

interdependencies between disparate datasets representing different real-world 

phenomena and how one phenomenon can positively or negatively impact the 

other; ii) geospatial data integration and reasoning enabling environmental 

scientists to respond to the emerging trends or geographic events in a timely 

manner; iii) data heterogeneity that arises from using a wide variety of data 

formats, models, instruments and procedures; iv) data discovery and access 

problems that arise owing to the issues of geographically scattered environmental 
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data, temporally sparse data, restricted access to numerical models, institutional 

hindrance to data access for instance, due to compatibility issues or financial 

hurdles; v) data quality and provenance issues that arise due to many factors 

including faulty instruments, lack of metadata, naïve data collectors, bad 

environmental conditions and uneven practices. (Note that this thesis elected to 

focus on the first three challenges to maintain a clear scope in the work.) 

6.3.2 Current Practices in Environmental Science  

The thesis also contributes some insights into current practices in data management in 

environmental science, including an important exploration of technological 

opportunities and barriers. Some of the insights that have emerged from this work 

include: 

Ø The practices and technologies are clearly insufficient and suffer from either 

methodological limitations (old technologies) or technical and financial issues 

(particularly related to environmental sensors and IoT technology). 

Ø Because of the advanced measurement instruments that generate more data, there 

is now a trend towards more data-driven science to look for interesting and 

emergent patterns among different datasets and turning them into knowledge. 

Ø Getting a unified view of the structure and more importantly semantics of 

complex and heterogeneous environmental data is very important. 

Perhaps the most important result from this study though is the need for cross-

disciplinary dialogue between environmental science and computer science so that 

technological opportunities can be delivered and barriers overcome. 

6.3.3 Role of Semantic Web Technologies in Environmental Science 

The most important set of contributions relate to an understanding of how semantic 

web technologies can support environmental science and in particular the unique data 

challenges in this area. Through the iterative development of an ontology for 

streaming environmental data, it has been shown that semantic web technologies have 

a significant role to play in overcoming these challenges. In particular, it has been 

shown how: 
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Ø Interdependencies between disparate datasets have been overcome by 

semantically enriching those low-level sensor measurements using the ontology 

and then reasoning over the resultant enriched datasets deriving new knowledge 

and interrelationships using associated inference rules, e.g. deducing a pollution 

event in the catchment.  

Ø Geospatial data integration and reasoning issue have been resolved by again 

semantically enriching all sensor measurements using the ontology which has 

support for topological functions and predicates. 

Ø Interoperable metric units conversion has been addressed by semantically 

assigning all sensor measurements their associated metric units using the ontology 

and then performing unambiguous translation between different metric units 

through inference rules. 

The overall ontology is also a contribution in its own right providing a proof of 

concept of how a given ontology can address the needs for a given environmental 

project, in this case dealing with streaming data from an Environmental Internet of 

Things deployed in North Wales (the Conwy catchment). A set of principles underpin 

this design, namely re-use of existing ontologies where possible, the need for a 

modular approach, and the importance of having lightweight and relatively minimal 

ontologies which can develop over time. 

6.3.4 Implications for Technological Infrastructure 

The experimental work in this thesis has provided extra insights into the technological 

needs of environmental science and in particular the underlying infrastructure needed 

to support scientific discovery. One of the important insights is that existing 

infrastructure already exists in the form of software stacks supporting the Semantic 

Web and these can largely be adopted to support this particular area of science. In 

particular, this thesis has shown how existing technologies including ontologies, RDF, 

OWL, linked data and SPARQL can successfully be used in this domain. There are 

however some additional challenges that need to be met including issues around real-

time data, with this being revisited in future work below. 

6.3.5 Research Questions Revisited 

The research questions from chapter one where as follows: 
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Ø What are the particular characteristics of data associated with environmental 

science, and what are the associated data challenges in terms of making sense of 

that data? 

Ø What is the role of Semantic Web technologies in building a data model for the 

Environmental IoT Infrastructure to represent its data in all its complexity? 

Ø What implications does this have for a technological infrastructure underpinning 

environmental science to exploit the potential of streaming data from IoT 

technology? 

It should now be apparent that there is a strong mapping between the contributions 

and the initial research questions, namely that contributions 1 (section 6.3.1 entitled 

‘Characteristics of Environmental Data’) and 2 (section 6.3.2 entitled ‘Current 

Practices in Environmental Science’) are in response to the first research question, 

with the following two sets of contributions (section 6.3.3 entitled ‘Role of Semantic 

Web Technologies in Environmental Science’ and section 6.3.4 entitled ‘Implications 

for Technological Infrastructure’) addressing the second and third research questions 

respectively. 

6.4  Future Work 

Some key areas of future research emanating from this research are outlined below.  

6.4.1 Real-time Streaming Data 

Most of the approaches presented in Semantic Web research for IoT/streaming data in 

supporting environmental science are based on using RDF data that is already stored 

in a database or a triplestore. However, IoT devices deployed in the natural 

environment will often be capturing data that need to be processed on-the-fly to 

respond to critical events in the environment. Hence, there is a need to develop 

Semantic Web techniques to reason over real-time steaming data. Reasoning over 

large spatio-temporal streaming data in an efficient and scalable manner is a huge 

challenge and hence is a key avenue for future work. 
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6.4.2 Bringing Together Ontology Development and Machine 
Learning 

There is a potential symbiotic relationship between ontologies and machine learning. 

Ontologies can leverage from machine learning algorithms to add a probabilistic 

component to knowledge bases. Thus, ontologies can be informed through machine 

learning results. Similarly, a machine learning approach can incorporate existing 

ontologies to guide machine learning methods and learn new ways to extend the 

learning models. Hence novel techniques of data science could be developed through 

combining the advantages of these two prominent areas. 

6.4.3 Semantic Web for Early Warning Systems 

Natural disasters such as floods, hurricanes and tsunamis etc. can have major impact 

on human lives and economies. In order to reduce the effects of such disasters 

preventing human lives, an early warning system (EWS), based on IoT technologies is 

required to capture rich sets of ubiquitous real-time data. Such systems further require 

context and situation awareness to predict effectively such environmental hazards. 

Semantic Web technologies can play a potentially important role in understanding 

context awareness and reasoning over such environments. An early warning system, 

based on ontologies, semantic web services and semantic middleware, needs to be 

designed, which would be driven by semantically-enriched and dynamically 

constructed metadata. Such semantic computing models can potentially be able to 

predict environmental hazards in a timely manner. 

6.4.4 Addressing the Uncertainty Challenge 

Representing and managing uncertainty in earth and environmental science is a huge 

challenge. One of the main concerns of environmental scientists about uncertainty is 

the reasoning support in complex modelling scenarios, for instance, reasoning about 

propagating uncertainty in integrated modelling [177]. Uncertainty can arise from 

many sources: i) the underlying unreliable data sources methods, for instance, using 

citizen science, cheap and less reliable sensors, and lower satellite observations, for 

data collections; ii) choosing different models in experiments. In order to deal with 

uncertainty using Semantic Web technologies, a knowledge representation 

mechanism, i.e. ontology, is required to conceptualise and tackle the effects of 
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uncertain phenomena. However, current Semantic Web technologies do not have the 

ability to describe and reason over uncertainty in a principled way. Hence, there is a 

need to carry out further research to develop probabilistic ontologies providing a basis 

for reasoning to resolve the uncertainty challenge. 

6.5 Final Remarks 

The author argues that the approach presented in this thesis has the potential to 

address important data challenges. In particular, this thesis has examined the potential 

role of Semantic Web technologies for IoT/streaming data in underpinning 

environmental science and dealing with the associated challenges. The results 

presented in this work demonstrate the applicability and potential of such techniques, 

while also pointing several research avenues for further investigation. Finally, this 

thesis has examined the unique characteristics of environmental science around data 

in all its complexity. The author invites the Semantic Web research community to 

further explore the potential of these technologies and help environmental scientists to 

revolutionise their science.
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