
SERVICES TO SUPPORT CONSISTENCY IN MOBILE
COLLABORATIVE APPLICATIONS

Keith Cheverst, Nigel Davies, Adrian Friday and Gordon S. Blair

Distributed Mudtimedia Research Group,
Lancaster University,

Lancaster,
U.K.

kc, nigel, adrian, gordon @comp.lancs.ac.uk

Abstract

This paper describes the design of ,services to support
consistency in collaborative mobile applications. The
requirements for application level consistency in groupware
applications are discussed and it is urgued that existing
consistency services for mobile environments fail to address
these requirements because they assume infrequent (write)
sharing of information. We present the design of a group
execution service called G-QEX which is designed to
support consistency in mobile applications and includes
features necessary to cope with the fluctuations in QoS
which characterise mobile environment,s.

1: Introduction
Collaborative groupware applications require support

for maintaining application level consistency between
group members. To achieve such consistency requires the
implementation of appropriate concurrency control and
synchronisation methods [13.

The difficulties of providing effective support for
consistency are exacerbated when operating in a mobile
environment owing to the potential for rapid fluctuations in
the quality of service (QoS) of the underlying network. In
particular, it is possible for group members to become
completely disconnected from the rest of the collaborating
group. This makes the selection of an appropriate
consistency policy non-trivial. For example, if a policy was
selected which guaranteed consistent views between all
group members and one or more group members
subsequently became disconnected, no group member could
receive any group updates. If, however, a policy was
specified such that certain members of a group need not be
guaranteed consistent views then if those members became

disconnected, group updates could still occur.
This paper describes the design of a set of services to

enable application programmers to specify consistency
guarantees for collaborative groupware applications. A key
aspect of the services' design is their ability to enable the
application programmer to specify temporal consistency
parameters. For example, the application programmer can
stipulate that all group members should receive group
updates within one second of the update being sent. If at
any point during the lifetime of the collaboration this
synchronisation guarantee can not be achieved the services
are designed to provide appropriate feedback to the
application. This feedback would allow the programmer to
take an appropriate course of action. The services are
supported by a protocol called QEX [2] (Quality of service
driven remote FXecution protocol) developed at Lancaster
which provides the necessary feedback on the state of the
underlying network to enable consistency guarantees with
temporal parameters to be policed.

Section 2 of this paper summarises the requirements
for consistency support within groupware applications. The
section discusses a number of the CSCW (Computer
Supported Cooperative Work) issues relating to groupware
applications and focuses on the extensive requirements
capture performted during the MOST (Mobile Open Systems
Technologies for the Utilities Industries) project [3].
Section 3 reviews the related work on supporting
Consistency in groupware applications for mobile and fmed
networking environments. It is argued that the currently
available solutions which address the problems of
consistency within mobile environments focus on the
support of non-collaborative applications in which shared
data is rare. There are, however, numerous applications
which manage consistency for groupware applications
designed to operate in fixed networking environments and
these are described in some detail. Section 4 presents our
design for an I S 0 RM-ODP [4] (Reference Model for Open
Distributed Processing) based service to support consistency
in distributed mobile groupware applications. The design
includes details of both the application programmer's
interface (MI) and the engineering support required to

27
0-8186-7499-7/96 $05.00 0 1996 IEEE

mailto:comp.lancs.ac.uk

enable the service to support consistency in highly
heterogeneous networking environments. Section 5
contains examples of how the service could be used to
support consistency in a real application scenario. Finally,
section 6 presents some concluding remarks.

2: Requirements Analysis
To date relatively little work has been carried out on

determining the requirements for collaborative applications
operating in a mobile environment. A notable exception
was the requirements capture performed during work on the
MOST project which focused on providing mobile
computing support for field engineers in the electricity
distribution industry. MOST developed a trial mobile
collaborative multimedia application which took the form
of a toolkit to support field engineers. The application
allowed engineers to exploit the functionality of a GIS
(Geographical Information System) in a conference setting,
i.e. to show, manipulate and highlight maps and diagrams
to all or a subset of the conference participants via a shared
public view. Engineers were given the functionality to
easily switch between synchronous and asynchronous styles
of working through the inclusion of an electronic mail
based application designed for issuing job instructions
which enabled annotated diagrams to be sent in addition to
plain text. The application was supported by APM's
ANSAware software suite [5] which was extended to
support operation in a mobile environment [6].

Central to the design of the MOST collaborative
application was the end-user requirement that field engineers
would usually be contactable only via an analogue PMR
(Private Mobile Radio) channel. Such a channel offers low
bandwidth (approximately 2.4 kbidsec), high latency and,
most challenging of all, long periods of complete
disconnection. As a result of this requirement the
application's interface was designed to provide appropriate
feedback to collaborating group members regarding the state
of connectivity within the group. For example, if a group
member became disconnected then that member's icon
would be displayed with a red background. This feedback
provides group members with sufficient information to
enable them to adapt their style of working to changes in
overall group connectivity. For example, if an engineer
realised that a certain cable fitter was currently disconnected
from the group then he might choose to delay performing a
shared hi-lighting operation.

The MOST application was demonstrated to several
utilities companies and a number of shortcomings in its
support for data consistency were identifed:

Lack of automatic system support for bringing
latecomers to a collaboration up to state. The
current version of the GIS requires latecomers to
enter into a dialogue with another group member
and explicitly request them to transfer the state
of their public view. There should be system
support for allowing a latecomer to

(i)

automatically receive an up-to-date public view.
There should also be a facility to allow the
latecomer to have the option to observe
graphically the creation of the public view.

Lack of system support for bringing group
members who have experienced an extended
period of disconnection up to state. This set of
circumstances can be treated similarly to the
above.

(iii) Lack of system support for checking the
consistency of public views between group
members. The system currently does not provide
support guaranteeing consistency of public
views. Instead, the application relies on voice
communications between collaborating
engineers to identify inconsistencies.

Lack of system support for guaranteeing the
synchronisation of group updates. There is a
need for system support to allow guarantees to
be made regarding the maximum delay that any
group member should have to wait before
receiving a group update. This is of particular
importance in the MOST application since
engineers are collaborating not only via the
computer based application but over a separate,
real-time, physical network, i.e. the power
distribution network. There are a number of
scenarios (for example the switching of power
supplies) were it is critical that group updates
should be propagated in a timely fashion in order
to ensure that the application accurately reflects
the state of the physical network.

During our work on MOST we studied the way in
which group members interact when operating over an
unreliable mobile network. In particular, we examined the
form of interaction between group members on the basis of
the collaborating group's co-location and temporal
synchronicity. We observed an interesting anomaly in the
standard timelspace matrix 171 produced by the CSCW
community. The standard time/space matrix is shown in
figure l(a) and reveals clear divisions between the form of
interaction and position in the timekpace matrix. Using
this standard matrix one would expect geographically
distributed group members operating at the same time to
operate in a synchronous way e.g. by using a real-time
conferencing system. However, we discovered that the form
of interaction would often vary between synchronous and
asynchronous as the available network QoS changed. This
led us to produce a modified timehpace matrix that does not
assume a completely reliable network; this matrix is shown

(ii)

(iv)

in figure I@).

28

Same Time Different Time

Interaction

Interaction Interaction

Figure l (a) : Standard spaceltime matrix

Same Time Different T i e

Figure l (b) : Modified spaceltime matrix

3: Current Services to Support
Consistency

The database community has for a long time considered
the tension between providing data availability whilst
maintaining the consistency of data. In general pessimistic
locking is used in situations where the consistency of data
takes priority and optimistic rollback strategies are used
where data availability takes priority. One approach to
increasing the availability of data when using pessimistic
locking is the use of flexible locking techniques. An
example of a flexible locking technique is the tickle lock
[81 as used in CES to enable effective collaborative editing.
Tickle locks automatically release an author's lock to a
requesting author after a period of inactivity and so help
prevent the improper or accidental hoiarding of locks. A
second example of flexible locks are soft locks [9]. Soft
locks are released in the event of a conflicting hard lock
request and each lock request is stored ini a log. This log can
be interrogated by users to ascertain who has accessed the
data item and so enable negotiation for the release of locks.

However, in situations where data availability must be
maintained despite network partition then an optimistic
approach based on the replication of data [lo] needs to be
used. The CODA [l l] file system is based on such an
approach, offering high availability through the use of file
replication and client caching. Clients cache files locally
and hence when ;a network or server fails, the client is able
to maintain availability using its cached files. CODA relies
on the assumption that in normal operation there will be a
very small percentage of cache write clashes and this has
been proven to be the case for normal usage.

A second example of a system offering high
availability in a mobile environment is the Bayou [12]
storage system. Unlike CODA the design of Bayou
supports applications in which write operations are expected
to conflict on a regular basis. To provide high availability
Bayou replicates files which are kept consistent using a
transaction based approach. A degree of optimism is built
into the system by allowing writes to be regarded as
tentative until coimmitted and allowing committed writes to
be rolled back when write conflicts are detected.

In fixed networking environments there are numerous
examples of groupware applications which manage
consistency . Such applications may be categorised as using
either centralised or replicated architectures [13]. Groupware
designed using a centralised architecture is simplest to
implement because there is a single coordinating
application whose output is propagated to group members.
Systems based an this architecture (e.g. WSCRAWL 2.0
[14]) suffer from a central point of failure and a large
amount of network traffic (because communications
between the application and the group members is typically
at the windowing system level rather than at the application
level). Groupware designed using a replicated architecture
has an application program replicated on every group
member's machine (e.g. GROUPSKETCH [15] and
GROUPDRAW 1[16]). The advantages of this approach are
reduced network traffic and greater resilience to machine and
network failure. Implementing groupware based on the
replicated architecture is more difficult because appropriate
synchronisation schemes must be employed in order to
ensure t h t members' views remain consistent.

In addition to the specific applications cited above a
number of toolkits have been written to simplify the task
of implementing certain classes of groupware application.
GroupKit [17] and DistEdit [18] are examples of such
toolkits and each is based on a fully replicated architecture
and uses the atomic broadcasting facilities provided by ISIS
[191 to communncate between replicas. ISIS provides two
main atomic multicast protocols which allow group updates
to be received by replica objects in the correct order. The
first protocol, abcast is a totally-ordered multicast protocol
which requires the sender to block until acknowledgements
are received from the entire group. The problem with using
this protocol is that if there is a network failure then no
further updates can proceed until full connectivity is
restored. The second protocol, cbcast is perhaps the most
useful for groupware applications and is used by GroupKit

29

and DistEdit. This protocol provides a non-blocking
causally-ordered multicast protocol and achieves this by
using the concept of virtual synchrony [19]. If a network
failure occufs when using cbcast to propagate an update, the
sender will not be forced to block. However, those group
members partitioned from the sender will have an
inconsistent view to the rest of the group until full network
connectivity is restored.

4: An ODP Compatible Service to Support
Group Consis tency

4.1: Overview of RM-ODP and ANSAware

The implementation of our service is based on APM
Ltd.’s ANSAware software suite. This software suite is
itself based on the ANSA architecture which has had a
profound influence on the RM-ODP. The ANSA
programming model is a location-independent object model
where all interacting entities are treated uniformly as
encapsulated objects. Objects are accessed through
operational interfaces which define named operations
together with constraints on their invocation. Interfaces
may be to single objects or to groups of objects in which
case the model provides group transparency. Objects are
ma& available for access by exporting interfaces to a
special object hown as the trader. An object wishing to
interact with this interface must then import the interface
from the mder by specifying a set of requirements in terms
of a interface type and attribute values. This will be
matched against the available services and a suitable
candidate selected. At this stage, an implicit binding is
created to the object supporting the interface, i.e. a
communication path is established to the object. Invocation
of operations can then proceed.

To provide a platform conformant with the above
programming model the ANSAware suite augments a
general purpose programming language (usually C) with
two additional languages. The first of these is IDL
(Interface Definition Language), which allows interfaces to
be precisely defined in terms of operations, arguments and
results. The second language, DPL (Distributed Processing
Language) is embedded in a host language, such as C, and
allows interactions to be specified between programs which
implement the behaviour defined by these interfaces.
Specifically, DPL statements allow the programmer to
import and export interfaces, and to invoke operations in
those interfaces.

In the engineering infrastructure, the binding necessary
for invocations is provided by a remote procedure call
protocol known as REX (Remote EXecution protocol) or a
group execution protocol known as GEX (Group
Execution Protocol). These are layered on top of a generic
transport layer interface known as a message passing
service (MPS). A number of additional protocols may be
included at both the MPS and the execution protocol levels
and these may be combined in a number of different

configurations. The infrastructure also supports lightweight
threads within objects so that multiple concurrent
invocations can be dealt with.

All the above engineering functionality is collected
into a single library, and an instance of this library is linked
with application code to form a capsule. Each capsule may
implement one or more computational objects. In the
UNIX operating system, a capsule corresponds to a single
UNIX process. Computational objects always communicate
via invocation at the conceptual level but, as may be
expected, invocation between objects in the same capsule is
actually implemented by straightforward procedure calls
rather than by execution protocols. ANSAware currently
runs on a variety of operating systems platforms including
various flavours of UNIX, VMS and MS-DOSDVindows.

4.2: Service Design and API

In a fixed networking environment with group
members collaborating in close synchrony, the notion of
transparent group invocation as provided by ANSAware
works well because network failures are rare. However, in a
mobile environment when network failure, and hence
invocation failure, occurs more frequently, group
transparency must be broken if the client is to be able to
ascertain the cause of the failure and take appropriate action.
For example, by breaking group transparency applications
can provide information to the users regarding the state of
the underlying network and hence they can make an
informed decision on how to continue their collaboration.

Our services are designed to allow the group
transparency paradigm to be selectively maintained,
partially broken or completely broken at the application
level. In order to retain complete group transparency a client
of the group sends a message in the normal way and the
group execution protocol will perform the standard message
propagation to the group using a default policy.
Transparency can be partially or totally discarded by
establishing an explicit binding between the client and the
group interface with an associated binding control interface.
Through the binding control interface clients will be able to
choose to p a r t d l y discard group transparency by specifying
the quorum to be used for deciding whether or not an
invocation on the group has been successful, or to totally
discard group transparency by specifying a message profile
stipulating the required QoS to be used when propagating
their next group invocation. In more detail, the binding
control interface enables programmers to:

Obtain the QoS of the binding, i.e. return the
current values of the quorum and message
profile.

Set the QoS of the binding. This operation
allows programmers to specify the desired
quorum and optionally the message profile for
group invocations.

Set the collation policy to be associated with the

*

30

group. This operation allows the client to
specify the function to be used for implementing
the collation policy. The collation policy is
responsible for determining which invocation
result to return to the client from the set of
invocation results obtained from the group.

Register for QoS violations. Programmers can
register for notification of violations in any of
the QoS parameters irrespective of whether they
led to overall invocation failure.

Delete the binding (unbind).
The message profile is a matrix associating group

members with a set of QoS (Quality Of Service)
parameters. The parameters we currently envisage
supparting are:

Temporal constraints which stipulate the time
out period within which the group member must
acknowledge receipt of the group invocation.

Ordering requirements which stipulate whether
or not the group member must receive group
invocations in sequence.

Reliability requirements which stipulate whether
or not the group member must receive the group
invocation.

Cost requirements which stipulate the cost
which the client is prepared to pay in order to
have the group member ireceive the group
invocation.

An example of the message profile: structure is shown
in figure 2 where the first column represents a group
member's id, the second column represents the time
constraint, the third column represents tlne required ordering,
the fourth column represents the reliability guarantee and
the last column represents the cost in an appropriate unit.

There will be occasions when group membership is
increased before the client is able to update the message
profile to take account of the new group members. In this
situation, the current message profile will be updated
automatically by using a set of default @S parameters. The
client will be able to stipulate these default parameters by
entering them in the first row of the message profile.

i)

ii)

iii)

iv)

MemberId Time Ordering Reliability Cost
0, 2, ordered, yes, 20,
1, 2, ordered, yes, 20,
2, 2, unordered., no, 20,
3, 2, unordered., no, 20

Figure 2: An example message profile

If a client's group invocation fails due to a QoS
violation then this information will be lreported back to the

client via an aplpropriate error code. The client can then
interrogate the bhding to establish the cause of the failure.
Note that not all QoS violations will result in overall
failure of the invocation due to factors such as low
quorums. However, clients will be able to register an
interest in QoS violations which will enable them to be
informed of all QoS violations.

Further consistency seMces which are needed to address
the requirements described in section 2, e.g. state-transfer to
new group members, will be layered on top of the group
execution promol.

43: Engineering Issues

Our Services are based on a QoS driven group execution
protocol called G-QEX. We are engineering G-QEX as part
of our ongoing work to enhance the ANSAware distributed
systems platform to enable it to operate efficiently in a
mobile environment. As described in section 4.1,
ANSAware currently supports the concept of the inferjace
group [20] which is defined as a collection of interfaces
which provide a service at a single interface. Interface
groups use a transparent group execution protocol called
GEX for object invocation. In ANSAware 4.1 only active
replica groups are provided which means that when an
invocation is made upon a group, each member of that
group is required to service the invocation. GEX uses the
standard ANSAware remote execution protocol REX to
provide point to point links between the client and the
group.

GEX is currently an unsuitable protocol for providing
the various group consistency guarantees required to support
mobile collaborative applications and hence we are
replacing GEX with a QoS driven protocol G-QEX. In
addition, earlier work has shown that the REX protocol is
unsuitable for use in a mobile environment and hence we
will use a new protocol QEX (which has been reported
previously in [2], [21]) to provide the point-to-point links
where necessary. QEX can operate over a diverse range of
networks by adapting its behaviour to match the quality of
the underlying network. This adaptation is achieved by
gathering information on the number of retries and average
delay time experienced over a given channel. Using this
information QEX is able to adjust retry intervals and alter
transmission rates to make the best use of the channel.
QEX is also able to pass QoS information regarding the
state of a channel to interested clients.

G-QEX will use the QoS information provided by
QEX to provide an insight into the viability of group
consistency guarantees. For example, suppose a client
requires a guarantee that a particular group member should
receive a group invocation within five seconds. If QEX has
estimated that communication to that group member
involves a ten second call set-up time then G-QEX can fail
the group invocation immediately rather that cause the
client to wait for five seconds before being notified of the
failure. G-QEX will also be able to use channel throughput
information obtained from QEX to detect whether an

31

invocation of a given size can reach a particular group
member in time.

It is intended that future versions of QEX will enable
clients to receive infonnation regarding the cost of using a
given channel. This information will be used by G-QEX to
enable it to take appropriate action when clients require a
group consistency guarantee that involves cost. For
example, suppose a client requires a guarantee that the cost
of sending an invocation to a particular group member
should not exceed twenty units and that the group member
has network connection via a cellular phone. QEX will be
able to supply information on the tariff charges for the
group member's cellular connection and this cost
information will enable G-QEX to calculate whether the
invocation can be made without exceeding the stipulated
cost. G-QEX will also be capable of making optimisations
based on cost information when a client stipulates the
quorum to be used when invoking a group operation. For
example, if a majority quorum is specified then G-QEX
will send the invocation to those group members connected
by the lower cost channels until the quorum is reached.

: E e Usage
As an example of how the consistency services might

be used we shall use a scenario based around the
requirements identified during the MOST project. Consider
the scenario in which a group comprising two mobile field
engineers and a control centre is collaborating using a
shared GIs application. Initially the control centre wishes
to use the shared GIs to hi-light to the first engineer the
point at which they should expect to find damage to an
electricity cable. To keep the second field engineer informed
of the situation the control centre determines that the second
engineer should also observe the suspected point of damage
via their shared GIs. Because both field engineers are
mobile each has an unreliable network connection. Before
performing the hi-light operation, the control centre can use
the consistency services to set the appropriate consistency
guarantees for the propagation of the hi-lighting operation
to the group. The control centre would require a guarantee
that the hi-lighting operation performed on its shared GIS
would be received by itself and the first engineer. The
control centre would not in this case require a guarantee that
the second engineer would receive the update. The profile in
figure 3 could be used in this scenario (note that cost would
not be an issue since the utilities use free wireless data
services).

MemberId Time Ordering Reliability Cost
0, 5, unordered, no, na,
1, 5, ordered, yes, na,
2, 5 , ordered, yes, M,
3, 5, unordered, no, na

Figure 3 : Message profile for 8 single
important recipient

When propagation of the update is made to the group,
the first field engineer is located in an area offering coverage
for their PMR (Private Mobile Radio) service but the
second field engineer is not. Given the profile used, despite
the second engineer suffering a network disconnection, the
propagation of the hilight operation would still be regarded
as successful provided that the first engineer receives the
update within five seconds.

The first engineer visits the location of the damaged
cable and requests permission to switch power from the
current circuit to an alternative one. The shared GIS can
now be used by the first engineer to hilight which new
distribution circuit he wishes to use. Performing such a
switch could affect the work of the second engineer and
therefore a guarantee is required that each member of the
group should receive the highlight update. The first
engineer would use the profiie in figure 4.

MemberId Time Ordering Reliability Cost
0, 5 , unordered, no, na,
1, 5, ordered, yes, na,
2, 5, ordered, yes, na,
3, 5, unordered, no, na

Figure 4 : Message profile for two important
recipients

When the attempt is made to propagate the update to
the group it will fail because the second field engineer is
outside service coverage and so cannot receive the update.
The first engineer can now make an informed decision
regarding whether to delay until the second engineer enters
an area of coverage or whether to continue with due caution.

The first engineer and the control centre make the
decision to continue without the second engineer and decide
to remove them from the group. The next stage for the
engineer and control centre is to collaboratively produce a
plan for fixing the damaged cable. This stage of close
collaboration requires the use of telepointers in addition to a
separate reliable voice channel to enable each collaborator to
quickly see and respond to the other's ideas. In order to
maintain some form of synchrony between the telepointers
and the voice channel a policy is required which ensures that
a telepointer update is only made if it is received within one
second otherwise it is ignored. To achieve such a policy the
engineer and control centre would each use the following

32

profile:

MemberId Time Ordering Reliability Cost
0, 1, unordered, no, na,
1, 1, unordered, no, na,
2, 1, unordered, no, na

Figure 5 : Message profile for time-critical
message transmission

As the above scenario demonstrates, users may wish to
change consistency requirements (and hence message
profiles) during the life-time of a collaboration. This may
be achieved implicitly by the application when, for
example, users change their role within a collaboration or
may be the result of an explicit user request via the
application's user interface

6: Concluding Remarks
The MOST project identified a nuniber of requirements

for application level consistency in collaborative mobile
applications. This paper has described the design of a group
execution service (G-QEX) which is aimed at addressing
these requirements. The service builds on our earlier work
on QoS driven point-to-point remote execution protocols
and allows application programmers to selectively break
group transparency by specifying a rang,e of QoS parameters
for group invocation. These QoS parameters include
temporal constraints on message delivery, ordering and
reliability requirements and an overall t m t figure which the
client application is prepared to pay in order to ensure
delivery to a given group member.

While there has been considerablie research work on
QoS driven group communication for continuous media
types 1221 there has been relatively little on QoS driven
group execution protocols which we attribute to the
relatively uniform levels of service found in most fixed
networks. Consequently, many of the existing group
execution protocols are unsuitable for use in a mobile
environment. We are currently developing a prototype
implementation of G-QEX and modifying the MOST
application to exploit the benefits accruing from the use of
this service.

7: References
Greenberg, S., D. Marwood, "Real Time Groupware as a
Distributed System: Concurrency Control and its Effect
on the Interface". Proc. of CSCW 94, Chapel Hill, NC,
U.S., October 1994.
Friday, A., N. Davies, G.S. Blair, and K. Cheverst,
"Extensions to ANSAware folr advanced mobile
applications.", Proc. International Conference on
Distributed Plarfoms, Dresden, Giermany, February 21-
March 1, 1996
Davies, N., G.S. Blair, A. Friday, A.D. Cross, and P.F.
Raven, "Mobile Open Systems Technologies For The
Utilities Industries", Remote Cooperation - CSCW for

Mobile and Tele-workers, Editor: A. Dix, Springer
Verlag (to be published).
ISO, "Draft Recommendation X.901: Basic Reference
Model of Open Distributed Processing - Partl: Overview
and Guide to Use", Draft Report, 1992.
APM Ltd., "An Introduction to ANSAware 4.0", APM
Ltd., Cambridge, U.K., February 1992.
Davies, M., G.S. Blair, K. Cheverst, and A. Friday,
"Experiences of Using RM-ODP to Build Advanced
M o b i 1 e S y s t e m s
Engineering Journal, Vol. 2 No. 3, Pages 142-151,
1995.
Ellis, C.A.., S.J. Gibbs, G.L. Rein, "Groupware: Some
issues and experiences", Communication of the ACM,
Pages 38-58, January 1991.
Grief, I., 15. Sarin, "Data Sharing in Group Work , ACM
Transactions on Office Information Systems, Vol. 5 ,
Pages 187-211, April 1987.
Ege, A., C.A. Ellis, "Design and Implementation of
GORDIOIV, an Object Base Management System", Proc.
3rd International Conference on Data Engineering,
February 1987.

[l o] Geri, S . , G. Pelagatti, "Distributed Databases -

[4]

[51

[6]

A p p 1 i c at ions 'I, D is t r i b ut e d

[7]

[81

[9]

Principles and Systems", McGraw Hill, 1984.
Satyanarayanan, M., J.J. Kistler, P. Kumar, M.E.
Okasaki, 1E.H. Siegel, and D.C. Steere, "Coda: A Highly
Available File System for a Distributed Workstation
Environment", IEEE Transactions on Computers, Vol.
39 No. 4, Pages 447-459.
Demers, A., K. Petersen, M. Spreitzer, D. Terry, M.
Theimer, and B. Welch, "The Bayou Architecture:
Support for Data Sharing Among Mobile Users", Proc.
Workshop on Mobile Computing Systems and
Applications, Santa Cruz, CA, US., December 1994.
Crowley T., E. Baker, H. Forsdick, P. Milazzo, and R.
Tomlinson, "MMConf: An infrastructure for building
shared applications", Proc. Conference on Computer
Supported Cooperative Work, Los Angeles, California,
U.S., October 1990.
Wilson, IB., "WSCRAWL 2.0: A Shared whiteboard
based on X-Windows.", In Designing Groupware for
Real Time Drawing, Editors: S . Greenberg, S. Hayne and
R. Rada, McGraw Hill, 1994.
Greenberg, S., R. Bohnet, "Groupsketch: A multi-user
sketchpad for geographically-distributed small groups",
Proc. of Graphics Interface 91, Calgary, Alberta,
Canada, July 1991.
Greenberg, S. M. Webster, R. Bohnet, "Issues and
experiences designing and implementing two group
drawing tools", Proc. of rhe 25th Hawaii International
Conference on System Sciences, Kuwaii, Hawaii, IEEE
Computer Society Press, January 1992.
Roseman, M., S. Greenberg, "GroupKit: A groupware
toolkit for building real-time conferencing
applications", Proc. of ACM Conference on Computer
Supporfed Cooperative Work, Toronto, Ontario, ACM
Press, November 1992.
Knister, M., A. Prakash, "DistEdit: A Distributed
Toolkit for Supporting Multiple Group Editors", Proc.
of Conference on Computer Supported Cooperative
Work, Los Angeles, California, U.S., October 1990.
Birman, lK.P., "The Process Group Approach to Reliable
Distributed Computing", Technical Report, Dept. of
Computer Science. Cornel1 University, US., July 1991.

33

[2 0] Oskiewiez, E., J. Warne and M. Olsen, "A Model for Computing Systems and Applications, Santa Cruz, CA,
Interface Groups", APMlTR.009.00, Advanced U S . , December 1994.
Networked Systems Architecture, Cambridge, U.K., [2 2 1 Garcia, F., D. Hutchison, A. Mauthe, and N. Yeadon,
1990. "QoS Support for Distributed Multimedia

121 I Davies, N., G.S. Blair, K. Cheverst, and A. Friday, Communications", Proc. International Conference on
"Supporting Adaptive Services in a Heterogeneous Distributed Platforms, Dresden, Germany, February 27th
Mobile Environment", Proc. Workshop on Mobile - March lst, 1996.

34

