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Abstract 
There has recently been considerable interest in quality of service management 
architectures for high speed networks. In contrast, however, there has been less 
research on appropriate architectures for mobile computing. This paper addresses 
the issue of quality of service in a mobile environment. In particular, we describe a 
distributed systems platform, Limbo, which is intended to support the development 
of demanding, mobile-aware distributed applications in a heterogeneous 
networking environment. This platform is based on the concept of tuple spaces and 
is extended with support for quality of service management. The emphasis of 
quality of service management is on monitoring and adaptation, although support 
is also provided for other functions such as admission control and resource 
reservation. The paper argues that there are significant benefits from using a tuple 
space paradigm in such an environment, particularly in terms of the ability to adapt 
to changes in network connectivity or the more general environment. 
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2 1 INTRODUCTION 

There has recently been considerable interest in the development of architectures 
for quality of service (QoS) management (Hutchison, 1994). Such architectures are 
generally motivated by the requirement to support multimedia applications in a 
networked environment and enable the user to specify their nonfunctional 
requirements in the form of a QoS contract. The QoS management architecture 
then provides a range of functions to achieve and sustain the QoS requirements as 
specified in this contract. Examples of such functions include negotiation, 
admission control, resource reservation, monitoring and renegotiation. By 
selectively applying such functions, it is possible to provide varying levels of QoS 
guarantee (such as best effort, predictive or deterministic). 

Existing QoS architectures, however, generally make implicit assumptions about 
the underlying network. In particular, they assume that the network offers a 
relatively stable environment in terms of connectivity, available throughput, delay 
and delay jitter. They ensure sufficient resources are available through admission 
control and resource reservation and compensate for small changes in the 
underlying network service through software feedback mechanisms. However, 
such approaches are not appropriate in a mobile environment, where the end 
system may roam from network to network experiencing dramatic changes in 
throughput and connectivity. In such systems, the emphasis for QoS management 
must change from providing levels of guarantees to supporting monitoring and 
adaptation. 

This paper considers the role of quality of service management in a mobile 
environment. We are particularly interested in QoS management to support 
demanding distributed applications (requiring multiparty multimedia 
communications). We propose a novel approach based on tuple spaces, exploiting 
the properties of time and space decoupling exhibited by such systems. We 
demonstrate how tuple spaces can be enhanced to support QoS management 
functions within an overall QoS architecture. 

2 QOS AND MOBILITY 

2.1 Heterogeneous Networks 

Early research in mobile computing focused on mechanisms to enable access  to 
services across wireless networks such as GSM. Current research, however, is 
investigating techniques to access services over a heterogeneous networking 
infrastructure where the precise network will vary over time (Katz, 1994). Given 
such a heterogeneous infrastructure, the most dominant characteristic of mobile 
computing is change. For example, end systems can experience dramatic changes 
in the available bandwidth and bit error rates, or discover new functionalities are 
available in the underlying network. At the most extreme, end systems can move 
from periods of high to partial connectivity, through to complete disconnection. 



 

3 The approach in existing QoS architectures is, where possible, to mask out 
change and hence present a stable service to the application (effectively providing 
a level of network transparency). This is achieved through combining QoS 
functions such as admission control, resource reservation and maintenance. In our 
view, such an approach is not sustainable in a mobile environment. In such an 
environment, the emphasis should not be on transparency but on making 
information available to applications and empowering applications to make the 
necessary changes. Such an approach relies on the provision of QoS management 
functions supporting monitoring and adaptation. To complement this, the 
underlying system must be amenable to adaptation, including the ability to adapt to 
periods of disconnection. This is not to say that existing approaches to QoS 
management are invalidated. Rather, strategies such as admission control and 
resource reservation can be used for component networks and can provide 
guarantees while the end system remains connected to that particular network. The 
architecture must, however, accommodate changes in underlying network service 
through the additional mechanisms we seek. 
 
 
2.2 Other Factors 

Mobile hosts must also deal with other changes in their environment. One 
important environmental factor is that of power availability and consumption. 
Despite significant developments in areas such as low-power processors, the 
availability of power remains an important concern for mobile users. By providing 
access to power information, applications may utilise hardware power saving 
functionality as appropriate. 

Another important environmental factor is the current physical location of the 
end system. Such information can be exploited in numerous ways. For example, 
such information can be used for the proximate selection of services (Neuman, 
1993) whereby services are selected on criteria such as physical distance from the 
mobile host and current cost of access. Schilit has also proposed the more general 
concept of context-aware applications (Schilit, 1994). One example put forward is 
that of a memory jogger which allows users to specify that a certain message 
should be displayed when a series of location and temporal based conditions are 
met, e.g. 'remind me to do task t next time I meet users x and y'. 

In essence, we are proposing to broaden the scope of QoS monitoring and 
adaptation to include general environmental characteristics such as power 
availability, rate of consumption of power, physical location and time. In this way, 
applications can adapt to changes in the underlying environment. However, this 
introduces a problem. Existing systems provide access to QoS functions through 
abstractions over communications. For example, more recent distributed systems 
platforms support the concept of bindings as abstractions over communications 
services. Crucially, bindings generally offer interfaces for QoS management 
functions such as monitoring and adaptation. This implies, however, that there 



 

4 would be one means of accessing and disseminating information about the network 
and another means of dealing with other environmental characteristics. 

The close liaison between communications and QoS implies that 
communications must be established before QoS information can be obtained. This 
approach prohibits the system from making speculative decisions. For instance, the 
system cannot check the QoS between itself and some remote system to determine 
whether it wishes to contact that system without first establishing the binding to 
obtain a handle for gathering the QoS information. We therefore seek a uniform 
approach to QoS management which accommodates both communications and 
more general environmental considerations. Furthermore, such an approach need 
not be dependent on the existence of actual bindings between hosts. 
 
 
2.3 Overall Analysis 

In our opinion, the most crucial role of QoS management in mobile environments 
is to facilitate adaptation. To support this, the underlying distributed systems 
platforms must collate and manage QoS information for presentation to higher 
layers, enabling feedback and control throughout the architecture. In addition, we 
believe the close association of QoS with communications present in existing 
approaches to be less than ideal. The remainder of this paper describes a new 
distributed systems platform, Limbo, based on the tuple space paradigm which can 
provide a uniform mechanism for integrating QoS into applications. Firstly, 
however, it is necessary to provide some background information on tuple spaces 
and the rationale for tuple spaces in distributed mobile environments. 

3 BACKGROUND ON TUPLE SPACES 

3.1 What are Tuple Spaces? 

Tuples comprise of collections of typed data fields. Each field is either an actual, 
if it contains a value, or a formal, if it does not. Collections of (possibly identical) 
tuples exist in shared data objects called tuple spaces. Tuples can be dynamically 
deposited in and removed from a tuple space, but not be altered while resident in 
it. However, changes can be made to a tuple by withdrawing it from the tuple 
space, amending and then reinserting it (Gelernter, 1985b). Tuple spaces are 
shared between collections of processes, all of which have equal access to its 
contents. 

The tuple space paradigm was conceived by researchers at Yale (Gelernter, 
1985a) and was embodied in a coordination language called Linda. Linda is not a 
standalone computational language, instead Linda operators are embedded in host 
computational languages (e.g. C or Java). The model defines four basic operators: 
• out inserts a tuple, composed of an arbitrary mix of actual and formal fields, 

into a tuple space. 



 

5 • in extracts a tuple from a tuple space, using its argument as a template, or 
anti-tuple, against which to match. Actuals match tuple fields if they are of 
equal type and value; formals match if their field types are equal. If all 
corresponding fields match the tuple is withdrawn and any actuals assigned to 
formals in the template. Tuples are matched nondeterministically and in 
blocks until a suitable tuple can be found. 

• rd is a version of in which does not withdraw matches from the tuple space. 
• eval is similar to out but creates active rather than passive tuples, spawning 

separate processes to evaluate each field. Such active tuples subsequently 
evolves into ordinary, passive tuple resident in the tuple space. 

 
 
3.2 Why Tuple Spaces? 

The tuple space paradigm has two very important properties: 
• Time decoupling: In tuple spaces, tuples are persistent and the sender and 

receiver do not have to exist at the same time (Bjornson, 1991). A sender may 
place a tuple into tuple space and then terminate execution. At some point in 
the future, a receiver can invoke the in or rd primitives and obtain this tuple. 
It is quite possible that the receiver did not exist when the tuple was created. 

• Space decoupling: The sender does not need to be aware of the identity of the 
receiver (or multiple receivers if rd operations are used). The sender simply 
places the tuple in tuple space and expects one or more processes to access the 
tuple at some point in the future. Their identity is unknown (i.e. 
communication is anonymous). It is, however, also possible to produce tuples 
for an identified consumer process, termed directed communication, by 
encapsulating destination information in tuples. Several such schemes have 
been proposed, including an approach based on Amoeba ports (Pinakis, 1992). 

It is recognised that these properties support the construction of flexible and 
fault-tolerant parallel applications. We contend that the same properties can 
support the construction of distributed applications in a mobile environment. The 
majority of existing distributed system platforms are based on the remote 
procedure call (RPC) paradigm. In this style of interaction, clients locate an 
appropriate service through, for example, a trading service. They then bind to this 
service and invoke operations on it over a period of time. This makes the 
assumption that the sender and receiver exist at the same point in time and 
synchronise in order to exchange data (with the precise degree of synchronisation 
varying from service to service). Consequently, such systems have problems 
during both long and short periods of disconnection. A number of platforms 
overcome this deficiency by introducing an element of buffering. In this way, the 
platforms attempt to maintain RPC semantics in the face of variations in network 
connectivity. Tuple spaces, however, overcome this problem by decoupling 
senders and receivers in time. 

Space decoupling also offers benefits for mobile computing. The advantage of 
space decoupling is that there is no binding between a client and a server. Rather, a 



 

6 number of processes can service a particular request (as specified in a tuple). This 
increases fault-tolerance as the architecture naturally deals with failure of 
particular nodes. In a mobile environment, this property can be exploited to deal 
with the unavailability of particular services. For example, an end user can request 
a print service by inserting an appropriate tuple in tuple space. Any print service 
can respond to this request. As print services become unavailable, other services 
can take over. In this example, it would also be possible to exploit location 
information (if available) to dynamically select the nearest service. 

The combination of space and time decoupling implies that there is no direct 
concept of a connection in tuple spaces. Consequently, QoS requirements must be 
associated with the overall tuple space or with individual tuples. The result of this 
is that the system has more flexibility to reconfigure itself to attain the desired 
level of QoS. We return to this aspect in section 4.2.3 below. 

Finally, tuple spaces provide a very natural means of disseminating information 
to a variety of potential recipients. The paradigm directly supports multiparty 
communications and encourages the ready availability of global information. We 
exploit this later property to make QoS management information available to any 
interested parties. This aspect is discussed in more detail in section 4.2.2. 

4 A DISTRIBUTED SYSTEMS PLATFORM BASED ON TUPLE 
SPACES 

4.1 General Approach 

We have designed a new distributed system platform, called Limbo, to support 
demanding distributed applications in a mobile environment. This platform is 
based on the concept of tuple spaces, augmented by mobile agents. Mobile agents 
reside above tuple spaces and interact with the tuple space, carrying out a 
particular computation. They can be written in any language supporting the 
creation of mobile code (e.g. Java or TCL) as long as the language provides a 
conformant interface to tuples spaces (thus supporting the requirement for 
interoperability and portability required by modern middleware platforms). Note 
that agent mobility is naturally supported by the tuple space model; agents simply 
stop interacting with the tuple space, relocate and then restart their interaction. As 
an enhancement, agents are also generally stateless; all state is assumed to be in 
the tuple space. As tuples are persistent and globally available, replicating agents 
is trivial. In other words, there is no need for a consistency algorithm; this is 
directly provided by tuple spaces. Agents are classified as system agents, already 
provided in the environment, and application agents, introduced into the 
environment by the programmer. This distinction is, however, not particularly 
rigid. The application programmer is free to introduce additional system agents 
into the environment. 

We support the following key extensions to this basic architecture: i) multiple 
tuple spaces which may be specialised to meet application level requirements, e.g. 



 

7 consistency, security or performance, ii) an explicit tuple type hierarchy 
supporting dynamic subtyping, and iii) a QoS management architecture supporting 
monitoring and adaptation. We look at the first two extensions in this section and 
the QoS management architecture in section 4.2. 

The original tuple space model was designed to support parallel programming 
on shared-memory multi-processor systems and features a single, global tuple 
space. More recent models have proposed the introduction of multiple tuple spaces 
to address issues of performance, partitioning and scalability (Hupfer, 1990). This 
is important for performance in a distributed environment and critical in an 
environment where communications links are costly and unreliable. 

We provide a class of system agent which can create new tuple spaces for 
applications. These tuple spaces are configurable to meet application specific 
requirements (Hupfer, 1990). For example, in addition to general purpose tuple 
spaces we allow the creation of tuple spaces with support for security (user 
authentication), persistence and tuple logging (for accountability in safety critical 
systems). Crucially, it is also possible to create a range of QoS-aware tuple spaces. 

In order to create a new tuple space clients communicate with the appropriate 
system agents via a universal tuple space. Clients specify the characteristics of the 
desired tuple space and place a create_tuple_space request into the common 
tuple space. The appropriate system agent accesses this tuple, creates a tuple space 
with the required characteristics and places a tuple of type tuple_space in the 
common tuple space. The fields in this tuple denote the actual characteristics of the 
new tuple space (which may be different to those requested in best-effort systems) 
and a handle through which clients can access the new space. 

Agents can select between tuple spaces by means of a use primitive. This 
primitive communicates with a membership agent through the universal tuple 
space, returning a handle if the tuple space exists and certain other criteria are met. 
The precise criteria vary from tuple space to tuple space and can include checks on 
authentication and access control functions or relevant QoS management 
functions. We return to this latter aspect in section 4.2 below. Handles can later be 
discarded by an agent using a discard primitive. This places an appropriate tuple 
in the universal tuple space so that the membership agent can take appropriate 
steps. A tuple space can be destroyed by placing a tuple of type terminate in it. 
Such tuples are picked up by system agents within the tuple space which invoke a 
system function to gracefully shut down the tuple space. 

Note that this model can be applied recursively. It is possible to access a tuple 
space through the universal tuple space and find this tuple space has system agents 
supporting the creation of and subsequent access to further tuple spaces. This 
recursive structure provides a means of creating private worlds with fine grain 
access control. 

In our model, we allow an optional type to be associated with each tuple. Typed 
tuples can be organised to form a hierarchy by establishing subtyping relationships 
between them. The benefits of subtyping in a distributed environment have been 
comprehensively investigated within the ODP community as part of their work on 



 

8 interface trading (ISO/ITU-T, 1997). In this model subtyping enables added 
flexibility when matching service offers to client requests. 
 
4.2 QoS Support 

4.2.1. Overview 
As mentioned above, the Limbo architecture supports the creation of multiple 
tuple spaces through a number of system agents. In order to support quality of 
service, we provide a range of system agents to create QoS-aware tuple spaces. A 
QoS-aware tuple space is one that supports a number of QoS management 
functions (the precise details vary from system agent to system agent). This 
architecture is completely extensible; the programmer is free to define new system 
agents enabling the creation of different styles of QoS-aware tuple spaces. 

QoS-aware tuple spaces will typically have a more sophisticated membership 
agent which will perform certain QoS-management functions in order to provide 
guaranteed or predictive classes of service. In particular, the membership agent 
will cooperate with admission control and resource reservation agents in order to 
provide the required class of service. The membership agent will only issue a 
handle if the admission control test is passed and resources requested available. 
The two system agents can implement any of the available algorithms for 
admission control and resource reservation. In addition, the architecture is 
completely open. Different tuple spaces can have different admission control and 
resource reservation agents. The programmer is also free to extend the available 
services, hence offering a new class of tuple space. Note that these agents are not 
compulsory for QoS-aware tuple spaces; if not present, the tuple space will offer 
best-effort service. In general, this architecture allows a wide range of tuple spaces 
to be created offering best-effort, predictive or guaranteed classes of service for a 
variety of different traffic types (e.g. constant bit rate, variable bit rate, periodic or 
bursty traffic). 

In QoS-aware tuple spaces, individual tuples can also have designated QoS 
attributes specifying the expiration time and the priority of the tuple. In the case of 
a tuple which is the subject of an out operation, the expiration time refers to the 
time the tuple is allowed to reside in the tuple space before being deleted. In the 
case of a tuple template used as an argument to in or rd operations, the expiration 
time refers to the time for which the request can block before timing out. The 
priority attribute is used by the tuple space implementation in both the end system 
and network to reorder traffic upon congestion. (Note that we are also currently 
debating whether to replace the priority field with a deadline or indeed with a 
combination of both values as proposed, for example, in (Nieh, 1995)). 

The approach described above is designed to resolve the conflict between the 
need for QoS-guarantees on services and the problems that can occur in a mobile 
environment. With appropriate admission control and resource reservation 
functions, a tuple space can guarantee to make tuples available to agents using that 
tuple space with certain QoS guarantees if and only if significant changes do not 
occur in the underlying communications infrastructure. Thus, although the 



 

9 approach is asynchronous and connectionless in nature, tuple spaces can be used to 
provide real-time guarantees on, say, a video stream (again, provided the available 
network QoS remains relatively stable). In a mobile environment this cannot, 
however, be guaranteed as nodes will roam between networks experiencing 
dramatic changes in the available bandwidth. In such cases, it is both undesirable 
and impossible to continue with the desired quality of service level. The advantage 
of tuple spaces (coupled with mobile agents) is that, in such circumstances, they 
naturally support reconfiguration. The persistent nature of tuple spaces also helps 
to overcome periods of disconnection. However, to fully exploit this potential, 
support must be provided for QoS monitoring and adaptation, as described below. 
 
4.2.2. Support for Monitoring 
Every Limbo site has an associated management tuple space together with a 
number of QoS monitoring agents. These agents monitor key aspects of the system 
and inject tuples representing the current state of that part of the system into the 
management tuple space. The precise configuration of QoS monitoring agents can 
vary from site to site. As above, the architecture is open and new QoS monitoring 
agents can readily be added to the configuration. Monitors can observe events at 
various points in the system including the: rate of injection of tuples into a given 
tuple space, rate of access to tuples in tuple space (through in or rd operations), 
total throughput currently achieved from that node, the cost of the current channel, 
level of connectivity, power availability, rate of consumption, processor load and 
current physical location of that node. In this way, the architecture deals uniformly 
with a range of QoS parameters relating to both communications and the general 
environment. In addition, the architecture can provide information relating to a 
particular tuple space or to the node in general. 

This architecture has the advantage that information pertaining to a node may be 
globally accessible. By placing this information in tuple space, other sites can 
access this information through that tuple space. This means agents on different 
nodes can find out about the location of a particular site, its current processor load, 
the throughput it is experiencing, etc. A site can, instead, keep this information 
private by selecting a membership agent which prevents access from other sites. 
 
4.2.3. Support for Adaptation 
The Limbo architecture supports a variety of mechanisms for adaptation. Such 
mechanisms are typically employed on detecting a significant change as a result of 
QoS monitoring. One of the main techniques for achieving adaptation is that of 
filtering agents. Filtering agents are a special form of bridging agent. A bridging 
agent links arbitrary tuple spaces together and controls the propagation of tuples 
between them. In its simplest form, a bridging agent is a process which performs 
repeated rd operations on one tuple space and out's corresponding tuples into a 
second tuple space. Filtering agents are then bridging agents which perform 
transformations on tuples to map between different levels of QoS. They rely on 
typing information to identify the subset of tuples to be filtered. 



 

10 Filtering agents could be used to translate between different media formats. 
More commonly they are used to reduce the overall bandwidth requirements from 
the source to target tuple spaces. For example, a filtering agent could act between 
two tuple spaces dealing with MPEG video and only propagate I-frames to the 
target tuple space. The filtering agent could also perform more aggressive 
bandwidth reduction, for example by performing colour reduction on I-frames. 
The importance of filtering agents is that they allow parallel tuple spaces to offer 
the same service, e.g. the propagation of video frames, at radically different levels 
of QoS. An agent can therefore select between the different levels depending on 
their level of connectivity. On detecting a drop (or an increase) in available 
bandwidth, they can switch to another tuple space. 

The architecture also supports several other forms of adaptation. For example, 
on detecting QoS violations, a sending agent can choose to adapt the rate at which 
tuples are injected into tuple space. This is, however, a rather crude mechanism in 
an environment supporting multiple receivers with potentially different levels of 
connectivity. More interestingly, a receiver can selectively in or rd certain types 
of tuple and ignore others on detecting a drop in their connectivity. For example, 
they can select I-frames only and ignore P- and B-frames (achieving a similar 
effect as above). Similarly, they can select base encodings in hierarchical encoding 
schemes. With the appropriate allocation of priorities on these tuple types, it is also 
likely that the underlying implementation will be able to discard the lower priority 
tuples on detecting congestion, implying that they need not be transmitted over a 
lower bandwidth link. 

Finally, mobile agents provide considerable scope for adaptation. For example, 
it is possible to migrate an agent to a different site. Similarly, it is possible to 
create a new agent to act as your proxy on a well-connected site. Finally, with 
replicated agents, it is possible to access a replica that is either cheaper to access or 
is at a location with better levels of connectivity. 

5 IMPLEMENTATION DETAILS 

The platform has a decentralised architecture and is designed to be scalable: the 
state of each tuple space is decentralised across participant sites. Essentially, each 
site accessing a given tuple space maintains a local cache containing a (partial) 
view of that tuple space. The architecture uses a multicast protocol to manage 
consistency of the different views. Crucially, this uses the Scalable Reliable 
Multicast (SRM) protocol which operates as a lightweight service on top of IP 
multicast and offers a highly scalable means of achieving reliable group 
communications within the Internet (Floyd, 1995). The protocol has previously 
been used to implement a variety of services including a collaborative whiteboard 
tool, wb (Floyd, 1995) and a distributed file system, Jetfile (Grönvall, 1996). 

The protocol operates as follows. Every tuple space is allocated an IP multicast 
group address. SRM then uses IP multicast to deliver messages to all interested 
parties (i.e. the sites currently using that tuple space). IP multicast is, however, 



 

11 unreliable and hence it is necessary to deal with lost messages. The most obvious 
approach would be to have acknowledgements from every receiver in the group, 
but this would suffer from acknowledgement explosion and hence compromise 
scalability. To overcome this problem, SRM does not acknowledge receipt of 
messages. Instead, on detecting missing messages, the protocol issues a repair 
request to the group. Any member of the group can respond to this request and 
sites wait for a random period based on their perceived distance from the requester 
before responding. They also snoop to see if anybody else has responded in the 
meantime. With this approach, it is likely that the closest site will respond to the 
repair request by retransmitting the lost data. 

The SRM protocol adopts an application level framing philosophy, leaving key 
policy decisions to the application. In particular, applications must detect missing 
messages and request repairs as necessary (the protocol simply provides the 
mechanism to enable this to happen). We have therefore layered a protocol on top 
of SRM to maintain consistency of multiple views of a tuple space. This protocol 
relies on the use of a monotonically increasing logical tuple timestamps in order to 
allow detection of missing messages. The protocol also exploits the ability to 
snoop in SRM to improve the performance of the protocol. 

The benefits of this approach are that SRM is inherently scalable and highly 
efficient, being directly supported by IP multicast. The resultant platform is also 
portable to any network environment supporting IP multicast. The QoS 
architecture can also exploit existing Internet protocols for resource reservation. In 
particular, we assume the availability of RSVP (or equivalent) in our prototype 
implementation to provide QoS guarantees. This can then be supplemented by 
other QoS management functions such as admission control, monitoring and 
adaptation as described above. 

6 CONCLUDING REMARKS 

This paper has considered the role of QoS management in a mobile environment, 
where end systems are interconnected by heterogeneous networks. The paper 
argues the emphasis of QoS management in such environments should be on 
support for monitoring and adaptation. Furthermore, the scope of QoS 
management should be extended to include a variety of environmental factors 
including the level of connectivity, the current cost of connectivity, power 
availability and rate of consumption, and the current physical location and time. 

We have described the Limbo distributed system platform which is intended to 
operate in a mobile environment. This platform is based on the tuple space concept 
and enables the creation of QoS-aware tuples spaces supporting admission control, 
resource reservation, monitoring and adaptation. This architecture can provide 
guarantees while underlying levels of connectivity remain fairly constant but also 
supports adaptation when significant changes occur for one or more end systems. 

The advantages of the proposed approach are i) guarantees can be offered as 
with conventional architectures (assuming a relatively stable network), ii) there is 



 

12 a single means of monitoring QoS, iii) all monitoring data is potentially globally 
available, iv) tuple spaces naturally support adaptation through mechanisms such 
as agent migration or replication, or selective tuple filtering, and v) tuple spaces 
accommodate periods of disconnection through the persistent nature of tuples. 
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