

1 Quality of service support in a mobile
environment: an approach based on
tuple spaces

G.S. Blair, N. Davies, A. Friday and S.P. Wade
Distributed Multimedia Research Group,
Department of Computing,
Lancaster University, Lancaster, LA1 4YR, U.K.
Tel: +44 (0) 1524 65201
E-mail: most@comp.lancs.ac.uk

Abstract
There has recently been considerable interest in quality of service management
architectures for high speed networks. In contrast, however, there has been less
research on appropriate architectures for mobile computing. This paper addresses
the issue of quality of service in a mobile environment. In particular, we describe a
distributed systems platform, Limbo, which is intended to support the development
of demanding, mobile-aware distributed applications in a heterogeneous
networking environment. This platform is based on the concept of tuple spaces and
is extended with support for quality of service management. The emphasis of
quality of service management is on monitoring and adaptation, although support
is also provided for other functions such as admission control and resource
reservation. The paper argues that there are significant benefits from using a tuple
space paradigm in such an environment, particularly in terms of the ability to adapt
to changes in network connectivity or the more general environment.

Keywords
Mobile computing, quality of service management, adaptation, tuple spaces.

2 1 INTRODUCTION

There has recently been considerable interest in the development of architectures
for quality of service (QoS) management (Hutchison, 1994). Such architectures are
generally motivated by the requirement to support multimedia applications in a
networked environment and enable the user to specify their nonfunctional
requirements in the form of a QoS contract. The QoS management architecture
then provides a range of functions to achieve and sustain the QoS requirements as
specified in this contract. Examples of such functions include negotiation,
admission control, resource reservation, monitoring and renegotiation. By
selectively applying such functions, it is possible to provide varying levels of QoS
guarantee (such as best effort, predictive or deterministic).

Existing QoS architectures, however, generally make implicit assumptions about
the underlying network. In particular, they assume that the network offers a
relatively stable environment in terms of connectivity, available throughput, delay
and delay jitter. They ensure sufficient resources are available through admission
control and resource reservation and compensate for small changes in the
underlying network service through software feedback mechanisms. However,
such approaches are not appropriate in a mobile environment, where the end
system may roam from network to network experiencing dramatic changes in
throughput and connectivity. In such systems, the emphasis for QoS management
must change from providing levels of guarantees to supporting monitoring and
adaptation.

This paper considers the role of quality of service management in a mobile
environment. We are particularly interested in QoS management to support
demanding distributed applications (requiring multiparty multimedia
communications). We propose a novel approach based on tuple spaces, exploiting
the properties of time and space decoupling exhibited by such systems. We
demonstrate how tuple spaces can be enhanced to support QoS management
functions within an overall QoS architecture.

2 QOS AND MOBILITY

2.1 Heterogeneous Networks

Early research in mobile computing focused on mechanisms to enable access to
services across wireless networks such as GSM. Current research, however, is
investigating techniques to access services over a heterogeneous networking
infrastructure where the precise network will vary over time (Katz, 1994). Given
such a heterogeneous infrastructure, the most dominant characteristic of mobile
computing is change. For example, end systems can experience dramatic changes
in the available bandwidth and bit error rates, or discover new functionalities are
available in the underlying network. At the most extreme, end systems can move
from periods of high to partial connectivity, through to complete disconnection.

3 The approach in existing QoS architectures is, where possible, to mask out
change and hence present a stable service to the application (effectively providing
a level of network transparency). This is achieved through combining QoS
functions such as admission control, resource reservation and maintenance. In our
view, such an approach is not sustainable in a mobile environment. In such an
environment, the emphasis should not be on transparency but on making
information available to applications and empowering applications to make the
necessary changes. Such an approach relies on the provision of QoS management
functions supporting monitoring and adaptation. To complement this, the
underlying system must be amenable to adaptation, including the ability to adapt to
periods of disconnection. This is not to say that existing approaches to QoS
management are invalidated. Rather, strategies such as admission control and
resource reservation can be used for component networks and can provide
guarantees while the end system remains connected to that particular network. The
architecture must, however, accommodate changes in underlying network service
through the additional mechanisms we seek.

2.2 Other Factors

Mobile hosts must also deal with other changes in their environment. One
important environmental factor is that of power availability and consumption.
Despite significant developments in areas such as low-power processors, the
availability of power remains an important concern for mobile users. By providing
access to power information, applications may utilise hardware power saving
functionality as appropriate.

Another important environmental factor is the current physical location of the
end system. Such information can be exploited in numerous ways. For example,
such information can be used for the proximate selection of services (Neuman,
1993) whereby services are selected on criteria such as physical distance from the
mobile host and current cost of access. Schilit has also proposed the more general
concept of context-aware applications (Schilit, 1994). One example put forward is
that of a memory jogger which allows users to specify that a certain message
should be displayed when a series of location and temporal based conditions are
met, e.g. 'remind me to do task t next time I meet users x and y'.

In essence, we are proposing to broaden the scope of QoS monitoring and
adaptation to include general environmental characteristics such as power
availability, rate of consumption of power, physical location and time. In this way,
applications can adapt to changes in the underlying environment. However, this
introduces a problem. Existing systems provide access to QoS functions through
abstractions over communications. For example, more recent distributed systems
platforms support the concept of bindings as abstractions over communications
services. Crucially, bindings generally offer interfaces for QoS management
functions such as monitoring and adaptation. This implies, however, that there

4 would be one means of accessing and disseminating information about the network
and another means of dealing with other environmental characteristics.

The close liaison between communications and QoS implies that
communications must be established before QoS information can be obtained. This
approach prohibits the system from making speculative decisions. For instance, the
system cannot check the QoS between itself and some remote system to determine
whether it wishes to contact that system without first establishing the binding to
obtain a handle for gathering the QoS information. We therefore seek a uniform
approach to QoS management which accommodates both communications and
more general environmental considerations. Furthermore, such an approach need
not be dependent on the existence of actual bindings between hosts.

2.3 Overall Analysis

In our opinion, the most crucial role of QoS management in mobile environments
is to facilitate adaptation. To support this, the underlying distributed systems
platforms must collate and manage QoS information for presentation to higher
layers, enabling feedback and control throughout the architecture. In addition, we
believe the close association of QoS with communications present in existing
approaches to be less than ideal. The remainder of this paper describes a new
distributed systems platform, Limbo, based on the tuple space paradigm which can
provide a uniform mechanism for integrating QoS into applications. Firstly,
however, it is necessary to provide some background information on tuple spaces
and the rationale for tuple spaces in distributed mobile environments.

3 BACKGROUND ON TUPLE SPACES

3.1 What are Tuple Spaces?

Tuples comprise of collections of typed data fields. Each field is either an actual,
if it contains a value, or a formal, if it does not. Collections of (possibly identical)
tuples exist in shared data objects called tuple spaces. Tuples can be dynamically
deposited in and removed from a tuple space, but not be altered while resident in
it. However, changes can be made to a tuple by withdrawing it from the tuple
space, amending and then reinserting it (Gelernter, 1985b). Tuple spaces are
shared between collections of processes, all of which have equal access to its
contents.

The tuple space paradigm was conceived by researchers at Yale (Gelernter,
1985a) and was embodied in a coordination language called Linda. Linda is not a
standalone computational language, instead Linda operators are embedded in host
computational languages (e.g. C or Java). The model defines four basic operators:
• out inserts a tuple, composed of an arbitrary mix of actual and formal fields,

into a tuple space.

5 • in extracts a tuple from a tuple space, using its argument as a template, or
anti-tuple, against which to match. Actuals match tuple fields if they are of
equal type and value; formals match if their field types are equal. If all
corresponding fields match the tuple is withdrawn and any actuals assigned to
formals in the template. Tuples are matched nondeterministically and in
blocks until a suitable tuple can be found.

• rd is a version of in which does not withdraw matches from the tuple space.
• eval is similar to out but creates active rather than passive tuples, spawning

separate processes to evaluate each field. Such active tuples subsequently
evolves into ordinary, passive tuple resident in the tuple space.

3.2 Why Tuple Spaces?

The tuple space paradigm has two very important properties:
• Time decoupling: In tuple spaces, tuples are persistent and the sender and

receiver do not have to exist at the same time (Bjornson, 1991). A sender may
place a tuple into tuple space and then terminate execution. At some point in
the future, a receiver can invoke the in or rd primitives and obtain this tuple.
It is quite possible that the receiver did not exist when the tuple was created.

• Space decoupling: The sender does not need to be aware of the identity of the
receiver (or multiple receivers if rd operations are used). The sender simply
places the tuple in tuple space and expects one or more processes to access the
tuple at some point in the future. Their identity is unknown (i.e.
communication is anonymous). It is, however, also possible to produce tuples
for an identified consumer process, termed directed communication, by
encapsulating destination information in tuples. Several such schemes have
been proposed, including an approach based on Amoeba ports (Pinakis, 1992).

It is recognised that these properties support the construction of flexible and
fault-tolerant parallel applications. We contend that the same properties can
support the construction of distributed applications in a mobile environment. The
majority of existing distributed system platforms are based on the remote
procedure call (RPC) paradigm. In this style of interaction, clients locate an
appropriate service through, for example, a trading service. They then bind to this
service and invoke operations on it over a period of time. This makes the
assumption that the sender and receiver exist at the same point in time and
synchronise in order to exchange data (with the precise degree of synchronisation
varying from service to service). Consequently, such systems have problems
during both long and short periods of disconnection. A number of platforms
overcome this deficiency by introducing an element of buffering. In this way, the
platforms attempt to maintain RPC semantics in the face of variations in network
connectivity. Tuple spaces, however, overcome this problem by decoupling
senders and receivers in time.

Space decoupling also offers benefits for mobile computing. The advantage of
space decoupling is that there is no binding between a client and a server. Rather, a

6 number of processes can service a particular request (as specified in a tuple). This
increases fault-tolerance as the architecture naturally deals with failure of
particular nodes. In a mobile environment, this property can be exploited to deal
with the unavailability of particular services. For example, an end user can request
a print service by inserting an appropriate tuple in tuple space. Any print service
can respond to this request. As print services become unavailable, other services
can take over. In this example, it would also be possible to exploit location
information (if available) to dynamically select the nearest service.

The combination of space and time decoupling implies that there is no direct
concept of a connection in tuple spaces. Consequently, QoS requirements must be
associated with the overall tuple space or with individual tuples. The result of this
is that the system has more flexibility to reconfigure itself to attain the desired
level of QoS. We return to this aspect in section 4.2.3 below.

Finally, tuple spaces provide a very natural means of disseminating information
to a variety of potential recipients. The paradigm directly supports multiparty
communications and encourages the ready availability of global information. We
exploit this later property to make QoS management information available to any
interested parties. This aspect is discussed in more detail in section 4.2.2.

4 A DISTRIBUTED SYSTEMS PLATFORM BASED ON TUPLE
SPACES

4.1 General Approach

We have designed a new distributed system platform, called Limbo, to support
demanding distributed applications in a mobile environment. This platform is
based on the concept of tuple spaces, augmented by mobile agents. Mobile agents
reside above tuple spaces and interact with the tuple space, carrying out a
particular computation. They can be written in any language supporting the
creation of mobile code (e.g. Java or TCL) as long as the language provides a
conformant interface to tuples spaces (thus supporting the requirement for
interoperability and portability required by modern middleware platforms). Note
that agent mobility is naturally supported by the tuple space model; agents simply
stop interacting with the tuple space, relocate and then restart their interaction. As
an enhancement, agents are also generally stateless; all state is assumed to be in
the tuple space. As tuples are persistent and globally available, replicating agents
is trivial. In other words, there is no need for a consistency algorithm; this is
directly provided by tuple spaces. Agents are classified as system agents, already
provided in the environment, and application agents, introduced into the
environment by the programmer. This distinction is, however, not particularly
rigid. The application programmer is free to introduce additional system agents
into the environment.

We support the following key extensions to this basic architecture: i) multiple
tuple spaces which may be specialised to meet application level requirements, e.g.

7 consistency, security or performance, ii) an explicit tuple type hierarchy
supporting dynamic subtyping, and iii) a QoS management architecture supporting
monitoring and adaptation. We look at the first two extensions in this section and
the QoS management architecture in section 4.2.

The original tuple space model was designed to support parallel programming
on shared-memory multi-processor systems and features a single, global tuple
space. More recent models have proposed the introduction of multiple tuple spaces
to address issues of performance, partitioning and scalability (Hupfer, 1990). This
is important for performance in a distributed environment and critical in an
environment where communications links are costly and unreliable.

We provide a class of system agent which can create new tuple spaces for
applications. These tuple spaces are configurable to meet application specific
requirements (Hupfer, 1990). For example, in addition to general purpose tuple
spaces we allow the creation of tuple spaces with support for security (user
authentication), persistence and tuple logging (for accountability in safety critical
systems). Crucially, it is also possible to create a range of QoS-aware tuple spaces.

In order to create a new tuple space clients communicate with the appropriate
system agents via a universal tuple space. Clients specify the characteristics of the
desired tuple space and place a create_tuple_space request into the common
tuple space. The appropriate system agent accesses this tuple, creates a tuple space
with the required characteristics and places a tuple of type tuple_space in the
common tuple space. The fields in this tuple denote the actual characteristics of the
new tuple space (which may be different to those requested in best-effort systems)
and a handle through which clients can access the new space.

Agents can select between tuple spaces by means of a use primitive. This
primitive communicates with a membership agent through the universal tuple
space, returning a handle if the tuple space exists and certain other criteria are met.
The precise criteria vary from tuple space to tuple space and can include checks on
authentication and access control functions or relevant QoS management
functions. We return to this latter aspect in section 4.2 below. Handles can later be
discarded by an agent using a discard primitive. This places an appropriate tuple
in the universal tuple space so that the membership agent can take appropriate
steps. A tuple space can be destroyed by placing a tuple of type terminate in it.
Such tuples are picked up by system agents within the tuple space which invoke a
system function to gracefully shut down the tuple space.

Note that this model can be applied recursively. It is possible to access a tuple
space through the universal tuple space and find this tuple space has system agents
supporting the creation of and subsequent access to further tuple spaces. This
recursive structure provides a means of creating private worlds with fine grain
access control.

In our model, we allow an optional type to be associated with each tuple. Typed
tuples can be organised to form a hierarchy by establishing subtyping relationships
between them. The benefits of subtyping in a distributed environment have been
comprehensively investigated within the ODP community as part of their work on

8 interface trading (ISO/ITU-T, 1997). In this model subtyping enables added
flexibility when matching service offers to client requests.

4.2 QoS Support

4.2.1. Overview
As mentioned above, the Limbo architecture supports the creation of multiple
tuple spaces through a number of system agents. In order to support quality of
service, we provide a range of system agents to create QoS-aware tuple spaces. A
QoS-aware tuple space is one that supports a number of QoS management
functions (the precise details vary from system agent to system agent). This
architecture is completely extensible; the programmer is free to define new system
agents enabling the creation of different styles of QoS-aware tuple spaces.

QoS-aware tuple spaces will typically have a more sophisticated membership
agent which will perform certain QoS-management functions in order to provide
guaranteed or predictive classes of service. In particular, the membership agent
will cooperate with admission control and resource reservation agents in order to
provide the required class of service. The membership agent will only issue a
handle if the admission control test is passed and resources requested available.
The two system agents can implement any of the available algorithms for
admission control and resource reservation. In addition, the architecture is
completely open. Different tuple spaces can have different admission control and
resource reservation agents. The programmer is also free to extend the available
services, hence offering a new class of tuple space. Note that these agents are not
compulsory for QoS-aware tuple spaces; if not present, the tuple space will offer
best-effort service. In general, this architecture allows a wide range of tuple spaces
to be created offering best-effort, predictive or guaranteed classes of service for a
variety of different traffic types (e.g. constant bit rate, variable bit rate, periodic or
bursty traffic).

In QoS-aware tuple spaces, individual tuples can also have designated QoS
attributes specifying the expiration time and the priority of the tuple. In the case of
a tuple which is the subject of an out operation, the expiration time refers to the
time the tuple is allowed to reside in the tuple space before being deleted. In the
case of a tuple template used as an argument to in or rd operations, the expiration
time refers to the time for which the request can block before timing out. The
priority attribute is used by the tuple space implementation in both the end system
and network to reorder traffic upon congestion. (Note that we are also currently
debating whether to replace the priority field with a deadline or indeed with a
combination of both values as proposed, for example, in (Nieh, 1995)).

The approach described above is designed to resolve the conflict between the
need for QoS-guarantees on services and the problems that can occur in a mobile
environment. With appropriate admission control and resource reservation
functions, a tuple space can guarantee to make tuples available to agents using that
tuple space with certain QoS guarantees if and only if significant changes do not
occur in the underlying communications infrastructure. Thus, although the

9 approach is asynchronous and connectionless in nature, tuple spaces can be used to
provide real-time guarantees on, say, a video stream (again, provided the available
network QoS remains relatively stable). In a mobile environment this cannot,
however, be guaranteed as nodes will roam between networks experiencing
dramatic changes in the available bandwidth. In such cases, it is both undesirable
and impossible to continue with the desired quality of service level. The advantage
of tuple spaces (coupled with mobile agents) is that, in such circumstances, they
naturally support reconfiguration. The persistent nature of tuple spaces also helps
to overcome periods of disconnection. However, to fully exploit this potential,
support must be provided for QoS monitoring and adaptation, as described below.

4.2.2. Support for Monitoring
Every Limbo site has an associated management tuple space together with a
number of QoS monitoring agents. These agents monitor key aspects of the system
and inject tuples representing the current state of that part of the system into the
management tuple space. The precise configuration of QoS monitoring agents can
vary from site to site. As above, the architecture is open and new QoS monitoring
agents can readily be added to the configuration. Monitors can observe events at
various points in the system including the: rate of injection of tuples into a given
tuple space, rate of access to tuples in tuple space (through in or rd operations),
total throughput currently achieved from that node, the cost of the current channel,
level of connectivity, power availability, rate of consumption, processor load and
current physical location of that node. In this way, the architecture deals uniformly
with a range of QoS parameters relating to both communications and the general
environment. In addition, the architecture can provide information relating to a
particular tuple space or to the node in general.

This architecture has the advantage that information pertaining to a node may be
globally accessible. By placing this information in tuple space, other sites can
access this information through that tuple space. This means agents on different
nodes can find out about the location of a particular site, its current processor load,
the throughput it is experiencing, etc. A site can, instead, keep this information
private by selecting a membership agent which prevents access from other sites.

4.2.3. Support for Adaptation
The Limbo architecture supports a variety of mechanisms for adaptation. Such
mechanisms are typically employed on detecting a significant change as a result of
QoS monitoring. One of the main techniques for achieving adaptation is that of
filtering agents. Filtering agents are a special form of bridging agent. A bridging
agent links arbitrary tuple spaces together and controls the propagation of tuples
between them. In its simplest form, a bridging agent is a process which performs
repeated rd operations on one tuple space and out's corresponding tuples into a
second tuple space. Filtering agents are then bridging agents which perform
transformations on tuples to map between different levels of QoS. They rely on
typing information to identify the subset of tuples to be filtered.

10 Filtering agents could be used to translate between different media formats.
More commonly they are used to reduce the overall bandwidth requirements from
the source to target tuple spaces. For example, a filtering agent could act between
two tuple spaces dealing with MPEG video and only propagate I-frames to the
target tuple space. The filtering agent could also perform more aggressive
bandwidth reduction, for example by performing colour reduction on I-frames.
The importance of filtering agents is that they allow parallel tuple spaces to offer
the same service, e.g. the propagation of video frames, at radically different levels
of QoS. An agent can therefore select between the different levels depending on
their level of connectivity. On detecting a drop (or an increase) in available
bandwidth, they can switch to another tuple space.

The architecture also supports several other forms of adaptation. For example,
on detecting QoS violations, a sending agent can choose to adapt the rate at which
tuples are injected into tuple space. This is, however, a rather crude mechanism in
an environment supporting multiple receivers with potentially different levels of
connectivity. More interestingly, a receiver can selectively in or rd certain types
of tuple and ignore others on detecting a drop in their connectivity. For example,
they can select I-frames only and ignore P- and B-frames (achieving a similar
effect as above). Similarly, they can select base encodings in hierarchical encoding
schemes. With the appropriate allocation of priorities on these tuple types, it is also
likely that the underlying implementation will be able to discard the lower priority
tuples on detecting congestion, implying that they need not be transmitted over a
lower bandwidth link.

Finally, mobile agents provide considerable scope for adaptation. For example,
it is possible to migrate an agent to a different site. Similarly, it is possible to
create a new agent to act as your proxy on a well-connected site. Finally, with
replicated agents, it is possible to access a replica that is either cheaper to access or
is at a location with better levels of connectivity.

5 IMPLEMENTATION DETAILS

The platform has a decentralised architecture and is designed to be scalable: the
state of each tuple space is decentralised across participant sites. Essentially, each
site accessing a given tuple space maintains a local cache containing a (partial)
view of that tuple space. The architecture uses a multicast protocol to manage
consistency of the different views. Crucially, this uses the Scalable Reliable
Multicast (SRM) protocol which operates as a lightweight service on top of IP
multicast and offers a highly scalable means of achieving reliable group
communications within the Internet (Floyd, 1995). The protocol has previously
been used to implement a variety of services including a collaborative whiteboard
tool, wb (Floyd, 1995) and a distributed file system, Jetfile (Grönvall, 1996).

The protocol operates as follows. Every tuple space is allocated an IP multicast
group address. SRM then uses IP multicast to deliver messages to all interested
parties (i.e. the sites currently using that tuple space). IP multicast is, however,

11 unreliable and hence it is necessary to deal with lost messages. The most obvious
approach would be to have acknowledgements from every receiver in the group,
but this would suffer from acknowledgement explosion and hence compromise
scalability. To overcome this problem, SRM does not acknowledge receipt of
messages. Instead, on detecting missing messages, the protocol issues a repair
request to the group. Any member of the group can respond to this request and
sites wait for a random period based on their perceived distance from the requester
before responding. They also snoop to see if anybody else has responded in the
meantime. With this approach, it is likely that the closest site will respond to the
repair request by retransmitting the lost data.

The SRM protocol adopts an application level framing philosophy, leaving key
policy decisions to the application. In particular, applications must detect missing
messages and request repairs as necessary (the protocol simply provides the
mechanism to enable this to happen). We have therefore layered a protocol on top
of SRM to maintain consistency of multiple views of a tuple space. This protocol
relies on the use of a monotonically increasing logical tuple timestamps in order to
allow detection of missing messages. The protocol also exploits the ability to
snoop in SRM to improve the performance of the protocol.

The benefits of this approach are that SRM is inherently scalable and highly
efficient, being directly supported by IP multicast. The resultant platform is also
portable to any network environment supporting IP multicast. The QoS
architecture can also exploit existing Internet protocols for resource reservation. In
particular, we assume the availability of RSVP (or equivalent) in our prototype
implementation to provide QoS guarantees. This can then be supplemented by
other QoS management functions such as admission control, monitoring and
adaptation as described above.

6 CONCLUDING REMARKS

This paper has considered the role of QoS management in a mobile environment,
where end systems are interconnected by heterogeneous networks. The paper
argues the emphasis of QoS management in such environments should be on
support for monitoring and adaptation. Furthermore, the scope of QoS
management should be extended to include a variety of environmental factors
including the level of connectivity, the current cost of connectivity, power
availability and rate of consumption, and the current physical location and time.

We have described the Limbo distributed system platform which is intended to
operate in a mobile environment. This platform is based on the tuple space concept
and enables the creation of QoS-aware tuples spaces supporting admission control,
resource reservation, monitoring and adaptation. This architecture can provide
guarantees while underlying levels of connectivity remain fairly constant but also
supports adaptation when significant changes occur for one or more end systems.

The advantages of the proposed approach are i) guarantees can be offered as
with conventional architectures (assuming a relatively stable network), ii) there is

12 a single means of monitoring QoS, iii) all monitoring data is potentially globally
available, iv) tuple spaces naturally support adaptation through mechanisms such
as agent migration or replication, or selective tuple filtering, and v) tuple spaces
accommodate periods of disconnection through the persistent nature of tuples.

7 ACKNOWLEDGEMENTS

The work described in this paper was carried out under the auspices of the
'Supporting Reactive Services in a Mobile Computing Environment' project
(EPSRC Grant No. GR/K11864).

8 REFERENCES

Bjornson, R., Carriero, N., Gelernter, D., Mattson, T., Kaminsky, D. and Sherman,
A. (1991) Experience with Linda. Technical Report YALEU/DCS/TR-866,
Department of Computer Science, Yale University, New Haven, Connecticut,
U.S.

Floyd, S., Jacobson, V., McCanne, S., Liu, C. and Zhang, L. (1995) A Reliable
Multicast Framework for Light-Weight Sessions and Application Level
Framing. Proc. ACM SIGCOMM '95, Cambridge, Massachusetts, U.S., ACM
Press, 342-356.

Gelernter, D. (1985a) Generative Communication in Linda. ACM Transactions on
Programming Languages and Systems, 7(1), 80-112.

Gelernter, D., Carriero, N., Chandran, S. and Chang, S. (1985b) Parallel
Programming in Linda. Proceedings of the International Conference on
Parallel Processing, 255-263.

Grönvall, B., Marsh, I. and Pink,S. (1996) A Multicast-Based Distributed File
System for the Internet. Proc. 7th ACM SIGOPS European Workshop,
Connemara, Ireland.

Hupfer, S. (1990) Melinda: Linda with Multiple Tuple Spaces. Technical Report
YALEU/DCS/RR-766, Department of Computer Science, Yale University, New
Haven, Connecticut, U.S.

Hutchison, D., Coulson, G., Campbell, A. and Blair, G.S. (1994) Quality of
Service Management in Distributed Systems. Network and Distributed
Systems Management (ed. M. Sloman), Addison-Wesley, 273-302.

ISO/IEC 13235-1 | ITU Recommendation X.950 (1997) Open Distributed
Processing - Trading Function: Specification.

Katz, R.H. (1994) Adaptation and Mobility in Wireless Information Systems.
IEEE Personal Communications, 1(1), 6-17.

Neuman, B.C., Augart, S.S. and Upasani, S. (1993) Using Prospero to Support
Integrated Location-Independent Computing. Proceedings of the USENIX
Symposium on Mobile and Location Independent Computing, Cambridge,
Massachusetts, U.S., 29-34.

13 Nieh, J. and Lam, M.S. (1995) Integrated Processor Scheduling for Multimedia.
Proc. 5th International Workshop on Network and Operating System Support
for Digital Audio and Video, Durham, N.H.

Pinakis, J. (1992) Providing Directed Communication in Linda. Proceedings of the
15th Australian Computer Science Conference, Hobart, Tasmania.

Schilit, B., Adams N. and Want R. (1994) Context-Aware Computing
Applications. Proc. 1st Workshop on Mobile Computing Systems and
Applications (MCSA '94), Santa Cruz, California, U.S., IEEE Computer
Society Press, 85-90.

9 BIOGRAPHY

Gordon Blair is currently a Professor in the Computing Department at Lancaster
University. He has been responsible for a number of research projects at Lancaster
in the areas of distributed systems and multimedia support and has published over
a hundred papers in his field. His current research interests include distributed
multimedia computing, the impact of mobility on distributed systems and the use
of formal methods in distributed systems development.

Nigel Davies graduated from Lancaster University in 1989 and later that year
joined the Computing Department as a research associate. After a spell as a
visiting researcher at the Swedish Institute of Computer Science (SICS) he
returned to Lancaster, first as site manager for the MOST mobile computing
project and subsequently as a lecturer in the Computing Department. His current
research interests include mobile computing, distributed systems platforms and
systems support for multimedia communications.

Adrian Friday graduated from the University of London in 1991. The
following year he moved to Lancaster and participated in the MOST project
involving Lancaster University and E.A. Technology. In 1996 he was awarded a
Ph.D. for his work on 'Infrastructure Support for Adaptive Mobile Applications'
and is currently a research assistant in the Computing Department.

Stephen Wade has been a research student in the Computing Department since
graduating from Lancaster University in 1995. He is an active participant in the
'Supporting Reactive Services in a Mobile Computing Environment' project and is
working towards his Ph.D. on 'Using an Asynchronous Paradigm for Mobile
Distributed Computing'.

