
Limbo: A tuple space based platform
for adaptive mobile applications

N. Davies, S.P. Wade, A. Friday and G.S. Blair

Distributed Multimedia Research Group,
Computing Department,
Lancaster University,
Lancaster, LA1 4YR,
U.K.
Telephone: +44 (0)1524 594337
E-mail: most@comp.lancs.ac.uk

Abstract
Mobile computing environments are characterised by significant and rapid changes in their
supporting infrastructure and, in particular, in the quality-of-service (QoS) available from their
underlying communications channels. Applications which can operate in these environments
and take advantage of changing QoS require distributed systems support platforms. The current
state-of-the-art in such platforms attempt to provide synchronous connection-oriented
programming paradigms reflecting their fixed network origin. In this paper we argue that these
paradigms are not well suited to operation in a mobile environment and instead propose a new
platform called Limbo based on the tuple space communications paradigm. The design of
Limbo is presented together with details of two prototype implementations. The use of the
platform to re-engineer a number of existing adaptive mobile applications is also discussed.

Keywords
Mobile Computing, Distributed Systems, Adaptive Applications, Tuple Spaces, Linda.

1 INTRODUCTION

Mobile computing environments are characterised by significant and rapid changes in their
supporting infrastructure and, in particular, in the quality-of-service (QoS) available from their
underlying communications channels. Previous research has demonstrated that in order to
operate effectively in mobile environments applications are required to adapt in response to
these changes [Davies,94a], [Katz,94]. Such applications are termed adaptive applications.

Adaptive applications require distributed systems support, and a number of platforms have
recently been developed which address this requirement. Example platforms include Mobile
DCE [Schill,95], the MOST platform [Davies,94b] and the Rover Toolkit [Joseph,95]. These
mobile platforms attempt to provide application programmers with traditional computational
models and communications' semantics consistent with those normally found in platforms
designed for fixed networks. In particular, the three major mobile distributed systems platforms
all implement RPC semantics with (to a greater or lesser extent) additional interfaces allowing

applications to monitor and adapt to changes in QoS. Clearly, procedure call semantics can not
be provided during periods when mobile hosts are experiencing very low levels of
communications QoS or during periods of disconnected operation. To address this problem the
platforms all include support for buffering remote procedure calls during periods of
disconnection ready for transmission when the network QoS improves.

In this paper we argue that the procedure call paradigm is not well suited for use in mobile
environments and suggest an alternative paradigm based on tuples and tuple spaces
[Gelernter,85a]. This paradigm has been widely used in the parallel computing community but
there has, to our knowledge, been no work on applying the paradigm in mobile environments.
We describe the design, API and use of a tuple space based platform for mobile computing
called Limbo. The platform includes support for QoS monitoring and control by adaptive
applications.

Section 2 presents a critique of the three foremost mobile distributed systems platforms.
Section 3 then provides background information on the tuple space paradigm and section 4
presents the design for our new platform. The use of this platform to support a number of
existing mobile applications is then described in section 5. Finally, section 6 contains our
concluding remarks.

2 CRITIQUE OF MOBILE DISTRIBUTED SYSTEMS PLATFORMS

To date there have been three significant research efforts aimed at producing general purpose
distributed systems platforms for mobile environments. In the following sections we briefly
review each of the resulting systems and then discuss their commonalities and shortcomings.

2 .1 Mobile DCE

The Mobile DCE initiative at the University of Technology, Dresden aims to augment a standard
DCE platform with new features for operation in a mobile environment.

The overall system architecture is based on the concept of domains. These are logical
groupings of machines with shared resources managed by a domain manager. Mobile clients
move between domains and hence have access to different resources. Manager processes on
each client interact with the domain managers and a matrix specifying resource characteristics in
order to ensure service provision as the client changes domains. In more detail, as clients cross
domain boundaries their managers decide (for each service) whether to continue remote access
to a service in the original domain, to re-bind to a new service in the destination domain or,
during periods of disconnection, to emulate the service and replay messages when connectivity
is restored.

Mobile DCE has been implemented under the Windows/NT operating system and a number
of applications have been developed including mobile e-mail. The use of the industry standard
DCE/Microsoft RPC protocols allow the platform to be integrated with existing applications.

2 .2 The MOST Platform

Lancaster University's MOST platform provides support for adaptive mobile applications
within an Open Distributed Processing (ODP) [ISO,92] based framework. The platform
augments an existing ODP compatible platform called ANSAware [APM,89] with new
services, protocols and API calls. In particular, the platform incorporates a new protocol called
QEX [Friday,96] which is able to adapt to changes in the QoS of its underlying
communications infrastructure and pass this information on to interested client applications.

The QEX protocol is layered above a low-level service called S-UDP which provides dial-up
UDP connections over GSM. S-UDP and QEX both allow messages to be tagged with
deadlines and messages from the mobile host to the fixed network are sent in earliest-deadline-

first order. The system uses the message deadlines to determine when to establish and break
connections. Furthermore, messages can be buffered during periods of disconnection until
either they are sent or their deadlines expire (in which case an exception is raised at the client).

The MOST platform has been implemented on Sun workstations and notebook PCs running
a variety of flavours of UNIX and using a range of communications technologies including
GSM. The platform has been used to support a range of mobile applications including e-mail, a
collaborative geographic information system and a job dispatch application for field engineers.

2 .3 Rover

The Rover toolkit from M.I.T. is designed to support the development of mobile applications.
This support is based on the twin notions of relocatable data objects and queued remote
procedure calls (QRPCs). In essence, the platform allows the creation of data objects with well
defined interfaces which can be migrated at run-time between the mobile client and servers on
the fixed network. This allows decisions regarding application configuration and the client-
server computation trade-off to be made (and re-evaluated) at run-time as the network QoS and
resource availability change. Communication between objects is carried out using the toolkit's
QRPC protocol. In addition to being able to re-bind to objects which have migrated, QRPC also
provides support for periods of disconnection by buffering messages destined for remote sites
until network connectivity is restored.

A number of applications have been ported to the Rover toolkit including a web browser and
an e-mail application. However, unlike both MOST and Mobile DCE, Rover is not based on an
existing standard and applications must be re-engineered to operate in a mobile environment.

2 .4 Discussion

All of the above platforms offer mobile clients connection-oriented RPC-based
communications. The implementations of these communications services all relax the
synchronous nature of RPC interactions by allowing messages to be buffered (Mobile DCE),
delayed (MOST) or queued (Rover). However, the programming model presented to
application writers is still essentially synchronous in nature. Indeed, all of the platforms attempt
to maintain RPC semantics in the face of variations in network connectivity. Furthermore, all of
the models are connection-oriented: clients select services to be used, bind to their interfaces and
then invoke operations on these interfaces. As the network QoS and service availability change
the platforms use a range of techniques in an attempt to maintain the illusion of connection-
oriented communications. For example, in Mobile DCE the RPC protocol transparently re-binds
clients to local proxy services during periods of disconnection. In all of the platforms
application programmers can determine the QoS of the underlying network and hence construct
applications which adapt to changes in this QoS.

Our experiences with developing and working with platforms of this type have led us to
question the suitability of the paradigms on which they are based for use in a mobile
environment. In particular, as network QoS degrades, providing a model of synchronous,
connection-oriented communications becomes increasingly difficult. In addition, the emphasis
placed on communications in these platforms has thus far prevented a general model of QoS
monitoring and adaptation emerging. More specifically, while explicitly modelling bindings (as
in MOST) provides a convenient interface for monitoring communications QoS, it does not
provide a general mechanism for informing applications of changes in other QoS parameters
(e.g. power availability). These changes must be propagated to clients using an alternative
mechanism, e.g. operating system signals or environment variables as in [Schilit,94].

We believe that adaptive applications are best written using an asynchronous, primarily
connectionless, programming paradigm with generalised support for QoS control and
monitoring. In this paper we propose a system architecture based on the tuple space paradigm
which fulfils these requirements. In particular, the tuple space paradigm supports inter-process

communication across time as well as space [Bjornson,91] thus offering implicit support for
periods of disconnection. We demonstrate the advantages of our approach by considering the
re-engineering of a number of existing adaptive mobile applications.

3 THE TUPLE SPACE PARADIGM

The tuple space paradigm has been extensively researched by the parallel programming
community for over a decade. Tuples are typed data structures and each tuple consists of a
collection of typed data fields. Each field is either termed an actual, if it contains a value, or a
formal, if it does not. Collections of (possibly identical) tuples exist in shared data objects called
tuple spaces. Tuples can be dynamically deposited in and removed from a tuple space, though
they can not be altered while resident in it. Changes can, however, be made to a tuple by
withdrawing it from the tuple space, amending and then reinserting it [Gelernter,85b]. Tuple
spaces are shared between collections of processes, all of which have access to the tuples
contained within.

In classic distributed environments processes communicate across virtual channels described
by bindings and formed from pairs of endpoints, c.f. Chorus ports and UNIX BSD 4.3 sockets
[Coulouris,94]. The tuple space paradigm is fundamentally different because processes
communicate exclusively through tuple space; this has been termed generative communication
[Gelernter,85a]. As processes no longer interact directly with one another, the implicit need for
bindings is removed and inter-process communication can actually progress anonymously. It is,
however, also possible to achieve directed communications whereby tuples are produced for an
identified consumer process by encapsulating destination information in the tuples themselves.
Several schemes have been proposed to achieve this, including an approach based on Amoeba-
like ports [Pinakis,92]. Because tuple spaces contain persistent tuple objects, as opposed to
messages, inter-process communication is supported across time and space [Bjornson,91].

The tuple space paradigm was conceived by researchers at Yale University [Gelernter,85a]
and was embodied in a coordination language called Linda. Linda is not a standalone
computational language, instead Linda operators are embedded in host computational languages
(e.g. C or Pascal). The original Linda model defines four basic operators:

• out inserts a tuple, composed of an arbitrary mix of actual and formal fields, into a tuple
space. This tuple becomes visible to all processes with access to that tuple space.

• in extracts a tuple from a tuple space, with its argument acting as the template, or anti-tuple,
against which to match. Actuals match tuple fields if they are of equal type and value; formals
match if their field types are equal. If all corresponding fields of a tuple match the template the
tuple is withdrawn and any actuals it contains are assigned to formals in the template. Tuples
are matched non-deterministically and in operations block until a suitable tuple can be found.

• rd is syntactically and semantically equivalent to in except that a matched tuple is copied, not
withdrawn, from the tuple space and hence remains visible to other processes.

• eval is similar to out, except it creates active rather than passive tuples. The tuple is active
because separate processes are spawned to evaluate each of its fields. The tuple subsequently
evolves into a passive tuple resident in the tuple space.

In addition to the basic model and API described above more than a decade of research by the
parallel programming community has led to a number of refinements and extensions to the
paradigm. For example, many implementations support two new operators, inp and rdp
[Leichter,89] which are non-blocking versions of in and rd and evaluate to boolean values
indicating their success. More significant extensions include distributed tuple spaces
[Pinakis,91], [Pinakis,93a], [Pinakis,93b], multiple tuple spaces [Carriero,94], [Hupfer,90],
rules governing the use of tuple space for communications in open systems [Minsky,94] and
removal of the distinction between tuples and tuple spaces [Carriero,94].

4 A TUPLE SPACE PLATFORM FOR MOBILE APPLICATIONS

4 .1 Platform Overview

We have designed a new platform, Limbo, aimed at providing better support for adaptive
mobile applications. This platform is based on the Linda model which has been described in
section 3. However, the new platform includes a number of significant extensions which
address the specific requirements necessary for operation in mobile environments. In particular,
our system incorporates the following key extensions:

• multiple tuple spaces which may be specialised to meet application level requirements, for
example consistency, security or performance;

• an explicit tuple type hierarchy with support for dynamic sub-typing;
• tuples with explicit QoS attributes;
• a number of system agents that provide services for QoS monitoring, the creation of new

tuple spaces and the propagation of tuples between tuple spaces.

In the following sections we explain each of these extensions in detail.

Multiple Tuple Spaces
The original Linda model was designed to support parallel programming on shared-memory
multi-processor systems and features a single, global tuple space. Many recent models have
proposed the introduction of multiple tuple spaces to address issues of performance,
partitioning and scalability. In particular, supporting multiple tuples spaces removes the need to
maintain a consistent view of a single global tuple space on all machines: important for
performance in a distributed environment and critical in an environment where communications
links are costly and unreliable.

We propose to provide a class of system agent which can create new tuple spaces for
applications. These tuple spaces will be configurable to meet application specific requirements
[Hupfer,90]. For example, in addition to general purpose tuple spaces we propose to allow the
creation of tuple spaces with support for security (user authentication), persistence and tuple
logging (for accountability in safety critical systems). A number of further specialisations are
possible which aim to increase application performance. Examples of these specialisations
include support for dedicated homogeneous tuple spaces (c.f. the default heterogeneous tuple
space) and support for reduced consistency models which permit convenient low level mapping
onto optimised multicast and group data protocols.

In order to create a new tuple space clients communicate with the appropriate system agents
via a common tuple space. Clients specify the characteristics of the desired tuple space and place
a create_tuple_space request into the common tuple space. The service agent accesses this
tuple, creates a tuple space with the required characteristics and then places a tuple of type
tuple_space in the common tuple space. The fields in this tuple denote the actual
characteristics of the new tuple space (which may be different to those requested in best-effort
systems) and a handle through which clients can access the new space.

Applications can make use of the new tuple space by means of a use(handle) primitive
which sets the destination tuple space for subsequent operations. Handles to tuple spaces can be
passed between clients to enable the establishment of new shared tuple spaces.

Tuple spaces are destroyed by placing a tuple of type terminate into the tuple space. These
tuples are picked up by system agents within the tuple spaces themselves and invoke a system
function to gracefully shut-down the tuple space.

Tuple Type Hierarchy
We propose to type all tuples and to organise types in a hierarchy. This scheme has a number of
advantages over the notional typing found in many tuple space implementations. In addition to
the usual benefits associated with type signatures, it allows for the use of sub-typing when

attempting to match tuples to in requests. In more detail, in requests for a tuple of a given type
can be matched with existing tuples of an equal or sub-type. The conversion between types and
sub-types (simply a matter of omitting fields when returning the matching tuple) can be handled
by the tuple space. The benefits of sub-typing in a distributed environment have been
comprehensively investigated within the ODP community as part of their work on interface
trading [ISO,92]. In this model sub-typing enables added flexibility when matching service
offers to client requests. We hope to accrue similar benefits by supporting sub-typing in Limbo.

QoS Attributes
Existing mobile distributed systems platforms such as MOST allow QoS attributes to be
associated with both bindings and messages. Since Limbo is connectionless all of our QoS
attributes are associated with messages. In particular, tuples and tuple requests can be annotated
with deadlines. This enables messages to be re-ordered by the system to make optimum use of
the available network connectivity or buffered during periods of disconnection. In the case of a
tuple which is the subject of an out operation the deadline refers to the time the tuple is allowed
to reside in the tuple space before being deleted. In the case of tuples which are used as
arguments to in or rd operations the deadline refers to the time for which the requests can block
before timing out. Once again, this timing information can be used by the system to re-order
messages.

Note that by supporting time-outs on tuple space operations we are able to avoid having to
provide special support for inp and rdp, the non-blocking forms of in and rd found in many
tuple space implementations. Furthermore, tuple time-outs assist garbage collection.

In addition to deadlines we can also associate costs with tuples. In this way applications can
provide guidelines to the tuple space regarding the propagation of tuples over expensive
wireless communications links. The issue of supporting additional QoS parameters for the
transmission of continuous media is a topic for further study.

System Agents
All interaction between the system and applications is via tuple spaces. In addition to the tuple
space creation agents discussed above, we define two additional types of system agent: bridging
agents and QoS monitoring agents.

Bridging agents provide the means of linking arbitrary tuple spaces and controlling the
propagation of tuples between these spaces. In their simplest form bridging agents are
processes which carry out repeated rd operations on one tuple space and then out the
corresponding tuples into a second tuple space (with appropriate mechanisms to avoid the
problems caused by the non-deterministic nature of the rd operation). However, bridging
agents can also provide more intelligent tuple propagation based on a number of factors
including tuple types and QoS parameters. For example, bridging agents can be configured to
only propagate tuples subject to a set of constraints. Bridging agents can also be used to provide
gateways between specialised tuple spaces. For example, a bridging agent could be configured
to carry out format conversions between homogeneous and heterogeneous tuple spaces or to act
as a firewall to prevent the propagation of unauthenticated tuples to secure tuple spaces.

It is important to stress at this point that tuple spaces may span multiple hosts; bridging
agents provide a mechanism for propagation of tuples between tuple spaces and are not usually
required for the propagation of tuples between separate hosts.

QoS monitoring agents are responsible for making QoS information available to applications.
They monitor a range of environmental factors and communicate this information to interested
applications via the tuple space. Examples of QoS monitoring agents include:

• Connectivity monitors: Watch over the characteristics of the underlying communications
infrastructure and make available information such as the current throughput between a host
and the tuple space.

• Power monitors: Review the availability and consumption of power on a host. In particular,
applications can obtain power information on host peripherals and may utilise hardware
power saving functionality as appropriate.

• Cost monitors: Determine the cost associated with the current communications link between a
given host and the tuple space.

Copies of these agents can run on multiple hosts within the system and produce as output
standard tuples which may be accessed by applications in the usual manner.

Tuple spaces and QoS monitoring agents provide us with a uniform way of informing
applications about changes in their environment. Furthermore, since QoS monitoring agents
produce tuples as output QoS information can be made available within the system to all
interested parties (c.f. signals which are only accessible by local applications).

4 .2 Prototype Implementation

We are currently developing two prototype implementations of the Limbo platform with
different architectures. The first, based on a centralised architecture, requires each tuple space to
be managed by a single entity. This makes implementation extremely simple and enables
features such as persistence, security and logging to be easily incorporated. While a centralised
architecture does not scale well it is ideally suited to local-area and wide-area wireless networks
which support a central message exchange (e.g. TETRA [Yeadon,96]). The second prototype
we are developing is based on a distributed architecture whereby each tuple space is distributed
between all interested hosts and managed collectively.

Each of our prototypes are described in more detail in the following sections.

Centralised Architecture
This prototype provides a limited experimental platform to enable us to evaluate the system. In
detail, the prototype supports the in, out and rd operations for tuples with the standard Linda
semantics. Tuples are optionally typed and type information is used for matching purposes.
Currently, types are not organised hierarchically and sub-type relations are not allowed.
However, multiple tuple spaces are supported and tuples can have QoS fields which specify
time constraints on all the supported operations. The prototype implementation does not
currently support bridging agents or QoS monitoring agents.

The prototype is implemented on top of the MOST distributed systems platform described in
section 2.2 with an additional gateway to enable communication with Windows/NT machines.
The use of the MOST platform provides us with basic object creation and communication
capabilities in a heterogeneous environment. The key feature of the platform which we utilise is
the QEX protocol. This enables us to support operation in mobile environments and,
significantly, to have access to information regarding the QoS of the underlying
communications channels.

ANSAware
4.1

SocketsTuple
Space

ANSA
App

ANSA
App

ANSA
App

NT
App

NT
App

Unix
App

Figure 1 Centralised architecture prototype

The Limbo prototype comprises one or more tuple space servers which can be accessed by
local or remote clients. The interface to the tuple space server (in ANSAware IDL) is shown in
Figure 2.

TupleSpace: INTERFACE =

in : OPERATION [RequestId : TS_Ticket;
 DeliveryRef : ansa_InterfaceRef;

 Format : TS_Format;
 Tuple : TS_Tuple]

RETURNS [TS_Status; TS_Tuple];

out : OPERATION [Tuple : TS_Tuple]
RETURNS [TS_Status];

rd : OPERATION [RequestId : TS_Ticket;
 DeliveryRef : ansa_InterfaceRef;
 Format : TS_Format;
 Tuple : TS_Tuple]

RETURNS [TS_Status; TS_Tuple];

Figure 2 The tuple space server interface

Clients link with a special Limbo library to provide them with support for the in, out and rd
tuple space operations. The arguments to each operation consist of a string specifying the
format of the tuple followed by the tuple itself. Valid format characters are i, c and s to denote
integers, characters and strings respectively. Each format character is preceded by a modifier,
either % to signify an actual parameter or & to signify a formal parameter.

The Limbo library maps tuple space operations onto invocations to the tuple space server via
the interface shown in Figure 2. The out operation registers a tuple with the tuple space server
which then resides in the tuple space until its deadline has expired or it is removed by an in
request; in and rd operations supply the server with a template tuple and request a match. If a
matching tuple is available the operation returns immediately with this tuple, removing it from
the tuple space in the case of an in operation. If no match is available the tuple space server
returns a delivery_postponed status code to the client libraries which then block the calling
thread awaiting a subsequent call back from the server. This call back will contain either a
matching tuple if one subsequently becomes available, or notification of the expiry of the
request's deadline.

The communications between clients and the tuple space can be monitored using the
underlying QEX protocol and we intend to use this information to develop QoS monitoring
agents for Limbo.

Since Limbo is layered on top of MOST it operates on all platforms currently supported by
MOST, i.e. Sun SPARCs running SunOS and PCs running either USL System V Release 4 or
Linux 1.2.13, and, via a gateway, Windows/NT machines.

De-Centralised Architecture
We are also currently developing a decentralised Limbo prototype which is been designed to be
a highly scalable alternative to the centralised approach. Primary motivations for this prototype
are improved performance through increased availability and stronger resilience to failures and
network partitioning. It is essential that such a distributed implementation does not apply
locking strategies for operations which remove tuples and avoids algorithms which lead to
acknowledgement implosion, both of which critically affect performance. Fortunately there are
a number of features of the tuple space paradigm which greatly simplify the implementation
task. Firstly, the model does not specify how long it takes for tuples to propagate to and from
the tuple space: as long as tuples are matched non-deterministically and tuples can never be in’d

more than once the model's semantics are preserved. Similarly, tuple operations are not causally
ordered and total ordering does not have to be maintained.

In contrast to Distributed Linda [Pinakis,91] which centralises each tuple type at a specified
server, our decentralised prototype is fully distributed. In order to ensure consistency we
allocate owners to tuples and tuples may only be withdrawn from the tuple space by the owner.
Changes of ownership are supported as is the concept of 'nominated owners' enabling
optimisation of RPC-like communications [Friday,97].

Our implementation is based on IP multicast and borrows application level framing concepts
from SRM the scalable multicast transport which underpins wb [Floyd,95] and Jetfile
[Grönvall,96] with each distributed tuple space modelled as a multicast group. The design and
implementation of our de-centralised prototype is described in more detail in a companion paper
[Friday,97].

5 CASE STUDY

Early mobile computing research at Lancaster was aimed to develop open systems technologies
to support field workers within the utilities industries [Davies,95]. In addition to the platform
described in section 2.2, a collaborative toolkit application was developed that provides support
for a number of day-to-day tasks carried out by field engineers. In particular, the application
includes a number of groupware modules which enable field engineers to exchange electronic
job instructions, collaboratively edit geographic data and access remote databases. In the
following sections we describe the current implementation of each of these modules based on
the connection-oriented MOST platform and then discuss how their implementation would be
affected if they were re-engineered using Limbo.

Job Dispatch
In the current implementation job dispatch instructions map directly onto e-mail messages. The
engineers' control centre issues job instructions and forwards them directly to the required
engineer. In the case of job instructions requiring multiple engineers or which can be serviced
by one of a number of engineers e-mail aliases can be used.

The transmission of e-mail messages in the MOST system is engineered using the QEX
protocol and hence connections must be established to each destination site (as in regular e-mail
systems). In contrast, tuple spaces inherently provide temporal de-coupling between message
sender and message recipient. Furthermore, because of the dynamic nature of tuple matching,
job requests can be issued and matched subject to a wide range of parameters such as job types,
physical location, required skills and/or equipment.

Collaborative Editing
The MOST application provides support for collaborative editing of geographical information
by groups of field engineers. Shared pointers are not supported because of the limited
bandwidth, high-latency communications channels used and the desire to support
interoperability between a range of windowing systems and display types. As an alternative, the
application allows the annotation (red-lining) of diagrams using a selection of drawing tools.

In the current implementation group state is distributed between the collaborating engineers.
Annotations and group membership changes are propagated using a sequence of unicast QEX
messages. This requires applications to maintain a list of conference participants and deal with
failures of messages between one or more group members. In addition, it is difficult in this type
of application to bring new or partitioned members up to state with the remainder of the group.
Furthermore, in safety critical applications it is essential to be able to log all interactions between
group participants in such a way that the behaviour of the system can be reproduced. In the
current implementation this is difficult because messages can originate from any member of the
group and are not necessarily propagated to all other members.

Using Limbo substantially reduces the complexity of this type of application. In particular,
support for groups is provided automatically by tuple spaces since individual tuples may be read
by multiple processes. Tuples which remain in the tuple space can be read by latecomers to a
group in order to bring themselves up to state. Deadlines can be used to ensure that tuples
relating to transient group state is automatically removed from the tuple space. However, tuple
spaces can be specialised to provide facilities such as tuple logging, allowing the state of the
system to be captured for audit purposes. The use of separate tuple spaces for different
collaborative sessions would help to partition system state and limit message propagation to
interested parties only.

Database Access
The MOST application enables remote access to databases from mobile hosts. A key issue in
engineering this application is matching the quantity of information passed between the client
and server to the available communications resources. In the current implementation the client
issues a standard database request to a remote server using QEX. The server then consults the
platform to determine the network QoS and returns the results of the query as a set of partially
complete records. The degree of completeness of these records is determined by the QoS and
the number of records to be returned. So, for example, if a query which matches a large number
of records is issued by a weakly connected mobile host the server will only return selected
fields for each matching record to improve response time. The client is then able to refine its
query or request complete records as appropriate.

In Limbo clients and servers are not (conceptually) linked and hence it is not possible to
determine the QoS between a client and a server. Instead, clients and servers are able to
determine their connectivity with respect to the tuple space using information supplied by QoS
monitoring agents. Given this model, we would engineer the above application in the following
manner. The database server would assess its current connectivity and issue an in request for
database query tuples of an appropriate size. Clients wishing to query the database would
assess their current connectivity to the tuple space and issue a database request, again of the
appropriate size. Hence, servers would only offer to provide services which they could support
with reasonable performance over their communications link, and clients would only request
services whose results they could receive within a reasonable time frame. The subtyping
mechanism described in section 4.1 can be used to ensure compatibility between requests and
responses.

6 CONCLUDING REMARKS

Current distributed systems platforms designed for mobile environments are based on
synchronous, connection-oriented communications. In this paper we have described Limbo, a
new platform based on the tuple space communications paradigm. Clearly the work is at early
stage and we have yet to fully address issues such as consistency during periods of
disconnection. However, we are encouraged by the successful extended versions of the Linda
model, such as distributed and multiple tuple space versions, which have been documented. We
believe the tuple space paradigm is an interesting approach that addresses many of the
shortcomings of existing mobile support platforms. We have presented evidence to justify this
belief by illustrating how Limbo can be used to significantly simplify the implementation of a
number of existing mobile applications.

Two Limbo prototypes are under development. To date, the centralised implementation is
layered on top of an existing distributed systems platform and supports the basic Limbo model,
the required communication primitives and some QoS features. Our short-term plan is to finish
adding the proposed services to this prototype and to re-engineer them in the prototype based on
our de-centralised architecture. We then intend to make the source code of both prototypes
available to the research community for experimentation and evaluation.

7 ACKNOWLEDGEMENTS

This work was carried out under the auspices of the "Supporting Reactive Services in a Mobile
Computing Environment" project (EPSRC Grant No. GR/K11864)

8 REFERENCES

[APM,89] APM Limited (1989) ANSA: An Engineers Introduction to the Architecture. Technical
Document release TR.03.02, APM Cambridge Limited, Poseidon House, Castle Park,
Cambridge, CB3 0RD, U.K.

[Bjornson,91] Bjornson, R., Carriero, N., Gelernter, D., Mattson, T., Kaminsky, D. and Sherman,
A. (1991) Experience with Linda. Technical Report YALEU/DCS/TR-866, Department of
Computer Science, Yale University, New Haven, Connecticut, U.S.

[Carriero,94] Carriero, N., Gelernter, D. and Zuck, L. (1994) Bauhaus Linda. Selected Papers
from the Workshop on Models and Languages for Coordination of Parallelism and
Distribution (ECOOP '94), Bologna, Italy, 66-76.

[Coulouris,94] Coulouris, G.F., Dollimore J. and Kindberg, T. (1994) Distributed Systems:
Concepts and Design (Second Edition). Addison-Wesley.

[Davies,94a] Davies, N., Pink, S. and Blair, G.S. (1994) Services to Support Distributed
Applications in a Mobile Environment. Proceedings of the 1st International Workshop on
Services in Distributed and Networked Environments (SDNE'94), Prague, Czech Republic, 84-
89.

[Davies,94b] Davies, N., Blair, G.S., Cheverst, K. and Friday, A. (1994) Supporting Adaptive
Services in a Heterogeneous Mobile Environment. Proceedings of the 1st Workshop on Mobile
Computing Systems and Applications (MCSA'94), Santa Cruz, California, U.S., 153-157.

[Davies,95] Davies, N., Blair, G.S., Cheverst, K. and Friday, A. (1995) Experiences of Using RM-
ODP to Build Advanced Mobile Applications. Distributed Systems Engineering Journal, 2(3),
142-151.

[Floyd,95] Floyd, S., Jacobson, V., McCanne, S., Lui, C. and Zhang, L. (1995) A Reliable
Multicast Framework for Light-Weight Sessions and Application Level Framing. Proceedings
of ACM SIGCOMM '95, Cambridge, Massachusetts, U.S., 342-356.

[Friday,96] Friday, A.J., Blair, G.S., Cheverst, K.W.J. and Davies, N. (1996) Extensions to
ANSAware for Advanced Mobile Applications. Proceedings of the 1st International
Conference on Distributed Platforms (ICDP'96), Dresden, Germany.

[Friday,97] Friday, A., Wade, S.P., Davies, N. and Blair, G.S. (1997) Using Tuple Spaces for
Adaptive Mobile Computing. Technical Report MPG-97-03, Computing Department, Lancaster
University, Bailrigg, Lancaster, LA1 4YR, U.K.

[Gelernter,85a] Gelernter, D. (1985) Generative Communication in Linda. ACM Transactions on
Programming Languages and Systems, 7(1), 80-112.

[Gelernter,85b] Gelernter, D., Carriero, N., Chandran, S. and Chang, S. (1985) Parallel
Programming in Linda. Proceedings of the International Conference on Parallel Processing,
255-263.

[Grönvall,96] Grönvall, B., Marsh I. and Pink, S. (1996) A Multicast-Based Distributed File
System for the Internet, Proceedings of the 7th ACM SIGOPS European Workshop,
Connemara, Ireland.

[Hupfer,90] Hupfer, S. (1990) Melinda: Linda with Multiple Tuple Spaces. Technical Report
YALEU/DCS/RR-766, Department of Computer Science, Yale University, New Haven,
Connecticut, U.S.

[ISO,92] ISO (1992) Draft Recommendation X.901: Basic Reference Model of Open Distributed
Processing - Part 1: Overview and Guide to Use. Draft Report.

[Joseph,95] Joseph, A.D., deLespinasse, A.F., Tauber, J.A., Gifford, D.K. and Kaashoek, M.F.
(1995) Rover: A Toolkit for Mobile Information Access. Proceedings of the 15th Symposium
on Operating Systems Principles (SOSP'95), Copper Mountain Resort, Colorado, U.S., 156-
171.

[Katz,94] Katz, R.H. (1994) Adaptation and Mobility in Wireless Information Systems. IEEE
Personal Communications, 1(1), 6-17.

[Leichter,89] Leichter, J.S. (1989) Shared Tuple Memories, Shared Memories, Buses and LAN's -
Linda Implementations across the Spectrum of Connectivity. Ph.D. Thesis, Department of
Computer Science, Yale University, New Haven, Connecticut, U.S.

[Minsky,94] Minsky, N.H. and Leichter, J. (1994) Law-Governed Linda as a Coordination Model.
Selected Papers from the Workshop on Models and Languages for Coordination of Parallelism
and Distribution, Bologna, Italy, 125-146.

[Pinakis,91] Pinakis, J. (1991) The Design and Implementation of a Distributed Linda Tuple
Space. Proceedings of the 2nd Department of Computer Science Research Conference,
Department of Computer Science, University of Western Australia, Nedlands, WA 6009.

[Pinakis,92] Pinakis, J. (1992) Providing Directed Communication in Linda. Proceedings of the
15th Australian Computer Science Conference, Hobart, Tasmania.

[Pinakis,93a] Pinakis, J. (1993) Remote Thread Execution, Proceedings of the 16th Australian
Computer Science Conference, Brisbane, Queensland, Australia.

[Pinakis,93b] Pinakis, J. (1993) Using Linda as the Basis of an Operating System Microkernel.
Ph.D. Thesis, Department of Computer Science, University of Western Australia, Nedlands, WA
6009, Australia.

[Schilit,94] Schilit, B., Adams, N. and Want, R. (1994) Context-Aware Computing Applications.
Proceedings of the 1st Workshop on Mobile Computing Systems and Applications (MCSA'94),
Santa Cruz, California, U.S., 85-90.

[Schill,95] Schill, A. and Kümmel, S. (1995) Design and Implementation of a Support Platform
for Distributed Mobile Computing. Distributed Systems Engineering Journal, 2(3), 128-141.

[Yeadon,96] Yeadon, N. (1996) Using TETRA to Support Distributed Multimedia Applications.
Technical Report, Computing Department, Lancaster University, Bailrigg, Lancaster, LA1 4YR,
U.K.

9 BIOGRAPHY

Nigel Davies graduated from Lancaster University in 1989 and later that year joined the
Computing Department as a research associate investigating storage and management aspects of
multimedia systems. As a result of his work in this area he was awarded a Ph.D. in 1994. After
a spell as a visiting researcher at the Swedish Institute of Computer Science (SICS) where he
worked on mobile files systems he returned to Lancaster, first as site-manager for the MOST
mobile computing project and subsequently as a lecturer in the Computing Department. His
current research interests include mobile computing, distributed systems platforms and systems
support for multimedia communications.

Stephen Wade has been a research student in the Computing Department since graduating
from Lancaster University in 1995. He is an active participant in the "Supporting Reactive
Services in a Mobile Computing Environment" project and is working towards his Ph.D. on
"Using an Asynchronous Paradigm for Mobile Distributed Computing".

Adrian Friday graduated from the University of London in 1991. The following year he
moved to Lancaster and participated in the MOST project involving Lancaster University and
E.A. Technology. In 1996 he was awarded a Ph.D. for his work on "Infrastructure Support for
Adaptive Mobile Applications" and is currently a research assistant in the Computing
Department.

Gordon Blair is currently a Professor in the Computing Department at Lancaster University.
He completed his Ph.D. in Computing at Strathclyde University in 1983. Since then, he was a
SERC Research Fellow at Lancaster University before taking up a lectureship in 1986. He has
been responsible for a number of research projects at Lancaster in the areas of distributed
systems and multimedia support and has published over a hundred papers in his field. His
current research interests include distributed multimedia computing, operating system support
for continuous media, the impact of mobility on distributed systems and the use of formal
methods in distributed systems development.

