
Securing Aspect Composition

Andrew Camilleri
Computing Department

Lancaster University
LA1 4WA, UK

a.camilleri@lancaster.ac.uk

Lynne Blair
Computing Department

Lancaster University
LA1 4WA, UK

l.blair@lancaster.ac.uk

Geoffrey Coulson
Computing Department

Lancaster University
LA1 4WA, UK

g.coulson@lancaster.ac.uk

Categories and Subject Descriptors
D.3.0 [Programming Languages]: General; D.2.0 [Software
Engineering]: General

Keywords
aspect oriented programming, security, role based access
control models, software engineering

1. INTRODUCTION
Although research in AOP is increasing in maturity there

remain many unresolved issues. While current AOP lan-
guages offer ever-increasing levels of flexibility, they still fail
to offer a sufficient discipline of application to ensure that
advanced AOP facilities are used safely and appropriately.
Researchers have recognised the need to control aspect com-
position and have started to explore mechanisms to achieve
this [2, 3, 4, 5]. In this paper we aim to provide a novel
approach to control aspect composition (using AspectJ as
reference) and we employ the concept of roles from Role
Based Access Control Models [1] to characterise aspects in
terms of both their internal behaviour and their external
composition. Then, using policies, we express invariants and
constraints on the associated advice and pointcuts.

2. PROPOSED APPROACH

2.1 Overview
The solution that is being presented in this paper has

two underpinning concepts. The first one is the ability to
associate an aspect with a unique role. If this could be done,
aspects would cease to be anonymous and any aspect that
cannot be mapped to a unique role could be safely rejected.
The second one is that through a role we are able to enforce
compositional constraints to control how aspects modify the
target system. An aspect will only be allowed to modify
certain parts of an application, in a certain manner.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’08 March 16-20, 2008, Fortaleza, Ceará, Brazil
Copyright 2008 ACM 978-1-59593-753-7/08/0003 ...$5.00.

In our approach (represented diagrammatically in figure
1), aspects are associated with roles: each role can be as-
sociated with many aspects, but each aspect is associated
with (‘conforms to’) only one role. A role serves to restrict
the behaviour of its associated aspects. For example, a ‘log-
ging’ role might restrict its conforming aspects to inspecting
the arguments of operations and writing to files; but they
may not, for example, alter arguments or open socket con-
nections. To support the definition of roles we define an
ontology that demarcates areas in which restrictions can be
specified. One such area, for example, is concerned with
restricting advice composition in terms of ‘before’, ‘after’
or ‘around’. Restrictions are then specified using a policy,
which is a predicate over the terms of the ontology. In our
logging case, for example, a likely policy might specify that
‘before’ or ‘after’ advice can be used by conforming aspects,
but not ‘around’ advice. Each role is additionally associated
with one or more clusters. This is a subset of join points from
the target system, and is defined by a predicate. Building
on this, our hypothetical ‘logging’ role might use a cluster
of classes that are useful for logging functionality (e.g. file
manipulation classes), but would exclude inappropriate or
unwanted functionality (e.g. socket libraries).

Figure 1: Entity Relationship

In the following subsections we expand on the notions of
cluster, policy and role.

2.2 Clusters
An application is usually made up of a number of mod-

ules. The composition of these modules is achieved through
the units of encapsulation provided by the underlying pro-
gramming language. Now a cluster provides a means to slice
the target system in some appropriate manner and this is
achieved by means of a predicate which has the same ad-
dressing capabilities of a pointcut. In Java a cluster might
take the form of a predicate over the package structure of the
system, as shown in figure 2. In logging the ‘/*’ matches
all the classes beyond a prefix package, while in manager we
select methods with specific attributes. The end result is

to provide a static join point grouping mechanism, with the
objective to specify the kind of join points that an aspect is
allowed to encapsulate, but also the kind of join points with
which an aspect is allowed to be composed.

Figure 2: Clusters

2.3 Policy and Ontology
Policies allow us to express restrictions on the semantics

implied by the different constituents of an aspect. But poli-
cies require an underlying ontology onto which restrictions
can be applied. In our case the ontology is simply a set
of restriction domains which focus on the individual pieces
of advice, pointcuts, intertypes and on aspects. The policy
language that we have designed reflects this ontology struc-
ture and is made up from a simple collection of name/value
pair properties as shown in figure 3.

Figure 3: Policies

The first part of the policy language therefore deals specif-
ically with expressing restrictions over the ontology. Basi-
cally, this section of the policy language allows us to cre-
ate templates of acceptable aspects. There are templates
that focus on different consituents of an aspect and these
are then composed to form a template of a complete aspect
as shown in figure 3(a); the aspect-logging template im-
poses its own restrictions (an aspect is not allowed to be
privileged) but it also has references to intertype, pointcut
and advice templates. These templates allow us to express
the different needs of cross-cutting concerns and effectively
to define what is acceptable behaviour. An advice template
might specify for example that it is possible to use a ‘before’
or ‘after’ advice, but not ‘around’ as shown in ad-logging.
A pointcut template may restrict the use of specific type of
primitive pointcuts as shown in pc-logging.

The second part deals specifically with roles and on the
kind of restrictions that we want to impose through them.
Roles achieve this by combining clusters and aspect tem-
plates as shown in figure 3(b). When combined together,
they allow us to express a specific set of aspect instances
that can be composed with the target system. The roles are
made up of a two level hierarchy; the top most roles are spec-
fied under role which define a complete realm and these are
then restricted in weaving-role, the second level roles which
are the only active roles. The join points that an aspect is

allowed to use are specified in the qualifying-cluster and
weaving-clusters properties. The semantics of the quali-
fying cluster will be explained in 2.4, but effectively these
two cluster sets allow us to define precisely the join points
that make up the body of an aspect. Thus for example,
an aspect which performs socket communication will be re-
jected if join points related to socket communication are not
listed in any of these clusters. Another constraint for any
mapped aspect is that it needs to conform to the template
specified in the aspect property. Finally the parts of the
application that can be modified by an aspect are specified
weavable-clusters property, while in case of a conflict we
can specify the role weaving priority in the sequence-num.

2.4 Roles
Central to the concept of a role is the ability to identify

an aspect within a role. This is achieved because a role
is associated with at least one cluster, the qualifying clus-
ter. If you recall from 2.2, a cluster is characterized from a
predicate that defines a set of join points. Now an aspect
is qualified to a specific role because it contains join points
that are elements of the corresponding qualifying cluster.
The qualifying cluster needs to provide primary join points
i.e. it should encapsulate the join points that characterize
the primary function of an aspect. An aspect that is ad-
dressing the logging concern would be primarily concerned
in perform logging operations. So all the logging join points
should be encapsulated in the qualifying cluster of the log-
ging role. It is therefore central that all the join points that
perform cross-cutting operations are restricted to the quali-
fying cluster of the corresponding role. This requirement is
not unreasonable; intuitively if an aspect is trying to per-
form logging and security operations, it means that it is
trying to address more than one cross-cutting concern and
this goes against one of the underlying objectives of aspects
and AOP.

3. CONCLUSION
It is obvious that research in AOP has not given enough

attention to secure aspect composition. We provide a solu-
tion that is based around roles. After an aspect is qualified
to a role (through clusters), we are able to impose restric-
tions through clusters and the ontology, using policies. The
solution we provide is still a work in progress and we plan
to evaluate it after implementation is completed.

4. REFERENCES
[1] Ravi S. Sandhu et al. Role-Based Access Control

Models. In Proc of IEEE Computer, volume 29, pages
38-47. IEEE 1996.

[2] David Larochelle et al. Join Point Encapsulation. In
Proc SPLAT in conjunction with AOSD, 2003.

[3] J. Aldrich. Open Modules: Modular Reasoning about
Advice. In Proc. of European Conference on
Object-Oriented Programming, volume 3586 of LNCS,
pages 144-168. Springer 2005.

[4] S. Gudmundson and G. Kiczales. Addressing Practical
Software Development Issues in AspectJ with a
Pointcut Interface. In Proc. of ECOOP 2001.

[5] Kevin Sullivan et al. Modular Software Design with
Crosscutting Interfaces. In Proc of IEEE Software,
volume 23, pages 51-60. IEEE 2006.

