
GeoMatch: Efficient Large-Scale Map Matching on Apache Spark

Ayman Zeidan

Department of Computer Science,

CUNY Graduate Center

New York, NY USA

azeidan@gradcenter.cuny.edu

Eemil Lagerspetz

Department of Computer Science,

University of Helsinki

Helsinki Finland

lagerspe@cs.helsinki.fi

Kai Zhao

Robinson College of Business,

Georgia State University,

Atlanta Georgia, USA

kzhao4@gsu.edu

Petteri Nurmi

University of Helsinki and

Lancaster University

Helsinki, Finland

Lancaster, UK

petteri.nurmi@cs.helsinki.fi

Sasu Tarkoma

Department of Computer Science,

University of Helsinki

Helsinki Finland

starkoma@cs.helsinki.fi

Huy T. Vo

Department of Computer Science,

CUNY City College

New York, NY, USA

hvo@cs.ccny.cuny.edu

Abstract—We contribute by developing GeoMatch as a
novel, scalable, and efficient big-data pipeline for large-scale
map matching on Apache Spark. GeoMatch improves ex-
isting spatial big data solutions by utilizing a novel spatial
partitioning scheme inspired by Hilbert space-filling curves.
Thanks to the partitioning scheme, GeoMatch can effectively
balance operations across different processing units and achieve
significant performance gains. We demonstrate the effectiveness
of GeoMatch through rigorous and extensive benchmarks that
consider data sets containing large-scale urban spatial data sets
ranging from 166, 253 to 3.78 billion location measurements.
Our results show over 17-fold performance improvements
compared to previous works while achieving better processing
accuracy than current solutions (97.48%).

Keywords-Big Data, Spatial Data Analysis, Spatial Partition-
ing, Performance, Query Processing, Spark

I. INTRODUCTION

The availability of urban location data has grown ex-

ponentially thanks to the widespread and penetration of

location technologies to cars, buses, trains, and other means

of transportation. Indeed, data sets containing millions or

even billions of location measurements collected from taxi-

cabs1, buses2, and fleet management are becoming available.

This growth of spatial data is opening up unprecedented

opportunities to analyze and understand mobility and how it

relates to urban infrastructure. For example, research has

shown how this data can be used to characterize urban

mobility patterns, detect transportation bottlenecks, and to

optimize transportation infrastructure [1]–[4]. Besides aca-

demic interest, the increased amount of spatial data also has

significant commercial potential, with the market value of

spatial big data industry expected to rise to $440 by 2020 [5].

AUTHORS’ COPY — PREPRINT. To be published in Proceedings of the 2018 IEEE
International Conference on Big Data, Seattle, 2018.
1NYC Taxi data set contains over 3.7 billion points.
2NYC Bus data set contains over 216 million points.

New York City TPEP Point Distribution

102

103

104

105

106

107

N
u
m

b
e
r

o
f

G
P
S
 P

o
in

ts

Figure 1: Sample distribution for a data set containing taxi

trajectories collected from NYC (logarithmic scale).

Map matching is a key processing task in practically all

analyses of urban location data as otherwise the findings

cannot be related to urban infrastructure. With the growth

in scale and size of spatial data, map matching increasingly

needs to be performed on big data processing frameworks

such as Spark or Hadoop. Unfortunately, neither framework

is well suited for spatial processing as they do not natively

support spatial structures or operations. While some spatial

extensions such as GeoSpark [6], SpatialHadoop [7], Mag-

ellan [8], and LocationSpark [9], have been developed, the

main focus of these solutions is to enable common spatial

operations instead of delivering efficient performance. As a

result, they suffer from unacceptably slow performance and

high memory requirements. This is particularly problematic

in map matching where multiple operations need to be

performed for each data point. Indeed, as we show in this

paper, unless these operations are carefully distributed and

optimized to the available processing units, memory and

performance issues will result in map matching becoming

slow or even failing entirely. The main reason for the poor

performance is the sub-optimal partitioning of measurements

as current solutions mainly rely on a random sampling of

the data and excessive caching. This results in a partitioning

that is sensitive to how the measurements are organized into

files and the spatial distribution of measurements. Figure 1

illustrates this problem by showing the spatial distribution

of measurements for one of the data sets considered in

our experiments. Since the majority of measurements are

concentrated along few small areas, the resulting partitioning

is unbalanced, and a small number of cluster nodes perform

most of the processing instead of having evenly distributed

processing across the nodes.

To improve performance of large-scale map matching,

we contribute GeoMatch, a novel distributed map match-

ing extension for Spark. GeoMatch natively and efficiently

matches GPS points to road segments. It eliminates the need

for sampling by creating a locality preserving partitioning

that builds on Hilbert space-filling curves and their use for

spatial indexing [10]. Once the index has been built, Geo-

Match uses an efficient and intuitive load balancing scheme

to evenly distribute the parts of the index between available

computing cores. As we experimentally demonstrate, these

steps allow GeoMatch to achieve significant performance

improvements compared to previous frameworks. GeoMatch

will be released as open-source in 20183.

We evaluate GeoMatch through rigorous and extensive

map matching benchmarks using three data sets that range

from 166, 253 to 3.78 billion measurements. We compare

GeoMatch against three popular Spark spatial extensions

(LocationSpark, Magellan, and GeoSpark). The results of

our experiments demonstrate that GeoMatch is capable of

achieving up to 17 folds faster runtime performance, more

stable scalability, and precise spatial object support. More-

over, for our largest dataset LocationSpark, Magellan, and

GeoSpark struggle significantly due to the size of the data

set achieving slow performance and even running out of

memory. Finally, we demonstrate that the indexing scheme

used by GeoMatch improves map matching performance by

9.12-fold and results in an overall accuracy of 97.48%.

Summary of contributions:

1) An effective indexing technique based on Hilbert Space-

filling curves that expedites spatial query processing

in a distributed computing environment. The technique

eliminates the need to sample either data set resulting

in a partitioning scheme which reduces memory and

computing requirements.

2) A quick and natural load balancing technique that helps

in mitigating query skews – a problem that overloads

some partitions while others are left underutilized.

3) A Spark-based map matching pipeline for processing

truly large spatial data sets. It is scalable and outperforms

3https://github.com/bdilab/GeoMatch

other techniques in resource requirements and accuracy.

It is 1.6x–17x faster than current works in large-scale

map matching and achieves 97.48% accuracy and 9.12x

faster processing speed compared to exhaustive search.

4) A format-independent technique that is easy to integrate

with existing spatial data processing systems.

II. RELATED WORK

Spatial big-data processing frameworks extend generic

frameworks like Apache Hadoop or Apache Spark by in-

cluding support for spatial data structures and operations.

Hadoop based frameworks focus on making MapReduce

tasks spatially aware. However, they inherit Hadoop’s fault-

tolerance limitation and must write intermediate results to

HDFS. Esri GIS Tools for Hadoop [11] is a set of Hive

User Defined Functions that are mainly released as a util-

ity to extend the functionality of Esri’s ArcGIS mapping

software to include support of Well-Known Text (WKT)

files stored on Hadoop. Hadoop-GIS [12] is built on top

of Hadoop and adopts a streaming approach. It extends

Hive to offer support for spatial objects and operations and

translate queries into spatially capable MapReduce tasks.

SpatialHadoop [7] has fewer interactions with HDFS than

Hadoop-GIS and its MapReduce tasks are more spatially

aware since they operate on data as spatial objects from the

start. SATO [13] is a generic solution for optimal spatial

partitioning on MapReduce systems with the main objective

of targeting the spatial partitioning problem which causes

query skews. It can be used as a standalone program but it

has been integrated into Hadoop-GIS.

Spark based frameworks rely on Spark’s Resilient Dis-

tributed data set (RDD). RDDs are the core technology

of Spark which solved two major Hadoop drawbacks —

the limited in-memory processing and the need to write

intermediate results to disk to achieve fault-tolerance. Spa-

tialSpark [14] offers two modes of operation; Broadcast

spatial join which is ideal for use with one small data set

and one large data set, and Partitioned spatial join which

is ideal for two large data sets. Simba [15] allows spatial

operations using Spark SQL or DataFrames and represents

its data sets as tables. SQL queries are optimized using a

Cost-Based Optimizer (CBO) in order to produce an optimal

parallel execution plan. Simba, on the other hand, focuses

on multidimensional queries by indexing each dimension

separately ultimately increasing query’s complexity.

STARK [16] is a spatio-temporal framework that aims

to optimize queries for data sets with spatial and temporal

components. The temporal component is not taken into

consideration during partitioning, and STARK can only build

spatial global indexes. LocationSpark [9]’s main objective is

targeting the query skew problem. It offers its own Spark

integration through spatially aware RDDs. Magellan [8]

extends Spark’s DataFrame API to allow users to write

spatial queries using standard SQL or DataFrame. Magellan

examines the user’s query and object types in order to

build and optimize the query execution plan. GeoSpark [6]

introduces SRDD (Spatial RDD), an extension of Spark’s

RDD that allows users to execute spatial operations.

Hilbert Space-Filling Curve (HSFC) is a powerful spatial

data indexing and partitioning method. Spatial objects can

be mapped to one or more HSFC indexes which in turn

groups nearby objects (indexes) together. GeoSpark offers a

HSFC partitioning scheme that decides on the best way to

partition the data sets. In SATO, HSFC is recommended as

a technique to obtain an approximate total ordering while

preserving spatial locality. LocationSpark uses HSFC to

enhance kNN join queries an partition the sampled point

records. Pivot points of the sampled records are computed

using a clustering algorithm like k-means. Finally, points are

partitioned into blocks using HSFC. Contrary to GeoMatch,

these approaches construct the HSFC from a subsample of

the measurements and do not utilize the index for effectively

distributing tasks across cluster nodes. Beynon et al. [17]

propose Active Data Repository (ADR) as an algorithm for

a distributed-memory parallel machine with an attached disk

farm. ADR achieves parallel execution by storing data sets

into chunks distributed across disks using an HSFC-based

algorithm. Each chunk’s MBR is computed and chunks that

are close to each other in the underlying attribute space are

assigned to different disks. ADR uses HSFC to distribute its

data across storage disks instead of processing nodes. More

importantly, GeoMatch uses HSFC to spatially group nearby

records together without overloading any of the partitions.

III. DATASETS

We consider three datasets (Table I) of varying size and

duration4,5,6. All data sets were collected in NYC. Two data

sets contain measurements from taxis, and one from buses.

Each record in these sets contain information about a single

trip including GPS locations. The goal of our experiments

is to match the GPS locations in all records to the nearest

city street. For that we obtained the NYC road network data

set7 released by NYC Department of City Planning.

IV. MAP-MATCHING IN EXISTING SPATIAL EXTENSIONS

To further motivate GeoMatch, we consider how state

of the art large-scale spatial data frameworks solve data

partitioning and map matching. We consider three popular

frameworks: LocationSpark, Magellan, and GeoSpark. Lo-

cationSpark offers a number of indexing options but uses a

Hilbert curve to enhance its kNN query and was shown to

outperform other frameworks like Simba. Magellan is the

first framework to extend Spark SQL to offer a geospatial

4www.nyc.gov/html/tlc/html/industry/taxicab serv enh.shtml
5www.nyc.gov/html/tlc/html/about/trip record data.shtml
6web.mta.info/developers/MTA-Bus-Time-historical-data.html
7www1.nyc.gov/site/planning/data-maps/open-data/dwn-lion.page

Dataset Size Records Special Remarks

TLC TPEP
and LPEP
(LARGE)4

142GB 3.78Bil • Non-uniform distribution (Fig. 1)
• 10.9Mil duplicate records.
• 158.9Mil unmatchable records.

TLC Trip
Record
(SMALL)5

27.7GB 165.9Mil • 12 files one for each month
(2.3GB with 13.8Mil records)
• Ideal for testing frameworks that
cannot handle the LARGE set

NYC
Bus Trip
Record
(BUS)6

51.7GB 216Mil • Similar format as the LARGE set.
• Covers half of the NYC Streets
LION streets.
• Good for testing the behavior
when some streets are significantly
overloaded than others.

NYC
LION road
network7

17.7MB 166,253 • Single line base map of streets in
the greater NYC region.

Table I: Experiments Datasets

analytics. It allows users to index the data while being

loaded. GeoSpark offers a number of partitioning techniques

include Hilbert curve and has been listed on Apache Spark

Official Third Party Project Page. We compare the frame-

works in terms of their support for different operations and

data structures required in map matching and present our

results as part of our experiments in Section VII.

Geometric Shapes: for Spark to be spatially-aware, input

data must contain spatial objects such as points, lines,

and polygons. Additionally, labels or other supplementary

information need to be associated with the data to obtain

meaningful results. Support for spatial objects in existing

spatial extensions varies considerably with none offering

support of operations and/or objects required in map match-

ing (e.g. joining multiple LineStrings and Points).

LocationSpark and Magellan lack support for LineString

objects and GeoSpark’s LineString support is not usable

since its join operation only allowed one object at a

time. Therefore, streets must be represented as Polygons

via their minimum bounding rectangle (MBR). Moreover,

LocationSpark and Magellan do not allow the carrying of

non-spatial data. Therefore, corresponding geometry objects

were extended in order to add fields that allow non-spatial

data. This increased the memory requirement, but preserved

original trip records and produced more accurate results.

Spatial Indexing: spatial indexing is a technique used for

preliminary grouping of spatial data sets. Most frameworks

group spatial data based on the intersection of their MBRs.

A global join on the index is then performed to put data

of relatable MBRs on the same partition for distributed

processing. The performance of the index depends on query

skew, which reflects how balanced the index is. In a heavily

skewed index, part of the index is near empty while the

other part contains most of the measurements. In this case,

the performance of the index suffers as the operations

cannot be effectively parallelized. In existing frameworks

the structure of the index is typically constructed from a

Figure 2: Taxi pings around NYC’s East 86th Street.

subsample taken from all data points. As shown in Figure 1,

urban datasets often are skewed which means the index is

originally constructed from an unbalanced sample.

LocationSpark has a dedicated layer (query scheduler) to

address query skews. This layer samples statistics from each

partition in order to index the data sets and create a more

balanced partitioning scheme. Statistical collection in this

manner may produce different results in subsequent runs

with the same input conditions resulting in runtime irreg-

ularities similar to those detailed in Sec. VII-A). Magellan

does not sample either of its datasets, but can be instructed to

index one or both of its data sets while they are being loaded.

However, this live indexing significantly increases the spatial

query execution time. GeoSpark builds a global index by

sampling the input data set. Based on this index, data is

partitioned and local indexes are built for each partition to

improve query performance.

Map Matching: implementing map matching while relying

on the streets’ MBRs results in inaccurate results as the street

is not aligned with its MBR. Consider, e.g., East 86th Street

in Fig. 2. All points above the street fall within its MBR and

hence are candidates for matching. However, many of these

points are far from the road and hence should not be matched

against the road. Additionally, it is not easy to discern the

best match when a single point falls within more than one

MBR. An example of this is P7 in the Fig. 2 which falls

within the MBRs of two streets.

To remedy these constraints and produce usable results,

we apply a number of subsequent operations against the

generated output of the tested frameworks. First, we ensure

that the resulting RDD is of form (Point, ListofPolygon).

Second, the distance between the point and the matched

street segment is calculated in order to gauge the accuracy

of the match. If the distance is greater than a predefined

limit (e.g. 150ft) the street selection is rejected. The final

result was the original trip record followed by a list of up

to three street IDs. Finally, since all frameworks’ results

excluded points that could not be matched with at least

one street, an additional step reintroduced these from the

original input. While the exclusion reduces the framework’s

memory and computing resources, it produces incomplete

results with respect to the input and can effect subsequent

tasks that require a complete output.

Figure 3: GeoMatch Pipeline

Feature GeoSpark
Location-

Spark
Magellan GeoMatch

Sampling One set One set None None

Sample
Processing

Master
Node

Master
Node

No
sampling

No
sampling

Non-spatial
data

Supported
Programming

required
Programming

required
Supported

Street Map
Matching

Point in
MBR

Point in
MBR

Point in
MBR

Find
Nearest

Deterministic
Results

Yes Yes No Yes

Relative
Performance

1.0-4.31 1.0-1.51 N/A
1.63-
17.03

Memory
Requirements

Exponential Exponential Exponential Linear

Accurate
Matching

Programming
required

Programming
required

Programming
required

Supported

Table II: Comparison of map matching methods.

V. THE GEOMATCH PIPELINE

GeoMatch is an extendable, scalable, and more precise

map matching pipeline that overcomes the limitation of

current map matching spatial Spark extensions. Fig. 3 shows

the high-level flow of GeoMatch and Table II compares its

features to those found in other techniques.

GeoMatch is written in Scala and adds spatial processing

capabilities to Apache Spark through spatial partitioning,

object recognition, and query processing. It is currently

designed to work on matching two data sets such that the

first is of type MultiLineString (e.g. streets) and the second

of type Point (e.g. GPS points). The output consists of Point

objects and a list of k closest streets8.

Data Format: GeoMatch operates on data as spatial objects

from the start without restricting its original format. This

results in better usability, flexibility, and eliminates the

need to make assumptions that may slow development or

execution. Users have complete control over parsing their

data and decide how to represent data using GeoMatch’s

light-weight objects. Each object has two fields; Payload

– a string value that is carried with the object through the

computation and to the output and Coordinates – a list of one

or more coordinate pairs representing the geometry object.

Hilbert Space-Filling Curve: GeoMatch does not rely on

sampling to build its partitioning scheme – instead, it reads

and spatially partitions both datasets (i.e., location mea-

surements and road network). Partitioning aims at grouping

objects by spatial proximity. A Hilbert space-filling curve is

used to compute each record’s index which is then used to

group objects prior to executing the spatial query.

8The parameter k is configurable with a default value of 3

Figure 4: An example 8X8 Hilbert Curve clustering

The Hilbert curve-based partitioning scheme in GeoMatch

acts as a global index and assigns indexes to partitions such

that the load is fairly distributed (i.e. query skew mitigation)

and spatially close indexes are assigned to the same partition.

A sample partitioning scheme is shown in Table IV.

Figure 4 depicts the clustering process and shows a partial

8X8 Hilbert Curve. In this example, there are 4 streets (S0–

S3) and 36 points (P0–P35). The figure shows the streets and

points after they are partitioned. Assuming that the number

of partitions is 4, then partLoad = 36

4
= 9. Indexes 0 –2

are assigned to part0 regardless of the fact that their count

is over 9. This is allowed in favor of keeping nearby objects

together thus increasing accuracy. Subsequently, indexes 3–7

are assigned to partition (part1), and so forth.

Querying: In order to achieve higher accuracy, the actual

distance between the two geometries must be calculated.

This calculation is done locally after objects are grouped

on their partitions and ultimately determines if the match is

kept or discarded. The aim is to achieve results that are as

close to those achieved via full map search (i.e. test each

point against all streets).

VI. GEOMATCH IMPLEMENTATION

GeoMatch solves the map matching problem by matching

two data sets in the form of MultiLineString (e.g. streets)

and Point (e.g. GPS points). The output is a tuple consisting

of a Point and a list of k matched streets8.

GeoMatch uses a number of input configuration parame-

ters like the search window (MBR) and Hilbert curve grid

size n. If the MBR is not provided, it is computed in parallel

from the first input data set9. Hilbert’s n defaults to 25610.

Data Partitioning: Part of the performance gain in Ge-

oMatch comes from taking advantage of Spark’s internal

PartitionerAwareUnionRDD transformation. This transfor-

mation is highly efficient, migrates the smaller partition

9For performance gains, the smaller set should be the first input set.
10The average block in NYC is 264ft×900ft with an average length of
582ft. Dividing the MBR into 256 yields a box size that is close to that
average. The corresponding Hilbert’s curve order is 8.

Hilbert Index Count
0 88
1 41
2 29

.

Table III: Index-point counts

From To Partition
1 25 0
26 30 1
31 72 2
.

Table IV: Index-partition map

towards the larger one, and places the left operand data

before the right one. In our experiments, this ensured that

the street objects appeared before the point objects in every

partition and eliminated any need for data sorting.

Hilbert Curve Indexing: The index for each object in both

data sets is computed by first dividing the MBR into equal-

sized n × n boxes. Next, each Point’s single index is

computed based on its coordinates. Finally, the indexes that

each of street’s segments passes through are computed using

a Digital Differential Analyzer (DDA) algorithm.

Load Balancing: Performance gains in GeoMatch come

from distributing the load based on the data distribution such

that no partition is overloaded more than others. To balance

the load, first, the larger data set is read and the Hilbert index

is computed for every point. Next, a list is built to show the

number of points per index (e.g. Table III). Using this list,

the optimal partition load is computed by dividing the sum of

all points in all indexes by the total number of partitions used

by the larger data set: partLoad =
pointCount

partCount
. The value

of partLoad indicates how many geometry points each

available partition should process. GeoMatch can exceed this

limit only in favor of keeping geometries with the same index

together to increase accuracy.

Partitioning Scheme: using partLoad and the index counts

list from the previous step, a partitioning scheme is built in

order to spatially cluster the data sets. The scheme assigns

indexes to a specific partition such that the computation

load is fairly distributed across all partitions while keeping

spatially close indexes in the same partition (e.g. Table IV).

Shuffle: Once the partitioning scheme is built, it is used to

independently partition both RDDs. Next, the two RDDs are

joined using Spark’s union transformation which internally

invokes the PartitionerAwareUnionRDD transformation.

Querying: Map matching in GeoMatch starts after the

partitions are joined. On each partition, a local R-Tree of

the streets is built in order to speed up the query process.

As described earlier, our approach naturally ensures that the

street objects appear before the point objects; therefore, it is

easy to determine the tree’s last item. Moreover, to reduce

the number of false-positive matches caused by large R-Tree

MBRs, we break each street into its individual segments and

insert them into the R-Tree. The segment’s MBR is expanded

by a configurable value d (e.g. 150ft11) to account for the

11The average block’s width in NYC is about 264ft. By setting the threshold
to 150 we can cover at least half of the block’s width.

Test Cores
SMALL
Months

LARGE
Points

(Million)

SMALL
Points

(Million)

BUS
Points

(Million)

1 50 Jan–Feb 28.33 26.85 27.1
2 100 Jan–Apr 57.32 56.89 56.46
3 150 Jan–Jun 86.83 85.48 85.63
4 200 Jan–Aug 111.42 111.28 111.69
5 250 Jan–Oct 140.93 138.88 140.69

Table V: Weak Scalability experiment configurations.

inaccuracies in the initial GPS reporting.
Finally, the local R-Tree is queried and a list of candidate

streets is selected for each point. Next, the distance between

the point and each street is calculated; if the distance is

larger than a certain limit (e.g. 150ft), the match is rejected.

The closest k matched streets (if any) are kept.

VII. EXPERIMENTS

We perform extensive map matching benchmarks using

the data sets in Table I. The goal of each experiment is to

match the points with their respective streets. Tests and anal-

ysis were performed using source code obtained from the

frameworks’ respective GIT repositories. To emulate real-

world analyses which often operate under time and budget

constraints, we consider an upper limit of 180 minutes and

stop any experiment if it exceeds this limit. Magellan was the

only framework to consistently time out, requiring more than

180 minutes for tasks that took 6 and 9 minutes using Geo-

Match and GeoSpark, respectively. Additionally, the outputs

of LocationSpark and GeoSpark do not include unmatched

points required for error reporting and analysis. Including

these points would require an additional join operation which

would further increase their runtimes. GeoMatch does not

suffer from this problem since it naturally passes unmatched

points through its pipeline.
All experiments were conducted at the operational data

facility of our research center. Our cluster consists of 20

high-end nodes each with 24TB of disk space, 256GB of

RAM, and 64 AMD cores (total 1, 200+ cores) running

Cloudera Data Hub 5.10 with Apache Spark 2.1.
In order to complete their tasks, LocationSpark and

GeoSpark required the maximum memory allowed by our

cluster – 8GB for the driver and 32GB for each executor. Ge-

oMatch requires less memory, and we set its jobs to 6GB for

the driver and only 8GB for the executor. The experiments

measured the execution times using two different techniques.

Weak Scalability – the input size and available processing

power are gradually increased according to Table V and

Strong Scalability – the entire data set is processed, and

available processing power is gradually increased. Each test

was repeated three times to accurately measure the behavior.

A. Small Taxi data set (SMALL)

In this experiment, we match points from the SMALL

data set with streets from the NYC LION street data set.

Framework Test 50 100 150 200 250
GM Strong 0.05 0.34 0.25 0.3 0.15
GM Weak 0.55 0.05 0.19 0.16 0.4
LS Strong 18.32 19.96 1.72 18.89 16.64
LS Weak 3.29 5.15 7.82 10.85 9.95
GS Strong 5.13 12.24 13.33 2.58 5.69
GS Weak 0.57 0.83 5.24 3.51 2.99

GM:GeoMatch, LS:LocationSpark, GS:GeoSpark

Table VI: Standard deviation – SMALL data set

Weak scalability: The input size and the number of process-

ing cores were gradually increased as described earlier. Fig.

5 shows the average runtimes in minutes for all experiments.

GeoMatch was first to finish while producing a complete

output data set. LocationSpark finished last in all cases

except the one with 50 cores and failed all three tests using

150 cores. Table VI shows the standard deviations.

Strong scalability: The input size is fixed to the entire

SMALL data set (12 months) while gradually increasing the

processing cores from 50 to 250 (in steps of 50). Fig. 6

shows the average runtimes in minutes. GeoMatch com-

pleted its tasks first, followed by GeoSpark. LocationSpark

was not able to process this data set with jobs either failing

due to lack of memory or timing out after 180 minutes.

Table VI shows the standard deviation for all tests. It

was smallest for GeoMatch, 0.05–0.34 minutes for strong

scalability and 0.05–0.55 minutes for weak scalability.

B. Large Taxi data set (LARGE)

In this experiment, we match points from the LARGE

data set with streets from the NYC LION street data set.

As this dataset is the largest, it requires better scalability

than the other datasets. GeoMatch was able to complete all

experiments within 46 minutes, whereas none of the other

frameworks were able to complete any experiments within

180 minutes. LocationSpark’s tasks either failed due to lack

of memory or timed out. GeoSpark ran out of memory after

processing 20.7 million points (out of 3.78 billion) using 250

cores and maximum memory in approximately 32 minutes.

Weak scalability: Fig 7 shows the average runtimes in

minutes for all experiments. The runtimes decreased as the

number of input points and processing cores increased. This

indicates that GeoMatch is indeed scalable. The standard

deviation of the runtimes was small (0.15–0.36 minutes).

Strong scalability: the entire LARGE data set (3.78 Bill.

points) was used while gradually increasing the processing

cores. Fig. 7 shows that the average runtimes in minutes

decreased as the number of cores increased. The standard

deviation of execution times was small (0.10–0.18 minutes).

Output Accuracy Check: To determine the accuracy of

GeoMatch, we compared its results to those obtained from a

full (exhaustive) map search. For this technique, an R-Tree

of the entire NYC street map was generated, broadcast to all

processing nodes, and queried for each point. The distance

between the point and streets was calculated; if the distance

Figure 5: Weak Scalability Test – SMALL data set Figure 6: Strong Scalability Test – SMALL data set

Figure 7: Weak & Strong Scalability Tests – LARGE

was within 150ft, the match is kept. The best 10 matches for

each point were kept in the order of proximity. The search

revealed about 10.9 million (0.30%) duplicate points and

158.9 million (4.2%) unmatched points. Full map search

took 155 minutes at full processing power, 9.12 the time

taken by GeoMatch (17 minutes).

GeoMatch’s picks agreed with the full search 97.48% of

the time, such that the three street picks were contained in

the three closest matches of the full search. An additional

0.27% of results agreed with the full search starting with

the 4th output, i.e., the three streets picked by GeoMatch

were within the four closest matches of the full search. The

full search matched an extra 2.25% points over GeoMatch.

We believe that this is a limitation with the DDA algorithm

which approximately calculates the indexes of the streets.

C. Bus Trips data set (BUS)

In this experiment, we match points from the BUS data

set with streets from the NYC LION street data set.

Weak scalability test: the input size and the number of

processing cores were gradually increased. Fig. 8 shows

the average runtimes in minutes for the BUS and SMALL

experiments for GeoMatch and GeoSpark. The runtimes

for GeoMatch remained relatively stable as input size and

processing power were increased. The similarities between

the runtimes indicate that GeoMatch is able to efficiently

handle the two types of data sets. On the other hand,

GeoSpark’s runtime increased, showing worse scalability.

The standard deviation of execution time was small, 0.10–

0.31 minutes and 0.09–0.34 minutes for GeoSpark.

Strong scalability test: the entire bus data set was used

while gradually increasing processing cores. Fig. 9 shows the

average runtimes in minutes for GeoMatch and GeoSpark.

GeoSpark failed to complete the experiment with 50 cores,

so that result is omitted. Runtimes improved with the

increase in the processing cores for GeoMatch but were

erratic for GeoSpark. The standard deviation was 0.13–0.19

minutes for GeoMatch and 0.67–2.62 minutes for GeoSpark.

VIII. DISCUSSION

Index Accuracy: In rare cases, GeoMatch can fail to find the

optimal match if the currently matched point is located on

the edge of its Hilbert cell and the optimally matching road

passes through a neighboring cell. The failure rate in our

experiments was rare; namely 2.52% of the time. A potential

way to remove these errors is to use a secondary index

with coarser granularity (e.g., lower order Hilbert index) for

cases where the point is close to a boundary and the shortest

distance to a road is higher than the distance between the

point and the boundary of the index cell.

Partitioning: Currently, GeoMatch aims to balance parti-

tions, but allows larger partitions in order to keep points

of the same index together. We demonstrated that this was

sufficient for data sets containing 3.78 billion points, but

when the data set size increases, further optimization may

be needed. When sufficiently many computing nodes are

available, we can construct a secondary nested index for

partitions with a large number of points and spatial objects.

Alternatively, when fewer computing nodes are available, the

optimal solution is to increase the order of the Hilbert curve

to achieve a better-balanced distribution of computations.

Spatial Frameworks: GeoMatch has been designed for

supporting large-scale map matching instead of being a

fully-fledged spatial framework. Hence, currently, only a

limited set of spatial objects, operations, and coordinate

formats are supported. We plan to extend GeoMatch to

support other operations and spatial data structures.

Routing: GeoMatch implements the first step in a spatial

analysis pipeline; namely, transforming individual location

points to traversed streets in the street network. This is a

necessary part of analyzing trajectories, such as taxi trips and

bus journeys, and optimizing the path they take within the

road network. This has implications on transport planning,

such as where taxi pickups happen and which routes buses

Figure 8: Weak Scalability Test – BUS & SMALL Figure 9: Strong Scalability Test – BUS & SMALL

should take, as well as private transport, giving drivers

optimal routes to take according to the time of day and

congestion conditions of the road network.

IX. SUMMARY AND CONCLUSION

We introduced GeoMatch, a map matching method using

a new spatial partitioning technique. GeoMatch is more

accurate, scalable, and efficient. Compared to state of the

art spatial data processing platforms for Spark, GeoMatch

is 1.6 – 17 times faster. Experimental results show that it is

able to solve the map matching problem with a 142GB GPS

trajectory data set in about 17 minutes at full processing

power while other frameworks slow considerably or fail

entirely.

GeoMatch can process unstructured data, allowing pro-

grams to carry meaningful non-spatial information to the

map matching result without extra programming effort. It

employs highly scalable indexing and load balancing tech-

niques to avoid skewed data partitions, making it well suited

for analysis of diverse spatial data sets that include dense

city centers as well as large rural areas.

X. ACKNOWLEDGMENTS

This work was supported in part by Jorma Ollila Grant

201620040, Pitney Bowes 3100041700, and Alfred P. Sloan

Foundation G-2018-11069.

REFERENCES

[1] Y. Zheng, Y. Liu, J. Yuan, and X. Xie, “Urban Computing
with Taxicabs,” in Proceedings of the 13th International
Conference on Ubiquitous Computing, ser. UbiComp ’11.
New York, NY, USA: ACM, 2011, pp. 89–98.

[2] J. Yuan, Y. Zheng, C. Zhang, W. Xie, X. Xie, G. Sun, and
Y. Huang, “T-drive: driving directions based on taxi trajec-
tories,” in 18th ACM SIGSPATIAL International Symposium
on Advances in Geographic Information Systems, ACM-GIS
2010, November 3-5, 2010, San Jose, CA, USA, Proceedings.
New York, NY, USA: ACM, 2010, pp. 99–108.

[3] B. Li, D. Zhang, L. Sun, C. Chen, S. Li, G. Qi, and Q. Yang,
“Hunting or waiting? Discovering passenger-finding strategies
from a large-scale real-world taxi dataset,” in IEEE PerCom
2011, 21-25 March 2011, Seattle, WA, USA, Workshop Pro-
ceedings. Los Alamitos, CA, USA: IEEE, 2011, pp. 63–68.

[4] Y. Huang and J. W. Powell, “Detecting regions of disequilib-
rium in taxi services under uncertainty,” in SIGSPATIAL’12,
Redondo Beach, CA, USA, November 7-9, 2012. New York,
NY, USA: ACM, 2012, pp. 139–148.

[5] P. Shimonti, “What is Geospatial industry’s value and impact
in world economy,” https://www.geospatialworld.net/blogs/
geospatial-industrys-value-world-economy/, Jan 2015.

[6] J. Yu, J. Wu, and M. Sarwat, “GeoSpark: A Cluster Com-
puting Framework for Processing Large-scale Spatial Data,”
in Proceedings of the 23rd SIGSPATIAL International Con-
ference on Advances in Geographic Information Systems, ser.
SIGSPATIAL ’15. New York, NY, USA: ACM, 2015, pp.
70:1–70:4.

[7] A. Eldawy, “Spatialhadoop: Towards flexible and scalable
spatial processing using mapreduce,” in Proceedings of the
2014 SIGMOD PhD Symposium, ser. SIGMOD’14 PhD Sym-
posium. New York, NY, USA: ACM, 2014, pp. 46–50.

[8] “magellan,” https://github.com/harsha2010/magellan.
[9] M. Tang, Y. Yu, Q. M. Malluhi, M. Ouzzani, and W. G. Aref,

“LocationSpark: A Distributed In-memory Data Management
System for Big Spatial Data,” Proc. VLDB Endow., vol. 9,
no. 13, pp. 1565–1568, Sep. 2016.

[10] I. Kamel and C. Faloutsos, “Hilbert r-tree: An improved r-
tree using fractals,” in Proceedings of the 20th International
Conference on Very Large Data Bases, ser. VLDB ’94. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
1994, pp. 500–509.

[11] E. S. R. Institute, “GIS Tools for Hadoop by Esri,” http://esri.
github.io/gis-tools-for-hadoop/, 2018.

[12] A. Aji, F. Wang, H. Vo, R. Lee, Q. Liu, X. Zhang, and
J. H. Saltz, “Hadoop-gis: A high performance spatial data
warehousing system over mapreduce,” PVLDB, vol. 6, no. 11,
pp. 1009–1020, 2013.

[13] H. Vo, A. Aji, and F. Wang, “SATO: A Spatial Data
Partitioning Framework for Scalable Query Processing,” in
Proceedings of the 22Nd ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems,
ser. SIGSPATIAL ’14. New York, NY, USA: ACM, 2014,
pp. 545–548.

[14] S. You, J. Zhang, and L. Gruenwald, “Large-scale spatial
join query processing in cloud,” in 2015 31st IEEE Interna-
tional Conference on Data Engineering Workshops (ICDEW).
IEEE, 2015, pp. 34–41.

[15] D. Xie, F. Li, B. Yao, G. Li, L. Zhou, and M. Guo, “Simba:
Efficient in-memory spatial analytics,” in Proceedings of
the 2016 International Conference on Management of Data,
ACM. New York, NY, USA: ACM, 2016, pp. 1071–1085.

[16] S. Hagedorn, P. Götze, and K.-U. Sattler, “The STARK
Framework for Spatio-Temporal Data Analytics on Spark,” in
Datenbanksysteme für Business, Technologie und Web (BTW
2017), 2017, pp. 123–142.

[17] M. Beynon, C. Chang, U. Catalyurek, T. Kurc, A. Sussman,
H. Andrade, R. Ferreira, and J. Saltz, “Processing large-scale
multi-dimensional data in parallel and distributed environ-
ments,” Parallel Computing, vol. 28, no. 5, pp. 827–859,
2002.

