
 

1 
 

Drought-induced Amazonian wildfires instigate a decadal-1 

scale disruption of forest carbon dynamics 2 

 3 
Silva1,2* Camila V.J., Aragão2,3 Luiz E.O.C., Barlow1 Jos, Espirito-Santo4 Fernando, Young1,16 4 

Paul J., Anderson5,6 Liana O., Berenguer1,6 Erika, Brasil7 Izaias, Brown7,8 I. Foster, Castro9 5 

Bruno, Farias9 Renato, Ferreira10 Joice, França1,10 Filipe, Graça11 Paulo M.L.A., Kirsten11 6 

Letícia, Lopes2 Aline P., Salimon12 Cleber, Marcos Augusto Scaranello9,13, Seixas10 Marina, 7 

Souza14 Fernanda C., Xaud15 Haron A. M. 8 

 9 
1Lancaster Environment Centre, Lancaster University, LA1 4YQ, Lancaster, UK 10 
2National Institute for Space Research, Av. dos Astronautas, 1.758, 12227-010 São José dos Campos, 11 
Brazil. 12 
3College of Life and Environmental Sciences, University of Exeter, EX4 4RJ, UK 13 
4Leicester Institute of Space and Earth Observation (LISEO) and Centre for Landscape and Climate 14 
Research (CLCR), School of Geography, Geology and Environment, University of Leicester, 15 
University Road, Leicester, LE1 7RH 16 
5National Centre for Monitoring and Early Warning of Natural Disasters (CEMADEN), São Jose dos 17 
Campos, São Paulo, Brazil 18 
6Environmental Change Institute, University of Oxford, OX1 3QY, Oxford, UK 19 
7Universidade Federal do Acre (UFAC), Parque Zoobotanico, Rio Branco 69915-900, Acre, Brazil 20 
8Woods Hole Research Center, 149 Woods Hole Road Falmouth, MA, 02540-1644 21 
9Instituto Centro de Vida, Av. Ariosto da Riva, 3473, Centro, 78580-000, Alta Floresta, Brasil 22 
10Embrapa Amazônia Oriental, Trav. Dr. Enéas Pinheiro s/no. Caixa Postal, 48 Belém, 66095-100, 23 
PA, Brazil 24 
11National Institute for Research in Amazonia (INPA), Av. André Araújo, 2936, 69067-375 Manaus, 25 
Amazonas, Brazil 26 
12Universidade Estadual da Paraíba, Centro de Ciências Biológicas e Sociais Aplicadas (CCBSA), R. 27 
Horácio Trajano de Oliveira, 1559 - Cristo Redentor, João Pessoa, 58070-450, Brasil 28 
13EMBRAPA Informática Agropecuária, Barão Geraldo, Campinas, SP, Brazil 29 
14School of Geography, University of Leeds, Leeds LS2 9JT, UK 30 
15Brazilian Agricultural Research Corporation, Embrapa Roraima, PO Box 133, Boa Vista, RR 31 
69.301-970, Brazil 32 
16Pentland Centre for Sustainability in Business, Lancaster University, Lancaster, LA1 4YX 33 
 34 
 35 
 36 

 37 

 38 

 39 

 40 

 41 

 42 

*Corresponding author: camilaflorestal@gmail.com 43 
Abstract 44 



 

2 
 

 45 
Drought-induced wildfires have increased in frequency and extent over the tropics. Yet, the 46 

long-term (> 10 years) responses of Amazonian lowland forests to fire disturbance are poorly 47 

known. To understand post-fire forest biomass dynamics, and to assess the time required for 48 

fire-affected forests to recover to pre-disturbance levels, we combined 16 single with 182 49 

multiple forest census into a unique large-scale and long-term dataset across the Brazilian 50 

Amazonia. We quantified biomass, mortality and wood productivity of burned plots along a 51 

chronosequence of up to 31 years post-fire and compared to surrounding unburned plots 52 

measured simultaneously. Stem mortality and growth were assessed among functional groups. 53 

At the plot level, we found that fire affected forests have biomass levels 24.8 ± 6.9 % below the 54 

biomass value of unburned control plots after 31 years. This lower biomass state results from 55 

the elevated levels of biomass loss through mortality, which is not sufficiently compensated for 56 

by wood productivity (incremental growth + recruitment). At the stem level, we found major 57 

changes in mortality and growth rates up to 11 years post-fire. The post-fire stem mortality rates 58 

exceeded unburned controls plots by 680% (i.e. >40cm DBH; 5-8 years since last fire) and 59 

315% (i.e. >0.7 g cm-3 WD; 0.75-4 years since last fire). Our findings indicate that wildfires in 60 

humid tropical forests can significantly reduce forest biomass for decades by enhancing 61 

mortality rates of all trees, including large and high wood density trees, which store the largest 62 

amount of biomass in old-growth forests. This assessment of stem dynamics, therefore, 63 

demonstrate that wildfires slow down or stall the post-fire recovery of Amazonian forests.  64 

 65 
Key-words: post-fire dynamics, stem mortality, wood productivity, long-term recovery, fire 66 
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 86 

The successful reduction of the deforestation rate in the Brazilian Amazon between 2004-2017 87 

has not been sufficient to reduce disturbance in the remaining forests[1]. Recent studies 88 

demonstrate that human-induced disturbances (e.g. wildfires and selective logging) can halve 89 

the conservation value and significantly decrease the carbon stocks of remaining Amazonian 90 

forests[2–4]. Moreover, Amazonian forests affected by wildfires are estimated to contribute on 91 

average with 31 ± 21% of the gross emission values from deforestation, with contributions 92 

beyond 50% during drought years [5]. Yet, there is a critical knowledge gap regarding the long-93 

term recovery of carbon stocks  in  forests affected by anthropogenic disturbances such as fire 94 

[2,3,6].  95 

Humid tropical forests are not a fire-adapted ecosystem [7,8].  Previous studies suggested that 96 

wildfires in the Amazon basin have been rare since the start of the Holocene, with fire-return 97 

intervals exceeding centuries or millennia [8,9]. However, over the past three to four decades 98 

wildfires have become increasingly prevalent across humid tropical forests, including 99 

Amazonia [10]. These tropical fires generally require an anthropogenic source to ignite, which 100 

generally comes from agricultural practices [11]. The likelihood of wildfires occurrence is also 101 

increased by forest disturbance, such as selective logging [12], and by deforestation that 102 

exposes remaining forests to edge effects [13] and reduces rainfall [14,15].  In addition, 103 

wildfires can be greatly exacerbated by extreme drought events [5,12,16–19]. For example, 104 

during the 2015 El Niño-induced extreme drought 799,293 km2 of the Brazilian Amazon 105 

experienced positive active fire anomalies[5]. Given that extreme droughts are predicted to 106 

occur at greater frequency in the Amazon Basin [20], wildfires are likely to become even more 107 

pervasive[21]. 108 

These wildfires have a major impact on forest carbon stocks, accounting for the mortality of up 109 

to 36% of tree stems and 67% of the biomass loss in central Amazonian forests three years after 110 

fires [22,23]. Fire-affected forests consequently become a global important carbon source: 111 

based on the 2010 fire season, it was estimated that 27,555 km2 of old-growth forests burned in 112 

the whole Brazilian Legal Amazon, contributing to 14.8Tg of C emissions to the atmosphere 113 

from direct combustion of organic material [19]. Immediately combustible carbon stocks – such 114 

as leaf litter and fine woody debris – make up only a very small proportion of forests 115 

aboveground carbon stock [2] and most emissions are committed (0.001 to 0.165 Pg of C), as 116 

they are likely to occur years after wildfires as a result of vegetation mortality and its subsequent 117 

decomposition[16].  118 
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Despite the growing prevalence and importance of wildfires in humid tropical forests, our 119 

knowledge of their ecological consequences is constrained by the lack of data in three key areas.  120 

First, the longer-term effects of wildfires on forest biomass is not known as most studies to date 121 

have focussed on relatively short-term responses of vegetation to fire [24–27]. For example, a 122 

pan-tropical assessment suggests there is no recovery of forest carbon stocks within at least five 123 

years [28], while a study on flooded Amazonian forests highlight the potential for fires to 124 

impede forest succession in the first 15 years after fire [29]. Second, most assessments are one 125 

off inventories, meaning ecological processes and stem dynamics in fire-affected forests are 126 

very poorly understood. Extensive field assessments in undisturbed Amazonian forests show 127 

the importance of repeat surveys, which have enabled researchers to link the spatial variation 128 

of forest biomass to stem dynamics such as mortality and recruitment [30,31].  Finally, there is 129 

no data linking post-fire long-term forest dynamics with functional traits. Plant traits such as 130 

bark thickness and wood density provide important insights into post-fire changes and the 131 

susceptibility of forest ecosystems [32–36], especially as they are directly related to carbon 132 

storage function [37]. Recently, an assessment of the impacts of fire and other forest 133 

disturbances has shown that wood density remains below baseline  conditions for at least 25 134 

years following disturbance, indicating a slow recovery or impeded succession [38]. Longer 135 

term assessments of forest dynamics could provide additional insights into the successional 136 

trajectories of burned forests, and their ability to recompose carbon stocks. 137 

We address these knowledge gaps by using a unique large-scale and long-term assessment of 138 

forest dynamics, which is based on a set of chronosequences and re-census data from burned 139 

and unburned forests in five distinct regions of the Brazilian Amazon. We ask two main 140 

research questions:  141 

i) What are the longer-term effects of wildfires on forest biomass (i.e. up to 31 years after 142 

the fires)? We address this question by comparing, at the plot-level, the total aboveground 143 

biomass, and forest dynamics represented by mortality and wood productivity, between 144 

burned and unburned forests. The balance between tree mortality and productivity defines 145 

the ability of these fire-affected forests to recover to pre-disturbance carbon levels and offset 146 

carbon emissions. 147 

ii) How do wildfires affect forest growth, recruitment and mortality at stem-level, and what 148 

insights do key structural traits such as wood density and stem size (Diameter at Breast 149 

Height) provide into the mechanisms underpinning the changes in biomass? We focus on 150 

wood density and size because both are important predictors of short-term fire-induced 151 
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mortality [32,33] and both are linked to stem growth rates and carbon storage in undisturbed 152 

forests [39,40]. We divided stems into three classes of wood density and size to examine 153 

the changes in the probability density functions of growth, recruitment and mortality over 154 

time since fire degradation.  155 

Finally, we combine results from both questions to discuss to what extent Amazon forests are 156 

recovering from fires. 157 

2. Materials and Methods 158 
 159 
2.1 Experimental design for field data collection  160 
 161 
We used tree inventory data collected as part of the Fire-Associated Transient Emissions in 162 

Amazonia (FATE) network. Since 2009, the FATE network has been monitoring permanent 163 

forest plots established in burned forests with different times since wildfire occurrence. Here, 164 

we collected and analysed field data from 64 permanent plots across Amazonia, from which we 165 

revisited and re-measured 55 All plots are located on old growth non-flooded forests (Terra 166 

Firme) with 269.3 m median distance from the edge. We examined the terrain elevation and 167 

slope within 100 m buffer of each plot using a high resolution (12.5m) digital elevation model 168 

(ALOS PALSAR RTC). There is very small slope across the plots (range: 2.8° – 9.4°).  Plots 169 

ranged from 0.25 to 1 ha. From a total of 64 plots, 29 are in unburned and 35 plots are in burned 170 

forests (supplementary material table S1).  171 

We selected burned forest sites based on the inspection of Landsat images (1984-2016) 172 

followed by on-the-ground field confirmation. When we did not find evidence of fire in the 173 

satellite image for a specific site, but there was charcoal in the ground, we assumed the fire 174 

event occurred at the time of the earliest image (i.e. 1984). Because of the high intensity of the 175 

1982-83 El Niño event, when 3.6 million ha were burned in East Kalimantan [41], it is likely 176 

that several forested areas elsewhere were affected by wildfires during this period. To enable 177 

pairwise comparisons between burned and unburned control sites, both were selected to avoid 178 

other anthropogenic disturbances such as selective logging. The unburned control plots, 179 

moreover, were carefully chosen to encompass a similar range and heterogeneity of both soils 180 

and topography as the burned sites. Independent proxies of fire intensity, such as char height, 181 

are not available for plots assessed a long time after fires when many of the affected trees will 182 

have died and decomposed. Without this additional information, we assume that all plots were 183 

subjected to low intensity understorey wildfires that are the norm in previously undisturbed 184 

forests. 185 
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Our 31 years chronosequence dataset captures the effect of wildfires driven by El Niño events 186 

and North tropical Atlantic warming since the 1980s. The distribution of the FATE plots reflects 187 

the spatial occurrence of these major wildfire events (e.g. figure 1a) and accessibility. In order 188 

to link drought intensity over the last 40 years with wildfire extent, we used re-analysis derived 189 

data to calculate Maximum Climatological Water Deficit (MCWD) and satellite derived 190 

products of burned area (please see detailed methods in supplementary material method S.1). 191 

The data extracted from each plot location, along the burned area and MCWD time series, 192 

shows the association between MCWD and burned area at all plots region (figure1b). Figure 193 

1b also demonstrates when each site was sampled relative to the last fire event.  194 

2.3 Field inventory and total aboveground biomass 195 

The inventory was conducted following the RAINFOR network protocol for the establishment 196 

of permanent sample plots [42]. We estimated aboveground biomass (AGB) of 9,836 live trees, 197 

palms and lianas with diameter at breast height (DBH) ≥ 10 cm. For both burned and unburned 198 

forests, total aboveground biomass (TAGB) represent the sum of all trees, palms and lianas 199 

AGB, and was estimated using a specific allometric equation for each group, following [37] for 200 

trees, [43] for palms, and [44] for lianas. The AGB estimates for palms and lianas were based 201 

solely on their diameter, whilst for trees DBH and specific wood density values were used as 202 

input variables. We used the global wood density database  [45,46] to match specific wood 203 

density to each species. For individuals not identified to the species level (~5%), we used the 204 

mean value for the species belonging to that genus. Similarly, we used the mean specific wood 205 

density of the family for trees not identified at the genus level [30]. When an accurate 206 

identification was not achieved, the plot mean specific wood density was used.  207 

2.4 Plot-level assessment of long-term effects of wildfires on forest biomass  208 

2.4.1 Quantification of plot-level forest dynamics 209 

To understand the response of old growth forests to wildfires, we evaluated the long-term shifts 210 

in forest dynamics at the plot-level. We quantified for all burned and unburned plots the net 211 

biomass change (Net TAGB), which is a function of wood productivity (Wp) and mortality (M) 212 

of all stems in the plot (Equation 1). 213 

Net TAGB = ΣWp – ΣM                                                                                    (2.1) 214 

The term ΣM corresponds to plot mortality (Mg ha-1 y-1), which was calculated as the amount 215 
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of the biomass of all stems recorded as dead within a given census interval. The term ΣWp 216 

corresponds to the sum of the values of Wp for all measured stems in the plot and can be 217 

decomposed as (Equation 2).  218 

ΣWp = ΣRecruits + ΣGrowth                                                                               (2.2) 219 

Wp (Mg ha-1 y-1) was calculated as the sum of the biomass of stems that recruited during each 220 

census interval (ΣRecruits) and the sum of the growth in biomass of each stem present in the 221 

plot (ΣGrowth) during this same census interval.  222 

Because census interval varied among plots, rates were weighted by the census interval length. 223 

In order to account for trees that both recruited and died during the census interval and also to 224 

correct for tree growth prior their death, M and Wp values were corrected at a tree-by-tree basis, 225 

following methods of [47].  226 

2.4.2 Quantification of differences between burned and unburned forests  227 

To assess if TAGB and dynamics from burned forests recovered to pre-disturbance levels, we 228 

quantified the percent of difference between burned and unburned forests. For TAGB and each 229 

dynamic parameter, the proportional difference between each burned plot and the mean of 230 

unburned plots, was calculated as described below (Equation 3):  231 

%△ X = (XBU(i) – XUB(mean)) 
XUB(mean)

	 100                                                                                      (2.3) 232 

where X represents the variable of interest (TAGB, M, Wp, and Net TAGB), BU(i) is each of 233 

the burned plots, and UB(mean) is the local mean of all unburned plots sampled in the same region 234 

at the same time as the burned plots. The error is presented as standard error of the mean (SE). 235 

2.4.3 Long-term trajectories of burned forests TAGB and dynamics 236 

We used Generalized additive mixed models (GAMM) to assess the trajectories of TAGB, 237 

mortality, Wp and Net TAGB over the time since last fire chronosequence. We used each 238 

individual plot measured repeatedly as a random effect. To assess the direction of the difference 239 

(%) in each variable in relation to the control-unburned forests, we used the local polynomial 240 

regression fit (LOESS), choosing the span values based on the minimum residual standard error 241 

obtained. All statistical analyses were performed in R 3.3.3 using gamm4[X] R and lme4[X] 242 

packages. 243 
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2.5 Stem-level assessment of growth, recruitment and mortality  244 

To explore the structural and successional mechanisms driving the long-term changes on TAGB 245 

of burned forests, we assessed the empirical probability density function of stem mortality rate 246 

and stem growth in three DBH (cm) classes: 10.0 to 19.9, 20 to 39.9 and >40.0; and three 247 

specific wood density (g cm-3) classes: 0.1 to 0.49, 0.5 to 0.69 and > 0.7 for both burned and 248 

unburned plots. Including all plots from all regions, we divided the dataset into four categories 249 

considering the years since last fire (YSLF): 0.75-4; 5-8; 9-11; 12-31 years. For each plot we 250 

calculated stem mortality as the exponential mortality coefficient (%y-1) [48], mean stem 251 

growth as the annual mean growth (cm y-1) of all living individuals, and stem recruitment as 252 

the percentage rate of stems recruited relative to live stems in each census (%y-1). Stem 253 

mortality and stem growth from each plot were stratified by classes of diameter, wood density 254 

and YSLF. Stem recruitment by plot was stratified by YSLF class, but we only used a grouping 255 

based on wood density class, as all recruitment falls into the smallest DBH class. The 256 

probability density functions of the unburned and burned plots were compared using the 257 

Wilcoxon test for two samples. 258 

3. Results 259 

3.1 The long-term effects of wildfires on forest biomass at plot-level 260 

During the monitoring period, the biomass of unburned forest plots remained generally 261 

unchanged, with exception of forest plots from southeast and east Amazonia that have 262 

experienced high mortality in the drought years of 2015 (15.2 Mg ha-1 y-1; n=4) and 2016 (9.9 263 

Mg ha-1 y-1; n=20) respectively (supplementary material, table S2). In contrast, the biomass of 264 

burned forest plots changed greatly with time since fire (table 1). Immediate fire effects on 265 

TAGB were smaller, with reduction of -2.1 ± 3.9% up to four years post-fire. From 5-8 years 266 

since fire, we found a much greater difference in TAGB, with reduction of -22.1 ± 2.9% in 267 

burned plots compared to unburned controls. The significantly lower biomass persisted up to 268 

31 years post-fire, when burned plots remained 24.8 ± 6.9 % below the baseline value of the 269 

control plots (figures 2a, 2e).  270 

The reduction in TAGB observed in burned forests reflect the imbalance between wood 271 

productivity and mortality. Although post-fire mortality declined during the first eight years of 272 

the chronosequence (figure 2b), its negative influence on burned forests biomass is evident 273 

(figure 2a). The maximum difference in mortality between unburned and burned forests was at 274 
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4 years post-fire (247.4% ± 135.6, table 1), with higher mortality values for burned forests. 275 

There was no difference in mortality between burned and unburned forests from 8 until 31 years 276 

(figure 2f). Wood productivity in burned forests followed a linear decline along the 277 

chronosequence (figure 2c). However, when compared to unburned forests, Wp rates in burned 278 

forests remained higher and the difference increased to its maximum value (30% ± 7.8, table 1) 279 

until 8 years post-fire. The difference in Wp between burned and unburned forests then 280 

decreased and remained in a near-steady state until 31 years post-fire (figure 2g). Moreover, 281 

Net TAGB in burned forests increased during the first 8 years shifting from a strong negative 282 

sign (source) to a neutral state (figure 2d). Compared to unburned forests, Net TAGB rates in 283 

burned forests was lower but increased until 6 years of the chronosequence, and then remained 284 

steady and equivalent to unburned forests levels (figure 2h).  285 

3.2. Uncertainties 286 

Across pools, the largest uncertainties (table 1) are associated with mortality, due to the large 287 

influence exerted by the death of a single large tree. Temporally, and for all variables, there 288 

were large uncertainties from 16 to 27 years after fire, where data was lacking (Figures 2a-2h). 289 

It is reassuring that the trajectories predicted along the chronosequence using the GAMM model 290 

and LOESS fit agree. All GAMM fitted models intercept and smooth component (YSLF) are 291 

statistically significant (table 2). While all models are significant (supplementary material, 292 

figure S1), residual variability may be associated to the “random” deviations from the predicted 293 

values that are not due to plots’ specificities and/or YSLF, suggesting possible association with 294 

fire intensity and environment conditions. Accordingly, the large TAGB and mortality 295 

variability observed across the plots explains the higher Std. Error found in the intercept and 296 

slope of TAGB and mortality models.  The fitted model’s effective degrees of freedom values 297 

consistently show that burned forests TAGB, mortality and Net TAGB response to time is non-298 

linear, while Wp is linear. For Wp the effective degrees of freedom is equal to 1 meaning 299 

linearity for Wp in relation to time.  300 

3.3 Mortality, recruitment and growth rates at stem-level 301 

Wildfires had persistent effects on burned forest dynamics at stem-level: from a total of 48 302 

comparisons between burned and unburned forests of stem mortality and growth, 16 were 303 

significant (p < 0.05), and another five were marginally significant at p<0.10 (figure 3 and 4). 304 

These significant results were distributed across all classes of time since last fire disturbance, 305 
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and all classes of tree size and wood density.  306 

Stem mortality was skewed towards zero, but still higher in burned forests when compared to 307 

unburned forests. The significantly higher stem mortality was observed across all tree size and 308 

wood density classes – but not in all YSLF categories (figure 3a, 4a). The largest stem mortality 309 

differences between burned and unburned forests were observed at 0.75-4 YSF. On average 310 

22.8 ±2.4 % of trees from small classes of size (i.e. 10-19.9 cm DBH) and 23.8 ±5.0 % of trees 311 

with the lightest wood density (i.e. 0.1-0.49 g cm-3) died during 0.75-4 YSLF – these mortality 312 

rates were 341% and 239% higher than the equivalent size and wood density classes in 313 

unburned controls. However, the larger size stems (i.e. >40cm DBH; 5-8 YSLF) and higher 314 

wood density classes (i.e. >0.7 g cm-3; 0.75-4 YSLF) were also significantly affected in burned 315 

forest, being 680% and 315% higher than unburned controls, respectively. Between 9-11 years 316 

since the wildfires, small size stems (i.e. 10-19.9 cm DBH) and stems from small (i.e. 0.1-0.49 317 

g cm-3) and medium (i.e. 0.5-0.69 g cm-3) classes of wood density experienced significant higher 318 

mortality in burned forests – these mortality rates were 74%, 173% and 69% higher than 319 

unburned controls, respectively.  320 

Stem growth followed a normal distribution, and the mean values of burned forests were 321 

generally higher than those in unburned forests (figure 3b, 4b). The greatest difference in stem 322 

growth was observed in the small and medium size classes: when compared to unburned 323 

controls, mean stem growth was 94.1 and 96.6% higher in burned forests for small size class in 324 

the 5-8 and 9-11 YSLF categories, respectively, and 54.2% and 27.0% higher in burned forests 325 

for the medium size classes at 5-8 and 9-11 YSLF categories, respectively. Similarly, for the 326 

class of low wood density, mean stem growth was 121.1% and 62.1% higher in burned forests 327 

than in unburned forests in the 5-8 and 9-11 YSLF categories, respectively. For medium wood 328 

density stems, mean stem growth was 50.0% higher in burned forests than in unburned forests 329 

at the 9-11 YSLF category. Finally, for high wood density stems, growth was 24.0% and 26.0% 330 

higher in burned forests than in unburned forests at 5-8 and 9-11 YSF, respectively. 331 

Stem recruitment was skewed towards zero (supplementary material, figure S2). Overall, mean 332 

stem recruitment values were generally higher in burned than unburned forests up to 12 years 333 

since last fire (supplementary material, figure S3). There were no significant differences 334 

between recruitment in burned and unburned forests when separated by wood density classes. 335 

4. Discussion 336 
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We provide one of the longest post-fire chronossequence assessements of fire-affected 337 

Amazonian forests, analysing the most extensive dataset to date. Our findings reveal that burned 338 

Amazonian forests persist in a reduced biomass state for at least 31 years since last fire, at which 339 

point they store approximately 25% less above-ground biomass than equivalent unburned 340 

forests. This decrease in biomass is driven by increases in mortality that are not fully 341 

compensated for by the relatively small changes in recruitment and growth rates (table 1). The 342 

high mortality in burned forests was not exclusively limited to small diameter and light wood 343 

trees, but also includes the large-stemmed and hardwood trees which contribute most to the 344 

carbon stock [30,49,50]. In contrast, the positive post-fire growth response was predominantly 345 

associated with small-medium sized trees and lighter or intermediate classes of wood density - 346 

groups that contribute relatively little to overall above-ground carbon stocks. We examine in 347 

more detail these findings to understand how the post-fire changes in dynamics rates influence 348 

forest biomass in the long-term, and how this is underpinned by mortality, recruitment and 349 

growth among functional groups. Finally, we discuss the prospects of long-term slow recovery 350 

of Amazonian fire-affected forests and the future of tropical humid forests under the risk of 351 

wildfires. 352 

4.1 Post-fire changes in forest dynamics and consequences for the long-term recovery of 353 
biomass stocks 354 

Our data show that long-term reduction on TAGB after fire is persistent, but the uncertainties 355 

inherent in space-for-time comparisons and delayed mortality of large trees mean it only 356 

became fully evident after five years of the fire events. After the initial fire-induced mortality, 357 

wood productivity rates in burned forests were higher than unburned controls probably because 358 

of the increase in light and nutrients availability to the remaining survivors’ trees. However, 359 

this initial short-term increase in wood productivity (plot level biomass gain) does not exceed 360 

mortality (plot level biomass loss), and is insufficient to counteract the total biomass losses 361 

through mortality along the whole chronosequence. Previous studies have raised the question 362 

of whether enhanced forest growth, promoted by low-intensity fires, offsets carbon emissions 363 

due to post-fire tree mortality [51]. Our assessment refutes that: although burned forests were 364 

no longer a net carbon source six years after fires, the lack of biomass accumulation from 6-31 365 

years shows they will not recover to pre-fire conditions on decadal time-scales. Our findings 366 

also emphasize the importance of longer-term and larger-scale studies to monitor carbon 367 

dynamics in burned forests, which are particularly important for incorporating the variation of 368 

mortality and growth rates in C emission models for the growing extent of fire-affected tropical 369 
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forests. 370 

4.2 Post-fire mortality among functional groups with high contribution to biomass stocks 371 

Wildfires affected the stem mortality rates of small-medium sized trees and all wood density 372 

classes in the first YSLF category (0.75-4) of the chronosequence. An initial increase in the 373 

mortality of high wood density trees (315%) compared to unburned forests, combined with a 374 

late increase in the mortality of large-sized trees (680%), has important impacts upon overall 375 

aboveground biomass loss. A burned forest that lost its large-size (figure 3a) and high-wood 376 

density stems (figure 4a) will inevitably store less biomass that it did prior to disturbance 377 

(figures 2a, 2e). As well as corroborating previous studies on the late increase in mortality of 378 

large trees [23], we also show for the first time that this process can continue for up to eight 379 

years after fire – suggesting that almost all previous studies will have underestimated total 380 

biomass loss from fires. 381 

 Although previous findings show tree mortality decreased as a function of increasing wood 382 

density [33], we show that all wood density classes are at risk of fire-induced mortality, 383 

especially in the first 4 years after the burn. It is important to note, our results do not show 384 

higher susceptibility of high wood density trees compared to lower wood density trees to post-385 

fire mortality, instead we show higher stem mortality of high wood density trees in burned 386 

forests compared to unburned controls. One explanation for this high post-fire mortality across 387 

wood density classes reflects the fact that the full range of wood densities can be found in the 388 

small (i.e.10.0-19.9cm DBH) and medium (i.e. 20.0 – 39.9 cm DBH) size classes, which are 389 

the fire-susceptible groups. Smaller trees are shown to have thinner bark, which in turn are at 390 

more risk of heat stress and fire-induced mortality[11,32]. 391 

4.3 Post-fire stem gowth and recruitment  392 

The significant loss of large size and emergent trees is likely to have triggered the increase in 393 

the growth of light-dependent and fast-growing species. As expected, this increase in wood 394 

productivity is associated with the stem growth responses of small and medium size trees from 395 

all wood density classes, and to a lesser extent to stem recruitment.  Although light availability 396 

is expected to also benefit new recruits [52], stem recruitment is less evident and not 397 

significantly higher than undisturbed in each individual wood density class. However, an 398 

ongoing successional process may be occurring within burned forests, as components of wood 399 
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productivity (recruitment + growth) was higher compared to unburned (supplementary material, 400 

table S3, figure S3). Our results suggest that pioneer species are colonizing and growing after 401 

fire, maintaining a natural forest succession process after disturbance. For instance, the late 402 

stem mortality of small trees (i.e. 10-19.9 cm DBH; 9-11 YSLF) and stem growth at mid-long 403 

term (i.e. 5-8 and 9-11 YSLF) observed, supports the expected post-disturbance forest 404 

succession. However, it is expected that recruitment of old growth species is limited after fire 405 

disturbance which negatively affects the forest’s ability to recover to its pre-disturbance 406 

functional state [29,53]. Consequently, fire disturbances are likely to shift forest composition 407 

and dynamics for much longer than 30 years. 408 

4.4 Prospects for forest recovery beyond the time-scale of our data  409 

Although our data extend to 31 years post-fire, there are reasons to expect slow recovery for 410 

many decades beyond this time-frame. First, the Net TAGB in burned forests was close to 411 

unburned forests equilibrium in the long-term of the chronosequence, and did not provide any 412 

signs of continued recovery. For the recovery to occur gains would need to surpass loss during 413 

this stage. Second, the fires killed many large-size and high-wood density trees, which will take 414 

the longest to recover; perhaps unsurprisingly we also found that their re-establishment will 415 

take longer than 31 years, and many could take centuries to recover, given the large trees age 416 

(200 to 1,400 yr) in undisturbed Amazonian forests [54]. However, other unassessed factors 417 

could be important and are worthy of further investigation. For example, the destruction of the 418 

seedbank by fire and a low seedling survival may act to limit stem recruitment, as previously 419 

found in Amazonian flooded forest affected by fire in long-term [29]. In addition, remaining 420 

seeds from shade-tolerant species have lower chances to germinate in larger canopy gaps [55].  421 

Finally, the reduced biomass stock may result from the dominance of early successional species 422 

inhibiting emergent and shade-tolerant species on decadal time scales [52]. 423 

4.5 Post-fire forest recovery limitations and the future of tropical humid forests under the risk 424 

of wildfires 425 

Forest disturbance from fires may interact with a changing climate. For example, burned forests 426 

have a more open canopy which allows the entrance of solar radiation. The increasing 427 

temperature in the interior of burned forests results in the increase of vapour pressure deficit 428 

and evapotranspiration, further exacerbating soil drying [7,56]. At the same time, the Amazon 429 

has seen an increase in drought conditions, limiting water availability [57] and potentially 430 
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limiting the recruitment of trees [58]. Although Amazonian forests seem to be resilient to dry 431 

conditions, it is likely that water limitation can limit their recovery from fire-disturbances 432 

[57,59]. Whether post-fire succession is permanently arrested or is just occurring at a very slow 433 

rate is difficult to ascertain based on the temporal scale of our dataset. As we only assessed 434 

individuals ³10cm DBH within 31 years of since the last fires, we are unlikely to detect longer 435 

term recovery or the reestablishment of slow growing (high wood density) species. Although, 436 

assessments of saplings and seed bank on disturbed Amazonian forests indicates a slowdown 437 

or stalled forest recovery [29,38]. Nonetheless, it is notable that the stabilisation of recovery 438 

after wildfires is in marked contrast to the consistent increases in forest biomass observed in 439 

the first decades after disturbance in selectively logged or secondary forests [60–62]. 440 

Nonetheless, considering the increase in frequency and intensity of extreme events, such as the 441 

2015/2016 El Niño, associated with increasing fire incidence [5], our findings highlight the 442 

urgent need to avoid fires in humid tropical forests. Our study, provide the largest ground-based 443 

assessment on patterns of post-fire forest recovery, which is particularly important considering 444 

the role of the Amazon in the global carbon cycle. Moreover, in our effort to cover the 445 

heterogeneity of once-burned forests subjected to similar fire intensities, our estimates describe 446 

a general response of Amazonian old growth Terra Firme forests to fire disturbance. However, 447 

it is important to state that in our study we investigated the effect of a single fire event on forest 448 

dynamics and biomass stocks through time. Recurrent fires are still somewhat rare in the 449 

Amazon – in 2010, they only accounted for 16% of all wildfires [63]. However, recurrent fires 450 

are likely to be increasingly prevalent across the Amazon, given the synergies between a drier 451 

and hotter climate, the pervasive use of fire in agriculture [64], and the human-induced 452 

disturbances such as selective logging that turn forests more vulnerable to fires due to changes 453 

in the microclimate [2,11]. The combination of these factors will also affect the ability of forests 454 

to recovery from fire disturbance. 455 
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 679 
FIGURES CAPTIONS 680 
 681 
Figure 1. Tree inventory plots and overlap of Maximum Cumulative Water Deficit 682 

(MCWD) and Burned area (BA) anomalies (sd) over Brazilian Amazon region. 683 
MCWD was derived from ERA-Interim and BA derived from MODIS (detailed 684 
methods in method S.1). Left panel: MCWD red values representing extreme 685 
drought, or negative anomalies (sd) in relation to 1979-2016 period; BA red values 686 
representing extreme large affected areas, or positive anomalies (sd) in relation to 687 
2001-2016 period. Right panel: MCWD and BA variation over time extracted from 688 
each plots region, year of the tree inventory and year of fire. 689 
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 690 
 691 
Figure 2. GAMM fitted models of burned forests pathways by dependent variables: (a) 692 

Total Aboveground Biomass (TAGB), (b) Mortality, (c) Wood productivity (Wp) and 693 
(d) Net TAGB; and LOESS fit for percent difference of each variable in relation to 694 
unburned forest (e-h). 695 

 696 



 

21 
 

 697 
Figure 3. Probability density function of: a) Stem Mortality (%y-1) and, b) Stem Growth 698 

(cm y-1) by Size classes (DBH: 10.0-19.9; 29.9-39.9; >40.0 cm) in lines and years since 699 
last fire (YSLF) classes (0.75-4; 5-8; 9-11; 12-31 years) in columns. Dashed lines 700 
represent median, red colour for burned and blue for unburned forests. Significance 701 
of Wilcoxon text is represented by: * p<0.05 and ** p<0.10. 702 
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 703 
Figure 4. Probability density function classes of a) Stem Mortality in (%y-1) and, b) Stem 704 

Growth (cm y-1) by Wood Density (WD: 0.1- 0.49; 0.5-0.69; > 0.7 g cm-3) in lines and 705 
years since last fire (YSLF) classes (0.75-4; 5-8; 9-11; 12-31 years) in columns. Dashed 706 



 

23 
 

lines represent median, red colour for burned and blue for unburned forests. 707 
Significance of Wilcoxon text is represented by: * p<0.05 and ** p<0.10. 708 
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 712 
 713 

Table 1. Mean difference in % (±SE) between each burned plot and unburned mean 714 
values of TAGB, mortality, wood productivity (increment and recruitment values in 715 
table S3, supplementary material) and Net TAGB. 716 

 717 
 718 
 719 
 720 

YSLF 
categories 

Census 
year 

TAGB Stock TAGB Dynamics 

TAGB 
△% N Mortality 

△% 

Wood 
productivity 
△% 

Net TAGB 
△% N 

(0.75 to 4) 

2009; 
2011; 
2014; 
2015; 
2016 

-2.1(3.9) 42 199.2 
(43.5) 4.0(6.9) -1308.4 

(263.1) 17 

(5 to 8) 

2010; 
2011; 
2012; 
2013; 
2016 

-22.1(2.9) 26 247.4 
(135.6) 30.0(7.8) -26.8 

(212.1) 26 

(9 to 11) 
2014; 
2015; 
2016 

-17.1(2.9) 12 -8.6 (10.8) 16.7(11.2) -45.5 (57.2) 12 

(12 to 31) 

2010; 
2014; 
2016; 
2017 

-24.8(6.9) 20 20.7 
(33.7) 8.9(8.7) 105.0 

(183.3) 10 

 721 

Table 2. GAMM models output by fixed term for intercept and the smooth term YSLF. 722 

 723 
    TAGB Mortality Wp Net TAGB 

Intercept Estimate  216.2 11.4 8.1 -3.3 

Std. Error 12.5 1.2 0.3 1.3 

Std. dev. 72.8 0 1.3 0 

Pr(>|t|) <2e-16 2.71E-13 <2e-16 0.01 

Smooth term (YSLF) Estimate  -34.2 -21.4 -1.0 19.7 

Std. Error 17.9 9.6 0.3 9.7 

Std. dev. 102.7 22.5 0 22.6 

edf* 5.2 3.5 1 3.5 

p-value 0.000463 2.05E-05 0.00064 0.000119 
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Residuals Std. dev. 12.3 9.9 1.8 10.2 

* effective degrees of freedom 724 
 725 
 726 


