THE RIGIDITY OF A PARTIALLY TRIANGULATED TORUS
J. CRUICKSHANK, D. KITSON AND S.C. POWER

ABSTRACT. A simple graph is 3-rigid if its generic embeddings in R? are infinitesimally
rigid. Necessary and sufficient conditions are obtained for the minimal 3-rigidity of a
simple graph obtained from a triangulated torus by the deletion of edges interior to an
embedded triangulated disc.

1. INTRODUCTION

The graph G = (V, E) of a triangulated sphere is generically 3-rigid in the sense that
any generic placement of the vertices in three-dimensional Euclidean space determines a
bar-joint framework which is continuously rigid. This generic version of Cauchy’s rigidity
theorem for convex polyhedra follows from Dehn’s determination [4] of the infinitesimal
rigidity of convex triangulated polyhedra. See also Gluck [7] for an alternative proof.
Moreover, the graphs of triangulated spheres are minimally 3-rigid since Maxwell’s nec-
essary condition |E| > 3|V| — 6 holds with equality. Although this fact is prominent
in combinatorial rigidity little seems to be known about the minimal rigidity of general
triangulated surfaces and manifolds.

We note that Fogelsanger [5] has shown that a finite simple graph given by a triangu-
lated compact surface without boundary is 3-rigid. The proof is an extended argument
employing combinatorial edge contraction methods to reduce to the case of a complete
graph, which is evidently 3-rigid. The methods also extend to higher dimensions. How-
ever, with the exception of the sphere the triangulated surface graphs without boundary
are over-constrained, in the sense that |E| > 3|V| — 6.

In what follows we begin a systematic analysis of minimal 3-rigidity for the graphs of
triangulations of surfaces with boundaries by considering certain partially triangulated
tori that satisfy equality in the Maxwell condition. Our main result is a necessary and
sufficient condition for minimal 3-rigidity in the case of a partially triangulated torus
graph which has edges removed from the interior of an embedded triangulated disc. A
precise definition of these graphs, together with their inherited facial structure and integral
homology, is given in Section 2. Moreover we show that (i) there are 17 distinct forms of
boundary graph for this class, (ii) there are 2 irreducible graphs, and (iii) the graphs are
generated from these two irreducibles by vertex splitting.

There is currently considerable interest in determining conditions for the rigidity of
nongeneric bar-joint frameworks, and particularly those with prescribed symmetry groups.
See, for example, Connelly et al [2] and Schulze and Tanigawa [9] where symmetric variants
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of Maxwell counting conditions play a key role. We shall be concerned entirely with generic
frameworks but the results and methods may nevertheless give insights into the rigidity
of symmetric toroidal structures.

The main theorem may be stated as follows.

Theorem 1.1. Let G be a torus with hole graph. Then the following conditions are
equivalent.

(i) G is minimally 3-rigid.
(i1) G is (3,6)-tight.
(1ii) G is constructible from Ks by vertex splitting.

While (3, 6)-tightness is a well-known necessary condition (see Section 3 for the defi-
nition) its sufficiency here is a more subtle issue than in the case of the generic Cauchy
theorem. For example, we note in Section 3 that the substitution of a triangulated subdisc
by a triangulated disc with the same boundary need not preserve (3, 6)-tightness. Also we
see that there are torus graphs with two holes which are (3, 6)-tight and yet are generically
flexible.

The development is structured as follows. In Section 2 a torus with hole graph is formally
defined. In Section 3 we consider the subfamily 7 of (3,6)-tight graphs G of this type
and we give the 17 possible forms for the boundary graphs. In Section 4 we define critical
separating cycles and associated fission moves within the class 7. Exploiting the toroidal
facial structure of the graphs in 7 we obtain a key lemma, Lemma 4.4, which shows that
if the contraction of an edge e preserves the simplicity of the graph but violates the (3, 6)-
tight sparsity count then there exists a critical separating cycle through e. In this case an
associated fission move G — {G, Gy} is possible, which provides a pair of strictly smaller
graphs in 7 if |V (G)| > 10. It follows that there is a contraction-fission reduction scheme
to a certain family of small graphs in 7 with no more than 9 vertices.

In Section 5 we prove that the graphs in 7 with no more than 8 vertices are 3-rigid and
that the 9 vertex graphs in 7 are contractible in 7. The inverse move for edge contraction
is a vertex splitting move, which is known to preserve 3-rigidity (Whiteley [10]). Also the
inverse fission moves, or fusion moves, are rigid subgraph substitution moves preserving
3-rigidity, and so the equivalence of (i) and (ii) follows. We note that critical separating
cycle methods have also proven useful recently in a simpler reduction scheme for modified
triangulated spheres (Cruickshank, Kitson and Power [3]) and we expect this methodology
to be a key tool in the analysis of higher genus surface graphs.

In Section 6 we give an alternative proof of the equivalence of (i) and (ii) which is
more direct. The proof is based on (a), a nested application of the key lemma, in order
to identify a contractible edge whose contraction preserves membership in 7, and (b) an
analysis of the graphs of 7 which are not contractible in this manner. This leads to the
fact that there are 2 such irreducible graphs (see Theorem 6.2). Each of these irreducible
graphs is constructible from K3 by vertex splitting and so the equivalence of (i), (ii) and
(iii) follows.
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2. SURFACE GRAPHS IN THE TORUS

Let M be a classical compact surface of finite genus, with or without a boundary. In
this case we may define a surface graph for M to be the graph determined by the 1-
skeleton of a simplicial complex with geometric realisation M, when this 1-skeleton graph
is simple. Equivalently M is the graph determined by a triangulation of M in the usual
sense, which requires simplicity [8]. However, the 1-skeleton perspective is the most useful
for us since we are interested in graphs associated with modified compact surfaces which
have superficial holes, obtained by the removal of embedded open discs. These spaces, as
is evident in the figures below for example, are more general than classical surfaces with
boundaries.

We refer to a surface graph for the torus as a torus graph while a surface graph for the
disc is referred to as a triangulated disc.

Definition 2.1. Let M be a simplicial complex for the torus whose 1-skeleton is a simple
graph T'. Let D be the simplicial complex of a triangulated disc and let + be an injective
map from the set of 2-simplexes of D to the set of 2-simplexes of M which respects the
adjacency relation between 2-simplexes of D. Finally, let G be the subgraph of T" obtained
by deleting the edges associated with the 1-simplexes which are images, under the map
induced by ¢, of the interior 1-simplexes of D. Then G is said to be a torus with hole
graph.

We also view a torus with hole graph G as being endowed with the facial structure
inherited from M. This consists of the set of 3-cycles for the faces that are not in the
range of ¢. Thus G has well-defined simplicial integral homology groups.

A torus with hole graph G is determined by a triple (M, D,¢) where ¢ : D — M is a
simplicial map from a simplicial complex D of a triangulated disc to a simplicial complex
M, of the torus, which is injective on 2-simplexes. It is also convenient to abuse notation
and let D, T and 0D denote the graphs of the simplicial complexes D, M and 9D. Also
we write ¢ for the associated simple graph homomorphism ¢ : D — T. We refer to a
subgraph of G as an embedded triangulated disc graph if it has the form j(H), where H
a triangulated disc and j : H — T is graph homomorphism which is injective on facial
3-cycles.

The boundary graph OG of a torus with hole graph G is the subgraph whose edges do
not lie in two facial 3-cycles of G. Thus OG is the graph i(0D).

A torus with hole graph G is also endowed with a closed path of edges that cover the
edges of 0G, perhaps with repetition. This path is the image under ¢ of the boundary
cycle of the graph D. We also refer to the graph homomorphism

a=1ilgp : 0D — G,

as the detachment map of G. This map has the form « : C, — 9G where C, is the r-cycle
graph, and is uniquely associated with G.

We now note some examples of torus with hole graphs.

Let M be the compact surface with boundary derived from S* x S* by the removal
of the interior of a closed topological disc D, where the topological boundary 0D is a
simple closed curve. Then a surface graph for M is a torus with hole graph. These graphs
correspond to the injectivity of the detachment map. Figure 1 illustrates such a graph.
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FIGURE 1. A torus with hole graph (with shaded superficial hole).

On the other hand Figure 2 indicates a torus with hole graph for which « is not injective
and for which

(V(9G)| = [V(OD)| =1, |E(9G)| = |[E(OD)

FIGURE 2. A torus with hole graph with noninjective detachment map.

Recall that a simple graph G is 3-connected if there exists no pair of vertices x,y which
separates the graph in the sense that there are vertices v, w such that each path from
v to w contains one of the vertices in the pair. We note that a torus with hole graph
may fail to be 3-connected, as indicated in Figure 3. However, we shall see that the
combinatorial condition of (3,6)-tightness, defined in the next section, limits the possible
forms of noninjectivity of the detachment map. In particular these graphs are necessarily
3-connected.

FIGURE 3. A torus with hole graph which is not 3-connected.
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Figure 4 gives a perspective view of two torus with hole graphs with noninjective de-
tachment map which can arise as (3,6)-tight graphs. Here we may regard the detached
disc interior (the hole) as being wrapped around the torus. The graph of the second fig-
ure has an exposed edge, that is, one which is incident to no face. This arises when the
detachment map « is noninjective on edges.

FIGURE 4. Perspective figures of torus with hole graphs.

Finally, we remark that a torus with hole graph G may take an extreme form with
0G = G. In particular G may consist of two cycles of edges joined at a single vertex.
Evidently such graphs are not (3, 6)-tight.

2.1. Planar representations. We find it convenient to illustrate torus with hole graphs
by rectangular face graph representations. A rectangular face graph for a torus graph may
be formally defined as a planar triangulated disc R whose outer boundary path OR, as a
directed cycle of edges, is a concatenation OR = mmemsmy where m and w3 are paths of
length r, m9 and 74 are paths of length s, and where these paths are appropriately identified.
This identification corresponds to bijections V(m) — V(m3) and V(me) — V(my) which
are order reversing. The associated identification graph R/ ~ is a torus graph. If D is a
triangulated disc in R and R’ is obtained from R by the removal of edges interior to D,
then the identification graph G = R’/ ~ is a torus with hole graph.

The class of graphs in 7 with no more than 9 vertices is surprisingly rich and in the
Appendix we use face graph representations extensively for their case-by-case analysis.

Additionally, it is useful to consider torus with hole graphs as embedded graphs on the
topological torus, and we do this in the proofs of Lemmas 4.5, 5.3 and 5.7 for example.
Thus a torus graph has an embedded graph representation in [0, 1]/ ~ and the hole for a
torus with hole graph can be viewed as an embedded open disc in the open subset (0, 1)2.

3. (3,6)-TIGHT TORUS WITH HOLE GRAPHS.

We now consider torus with hole graphs G which are (3,6)-tight and we give the 17
possible forms for a detachment map « : Cy — 9G.

Recall that the freedom number for a finite simple undirected graph G = (V| E) is
f(G) =3|V|—|E| and that if f(G) = 6 then G is said to satisfy the Mazwell count.

Lemma 3.1. Let G be a torus with hole graph determined by the triple (T, D,i). Then G
satisfies the Mazwell count if and only if 0D is a 9-cycle.
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Proof. From Euler’s formula it follows that f(7") = 0 if T' is a surface graph for the torus.
If 0D has length r then G can be completed to a torus graph by the addition of r — 3
edges, and so f(G) = 6 if and only if r = 9.

O

A simple graph G is (3, 6)-tight if f(G) = 6 and f(K) > 6 for every subgraph K with at
least 3 vertices. We write T for the class of torus with hole graphs which are (3, 6)-tight.

Figure 5 indicates a rectangular face graph representation for a graph H; in 7 for which
the boundary graph is a 9-cycle.

FIGURE 5. A rectangular face graph for the graph H;.

It is elementary to verify that H; is (3,6)-tight by means of the following principle.
If a graph H, arises from a (3,6)-tight graph H, by vertex splitting, in the sense of the
following definition, then H, is also (3, 6)-tight. In this way it also readily follows that the
graphs Hs, ..., Hi7; given below are graphs in 7.

Note that if Hj is obtained from H; by retriangulation then Hj need not be (3, 6)-tight.
This is the case, for example, if H] has a path of edges around the hole which has length
less that 9. In this case the path defines a torus with hole graph with freedom number
less than 6. In general, replacing a triangulated disc by another with the same boundary
need not preserve the (3, 6)-tightness of torus with hole graphs.

Let G = (V, E) be a simple graph with vertices vy, vo, ..., v, and let vivy, v103, ..., V10,
be the edges of E that are incident to vy. Let G' = (V’, E') arise from G by the introduction
of a new vertex vy, new edges vouy, vgUs, Vov3, and the replacement of any number of the
remaining edges v,v;, for t > 3, by the edges vgv;. Then the move G — G’ is said to be a
vertex splitting move on vy.

The proof of rigidity preservation under vertex splitting is due to Whiteley [10]. A
different proof, together with a proof of Gluck’s theorem, is given in Cruickshank, Kitson
and Power [3].

3.1. Graphs in 7 with noninjective detachment map. When the detachment map
a is not injective the closed path ¢(0D) can be regarded as a 9-cycle which has been
pinched together in some manner, with several self-contact points. The simplest form of
this occurs when |V(0G)| = 8 and we note that G then takes one of two forms, which
we denote as v3v6 and v4v5. Figure 6 indicates the graphs Hy and Hs which are of these

types.
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In general a detachment map « : Cy — 9G determines a vertex word of length 9 whose
letters are the vertices of 0G, with repetitions, ordered in correspondence with the 9-cycle
of Cy. This word is uniquely determined up to cyclic permutation and order reversal.
However, we shall employ the economy of writing the short form v3v6 for the full form
V120301 V4 V5VgU7 Vs Where v = vy is a repeated vertex. The short form should be read as " v
followed by 3 distinct edges to v, followed by 6 further distinct edges” (terminating in the
first vertex v). An example of a cyclic word for a detachment map with 2 repeated vertices
(and no repeated edges) is v1w2v2w4. The numbers represent the 9 distinct edges in i(0D)
in this example. We use the letters v, w and also x to denote repeated vertices. When
edges are repeated we adopt a more economical notation. For example e3e4 indicates that
edge e is repeated and that e is followed by 3 distinct edges then followed by e (even though
traversed in a different order) which is then followed by 4 distinct edges to complete the
cycle. We use the letters e, f, and g to denote repeated edges. In every cyclic word for the
detachment map type the number of edge letters (e, f or g), counted with multiplicities,
together with the total of the numerals, is equal to 9.

P
e

FIGURE 6. Rectangular face graph representatives for the graphs Hs and
Hj in T with boundary graphs of type v3v6 and v4v5.

The next lemma and the table in Figure 7 show that even the small graphs in T,
with 9 or fewer vertices, form a surprisingly varied class. The proof of the lemma is a
straightforward case-by-case analysis and is given in the Appendix.

Lemma 3.2. There is a collection of graphs Hy, ..., Hi7 in T with detachment maps
a;, 1 <1 < 17, and the following properties.

(i) If G € T with detachment map « then there is a unique graph H; and a graph
isomorphism ¢ : OH; — 0G such that o = ¢ o q.

(i) V(H;) = V(OH,), for each 1.

We remark that the graphs His and Hy7 are uncontractible torus with hole graphs G
in the sense that there are no edges belonging to two faces in G whose contraction yields
a simple graph (and hence a torus with hole graph). On the other hand Hy,..., Hy5 do
have such edges, referred to as F'F' edges in the next section.
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| Cyclicword [GeT |

V9 H1
v3v6 H2
v4vb H;
eded Hy

viw2v2w4 Hs
viw2vdw3 Hg
viw2vdw?2 H
viw3dv2w3 Hg
v2w3v2w?2 H,

viw2xlv2wlx2 | Hig
viwlzlv2w2z2 | Hy

v3e2vlel Hy,
v3elv2el His
v2e2v2el Hyy
vlelw2vlelwl | His
61f261f1 H16

eflgel fgl Hiy7

F1GURE 7. The cyclic words that label the 17 forms of detachment maps
for graphs in 7.

3.2. Torus graphs with several holes. There is an evident modification of Def. 2.1
which defines a torus graph with several (superficial) holes. We note the following two
examples which are also (3,6)-tight. Figure 8 shows a rectangular face graph R; for a
torus graph G; with two holes. Two triples of edges (dashed) have been deleted from the
interiors of two triangulated discs in R;. The graph G is (3, 6)-tight and has a separating
pair of vertices v, w. In particular it is not 3-rigid.

A w

FIGURE 8. The rectangular face graph Ry

Figure 9 indicates a rectangular face graph Ry for a torus graph G5 with 6 holes. The
graph (G5 may be obtained from G by the addition of two degree 3 vertices and so G is
also (3, 6)-tight and fails to be 3-rigid.
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FIGURE 9. The rectangular face graph R,

4. CONTRACTION MOVES IN 7 AND CRITICAL SEPARATING CYCLES

Let G be a torus with hole graph. An edge of G is of type F'F if it is contained in
two facial 3-cycles and an F'F' edge is contractible if it is not contained in any non-facial
3-cycle. For such an edge there is a natural contraction move on the graph G which creates
another torus with hole graph G’. To define this formally, let e = vw be a contractible F'F’
edge in G and let avw and bvw be the two facial 3-cycles which contain e. A simple graph
G’ is said to be obtained from G by an edge contraction on e = vw if G’ is obtained by (i)
deleting the edges aw and bw, (ii) replacing all remaining edges of the form zw with zv,
(iii) deleting the edge e and the vertex w. Note that G’ is again a torus with hole graph
with the natural facial structure inherited from G. Also G can be recovered from G’ by
applying a vertex splitting move at v which introduces the new vertex w.

The contraction move for a contractible F'F' edge need not preserve (3, 6)-tightness, and
therefore membership in the class 7. However we obtain in this section a key lemma which
shows that when this occurs there exists a critical separating cycle, in the sense below,
and an associated graph division G — {G1, G5}, where G; C G is a graph in 7.

Definition 4.1. An annulus graph A is a planar subgraph of the graph of a triangulated
disc D which is obtained by the removal of the interior edges of a triangulated subdisc
D; C D. Such a graph has an inherited facial structure and the cycles 0D and 0D are
the boundary cycles of A.

With this terminology, and in analogy with the notion of an embedded triangulated disc
graph i(D) in a torus graph G, we define an embedded triangulated annulus graph in G to
be one of the form i(A) where A is an annulus graph and i is injective on facial 3-cycles.
We refer to such a subgraph as an annular subgraph. In particular we shall see that G5 is
an annular subgraph.

4.1. Critical separating cycles. Let G be a torus with hole graph with triple (7', D, )
and let ¢ be a closed path of edges in G. Then c is said to be a hole separating cycle or
simply a separating cycle if the context is clear, if there is a subgraph G; C G which is
a torus with hole graph with triple (7', Dy,14;), where D C Dj, and c is equal to i1(0D;)
viewed as a path of edges. In the case of a noninjective detachment map with repeated
edges the path ¢ may be viewed more properly as a directed cycle in which, for a chosen
orientation, no directed edges are repeated.

A separating cycle ¢ gives a division move G — {G1,GS} where G is the torus with
hole graph defined by a triple (7', D1, 1), and G is the annular subgraph determined by
¢ and the faces of G which are not faces of Gj.
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Definition 4.2. Let G € T.
(i) A separating cycle for G is a critical separating cycle if the graph G for the associated
division move G — {G1, G5} is (3, 6)-tight.

(i) A fission move G — {Gy,G3} for G is obtained from a critical separating cycle
division G — {G4, G35} by attaching to G5 the small graph H; (given by Lemma 3.2)
whose detachment map «; is identified with the detachment map of G;.

We shall see, in Lemma 4.5 that in all cases the graph G, is simple and (3, 6)-tight and
so the resulting graphs of a fission move both lie in 7.

Note that critical separating cycles have length 9 and the annular graph G5 has 2
boundary cycles of length 9. Also we note in Figure 10 that G5 need not be a planar
graph.

FIGURE 10. A critical separating cycle (dashed) with nonplanar annular
graph G3.

The following “filling in” lemma will be useful for the analysis of critical separating
cycles. It may be paraphrased as the assertion that a (3,6)-tight subgraph of a graph
G € T contains no holes on its surface, bounded by 4 or more edges, which do not contain
the superficial hole of G.

Lemma 4.3. Let G € T and let H be an embedded triangulated disc graph in G.
(i) If K is a (3,6)-tight subgraph of G with K N H = OH then OH is a 3-cycle graph.
(i) If K is a (3,6)-sparse subgraph of G with f(K) =7 and KN H = 0H then OH is
either a 3-cycle or 4-cycle graph.
Proof. (i) The embedded assumption means that H is determined by a simplicial map from
a triangulated disc to the simplicial complex for G with the property of being injective on

2-simplexes. Let us write H¢ for the subgraph of G which contains the edges of 0H and
the edges of G not contained in H. Since G = H°U H and H° N H = 0H we have

6=f(G)=Jf(H")+ [(H) - [(OH).
Since f(H¢) > 6 we have f(H) — f(0H) < 0. On the other hand,
6<f(KUH)=f(K)+[(H)-[(OH)

and f(K) = 6 and so it follows that f(H) — f(0H) = 0.
Let H = i(D), where D is a triangulated disc, and ¢ is the embedding map. Since i is
injective on the set of interior vertices of D and the set of interior edges of D, it follows

that
f(H) = f(D) = f(0H) — f(OD).
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We deduce that f(D) — f(0D) = 0. Since D is a triangulated disc this is only possibly if
0D is a 3-cycle. Thus OH must also be a 3-cycle graph.

(ii) The argument above leads to —1 < f(H) — f(OH) and hence to the inequality
—1 < f(D) — f(9D). This implies that OH is either a 3-cycle or 4-cycle graph. O

4.2. Contraction and fission. We now give a key lemma, Lemma 4.4, which will be
used for the deconstruction and construction of graphs in 7. The following terminology
will be useful.

Two facial 3-cycles of a torus graph are adjacent if they have a common edge. An edge
of a subgraph K of a torus graph is a boundary edge if at most one of its facial 3-cycles
is a subgraph of K, and the boundary 0K of K is the graph determined by its boundary
edges.

Lemma 4.4. Let G € T, let e be a contractible F'F edge in G, and let G' be the simple
graph arising from the contraction move G — G’ associated with e. Then either G' € T
or the edge e lies on a critical separating cycle.

Proof. Let (T, D,i) be a defining triple for G and suppose that G’ ¢ T. Note that the
Maxwell count is preserved on contraction of the edge e and so G’ must fail the (3,6)-
sparsity count. Thus there exists a subgraph K of G containing e for which the edge
contraction results in a graph K’ satisfying f(K’) < 6.

Let e = vw and let ¢ and d be the facial 3-cycles which contain e. Note that if both ¢
and d are subgraphs of K then f(K) = f(K') < 6, which contradicts the sparsity count
for G. Thus K must contain either one or neither of these facial 3-cycles.

Suppose first that K is a maximal subgraph among all subgraphs of G which contains
the cycle ¢, does not contain d, and for which contraction of e results in a graph K’ which
fails the (3, 6)-sparsity count. Note that f(K) = f(K’) + 1 which implies f(K) = 6 and
f(K") =5. In particular, K is (3,6)-tight, and is a connected graph.

Consider now an embedding of 7" on a topological torus. This provides a topological
embedding of K determining a closed set X (K). Also K has faces inherited from the facial
structure of G and we let X (K) be the union of X (K) and the embeddings of these faces
of K. Let Uy, ..., U, be the maximal connected open sets of the complement of X (K) in
the topological torus. Note that one of these open sets, U; say, contains the topological
hole of G which, more precisely, is the complement of the closed set X (G). There are
two possible cases. For the first case each U; is homeomorphic to an open unit disc. In
the second case some U; contains a curve which is not homotopic on the torus to a point.
However, in the second case it follows that K is a planar graph, since it can be embedded
in the complement of U;. This is then a contradiction, since the edge contraction of a
contractible F'F' edge in a planar triangulated graph preserves (3, 6)-sparsity. Thus each
set U; is the interior of the closed set determined by an embedded triangulated disc graph,
say H(U;). (Indeed, the facial 3-cycles defining H(U;) are those whose torus embedding
have interior set contained in U;.) It follows that we may apply the filling in lemma,
Lemma 4.3, to see that 0H(U;) is a 3-cycle for i > 1. By the maximality of K, we have
k =1 (since adding the edges and vertices of T interior to these nonfacial 3-cycles gives
a subgraph of G with the same freedom count). Thus, K is a subgraph of G determined
by a hole separating cycle, namely the boundary cycle for 9H (Uy). This cycle is a critical
separating cycle for G and so the proof is complete in this case.
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It remains to consider the case for which K contains neither of the facial 3-cycles which
contain e. Thus f(K) = f(K’)+2 and f(K) € {6,7}. Once again we assume that K is a
maximal subgraph of G with respect to these properties and consider the complementary
components Uy, ..., Us. As before each set U; is homeomorphic to a disc and determines
an embedded triangulated disc graph H (U;), one of which, say H(U;), contains the graph
i(D). The filling in lemma and maximality now implies that each boundary of H(U;), for
i > 1, is a 4-cycle. By the maximality of K, we see once again that kK = 1 (since adding
the missing edge for such a 4-cycle gives a subgraph of G with a lower freedom count) and
the proof is completed as before. O

We now show that the move G — {G;, G»}, associated with a critical separating cycle,
is indeed a fission move in the class T.

Lemma 4.5. Let G — {Gy, G5} be a division move associated with a critical separating
cycle whose detachment map has associated graph H;. Let Gy = H; U G5 be the torus
with hole graph obtained by substituting H; for Gy in the graph G. Then G5 is simple and
(3,6)-tight.

Proof. Let A be the annular graph G5. Then the graph intersections Gy N A and H; N A
coincide. Also we have

6=f(G)=f(G1UA) = f(G1) + f(A) = f(Gi1NA) =6+ (f(A) — f(H;N A))
Thus f(A) — f(H; N A) =0 and so
f(G2) = f(H;) + f(A) — f(H;N A) = 6.

It remains to show that G is simple and (3, 6)-sparse. If G5 is not simple then, since A
and H; are simple there is an edge e of H; with the same vertices as an edge f of A. Also
these vertices belong to the critical separating cycle. But then G; U {f} is a subgraph of
G with freedom count 5 which is a contradiction.

To determine the sparsity of G5 let K be a subgraph of the graph Go = H; U A with at
least 3 vertices. Then

f(GLU(KNA))=f(G1)+ f(KNA) = f(GiNANK)

from which it follows that f(K N A) — f(GiNANK) > 0, since G is (3,6)-sparse and
f(G1) = 6. On the other hand

and so
fIK)=f(KNH)+ f(KNA) - f(HiNANK) > f(K N H;)

Thus f(K) > 6 (as desired) except possibly in the case that K N H; consists of a single
edge. If this edge is an edge of the boundary cycle then K is a subgraph of G and it
follows immediately that f(K) > 6. So the final case to consider is the case K = K; + ¢
where K is a (3, 6)-tight subgraph of A which meets H; at 2 vertices, being the vertices
of a nonboundary edge e of H;. We next show that this does not occur by making use of
the filling in lemma.

As in the previous proof we consider representations of torus with hole graphs on a
topological torus, [0,1]?/ ~, given through a representation on the closed unit square
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[0,1]2. Also we will consider subsets of this torus determined by the given facial structure
on the graphs.

First, represent G' on [0,1]?/ ~ so that the critical separating cycle, ¢ say, which is
associated with the division G — {G1, G5}, is represented by a simple closed curve v in
[0, 1]%, marked with the vertices of c. (As usual the structure of ¢ is reflected in the way
in which v meets the boundary of [0,1]? and some vertices may be marked on opposite
points of this boundary.) It follows that the annular graph A = G$ is represented by the
embedding in [0, 1] of the triangulated annulus graph associated with A.

The graph G is defined through a substitution of GGy by the graph H; and it too has a
division Gy — {H;, A} determined by c. Also G5 has a representation on [0, 1]?/ ~ which
agrees with the representation of G' on the common subgraph A.

Consider now the subgraph K; C A. We denote the vertices of the edge e, as x and y.

The edges of K; determine a closed subset X (K7) of the torus and the edges and faces
(ie facial 3-cycles) of K determine the closed set X (K;). The open subset of the torus
determined by the intersection of the interior of v and the complement of X (K) contains
at least two connected component regions. One of these corresponds to or contains the
hole of G. (The hole of G is represented in the torus as the interior of the set X (D) for
the triangulated disc D associated with G.)

Figure 11 depicts an example of the representation v in [0, 1]? and subsets which cor-
respond to X (K;) and these regions (and labelled accordingly). The simple curve repre-
senting the edge e is not depicted. In general this will be a curve exterior to v with initial
and final points carrying the labels = and y (for which there may be choices), and the
curve may have several components corresponding to transits through opposing boundary
points.

FIGURE 11. Regions of [0,1]? corresponding to the regions of the torus
[0,1]?/ ~ associated with v and Kj.
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Since K; and G are (3, 6)-tight the subgraph G’ = G; U K; of G is (3, 6)-tight and the
intersection of K; and (G consists of the 2 vertices of e, denoted x and y. The filling in
lemma, Lemma 4.3, applies to G’ and we deduce that the boundary curve of each of the
non hole regions of the torus (such as B,C and E etc.) represents a 3-cycle subgraph of
G. (Specifically, the role of the subgraph K in that lemma is played by G’ and the role of
the embedded triangulated disc graph H is played by the subgraph corresponding to one
of the non hole-containing regions of the torus.)

Consider the curve 7 from y to 2 which lies in the boundary of X (K;) and the boundary
of one of the regions indicated above on the torus. If this region is not the hole-containing
region (for the hole region associated with G) then it corresponds to a subpath p of a
3-cycle. If p has length 1 then adding the corresponding edge to GGy gives a subgraph of
G with freedom count 5 which is a contradiction. On the other hand if the length of p is
2 then the edge e lies in ¢ and adding this edge to K; gives a subgraph of G with freedom
count 5, and so this again is a contradiction. Since there is at least one region that does
not contain the hole region for GG the proof is complete. U

We now deduce that there is a contraction fission sequence for any graph G € T as
described in the next corollary.

Note that the boundary cycle i(D) determined by the triple (T, D, ) for G is a critical
separating cycle which is improper in the sense that G5 = G and Gj is equal to c as a
graph. We say that c is proper if it is not improper. Also we note in Figure 10 a proper
critical separating cycle ¢; need not provide a fission move with the property, which we
call the reducing property, that G5 is smaller than GG in the sense of having fewer faces.
However, we now show that if there is a proper critical separating cycle then there is a
contraction move in the class 7 or there is a critical separating cycle with the reducing
property. The corollary then follows readily from this fact and the key lemma.

Suppose then that c is a proper critical separating cycle for G € 7. Then G5 contains
a face of G with an edge zy on ¢ and third vertex z € G5. Also z has degree 3 or more,
since G is (3,6)-tight. Since G$ is an annular graph it follows that there is an F'F' edge
e in G5 with both faces in G5. If contraction of e yields a graph in 7 then this edge
contraction may be used for the reduction scheme in the corollary. So we may assume
that this is not the case. By the key lemma, either there is a critical separating cycle ¢
though e or the edge e lies in a non facial 3-cycle of G5. In the latter case G5 contains
the graph of a triangulate disc (all of whose faces are faces of G) whose outer boundary is
the non facial 3-cycle. It is well-known that such a graph (a triangulated sphere) has an
edge f of F'F-type whose contraction is simple graph (see Section 5.2 of [3] for example)
and so f can play the role of e in this case. We can also assume that ¢’ lies in G5. To
see this note first that if ¢, ¢ are oriented critical cycles for G with source vertex v and
the same orientation (relative to the hole), and if 7, 7" are subpaths with initial vertex
v and common final vertex w, then necessarily 7, 7’ have the same length. (If not then
a substitution between 7 and 7’ creates a critical separating directed cycle of length less
than 9.) In view of this principle, if ¢, ¢ have common vertices then we may substitute
such a subpath of 7’ containing e for its corresponding subpath 7 to obtain a critical cycle
in G5. (If ¢, ¢ do not have a common vertex then ¢ already lies entirely in G3.) It now
follows that the division move for ¢’ produces an annular graph with fewer faces than G$.
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Definition 4.6. A torus with hole graph is uncontractible if it has no F'F' edges or if every
edge of type F'F lies on a nonfacial 3-cycle.

Corollary 4.7. Let G be a torus with hole graph in T. Then there exists a finite rooted
tree in which each node is labelled by an element of T such that,

(i) the root node is labelled G,

(i1) every node has either one child which is obtained from its parent node by an F'F edge
contraction, or, two children which are obtained from their parent node by a fission
move for a critical separating cycle,

(111) each leaf is an uncontractible graph.

G1221

FicUure 12. Contraction and fission to uncontractible graphs in 7.

The inverse move for edge contraction in the class T is a vertex splitting move, which as
we have noted, preserves 3-rigidity. Also the inverse of a fission move, which we refer to as
a fusion mowve, corresponds to substitution of the subgraph H; of G5 by the graph G;. It
is immediate from the definition of infinitesimal rigidity that if G; and G5 are 3-rigid then
so too is G. A proof of the equivalence of (i) and (ii) in the main theorem can therefore
be completed by showing, as we do in the next section, that the uncontractible graphs in
T are 3-rigid.

5. THE RIGIDITY OF UNCONTRACTIBLE GRAPHS

We now show that the uncontractible graphs of T are 3-rigid. This completes our first
proof of the equivalence of (i) and (ii) in the main theorem.

This will be achieved in two steps. The first step shows that uncontractible graphs G
in 7 have no interior vertexr. This means that each vertex of G lies on JG, and so, in
particular, |V (G)| < 9. This leads quickly to the fact that the uncontractible graphs with
at most 8 vertices are 3-rigid. In the second step we show that the graphs with 9 vertices
and no interior vertices are contractible.

Lemma 5.1. Let G € T be an uncontractible graph. Then the interior vertices of G have
degree at least 6.

Proof. A vertex v is an interior vertex if and only if all edges incident to v are of FF
type. Since G is (3, 6)-tight it contains no vertices of degree 1 or 2. If deg(v) = 3 then it
follows from the simplicity of G that each of the three edges incident to v does not lie on a
non-facial 3-cycle. This contradicts the uncontractibility of G. If v has degree 4 then the
induced subgraph X (v) for v and its 4 neighbours has at least 10 edges. These are the 8
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edges for the faces incident to v and at least 2 further edges to fulfil the uncontractibility
condition. Thus f(X(v)) <5 which is contrary to G being (3, 6)-tight. One can similarly
check that f(X(v)) <5 if the degree of v is 5. O

The proof of the next lemma exploits the topological nature of the torus. For this and
subsequent arguments it is convenient to define the homology class of an F'F' edge e in
the case that e = zy with z,y € 0G and e ¢ 0G. We refer to refer to such an edge as a
crossover edge.

Definition 5.2. Let G be a torus with hole graph with triple (7', D, 1), let e be a crossover
edge and let € be any directed cycle of edges formed by e and a path of edges from 0G.

The homology class of e is the unordered pair {[é], —[€]} associated with the homology
class [€] in H{(T,Z) of the cycle é.

The homology class of a crossover edge e is well defined and not equal to the trivial
homology class. For simplicity we write [€] for the homology class of e. In Figure 13 we
indicate the partitioning of the crossover edges of the graph H; according to homology
class.

N
--==2

F1GURE 13. The 12 crossover edges of the graph H; fall into 3 homology classes.

The limited possibilities for the classes [é] become apparent on considering G as an
embedded graph on the topological torus. In the case of boundary type 9v the boundary
graph edges determine a simple closed curve, v say. If there are no interior vertices then
the curves for the remaining edges are disjoint except possibly at their endpoints on ~.
In view of this disjointness it follows that there can be at most three distinct homology
classes for such edges. Indeed, Figure 14 indicates three embedded crossover edges. (With
respect to a natural identification of the homology group with Z? these have homology
classes (1,0), (0,1) and (1,1), up to sign.) Note that no further homology class is possible
for any additional embedded F'F' edge. The figure illustrates the embedding of a 9v type
graph but in fact the argument is the same in general, when v may have points of self
contact.
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FIGURE 14. A representation of 3 embedded edges of F'F' type with different
homology classes.

Lemma 5.3. Let G € T be an uncontractible graph. Then G has no interior vertices.

Proof. Let (T, D, 1) be a triple associated with G. Let vy, v, ..., v, be the neighbours of
an interior vertex z written in order, so that zvjvs, zvous, ... are facial 3-cycles of G. By
the uncontractibility of G for each vertex v; the edge zv; lies on a non-facial 3 cycle and
so there is an additional edge v;v; for some j # i — 1,7 + 1.

Suppose first that the degree of z is 6. Then the subgraph X (z) induced by z and its
neighbours includes the 6 edges incident to z, the 6 perimeter edges v;v;11 and additional
edges between non adjacent perimeter vertices vy, ..., vs. There are at least 3 such edges,
and since f(X(z)) > 6 it follows that there are exactly 3, say ej, e, e3. Let €1, éq, €3 be
choices of 3 non-facial 3-cycles for the edges e1, e5, €3 and let [€1], [€2], [€3] be the associated
homology classes in H,(T,Z).

Figures 15, 16 show two examples of such a graph X (v) embedded on a topological
torus S! x S1. For an appropriate identification of Hy(T,Z) with Z? the homology classes
[é1], [€2], [é3] in these examples are

(1,0),(1,0),(0,1) and (1,0),(0,1),(1,1).

FIGURE 15. An embedding of a subgraph X(z).

Consider the maximal connected open subsets R of S* x S! that are complementary to
X(z) as an embedded graph. We refer to these relatively open sets as regions. Examining
rectangular representations of the embedded graph we see that in the first example there
are two non-facial regions, one of which is bounded by a directed 4-cycle of embedded edges



18 J. CRUICKSHANK, D. KITSON AND S.C. POWER

FIGURE 16. An embedding of subgraph X (z).

and one of which is bounded by a directed 8-cycle, and there are 6 regions for the facial
3-cycles of X (v). This also holds for the case of a homology class triple (1,0), (1, 1), (1, 1).

In the example of Figure 16, with homology triple (1,0), (0,1), (1, 1) there are two non-
facial regions each of which is bounded by an embedded 6-cycle. Thus in both cases that
the nonfacial regions are bounded by 4,6 or 8 edges.

The remaining case in which the homology classes [é1], [é2], [é3] coincide cannot occur
since GG is a simple graph without loops and the embedded edges for ey, es, e3 are disjoint
except at their endpoints.

Consider now the embedded graph for the containing torus graph 7" for G. Note that
each of the non-facial regions R defines a subgraph G'g of T which is a torus with hole graph
whose boundary corresponds to the boundary of the region. In view of the observations
on boundary lengths, each graph Gr has freedom number f(Gr) < 6. However, one of
these graphs is a subgraph of G, and this contradicts the (3, 6)-sparsity count for G. So
we conclude that G has no interior vertices of degree 6.

Suppose now that deg(z) = 7. We may view X(z) in this case as arising from the
deg(z) = 6 case by the addition of a new vertex v, between v; and v;,1, with the edge v;v;11
replaced by two edges v;v,, v,v;41 and with the edge zv, added. Moreover an embedded
graph in the degree 6 case can be augmented in a corresponding way to provide the
embedded graph for the degree 7 case. By the uncontractibility of G there is an edge v,v;
for some j which is embedded and we see that its embedding divides an r-cycle region (for
the degree 6 case) into two regions. Moreover it follows that the boundary cycles for these
regions do not use more edges. Thus we obtain a contradiction as before. By induction
the same conclusion holds in general and so G has no interior vertices of degree n for all
n > 6. In view of Lemma 5.1 there can be no interior vertices of any degree. O

Recall that the double banana graph, Gpp say, is formed by joining two copies of the
(single banana) graph Kj5\e at their degree 3 vertices. Evidently this graph is (3, 6)-tight
and fails to be 3-rigid and it is well known that this is the only graph with 8 or fewer
vertices with this property. The next lemma combined with the previous lemma shows
that the uncontractible graphs with 8 or fewer vertices are 3-rigid.

Lemma 5.4. Let G € T be a graph in T with no interior vertices and no more than 8
vertices. Then G is 3-rigid.

Proof. Tt suffices to show that if G has 8 vertices then it is not equal to Gppg. Since G and
OG have the same vertex set it follows that the boundary graph is of type v3v6 or v4v5.
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Considering an embedded graph representation of G in a torus R/ ~, with the detached
disc represented by an open subset of R, it follows that in fact any torus with hole graph
with this form of boundary is 3-connected. Since the double banana graph is not 3-
connected the proof is complete. 0

We now embark on showing the remaining case (step 2) that the graphs G in 7 with
boundary type 9v and no interior vertices are contractible. It is possible to give a rather
extended ad hoc embedded graph argument to show this, and in fact this method is
employed in Section 5 for a range of small graph types. However we now give a more so-
phisticated proof, exploiting once again the homology classes of edges, and which provides
some general methods and other insights.

The main idea may be illustrated by considering again the 9 vertex graph Hy, labelled
as in Figure 13. The edges vw and v'w’ are F'F' edges of the same homology class, as are
the 3 ”intermediate v to w edges”. We note that the ”interior edge” vjw; (in contrast
to v'wy) does not lie on a nonfacial 3 cycle. Also it can be shown that it does not lie
on a critical separating cycle, and so the graph is reducible in 7 by edge contraction. In
general we will identify such edges within subgraphs (called panel subgraphs) determined
by crossover edges of the same homoloy class.

First we note two general lemmas that ensure contractibility. (These lemmas also play
a role in the ad hoc arguments in Section 5.)

Lemma 5.5. Let G be a graph of T with a degree 3 vertex on the boundary graph 0G
which is incident to an F'F edge e. Then the graph obtained from the contraction of e is

m T.

Proof. That the contracted graph is (3,6)-tight follows from the fact that subtracting v
and its 3 incident edges from a subgraph does not change the freedom number. Also it is
elementary to check that the contracted graph is a torus with hole graph. 0

Lemma 5.6. Let G € T with V(G) = V(0G) and let ¢ be a critical cycle of edges which
is not the detachment map cycle for G. Then there is an edge contraction of G to a graph

m T.

Proof. Let m be the directed 9-cycle for the detachment map of G. Then ¢ and 7 form
the boundary of an annular subgraph H of G and we assume that they have the same
orientation. Let x be a vertex such that the edges e = zy, f = xw are edges of 7 and ¢
which start at x, with e # f, and such that there are subpaths 7, ¢; of the critical cycles
from x to a common vertex z. We may also assume that z is the first such vertex. Thus
the subpaths form the boundary of either a facially triangulated disc, if z # z, or, if z = x,
a triangulated disc with two boundary vertices identified. We denote this subgraph of H
as H,. See Figure 17.

The subpaths 7, ¢; are of the same lengths, say r, since 7w and ¢ are critical separating
cycles, and the triangulation is formed by the addition of edges only. It follows by ele-
mentary graph theory that there is a degree 3 vertex u strictly between x and z on the
subpath 7. Indeed, the graph H; has exactly 2r — 2 bounded faces from the triangulation
by facial 3-cycles of G. If the degrees of the intermediate vertices u are greater than 3
then there would be at least 2(r — 1) + 1 faces incident to these vertices.
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Since the vertex w is incident to an F'F' edge the previous lemma applies to complete
the proof. W

Crossover edges

e -
Yy 1

FiGURE 17. Subpaths of ¢ and 7 from x to z.

We now define panel subgraphs of a graph G € T with |V(G)| = |V (0G)| = 9, and show
that their strongly interior edges (defined below), should they exist, allow contraction to
a graph in 7.

Consider two distinct crossover edges e = vw, ¢/ = v'w’ which have the same homology
class. They determine a triangulated disc subgraph of GG, and its containing torus graph
T, which may be visualised as a planar triangulated panel of G. The vertex set consists of
the vertices of e, €/, of which there are 3 or 4 in number, and vertices on the hole boundary
lying on two paths, between v and v’ and between w and w’. Figure 18 indicates such a
panel subgraph with 5 faces.

U1

w wq w’
FIGURE 18. A panel subgraph of G determined by two crossover edges e, €/
of the same homology class.

Considering embedded graphs in the torus it follows readily that every panel graph is
contained in a unique maximal panel subgraph.

Note that the interior vertices of the panel, that is, those without incidence with e or
¢/, are only incident to edges of the panel subgraph. It follows that any strongly interior
edge viw; of such a panel, that is, one with both v; and w; interior vertices, does not lie
on a nonfacial 3-cycle.
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Note that Lemma 5.6 implies that if G is not contractible to a graph in G then there
can be no critical separating cycles. Thus, in view of the previous paragraph, there can
be no strongly interior edges of the panel if GG is not contractible to a graph in7 .

Lemma 5.7. Let G be a graph in T with |V(G)| = |V(0G)| = 9. Then G may be
contracted to a graph in T .

Proof. By the previous discussion we may assume that the maximal panel subgraphs do
not have a strongly interior edges. Also, by Lemma 5.5, we can assume that there are
no vertices in GG of degree 3. It follows that each such subgraph has at most 4 crossover
edges. Since there are 12 crossover edges, by (3, 6)-tightness, and at most 3 crossover edge
homology classes, it follows that there are 3 panels, each with 4 crossover edges. Thus the
panel subgraphs have the form indicated in Figure 19.

w ’IJJ/

FIGURE 19. A panel subgraph with 4 crossover edges and no interior degree
3 vertex.

By Lemma 5.6 we may assume that every crossover edge is not on a critical cycle.
However, we now show that this is not possible, completing the proof.

Consider a single pair of interior edges, viw,viw’ on one of the panel graphs. These
edges and their panel subgraph are illustrated in the embedded graph diagram of Figure
20. If v;w lies on a nonfacial 3-cycle then this is achieved through edge v1v’ of the panel
and one of the 8 remaining crossover edges with a different homology class. This crossover
edge from v to w is indicated in the figure with label g. Note however, that if ¢’ is another
embedded edge of the same homology type as g then, from the disjointness requirement
for embedded edges, ¢’ has the form v’z (or the form yw), where = (resp. y) lies on the
hole boundary arc from v to w (resp. v’ to w’) as indicated in the figure. It follows that
the form of the panel for this homology type cannot hold, and this contradiction completes
the proof. O

6. VERTEX SPLITTING CONSTRUCTION

We now obtain an alternative proof of the equivalence of (i) and (ii) in the main theorem.
Also we determine exactly the uncontractible graphs in 7 and with this we complete the
proof of the equivalence of (i), (ii) and (iii).
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F1GURE 20. Only edges of the form xv’ or vy have the same homology type
as the edge g.

Lemma 6.1. Every graph in T admits a contraction sequence in T to an uncontractible
graph.

Proof. Let G € T and suppose that G is a contractible torus with hole graph. We show
that there exists a contractible edge for which the contraction yields a graph in 7.

Since G is contractible there exists an F'F' edge which is not on a nonfacial 3-cycle. If the
contracted graph is in 7 we may continue the argument with a smaller graph. So we may
assume, by the critical cycle lemma, Lemma 4.4, and the discussion preceding Corollary
4.7, that there exists a proper critical cycle ¢; and an associated division G — {G, G5}
where (G is in 7 and both (G; and the annular graph G have fewer vertices than G. Since
G5 contains a face of GG it follows, again by the discussion preceding Corollary 4.7 that the
annular graph contains an edge e of F'F type.

We may assume, moreover, that the edge e does not lie on a nonfacial 3-cycle. To see
this we note the two possibilities that hold if e does lie on a nonfacial 3-cycle. Either the
3-cycle is triangulated by faces of G, or the triangulation of the 3-cycle in the containing
torus graph for G' contains the associated triangulated disc for the detachment map for
G. In the latter case it follows that G contains a fully triangulated torus graph, which
violates (3, 6)-sparsity, and so this case does not occur. In the former case G contains the
graph of a triangulated sphere all of whose faces are faces of G. Such graphs have edges
which are of F'F' type and do not lie on a nonfacial 3-cycle, and so we may rechoose e to
be such an edge.

Since the annular graph contains an edge of F'F' type which is not on a nonfacial 3-
cycle we may either contract with this edge to a smaller graph in T or, by the critical
cycle lemma, obtain another proper critical cycle, ¢y say, and an associated division G —
{H,, H5} with H, € T, where these graphs have fewer vertices than G.

Note that we can assume that ¢y lies inside c¢q, or, more precisely, that the detached
triangulated disc for ¢ is contained in the detached triangulated disc for ¢;. One way to
see this is to note that the union J of Gy and H; is a proper subgraph of G which lies
in 7. Thus we may replace ¢y by the proper critical cycle for the detachment map for J.
By the reasoning above there is a contractible edge in the associated annular graph which
does not lie on a nonfacial 3-cycle.

Repeating this process, identifying nested critical cycles ¢1, ¢y ..., we must eventually
obtain a contractible edge for which the contracted graph lies in 7. Indeed, if this did not
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occur then the process provides an infinite strictly increasing sequence of proper subgraphs
of G and this contradicts the finiteness of the graph. OJ

We have shown that the uncontractible graphs in 7 are 3-rigid by the analysis in Sections
4 and 5. This, together with Lemma 6.1 provides a second proof of the equivalence of (i)
and (ii) in the main theorem, which avoids the use of fission moves.

In fact we can obtain a stronger result by enlarging the analysis of the small graphs to
identify the uncontractible graphs of 7.

Theorem 6.2. The uncontractible graphs of T are the graphs Hyg and Hyz.

To obtain this fact note first that Hyg and Hy; are uncontractible. Also it is straight-
forward to check, with the assistance of Lemmas 5.5 and 5.6, that the particular graphs
H,, ..., Hys are contractible in 7, and indeed, are completely contractible in the class
T to one of these two graphs. However, it remains to check that every graph with no
interior vertices and one of these boundary types is similarly contractible. We show this
in the second part of the Appendix by arguments which become progressively simpler as
the number of vertices decrease.

Remark 6.3. It is natural to seek a combinatorial characterisation of 3-rigid torus with
hole graphs along similar lines. Natural examples, which are not minimally 3-rigid, can be
found amongst those graphs, G say, which may be obtained by merging the boundaries
of a (3, 6)-tight torus with hole graph G and an annular graph H with a 9-cycle boundary
and an r-cycle boundary, where 4 < r < 8. Here, of course, the identified directed 9-cycles
for G and H should be of the same detachment type «;, for some 1 < ¢ < 17. For such
graphs G there is a simple necessary and sufficient condition for 3-rigidity, namely that
the annular graph should have girth r, meaning that there is no hole separating cycle ¢
for G* which lies in H and has length less than . We expect that an examination of the
relevant small graphs will provide a basis for a proof that the graphs G are precisely the
3-rigid torus with hole graphs.

7. APPENDIX
We first give the proof of Lemma 3.2.

Lemma 3.2. There is a collection of graphs Hy, ..., Hyr in T with detachment maps
a;, 1 <1 <17, and the following properties.

(i) If G € T with detachment map « then there is a unique graph H; and a graph
isomorphism ¢ : 0G — OH; such that o = ¢ o «.

(ii) V(H;) = V(OH,), for each 1.

Proof. The proof of the lemma follows the following scheme. We identify the detachment
maps aq,...,qq7 that are possible for graphs in the class 7, arguing case by case for
fixed values of |V (0G)|. These values range from 9 to the minimum possible value which
turns out to be 4. At the same time we identify corresponding vertex minimal graphs
Hy, ..., Hy; for these types.

Let G € T be a (3,6)-tight torus with hole graph with the attachment map «. The
graphs Hy, Hy, H3 and their detachment maps a1, as, a3 have been described above. If
|[V(0G)| = 9 then o = «y while if |V (0G)| = 8 then either o = ap or @ = 3.
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We next look at the case of 1 repeated edge which is the case |V (0G)| =7, |E(0G)| = 8.
The detachment map, and the boundary graph, evidently has at most one form, with cyclic
word e3ed. An associated vertex minimal graph H, in 7T is defined by the rectangular face

graph in Figure 21.

FIGURE 21. A rectangular face graph representation for the graph Hy, with
boundary graph of type e3e4.

We next consider the case of graphs in 7 with
V(0G)| =17, |E(OG)| =9

Assume first that there are distinct vertices v, w in 0G and 4 edge-disjoint consecutive
paths of edges between them, from v to w, w to v, v to w and w to v, respectively, with
lengths a, b, ¢, d say, so that the cyclic word type for the detachment map of « is vawbvcwd.
Thus we are assuming that v and w alternate in the cyclic word. Figure 22 indicates how
this may be depicted as an embedded cycle on a topological torus.

FiGURE 22. Boundary cycle of type vawbvcwd with a +b+c+d = 9.

Since the graphs in 7 are simple it follows that the sum of any two of a, b, ¢, d is at least
3. In fact this is the only constraint and up to cyclic order and reversals there are 5 types
for such quadruples (a, b, ¢, d), namely

(1,2,2,4),(1,2,3,3),(1,2,4,2),(1,3,2,3), (2,3,2,2),
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and there are 5 associated detachment maps, of types vlw2v2w4, etc. The graphs in

Figures 23, 24 give representative vertex minimal graphs, Hs, ..., Hy for these attachment
types.
w w w
(8]
v v v v v v
e}
w w w

F1GURE 23. Rectangular face graph representations for Hs, Hg, H7.

(@] (0]

w w

FIGURE 24. Rectangular face graph representations for Hg, Hy.

We now look at the nonalternating case so that the cyclic word for the detachment map
a is vavbwcwd. Since G is simple it follows that a and ¢ are at least 3 and so there is a
unique form up to relabelling and ordering, namely v3v2w3wl. (See Figure 25.)

F1GURE 25. Boundary graph type v3v2w3wl.
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In this case we see that GG contains a triangulated sphere which is formed by the part
of the triangulated torus for G which lies ”"between” the two nonfacial 3-cycles associated
with the subwords v3v and w3w. Moreover G contains the augmentation of this subgraph
by the edge vw and so G cannot be (3,6)-tight. Figure 26 also indicates a perspective
view of such a graph. Since G is assumed to be (3, 6)-tight, this type of detachment map
cannot occur.

There is one further case of a torus with hole graph with |V(90G)| = 7,|E(0G)| = 9.
The detachment map is of type v3v3v3 and G can be thought of as a torus graph with a
6-cycle hole to which a triangle has been attached by a single vertex. In particular such
graphs are not (3, 6)-tight.

As an aside we remark that it follows from the main theorem that every graph in T
is 3-connected. However, this fact may also be proved directly by an embedded graph
argument analogous to the one used in the exclusion of the small graph in Figure 25.

FIGURE 26. A torus with graph satisfying the Maxwell count f(G) = 6
which is not (3, 6)-tight.

Consider now the possibility of a detachment map with 3 (pairwise) repeated vertices
and no repeated edges, so that |V (0G)| = 6 and |E(OG)| = 9. There are 2 attachment map
types given by the cyclic words v1w2x1lv2wlx2 and viwlxlv2w2x2 which are represented
by the graphs Hio, H1; of Figure 27. In fact there are no other forms possible for graphs
in 7 with this vertex and edge count for dG. Indeed, in analogy with the graph types
of Figure 26, a torus with hole graph whose cyclic word contains disjoint subwords of the
form wlv and v2w is not (3, 6)-tight.

w X w X
O O O

w X w

F1GURE 27. Face graphs for Hyg, H11, with types vlw2z1v2wlz2 and viwlzlv2w2z2.

We next consider further types with fewer than 9 edges in the boundary graph. The
first case to consider is

V(0G) =6, |E(OG)|=S8.
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In this case there are 3 types of detachment map, for simple torus with hole graphs, and
these correspond to the cyclic words
v3e2vlel, wvdelvZel, v2e2v2el

The structure of these words is depicted in Figure 28 and representative vertex minimal
graphs in T are given in Figure 29.

F1GURE 28. Hole types v3e2vlel etc., for Hyo, Hi3, Hi4

e e e
O O 6]
A v Y] Y Vv %V
e e e
FI1GURE 29. Rectangular face graph representations for Hio, Hy3, Hi4.

The next cases are for torus with hole graphs with
[V(0G)| =5, |E(0G)| =S8.

Here the detachment map covers one edge of the boundary graph twice and two further
vertices, v, w are covered twice. Such a graph in 7 is the graph His in Figure 30. This
has cyclic type vlelw2vlelwl and we note that the v and w vertices are alternating. The
only other possible cyclic type is the nonalternating case vlelv2wlelwl. Arguing as in
the previous nonalternating case (depicted in Figure 25) it follows that the graph G cannot
be (3, 6)-tight.

F1cURE 30. The graph Hy; and its facial structure.
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We next consider the case
[V(0G)| =5, |E0OG)|=T1.

Note that up to relabelling and order there is one form of cyclic word, namely el f2el f1,
and so one form of detachment map for graphs in 7. Figure 31 indicates a vertex minimal
representative, Hig, for this type.

F1GURE 31. The graph Hg with detachment map type el f2el f1.

Finally we consider the case of boundary graphs with 4 vertices. There is one possible
form of detachment map, with cyclic word eflgel fgl. A vertex minimal representative
is given by the graph Hy; in 7 in Figure 32.

e
O ofo
g 9.
\ \%
f e

F1GURE 32. The graph H,; with detachment type eflgelfgl.

Note that K3 is not a torus with hole graph G arising from any triple (7, D, i) where
D is a 9-cycle. To see this note that the map ¢ : 0D — 0G must cover at least one edge
of OG more than twice. On the other hand each edge of GG is incident to at most 2 faces,
and 7 is injective on faces, so this is not possible. O

7.1. The uncontractible graphs in 7. We next identify the graphs in 7 that are
uncontractible.

Note first that His and H;; are uncontractible. Also it is straightforward to check,
with the assistance of Lemmas 5.5 and 5.6, that the particular graphs Hs, ..., Hi5 are
contractible in 7, and indeed, are completely contractible to one of these two graphs.
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However, it remains to check that every graph with no interior vertices is similarly con-
tractible. To see this we argue in a case-by-case manner according to boundary type. The
arguments become progressively simpler as the number of vertices decreases.

The 9v case, corresponding to the detachment map oy is covered by Lemma 5.7. (Al-
ternatively one can effect a proof in the style of the following argument for the v3v6 case.)

7.2. The a3, a3 cases; types v3v6, vdvh, with |V (G)| = 8. Assume that G € T is of
type v3v6 and that G is uncontractible. We shall obtain a contradiction.

Since the boundary is of type v3v6 the vertex v is of degree 4 or more. Also there are
no vertices of degree 3 incident to an F'F edge, in view of Lemma 5.5.

We now consider the possibilities for an embedded graph representation of G which has
been "standardised” so that

(i) the v3v subcycle of the boundary cycle, with vertex sequence v, z,y, v, appears as
the right hand boundary of a representing rectangle for S' x S?.

(ii) the first two edges, vw, wz of the v6v subcycle appear on the lower boundary of the
representing rectangle for S x S*t.

The embedded representation of G may be partially indicated, as in Figure 33. The
upper boundary of the diagram is represented by the embeddings of the edges vw, wz and
a path 7, which is not necessarily a path of embedded edges. The remaining embedded
edges of G are representable by paths in the region R which may pass across 7 a number
of times. (That the degree of vertices is at least 4 is suggested by emerging edge paths.)

FI1GURE 33. A partial embedded graph representation of a graph of type
v3v6 with no interior vertices.

Suppose first that the crossover edge uw exists. It does not lie on a critical cycle, by
Lemma 5.6 and so uw lies on a nonfacial 3-cycle (since otherwise G is contractible). From
the standardised diagram it follows that this nonfacial 3-cycle has vertices u, w, z. We may
assume that the embedded path in the diagram representing the edge wz is a path from
w to z in R. This now implies that there is a hole separating cycle of length less than 9,
a contradiction.
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Since the edge uw does not exist the face incident to vu has edges va and ua with
a # w, and va must be represented by an embedded curve in R starting from the upper
left representative of v. If a is one of r, s or z then we obtain a contradiction as before. On
the other hand since G is simple, without loop edges or multiple edges between the same
vertices, the vertex a cannot be equal to v, x or y, and so we have the desired contradiction.
There is similar argument for the case v4v5.

7.3. The a4 case; type e3ed with |V(G)| = 7. Let G € T be a graph of this type
and assume that G is not contractible. Once again we may partially represent G' as an
embedded graph on the torus as indicated in Figure 34. By Lemma 5.5 the degree of each
of the vertices z,r, s, x,y is at least 4.

In particular there are pairs of edges from each vertex r,s,y,x which are of FF type
and which (as before) must lie on nonfacial 3-cycles. Considering an F'F' edge out of y
the only possibilities are (i) yw, or (ii) yz, which requires ys (for the nonfacial 3-cycle), or
(iii) ys which requires either sv or yz. Since there are at least 2 edges out of y it follows
that (ii) or case (iii) must hold. However, case (ii), with yz and ys, cannot hold for the
following reason. The triangulation would require the edge ry and this edge would not
lie on a nonfacial 3-cycle (in any triangulation). Similarly, the remaining case (iii), with
edges sy and sv, would require the edge sx and in any completing triangulation this would
not lie on a nonfacial 3-cycle. Thus we obtain a contradiction in all cases.

FIGURE 34. An embedded graph partial representation of G.

7.4. The cases as,...,ag. Suppose, by way of contradiction that there exists an uncon-
tractible graph G' € T where the detachment map has one of these forms, so that there
are no repeated edges and exactly two repeated vertices. Since every edge of OG lies on a
face it follows from Lemma 5.5, that we may assume that each vertex is of degree at least
4. Since there are 7 vertices it follows that there are at least 7 crossover edges. This is
a contradiction since there are 9 noncrossover edges and by (3,6)-tightness there are 15
edges in total.

7.5. The cases aqg,...,a15. Consider a graph G € T with no interior vertices and de-
tachment map ay9. In an embedded graph representation on the torus we can assume that
(in the edge identified rectangular representation) the repeated vertex x appears in the
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corners and the repeated vertices v and w appear on opposite sides. Thus we have the
representation in Figure 35. In this case note that we can assume that the boundary of
the rectangle is provided by the edges of the 9-cycle for the hole together with some edge
repetitions.

F1GURE 35. An embedded graph partial representation for the oo case vlw2zlv2wlx2.

As before if we assume that G is uncontractible then the degrees of the vertices r, s and
z are at least 4. By (3, 6)-tightness there are 3 crossover edges. It follows that the degrees
are exactly 4. We thus see that there is only one triangulation and so G is equal to Hig
which is contractible, a contradiction.

The cases aq1, ..., ays are similarly straightforward, with a unique triangulation.

1]
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