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Abstract 29 

Polyphenols are known for their antimicrobial activity, whilst both polyphenols and the globular protein beta-30 

lactoglobulin (bLG) are suggested to have antioxidant properties and to promote cell proliferation. These are 31 

potentially useful properties to have as part of a tissue engineered construct, though it is unknown if they are 32 

retained when both compounds are used in combination. In this study, a range of different microbes and an 33 

osteoblast-like cell line (hFOB) were used to assess the combined effect of; (1) a green tea extract (GTE), rich in 34 

the polyphenol epigallocatechin gallate (EGCG), and (2) a whey protein isolate (WPI), rich in bLG. It was 35 

shown that approximately 20–48 % of the EGCG in GTE reacted with WPI. GTE inhibited the growth of gram-36 

positive bacteria, an effect which was potentiated by the addition of WPI. GTE alone also significantly inhibited 37 

the growth of hFOB cells after 1, 4 and 7 days of culture. Alternatively, WPI significantly promoted hFOB cell 38 

growth in the absence of GTE and attenuated the effect of GTE at low concentrations (64 µg/ml), after 4 and 7 39 

days. Low concentrations of WPI (50 µg/ml) also promoted expression of the early osteogenic marker alkaline 40 

phosphatase (ALP) by hFOB cells, whereas GTE inhibited alkaline phosphatase ALP activity. Therefore, the 41 

antioxidant effects of GTE can be boosted by WPI, but it is not suitable to be used as part of a tissue-engineered 42 

construct due to its cytotoxic effects which negate any positive effect of WPI on cell proliferation.   43 

 44 
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List of Abreviations 46 

 47 

ALP = alkaline phosphatase 48 

ANOVA = one-way analysis of variance 49 

ATCC = the American Type Culture Collection 50 

bLG = beta-lactoglobulin 51 

BOF = Bijzonder Onderzoeksfonds (Special Research Fund) 52 

CFU = colony forming units 53 

DAD = diode array detector 54 

ddH2O = sterile ultra-pure water 55 

DFG = Deutsche Forschungsgemeinschaft (German Research Foundation) 56 

DMEM = Dulbecco´s modified Eagle medium 57 

DNA = deoxyribonucleic acid 58 

DPPH = 2,2-diphenyl-1-picrylhydrazyl 59 

EC = epicatechin 60 

ECG = epicatechingallate 61 

EGC = epigallocatechine 62 

EGCG = epigallocatechin gallate 63 

EUCAST = The European Committee on Antimicrobial Susceptibility Testing 64 

FRAP = ferric reducing ability of plasma 65 

FWO = Fonds voor Wetenschappelijk Onderzoek - Vlaanderen (Research Foundation- Flanders) 66 

GTE = green tea extract 67 

hFOB = human foetal osteoblast 68 

HPLC = high performance liquid chromatography 69 

MgCl2 = magnesium chloride 70 

MH broth = Mueller-Hinton broth 71 

MIC = minimal inhibitory concentration 72 

MRSA = methicillin-resistant Staphylococcus aureus 73 

NaCl = sodium chlorid 74 

NaOH = sodium hydroxide 75 

PBS = phosphate buffered saline 76 

ROS = reactive oxygen species 77 

RPMI medium = Roswell Park Memorial Institute medium 78 

S.D. = standard deviation 79 

TEAC = Trolox equivalent antioxidant capacity 80 

TFA = trifluoracetic acid 81 

WPI = whey protein isolate 82 
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Introduction 86 

 87 

Antibacterial properties are highly desirable characteristics for bone regeneration materials, especially 88 

in oral and maxillofacial surgery due to the high microbial load of the oral cavity (George et al. 1994; Chen et 89 

al. 2010; Gosau et al. 2016). Due to the increasing occurrence of antibiotic-resistant bacteria, such as 90 

methicillin-resistant Staphylococcus aureus (MRSA) (Klein et al. 2016; Kavanagh et al. 2017), there is a 91 

pressing need to find alternative low cost antibacterial agents, to which there is little resistance.  92 

Green tea extract (GTE) is known to be rich in polyphenols, which in turn possess antibacterial activity 93 

(Zhao et al. 2001; Gharib et al. 2013) (for a review see (Steinmann et al. 2013)). One major polyphenol of GTE 94 

is epigallocatechin gallate (EGCG), which shows antibacterial activity against MRSA (Gharib et al. 2013) and is 95 

alleged to stimulate the growth and differentiation of bone-forming cells (Vali et al. 2007; Jin et al. 2014). To 96 

improve stability of EGCG, it is commonly combined with carrier proteins, such as the globular protein beta -97 

lactoglobulin (bLG) (Keppler et al. 2015). bLG is a major component of whey protein isolate (WPI), derived 98 

from milk. It consists of 162 amino acid residues, has a molecular weight of approximately 18.4 kDa and is 99 

known to be able to bind hydrophobic molecules (Kontopidis et al. 2004). Besides its application as a carrier 100 

protein, bLG has been reported to improve the proliferation of various mammalian cells (Moulti-Mati et al. 101 

1991; Mahmud et al. 2004; Gillespie et al. 2015). It is therefore hypothesised that bLG would also positively 102 

influence osteoblast growth, which would be desirable for bone regeneration applications.  103 

Oxidative stress plays an important role in the immune response and has been identified as a 104 

pathological inducer in almost all organs (Wauquier et al. 2009). Despite its role in cell signaling, an increased 105 

level of oxidative stress can cause bone loss, leading to conditions such as osteoporosis, bone tumor 106 

development and inappropriate ingrowth of bone implants. Furthermore, increased levels of reactive oxygen 107 

species (ROS) have a supportive effect on osteoclasts, the cells responsible for bone resorption (Garrett et al. 108 

1990; Bai et al. 2005). Thus, antioxidant activity of compounds used during bone substitution could conceivably 109 

improve the stability of an implant. EGCG and bLG both have antioxidant activity, which make them excellent 110 

candidates as loading agents for bone tissue regeneration (Tong et al. 2000; Tobi et al. 2002; Mann et al. 2015). 111 

Although there is some data available on the micro and cell biological effects of GTE, WPI and their 112 

components, the effects of GTE and WPI in combination remain unexplored. It was therefore hypothesized that 113 

WPI would influence GTE’s antimicrobial and antioxidant activity, as well as its impact on osteoblast 114 

growth/differentiation. In the present study, chemical interaction of GTE and WPI was analyzed by 115 

centrifugation, ultrafiltration and subsequent high performance liquid chromatography (HPLC) analyses. 116 

Antimicrobial activity was tested against a range of bacteria (both Gram-positive and Gram-negative) and fungi, 117 

whilst effects on osteoblast proliferation and differentiation were tested using an osteoblastic cell line. Finally, 118 

antioxidant properties were investigated using the DPPH (2,2-diphenyl-1-picrylhydrazyl) method. GTE has 119 

substantial antimicrobial and antioxidant capability and binds to WPI, which displayed positive effects on 120 

osteoblast activity.  121 

 122 

Materials and Methods 123 

Materials 124 



Unless stated otherwise, all reagents were obtained from Sigma-Aldrich. WPI (BiPRO, Davisco Foods 125 

International, Inc., Eden Prairie, US) with 97.7% protein and 75% bLG in dry matter (according to 126 

specification) was used as previously described (Serfert et al. 2014; Keppler et al. 2017). GTE, > 95% (obtained 127 

from green tea leaves, catechins content>75%, EGCG>65%; according to specification) was purchased from 128 

Oskar Tropitzsch e. K. (Marktredwitz, Germany). 129 

 130 

Material analysis 131 

Analysis of WPI 132 

The composition of the WPI was determined using a method described previously (Clawin-Radecker et al. 133 

2000; Keppler et al. 2014). Briefly, a HPLC HP 1100 system (Agilent Technology, Germany) equipped with a 134 

PLRP-S 300 Å 8 μm, 150 × 4.6 mm column (Polymer Laboratories, Varian, Inc.) and a diode array detector 135 

(DAD) at 205 nm wavelengths was used. Eluent A was 0.1% trifluoracetic acid (TFA) in wa ter and eluent B was 136 

0.1% TFA in acetonitrile. The following gradient was used: 0 min, 35% B; 1 min, 35% B; 8 min, 38% B; 16 137 

min, 42% B; 22 min, 46% B; 22.5 min, 100% B; 23 min, 100% B and 23.5–30 min, 35% B. Flow rate was 1 138 

ml/min, the injection volume was 20 ml and the column temperature was set to 40 °C. Standards of bovine 139 

serum albumin, alpha-lactalbumin and beta-lactoglobulin were run for identification. 140 

Analysis of GTE 141 

GTE was analysed by HPLC (Agilent 1100, with a DAD at 280 nm wavelength) using a C18-Nucleodur Sphinx 142 

125/4 reversed phase column, 5 µm (Macherey-Nagel GmbH & Co. KG, Düren, Germany). Eluent A consisted 143 

of water with 0.1 % formic acid, whilst eluent B was acetonitrile with 0.1 % formic acid. The following gradient 144 

was used: 0-1 min, 5 % B; 1-10 min, 95 % B; 10-10.5 min, 95 % B; 10.5 – 11 min, 5 % B and 11-12 min, 5 % 145 

B. Standards of the GTE components (EGCG, epigallocatechine (EGC), epicatechingallate (ECG) and 146 

epicatechin (EC)) were run to identify the respective signals in the GTE. Percentage composition of the 147 

components was assessed semiquantitatively, by comparing individual peak areas to the sum of all peak areas.  148 

 149 

Binding studies 150 

For binding analysis, approximately 4 mg/ml WPI in water were weighed together with GTE in a concentrat ion 151 

ratio of 1:0.08 g (w/w), 1:0.16 g (w/w), 1:0.32 g (w/w) and 1:0.64 g (w/w). Subsequently, samples were 152 

dissolved in demineralized water for 30min at room temperature with vigorous stirring. For control, solutions of 153 

GTE without WPI were prepared at a similar concentration. Vivaspin 2 centrifugal filtration devices 154 

(Hydrosart® regenerated cellulose membrane, 10 kDa), from Sartorius AG (Göttigen, Germany), were rinsed 155 

with 2ml demineralized water. Following this, 1ml of the respective sample solution (i.e. GTE with and without 156 

WPI) was centrifuged, using 4000*g for 2 min at 20 °C - in a swinging-bucket rotor centrifuge. The filtrate and 157 

remaining retentate were discarded and replaced again by 1 ml of sample solution. After centrifugation, the 158 

filtrate was analysed via HPLC, using the aforementioned method for GTE analysis. As controls, uncentrifuged 159 

GTE samples were also analysed, to determine the amount of GTE lost in the membrane during filtration.  160 

 161 

Antioxidant method (DPPH test) 162 

The radical scavenging activity of the different WPI/GTE complexes was analysed using a modification of the 163 

DPPH test described by Harbaum et al. (Harbaum et al. 2008). The DPPH assay was carried out by mixing 1 mL 164 



of 0.3 mmol/L 2,2-diphenyl-1-picrylhydrazyl (DPPH radical) in ethanol with 1.95 mL of 25% aqueous ethanol , 165 

containing 0.1 M phosphate buffered saline (PBS) buffer. This gave a final 50% ethanolic solution. An initial 166 

reading was carried out at 516 nm (initial absorbance approximately 1.3). Subsequently, a 50 µL sample (also 167 

dissolved in ethanol) was added, and the absorbance was measured after 10 minutes of reaction time. The 168 

antioxidative capacity was given as % inhibition: %inh = ([A0-A1]/A0) *100, where A0 is the initial absorbance 169 

of the standard and A1 is the absorbance of the sample. 170 

 171 

Antibacterial studies 172 

Staphylococcus aureus ATCC 700699, ET199 and LMG10147, Staphylococcus epidermidis ET086 and P. 173 

aeruginosa ATCC9027 were cultured aerobically in Mueller-Hinton broth (MH; Oxoid, Basingstoke, England), 174 

at 37°C. Propionibacterium acnes LMG 16711 was cultured anaerobically in Reinforced clostridial medium 175 

(RCM; Oxoid), at 37°C. Candida albicans ATCC MYA-2876 was cultured aerobically in RPMI 1640 medium 176 

(Sigma-Aldrich, Diegem, Belgium), at 37°C. 177 

Determination of the Minimal Inhibitory Concentration (MIC): MIC of GTE alone or in the presence of WPI  178 

(50 or 800 µg/ml) was determined according to the EUCAST broth microdilution protocol, using f lat-bottom 179 

96-well microtiter plates (TPP, Trasadingen, Switzerland). The inoculum was standardized to approximately 5 × 180 

105 colony forming units (CFU)/ml. The concentration of GTE tested ranged from 0.5 - 1024 µg/ml. The plates 181 

were incubated at 37°C for 24 h, and the optical density at 590 nm was determined using a multilabel microtiter 182 

plate reader (Envision; Perkin-Elmer LAS, Waltham, MA). MIC was recorded as the lowest concentration of 183 

GTE, alone or in combination with WPI, which displayed a similar optical density as that observed in inoculated 184 

and blank wells. 185 

 186 

Cytocompatibility testing using fibroblasts  187 

Human fibroblasts were isolated from the gingiva of seven patients (4 female, aged 21, 25, 20 and 20 years and 188 

3 male, aged 36, 21 and 21 years) cultured in cell culture medium (Eagle’s minimum essential Medium Alpha 189 

modification (Sigma-Aldrich GmbH, Hamburg, Germany), antibiotics (100 U x mL-1 Penicillin, 100 µg x mL-1 190 

Streptomycin, Biochrom, Berlin, Germany), 1 % Amphotericin (Biochrom), 15 % fetal bovine serum (FBS) 191 

(HyClone, Logan, Utah, USA) and 400 mmol x ml-1 L-Glutamine) for 7 days, then medium was exchanged 192 

three times per week Ethical approval (number D444/10) was obtained from University Hospital Schleswig-193 

Holstein, Campus Kiel, Germany. Fibroblasts in the third passage were pooled and 5x103 were seeded in 96-194 

well plates, i.e. 1.56 x 104 cells/cm2. Cytocompatibility was assessed by incubating cells with medium 195 

containing 0, 50 or 800 µg/ml WPI and 0, 64, 128, 256, 512, 1024, 2048 or 4096 µg/m l GTE. Morphology was 196 

assessed by light microscopy after 7 days of culture. Medium was changed 3 times during this period. 197 

 198 

Cytocompatibility testing using hFOB osteoblast-like cells 199 

An immortalized human foetal osteoblast (hFOB) cell line (hFOB 1.19; LGC Standards, USA) was used in this 200 

study, cultured in Dulbecco’s modified Eagle medium (DMEM)/F12 (1:1) medium, supplemented with 10% 201 

FBS, 1% L-glutamine and 0.6% geneticin (all Gibco, Life Technologies, UK). Treatments were prepared at 202 

concentrations detailed in section 2.6, filter sterilised (0.22 µm) before use and protected from light. Cells were 203 



seeded at 1x105 cells/cm2 on 96-well sterile culture plates and given a 24 hour settling period before treatment. 204 

For all experimental conditions n=4. 205 

 206 

hFOB proliferation 207 

Proliferation was measured by crystal violet staining at 1, 4 and 7 days. After removing culture medium by 208 

aspiration, cells were fixed with 100µl of 4% paraformaldehyde solution for 1 hr at room temperature, washed 209 

twice with ddH2O and left to air dry. Cell monolayers were then stained for 30 minutes at room temperature 210 

with 100µl of crystal violet solution per well (0.1% concentration), washed twice again in ddH2O and air dried. 211 

Finally, the dye was extracted from monolayers by the addition of 100µl of 1M acidified methanol. Absorbance 212 

was read at 585nm using a Tecan GENios microplate reader, and blanked using acidified methanol.  213 

hFOB differentiation 214 

Alkaline phosphatase (ALP), an enzyme produced by maturing osteoblasts, was used as an indicator  of cell 215 

differentiation. Briefly, cells were grown in complete medium supplemented with 10µM β-glycerophosphate 216 

and 50µM ascorbate-2-phosphate for 7, 14 or 21 days, before being washed with an alkaline buffer solution (5M 217 

NaCl, 1M Tris-Cl pH 9.5, 1M MgCl2). Cells were lysed by addition of 250µl of buffer - containing 0.2% Triton 218 

X-100 - and left to gently mix for 20 minutes on ice, before being stored at -80°C. Upon testing, 50 µl from each 219 

well was added to a test plate in duplicate. 200 µl of conditioned medium, consisting of alkaline buffer solution 220 

(Sigma) and p-nitrophenyl phosphate substrate was added to each well. Each test plate was then covered in foil 221 

and incubated for 30min at 37°C, allowing the coupled enzymatic reaction to proceed. The reaction  was stopped 222 

by the addition of 50µl of stop solution (3M NaOH) and absorbance was read at 450nm. Finally, ALP readings 223 

were normalised to DNA concentration, determined via PicoGreen assay (in a method according to the 224 

manufacturer’s protocol), to account for the effect of variances in cell proliferation.  225 

 226 

Statistical analysis 227 

Each result set is presented as the mean ± S.D. (Standard Deviation) and has been tested for normality, after 228 

undergoing a logarithmic transformation. Differences between treatments were analysed using one-way analysis 229 

of variance (ANOVA) with post hoc Tukey’s test. All statistics were conducted in SPSS version 19 (IBM, 230 

USA). Values of P ≤ 0.05 were considered significant. 231 

 232 

Results 233 

Extract composition and binding 234 

Catechine composition of the GTE (>95 % polyphenols) was analysed by HPLC using external standards for the 235 

main components EGCG, EGC (epigallocatechin), ECG (epicatechingallate) and EC (epicatechin). The main 236 

catechine of the GTE was EGCG (88.5±0.14%). Only minor fractions of other catechines were present in the 237 

order ECG > EGC > EC (i.e., 5.3 ±0.03%, 3.7 ±0.09% and 2.4±0.08%, respectively). WPI was also analysed by 238 

HPLC and consisted primarily of bLG AB (75.7±1.4%), with alpha-Lactalbumin (14.7±0.1%) and <4% bovine 239 

serum albumin (Keppler et al. 2017). 240 

The combination of GTE and WPI resulted in a non-covalent interaction, which was analysed by 241 

ultrafiltration (Figure 1). Of the catechines present, only those which contained an esterified gallic acid, such as 242 

EGCG and ECG, showed a significant interaction with WPI. Furthermore, non-covalent binding of catechines to 243 



WPI decreased with increasing GTE concentration (i.e., 43.7 % of the initial EGCG concentration in 64 µg/ml 244 

GTE was found to interact with 800 µg/ml WPI, whereas only 30.5 % EGCG reacted after addition of 512 245 

µg/ml GTE). ECG bound in a similar way to WPI, although with a slightly lower binding capacity (i.e., 45.3 % 246 

of the initial ECG concentration bound with WPI after addition of 64 µg/ml GTE, and 20.07 % after addition of 247 

512 µg/ml GTE). The loss of catechines due to unspecific membrane interactions and co-precipitation in the 248 

GTE during the ultrafiltration method was acceptable (<22 %).  249 

 250 

Antioxidant and antibacterial effects of GTE and WPI  251 

In the DPPH test (Figure 2), the antioxidative capacity of WPI and GTE were tested by their capacity to 252 

scavenge the free DPPH radical. GTE alone exhibited a scavenging capacity of 20 and 28 % for 64 and 128 253 

µg/ml GTE, respectively. However, the addition of WPI had a significant negative effect on the radical 254 

scavenging capacity of GTE. For example, inclusion of 800 µg/ml WPI reduced inhibition to ~13 and ~24 % for 255 

64 and 128 µg/ml GTE, respectively. There was no radical scavenging effect of WPI alone. 256 

For antibacterial activity, results of MIC (Table 1) determination revealed that in the absence of WPI 257 

the GTE concentrations required to inhibit growth of the bacteria ranged between 128-256 µg/ml. GTE hindered 258 

growth of gram-positive bacteria more strongly than growth of the gram-negative P. aeruginosa. Addition of 259 

WPI decreased the MIC of GTE towards the gram-positive bacteria S. aureus ATCC 700699 and S. epidermidis 260 

ET086, and in particular P. acnes LMG 16711. In contrast, WPI increased the MIC towards the gram-negative 261 

P. aeruginosa ATCC 9027.The growth of the yeast C. albicans ATCC MYA-2876  was not affected by GTE 262 

(MIC >1024 µg/ml, regardless of the addition of WPI). 263 

 264 

Proliferation of fibroblasts and hFOBs  265 

Fibroblasts cultured in the absence of GTE (Figure 3) showed a spindle-like morphology typical of healthy 266 

fibroblasts, as did those exposed to all concentrations of WPI (0, 50 and 800 µg/ml). However, increasing 267 

concentration of GTE appeared to promote the formation of round, apoptotic bodies, indicating the cells were 268 

preparing themselves for phagocytosis and were thus not viable. At a GTE concentration of 64 µg/ml, only a 269 

few apoptotic bodies were observed. At 128 µg/ml GTE larger numbers of dead cells were detected, whilst at 270 

256 µg/ml the majority of cells were dead. Higher GTE concentrations (data not shown) resulted in similar 271 

results as for 256 µg/ml GTE. Increasing WPI concentration to 50 or 800 µg/ml did not lead to an appreciable 272 

reduction in cell death. Hence, GTE concentrations above 128 µg/ml were excluded from further experiments. 273 

For day 1 hFOB cultures, 64 and 128 µg/ml GTE reduced cell proliferation (Figure 4). This effect was 274 

not changed by the addition of WPI. At day 4, 64 and 128 µg/ml GTE reduced cell proliferation, but this 275 

reduction was attenuated by inclusion of 800 µg/ml WPI. At day 7, reduced cell proliferation was again 276 

observed with both 64 and 128 µg/ml GTE, though no attenuating effect of WPI was observed. At all GTE and 277 

WPI concentrations, the decrease in cell proliferation with GTE treatment was not a linear relationship.  278 

WPI appears to promote small increases in cell proliferation, as in the absence of GTE 800 µg/ml WPI 279 

promoted cell proliferation at day 1 and 7. Furthermore, at 64 µg/ml GTE, proliferation was promoted by 800 280 

µg/ml WPI at day 1 and 4; whilst in the presence of 128 µg/ml GTE, 800 µg/ml WPI promoted proliferation at 281 

day 4 only. 50 µg/ml WPI had no significant effect at any time point or  GTE concentration. 282 



Images of hFOBs stained using the crystal violet method (Figure 5) agree with those for fibroblasts 283 

(Figure 3), and support crystal violet assay results (Figure 4). For example, hFOBs cultured in the absence of 284 

GTE formed healthy monolayers, though at a GTE concentration of 64 µg/ml markedly fewer cells were 285 

observed. Of these, some - but not all cells - displayed an elongated morphology, typical of good adhesion. 286 

However, at the highest GTE concentration of 128 µg/ml even fewer cells were observed, providing further 287 

evidence of the inhibitory effect of GTE on cell proliferation. 288 

 289 

Differentiation of hFOB cells 290 

Only 0 and 64 µg/ml concentrations of GTE were used in differentiation experiments, as 128 µg/ml GTE had a 291 

detrimental effect on hFOB proliferation. Day 7 (Figure 6a) timepoint treatments showed the highest overall 292 

levels of alkaline phosphatase (ALP) activity. In WPI subgroup, 64 µg/ml GTE treatments showed significantly 293 

reduced ALP levels compared to those with no GTE. This trend is maintained at all timepoints, with the 294 

exception of the 0 µg/ml WPI subgroup at day 21, where ALP activity is very similar for both GTE treatments. 295 

WPI however shows a bell-shaped response, with 50 µg/ml concentrations causing increased ALP activity 296 

levels, compared to 0 and 800µg/ml treatment wells. These increases for the 50 µg/ml treatment group are 297 

significant at day 7, significant compared to the 800µg/ml treatment at day 14, and the 0 µg/ml treatments at day 298 

21. 299 

 300 

Discussion 301 

This study aimed to determine the combined effects of GTE and WPI, focusing on traits that would be useful for 302 

bone regeneration materials – such as antimicrobial and antioxidant activity, as well as impacts on osteoblast 303 

growth/differentiation. Firstly, binding assay results showed that significant complexes between GTE and WPI 304 

occurred. This was expected, given that previous studies have reported the binding efficiency of whey proteins 305 

with green tea catechines (Keppler et al. 2015). For example, galloylated cateines, such as EGCG and ECG, 306 

were found to react most strongly with proteins, and exhibited good antioxidative capacity (Bohin et al. 2012). 307 

Due to the nature of the non-covalent reaction, the catechins bound to the protein are always in equilibrium with 308 

unbound catechines, explaining the reported 50% binding of this work. 309 

  GTE’s high radical inhibition capacity was also expected, being mediated by its >95% polyphenol 310 

content, of which most take the form of EGCG (Supplementary Figure 1). Previous studies have shown EGCG 311 

and ECG to be two of the most potent radical scavenging flavonoids present in GTE (Salah et al. 1995; Hirano 312 

et al. 2001). However, the addition of WPI caused a masking effect on GTE scavenging activity, as evidenced 313 

by a decrease in its percentage inhibition. Such an effect on protein-bound polyphenols is probably mediated by 314 

hydrogen bonds, which occur between the hydroxyl groups of the catechines and the protein (Kanakis et al. 315 

2011). A similar masking effect was observed for caseines with green tea catechines using the Trolox equivalent 316 

antioxidant capacity (TEAC) test (Arts et al. 2001), and forbLG and EGCG complexes using the ferric reducing 317 

ability of plasma (FRAP) test (Zorilla et al. 2011). Interestingly, this masking effect on percentage inhibition 318 

observed in the present study amounted to a reduction of approximately 4 to 7%, after the addition of 50 and  319 

800 µg/ml WPI, respectively. However, the binding assay showed an interaction of approximately 50 % of the 320 

GTE. Therefore, it is likely that binding occurs in a way that leaves antioxidative groups of GTE partially 321 

available, even after interaction with the protein.  322 



The main drawback of the DPPH test is the low solubility of DPPH in water, thereby introducing 323 

ethanol into the system, which could denature the WPI. It was reported that denatured whey proteins interact 324 

more readily with GTE catechines (Keppler et al. 2014), which could result in an overestimation of the masking 325 

effect for native WPI. It should be kept in mind that antioxidant assays used here (and in the literature) are 326 

optimized to stabilize the radical in solution, which requires either solvents like ethanol or methanol, or the 327 

addition of different salts.  This will always influence the analysis of antioxidative capacity for protein-328 

polyphenol complexes, because of the sensitivity of non-covalent binding reactions,  which are likely altered 329 

even by the addition of salts or minor pH value changes. 330 

GTE’s anticipated antibacterial activity was confirmed in this study, with its inclusion at concentrations 331 

between 128-256 µg/ml inhibiting the growth of all bacteria tested. This is in agreement with similar work 332 

within the field, whereby GTE extracts of various forms were shown to have diverse antibacterial activity – such 333 

as against S. aureus, S. epidermidis, P. acnes and P. aeruginosa (Lee et al. 2009a; Sharma et al. 2012; Radji et 334 

al. 2013). In the present study, addition of WPI facilitated GTE’s antibacterial activity toward P. acnes LMG 335 

16711, with the MIC decreasing from 128 to 32 µg/ml (50 µg/ml WPI) and even 16 µg/ml (800 µg/ml WPI). A 336 

similar trend was also seen for S. aureus ATCC 700699 and S. epidermidis ET086, though MIC reduction was 337 

much less pronounced and was likely within the tests margin of error. For the Gram-negative Bacterium P. 338 

aeruginosa the opposite effect was seen, whereby addition of WPI gave rise to a drastic increase in MIC (from 339 

256 to 1024 µg/ml). Although the reasons behind the differences observed between Gram-positive and Gram-340 

negative bacteria are unclear, the presence of a second (outer) membrane in Gram-negative bacteria may play an 341 

important role. It can be speculated that protein-bound catechins are less able to interact with peptidoglycan in 342 

the bacterial cell wall, making it difficult for these complexes to cross the outer membrane. EGCG also has a 343 

negative charge, which might be a reason for its lower affinity to Gram-negative bacteria (Yoda et al. 2004). 344 

Furthermore, it should be noted that previous work showed P. aeruginosa to have a MIC twice that of S. aureus 345 

(800 compared to 400 µg/ml) (Radji et al. 2013), which may partly explain the increase in MIC seen after WPI 346 

inclusion. Finally, the fungus, C. albicans, did not respond at all to GTE treatment (MIC >1024 µg/ml). 347 

Previously, it was reported (Hirasawa and Takada 2004) that EGCG had an anti-C.albicans effect, which 348 

increased with increasing pH  and concentration. In our study, pH was 7.4 and the concentration was 1000x 349 

lower, which may explain the lack of response seen. However, the mechanism of GTE’s anti-C. albicans effect 350 

remains unclear. 351 

Good antibacterial and antioxidant capacity are both desirable characteristics for regeneration 352 

materials, helping support a heathy healing site after bone damage. However, cell response also needs to be 353 

determined, to ensure cytocompatibility before clinical application. Fibroblast images  (figure 3) helped to give a 354 

qualitative insight into GTE and WPI’s effect, showing WPI to have no obvious impact on cell adhesion or 355 

morphology. However, increasing GTE concentration caused significant changes in cell morphology, 356 

attachment and increased mortality. This is similar to findings of another study, whereby both normal and keloid 357 

fibroblasts were shown to decrease proliferation in a dose-dependent manner with EGCG treatment (Park et al. 358 

2008). Returning to the present study, fibroblast findings were also mirrored in proliferation results of an 359 

osteoblast-like cell line (hFOB 1.19), whereby 800 µg/ml WPI increased cell growth. Alternatively, GTE 360 

inclusion reduced proliferation, particularly at later time intervals, and this was only partially mitigated by the 361 

addition of WPI. 362 

Field Code Changed



Previous work reports that WPI, especially its component bLG, has a mitotic effect on different cell 363 

types, which would explain its stimulative effect on hFOB proliferation. For instance, Gillespie et al. reported 364 

that bLG (312.5-2500 µg/ml) improved the proliferation of enteroendocrine cells (Gillespie et al. 2015), whilst 365 

another study investigated mouse spleen resting cells. Here, a proliferative effect was found in the concentration 366 

range 50-500 µg/ml, over 12-96 hours (Mahmud et al. 2004). For GTE polyphenols, the literature often reports a 367 

positive effect on bone metabolism, such as increased osteoblast maturation and production of mineralised 368 

material (Ko et al. 2009). Our opposite finding could be due to the different composition of catechins used in 369 

this study, as work by Ko et al. (Ko et al. 2009) did not include EGCG specifically. Alternatively, it may 370 

indicate that even the minimum GTE concentration used in this work was too high, causing suppressive effects 371 

on cell activity. In support of this, other similar studies using osteoblast-like cells tended to use lower 372 

concentrations, compared to the 64 and 128 µg/ml doses of the present study. For example, rat mesenchymal 373 

stem cells (Ko et al. 2011), Saos-2 (Nash and Ward 2016) and human osteoblast cells (Vester et al. 2014) all 374 

showed increased levels of cell differentiation and limited cytotoxicity when treated with GTE concentrations of 375 

around 10 µg/ml (a maximum of 50 and minimum of 0.01 µg/ml). Another similar study, testing EGCG, 376 

demonstrated no toxic effect at 10 µg/ml (Lee et al. 2009b); and whilst higher concentrations are occasionally 377 

tested, exposure times are generally shorter. For example, rat calvarial osteoblasts were treated with green tea 378 

polyphenols at a 200 µg/ml dose, to prevent alterations upon exposure to H 2O2; though only for a 1 hour period 379 

(Park et al. 2003). Returning to the present study, GTE’s inclusion also reduced bLG bioactivity, or 380 

bioavailability, which most likely resulted from binding between the two extracts.  381 

The final indicator of cell activity investigated was ALP, expressed during osteoblast maturation, 382 

which is considered an early marker of osteogenic differentiation (Setzer et al. 2009). Though it was evaluated 383 

on days 7, 14 and 21, the highest ALP activity was measured on day 7, in the 50 µg/ml WPI treatment group. 384 

The consistently high ALP activity in this treatment, compared to 0 and 800 µg/ml, indicates WPI has an 385 

optimal concentration able to stimulate hFOB differentiation. On the other hand, GTE caused a decrease in ALP 386 

activity, often reducing the activity levels by 50% or more in wells with no GTE added. This is in agreement 387 

with a study (Yamaguchi and Ma 2001) concerning the effect of polyphenols on ALP activity in rat femoral 388 

tissues, which concluded that EGCG (0.1 mM) significantly inhibited ALP activity. Furthermore, the current 389 

study’s results appear to support a previously reported interaction between ALP and polyphenols from the 390 

seaweed-derived nutritional supplement Seanol® (Douglas et al. 2016). Here, a similar concentration of 391 

polyphenols were used in supplements, which were shown to have reduced release rates during ALP-mediated 392 

mineralisation. However, it is important to note there are also several studies where treatment with GTE 393 

increased osteoblast differentiation, such as with the aforementioned work using rat mesenchymal stem cells  394 

(Ko et al. 2011), Saos-2 (Nash and Ward 2016), and human osteoblast cells (Vester et al. 2014). These cells 395 

showed increased levels of many differentiation indicators, including ALP activity, mineralisation levels and 396 

gene expression for proteins including sclerostin, osteopontin and osteocalcin. The contrasting reports of GTE 397 

both inhibiting and promoting cell differentiation are likely a reflection of the overall concentration and 398 

polyphenol content of each extract tested. Finally, in terms of the present study’s interaction effects of GTE and 399 

WPI, GTE again reduced WPI bioactivity. However, the presence of 50 or 800 µg/ml WPI did not obviously 400 

mitigate the negative effect of 64 µg/ml GTE, indicating more WPI binding is needed to promote hFOB 401 

differentiation in these treatments.  402 
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Cell based assay results are arguably the most important when determining a compound or extract’s 403 

suitability for different applications, such as tissue engineering. GTE’s cytotoxicity, whilst slightly mitigated by 404 

WPI, makes it unsuitable for inclusion at sites undergoing skeletal regeneration, as it would likely limit 405 

osteoblast activity. One related limitation of this work was the minimum GTE concentration tested, of 64 µg/ml. 406 

Lower concentrations may have preserved GTE’s antimicrobial and antioxidant capacity, whilst also limiting 407 

cytotoxicity – especially with WPI inclusion. Similarly, further processing of GTE could have been conducted, 408 

to create GTE treatments with different polyphenol compositions and potentially better cytocompatibility.  409 

This work demonstrated the affinity of WPI for components of GTE, and the formation of WPI/GTE 410 

complexes. GTE displayed excellent antioxidative capacity, which was not significantly affected by addition of 411 

WPI; though some masking effect is possible. Furthermore, GTE showed antimicrobial activity against gram-412 

positive and gram-negative bacteria, with WPI inclusion potentiating this effect on several types of gram-413 

positive bacteria. However, with cells GTE showed cytotoxic and suppressive effects on both fibroblasts and 414 

hFOBs, especially at concentrations of 128 µg/ml and above. WPI alone though enhanced hFOB proliferation 415 

and attenuated the suppressive effect of GTE at 64 µg/ml, to a certain extent. For hFOB differentiation, WPI 416 

significantly stimulated ALP activity at a 50 µg/ml concentration, though was less able to attenuate effects of 417 

GTE inclusion. These results therefore show that WPI and GTE both have useful properties, but the cytotoxicity 418 

of GTE makes it unsuitable for inclusion within a tissue engineered construct. 419 
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Figure captions 557 

 558 



Figure 1: GTE compounds that were bound to 800 µg/ml WPI, as a function of the GTE [µg/ml] concentration . 559 

Abbreviations: EGC, Epigallocatechin; EC, epicatechin; EGCG, epigallocatechin gallate, ECG, 560 

epicatechingallate; GTE, green tea extract 561 

 562 

Figure 2: Antioxidative capacity (DPPH test) of different concentrations of GTE, with or without addition of 563 

800 or 50 µg/ml WPI. All values are listed as mean ± standard deviation (n=3). *: p < 0.05 564 

 565 

Figure 3: Images of fibroblasts cultured in cell culture medium containing different concentrations of GTE 566 

(epigallocatechin gallate-rich extract) and WPI (beta-lactoglobulin-rich extract) after 7 d. Scale bar = 100 µm in 567 

all cases. 568 

 569 

Figure 4: Data from day 1 (a), 4 (b) and 7 (c) crystal violet assay conducted on hFOB cells. Results are 570 

presented as the mean optical density values for each treatment, (n=4, +/- SD). * indicates a significant 571 

difference (p<0.05) between the treatment and the 0µg/ml GTE value (within each WPI treatment group). # 572 

indicates a significant difference (p<0.05) between the treatment and the respective  value for WPI = 0 µg/ml. 573 

 574 

Figure 5: Images taken of hFOBs using an ISH500 camera attached to an OLYMPUS SZX10 microscope at 2x 575 

zoom. hFOB cells were fixed and stained with crystal violet 7 days after initial treatment.  Scale bar = 1 mm in 576 

all cases. 577 

 578 

Figure 6: data from an ALP assay conducted on hFOBs. Cells were given a 24 hour attachment period before 579 

being treated with solutions containing different concentrations of GTE and WPI. The assay was conducted on 580 

day 7 (a), day 14 (b) and day 21 (c) timepoints. Each ALP reading was normalized to the DNA concentration of 581 

the same well, calculated via PicoGreen assay. Results are presented as the mean +/ - standard deviation (n=4). 582 

*p<0.05 for WPI treatments at 64 µg/ml GTE, compared to WPI treatments of the same concentration at 0ug/ml 583 

GTE. #p<0.05 for WPI treatment comparisons at 0 µg/ml GTE.  584 


