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1. Introduction

The use of models to support informed decision making is ubiquitous.
However, the size and nature of the decision variable solution space,
and the model runtime, may make a comprehensive – exhaustive or
simply extensive – evaluation of the problem space computationally
infeasible. In such cases an efficient approach is required to search for
global optima.

Mathematical programs are one form of model that are explicitly
formulated as optimisation problems, where the model representation
imposes assumptions on the structure of the decision variable space
and objective function. Such models are well suited to efficient solu-
tion, and identification of global optima may be theoretically guaran-
teed when feasible solutions exist. However many real-world problems
are not suited to expression as a mathematical program (e.g., a solu-
tion is evaluated by using a simulation tool). From an optimisation
perspective models where no assumptions are made about the model
structure can be thought of as a black-box, where decision variables val-
ues are input and outputs generated for interpretation as an objective.
In this case optimisation search techniques such as metaheuristics are
required, i.e., general rule-based search techniques that can be applied
to any model.

An additional widespread feature of many real-world problems is the
consideration of uncertainty which may impact on model outputs, and
so on corresponding objective function values. One strategy is to sim-
ply ignore any uncertainty and perform a standard search, possibly
assessing and reporting on the sensitivity of the optimum after it has
been identified. However it has been established that optimal solu-
tions which are sensitive to parameter variations within known bounds
of uncertainty may substantially degrade the optimum objective func-
tion value, meaning that solutions sought without explicitly taking
account of uncertainty are susceptible to significant sub-optimality, see
[BTGN09, GS16]. In the face of uncertainty the focus of attention for
an optimisation analysis shifts from the identification of a solution that
just performs well in the expected case, to a solution that performs well
over a range of scenarios.

In this paper we develop a new algorithm for box-constrained robust
black-box global optimisation problems taking account of implementa-
tion uncertainty, i.e., the solution that a decision maker wants to im-
plement may be slightly perturbed in practice, and the aim is to find
a solution that performs best under the worst-case perturbation. Our
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method is based on an exploration technique that uses largest empty
hyperspheres (LEHs) to identify regions that can still contain improv-
ing robust solutions. In a computational study we compare our method
with a local search approach from the literature (see [BNT10b]) and
a standard particle swarm approach. We find that our approach con-
siderably outperforms these methods, especially for higher-dimensional
problems.

Structure of this paper. We begin with a review of the literature
on metaheuristics for robust optimisation in Section 2 before outlin-
ing the formal description of robust min max problems in Section 3.
We also consider some of the details of the established local robust
search technique due to [BNT10b]. In Section 4 we introduce a novel
approach, an exploration-focused movement through the search space
identifying areas that are free of previously identified poor points. We
include a discussion and descriptions of the algorithms used to identify
empty regions of the decision variable search space. The approach is
then tested against alternative heuristics in Section 5, on test problems
of varying dimension. The experimental set up is described and the
results of this analysis presented. Finally we summarise and consider
further extensions of this work in Section 6.

2. Literature review

2.1. Robust optimisation

Different approaches to model uncertainty in decision making prob-
lems have been explored in the literature. Within robust optimisa-
tion, a frequent distinction is made between parameter uncertainty
(where the problem data is not known exactly) and implementation
uncertainty (where a decision cannot be put into practice with full
accuracy). Implementation uncertainty is also known as decision un-
certainty [BTGN09, Tal09, BNT10b].

A common approach to the incorporation of uncertainty for black-
box problems is stochastic optimisation. Here knowledge of the prob-
ability distributions of the uncertain parameters is assumed and some
statistical measure of the fitness of a solution assessed, e.g. using Monte
Carlo simulation to estimate the expected fitness. This may be the ex-
pected value, or a more elaborate model such as the variance in the
fitness of a solution, or even a multi-objective optimisation setting, see
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[PBJ06, dMB14].
An alternative to a stochastic approach is robust optimisation, whose

modern form was first developed in [KY97] and [BTN98]. Whereas
with stochastic optimisation a knowledge of probability distributions
over all possible scenarios is typically assumed, in robust optimisation
it is only assumed that some set is identified containing all possible
uncertainty scenarios (potentially infinite in number). A classic robust
approach is then to find a solution across all scenarios that is always
feasible (strictly robust) and optimises its performance in the worst
case. This is known as min max. For a given point in the decision
variable space there is an ‘inner’ objective to identify the maximal
(worst case) function value in the local uncertainty neighbourhood,
and an overall ‘outer’ objective to identify the minimum such maximal
value.

The field of robust optimisation has been primarily aligned with
mathematical programming approaches. There the methodology is
based around the definition of reasonable uncertainty sets and the re-
formulation of computationally tractable mathematical programming
problems. For specific forms of convex optimisation problems, the
problem incorporating uncertainty can be re-formulated to another
tractable, convex problem, see [BNT07, GS10]. To overcome concerns
that the strictly robust worst case approach may be overly conserva-
tive, the concept of robustness can be expanded in terms of both the
uncertainty set considered and the robustness measure [GS16]. On the
assumption that it is overly pessimistic to assume that all implemen-
tation errors take their worst value simultaneously [BS04] consider an
approach where the uncertainty set is reduced, and a robust model
defined where the optimal solution is required to remain feasible for
uncertainty applied to only a subset of the decision variables at any
given time. Min max regret, see [ABV09], is an alternative to min
max, seeking to minimise the maximum deviation between the value
of the solution and the optimal value of a scenario, over all scenarios.
[BTBB10] considers soft robustness, which utilises a nested family of
uncertainty sets. The distributionally robust optimisation approach,
see [GS10], attempts to bridge robust and stochastic techniques by
utilizing uncertainty defined as a family of probability distributions,
seeking optimal solutions for the worst case probability distribution.
[CG16] use a bi-objective approach to balance average and worst case
performance by simultaneously optimising both.

Robust optimisation in a mathematical programming context has
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been application-driven, so considerable work has been undertaken in
applying robustness techniques to specific problems or formulations,
see [BS07, GS16]. There has also been some cross-over into the ap-
plication of specific heuristics, for example see [GLT97, VMdCM11].
However application to general problems has been less well addressed
[GS16]. Furthermore robust approaches applied to black-box mod-
els are much less widely considered than approaches for mathematical
programming problems, see [MWPL13, GS16, MWPL16]. Recently,
robust optimisation with implementation uncertainty has also been
extended to multi-objective optimisation, see [EKS17].

2.2. Metaheuristic for robust optimisation

The min max approach has been tackled with standard metaheuris-
tic techniques applied to both the inner maximisation and outer min-
imisation problems. In co-evolutionary approaches two populations
(or swarms) evolve separately but are linked. The fitness of individu-
als in one group is informed by the performance of individuals in the
other, see [CSZ09]. [Her99, Jen04] use such a two-population genetic
algorithm (GA) approach, whilst [SK02, MKA11] consider two-swarm
co-evolutionary particle swarm optimisation (PSO) techniques for min
max problems. A brute force co-evolutionary approach is to employ
complete inner maximisation searches to generate robust values for
each individual in each generation of the outer minimisation, however
this is expensive in terms of model runs (i.e., function evaluations), see
[MWPL16]. More practical co-evolutionary approaches, for example
using only small numbers of populations for the outer search and the
inner (uncertainty) search which share information between popula-
tions from generation to generation, or following several generations,
require the application of additional simplifications and assumptions,
see [CSZ09, MKA11].

One general area of research is the use of emulation to reduce the
potential burden of computational run times and the number of model-
function evaluations, see [VDYL16]. [ZZ10] use a surrogate-assisted
evolutionary algorithm to tackle the inner search for black-box min max
problems. [MWPL13, MWPL16] employs Kriging meta-modelling cou-
pled with an expected improvement (EI) metric, as well as a relaxation
of the inner maximisation search. The EI metric is used to efficiently
choose points in the decision variable space where nominal (expensive)
function evaluation should be undertaken, see [JSW98], here with a
view to most efficiently improving the estimate of the robust global
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minimum. The relaxation involves iteratively performing the outer
minimisation on a limited inner uncertainty neighbourhood followed
by an extensive inner maximisation search in the region of the identi-
fied outer minimum. This continues whilst the inner search sufficiently
deteriorates the outer solution, with the inner maximum point being
added to the limited inner uncertainty set with each iteration.

A second approach due to [uRLvK14, uRL17] also uses Kriging and
an EI metric, building on a meta-model of the expensive nominal prob-
lem by applying a robust analysis directly to the Kriging model and
exploiting the fact that many more inexpensive function evaluations
can be performed on this meta-model. A modified EI metric is cal-
culated for the worst case cost function of the meta-model, to effi-
ciently guide the search in the nominal expensive function space. In
[uRL17] the approach is applied to a constrained non-convex 2 di-
mensional problem due [BNT10b, BNT10a], the unconstrained ver-
sion of which is also considered here. The Kriging-based approach
is shown to significantly outperform the approaches outlined here, in
terms of the number of expensive function evaluations required to con-
verge towards the robust optimum. In general we would expect the
approach from [uRLvK14, uRL17] to outperform the approaches con-
sidered here, in terms of efficiency when applied to low dimensional
non-convex problems. However the primary challenge with meta-model
based approaches is their application to higher dimensional problems.
The test cases considered in [MWPL13, MWPL16, uRLvK14, uRL17]
have either been restricted to low dimensional non-convex problems, or
simpler convex and convex-concave problems of up to 10 dimensions.

One local black-box min max approach is due to [BNT07, BNT10b,
BNT10a]. Here a search is undertaken by iteratively moving along
’descent directions’. Uncertainty around individual points is assessed
using local gradient ascents, based on which undesirable ’high cost
points’ (hcps) are identified. Steps are taken in directions which point
away from these hcps, until no direction can be found.

Our approach is inspired by both elements of the descent directions
technique and the concept of relaxation of the inner maximisation
search. We extend the idea of locally moving away from identified
hcps to a global perspective, seeking regions of the solution space cur-
rently empty of such undesirable points. Furthermore the nature of our
outer approach enables the curtailing of an inner maximisation search
if it is determined that the current point under consideration cannot
improve on the current best robust global solution.
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3. Notation and previous results

3.1. Problem description

We consider a general optimisation problem of the form

min f(xxx)

s.t. xxx ∈ X

where xxx = (x1, x2, . . . , xn)T denotes the n-dimensional vector of deci-
sion variables, f : Rn → R is the objective function, and X ⊆ Rn is
the set of feasible solutions. We write [n] := {1, . . . , n}. In this paper,
we assume box constraints X =

∏
i∈[n][li, ui]. Any other potential fea-

sibility constraints are assumed to be ensured through a penalty in the
objective.

In implementation uncertainty, we assume that a desired solution xxx
might not be possible to put into practice with full accuracy. Instead,
a ”close” solution x̃xx = xxx + ∆xxx may be realised. The aim is to find a
robust xxx such that for any such solution x̃xx from the neighbourhood of
xxx, the worst case performance is optimised.

More formally, we follow the setting of [BNT10b] and consider the
so-called uncertainty set

U := {∆xxx ∈ Rn | ‖∆xxx‖ ≤ Γ}

where Γ > 0 defines the magnitude of the uncertainty, and ‖ · ‖ refers
to the Euclidean norm. The worst case costs of a solution xxx ∈ X are
then given as

g(xxx) := max
∆xxx∈U

f(xxx+ ∆xxx)

and so the robust optimisation problem is given by:

min
xxx∈X

g(xxx) = min
xxx∈X

max
∆xxx∈U

f(xxx+ ∆xxx) (ROP)

We therefore have an inner maximisation and outer minimisation prob-
lem, such that the identification of the robust global optimum is based
on finding the (outer) minimum worst case cost objective function value
in the decision variable space, and that objective is determined by the
(inner) maximisation of the nominal objective function in the uncer-
tainty neighbourhood around each point in the decision variable space.
This type of problem is also known as min max.

Note that xxx+∆xxx may not be in X , for which reason we assume that
the definition of f is not limited to X . However, if it is desired that
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xxx+ ∆xxx ∈ X for all ∆xxx ∈ U , then this can be ensured by reducing the
size of the feasible search space by Γ.

As an example for our problem setting, consider the 2-dimensional
polynomial function due to [BNT10b]:

f(x, y) =2x6 − 12.2x5 + 21.2x4 + 6.2x− 6.4x3 − 4.7x2 − y6

−11y5 + 43.3y4 − 10y − 74.8y3 + 56.9y2 − 4.1xy

−0.1y2x2 + 0.4y2x+ 0.4x2y (poly2D)

For a feasible solution space within bounds [−1, 4] in each dimension,
and uncertainty defined by a Γ-radius value of 0.5, the nominal and
worst case plots for (poly2D) are shown in Figure 1. In min max the
problem is one of finding the global minimum for the worst case cost
function. If uncertainty is ignored the problem is just one of finding
the global minimum of the (nominal) objective as shown in Figure 1a,
whereas including uncertainty the problem becomes one of finding the
(worst case cost) objective as shown in Figure 1b. In both cases the
search proceeds based on generating nominal objective values but for
the worst case cost we must further undertake some assessment of the
impact of uncertainty on those objective outputs.

(a) Nominal problem (b) Worst case problem with Γ=0.5

Figure 1: Nominal and worst case cost for (poly2D) from [BNT10b]. Marked in
purple are the respective optima.

Here the global optimum value for the nominal problem is -20.8 at
(2.8, 4.0). The worst case plot is estimated by randomly sampling
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large numbers of points in the Γ-uncertainty neighbourhood around
each plotted point. The worst case cost at each point is then approxi-
mated as the highest value of f(x) identified within each Γ-uncertainty
neighbourhood. The global optimum for the worst case problem is ap-
proximately 4.3 at (-0.18, 0.29). The significant shift in the nominal
versus robust optima, both in terms of its location and the optimum
objective, emphasises the potential impact of considering uncertainty
in decision variable values. The difference between the nominal and
robust optimal objective function values is the ‘price of robustness’,
see [BS04].

3.2. Local robust search using descent directions

We briefly summarise the local search approach for (ROP) that was
developed in [BNT10b]. Here, (ROP) is solved using a local robust op-
timisation heuristic illustrated by Figure 2. An initial decision variable
vector x̂xx is randomly sampled. Then a series of gradient ascent searches
are undertaken within the Γ-uncertainty neighbourhood of this candi-
date solution to identify hcps, see Figure 2a. This approximates the
inner maximisation problem max∆xxx f(x̂xx+∆xxx). Using a threshold value
that is dynamically adjusted during the algorithm, a subset H(x̂xx) of
all evaluated points is identified, see Figure 2b.

In the next step, a descent direction is identified that points away
from the set H(x̂xx), see Figure 2c. To this end, a mathematical pro-
gramming approach is used, minimising the angle between the hcps
and the candidate solution. This leads to the following second order
cone problem.

min
ddd,β

β (1)

s.t. ‖ddd‖ ≤ 1 (2)

dddThhh ≤ β ∀hhh ∈ H(x̂xx) (3)

β ≤ −ε (4)

Here, ddd is the descent direction, which is normalised by Constraint (2).
Constraints (3) ensure that β is the maximum angle between ddd and all
high cost points hhh. Through Constraint (4), we require a feasible de-
scent direction to point away from all points in H(x̂xx). When an optimal
direction cannot be found, the algorithm stops – a robust minimum has
been reached.

Next the size of the step to be taken is calculated, see Figure 2d. A
step size just large enough to ensure that all of the hcps are outside
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x

(a) Candidate point xxx (centre), and
points evaluated for the inner max-
imisation problem (blue).

x

(b) Subset H(xxx) of critical high cost
points.

x

(c) A descent direction is identified by
solving a second order cone prob-
lem.

x

(d) The step size is determined.

Figure 2: Description of the descent direction robust local search approach
[BNT10b].
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of the Γ-uncertainty neighbourhood of the next candidate solution is
used. Using the identified descent direction and step size the algorithm
moves to a new candidate point, and so the heuristic repeats iteratively
until a robust minimum has been identified.

4. A new largest empty hypersphere
approach

4.1. Algorithm overview

Building on the notion of a search that progresses locally by moving
away from already identified poor (high cost) points, we develop a
global approach that iteratively moves to the region of the decision
variable solution space furthest away from recognised hcps. This is an
exploration-focused approach, although rather than concentrating on
examining unvisited regions the intention here is to identify and visit
regions devoid of hcps. Assuming uncertainty as considered previously
in terms of a single value Γ that defines a radius of uncertainty in
all decision variables, we associate the idea of the largest empty region
(empty of hcps) with the idea of the largest empty hypersphere (LEH),
or largest empty circle in 2D. The approach is then to locate the next
point in the search at the centre of the identified LEH, and to itera-
tively repeat this as more regions are visited and hcps identified. The
approach is described in Figure 3.

We start by randomly sampling one or more points and evaluating
the objective function f at each. From these start points a candidate
point is selected and an inner analysis undertaken in the candidate’s
Γ-uncertainty neighbourhood with a view to identifying the local maxi-
mum, Figure 3a. This local worst case cost for the candidate is the first
estimate of a robust global minimum, that is a global min max, and
is located at the candidate point. The aim is now to move to a point
whose uncertainty neighbourhood has a lower worst case cost than the
current global value. We seek to achieve this by identifying the largest
hypersphere of radius at least Γ within the defined feasibility bounds
which is completely empty of hcps, and moving to the centre of that
LEH, see Figures 3b - 3c.

All points evaluated are recorded in a history set, a subset of which
forms the high cost set. The high cost set contains a record of all points
evaluated so far with an objective function value greater or equal to
a high cost threshold, and here the high cost threshold is set as the
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current estimate of the robust global minimum. Both the history set
and the high cost set are updated as more points are visited and the
high cost threshold reduces, see Figures 3d - 3e. On performing all inner
searches after the first candidate, a candidate’s robust value may be no
better than the current estimate of the robust global minimum (and
therefore the current high cost threshold), in which case at least one
point will be added to the high cost set. Alternatively if a candidate’s
robust value is better than the current estimate of the robust global
minimum, this current recorded optimum is overwritten and the high
cost threshold reduced accordingly. Again this introduces at least one
high cost point to the high cost set, but the reducing threshold may
also introduce additional points from the history set; this is suggested
in Figure 3e.

The search stops when no LEH of radius greater than Γ exists or some
pre-defined resource limit has been reached. Then the candidate point
around which the current estimate of the robust global minimum has
been determined is deemed the robust global minimum. Otherwise the
search repeats, performing analysis in the Γ-uncertainty neighbourhood
around candidates to estimate the local (inner) max, updating the
global minimum worst case cost if appropriate, and moving to the next
identified LEH, Figure 3f.
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(a) The decision variable space is seeded
randomly. Perform an inner search
around one candidate point.

(b) The current high cost set, includ-
ing one point from the previous inner
search and some of the seed points.

(c) Identify the largest empty hyper-
sphere, the centre of which is the next
candidate point.

(d) Inner search around the new candi-
date. The robust value here is less
than the current global minimum.

(e) The current high cost set, including
more previously evaluated points due
to the reduced high cost threshold.

(f) Identify the largest empty hypersphere,
the centre of which is the next candi-
date point.

Figure 3: Description of largest empty hypersphere (LEH) approach.
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The critical feature of such an approach is the identification of regions
of the solution space that are currently empty of, and furthest from,
the undesirable hcps. As defined here this corresponds to identifying
the largest hypersphere devoid of all hcps.

Given a discrete history set H of all points evaluated so far, high
cost points are those members of H with objective value which is at
least the current high cost threshold τ , i.e.,

Hτ := {hhh ∈ H | f(hhh) ≥ τ}

We denote Nτ = |Hτ | as the cardinality of Hτ , and write Hτ =
{hhh1, . . . ,hhhNτ}. The identification of a point ppp ∈ X which is furthest
from all Nτ high cost points in Hτ is a max min problem:

max
ppp∈X

min
i∈[Nτ ]

d(ppp,hhhi), (LEHP)

where d(ppp,qqq) is the Euclidean distance between two points ppp and qqq, see
[OS97].

In the following, we specify this general LEH approach by considering
two aspects in more detail: The outer search is concerned with placing
the next candidate point xxx by solving (LEHP). The inner search then
evaluates this candidate by calculating g(xxx) approximately.

4.2. Outer search methods

Here we will introduce different approaches to identifying the largest
empty hypersphere, given a set of high cost points Hτ . It should be
noted that none of these approaches requires additional function eval-
uations, which is usually considered the limiting resource in black-box
settings.

4.2.1. Randomly sampled LEH algorithm

A very simple approach is to generate potential candidates randomly
within the feasible region, then determine whether they are more than
Γ away from all hcps. If so they are a valid candidate, if not re-
sample up to some defined maximum number of times beyond which it
is assumed that no such candidate point can be found and the solution
has converged on a robust global minimum. Rather than being a largest
empty hypersphere approach this is just a valid empty hypersphere
approach, and the size of the identified empty hypersphere might vary
considerably from one candidate to the next.

14



4.2.2. Genetic Algorithm for LEH

The solution of (LEHP) is an optimisation problem. Furthermore,
given a point ppp which is a potential candidate for the centre of the
largest empty hypersphere, the inner minimisation calculation in (LEHP)
involves just an enumeration over the Nτ Euclidean distance calcula-
tions between each hcp and ppp to identify the minimum distance d(ppp,hhhk),
where hhhk is the closest hcp. Therefore the focus for the solution of
(LEHP) is the outer maximisation, for which we may consider an ap-
proximate heuristic approach. We employ a genetic algorithm (GA),
a commonly cited evolutionary algorithm (EA) [Tal09]. Here each in-
dividual represents a point ppp in the decision variable space, and the
objective function fLEH(ppp) := minhhh∈Hτ d(ppp,hhh) is the minimum distance
between a given point ppp and all hcps in Hτ . We seek to maximise this
minimal distance by evolving a population of points starting from ran-
domly selected feasible points in the decision variable space X . The
best point generated by the GA is the next candidate point – that is
estimated centre of the LEH, for the current H, τ and Hτ .

4.2.3. Voronoi based LEH

Within the literature a widely referenced approach for tackling low
dimensional LEH problems is due to [Tou83], and is based on the ge-
ometric Voronoi diagram approach, see [Cha93, OS97]. The Voronoi
approach partitions a space into regions (cells). For a given set of points
each cell corresponds to a single point such that no point in the cell is
closer to any other point in the set. Points on the edges between cells
are equidistant between the set points which lie on either side of that
edge. For our LEH problem the set of points is Hτ , and the Voronoi
diagram approach corresponds to segmenting the feasible space X into
Nτ separate cells, one for each hcp. The (Voronoi) vertices that lie at
the intersection of these cell (Voronoi) edges maximise the minimum
distance to the nearby set points, see [Cha93, OS97]. So for a given
Hτ if we can determine the Voronoi diagram we can use the identi-
fied Voronoi vertices as potential candidate points ppp. The solution of
(LEHP) is then simply a matter of enumeration, for each ppp calculating
the (inner) minimum Euclidean distance to all hcps, and then selecting
the (outer) maximum such minimal distance.

The original approach due to [Tou83] includes the identification of
vertices (candidate centres of LEHs) that can be sited outside of defined
boundaries, in infeasible regions. This is not exactly as required here.
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To deal with this edges that cross feasibility boundaries are identified
and the associated vertices which are outside of X are relocated to an
appropriate point on the boundary of X . Here any coordinate i ∈ [n]
of such an external vertex that is either less than li or greater than ui
is re-set to li or ui as appropriate.

However the Voronoi approach has exponential dependence on n, as
constructing the Voronoi diagram of Nτ points requires O(Nτ logNτ +

N
dn/2e
τ ) time [Cha93]. This suggests that such an approach in not com-

putationally viable for anything other than low dimensional problems.
On the basis that a Voronoi diagram based approach is the primary
recognised heuristic for identifying the largest empty circle we will con-
sider a Voronoi based robust LEH heuristic here only in the context
that for 2D problems in our experimental analysis this approach will
serve as a good direct comparator for our other robust LEH heuristics.

4.3. Inner search methods

Discussions of the LEH approach have so far focussed on the outer
minimisation search, assuming some form of inner search that provides
the inner robust maximum for each candidate point in the minimisa-
tion search. In [BNT10b] a two-stage gradient ascent search is recom-
mended for each inner search around a candidate point. This assumes
gradient information is available and proposes (n + 1) individual two-
stage gradient ascents for each candidate. For a 100-dimensional prob-
lem this would require several thousand function evaluations around
each candidate point. In practical terms both the number of function
evaluations required to undertake a global search and the requirement
for gradient information may make such extensive inner searches pro-
hibitive. Given, for example, budgetary restrictions on the number
of function evaluations, some trade-off must be achieved between the
extent of each inner Γ-radius uncertainty neighbourhood search and
globally exploring the search space. But this trade-off between robust-
ness in terms of the extent of the inner searches, and performance in
terms of the outer global search, is complex, see [MLM15, DHX17]. For
example the determination of an appropriate inner approach – type of
search, extent of search and parameter settings – may be both instance
(problem and dimension) dependent and dependent on the outer ap-
proach.

Here we do not propose to recommend a definitive inner search ap-
proach. From a theoretical point of view we assume the information is
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provided by some oracle. From an experimental point of view in the
algorithm testing and comparisons below we assume the same basic
inner Γ-radius uncertainty neighbourhood analysis for all heuristics,
to ensure a consistency when comparing results for alternative search
approaches.

There is, however, an aspect of our LEH approach that enables an
additional feature, the forcing of an early end to an inner search. The
LEH approach is exploration-led, the objective being to locate and
move to the candidate point in the decision variable space furthest from
all hcps. Hcps are designated based on the determination of a high cost
threshold τ , set here as the current estimate of the robust global min-
imum (min max) value. The nature of this approach enables (inner)
uncertainty neighbourhood searches around each candidate point to be
restricted when appropriate. If an inner search identifies a local point
with objective function value above τ the inner search can be immedi-
ately curtailed on the basis that the candidate is not distant from hcps.
This equates to the recognition that the candidate point is not an im-
provement on the current estimated robust optima. Such regulating of
inner searches has the potential to significantly reduce the number of
function evaluations expended on local neighbourhood analysis. In the
case of budgetary limitations on numbers of function evaluations this
further enables more exploration of the decision variable space.

4.4. Algorithm summary

Given one of our three approaches to identifying the LEH devoid of
hcps, random, GA or Voronoi, the overarching algorithm for the ro-
bust exploratory LEH heuristic is given in Algorithm 1. Here one
of these three approaches to the outer search is applied in line 16 as
LEH Calculator(Hτ ), for a defined high cost set Hτ . It is assumed
that this routine will return a candidate point xxxLEH and an associated
radius rLEH , that is the minimal distance between xxxLEH and all points
in Hτ . The heuristic will halt if rLEH is not greater than Γ.

For a defined number of initialisation points, random points in X are
selected and the function f evaluated at these points. The points and
their function evaluations are recorded in history sets H and FH , lines 1
- 6. Having randomly selected a candidate point xxxc from H we perform
an inner maximisation in the Γ-uncertainty neighbourhood around xxxc,
see line 10. The description of the inner maximisation is given below
as Algorithm 2. If this is the first candidate point, or the local robust
value for this candidate g̃(xxxc) is less than the current best solution τ ,
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this minimum is updated and the associated global minimum point xxxOp
replaced by xxxc, see lines 11 - 14.

Next the high cost set Hτ is established as all members of H with
corresponding function values in FH that are greater than or equal to
the current high cost threshold τ , see line 15. Based on Hτ , the next
candidate point is identified via one of the outer search approaches, see
line 16. If the heuristic is halted at this stage due to an inability to
identify a valid LEH or at any stage due to the budget being exceeded,
the extant estimate for the robust global minimum xxxOp is returned.

Algorithm 1 Robust global exploration using Largest Empty Hyperspheres

Input: f , X , Γ
Parameters: Num Initial, Budget, Max Search

1: for all i in [Num Initial] do
2: Choose random point xxxi ∈ X
3: Calculate f(xxxi) and store in FH
4: Budget← Budget− 1
5: H ← H ∪ {xxxi}
6: end for
7: Select random point xxxc ∈ H
8: rLEH ←∞; τ ←∞
9: while rLEH > Γ do

10: g̃(xxxc)← CALL Algorithm 2
11: if g̃(xxxc) < τ then
12: xxxOp ← xxxc
13: τ ← g̃(xxxc)
14: end if
15: Hτ ← {xxx ∈ H : FH(xxx) ≥ τ}
16: Find (xxxLEH , rLEH) by calling LEH Calculator(Hτ )
17: xxxc ← xxxLEH
18: end while
19: return A robust solution xxxOp and robust objective estimate τ

Algorithm 2, the Γ-uncertainty neighbourhood inner maximisation
called in line 10 of Algorithm 1, requires several inputs: Budget the
current count of function evaluations completed, Max Search the max-
imum number of function evaluations permitted in an inner search, xxxc
the current candidate point (centre of an LEH) around which the inner
search is to be performed, Γ to define the uncertainty neighbourhood
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Algorithm 2 Γ-uncertainty neighbourhood inner maximisation

Input: Budget, Max Search, xxxc, Γ, τ

1: if τ <∞ then
2: Calculate f(xxxc) and store in FH
3: H ← H ∪ {xxxc}
4: Budget← Budget− 1
5: if Budget == 0 then
6: GOTO line 19 of Algorithm 1
7: end if
8: end if
9: Set Local Robust← f(xcxcxc)

10: for all i in [Max Search] do
11: Choose ∆xxxic ∈ U , set xxxi ← xxxc + ∆xxxic
12: Calculate f(xxxic) and store in FH
13: H ← H ∪ {xxxic}
14: Budget← Budget− 1
15: if Budget == 0 then
16: GOTO line line 19 of Algorithm 1
17: end if
18: Local Robust← max{Local Robust, f(xxxic)}
19: if Local Robust > τ then
20: GOTO line 23
21: end if
22: end for
23: g̃(xxxc)← Local Robust
24: return g̃(xxxc): estimated worst case cost at xxxc
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of xxxc, and τ the high cost threshold for stopping the inner search if
appropriate.

Algorithm 2 proceeds by looping through up to Max Search inner
search points, identifying a point in the Γ-uncertainty neighbourhood
of xxxc and evaluating the function at each point visited, lines 10 - 22.
Here the point to be evaluated is determined by random sampling in
the Γ-radius hypersphere centred on xxxc, line 11. Under other inner
maximisation rules this would be determined by some explicit max-
imisation search heuristic. As the function is evaluated at the inner
search points the local robust value (inner maximum) Local Robust is
updated as appropriate, line 18. If Local Robust exceeds the high cost
threshold τ the inner maximisation is immediately terminated, lines 19
- 21. Algorithm 2 ends by returning an estimate for the worst case cost
value at xxxc, g̃(xxxc) into Algorithm 1.

4.5. Example LEH application

In order to give some indication of the nature of our LEH search we
have applied it to the 2-dimensional problem (poly2D) and plotted the
points evaluated and associated search path of the current estimate
of the robust global minimum in Figures 4e and 4f. Here the LEH
Voronoi algorithm is used. For comparison we have also plotted corre-
sponding results for two alternative heuristics, a robust Particle Swarm
Optimisation (PSO) approach shown in Figures 4a and 4b, and the lo-
cal descent directions approach from Section 3.2 shown in Figures 4c
and 4d. Here the robust PSO is used as a proxy to a brute force or
co-evolutionary approach. The basic global PSO formulations have
been used, as described in [SE98]. The descent directions approach
has been extended by using random re-starts, as a proxy to extend-
ing it to a global approach. In all cases inner random sampling in a
hypersphere of 100 Γ-uncertainty neighbourhood points is used, and a
maximum budget of 10,000 function evaluations employed.

The plots shown in Figure 4 are for only a single run of each heuristic,
and as such should only be seen as exemplars intended to give some in-
dication of the different natures of these outer search approaches. It can
be seen that whilst the robust PSO explores the decision variable space
somewhat, and the re-starting descent directions follows (exploits) a
series of local paths, the LEH approach features both considerable ex-
ploration globally and more intense analysis of promising points. It
is clear that the curtailing of the inner searches in the LEH approach
enables much wider exploration for fewer function evaluations. In this
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example less than 1,000 function evaluations have been required before
the LEH heuristic has stopped because an LEH of radius greater than
Γ cannot be found, but for larger (dimensional) problems such stop-
ping prior to reaching the budgetary limit will not apply. One striking
feature of Figure 4e is how many of the inner searches stop immediately
on the evaluation of a candidate point. This is because the objective
value at these candidate points exceeds the current threshold τ .

The Voronoi based search exemplified by Figures 4e and 4f is a good
indicator of the nature of the searches due to all three LEH approaches,
random, GA and Voronoi. However the radii of the LEH identified
for each candidate will vary with the use of each of these algorithms.
Figure 9 in Appendix B gives some indication of how the radii of the
hyperspheres generated by each of these LEH heuristics progress as the
exploration proceeds.

5. Computational experiments

5.1. Set up

In order to assess the effectiveness of the LEH approach the heuristic
has been applied to eight test problems, and results compared against
the two alternative search heuristics described in Section 5.2. Exper-
iments have been performed on 2D, 4D, 7D, 10D and 100D instances
of these test problems; results have also been generated for (poly2D).
Both the genetic algorithm and random forms of the LEH heuristic
have been assessed for all instances. The LEH Voronoi has addition-
ally been applied to the 2D instances, with the intention of giving some
indication of the differences due to a ‘best’ LEH identifier algorithm
(Voronoi) versus the alternatives. All LEH approaches are initialised
by randomly sampling a single point in X . Assuming that for most
real-world problems the optimisation analysis will be limited by re-
sources, a fixed budget of 10,000 function evaluations (model runs) is
assumed. The same inner approach is employed for all heuristics. A
simple random sampling in a hypersphere of 100 points in a point’s lo-
cal Γ-uncertainty neighbourhood is used for all instances, and the local
robust maximum is estimated as the maximum due to this sampling.
For the LEH approaches this inner sampling is curtailed if a point is
identified in the uncertainty neighbourhood that has objective value
exceeding the current high cost threshold τ .

All experiments have have been performed using Java, on an HP

21



(a) PSO points (b) PSO search

(c) DD points (d) DD search

(e) LEH Vor points (f) LEH Vor search

Figure 4: Contour plots of example searches of the 2-dimensional problem
(poly2D), for Γ=0.5. Plots on the left show all points evaluated. Plots
on the right show the progress of the current best robust solution. The
heuristics used are: (top) outer PSO, (middle) outer descent directions
with re-start, and (bottom) outer LEH using the Voronoi based ap-
proach.
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Pavilion 15 Notebook laptop computer, with 64 bit operating sys-
tem, an Intel Core i3-5010U, 2.10GHz processor, and 8GB RAM. Each
heuristic search has been applied to each test problem-dimension in-
stance 50 times to reduce variability. For the solution of the Sec-
ond Order Cone Problem as part of the descent directions algorithm
[BNT10b], the IBM ILOG CPLEX Optimization Studio V12.6.3 pack-
age is called from Java.

5.2. Comparator heuristics

Our experiments have been conducted on LEH, a re-starting descent
directions, and robust PSO metaheuristics. We have applied param-
eter tuning to 3 of the 5 comparator heuristics – LEH Voronoi and
LEH Random do no have tunable parameters – employing an evolu-
tionary tuning approach using a genetic algorithm to generate a single
set of parameters for each heuristic, for all test problems. For each of
the 3 tuned heuristics the same subset of the test instances was used,
running each member of an evolving population on each of these in-
stances multiple times to generate mean result for each member of a
population on each test instance. The performance of each individual
in a population was ranked separately for each test instance, across the
members of the population, leading to mean overall ranks which were
used as the utility measure in tournament selection; see e.g. [ES12].

The effectiveness of the local descent directions approach [BNT10b]
suggests that extending this to a global search by using random re-
starts will provide a reasonable comparator. A local descent directions
search is undertaken from a random start point, and when this is com-
plete it is repeated from another random start point. This is repeated
until the function evaluations budget is reached. In descent direc-
tions a set of high cost points leads to the identification of an optimal
stepping direction and step size, if a valid direction exists. However
the algorithm includes a number of dynamically changing parameters
which adapt the high cost set and enforce a minimum step size. Here
we have tuned 5 parameters relating to these stages of the heuristic;
see [BNT10b] for further information. Labelled ‘d.d. Re’ in the results
section.

As a proxy to a brute force or co-evolutionary approach an outer
particle swarm search is considered. The basic formulations for the
global PSO approach have been used as described in [SE98] and 5
parameters have been tuned: swarm size, number of iterations, and
for the velocity equation the C1 and C2 acceleration parameters and
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inertia weight parameter ω. The combined swarm size times number
of iterations was limited to 100 in order to align with the budget of
10,000 function evaluations and the level of inner sampling. Labelled
‘PSO’ in the results section.

Our robust LEH metaheuristic is considered for the three alternative
ways of identifying the largest hypersphere that is empty of hcps:

• Randomly sampled valid empty hypersphere, see Section 4.2.1. This
includes re-sampling up to 1,000 potential candidates in an attempt
to identify a valid empty hypersphere, otherwise it is assumed that a
valid point cannot be found and a robust global minimum has been
reached. Labelled ‘LEH Rnd’ in the results section.

• Genetic algorithm LEH, see Section 4.2.2. Here we have tuned 6
parameters: the size of the population, number of generations, num-
ber of elites, tournament size, and mutation probability and size; we
have fixed the use of tournament selection and the choice of mid-
point crossover. The combined population size times number of gen-
erations was limited to 100, which is somewhat based on runtime
considerations associated with the large value of Nτ , the number of
candidate points visited with a budget of 10,000 function evaluations.
Labelled ‘LEH GA’ in the results section.

• Voronoi based [Tou83] LEH, see Section 4.2.3. Here the construction
of the Voronoi diagram for the input points Hτ is performed using the
Java library due to [Nah17]. This generates geometric data, Voronoi
vertices and edges, which are used to determine a set of potential
candidate points – Voronoi vertices, including those originally out-
side of X relocated to the boundary of X – for the centre of the
LEH. Labelled ‘LEH Vor’ in the results section.

5.3. Test functions

A large number of test functions are available for benchmarking optimi-
sation algorithms, and posing a variety of difficulties, see [Kru12, JY13].
Here eight are considered, plus (poly2D) as outlined in Section 3.1. In
each case a single Γ-uncertainty value is used:

• Ackleys: feasible region [-32.768, 32.768]; Γ=3.0.

• Multipeak F1: feasible region [0, 1]; Γ=0.0625.

• Multipeak F2: feasible region [0, 10]; Γ=0.5.

• Rastrigin: feasible region [-5.12, 5.12]; Γ=0.5.
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• Rosenbrock: feasible region [-2.048, 2.048]; Γ=0.25.

• Sawtooth: feasible region [-1, 1]; Γ=0.2.

• Sphere: feasible region [-5, 5]; Γ=1.0.

• Volcano: feasible region [-10, 10]; Γ=1.5.

The full description of these eight test functions is given in Ap-
pendix A. To give some indication of the nature of these functions
contour plots of the 2D instances are shown in Figure 5, for both the
nominal and worst cases.

5.4. Results

Results of the 50 samples runs for each heuristic applied to each test
problem-dimension instance are presented here. In each run the best
solution as identified by the heuristic is used. However the points in the
decision variable space that have been identified as best have robust
values generated using the simple inner random sampling approach,
with a budget of up to 100 sample points. To better approximate
the true robust values at these points their robust values have been
re-estimated based on randomly sampling a large number of points
(nominally 1,000,000) in the Γ-uncertainty neighbourhood of the iden-
tified robust point. This is a post processing exercise and does not
affect the min max search.

Mean results due to each set of 50 sample runs are shown in Ta-
bles 1 and 2. We have applied the Wilcoxon rank-sum test with 95%
confidence to identify the statistically best approaches. Results high-
lighted in bold indicate the approaches that are statistically equiva-
lent to the best one observed, for a given problem-dimension instance.
Corresponding box plots, giving some indication of how the results are
distributed across the 50 samples, are shown in Figures 6, 7 and 8.
Additional results, the standard deviations due to each set of 50 sam-
ple runs, the average number of candidate points visited and average
number of function evaluations undertaken, are given in Appendix C.

From Table 2 we see that for 100D instances the LEH GA approach
is best for all test problems, and in several cases the mean LEH GA
result is substantially better than all of the alternative heuristics. From
Tables 1 and 2 the LEH approach is among the best in at least 6 of
the instances for all other dimensions.

For 2D instances the LEH Voronoi approach is among the best results
for 7 of the 9 problems, whilst LEH GA and LEH Rnd are each amongst
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Figure 5: Contour plots of nominal (top 8) and worst case (bottom 8) 2D test
functions. Left to right, top to bottom: Ackley, Multipeak F1, Multipeak
F2, Rastrigin, Sawtooth, Sphere and Volcano.
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(poly2D)

2D

PSO 5.57
d.d. Re 5.11

LEH Vor 5.52
LEH GA 5.50

LEH Rnd 5.26

Table 1: Mean results due to 50 sample runs for the 2-dimensional polynomial
function (poly2D) due to [BNT10b].

Figure 6: Box plots of robust objective values due to multiple sample runs for the
2-dimensional polynomial function (poly2D) due to [BNT10b].
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Figure 7: Box plots of robust objective values due to multiple sample runs. Left to
right: Ackleys, Multipeak F1, Multipeak F2, Rastrigin; Top to bottom:
2D, 4D, 7D, 10D, 100D.
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Figure 8: Box plots of robust objective values due to multiple sample runs. Left
to right: Rosenbrock, Sawtooth, Sphere, Volcano; Top to bottom: 2D,
4D, 7D, 10D, 100D.

30



the best results for 3 and 2 problems respectively. It should also be
noted that in 5 of the 7 instances where LEH Voronoi is among the
best, LEH GA is either statistically equivalent or the mean value is
second best. For the 2D Sphere instance d.d. Re is marginally better
than LEH Voronoi, whilst d.d. Re and LEH heuristics are statistically
equivalent for the (poly2D) and 2D Volcano and Rosenbrock instances.
The robust PSO approach is statistically equivalent to LEH heuristics
for the 2D Sawtooth instance.

For the 4D – 10D instances d.d. Re is statistically equivalent to LEH
GA in the 4D Volcano problem and the 7D and 10D instances of the
Rastrigin problem, and better than LEH GA for the Rosenbrock and
Sphere problems. For the 4D Rosenbrock and Sphere problems the
differences between d.d. Re and LEH GA are reasonably small, however
in the 7D and 10D instances d.d. Re is substantially better. Considering
the shape of the Rosenbrock and Sphere functions it can be expected
that a local search will perform particularly well for these problems.

LEH GA is better than LEH Rnd for all instances excluding (poly2D).
In a number of instances LEH GA is substantially better than LEH
Rnd. The number of candidate points that LEH can visit is substan-
tially increased by the early stopping of inner searches as soon as the
high cost threshold is exceeded, see Tables 3 and 5 in Appendix C.
Although this feature must unquestionably play a role in the success
of the LEH GA approach, the fact that LEH Rnd visits a comparable
number of candidate points indicates that the additional pro active
seeking of the largest hypersphere devoid of high cost points is also a
significant factor in the success of LEH GA.

6. Conclusions and further work

We have introduced a new metaheuristic for box-constrained robust
optimisation problems with implementation uncertainty. We do not
assume any knowledge on the structure of the original objective func-
tion, making the approach applicable to black-box and simulation-
optimisation problems. We do assume that the solution is affected
by uncertainty, and the aim is to find a solution that optimises the
worst possible performance in this setting. This is the min max prob-
lem. Previously, few generic search methods have been developed for
this setting.

We introduce a new approach for a global search based on distin-
guishing undesirable high cost – high objective value – points (hcps),
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identifying the largest hypersphere in the decision variable space that
is completely devoid of hcps, and exploring the decision variable space
by stepping between the centres of these largest empty hyperspheres.

We demonstrated the effectiveness of the approach using a series of
test problems, considering instances of varying dimension, and com-
paring our LEH approach against one metaheuristic that employs an
outer particle swarm optimisation and one from the literature that
uses multiple re-starts of the local descent directions approach. For
low and moderate dimensional instances the approach shows compet-
itive performance; for high-dimensional problems the LEH approach
significantly outperforms the comparator heuristics for all problems.

There are several ways in which this work can be developed. Further
consideration can be given to the inner maximisation search approach
in order to better understand the trade-off between expending function
evaluations on the local Γ-radius uncertainty neighbourhood search
versus globally exploring the search space, in the context of our LEH
approach.

The repeated calculation of large numbers of Euclidean distances
each time a new LEH needs to be identified within the LEH GA heuris-
tic is computationally expensive. Rather than only calculating a single
next candidate point each time the GA is performed, identifying multi-
ple points could speed up computation or alternatively enable the use
of larger population-generation sizes to improve the estimation of the
largest empty hypersphere.

Results of the mid-dimension experiments on the Rosenbrock and
Sphere test problems suggest that an exploitation based approach works
well in these instances, indicating a direction for extending our explo-
ration focussed LEH approach.

It is clear that within the LEH algorithm the early stopping of the in-
ner searches when it is established that the current robust global value
cannot be improved upon has significant advantages. It is worth con-
sidering whether alternative search approaches could take advantage
of this feature.

Appendices

A. Test functions

Functions used to assess the effectiveness of the Largest Empty Hyper-
sphere robust metaheuristics taken from [Kru12, JY13].
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Ackleys

f(xxx) = −20 exp

(
−0.2

√√√√ 1

n

n∑
i=1

x2
i

)
−exp

(
1

n

n∑
i=1

cos(2πxi)

)
+20+exp(1)

The feasible region is the hypercube xi ∈ [-32.768, 32.768].

MultipeakF1

f(xxx) = − 1

n

n∑
i=1

g(xi) , g(xi) =

{
exp(2 ln 2(xi−0.1

0.8
)2)
√
|sin(5πxi)| if 0.4 < xi ≤ 0.6 ,

exp(2 ln 2(xi−0.1
0.8

)2) sin6(5πxi) otherwise

The feasible region is the hypercube xi ∈ [0, 1].

MultipeakF2

f(xxx) =
1

n

n∑
i=1

g(xi) , g(xi) = 2 sin(10 exp(−0.2xi)xi) exp(−0.25xi)

The feasible region is the hypercube xi ∈ [0, 10].

Rastrigin

f(xxx) = 10n+
n∑
i=1

[x2
i − 10 cos(2πxi)]

The feasible region is the hypercube xi ∈ [-5.12, 5.12].

Rosenbrock

f(xxx) =
n−1∑
i=1

[100(xi+1 − x2
i )

2 + (xi − 1)2]
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The feasible region is the hypercube xi ∈ [-2.048, 2.048].

Sawtooth

f(xxx) = 1− 1

n

n∑
i=1

g(xi) , g(xi) =

{
xi + 0.8 if − 0.8 ≤ xi < 0.2 ,

0 otherwise

The feasible region is the hypercube xi ∈ [-1, 1].

Sphere

f(xxx) =
n∑
i=1

x2
i

The feasible region is the hypercube xi ∈ [-5, 5].

Volcano

f(xxx) =

{√
‖xxx‖ − 1 if ‖xxx‖ > 1 ,

0 otherwise

The feasible region is the hypercube xi ∈ [-10, 10].

B. Radii due to alternative LEH algorithms

Whilst the Voronoi based search exemplified by Figures 4e and 4f in
Section 4.5 is a good indicator of the nature of the searches due to
all three alternative LEH approaches, random, GA and Voronoi, the
radii of the LEH identified for each candidate will vary across these
approaches. Here Figure 9 gives some indication of how the radii of the
hyperspheres generated by each these three LEH heuristics progress as
the exploration proceeds. The three curves represent separate runs of
the LEH algorithm when applied to (poly2D),and should be considered
indicative.

As would be expected the general nature of the size of the radius
of the LEH steadily decreases with increasing numbers of candidate
points evaluated. However superimposed on this overall decrease are
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Figure 9: Alternative LEH approaches applied to the same problem: variation
in empty hypersphere radius with numbers of candidates evaluated for
robustness.

the indicative patterns due to the alternative heuristics. For the ran-
dom algorithm the size of the LEH is quite variable, whilst for Voronoi
the curve is smooth. The GA algorithm sits somewhere between the
two.

C. Additional results

The standard deviations due to each set of 50 sample runs, the aver-
age number of candidate points visited and average number of function
evaluations undertaken, are shown in Tables 3, 4, 5 and 6 here respec-
tively. Labelling of comparator heuristics in the tables is as follows:

• PSO: particle swarm optimisation.

• d.d. Re: Multi re-start descent directions.

• LEH Vor: LEH using a Voronoi [Tou83] approach; applied to 2D
problems only.

• LEH GA: LEH using a genetic algorithm.

• LEH Rnd: LEH using random sampling.
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Std. dev. Candidates Evaluations

poly2D

PSO 0.83 100 10,000
d.d. Re 1.27 100 10,000

LEH Vor 1.60 35 995
LEH GA 0.56 30 727

LEH Rnd 1.07 35 1,037

Table 3: Standard deviations of results, average number of candidate points vis-
ited, and average number of points evaluated for the 50 sample runs for
the 2-dimensional polynomial function (poly2D) due to [BNT10b].
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