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Abstract 30 

Aims 31 

Plants use a variety of hydraulic strategies to adapt to seasonal drought that differ by 32 

species and environmental conditions. The early-diverging Magnoliaceae family includes 33 

two closely related genera with contrasting leaf habits, Yulania (deciduous) and Michelia 34 

(evergreen), which naturally inhabit temperate and tropical regions, respectively. Here, 35 

we evaluate the hydraulic strategy of species from both genera that have been ex situ 36 

conserved in a subtropical region to determine how they respond to the novel cool-dry 37 

season climatic pattern.  38 

 39 

Methods 40 

We measured ecophysiological traits in five Michelia and five Yulania species conserved 41 

in the South China Botanical Garden in both wet and dry season conditions and 42 

monitored the whole-year sap flow for four of these species. 43 

 44 

Important Findings 45 

We found that Magnoliaceae species that have been ex situ conserved in a subtropical 46 

climate did not suffer from excessive water stress due to the mild drought conditions of 47 

the dry season and the ecophysiological adjustments the species made to avoid this stress, 48 

which differed by leaf habit. Specifically, deciduous species completely shed their leaves 49 

during the dry season, while evergreen species decreased their turgor loss points, dry 50 

mass based photosynthetic rates, stomatal conductance, and specific leaf areas compared 51 

to wet season measurements. In comparing the two distinct leaf habits during the wet 52 

season the leathery-leaved evergreen species had higher leaf hydraulic conductance and 53 

leaf to sapwood area ratios than the papery-leaved deciduous species, while the deciduous 54 

species had greater hydraulic conductivity calculated on both a stem and leaf area basis, 55 

dry mass based photosynthetic rates, leaf nutrients, specific leaf areas, and stomatal sizes 56 

than the evergreen species. Interestingly, species from both genera maintained similar sap 57 

flow in the wet season. Both photosynthetically active radiation and vapour pressure 58 

deficit affected the diurnal patterns of sap flow in the wet season, while only vapour 59 

pressure deficit played a dominant role in the dry season. This study reveals contrasting 60 
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hydraulic strategies in Yulania and Michelia species under subtropical seasonal 61 

conditions, and suggests that these ecophysiological adjustments might be affected more 62 

by leaf habit than seasonality, thus reflecting the divergent evolution of the two closely 63 

related genera. Furthermore, we show that Magnoliaceae species that are ex situ 64 

conserved in a subtropical climate are hydraulically sound, a finding that will inform 65 

future conservation efforts of this ancient family under the threat of climatic change. 66 

 67 

Keywords: hydraulic conductivity; leaf habit; leaf turgor loss point; phylogeny; 68 

photosynthesis; sap flow; stomata. 69 

 70 

INTRODUCTION 71 

Plants adjust many ecophysiological traits to adapt to seasonal drought, especially 72 

hydraulic traits, which are directly related to the degree of drought tolerance among 73 

species (Domac et al., 2006, Fan et al., 2011, Meinzer et al., 2001). Under modest water 74 

stress, stomata will close to prevent unnecessary water loss and, in the process, also 75 

reduce xylem tension within the stems to avoid embolism (Arango-Velez et al., 2011, 76 

Cochard et al., 2002, Zhang et al., 2013). For most tree species, leaves are more 77 

vulnerable to drought-induced embolism than branches, implying that leaves act as safety 78 

valves to protect the plant hydraulic pathway (Bucci et al., 2012, Pivovaroff et al., 2014). 79 

Moreover, plants may reduce their overall leaf area (e.g., by shedding leaves) to protect 80 

stem functionality if the drought intensifies (Drake and Franks, 2003).  However, Wolfe 81 

et al. (2016) found that leaf shedding does not likely stabilizing plant water potential 82 

during typical seasonal droughts, and will generally only do so during periods of intense 83 

hydraulic stress. While deciduous species can shed their leaves during periods of drought 84 

stress, evergreen species must maintain some level of water transport to their leaves and, 85 

as such, will avoid hydraulic failure through morphological and physiological 86 

adjustments (Calkin and Pearcy, 1984, Choat et al., 2005). Evergreen species also reduce 87 

their leaf area to decrease total transpiration. For instance, Eucalyptus kochii trees 88 

growing in arid conditions have a lower leaf to sapwood area ratio (AL/AS) than those 89 

growing in wet conditions (Carter and White, 2009). However, evergreen leaves might 90 

also achieve lower leaf water potential at turgor loss point (Ψtlp) via osmotic adjustments 91 
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in the dry season (Calkin and Pearcy, 1984). As water becomes less available, active 92 

solutes will accumulate in plant cells that enable leaves to maintain cell turgor pressure 93 

under these low water potentials  (Bartlett et al., 2012). Thus Ψtlp is an essential 94 

physiological determinant of plant drought tolerance within and across biomes (Bartlett et 95 

al., 2012, Maréchaux et al., 2015).  96 

Sap flow measurements are useful to explore how water use varies among individual 97 

trees or across species at the whole tree level (Granier, 1985, O'Brien et al., 2004, Oren et 98 

al., 1999). Sap flows through stems when water deficits in the leaves induce greater water 99 

tension in the hydraulic pathway (Cochard et al., 1996). Thus, under seasonal drought 100 

conditions when trees induce leaf stomatal closure to conserve water by limiting 101 

transpiration, sap flow will also decrease as a result (Ježík et al., 2015, Pataki et al., 102 

2000). Quantifying the relationships between sap flow in tree species and environmental 103 

factors (e.g., water availability and light level) is critical to assess the key limiting factors 104 

that affect species distribution and conservation (Pataki et al., 2000).  105 

Hydraulic responses to seasonal drought have been widely studied in tropical dry 106 

forests and Mediterranean woodlands (Choat et al., 2005, Nardini et al., 2014), where the 107 

hot-dry season (i.e., characterized by high temperatures and little precipitation) is very 108 

stressful for plants. Furthermore, a convergent drought vulnerability for plants was found 109 

across the global forests (Choat et al., 2012), however this excludes the subtropical 110 

forests of China, where the summer monsoon climate is characterized by contrasting hot-111 

wet and cool-dry conditions. Hydraulic adaptations of plants in these Chinese subtropical 112 

forests likely differ from those reported in regions with hot-dry seasonal patterns.  113 

Magnoliaceae is an early-diverging angiosperm family, originating 93.5~110 million 114 

years ago, that is important for phylogenetic and evolutionary studies (Azuma et al., 2001, 115 

Kim and Suh, 2013, Massoni et al., 2015). However, about half of the ~300 116 

Magnoliaceae species alive today are threatened with extinction according to the IUCN 117 

red list due to habitat loss and over exploitation (IUCN, 2001). Nearly four fifths of 118 

Magnoliaceae species are currently distributed between eastern and south-eastern Asia, 119 

with the majority of species occurring in China where ex situ conservation efforts have 120 

been successful (Cicuzza et al., 2007). Unfortunately, present-day climatic change is 121 

forcing many species to shift their geographical range or even become extinct (Parmesan, 122 
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2006, Thomas et al., 2004), such that studies focused on ecophysiological adaptations 123 

within botanical gardens have become increasingly important for ex situ conservation 124 

efforts (Maunder et al., 2001).  125 

Previous phylogenetic and biogeographic work found that two Magnoliaceae lineages 126 

separated into temperate (Yulania) and tropical (Michelia) areas before the Oligocene 127 

(Azuma et al., 2001, Nie et al., 2008). Although Yulania and Michelia are the most 128 

closely related lineages among the Magnoliaceae genera, the temperate-centered Yulania 129 

species are deciduous, while tropical-centered Michelia species are evergreen (Liu et al., 130 

2016), suggesting that the two leaf habits may result from differing climatic regimes. 131 

When species originating from different climatic regions are conserved in a common 132 

subtropical location, their ecophysiological adaptations to the cool-dry season may differ 133 

between lineages, which is crucial evidence to help predict and manage the effects of 134 

climatic changes on native and ex situ conserved species (Davidson et al., 2011). 135 

To understand the ecophysiological differences between the two contrasting 136 

Magnoliaceae genera in this study, we measured wet and dry season physiological traits 137 

in five evergreen Michelia and five deciduous Yulania species conserved in the South 138 

China Botanical Garden, and also continuously monitored sap flow in four of these 139 

species over a year. Specifically, we ask the following three questions: (1) In the dry 140 

season, when deciduous species have shed their leaves, which hydraulic traits do 141 

evergreen species adjust to maintain water balance? (2) In the wet season, do deciduous 142 

species have higher hydraulic conductivities and consume more water than evergreen 143 

species to compensate for their growth losses from the dry season leaf shedding? (3) Will 144 

the key environmental factors that influence sap flow density differ between the two 145 

seasons? We hypothesized that 1) in the dry season, evergreen species might reduce 146 

stomatal conductance, AL/AS, and sap flow, but increase osmotic adjustment to release 147 

water stress compared to the wet season; 2) in the wet season, deciduous species might 148 

show higher hydraulic efficiency and higher sap flow to supply transpiration and 149 

photosynthesis due to their quick turnover strategy compared to their evergreen relatives; 150 

and 3) environmental indices related to water availability, such as vapour pressure deficit, 151 

will directly drive plant hydraulic strategies in the dry season. 152 

 153 
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MATERIALS AND METHODS 154 

Study site and species 155 

Experiments were conducted in the South China Botanical Garden (SCBG) (23°11'N, 156 

113°21'E, 100 m altitude) at the Chinese Academy of Sciences in Guangzhou, China. 157 

SCBG is located in the south subtropical monsoon climatic region, where the average wet 158 

(April to September) and dry season (October to March) temperatures are 26.6 °C and 159 

17.6 °C, respectively. While mean annual precipitation is ~1700 mm, 80% of this occurs 160 

in wet season. The monthly average air temperature, relative humidity (RH, %), and 161 

precipitation in Guangzhou between 1951 and 2014 were collected from the China 162 

Meteorological Data Sharing Service System 163 

(http://www.cma.gov.cn/2011qxfw/2011qsjgx/, last accessed June 2015). The soil water 164 

content (SWC, %) at 30 cm depth was monitored using three SM300 sensors (Delta-T 165 

Devices, Cambridge, UK) from the meteorological station in SCBG between 2013 and 166 

2014 (Supplementary Fig. S1). 167 

The Garden of Magnoliaceae at the SCBG is the largest conservation center for 168 

Magnoliaceae species in the world (Cultivated Flora of China, 169 

http://gardenflora.scbg.ac.cn/). Considering availability and accessibility, we selected five 170 

evergreen (Michelia) and five deciduous (Yulania) Magnoliaceae species to measure 171 

ecophysiological traits in both wet (August 2013) and dry seasons (January 2014) (Table 172 

1). Two evergreen and two deciduous species from this list were also used for sap flow 173 

monitoring between April 2013 and April 2014. Three to five trees per species were 174 

selected, from which three replicate measurements per tree were made of leaf and stem 175 

hydraulic traits. All measured individuals were mature trees that had been transplanted to 176 

the SCBG Garden of Magnoliaceae between the 1960s and 1990s from the wild or other 177 

botanical gardens (Liu et al., 1997).  178 

 179 

Sap flow and environment monitoring 180 

Sap flux density (JS, g H2O m-2 s-1) was recorded continuously between 17 April 2013 181 

and 20 April 2014 at 10 min intervals all the time, with a few interruptions caused by 182 

lightning, using a self-made thermal dissipation probes based on Granier’s prototype 183 

(Granier, 1985). The four selected Magnoliaceae species are diffuse-porous species (Xu, 184 

http://www.cma.gov.cn/2011qxfw/2011qsjgx/
http://gardenflora.scbg.ac.cn/
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2008), meaning that vessels of these species are distributed evenly in the sapwood so that 185 

the calculation of JS could follow the classic modeling under the ideal condition. Using 186 

core samples collected with an increment borer in May 2014, sapwood areas (AS, m2) 187 

were calculated for each tree as the difference between the heartwood area and stem 188 

cross-sectional area beneath the bark. Since sapwood thickness of the sampled trees 189 

ranged between 10 and 40 mm, we used 10 mm long sensors. Each sensor consisted of 190 

two cylindrical probes (2 mm in diameter); a continuously heated upper probe and an 191 

unheated lower probe. The upper probe included a heater that was continuously supplied 192 

with constant power at 0.15 W, while the lower unheated probe served as a temperature 193 

reference (James et al., 2002). The probes were covered with a plastic box and insulated 194 

with aluminum foil to avoid direct solar heating and disturbance. Temperature differences 195 

between the probes were measured every 30 s, and 10 min means were recorded in a data 196 

logger (DL2e, Delta-T Devices, Cambridge, UK). JS along the length of the heated probe 197 

was calculated as: 198 

 JS = 119×[(ΔTM−ΔT)/ΔT]1.231                                                                                     (1) 199 

where ΔT is the temperature difference between the two probes, ΔTM is the maximum 200 

value of ΔT under zero-flux conditions (i.e., a period to meet such conditions needs at 201 

least two hours with nearly zero vapor pressure deficit (VPD, kPa) and basically no 202 

changes in ΔT), and 119 and 1.231 are constant factors in the classic equation (Granier, 203 

1985). JS was calculated by manually setting ΔTM for each day using BaseLiner (v.3.0.7, 204 

C-H2O Ecology Lab, Duke University, NC, USA). For each species JS was averaged as: 205 

JS = (JS1×AS1+JS2×AS2+JS3×AS3)/ (AS1+AS2+AS3)                                                         (2) 206 

where S1, S2 and S3 are three replicate trees per species and A is the sapwood area for 207 

each of these replicate trees. The method of calculating JS for each species by weighting 208 

several trees is conventional in previous studies (Herbst et al., 2008). 209 

A SKP215 quantum sensor (Sky Instruments, Powys, UK) and an AT2&RHT2 sensor 210 

(Delta-T Devices, Cambridge, UK) were mounted on a tower adjacent to the Garden of 211 

Magnoliaceae within the SCBG for monitoring photosynthetically active radiation (PAR, 212 

µmol m-2 s-1), and air temperature (T, °C) and RH (%), respectively. Using these T and 213 

RH data, VPD was calculated as: 214 

VPD = a×exp[b×T/ (T+c)]×(1−RH)                                                                          (3) 215 
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where a, b, and c are constants of 0.611 kPa, 17.502 (unitless), and 240.97 °C, 216 

respectively (Campbell and Norman, 1998). Environmental factors were monitored 217 

concurrently with sap flow, at 30 s intervals, with 10 min means continuously recorded in 218 

a data logger (DL2e, Delta-T Devices, Cambridge, UK). 219 

 220 

Stem hydraulic conductivity, leaf to sapwood area ratio, and sapwood density  221 

Three to five branch stems (diameter 8~10 mm) from each sampled tree were excised 222 

using a tree pruner early in the morning. These stems were immediately recut under water 223 

to avoid embolism, leaves were sprayed with water and all stems were sealed in plastic 224 

bags with moist towels to prevent transpiration, and then rapidly transported to the 225 

laboratory. Stem segments were cut under water in ~20 cm lengths, using a razor blade to 226 

trim the ends. First, stem segments were flushed with filtered and degassed 20 mmol KCl 227 

solution (at 0.1 MPa for 10 min) to remove air embolisms. Next, a 50 cm hydraulic head 228 

was attached to one end to generate a fixed pressure with which to drive water flow in the 229 

segment. A pipette was fastened to the other end of the stem segment, and the time that it 230 

took for water flow to cross the 0.1 ml graduation mark on the pipette was recorded. 231 

These data were used to calculate hydraulic conductivity (Kh, kg m s–1 MPa–1) as the 232 

value of water flow through the segment divided by the driving pressure gradient. 233 

Sapwood specific conductivity (KS, kg m–1 s–1 MPa–1) was calculated as Kh per sapwood 234 

cross-sectional area. Leaf specific hydraulic conductivity (KL, kg m–1 s–1 MPa–1) was 235 

calculated as Kh divided by the total leaf area on the stem segment (AL).  236 

AL was determined by scanning all of the leaves on each stem with a leaf area meter 237 

(Li-3000A; Li-Cor, Lincoln, USA), and used to calculate the leaf to sapwood area ratio 238 

(AL/AS, m2 cm–2). Sapwood density (WD, g cm-3) samples were taken from the same 239 

branches used for Kh measurements. With the bark completely removed, sapwood 240 

segments were submerged in water overnight, and then the saturated volume of each 241 

sample was measured by the water displacement method. Segments were then oven dried 242 

for 72 h at 70 oC and dry mass was weighed. WD is calculated as the ratio of dry mass to 243 

saturated volume in each sample. 244 

 245 

Leaf water potential, hydraulic conductance (Kleaf), and turgor loss point (Ψtlp) 246 
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Predawn leaf water potential (Ψpre, MPa) was measured between 06:00~07:00 and 247 

midday leaf water potential (Ψmid, MPa) was measured between 12:00~14:00. For each 248 

species, three replicate leaves per tree were measured using a pressure chamber with a 249 

portable pressure gas cylinder (PMS, Corvallis, Oregon, USA).  250 

Kleaf (mmol m–2 s–1 MPa–1) was measured according to the high pressure method 251 

(Franks, 2006). First, a single leaf was placed in the pressure chamber and the chamber 252 

pressure was increased enough to balance the pressure of the leaf (Ψ1) and remained there 253 

to equilibrate for about 5 min. Chamber pressure was then increased rapidly to Ψ2, with 254 

ΔΨ (Ψ2-Ψ1) around 0.5 MPa. Pre-weighed Eppendorf tubes that had been stuffed with dry 255 

tissue were used to absorb exuded sap. The weight of exuded sap over the first 10 s was 256 

measured on an analytical balance (0.1 mg) as ΔW. Leaves were scanned to get leaf area 257 

(LA) with a leaf area meter (Li-3000A; Li-Cor, Lincoln, USA). Kleaf was calculated as:  258 

Kleaf = ΔW×LA–1×time–1×ΔΨ–1                                                                                   (4) 259 

The bench-drying method was used to determine leaf turgor loss point (Ψtlp) (Tyree 260 

and Hammel, 1972). Three to five leaves for each tree were excised and rehydrated. 261 

When the first leaf water potential reached over -0.05 MPa, the drying process was 262 

started. Leaf weight and water potential were recorded periodically until the leaf wilted. 263 

Individual leaves were then oven dried and weighed to determine leaf dry matter content 264 

(LDMC, %). Ψtlp was calculated per pressure volume models (Schulte and Hinckley, 265 

1985). 266 

 267 

Leaf gas exchange, nutrients, specific leaf area (SLA), and stomatal traits 268 

Maximum photosynthetic rate (Aarea, µmol m–2 s–1) and stomatal conductance (gs, mol m–2 269 

s–1) of sun-exposed leaves were measured between 09:00~11:00 with a portable gas 270 

exchange system (Li-6400, LiCor, Lincoln, USA). Three to five leaves were measured 271 

per tree. The photosynthetic photon flux density (PPFD) in the measurement chamber 272 

was set to 1500 µmol m–2 s–1, a level that should saturate photosynthesis based on 273 

previous experiments (Liu et al., 2015). The reference chamber CO2 and leaf temperature 274 

were set to 390 ppm and 28 °C, respectively. Leaves stabilized in the chamber 275 

environment for 5 minutes before recording a data point. Intrinsic water use efficiency 276 

(WUEi) was calculated as Aarea/gs.  277 
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Between 20 and 30 leaves of each species were scanned using the leaf area meter, then 278 

oven-dried for 72 h at 70 °C and dry mass weighed. Specific leaf area (SLA, cm2 g–1) was 279 

calculated by dividing leaf area by leaf dry mass. To determine leaf nutrient content, dry 280 

leaves were ground to a powder and digested with concentrated H2SO4. Kjeldahl analysis 281 

was used to measure total nitrogen content (N, %). Atomic absorption spectrum 282 

photometry (UV-6000; Metash, Shanghai, China) was used to determine total phosphorus 283 

content (P, %). Photosynthetic rate per leaf mass (Amass, nmol g−1 s−1) was calculated as 284 

Aarea×SLA. 285 

Leaf epidermal peels were prepared from fresh leaves using a sharp razor blade, then 286 

imaged on a microscope fitted with a digital camera using image analysis software 287 

(OPTPro2012 4.0, Optec XTS20, Chongqing Optec Instrument, China). Three leaves 288 

were sampled from each species, from which three epidermal peels were taken from each 289 

leaf. Three randomly-located images from each epidermal peel were analyzed. Stomatal 290 

density (SD) was calculated and guard cell width (GW) and length (GL) were measured. 291 

The stomatal pore area index (SPI, %) was calculated as SD×GL2, which reflects stomatal 292 

pore area per leaf area (Sack et al., 2003). Per Franks and Beerling (2009), the maximum 293 

diffusive conductance to water vapour (gmax), which estimates transpiration potential, can 294 

be calculated as: 295 

 gmax = (d/v)×SD×amax/[(l+π/2×√(amax/π)]                                                                    (5) 296 

where d (m2 s-1) is the water vapour diffusivity in air at 25 °C; v (m3 mol-1) is the air 297 

molar volume at 25 °C; and SD is stomatal density. amax is the maximum area of the open 298 

stomata pore, which was approximated by π∙(p/2)2, where p is the stomata pore length, 299 

estimated as GL/2 based on Franks and Beerling (2009).  l is the stomata depth for fully 300 

opened stomata, estimated as GW/2; and π is the geometric constant (Franks and Beerling, 301 

2009). In Magnoliaceae species, stomata only exist on the abaxial surface of the leaf. 302 

 303 

Data analyses 304 

Data were analysed in R version 3.0.3 (R Development Core Team, 2013). Due to the 305 

lack of leaves for deciduous species in the dry season, t-tests on plant functional traits 306 

between evergreen and deciduous species were only carried out for data collected in the 307 



11 

 

wet season, while differences between the wet and dry seasons were tested for evergreen 308 

species using t-tests. 309 

To quantify the relationships between JS and VPD, we partitioned the data into three 310 

categories by light level and performed boundary line analyses within each category 311 

(Chambers et al., 1985). First, JS values were filtered to remove data collected under 312 

limiting light (PAR=0 µmol m–2 s–1) and low VPD (<0.1 kPa), conditions when empirical 313 

relationships between canopy stomatal conductance (Gs) and VPD are not well 314 

constrained (Oren et al., 1999). This enabled the resulting boundary line to give the best 315 

estimate of hydraulic limitation to water flux because the boundary line occurred during 316 

conditions that lead to the highest Gs at any given VPD. Next the relationships between JS 317 

and VPD were examined using the boundary line analysis separately for data grouped 318 

into three light levels: low light (LL; PAR<400 µmol m–2 s–1), middle light (ML; 319 

PAR=400~800 µmol m–2 s–1), and high light (HL; PAR=800~1200 µmol m–2 s–1). There 320 

were no HL data in the dry season due to low PAR levels at that time. Different models to 321 

predict JS from VPD were compared, including linear, exponential, power, and 322 

polynomial models, and then models with the lowest Akaike information criterion (AIC) 323 

values were selected. Due to the lack of leaves and very small JS, the relationships 324 

between JS and VPD in the two deciduous species during the dry season were not 325 

modelled. 326 

 327 

RESULTS 328 

Environmental conditions in the wet and dry seasons 329 

In the study site, air temperature and precipitation are generally higher in the wet season 330 

than the dry season, while RH and SWC do not differ between the two seasons 331 

(supplementary Fig. S1).  During the experimental year, PAR and air temperature in the 332 

wet season were higher than those in the dry season (supplementary Fig. S2a, b). In the 333 

wet season, VPD was higher in the day and lower in the night than those time points in 334 

the dry season (supplementary Fig S2c). SWC was slightly lower in the dry season 335 

compared to the wet season, yet consistently remained above 30%, indicating humid soil 336 

conditions throughout the year (supplementary Fig. S2c, d). Daily PAR, VPD, and RH 337 
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readings fluctuated greatly throughout the experimental year due to irregular rainfall 338 

events (supplementary Fig. S3a, b). 339 

 340 

Ecophysiological traits of evergreen and deciduous species under seasonal changes 341 

Due to the lack of leaves for the deciduous species in the dry season, we only compared 342 

ecophysiological traits between evergreen and deciduous species in the wet season (Table 343 

2). For hydraulic traits, evergreen species had lower KS and KL, and higher AL/AS than 344 

deciduous species. Evergreen species also had marginally higher Kleaf than deciduous 345 

species (P=0.07). There were no significant differences in WD, Ψpre, Ψmid, and Ψtlp 346 

between evergreen and deciduous species. Evergreen species had significantly lower 347 

Amass, leaf N and P contents, SLA, and stomatal size, and higher LDMC than deciduous 348 

species (Table 2). All other leaf gas exchange and stomata traits were similar between wet 349 

season measurements in the two groups, including Aarea, gs, and WUEi, as well as SD, SPI 350 

and gmax. 351 

Very few traits differed between the wet and dry season measurements of the 352 

evergreen species (Table 2). Specifically, Ψtlp, Amass, gs, and SLA were significantly lower 353 

in the dry season, compared to the wet season.  LDMC was marginally higher in the dry 354 

season, compared to the wet season, measurements of the evergreen species (P=0.08). All 355 

other traits did not differ with seasonality in the evergreen species. 356 

 357 

Sap flow patterns of evergreen and deciduous species under seasonal changes 358 

For evergreen species, the dry season JS in Michelia chapensis was higher than that in the 359 

wet season, while JS in Michelia shiluensis was similar in both seasons (Fig. 1a-d; 360 

supplementary Fig. S3c-d). For deciduous species, JS was similar to evergreen species in 361 

the wet season, and it maintained its daily dynamic pattern even with very low values in 362 

the dry season (Fig. 1e-h; supplementary Fig. S3e-f). JS in Yulania glabrata decreased to 363 

less than 10 g H2O m-2 s-1 between 12-Dec-2013 and 22-Mar-2014, while JS decreased to 364 

this same low level earlier in Yulania jigongshanensis, between 4-Nov-2013 and 17-Mar-365 

2014 (supplementary Fig. S3e-f). These findings match our phenological observations of 366 

leaf longevity, where leaves of Michelia chapensis, Michelia shiluensis, Yulania glabrata, 367 

and Yulania jigongshanensis persist for 12, 13.5, 6.5 and 7 months, respectively. 368 
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In the wet season, JS in the four species was sensitive to both VPD and light levels 369 

(Fig. 2a, c, e, and g). For all three of the assessed light levels, JS climaxed when VPD was 370 

around 1.5 kPa and decreased when VPD was greater than 2.0 kPa. JS also differed by 371 

light level, with higher JS in ML than LL levels, while JS was similar in ML and HL 372 

levels. In the dry season, JS in the two evergreen species also increased with VPD, but 373 

they decreased less dramatically when VPD>2.0 kPa, than in the wet season. Moreover, 374 

they were not sensitive to light level, as JS was similar in LL and ML levels (Fig. 2b, d).  375 

 376 

DISCUSSION 377 

Ecophysiological traits of evergreen and deciduous species under seasonal changes  378 

Most of the morphological and hydraulic traits that we measured in the evergreen 379 

Magnoliaceae species did not differ between the wet and dry seasons. Only Amass, gs, Ψtlp, 380 

and SLA decreased for evergreen species in the dry season, which suggests that hydraulic 381 

adjustment mainly occurred at the leaf level when the tropical Michelia species were 382 

grown in a subtropical area, with a characteristic cool-dry season. A paucity of 383 

precipitation during the dry season reduced water availability, and yet we did not see 384 

simultaneous decreases in RH, SWC, or VPD. SWC remained sufficiently high as a result 385 

of the relatively high mean annual precipitation that year (~1700 mm) and the cool dry 386 

season temperatures that yielded low VPD, which together reduced drought stress during 387 

the experiment. Therefore, these species were not exposed to extreme water stress, as is 388 

indicated by our similar dry and wet season measurements of Ψpre, a parameter that 389 

indicates soil water potential around the root zone when nighttime transpiration is lacking 390 

and the internal water storage is recharged (Bucci et al., 2004). 391 

The evergreen Magnoliaceae species had lower gs in the dry season because plants 392 

tend to close stomata to reduce transpiration, and consequently lower photosynthesis, 393 

during periods of short-term water stress (Arango-Velez et al., 2011, Cochard et al., 2002, 394 

Franks et al., 2007, Zhang et al., 2013). However, due to a sufficient soil water supply, 395 

Ψmid did not decrease, which suggests that the lower gs measured in the dry season was 396 

likely caused by low temperature stress rather than water limitation (Zhu et al., 2011). 397 

Meanwhile, leaf Ψmid remained greater than Ψtlp throughout the year because Ψmid 398 

remained fairly constant, while measurements of Ψtlp in the evergreen species strongly 399 
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decreased in the dry season. The lower Ψtlp indicates that these species enhanced leaf 400 

desiccation tolerance in the dry season (Lenz et al., 2006, Maréchaux et al., 2015). 401 

Evergreen leaves tend to have lower SLA and higher LDMC in the dry season (Calkin 402 

and Pearcy, 1984), which are the structural basis for lower leaf elasticity and Ψtlp through 403 

osmotic adjustments (Bartlett et al., 2012, Jacobsen et al., 2007, Scholz et al., 2012).  404 

Our findings, that the deciduous Magnoliaceae species had higher branch level 405 

hydraulic conductivity (KS and KL) with lower AL/AS and LDMC, higher Amass, leaf 406 

nutrients (N, P), and SLA, and larger stomatal size in the wet season were expected, as 407 

they acquire more resources and achieve higher assimilation during the wet portion of the 408 

year compared to the dry season, as has been reported in other species (Carter and White, 409 

2009, Chen et al., 2009, Choat et al., 2005). In addition, all ten species maintained Ψmid 410 

above Ψtlp in both seasons, indicating that they did not suffer from excessive water stress 411 

as a result of only mild drought conditions and their ecophysiological adjustments. 412 

  413 

Sap flow patterns of evergreen and deciduous species in the wet and dry seasons 414 

Contrary to our second hypothesis, the evergreen and deciduous species had similar JS 415 

values in the wet season, although deciduous species did have higher KS and KL at this 416 

time of year. These findings, however, are not completely unexpected and are consistent 417 

with previous findings (Dünisch and Morais, 2002). First, KS and KL indicate the 418 

potential hydraulic conductivity, such that deciduous species might not achieve these 419 

maximum values under natural conditions. Second, the different branch architectures in 420 

evergreen and deciduous species might obscure whole-plant hydraulic differences 421 

(Givnish, 2002, Meinzer et al., 2010). For example, higher AL/AS and lower KS and KL in 422 

evergreen species may result in similar canopy-level conductivities and whole-tree water 423 

consumption levels as deciduous species. Third, Ψmid and gs did not differ between 424 

evergreen and deciduous species in our study, which supports the JS pattern, but conflicts 425 

with the idea that the average canopy-level transpiration and gs values would be lower for 426 

evergreen than deciduous species (Meinzer et al., 1993). Instead, we attribute this to a 427 

sampling bias, in that our Ψmid and gs were measured on only sun-exposed leaves from 428 

the upper crown of the trees. While evergreen Michelia species have very dense crowns 429 

with most of their leaves shaded, the deciduous Yulania species have sparsely arranged 430 
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branches, such that most leaves are exposed to the sun. Thus, at the whole tree level, 431 

similar JS for the two Magnoliaceae genera represent an overall balance between leaf-, 432 

branch-, and tree-level water use strategies, of which the key linkages needed further 433 

investigation.  434 

The dramatic decrease in JS caused by the dry season leaf shedding of the deciduous 435 

species is natural. Indeed, it has been reported that the critical factor controlling seasonal 436 

stand transpiration is the degree of foliation present in temperate deciduous forests 437 

(Körner, 1995). Moreover, under drought conditions, deciduous leaves can serve as 438 

hydraulic fuses among seasonal dry tropical forest species (Wolfe et al., 2016).  JS in our 439 

evergreen species did not differ between the two seasons, despite experiencing significant 440 

decreases in gs and SLA in the dry season, which indicates that other ecophysiological 441 

regulations were at play. One possible explanation might be the specific phenology of the 442 

four species. We found that Michelia chapensis yields new leaves twice a year (i.e., in 443 

late September and early March), while Michelia shiluensis only produces new leaves 444 

once a year (i.e., in early March), and that both evergreen species bloom heavily in late 445 

February. As a consequence, the evergreen species require more water in January for 446 

flower and leaf bud growth. In contrast, the two deciduous species start to shed their 447 

leaves in the middle of September and do not grow new leaves until the middle of March. 448 

They also have very few flowers by early February (i.e., fewer than ten flowers per 449 

individual tree; H. Liu, unpublished data). Therefore, JS did not increase in the deciduous 450 

species during the dry season because the paucity of leaves and flowers at this time of 451 

year alleviates the need for significant water concentrations throughout the tree.  452 

During the wet season, PAR and VPD controlled the diurnal patterns of JS for 453 

evergreen and deciduous species in a similar way, suggesting that responses to these 454 

environmental cues is independent of leaf habit (Dünisch and Morais, 2002, Pataki et al., 455 

2000). VPD affected the shape of the diurnal patterns in JS, while PAR influenced the 456 

amount of JS, as has been reported in deciduous forests (Wullschleger et al., 2001). The 457 

effect of PAR on the relationship between JS and VPD, a trend that is reportedly related to 458 

low gs during this season, was weak in the dry season due to low overall PAR levels 459 

(<800 µmol m–2 s–1) (Williams et al., 1996). However, at the whole tree level, JS was 460 
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likely prompted by more physiological processes in the evergreen species, such as flower 461 

and leaf growth.  462 

 463 

Differences between evergreen and deciduous species reflect their divergent 464 

evolution 465 

Most Magnoliaceae lineages are distributed in tropical and subtropical climates, 466 

however, the temperate-centered Yulania lineage was separated from its close relatives, 467 

the tropical-centered Michelia, before the Oligocene (Nie et al., 2008). As we show here, 468 

this long period of divergent evolution (i.e., ~40 million years) led to contrasting adaptive 469 

strategies. In the subtropical area with sufficient water availability, stems and leaves were 470 

hydraulically safe during the whole year of our study (i.e., Ψmid was never lower than Ψtlp), 471 

as is also seen in species of the dry tropical forests (Hasselquist et al., 2010), the 472 

evergreen species here did not need to strictly control for hydraulic conductivity, but 473 

instead increased investment in leaves via higher AL/AS compared with their deciduous 474 

relatives, to compensate for the shady subtropical forest environment (i.e., the natural 475 

conditions for Michelia). In contrast, the deciduous species employed high stem hydraulic 476 

conductivity (KS and KL) and leaf investment in the wet season, which allowed for greater 477 

leaf resources (i.e., high N and P content, greater stomata area), to ultimately achieve 478 

higher photosynthetic rates compared to the evergreen species (Choat et al., 2005). 479 

Overall, ex situ conservation and seasonality did not bring large ecophysiological 480 

variations, and instead leaf habit might more be decisive on how species would adapt to 481 

local environmental conditions. Furthermore, similar water consumption in evergreen and 482 

deciduous Magnoliaceae species also implies the rationality of ex situ conservation in 483 

subtropical China. 484 

 485 

CONCLUSIONS 486 

Magnoliaceae species ex situ conserved in a subtropical climate did not suffer from 487 

excessive water stress in the dry season due to their ecophysiological adjustments and 488 

only mild drought conditions during the study year. In the dry season, SWC and VPD did 489 

not significantly decrease, but precipitation, temperature, and light levels were low, so 490 

that evergreen species only reduced Amass, gs, Ψtlp, and SLA. Thus, we conclude that the 491 
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divergent evolution between the evergreen Michelia and deciduous Yulania lineages led 492 

to different ecophysiological patterns: evergreen species have higher AL/AS, while 493 

deciduous species have higher KS, KL, Amass, leaf nutrients, SLA, and stomatal size, but 494 

lower LDMC. All species showed similar sap flow patterns during the wet season. 495 

Furthermore, both PAR and VPD affected the diurnal patterns of JS in the four species 496 

over the wet season, while in the dry season, only VPD was dominant in affecting JS in 497 

evergreen species. Therefore, ecophysiological adaptations might be affected more by 498 

leaf habit than seasonality for the ex situ conserved Magnoliaceae species. These species 499 

showed good hydraulic status in the subtropical area, which provides a successful case 500 

for the ex situ conservation of this ancient family, and proves valuable for studying 501 

potential adaptations of Magnoliaceae species under climatic changes.  502 
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Table 1: Description of the ten Magnoliaceae species used in this study. Names in bold 676 

indicate the four species used for sap flow monitoring. Data are mean ± SEM, n = 3~5 for 677 

each species. DBH, diameter at breast height. † indicates ground diameters for shrubs.  678 

Species Code Growth form Leaf texture Plant height (m) DBH (cm) 

Michelia chapensis Mc Evergreen tree Leathery 15.7±0.7  36.4±1.8  

Michelia shiluensis Ms Evergreen tree Leathery 8.5±0.2  19.2±0.9  

Michelia maudiae   Mm Evergreen tree Leathery 10.4±0.4  18.5±0.6  

Michelia figo Mf Evergreen shrub Leathery 4.6±0.3  10.5±0.5 †  

Michelia platypetala Mp Evergreen tree Leathery 11.6±0.6  14.8±0.7  

Yulania glabrata Yg Deciduous tree Papery 7.8±0.2  17.4±0.5  

Yulania jigongshanensis Yj Deciduous tree Papery 6.7±0.3  11.6±1.2  

Yulania cylindrical Yc Deciduous tree Papery 7.6±0.4  13.5±1.1  

Yulania denudate Yd Deciduous tree Papery 6.3±0.2  15.0±0.7  

Yulania liliiflora Yl Deciduous shrub Papery 3.7±0.2 8.6±0.5 †  

  679 
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Table 2: Ecophysiological responses of the ten Magnoliaceae species in wet and dry 680 

seasons. Data are mean ± SEM, sample sizes (n) are given in brackets. Due to the lack of 681 

leaves for deciduous species in the dry season, t-tests on traits between evergreen and 682 

deciduous species are only carried out for the wet season data, with * and ** indicating 683 

P<0.05 and <0.01, respectively. Abbreviations: KS, sapwood specific hydraulic 684 

conductivity; KL, leaf specific hydraulic conductivity; Kleaf, leaf hydraulic conductance, 685 

AL/AS, leaf to sapwood area ratio; WD, sapwood density; Ψpre, leaf water potential at 686 

predawn; Ψmid, leaf water potential at midday; Ψtlp, leaf turgor loss point; Aarea, maximum 687 

photosynthetic rate per leaf area; Amass, maximum photosynthetic rate per leaf mass; gs, 688 

stomatal conductance; WUEi, intrinsic water use efficiency; N, leaf nitrogen content; P, 689 

leaf phosphorus content; SLA, specific leaf area; LDMC, leaf dry matter content; SPI, 690 

stomatal pore area index; gmax, maximum stomatal conductance to water vapor. 691 

 Michelia 

(Ever) 

 Yulania 

(Deci) 

 Ever-Deci 

(wet season only) 

Wet-Dry 

(evergreen only) 

 Wet (5) Dry (5) Wet (5)  P of t-test P of t-test 

KS (kg m–1 s–1 MPa–1) 1.6±0.3 1.3±0.2 2.8±0.4  * 0.25 

KL×10–4 (kg m–1 s–1 MPa–1) 2.2±0.3 2.2±0.5 7.1±0.6  * 0.89 

Kleaf (mmol m-2 s-1 MPa-1) 4.5±0.6 4.1±0.5 3.3±0.3  0.07 0.55 

AL/AS (m2 cm–2) 0.7±0.1 0.6±0.0 0.4±0.1  * 0.11 

WD (g cm–3) 0.5±0.0 0.5±0.0 0.4±0.0  0.68 0.46 

Ψpre (MPa) -0.08±0.0 -0.11±0.0 -0.09±0.0  0.73 0.26 

Ψmid (MPa) -0.90±0.08 -1.00±0.17 -0.94±0.15  0.83 0.63 

Ψtlp (MPa) -1.46±0.12 -1.88±0.11 -1.40±0.10  0.52 * 

Aarea (µmol m–2 s–1) 9.2±0.5 8.6±0.9 8.8±1.6  0.83 0.56 

Amass (nmol g–1 s–1) 107.6±9.5 76.4±8.2 169.0±18.1  * * 

gs (mol m–2 s–1) 0.18±0.04 0.11±0.03 0.16±0.04  0.64 * 

WUEi (µmol mol–1) 65.0±5.3 75.9±3.9 49.4±5.0  0.16 0.68 

N (%) 1.6±0.2 1.6±0.1 2.1±0.1  * 0.94 

P (%) 0.09±0.01 0.10±0.01 0.13±0.00  * 0.38 

Leaf area (cm2) 54.7±13.1 47.3±11.6 63.4±10.4  0.21 0.68 

SLA (cm2 g–1) 116.8±9.3 89.8±5.1 203.8±11.1  * * 
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LDMC (%) 33.0±2.0 38.7±2.1 25.1±0.8  ** 0.08 

Stomatal size (µm2) 399.9±67.5 390.9±65.4 597.1±46.6  * 0.63 

Stomatal density (mm-2) 294.9±26.0 283.3±16.7 256.2±18.4  0.26 0.72 

SPI (%) 11.2±2.9 10.5±2.4 15.3±2.8  0.11 0.72 

gmax (mol m-2 s-1) 2.5±0.2 2.6±0.3 2.7±0.2  0.56 0.92 

  692 
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Figure legends 693 

Figure 1: Daily changes in sap flux density (JS) for four species during the wet (left) and 694 

dry (right) seasons. Evergreen (Ever) and deciduous (Deci) types are labeled after the 695 

species code as in Table 1 for each panel. Data are based on typical sunny days in the wet 696 

(9-12 Aug and 14-16 Sep) and dry (16-19 Jan and 29-31 Jan) seasons. 697 

 698 

Figure 2: Sap flux density (JS) in relation to daytime vapor pressure deficit (VPD) for 699 

four species during the wet (left) and dry (right) seasons. Raw data, collected in ten 700 

minutes intervals as in Fig. 1, are shown as grey crosses. The results of boundary line 701 

analyses selected the maximum JS at three PAR levels: low light (LL, black circles, solid 702 

thin lines), PAR<400 µmol m–2 s–1; middle light (ML, white circles, dash lines), 703 

PAR=400~800 µmol m–2 s–1; and high light (HL, black triangles, solid thick lines), 704 

PAR=800~1200 µmol m–2 s–1. Due to low PAR levels, there are no HL data for the dry 705 

season. See the coefficients and Akaike information criterion (AIC) values for each curve 706 

in supplementary Table S1. 707 
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Fig. 1. Liu et al. 710 

 711 

0
2
0

4
0

6
0

Wet season

(a) Mc-Ever

0
2
0

4
0

6
0

Dry season

(b) Mc-Ever
0

2
0

4
0

6
0

(c) Ms-Ever

0
2
0

4
0

6
0

(d) Ms-Ever

0
2
0

4
0

6
0

(e) Yg-Deci

0
2
0

4
0

6
0

(f) Yg-Deci

0
2
0

4
0

6
0

0:
00
12

:0
0
0:

00
12

:0
0
0:

00
12

:0
0
0:

00
12

:0
0
0:

00
12

:0
0
0:

00
12

:0
0
0:

00
12

:0
0

(g) Yj-Deci

0
2
0

4
0

6
0

0:
00

12
:0

0
0:

00
12

:0
0
0:

00
12

:0
0
0:

00
12

:0
0
0:

00
12

:0
0
0:

00
12

:0
0
0:

00
12

:0
0

(h) Yj-Deci

J
S

g
H

2
O

m
2

s
1



26 

 

 712 

Fig. 2. Liu et al. 713 
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