
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

Enabling Automatic Clutter Reduction in Parallel Coordinate Plots
Geoffrey Ellis and Alan Dix

Abstract— We have previously shown that random sampling is an effective clutter reduction technique and that a sampling lens
can facilitate focus+context viewing of particular regions. This demands an efficient method of estimating the overlap or occlusion of
large numbers of intersecting lines in order to automatically adjust the sampling rate within the lens. This paper proposes several
ways for measuring occlusion in parallel coordinate plots. An empirical study into the accuracy and efficiency of the occlusion
measures show that a probabilistic approach combined with a ‘binning’ technique is very fast and yet approaches the accuracy of
the more expensive ‘true’ complete measurement.

Index Terms—Sampling, random sampling, lens, clutter, occlusion, density reduction, overplotting, information visualisation,
parallel coordinates.

1 INTRODUCTION
In previous work [4, 5] we proposed that random sampling can be
used as an effective technique for density reduction in overcrowded
displays. We argue that if there is too much data to fit on the screen,
then taking a random sample of the data that will fit, not only
removes overlapping data items and clutter but it also tends to
preserve any trends or patterns that exist in the data. Unlike other
clutter reduction techniques, such as filtering based on chosen
attributes, random sampling does not require the user to decide on
the criterion for which data to remove or keep and the view remains
spatially undistorted.

Recent work [6] demonstrated the Sampling Lens, a
focus+context technique that allows sub-sampling and consequently
clutter reduction in high density areas whilst retaining a higher-
sampling rate over the visualisation as a whole. This technique has
been applied to both simple point plots and parallel coordinate plots.
In practice, the sub-sampling rate of the lens needs to be changed as
one moves from high density regions to less heavily plotted regions
of the visualisation. This can be done manually using a slider, but to
facilitate this process, an autosampling system was proposed which
attempts to obtain a constant level of ‘density’ as the lens is moved
over the visualisation.

To implement autosampling we need (i) an effective measure of
‘clutter’ or ‘density’ that can be set by the user and maintained by the
system, and (ii) an efficient way of calculating the measure
during interactive movement of the lens. We addressed the former
issue in a previous paper [7], by considering several potential metrics
to estimate the occlusion or overlap of lines in parallel coordinate
plots. In this paper, we will address the latter issue by developing
several ways of calculating occlusion that range from very direct
methods based on the data, to more model-based methods using
theoretical approximations. Interestingly, we find that the most
simplistic model yields surprisingly good results and is also very
cheap to calculate.

Section 2 presents the background to this work by looking at the
concept of sampling and the Sampling Lens tool. Section 3 gives an
overview of the related literature on clutter reduction techniques,
focussing primarily on those techniques used in parallel coordinates.
In Section 4, we describe our experimental platform and the dataset
used for the empirical study. Section 5 provides the theory behind
our occlusion measures. We discuss the results of the empirical study
into the accuracy and efficiency of the measures in Section 6 and
choose the ‘best’ algorithm. In Section 7 we investigate some of the

limits of this algorithm and show how a simple modification in its
application copes with extreme cases and finally in Section 8 we
present our conclusions and suggestions for future work.

Please note that when we use the term sampling in this paper, we
are referring to a random sample of the data.

2 BACKGROUND: SAMPLING AND THE SAMPLING LENS
We have found sampling to be a powerful technique in several kinds
of visualisations that require individual data items or attributes to be
represented on the display. By interactively adjusting the level of
sampling, the data density of a visualisation can be reduced to reveal
features that are otherwise hidden in the mass of points or lines in
dense regions. This is particularly useful for tasks where the user is
exploring large datasets. Often, visualisations are not uniformly
dense, consequently the low sampling rate required to investigate
denser regions can make the data in less dense regions ‘vanish’; this
is often the case with outliers. A potential solution is to adjust the
sampling rate for different areas of the screen [2] just like adjusting
the contrast levels on a photograph.

We have proposed an alternative technique namely the Sampling
Lens [6] − a moveable region with its own sampling control. This
follows a tradition of visualisation ‘lenses’ [3] that apply
transformations or add information to the area under focus, similar to
passing an x-ray glass over the display. The Sampling Lens simply
sub-samples the points within the region under the lens (see Figure 1
in Section 4). The user can therefore investigate dense regions of a
plot by reducing the lens sampling rate to an appropriate level. This
can potentially uncover interesting patterns and trends whilst still
retaining the context of the lens region within the overall plot. In
addition to its sampling control, which incidentally is relative to the
overall sampling rate, the user can alter the size of the lens, choose
its shape (circle, square or rectangle) and drag it around the display
with the mouse. In addition, the user can easily request new random
samples within the lens, thus ‘real’ patterns will persist whilst sampling
induced artefacts will disappear. This also means that outliers will be
shown at some stage. A more detailed description of Sampling Lens
can be found in [6].

2.1 Auto-sampling
Manually adjusting the sampling rate of the lens was found to be
particularly tiring for the user. A more desirable option was for the
system to set the lens sampling rate automatically, based on a
measurement of the density of the points or lines within the lens.
This was fairly straightforward for scatterplots1 as only the number
of data items at each display point had to be counted in order to
estimate the density. However for parallel coordinate plots, the

1 Although it becomes more difficult if the data points are larger than a

pixel and hence partial occlusion of points has to be taken into account.

• Geoffrey Ellis is at Lancaster University, E-Mail:g.ellis@comp.lancs.ac.uk.
• Alan Dix is at Lancaster University, E-Mail:alan@hcibook.com.

Manuscript received 31 March 2006; accepted 1 August 2006; posted online
6 November 2006.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

density estimation was more challenging, especially as little
information was found in the literature on this topic. It should be
noted that the user can set the ‘desired density’ if they wish and thus
have some control on what they consider to be cluttered.

Our first attempt at estimating density in a parallel coordinate plot
was based on a statistical approach, which was fed with data on the
calculated overlap of lines in the lens. This is later referred to as the
lines algorithm (see Section 4). While this method was reasonably
good in some regions of the plots, in others, the behaviour of auto-
sampling was not satisfactory and therefore we felt it was necessary
to come up with a better method that provides both an effective
measure of ‘clutter’ and an efficient way of calculating it.

3 RELATED WORK
Techniques for clutter reduction include filtering, distortion,
clustering, aggregation, reordering, space filling, constant density
and random sampling and these are well documented in the research
literature. However, the majority of these techniques do not attempt
to measure clutter, but they rely on the user to adjust some controls
in order to reduce the clutter. Exceptions are Woodruff’s constant
information density application [14] that does attempt to measure
data density, albeit very simply, and Bertini & Santucci [2] who
measure overplotting in sub-regions of scatterplots as part of their
quality metric and subsequent clutter reduction using non-uniform
sampling.

Previous work on reducing clutter in parallel coordinates has
applied methods such as reordering, clustering, attribute combination
and transparency. Peng et al [10] utilise dimensional reordering to
minimise the impact from outliers, which they argue obscure any
inherent structure from clustered lines. They define the clutter
measure in terms of closeness of lines, so a line without a neighbour
within a certain threshold is treated as an outlier.

Another technique is hierarchical clustering [9,15] which
constructs a tree of nested clusters of lines, also based on proximity
information. The user can decide on the level of detail displayed and
with appropriate use of transparency, the mean and extent of each
cluster can be readily seen. This helps to differentiate between
clusters; in addition, proximity-based colouring aids the separation.
As with all aggregate functions, this technique tends to remove the
detail, but one can see trends in an otherwise saturated display.
Wegman and Luo [13] also use transparency to identify regions of
high overplotting through their dense colour. Artero et al [1] use
clustering to reduce visual clutter. Their algorithm uses frequency
data, based on counting coincident lines and then smoothes the data
to produce a ‘density map’, which has the effect of grouping lines
that are fairly close to each other as well as those that are coincident.
The lines are shaded to visually identify those that are in higher
density regions. Note that, no attempt is made to measure the
occlusion of the lines. VizCluster [16] approaches the clutter issue of
high dimensional data by combining adjacent dimensions, thus
reducing the complexity of the display.

As far as we are aware, Anisotropic Volume Rendering [12] has
not been applied to parallel coordinate plots. However, this novel
approach from the world of scientific visualisation and computer
graphics reduces the clutter of 3D visualisations consisting of a huge
number of lines by converting shaded lines into anisotropic voxels.
The authors claim significant speed enhancement, reduction in
storage space and good level of detail; a promising approach to try
on parallel coordinate plots perhaps.

4 DATASET AND EXPERIMENTAL PLATFORM
The implementation of the Sampling Lens application in Java is
based on the InfoVis Toolkit [8], which has been augmented with
additional code to provide the sampling lens functionality in both
parallel coordinate plots and scatterplots. The experiments used an
instrumented version of the Sampling Lens that collects statistics
about the measures being investigated. It is also capable of producing
a real-time variable cell-width raster grid showing the overplotting

for each pixel. The application can be automated so it steps through a
range of lens sampling rates and raster cell-widths and saves the
results in a useful file format for further analysis.

The data used in most of the experiments is from the Portland
cars dataset [31/3/05 http://www.cars.com]. The 5850 records
contain details of cars for sale within 40 miles of Portland, Oregon.
The attributes on the parallel coordinates plots shown in Figure 1 are,
from left to right: year of manufacture, price, mileage, and vehicle
type (given as an integer code). The highest values are at the top of
the axes.

Figure 1. Parallel coordinate plot using 1K car dataset (labels and
lens positions for exp2 & exp3 are superimposed)

Figure 1 shows a screen shot of the parallel coordinate
visualisation based on 1000 records of the cars dataset. The majority
of our experiments used this randomly produced subset because
details in this dataset are only visible at sampling rates that are less
than 15%. So, we are pre-sampling to stretch this data range for
illustration purposes. However, further experiments were conducted
on the full dataset (and other datasets up to 10000 records) to verify
that the results scale up. Note that, we have made no attempt here to
re-organise the attributes in order to minimise occlusion.

exp1 exp2 exp3

Figure 2. Lines within the lens at a 10% lens sampling rate

The lens positions for the main experiments (exp1, exp2, exp3)
referenced in this paper are shown in Figure 1. These positions were
chosen to exemplify different patterns of lines crossing the lens, as
illustrated in Figure 2. exp1 has a large proportion of the lines
crossing each other at large angles, exp2 has many of the lines
ending at a single point, while exp3 has many lines crossing at
narrow angles.

Note that, further experiments have been conducted with the lens
at many positions and on additional real and simulated data sets to
verify the generality of observations, but we only describe selected
experiments that cover critical issues in detail here. Furthermore, we
have experimented with other lens shapes, but users are more
comfortable with the ‘spy glass’ circular lens.

ELLIS ET AL: ENABLING AUTOMATIC CLUTTER REDUCTION IN PARALLEL COORDINATE PLOTS

5 METHODS FOR CALCULATING OCCLUSION
In order to implement autosampling, we need both a measure of
‘clutter’ and an efficient way of calculating this measure. But to have
a computationally tractable measure, we decided to use fairly simple
measures based on hidden or occluded data items, as it is important
that the user is aware of the proportion of data that is not visible. If
we can measure the occlusion, then we can iteratively adjust the lens
sampling rate to give a desired density. Even better, if we can predict
the occlusion for any given sampling rate, we can choose the
sampling rate directly without the expense of an iterative procedure.

In a previous paper [7], we looked at several potential metrics to
measure occlusion in different ways. From empirical studies and
through developing a mathematical model, we found that the metrics
were in fact functionally related and can thus be used
interchangeably. Hence in this study, the simplest metric is chosen,
which we have called overplotted% − the percentage of plotted
pixels with more than one point plotted on them. Note, a plotted
point means a point on a line from a single record in the data per se.
Because of overplotting, the number of pixels with one or more
plotted points is less than the total number of plotted points.

In this section we define overplotted% precisely and describe
three different ways in which we have calculated overplotted%, from
a very direct data-driven pixel counting method to a more model-
based approach embodying simplifying assumptions about the data.
In brief, the methods are:
raster algorithm – This rasterises the lines on a grid of a given cell-

width (in pixels) and counts the number of plotted points on
each grid cell to get an estimate of overplotted%. In the case
when the cell-width is 1 pixel, this corresponds exactly to the
desired value. It is thus the ‘gold standard’ as it is based on the
actual overlap of the lines being displayed.

random algorithm – This treats every plotted point as if it were
randomly placed in the viewable pixels and calculates the
overplotted% using probability. Here, only the number of
plotted points comes from the data; everything else is based on
the theoretical model.

lines algorithm – This estimates the intersection volumes of all the
lines crossing the lens. This is partly data-driven in that it uses
actual lines, but is partially model-based in the way the line
overlaps are combined to give an overall overplotted% value.

Later in this section we will look at each of these algorithms in
more detail then in Section 6, we will see how they compare using
actual data.

5.1 Some definitions
In order to be precise about our occlusion metric and algorithms we
need some basic definitions.

For a given screen region (in particular the interior of the
sampling lens) we write S for the total number of available pixels
and M for the number of plotted data points. In general, M is not the
number of actual pixels with points plotted on them as some points
will be overplotted on the same pixel, so the number of plotted pixels
is usually less than the number of plotted points. We then define the
following raw values:

M1 – number of plotted points on their own pixel
Mn – number of plotted points sharing a pixel
S0 – number of empty pixels
S1 – number of pixels with 1 plotted point (same as M1)
Sn – number of pixels with more than 1 plotted point

Note that M = M1 + Mn and S = S0 + S1 + Sn and always M1 = S1, but
Mn ≥ 2*Sn as each overplotted pixel contains two or more overplotted
points.

Figure 3 shows an example of these values for a simple 3x3 plot.
Note too in this example there are 2 records, giving rise to 2 lines
with 3 plotted points per line, so there are 6 plotted points in total
(M), but only 5 pixels containing plotted points (S1 + Sn).

An example of a 3x3 pixel section of the screen
with a horizontal and a vertical line crossing at
the centre.
M = 6, S = 9
M1 = 4, Mn = 2
S0 = 4, S1 = 4 and Sn = 1

Figure 3. Example of overplotting

5.2 Occlusion metric – overplotted% defined
We can then define our occlusion metric as:
 overplotted% = 100 * Sn / (S1 + Sn)
In other words, overplotted% is the percentage of plotted pixels with
more than 1 plotted point. The range is 0% (all plotted points on their
own) to 100% (no single plotted points). In the example in Figure 3
this is:
 overplotted% = 100 * 1 / (4 + 1) = 20
We will now look at the three different algorithms we have
developed to calculate overplotted% in more details.

5.3 Raster algorithm
This is clearly the simplest method and the only one that corresponds
directly to the desired measurement. In effect this amounts to
emulating the action of the graphics processing in drawing the lines
across the area of the lens. This could be achieved by using the
graphics processor’s own line drawing, but is itself often slow for
very high line densities. Single pixel counting is even slower; hence
we have looked at using raster grids greater than 1 pixel wide in
order to reduce the calculation time. Now, a given line will cross a
greater proportion of the grid cells when the cells are larger – the
proportion of cells crossed being on average proportional to the grid
size. Therefore, in order to maintain the correct proportions, we can
sub-sample the lines when using coarser grids. This together with
fewer grid cells ‘plotted’ per line results in a roughly N2 speed
increase with larger cell sizes.

Figure 4. Accuracy of different raster cell-widths

Figure 4 shows how these approximations match up with
different grid sizes. Note that the ‘adjusted’ number of plotted points
refers to those plotted on a 1-pixel grid. The actual number of grid
cells ‘plotted’ is lower because of both the sub-sampling of lines and
the larger grid size. In terms of accuracy, only the coarsest grid size
of 16 pixels (leading to around 35 grid cells on a 100 pixel diameter
lens) shows any deviation from the ‘true’ 1 pixel grid. The
unevenness of the lines for cell width 8 and 16 is due to greater
random variation with smaller numbers of ‘plotted’ grid cells.
Graphs for other lens areas show similar behaviour. The resulting
significant increase in calculation speed is discussed in Section 6.2.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

5.4 Random algorithm
For our second algorithm we simply assume that all the points on all
the lines are individually randomly scattered over the available
pixels. Given this very simplistic model, the number of points plotted
in each pixel follows the binomial distribution where p, the
probability of a single point being plotted in a particular pixel is 1/S.
Hence, we can calculate expected values for the different raw values
as follows:

E(M1) = M (1–p)M–1
E(Mn) = M – E(M1) = M (1 – (1–p)M–1)
E(S0) = S (1–p)M
E(S1) = S *M (p) (1–p)M–1 = M (1–p)M–1
E(Sn) = S – (E(S0) + E(S1))
(M1, Mn etc. have been defined in Section 5.1)

A value for the overplotted% can be obtained from:
overplotted% = 100 * (1–((1–p)M + M/S (1–p)M–1))/(1– (1–p)M)

This algorithm is very cheap to calculate, as it only requires an
estimate of the total number of points to be plotted. However, it is
the least realistic, basically treating each line as a collection of points
to be randomly distributed over the available pixels.

5.5 Line algorithm
Here the lines crossing the lens (or a sample of the lines, in the case
of a denser region) are taken and the overlap between each pair of
lines is estimated by first checking the end points of the pair to verify
whether the lines cross and if they do, the overlap on one of the lines
is calculated as:
 line overlap proportion = max(1.0, wid / (len * sin(α)))
where wid and len are the width and length of the chosen line in
pixels and α is the angle between the two lines (see Figure 5). Note
that if the crossing lines are nearly parallel, they have a higher
overlap than if they cross at 90 degrees.

Figure 5. Line overlap proportion

An average overlap, p1, is computed by combining the line
overlap proportion for all intersecting lines and weighting by the
total length of the lines (non-intersecting lines are not included).
Although there are many pairs of lines (almost L2 possible pairs; a
line is not compared to itself) only an estimate is required, so it is
sufficient to use a small sample in order to calculate this overlap
proportion.

p1 effectively tells us how a point plotted on a line is likely to be
overplotted by one other line. To estimate pfree,, the likelihood that a
pixel will not be overplotted by any line, we can use:
 pfree = (1–p1)L–1
Using the definitions from 5.1 we see that:
 pfree = E(M1) / M
where M is the total of the line lengths in pixels. We then use
formulae similar to the random algorithm, but taking into account
that the lines do not cover all pixels with equal probability. Inverting
the equation for E(M1), we get an ‘effective’ number of pixels S’
(which would be expected to be smaller than S).
 S’ = 1/q
where q = 1 – pfree 1/(M-1)
Note that this algorithm uses some of the same assumptions as the
random algorithm, but bases it on some more direct measures of the
lines as they actually fall. We would therefore expect that in terms of

accuracy, this would lie somewhere between the raster and the
random algorithm.

6 COMPARING OCCLUSION ALGORITHMS
We compared the above three algorithms using a 1000 record sub-
sample of the Portland cars dataset as described previously in
Section 4. We will first consider the accuracy of the methods and
then discuss how computationally efficient they are.

6.1 Accuracy: which is good enough?
Figure 6 shows the results for exp1. It demonstrates very good
agreement between the ‘gold standard’ raster plot, based on actual
screen pixels, and the random plot [+1%, sd=1.3]. This is somewhat
surprising as the latter is based on a standard distribution of a given
number of plotted points and available pixels. The lines calculation is
still fairly close, overestimating the overplotted% by about 6%
[sd=3].

Figure 6. Three different occlusion algorithms (exp1)

We have plotted similar graphs for exp2 and exp3, but to compare all
three experiments, we have normalised the lines using the ‘gold
standard’ raster value (see Figure 7). Note that these results have
been chosen to show a range of behaviours typical of other lens
positions and datasets.

Figure 7. Exp1, 2 and 3 normalised against raster values

Figure 7 shows that the random and lines plots for exp1 follow a
path close to the diagonal (i.e. the raster values), reflecting once
again the close agreement between the three algorithms for the data
generated by this particular lens position. The light coloured yellow
pair of lines near the diagonal are for exp3, a lens region that has

ELLIS ET AL: ENABLING AUTOMATIC CLUTTER REDUCTION IN PARALLEL COORDINATE PLOTS

almost parallel lines and areas of varying density (as in Figure 2).
The lines show that estimates from the lines and random algorithms
differ more from the true raster value (up to 10% in places) than for
exp1. We believe that this discrepancy is due to the range of
densities within the lens region having a disproportionate effect on
the calculations, something we investigate further in section 7.

The two lines that deviate most are for exp2. Recall that this area
includes one of the parallel coordinate attribute axes and the points
on the axes have large numbers of lines converging on them (see
Figure 2). It appears that the lines algorithm for exp2 substantially
overestimates the overplotted% values for the whole range of
sampling rates, whereas the random algorithm underestimates
overplotted% at the lower sampling rates.

We have been looking at ways of dealing with extreme2 cases
where many lines converge to a single point on an attribute axis
within the lens. We currently allow expert users to specify a dead
zone around the attribute axes and we believe there are ‘fixes’ for the
lines algorithm to improve the robustness of its estimates (basically
the parallelogram in Figure 5 needs to be modified at line ends).
However, it is notable that even in this particularly extreme case, the
random estimate does track the general trend of the ‘gold standard’
raster curve remarkably well.

To summarise, all three algorithms yield comparable results
except in extreme situations. This is particularly noteworthy for the
random algorithm as it embodies a fairly rudimentary model of the
data! The random algorithm also performs passably in the difficult
case when the lens overlaps an attribute axis, a case where even the
direct measurement is problematic.

6.2 Efficiency: which is fast enough?
So far, whilst the lines algorithm has some problems in ‘difficult’
cases, all the algorithms are potential contenders as estimates of the
overplotted% occlusion measure. Recall that the lines algorithm uses
the intersection volumes of all the lines crossing the lens, so in terms
of efficiency, is L2 in the number of lines. The raster algorithm
rasterises the lines to a grid of given cell-width in pixels (say C
pixels), thus the time taken is proportional to the number of lines and
the number of cells crossed by the lines. However, bear in mind that
for larger cell sizes we should undersample the lines to obtain a
proper measure, so the actual time is proportionate to:
 L × ppl / C2, where ppl is points per line.
In contrast, the random calculation depends only on a count of the
number of points to be plotted. This often comes almost ‘for free’ as
a side effect of other calculations, but in the case of very large
numbers of lines, it can be easily estimated. Typically, line lengths
have a standard deviation of less than 3% of their average, so
sampling the lengths of even 1000 lines would give an error of less
than 0.1%.

Finally, we should note that there is a difference between the
modes of use of the two model-based algorithms compared with the
data-driven raster algorithm. Given initial data for a lens position
(average crossing area for lines and number of pixels for random) the
overplotted% can be calculated for any sampling rate. Thus the
appropriate sampling rate can be chosen directly to give the desired
occlusion measurement, overplotted%. However, the raster
calculation is based on the actual lines plotted at a given sampling
rate. The raster calculation therefore has to be used in an iterative
cycle adjusting the sampling rate and recalculating the measure at
each iteration. The actual time taken to use the raster algorithm is
perhaps 5-10 times the ‘headline’ figure for a single iteration.
Figure 8 shows times (in ms) to perform the raster algorithm at a
number of different cell-widths and also the times to perform the
lines algorithm (labelled LOT). The time for the random algorithm is
too small to measure. The times were taken from our Java
implementation running on a 867MHz G4 PowerBook. The x-axis

2 Although this is a fairly common occurrence, in terms of the algorithms,

the fact that so many points meet at a point is an extreme state.

shows calculations at different sampling rates (different numbers of
lines) and the quadratic growth time for the lines algorithm is
evident. The other three plots, for the raster algorithm with cell-
widths of 1, 2 and 4 pixels, are roughly linear in the number of lines
(as expected) and the decrease in the slope with increasing cell-
widths is also clear.

Figure 8. Calculation times for raster and lines algorithms

Note that the 280 ms time for the lens calculation is slow for
interactive feedback (200ms max), but given the need for iterations
with the raster algorithm, the lines algorithm was in fact more
responsive in our initial implementations. However, the 280ms is
based on 742 lines, that is over half a million line pairs. Using a
sample of these lines within the lens would reduce the lines
calculation times by several orders of magnitude whilst not
substantially altering its accuracy.

6.3 The winner …
Combining efficiency with our accuracy measurements from Section
6.1, we can see that raster algorithms with cell sizes up to 4 pixels
has little noticeable effect on accuracy and leads to a significant
decrease in processing time of at least 90% compared with the single
pixel raster. The lines algorithm is at first sight slower, but being
model-based, it can use sampled data and does not require an
iterative process. However, it is the least robust method in extreme
situations. So the clear winner is the random algorithm as it is not
only very accurate in normal cases and reasonably stable in difficult
situations, but it is also almost instantaneous compared with both
other algorithms.

7 LIMITS AND GENERALISATION
So far we have seen how the random algorithm is surprisingly
accurate and also very efficient to calculate. However, it is based on
a very rudimentary model of the plotted points, so we would expect
to find cases where it breaks down. We have already seen one
example in exp2 near the axis where many lines converge. In this
case the systematic property of parallel coordinates led to an
underestimation of overlap% by the random algorithm.

The main simplification of the random algorithm is to assume
that the points are randomly and uniformly scattered over the
available area. The fact that the points are on lines of course means
that the points are not randomly scattered; but when using real data,
this lack of randomness is clearly not an overriding problem, albeit a
surprising result. However, the lines themselves do not always lie
uniformly over the lens area and this creates a different class of
extreme cases. We will now consider empirical results for parallel
coordinates, near such areas and show how this relates to a
theoretical analysis of the performance of random algorithm on
scatter plots. The result is used to suggest a modification to the
random algorithm, which we can test empirically.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

7.1 Extreme cases – non-uniform density
As noted, we expect problems in areas where there is a marked
difference in density across the lens. Figure 9 shows a series of lens
positions at just such a boundary, taken from exp30 to exp34. These
lens positions move from being in an area of fairly uniform line
coverage (exp30) to one where only about 20-25% of the area is
covered (exp34).

Figure 11 shows plots at three of these positions (exp30, exp32
and exp34). Each figure has plots for the lines, raster and random
algorithm (reading each graph from top to bottom) at different
sampling rates. In relation to the 'golden standard' raster calculation,
the lines algorithm overestimates overplotted% and the random
algorithm slightly underestimates this occlusion measure. However,
as the lens gets less uniformly covered there is a noticeable widening
and by exp34 the random measure is underestimating by nearly 50%.
Whilst in most areas the random algorithm is surprisingly good, in
this extreme case it is no longer accurate.

There are a number of effects at the edge of a dense area, for
example the lines tend to be lying in the same direction, hence less
likely to cross, but when they do cross the overlap is greater due to
the shallow angle. Also, by definition such areas are at the edges as
far as the data set is concerned and may have unusual properties.
However, we can more easily model scatter plots in such
circumstances.

7.2 Scatter plots – theoretical analysis
Imagine a scatter plot of M totally random points spread over a lens
of area S pixels. This is exactly the model of our random
calculation, hence the true (raster) overplotted% (using Poisson
approximation) is:
 overplotted% = 100 * (1 – (1+λ)e –λ) / (1 – e –λ)
where λ = M/S is the density of points.

Now imagine spreading M/2 points over half the area, i.e. the
effect of having a lens partly over an area with density λ and half
with no points. The average density is now λ/2, but the actual
overplotted% is exactly the same as above. So the raster algorithm
would give the value above, but random algorithm would give the
value with λ/2:
 raster overplotted% = 100 * (1 – (1+λ)e –λ) / (1 – e –λ)
 random overplotted% = 100 * (1 – (1+λ/2)e –λ/2) / (1 – e –λ/2)
Figure 10 shows these values plotted against one another. Notice
that for low densities (lower sampling rate), the random algorithm
would show values that are half those of the raster algorithm (this

can also be shown analytically) and for higher densities, the values
are still substantially lower.

While the theoretical scatter plot data is different in many ways
from parallel coordinate lines, it does shed some light on the pattern
of difference between the results of the random algorithm and the
true overplotted%.

Figure 10. Theoretical values of random algorithm for an uneven
scatterplot

7.3 Using multiple bins
Given the findings of the scatter plot analysis, an obvious way to
improve the random algorithm is to split the lens area into a number
of smaller areas or bins, calculate the random overplotted% for each
bin and then perform a weighted average (weighted by the number of
plotted pixels per bin).

Figure 12 shows a bin-based correction on the same area as
exp34 in Figure 9. The data has been plotted for different bin widths
on a 100 pixel diameter circular lens. The plot is normalised (as in
Figure 7) where the binned random approximations are plotted
against the true raster calculation for different sampling rates. We
can see that whilst the original random algorithm under-
approximates the true value, the binned estimates lie remarkably
close to the perfect 45-degree line (shown as a dotted line). Even the
plot for a bin width of 50 pixels (4 bin, i.e. lens divided into quarters)
lies very close to the true line.

Figure 11. Lines, raster and random values at different sampling rates for lens positions exp30, exp32 and exp34

Figure 9. Lens at 10% sampling rate, exp30 is on the left.

ELLIS ET AL: ENABLING AUTOMATIC CLUTTER REDUCTION IN PARALLEL COORDINATE PLOTS

Figure 12. Binned-random algorithm

The binned calculation time is proportional to the number of bins
(time ∝ 1/(lensdiameter/binwidth)2). However, given that the
random calculations are very fast, the time is negligible for small
numbers of bins. Even with 64 bins, the time is still too small to
measure against the other calculation methods (see Figure 8).

8 CONCLUSION AND FUTURE WORK
We have come quite a long way to obtain such a simple result − the
best way to calculate a measure of occlusion for parallel coordinate
plots. However, the end point was quite unexpected. From the
beginning of our work with sampling, we have often used binomial
approximations to obtain an order of magnitude estimate of
behaviour. However, the level of simplification embodied in the
random algorithm seems just too coarse to use in actual calculations.
The degree of fit we have seen in both Sections 6 and 7 is truly
remarkable. Even if the lines were randomly scattered, the points on
them would not be; they would be lines! Strangely this seems to be
irrelevant to the bulk behaviour and it appears that such a simple
(even simplistic) model is surprisingly good!

Areas of rapidly varying density are approximated least well by
the random algorithm, but we have seen that we only need to split
the lens into a small number of bins to improve this to acceptable
levels, even for the worst areas.

Our empirical investigations have focussed on parallel coordinate
plots. We would not like to speculate that the random algorithm
would work for other visualisations, but it may be worth looking into
applying this to other line based techniques. For example, Rafiei &
Curial [11] use sampling to reduce the clutter of very large graphs.
Our technique can be used to choose appropriate sampling rates
based on the occlusion within the graph. Furthermore, autosampling
based on the whole plot could be useful in an application which
compares multiple plots (either side by side or in rapid succession),
where the ‘density’ of the whole plot could be normalized to some
extent.

Random sampling as a clutter reduction technique is most useful
for exploratory tasks. If the user has specific questions or is very
knowledgeable about the particular data set, then other more
appropriate techniques can be applied. However, a user faced with a
cluttered display due to excess data, can choose between applying a
technique that distorts the view in some way or one that adopts a
fairly natural process of taking a sample of the data. We believe the
sampling approach is worth considering; in fact many data sets are a
sample of an even larger data set (e.g. population of country) or of
continuous data (e.g. atmospheric data readings).

We have yet to verify that similar methods will work on point
plot data, where instead of overlapping lines there are full or partially
overlapping data points of finite size, but we deem this feasible. We
also plan to undertake studies to ascertain the practical use of the

Sampling Lens to users who are actively using parallel coordinate
plots.

Implementation details of all algorithms are at this paper’s web page:
http://www.hcibook.com/alan/papers/InfoVis06-NoClutter/

ACKNOWLEDGEMENT
The initial development of the Sampling Lens was shared by Enrico
Bertini, following a DELOS European Network of Excellence
funded visit to the UK.

REFERENCES
[1] A.O. Artero, M.C. Ferreira de Oliveira and H. Levkowitz. “Uncovering

Clusters in Crowded Parallel Coordinates Visualizations”. Infovis, pp.
131-136, 2004

[2] E. Bertini and G. Santucci. “Improving 2D scatterplots effectiveness
through sampling, displacement and user perception”. Proc.
Information Visualisation 2005, London, pp. 826- 834, July 2005, IEEE

[3] E.A. Bier, M.C. Stone, K. Pier, W. Buxton and T.D. De Rose.
“Toolglass and magic lenses: the see-through interface”. Proc.
Computer Graphics and Interactive Techniques, pp. 73-80, 1993

[4] A. Dix and G.P. Ellis. “by chance: enhancing interaction with large data
sets through statistical sampling”. Proc. Advanced Visual Interfaces,
L'Aquila, Italy, pp. 167-176, May 2002, ACM Press

[5] G.P. Ellis and A. Dix. “Density control through random sampling : an
architectural perspective”. Proc. Information Visualisation ‘02, London,
pp. 82-90, July 2002, IEEE

[6] G.P. Ellis, E. Bertini and A. Dix. “The Sampling Lens:Making Sense of
Saturated Visualisations”. CHI '05 Extended Abstracts on Human
Factors in Computing Systems, Portland, USA, pp. 1351-1354, 2005,
ACM Press

[7] G.P. Ellis and A. Dix. “the plot, the clutter, the sampling and its lens:
occlusion measures for automatic clutter reduction”. Proc. Advanced
Visual Interfaces (AVI'06), Italy, pp. 266-269, May 2006, ACM Press

[8] J-D. Fekete. “The InfoVis Toolkit”. Infovis, pp. 167-174, 2004, IEEE
[9] Y-H. Fua, M.O. Ward and E.A. Rundensteiner. “Hierarchical Parallel

Coordinates for Exploration of Large Datasets”. Visualization '99, Los
Alamitos, CA, pp. 43-50, 1999, IEEE

[10] W. Peng, M.O. Ward and E.A. Rundensteiner. “Clutter Reduction in
Multi-Dimensional Data Visualization Using Dimension Reordering”.
Infovis, pp. 89-96, Oct 2004, IEEE

[11] D. Rafiei and S. Curial. “Effectively Visualizing Large Networks
Through Sampling”. Visualization ‘05, pp. 48-55, 2005, IEEE

[12] G. Schussman. “Anisotropic Volume Rendering for Extremely Dense,
Thin Line Data”. Visualization '04, pp. 107-114, 2004, IEEE

[13] E.J. Wegman and Q. Luo. “High Dimensional Clustering Using Parallel
Coordinates and the Grand Tour”. Computing Science and Statistics, 28,
pp. 352-360, July 1996

[14] A. Woodruff, J. Landay and M. Stonebraker. “Constant Density
Visualizations of Non-Uniform Distributions of Data”. Proc. UIST'98,
San Francisco, pp. 19-28, 1998

[15] J. Yang, M.O. Ward, E.A. Rundensteiner and S. Huang. “Interactive
hierarchical displays: a general framework for visualization and
exploration of large multivariate data sets”. Computers and Graphics,
27(2), pp. 265-283, Apr 2003

[16] L. Zhang, C. Tang, Y. Shi, Y. Song, A. Zhang and M. Ramanathan.
“VizCluster and Its Application on Clustering Gene Expression Data”.
Distributed and Parallel Databases, 13(1) , pp. 73-97, 2003

