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Abstract 

UK lotto sales have fallen by 60% from its heyday in 1996 (just two years after the introduction 

of the game) when weekly sales were close to £100m, to £40m per week in nominal terms by 

2013 (and, with inflation averaging 2.9%, the real fall in sales revenue was approximately 

75%). The aim of this paper is to estimate the demand for lotto - so as to understand the fall 

in lotto sales revenue, and to evaluate attempts since 2013 to arrest the fall. 
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1.      Introduction 

Lotto is the most popular form of lottery game and such games are typically used by 

governments and charitable organisations to raise funds. Its distinctive feature is that the 

jackpot prize is often not won and “rolls over” to the following draw – multiple rollovers are 

possible and large jackpots can accumulate.  

The 2010 British Gambling Prevalence Survey estimated that 72% of the adult 

population – approximately 34 million individuals – had engaged in some form of gambling 

activity in the previous 12 months (Wardle et al, 2011). Of all the gambling products available, 

lotteries have proven to be the most popular. The UK National Lottery, the sole licensed 

distributor of the UK lotto game, achieving sales of £4.6 billion in the year to March 2015 

(Gambling Commission, 2015). This accounts for approximately 0.7% of household 

expenditure (Office for National Statistics, 2014). In the US, lotteries are available in 43 states, 

each providing state-level tax dollars, and they collectively accumulated $70.1 billion worth of 

ticket sales in 2014. Since their implementation in New Jersey in 1971, state-run lotteries in 

the US have raised a total of $300 billion in revenue for state spending.  However, UK lotto 

sales have fallen by 60% from its heyday in 1996 (just two years after the introduction of the 

game) when weekly sales were close to £100m, to £40m per week in nominal terns by 2013 

(and, with inflation averaging 2.9%, the real fall in sales revenue was approximately 75%).1 

The aim of this paper is to estimate the demand for lotto - so as to understand the fall in lotto 

sales revenue, and to evaluate recent attempts to arrest the fall. 

The sticker price of lotto is usually fixed in nominal terms for fairly long periods. Lotto 

is very much a convenience product and it is usually priced in some convenient unit depending 

on the currency.2 Thus, the effect of short-term price variation is usually inferred from changes 

in the overall prize pool since the expected value of a lotto ticket varies from draw to draw 

because of variation in the jackpot prize pool.  As is often the case in demand models, the 

effective price (i.e. net of the expected value of the prize pools) is endogenous to sales and care 

                                                 
1 The National Lottery introduced a variety of other products over this period which offset the lotto fall. 
Nevertheless, the overall revenue from the sales of the portfolio of products in 2013 was approximately £67m per 
week in nominal terms corresponding to approximately a one third nominal fall and approximately a 50% real fall 
for 1996/7. 
2 An exception was the Irish lotto game which experienced a fall in sales associated with the introduction of the 
euro currency. Legislation in Ireland required that prices be converted into euros exactly. In anticipation of this 
the price of a ticket was increased from £0.50 by 50% and, on the instruction of the euro the price was fixed, for 
a short period until the game could be tweaked, to a rather inconvenient figure of €0.95.  
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must be taken in the statistical modelling to enable the causal effect of price to be inferred. This 

is a particular issue in the case of lotto draws since prizes, and thus their expected value and 

the ‘effective price’ of a ticket, are funded using sales revenue for that draw.  Lotto is a pari-

mutuel, low-cost game which offers the possibility of large prizes with small win probabilities. 

Prior to a reform in October 2013, the UK lotto cost £1 to enter and regularly offered jackpots 

prizes of more than £8 million3. The game involved players choosing six numbers from 1 to 

49 and participants were free to choose their own numbers.4 A ticket is valid only for a specific 

draw, which typically occur on Wednesday and Saturday, in which a mechanised device 

chooses six numbers from 1 to 49 (59 after the second reform that occurred in late 2015). 

Players were rewarded with cash prizes if their chosen numbers matched between three and six 

of the randomly drawn combinations of numbers. A fixed prize of £10 (later £25) was awarded 

to those who matched three numbers, and players could win equal shares of prize pools for 

matching 4-6 numbers, with the jackpot being shared between those who matched all six. The 

6/49 design means that the probability of any given ticket winning this jackpot prize is 

extremely unlikely - approximately 1/14 million (1 in 45m in the case of 6/59 design). Multiple 

sequential rollovers are much more likely in the 6/59 design. 

Early literature (see Clotfelter and Cook, 1993, and Walker, 1998) pointed out that lotto 

features a “peculiar economies of scale” which imply that price is endogenous in a way, 

explained later, that is associated with rollovers. There have been three strands of empirical 

models of sales revenue – and both ignore the peculiar economies of scale feature of lotto. The 

first strand is based on strong functional form assumptions, that sales are linear in price, and 

inferences from such models have assumed that game design affects sales only through price. 

The second, recognises the endogeneity of price and takes a reduced form approach that 

assumes that rollovers are exogenous, and inferences from such modelling has assumed that 

game design affects sales only through.  The third strand literature has assumed linearity in 

price and instrumented price with rollovers. There are two objections to existing work: it has 

all been based on arbitrary functional form assumptions that sales depend linearly on the 

effective price or; and it has all either assumed that effective price variation arising from 

rollover is exogenous, or rollovers can provide an instrument for the effective price.  

                                                 
3 Game redesigns in the UK and US have driven large spikes in sales and prize money with recent record jackpots 
of £66 million in the UK and $1.5 billion in the US Powerball.  
4 From 1996 onwards, the vending terminal could instead randomly make the selection of numbers for them 
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However, rollovers themselves depend on sales in the previous draw and current sales 

are correlated with sales in the previous draw, so rollovers do not satisfy the requirements of a 

valid instrument. Thus, the contribution of this paper, relative to the existing literature, is to 

correct this shortcoming though a novel identification strategy and to apply semi-parametric 

methods. 

Section 2 provides an overview on the lotto literature. Section 3 argues that rollovers 

make unsuitable instruments for price since they themselves are also inherently endogenous 

due to way in which lotto is designed. Section 4 proposes that a novel yet powerful alternative 

instrument candidate is available by exploiting systematic non-random number selection by 

lotto player – a phenomenon known as ‘conscious selection’. Section 5 describes the data used 

in Section 6 to provide empirical evidence by estimating demand models for lotto using OLS 

and instrumental variables techniques using this conscious selection phenomenon. 

More recent literature suggest that the expected price is not a sufficient statistic for 

determining sales of lotto tickets. In particular, prizes may affect sales apart than via the 

expected price. Walker and Young (2001) allow for higher order moments of the prize 

distribution so that variance and skewness play a role in determining sales. In contrast, Forrest 

et al. (2002) uses the jackpot size itself as the relevant explanatory variable. Therefore, Section 

6 presents estimates of a reduced form of lottery demand, where the jackpot prize included in 

the model directly and is identified using the same strategy as for the price model. Both Walker 

and Young (2001) and Forrest et al. (2002) impose specific but arbitrary functional form 

restrictions which we have no more reason to believe than the functional form imposed by the 

price. So, an additional contribution, in Section 7, is to extend their work by adopting a totally 

flexible approach in a semi-parametric estimation and test this against a parametric polynomial 

expansion of prizes. 

Re-designs to the UK National Lottery’s flagship product occurred in 2013 and later in 

2015 with a view to rejuvenating dwindling sales and, by extension, good causes funding. The 

final contribution of this paper, in Section 8, uses data beyond the main sample to examine 

whether these changes were likely to be successful in this objective.  
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2. Background 

Commercial gambling products are rarely available at favourable odds and the 

widespread prevalence of gambling at unfair odds has long been a puzzle for economists. One 

argument that has been used to rationalise gambling with Expected Utility (EU) Theory is 

based on the idea that stakes are usually small, so that any downside losses are also small, 

relative to wealth, and the likely gains are either small or at such long odds that they can be 

neglected. This argument suggests that agents will act in a way that, at least locally, is risk 

neutral. But this explanation also demands that the expected loss is small relative to the non-

pecuniary gains associated with participating. In the case of lotto, ‘take-out’ rates – the 

proportion of sales revenue not returned in prizes – are typically large, often in excess of 50%, 

so the potential for non-pecuniary gains has to be large enough to outweigh this. Lotto operators 

emphasise the, albeit remote, possibility of life changing gains and while the expected value of 

such unlikely prizes is small the fact that participation might offer the ability to dream about 

such prospects might be real and important.  

Friedman and Savage (1948) embed this possibility in a utility of wealth function that 

they use to rationalise the coexistence of insurance and gambling, although Markowitz (1952) 

and Hartley and Farrell (2002) marshal convincing arguments against this idea as a plausible 

explanation. In addition, in the case of lotto, the rationale for the large take-out rate is that the 

revenue is used to fund public goods and most operators dedicate a large proportion of the take-

out to “good causes”. Morgan (2000) showed that within an EU framework games with fixed 

prizes, such as a raffle, can in theory come closer to efficient public good provision than 

reliance on voluntary contributions. At the very least, lotteries with a fixed prize component 

will yield levels of contributions above those obtained from reliance only on voluntary 

contribution, and large – albeit, fixed – prizes could raise sufficient revenue to provide public 

goods close to, but not exceeding, an optimum level. Morgan and Sefton (2000) provide 

empirical support. Thus, the expectation of losing might be offset by the warm glow that one 

is losing to a good cause.  

If risk aversion is locally close to neutral, and there is sufficient warm glow, then the 

relevant determinant of lottery demand will be the expected value of the gamble since the mean 

of the prize distribution (including the loss of the stake as a negative prize) is then a sufficient 
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statistic for demand. This motivates the specification that appears most commonly in the 

literature and which is followed below.  

Historically, lotteries have been used to finance public good provision especially when 

alternative funding is hard to raise. For example, the US confederate states made extensive use 

of lottery funding in the US civil war, the English used them to finance the defence of the realm 

against the Spanish Armada, and US elite universities (Yale, Harvard, and Princeton) used 

them to fund infrastructure long before they had wealthy alumni to draw upon. Because of their 

success in raising public finance, lotteries today are often operated either directly by 

governments or a private sector licensee under strict regulation (Morgan, 2000). The UK lottery 

was introduced partly with a view to funding the renovation of the Royal Opera House at a 

time when it would have been politically impossible to use regular tax dollars for this purpose. 

Lotteries are also often used in federated countries with constitutional constraints on their 

powers of taxation. For this reason, one of the main objectives of lotto design is to maximise 

tax revenues and hence funds for public good provision (Clotfelter and Cook, 1990). In the 

economics literature, attention has been focused on modelling consumer demand for lotto 

tickets and eliciting a price elasticity of demand to evaluate whether the objective of revenue 

maximisation is being achieved.  

Clotfelter and Cook (1990) note that the definition of price in the case of lottery tickets 

requires some clarification since consumers face two prices when choosing making their 

purchase decision: the ‘sticker’ price and the ‘effective’ price – which is simply the sticker 

price minus the expected value of winnings. The former is fixed whereas the latter varies from 

draw to draw due to changes in the size of prize pools which are dependent on sales for that 

particular draw. For this reason, it is the effective price which is favoured in the literature to 

estimate the price elasticity (Walker, 1998; Farrell and Walker, 1990; Forrest et al 2000). 

3. An analytical model of lotto supply 

Early models of lotto sales choose strong parametric restrictions (for example in Farrell 

et al, 1999; and Forrest et al, 2002) which involve the parametric modelling of current sales 

(or its log), 𝑆𝑆𝑡𝑡, as a function of past sales, 𝑆𝑆𝑡𝑡−𝑗𝑗, and the effective price, 𝑃𝑃𝑡𝑡, along with controls 

for time trends and exogenous demand shocks.  

The simplest lotto games are designed so that players choose 𝑛𝑛 integers from a possible 

𝑁𝑁 with pari-mutuel prizes available for matching 𝑘𝑘 ≤ 𝑛𝑛 of the numbers drawn randomly by a 
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mechanical device. More complex designs involve multiple devices and allow for finer 

gradation in the prize pools that a single device. Typically, fixed proportions of sales revenue 

are allocated to the pari-mutuel prize ‘pools’ of which successful players win equal shares. The 

operator retains a proportion of overall sales revenue, 𝜏𝜏 ∈  [0,1), to  pay for operating costs and 

tax liabilities, and to also fund public goods in many cases. This proportion is known in the 

industry as the ‘take-out rate’. The shares of sales assigned to specific pools are chosen by the 

operator and, in practice, their sum is typically regulated to ensure that a fixed proportion, 1 −

𝜏𝜏, is returned in prizes.  

Let 𝜌𝜌𝑘𝑘 ∈ [0,1] be the proportion of total prize money, (1 − 𝜏𝜏)𝑆𝑆𝑡𝑡, allocated to the prize 

pool associated with matching 𝑘𝑘 numbers. Because the prize pools are pari-mutuel and funded 

using proportions of sales, the expected prize paid to any winning individual of that prize tier 

is constant when weighted by the likelihood of winning. Normalising the price of an entry to 

1, if all prize pools were won by at least one player then the effective price of a ticket would 

trivially be 𝜏𝜏. Lotto games are often designed so that there is a non-trivial probability of there 

being no winner of the prize pool associated with k=n, known as the “jackpot” pool - in which 

case the money in that pool is added to the same prize pool in the following draw5. This paper 

refers to a draw following the draw where there are no jackpot winners as a ‘rollover draw’. If 

the prize for a particular draw is not won, it reduces the value of prizes shared amongst players 

for that draw. Since the jackpot is transferred to the next draw it raises the expected value of 

prizes for that draw, but decreases the ex ante expected value of a ticker for the previous draw. 

Walker and Young (2001) show that the possibility of rollovers has a significant impact on the 

expected value of prizes, and hence also on the effective price. 

Scoggins (1995) emphasises that the probability of a rollover occurring is a function of 

both the level of sales and the statistical difficulty of the game. Let 𝜋𝜋𝑛𝑛 be the probability of 

winning a share of the jackpot prize, awarded for matching all winning numbers. In addition to 

setting the shares of sales allocated to each prize pool, the operator is also able to determine 

                                                 
5 Whilst any prize pool could theoretically fail to have at least one winner, in practice sales are sufficiently large 
that only the jackpot prize pool is sufficiently difficult to win to induce a rollover, hence only rollovers of this 
prize are considered in the subsequent analysis for determining the effective price. 
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the statistical difficulty of the game by appropriate choice of 𝑛𝑛 and 𝑁𝑁 to influence 𝜋𝜋𝑛𝑛 as6:  𝜋𝜋𝑛𝑛 =

𝑛𝑛! (𝑁𝑁 − 𝑛𝑛)! 𝑁𝑁!⁄  From this it is possible to determine the likelihood of a rollover occurring, 𝑝𝑝𝑅𝑅,𝑡𝑡. 

If there is only one ticket sold, the likelihood that the prize pool will roll over is simply 1 − 𝜋𝜋𝑛𝑛. 

Hence, if 𝑆𝑆𝑡𝑡 tickets are sold the probability of a rollover occurring is: 

𝑝𝑝𝑅𝑅,𝑡𝑡 = (1 − 𝜋𝜋𝑛𝑛)𝑆𝑆𝑡𝑡 . (1) 

The simplest possible model of lotto is a game with only one prize pool (𝜌𝜌𝑛𝑛 = 1), which 

is shared among all players who match all 𝑛𝑛 winning numbers. If the previous draw had at least 

one winner this draw is a non-rollover draw and the prize pool is only determined by 𝜏𝜏 and the 

number of tickets sold, 𝑆𝑆𝑡𝑡. The effective price of a ticket in this draw is also influenced by the 

probability of there being no winners as 𝑃𝑃𝑡𝑡 = �1 − 𝑝𝑝𝑅𝑅,𝑡𝑡�𝜏𝜏 + 𝑝𝑝𝑅𝑅,𝑡𝑡. That is, the effective price is 

the probability weighted average of the ticket price if the jackpot is won and the ticket price if 

there are no winners. For rollover draws where the previous jackpot was not won, the expected 

value of prize shares if the jackpot is won is increased by 𝑅𝑅𝑡𝑡 𝑊𝑊𝑡𝑡⁄ , where 𝑅𝑅𝑡𝑡 is the amount of 

money added to the draw (the jackpot in 𝑡𝑡 − 1) and 𝑊𝑊𝑛𝑛,𝑡𝑡 is the number of winners of the jackpot 

prize in draw 𝑡𝑡. Since 𝑊𝑊𝑛𝑛,𝑡𝑡 is simply 𝜋𝜋𝑛𝑛𝑆𝑆𝑡𝑡 in expectation, the effective price for a rollover draw 

can be expressed as 

𝑃𝑃𝑡𝑡 = �1 − 𝑝𝑝𝑅𝑅,𝑡𝑡� �𝜏𝜏 −
𝑅𝑅𝑡𝑡
𝑆𝑆𝑡𝑡
� + 𝑝𝑝𝑅𝑅,𝑡𝑡. (2) 

This can be thought of as the inverse supply function of lotto tickets, where 𝑅𝑅𝑡𝑡 = 0 

corresponds to the non-rollover case. Several features of lotto game designs are clear from the 

definition of price. Trivially, increasing the proportion of sales retained by the operator 

increases the price, 𝛿𝛿𝑃𝑃𝑡𝑡/𝛿𝛿𝜏𝜏 > 0, which makes the game less attractive to players. As in Cook 

and Clotfelter (1993), price has a clear inverse relationship with rollover size, 𝛿𝛿𝑃𝑃𝑡𝑡/𝛿𝛿𝑅𝑅𝑡𝑡 < 0, 

since rollovers increase the expected value of prizes available. The possibility of a rollover in 

lotto has two important implications. Firstly, for any expected level of sales, the operator is 

able to alter πn (by choosing n and N) to influence price through adjusting the likelihood of a 

rollover occurring. Secondly, players will form expectations about the likelihood of a rollover 

                                                 
6 This is a special case of the hypergeometric function which can be used to determine the probability of matching 
any 𝑘𝑘 ≤ 𝑛𝑛 numbers and can be written as 𝜋𝜋𝑘𝑘 = �𝑛𝑛𝑘𝑘��

𝑁𝑁−𝑛𝑛
𝑛𝑛−𝑘𝑘� �𝑁𝑁𝑛𝑛�� , where parentheses denote binomial choice 

functions. 
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occurring, and thus their expectation of price, by estimating the level of sales and adjust their 

consumption decision accordingly. In particular, potential players may decide to defer the 

purchase of a ticket if they expect low sales, and a high probability of a rollover, in favour of 

likely higher prizes in the following draw. The problem for the operator is to balance the gain 

in sales when rollovers occur with the suppression of sales because of the probability of one 

occurring. 

Figure 1 illustrates how the inverse supply function asymptotes towards τ from above 

as more tickets are sold when there is no rollover present due to the increasing likelihood that 

the prize pool will be won. Cook and Clotfelter (1993) termed this the ‘peculiar economies of 

scale of lotto’. In the event of a rollover draw, however, the effective price of a ticket increases 

as sales increase, since higher sales makes it more likely the fixed rollover component of the 

jackpot prize will be shared amongst more winners, who then each receive a smaller share. 

This causes price to asymptote towards 𝜏𝜏 from below when the jackpot prize in enhanced by a 

rollover.  

Figure 1: Inverse supply function for a 6/49 lottery with 𝜏𝜏 = 0.5 and rollovers of £0, £4m, £8m. 

 

  



9 

 

The possibility of a rollover in lotto has two important implications. Firstly, for any 

expected level of sales, the operator is able to alter 𝜋𝜋𝑛𝑛 (by choosing n and N) to influence price 

through adjusting the likelihood of a rollover occurring. Secondly, players will form 

expectations about the likelihood of a rollover occurring, and thus their expectation of price, 

by estimating the level of sales and adjust their consumption decision accordingly. In particular, 

potential players may decide to defer the purchase of a ticket if they expect low sales, and a 

high probability of a rollover, in favour of likely higher prizes in the following draw. The 

problem for the operator is to balance the gain in sales when rollovers occur with the 

suppression of sales because of the probability of one occurring. 

Prior to October 2015 the UK lotto was characterised by 𝑛𝑛 = 6 and 𝑁𝑁 = 49 – a design 

that has proved very popular in the industry. This translates to a rollover probability of 

approximately 1 in 14 million. There were also pari-mutuel prizes available for correctly 

predicting four and five numbers, and five plus a bonus number (b) drawn from the same set 

of 49 after the six main numbers were drawn. The prizes for matching 4, 5, 5+b and 6 of the 

winning set were funded using fixed proportions of the total prize money available after the 

additional fixed prizes of £10 were paid to those who matched 3 numbers. Thus, the prize pool 

in draw t for matching 𝑘𝑘 = 4, 5, 5 + 𝑏𝑏, 6 numbers, 𝐽𝐽𝑘𝑘𝑡𝑡, can be determined using7: 𝐽𝐽𝑘𝑘𝑡𝑡 =

𝜌𝜌𝑘𝑘�(1 − 𝜏𝜏)𝑆𝑆𝑡𝑡 − 10𝑊𝑊3,𝑡𝑡� – that is, the kth share of the overall prize pool stripped of the non-

parimutuel £10 prizes. 

A final feature of the UK lotto is the twice-weekly draw. In the sample period analysed 

below, UK lotto draws occurred on Wednesdays and Saturdays of the same week8. The two 

draws are intrinsically linked by rollovers in the sense that money from jackpots not won on 

Wednesday is added to the corresponding prize pool for the following Saturday and vice versa. 

Despite the link between draws and being identical by design, in the following analysis demand 

for Wednesday and Saturday draws are estimated separately. Doing so does not then restrict 

slope coefficients to be identical for both games and allows for the possibility that players on 

Wednesday and Saturday may have different risk preferences and responses to price variation. 

                                                 
7 For the UK lotto, the share of the pari-mutuel prize fund allocated to each prize tier is parameterised as follows; 
𝜌𝜌6 = 0.52, 𝜌𝜌5+𝑏𝑏 = 0.16, 𝜌𝜌5 = 0.10, and 𝜌𝜌4 = 0.22. 
8 Between November 1994, the introduction of the game, and February 1997 draws only occurred every Saturday. 
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This assumption is apparently justified simply by examining the descriptive statistics 

in Section 5 with sales for Wednesday draws being approximately half that of Saturday draws. 

Consequently, the average likelihood of a given draw being enhanced by a rollover is much 

larger for Saturday games than for Wednesday. The difference in price between rollover and 

for non-rollover draws on Saturdays is subsequently much smaller than it is for Wednesdays - 

as would be expected from Figure 1. 

The possibility of a rollover in lotto has two important implications. Firstly, the operator 

is able to choose πn (by choosing n and N) to best suit the likely size of the market and so 

influence price variation through the likelihood of a rollover occurring. Secondly, players will 

form expectations about the likelihood of a rollover occurring, and thus their expectation of 

price, by estimating the level of sales and adjust their own purchase decision accordingly. In 

particular, potential players may decide to defer the purchase of a ticket if they expect low 

sales, and a high probability of a rollover, in favour of likely higher prizes in the following 

draw. The problem for the operator is to choose the design to balance the gain in sales when 

rollovers occur with the suppression of sales because of the probability of one occurring. 

The important empirical lesson to be taken from the simple structure of the game is that 

the expected value, and hence price, in any draw depends on the size of the rollover jackpot, 

which depends linearly on the level of sales in the previous draw, and on the (expected) level 

of sales in the current draw. Thus, the price is endogenous because of its dependence on 𝑆𝑆𝑡𝑡. 

This is obvious from Figure 1 and the importance of this endogeneity will be empirically 

important if sales are distributed around a relative steep part of the inverse supply curve. In 

practice, games typically are designed so that they operate below such level. This engenders a 

high enough probability of rollovers occurring – events which tend to increase sales in the next 

draw (and, to a lesser extent, in subsequent draws through habituation). But not so high as to 

encourage high levels of intertemporal substitution that prevents large jackpots building up 

quickly. 

4. Identifying the demand for lotto 

As usual, the solution to identifying a demand curve is to rely on exogenous variation 

in the (inverse) supply curve. This is the essence of what we do here. While rollovers are 

random events and therefore might be thought of as the source of a solution to the endogeneity 

of price, the product is more complicated than this intuition , as we make clear below. 
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Using the variation in the effective price as a determinant of lotto sales allows the price 

elasticity to be inferred. Walker (1998) suggests that, because marginal revenue is close to zero 

and intertemporal substitution is likely to be limited, the estimated long-run price elasticity of 

demand of -1.07 suggested that the recently introduced UK lotto game was appropriately 

designed to maximise revenue. This estimate for the UK game is supported by Forrest et al 

(2000) who estimated a value for the price elasticity of demand of -1.03, and Farrell et al (2000) 

with a value of -1.06.  

However, models using effective price suffer from the endogeneity issue highlighted 

above. Consider the following simple myopic model as estimated in Scoggins (1995), Farrell 

et al. (1999), Forrest et al. (2000), and Forrest et al. (2002), amongst others, with sales at 𝑡𝑡 

dependent on lagged sales, 𝑆𝑆𝑡𝑡−𝑖𝑖, current price, 𝑃𝑃𝑡𝑡, and controls for seasonality and shocks, 𝑋𝑋𝑡𝑡, 

to be estimated via OLS: 

𝑆𝑆𝑡𝑡 = 𝛼𝛼 + �βi𝑆𝑆𝑡𝑡−𝑖𝑖 + 𝜂𝜂𝑃𝑃𝑡𝑡 + 𝛾𝛾𝑋𝑋𝑡𝑡 + 𝜀𝜀𝑡𝑡.
𝐼𝐼

𝑖𝑖=1

(3) 

Since the game is now drawn twice-weekly and Wednesday and Saturday are treated 

as different games here, sales in 𝑡𝑡 − 1, 𝑡𝑡 − 3 … are ‘cross’ lags of sales and 𝑡𝑡 − 2, 𝑡𝑡 − 4 … are 

‘own’ lags of sales. It is possible to retrieve a long run price elasticity of demand, 𝜖𝜖𝐿𝐿𝑅𝑅, evaluated 

at the mean sales, from this model using the following formula: 

𝜖𝜖𝐿𝐿𝑅𝑅 =
𝜕𝜕𝑆𝑆𝑡𝑡
𝜕𝜕𝑃𝑃𝑡𝑡

𝑃𝑃𝑡𝑡
𝑆𝑆̅�1 − ∑ 𝛽𝛽𝑖𝑖𝑖𝑖=2,4,… �

(4) 

Recalling the definition of price in equation (2), it is clear that it is unrealistic to assume 

that 𝐸𝐸[𝜀𝜀𝑡𝑡|𝑃𝑃𝑡𝑡] = 0, therefore OLS estimation will be biased and an instrumental variable 

approach is necessary. This issue is raised in Walker and Young (2000) who, along with 

subsequent work by Forrest et al. (2000) and Forrest et al. (2002), use rollover size as their 

exclusion restriction in the first stage of their modelling and find estimates of price elasticity 

which are not statistically different from -1, concluding that the game is taxed efficiently. 

Recall, however, that in the simple game outlined above 𝑅𝑅𝑡𝑡 = 𝜏𝜏𝑆𝑆𝑡𝑡−1 which, if sales are serially 

correlated will result in the size of the rollover being correlated with current sales. This casts 

doubt on the validity of relying on rollover size as an instrument for the current jackpot, price, 

and rollover.  
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Figure 2 establishes that the machinery is unbiased. This highlights how the number of 

‘large’ (i.e 32+) winning numbers that appear in any given draw is indeed random by 

comparing the actual distribution of how many large numbers make up the winning set with 

the theoretically expected number – this is confirmed by a KS test that the distributions are 

identical. That is, Figure 2 shows that higher numbered balls are just as likely to be picked by 

the machinery as lower numbered ones.  

Figure 2:  Theoretical and actual proportion of draws with n numbers > 31 drawn 

 

The proposed solution to the endogeneity issue here, relies on the machinery being 

unbiased, and involves extending the work of Farrell et al (2000) who appealed to ‘conscious 

selection’ as an explanation of why rollovers occurred far more frequently than the theoretical 

rollover probability predicts. This term is used within the industry to refer to systematic non-

random number choice by players. For the average level of sales reported in our data, and the 

design parameters of the UK game, the supply-side theory above suggests that only 6% of 

Saturday draws should roll-over, whereas the actual proportion of Saturday draws with no 

jackpot winners is 13%. Farrell et al (2000) attribute this discrepancy between theoretical and 

realised rollover proportions to the fact that players, who are able to choose their own numbers, 

tend to select some numbers more frequently than others. By comparing the actual distribution 

of prize winners of each prize pool with the hypothetical distributions under the assumption of 

random selection by players, it is possible to estimate the likelihood of each of the 49 available 
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numbers being chosen by players for their own tickets. Moreover, so long as each number has 

appeared reasonably frequently, it is possible to exploit the variation in the number of prize 

winners conditional on the number of tickets sold to estimate the proportion of tickets sold 

containing a specific number. Farrell et al (2000) construct a likelihood function, with 48 

independent parameters, and estimate the probability of each number between 1-49 appearing 

on a randomly selected ticket and find this varies from as low as 1.2% (number 46) to 2.9% 

(number 7) compared to a probability of 2.04% (i.e. 1/49) that would have been expected if 

numbers had been chosen randomly. Overall, they find that numbers 1-12 prove to be most 

popular and the numbers 32-49 being the least popular.  

Conscious selection has two relevant impacts on the effective price of a ticket. Firstly, 

there will be an increase (decrease) in the likelihood of a rollover if unpopular (popular) 

numbers are drawn among the winning numbers. Secondly, if a rollover does occur when 

unpopular (popular) numbers are drawn then the rollover size will be unusually large (small) 

relative to the number of tickets sold as there will be fewer (more) winners of the three-ball 

prize which reduces the pari-mutuel prize fund9.  

The definition of price derived in (2) implicitly assumed that players choose numbers 

randomly. The implication that the likelihood of a rollover occurring is inversely related to the 

number of tickets sold is certainly plausible, but equation (2) only accurately captures this 

probability if each of the tickets sold are unique (and it only approximates the true probability 

if numbers are randomly selected by players). Rather, the true probability is dependent on the 

number of unique selections bought by players which should increase with sales but not 

necessarily in a linear fashion. As more tickets are sold, and with systematic non-random 

number selection by players, it becomes increasingly likely that the same combination of 

numbers appears on more than one ticket. To capture this, the rollover probability can be better 

described as: 𝑝𝑝𝑅𝑅,𝑡𝑡 = (1 − 𝜋𝜋𝑛𝑛)𝑓𝑓�𝑆𝑆𝑡𝑡,𝛿𝛿𝑗𝑗,𝑡𝑡� where 𝛿𝛿𝑗𝑗,𝑡𝑡 is some indicator of the popularity of each of 

the 𝑗𝑗 = 1, … 49 available numbers in draw 𝑡𝑡. 𝑓𝑓 denotes some function relating the level of sales 

and the popularity of each of the 49 numbers to the number of unique combinations sold. 

Including this refined definition of rollover probability implies re-writing effective price as: 

                                                 
9 Recall that the jackpot in draw t is defined by 𝐽𝐽𝑘𝑘𝑡𝑡 = 𝜌𝜌𝑘𝑘�(1 − 𝜏𝜏)𝑆𝑆𝑡𝑡 − 10𝑊𝑊3,𝑡𝑡�. 
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𝑃𝑃𝑡𝑡 = �1 − (1 − 𝜋𝜋𝑛𝑛)𝑓𝑓�𝑆𝑆𝑡𝑡,𝛿𝛿𝑖𝑖,𝑡𝑡�� �𝜏𝜏 −
𝑅𝑅𝑡𝑡
𝑆𝑆𝑡𝑡
� + (1 − 𝜋𝜋𝑛𝑛)𝑓𝑓�𝑆𝑆𝑡𝑡,𝛿𝛿𝑖𝑖,𝑡𝑡�. (5) 

The identification strategy used here approximates the popularity of numbers by using 

variables indicating the number of small (1-12), medium (13-31) and large (32-49) numbers 

which appear in the winning configuration of numbers. This reflects the propensity for players 

to favour birth dates in their number selection and follows from the findings of Farrell et al 

(2000). The more popular small and medium numbers are therefore expected to be negatively 

related to the probability of a rollover occurring and large numbers to be positively related. 

Specifically, the following variables are constructed to instrument rollover probability, where 

the complexity of the middle expression arises for the variable number of days in each month: 

Δ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑡𝑡 = �𝛿𝛿𝑖𝑖,𝑡𝑡

12

𝑖𝑖=1

 

Δ𝑠𝑠𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚𝑠𝑠,𝑡𝑡 = �𝛿𝛿𝑖𝑖,𝑡𝑡 +
45
48

𝛿𝛿29,𝑡𝑡 +
11
12

𝛿𝛿30,𝑡𝑡 +
7

12
𝛿𝛿31,𝑡𝑡

28

𝑖𝑖=1

(6) 

Δ𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙𝑚𝑚,𝑡𝑡 = � 𝛿𝛿𝑖𝑖,𝑡𝑡

49

𝑖𝑖=32

 

where 𝛿𝛿𝑖𝑖,𝑡𝑡 is 1 if the number i is among the winning numbers in draw t, and 0 otherwise. 

Defining just three instruments in this way is preferable to the more obvious solution of using 

all but one number dummies because it overcomes the problem that so many dummies would 

make them individually weak instruments of rollovers because of the limited frequency that 

each number appears in the winning configuration.  

On average, 14% (28%) of Saturday (Wednesday) draws roll over -  there are more on 

Wednesday draws because sales are much lower and so the probability that no ticket with the 

winning combination has been sold is larger.  Figure 3 shows that, in fact, when more large 

numbers (32+) feature in the winning combination there is a higher proportion of rollovers than 

average. the effect of conscious selection by players affects the probability of a rollover 

occurring. Figure 3 shows that as more numbers greater than 31 are drawn, the likelihood of 

there being no winner (i.e. a rollover) increases. Thus, by the mechanics of equation (2), price 

must also increase. Similarly, the most popular numbers, 1-12, have the opposite effect on the 

rollover probability as can be seen in Figure 4. 
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Figure 3:  Proportion of draws which roll-over by number of balls > 31 drawn: 
 Wednesday and Saturday draws 

 
 
Figure 4:  Proportion of rollover draws by number of balls 1-12 drawn: 

Wednesday and Saturday draws 
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5. Data 

The analysis in this paper uses data which contains information on ticket sales, prize 

pools, the number of winners of each pool, rollover sizes, the date, and the winning 

combinations drawn for 1,739 draws of the UK National Lottery between the 5th February 1997 

and the 2nd October 201310. Prior to the 5th February 1997, the UK National Lottery was drawn 

only once per week – on Saturdays – with the introduction of Wednesday draws on this date. 

Consequently, this date was chosen as the start of the sample to avoid complications in the time 

series analysis caused by a change in the frequency of draws. On the 5th October 2013, the 

operator redesigned the UK game by changing the sticker price of a ticket to £2 and restructured 

the shares of sales allocated to the individual prize pools. Thus, the draw immediately prior to 

this date offers a natural termination point for our data. As such the first 117 draws from the 

dataset, and all of the draws since the 2013 game redesign, are omitted from the sample in the 

main analysis. We return to the later observations below for out-of-sample analysis. 

Table 1 presents summary statistics for this dataset. There are 870 Wednesday draws 

and 869 Saturday draws of which 369 were rollovers – a proportion of 21%. As expected from 

The possibility of a rollover in lotto has two important implications. Firstly, for any expected 

level of sales, the operator is able to alter πn (by choosing n and N) to influence price through 

adjusting the likelihood of a rollover occurring. Secondly, players will form expectations about 

the likelihood of a rollover occurring, and thus their expectation of price, by estimating the 

level of sales and adjust their consumption decision accordingly. In particular, potential players 

may decide to defer the purchase of a ticket if they expect low sales, and a high probability of 

a rollover, in favour of likely higher prizes in the following draw. The problem for the operator 

is to balance the gain in sales when rollovers occur with the suppression of sales because of the 

probability of one occurring. 

Note that the effective price is lower for rollover draws than for non-rollover draws at 

any level of sales. This lower price for Saturday non-rollover draws than similar draws on 

Wednesday can be explained by sales being significantly larger, resulting in the likelihood of 

a rollover occurring being much smaller. 

                                                 
10 Section 7 uses more data on draws by including those made after the game re-design in 2013 to evaluate whether 
the changes in design had a positive effect on sales. 
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The effect of rollovers on Saturday sales is noticeably small, just 1%, while the effective 

price falls by 16% which, taken at face value, would imply a price elasticity of just -0.06. In 

contrast, the effect of a rollover enhanced jackpot on a Wednesday induces a 22% rise in sales 

from a 41% fall in the effective price implying an elasticity of -0.5. There are two explanations 

for this difference. Firstly, Saturday rollover draws are enhanced by a proportion of sales in the 

previous Wednesday which are, on average, around half of usual Saturday sales, so the rollover 

size in a Saturday draw is correspondingly smaller. Secondly, as can be seen in Figure 5, sales 

fall much faster over time in the Saturday draw game compared to the Wednesday draw game. 

Thus, the difference in average sales for rollover and non-rollover draws over the entire sample 

is masked by falling sales overall.  Figure 5 illustrates the declining trend of sales in both 

Saturday and Wednesday draws over the 16-year period covered by the data from around 90 

million tickets sold per week in 1997 to just over 40 million in 2013. Peaks in the graph 

highlight the impact that rollovers (and double, triple and even quadruple rollovers) have on 

ticket sales. This trend in sales figures are somewhat irrelevant to our econometric analysis, 

although it is very relevant for the operator whose job it is to maximise sales revenue. Rrather 

it is the effect of rollovers on sales (either directly or via the influence on price) that are the 

focus of our attention. Nonetheless, these declining sales figures no doubt contributed to the 

decision to redesign the game in October 2013 and second design change that occurred in 2015 

Table 1:  Summary statistics - weekly averages 

Saturday Non-Rollover Rollover All 
No. Draws 617 252 869 
Sales (millions) 40.673 41.152 40.812 
Price (£) 0.5100 0.4272 0.4860 
Three-ball winners 716,748 716,383 716,643 
Three-ball winners (proportion) 0.0175 0.0173 0.0175 
Rollover size (£m) 0 3.622 1.051 
Wednesday    
No. Draws 752 117 870 
Sales (millions) 21.389 26.129 22.032 
Price (£) 0.5329 0.3124 0.5030 
Three-ball winners 380,648 463,059 391,864 
Three-ball winners (proportion) 0.0178 0.0176 0.0178 
Rollover size (£m) 0 6.713 0.912 
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Figure 5:  Draw-by-draw lotto sales from February 1997 to September 2013 

 

6. Price model estimates 

This section presents estimates of the demand model outlined above which assumes 

that it is rollover induced variation in price that drives sales variation. The theory outlined in 

Section 3 suggests that the effective price is endogenous to sales and so least squares will 

produce biased estimates of the causal effect of price – that is necessary to infer the causal 

effect of changes to price that are driven by changes in the design parameters of the game. The 

identification strategy used here relies on the effect conscious selection by players has on the 

likelihood of a rollover occurring and the effect of random variation in fixed-prize winners on 

the rollover size – both of which impact price (via rollovers) but are not correlated with sales. 

Fitted values of both rollover probability and size from a model including these effects are then 

used to obtain an instrumented price, rather than instrumenting price directly. This circumvents 

the issue of both rollover size and probability entering the definition of price in a clearly 

nonlinear way in equation (3.9). Moreover, this allows the separation of the effects of the 

instruments on the size and probability of rollovers.  

Heckman’s (1979) two-step selection procedure offers one solution to modelling the 

rollover size and probability simultaneously, and this is what is used here. Moreover, this 

Heckman selection model is preferred over a Tobit estimation since we expect different effects 
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of our first-stage covariates on the frequency of rollovers and rollover size. In particular, lagged 

sales are expected to have a negative effect on the rollover probability but a positive effect on 

rollover size, should one occur, which would not be possible under a Tobit model. The selection 

equation of Heckman’s procedure involves using the number indicator variables of equation 

(7), along with all exogenous variables from the second stage, from the previous draw as 

determinants of a dummy variable for draw t being a rollover draw. Fitted values from this are 

used as the rollover probability in draw t-1. The second stage of this application of Heckman’s 

selection model is used to obtain an estimate of the effect of unexpected variation in 3-ball 

prize winners on rollover size in draw t. Specifically, the following model is estimated: 

𝑅𝑅𝑡𝑡 = �𝑅𝑅𝑡𝑡  𝑖𝑖𝑓𝑓 𝑅𝑅𝑡𝑡∗ > 0,
0    𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒

(8) 

where 𝑅𝑅𝑡𝑡∗ = 𝛾𝛾0 + 𝛾𝛾1𝑆𝑆𝑡𝑡−1 + 𝛾𝛾2𝑆𝑆𝑡𝑡−2 + 𝛾𝛾3�𝑊𝑊3,𝑡𝑡−1 − 𝜋𝜋3𝑆𝑆𝑡𝑡−1� + 𝜂𝜂𝑡𝑡 . The rollover probability is 

given by: 

Pr(𝑅𝑅𝑡𝑡∗ > 0) = 𝛼𝛼0 + 𝛼𝛼1𝑆𝑆𝑡𝑡−1 + 𝛼𝛼2𝑆𝑆𝑡𝑡−2 + 𝛥𝛥𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑡𝑡−1 + 𝛥𝛥𝑠𝑠𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚𝑠𝑠,𝑡𝑡−1 + 𝛥𝛥𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙𝑚𝑚,𝑡𝑡−1 + 𝜈𝜈𝑡𝑡 (9) 

The transformed variable, 𝑊𝑊3,𝑡𝑡−1 − 𝜋𝜋3𝑆𝑆𝑡𝑡−1, in the rollover size equation is the 

exogenous component of the variation in the number of 3-ball prize winners (the only fixed, 

i.e. not pari-mutuel, prize in the UK game during our sample period) from the previous draw. 

The number of 3-ball winners is itself dependent on the level of sales, which is autocorrelated, 

insofar as the expected number of winners is simply the probability of any given ticket winning 

the prize (approximately 1 in 57) multiplied by the number of tickets sold. Thus, the number 

of 3-ball winners is itself NOT a valid instrument. However, random variation in the number 

of 3-ball winners in the previous draw, 𝑊𝑊3,𝑡𝑡−1 − 𝜋𝜋3𝑆𝑆𝑡𝑡−1, is purged of the relationship with 

lagged sales and, appealing to the work of Conley et al (2012), we assume that this transformed 

variable is “plausibly exogenous” to facilitate the use of this random variation in prize winners 

as an instrument. This application of Heckman’s selection model is identified by the role that 

the exogenous variation in 3-ball winners has in determining the size of a rollover should one 

occur, but this has no bearing on the probability of there being no winners which only depends 

on the level of sales and winning numbers in each draw due to conscious selection. 

The fitted values of Pr(𝑅𝑅𝑡𝑡∗ > 0) are used as the rollover probability in draw t-1, and 𝑅𝑅𝑡𝑡∗ 

from the second stage of Heckman’s selection model is used in place of 𝑅𝑅𝑡𝑡 in the price equation 
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to obtain an instrumented price variable, 𝑃𝑃𝑡𝑡� . This instrumented price is then used in the 

following sales model: 

𝑆𝑆𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1𝑆𝑆𝑡𝑡−1 + 𝛽𝛽2𝑆𝑆𝑡𝑡−2 + 𝛽𝛽3𝑃𝑃𝑡𝑡� + 𝜓𝜓𝑡𝑡𝑋𝑋𝑡𝑡 + 𝜀𝜀𝑡𝑡. (10) 

Table 2 presents the first-stage Heckman model estimates. The bottom panel refers to 

the selection equation of the Heckman model. The estimates indicate that drawing one extra 

medium ball in the winning combination, rather than a small number, increases the rollover 

probability. Drawing one more ‘large’ number instead of a number between 1-12 in the winning 

combination increases the likelihood of a rollover even further. These findings are consistent 

with the those of Farrell et al (2000) that numbers below 13 tend to be the most popular amongst 

players and that numbers greater than 31 are chosen least of all. These effects are highly 

significant for the often rollover-enhanced Saturday draws. Drawing an extra ‘medium’ or 

‘large’ number, instead of an additional ‘small number’ on a Wednesday increases the 

likelihood that Saturday’s draw will have a rollover-enhanced jackpot. However, for 

Wednesday the effect is less pronounced, but still significant for ‘large’ numbers. This can be 

explained by Saturday ticket sales being sufficiently high that even unpopular combinations 

are often chosen by at least one player, thus making conscious selection more difficult to detect. 

Nonetheless, the sign of the coefficients and their increase in magnitude from medium to large 

dummies is encouraging. Moreover, the significance of the Saturday estimates, and of the large 

numbers dummy in the Wednesday estimates, encourages our use of this idea as the basis of 

an instrument.  

The top panel of Table 2 reports estimates of rollover size conditional on a rollover 

occurring. For both Wednesday and Saturday draws, exogenous variation in the number of 

three-ball winners have negative and significant coefficients. An extra “unexpected” winner 

of the 3-ball prize implies a reduction in rollover size of 10𝜌𝜌6 (i.e. £6.66). The coefficient 

estimates for both Wednesday and Saturday are not statistically different from this theoretical 

value. Coefficients on lagged sales are also consistent with what one would expect. Extra 

money in the preceding draw (𝑆𝑆𝑡𝑡−1) increases the size of the rollover conditional on one 

occurring. Extra sales in the corresponding draw from the preceding week (𝑆𝑆𝑡𝑡−2) would have 

reduced the likelihood of a rollover occurring in draw 𝑡𝑡 − 1, and thus sales (and any rollover 

from that draw) for that draw would have been somewhat lower than usual on average. 
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Finally, the inverse Mill’s ratio, 𝜆𝜆, provides a test of the correlation between fitted 

values of 𝜈𝜈𝑡𝑡 and 𝜂𝜂𝑡𝑡. If the coefficient on 𝜆𝜆 were 0 then rollover size would be uncorrelated with 

rollover probability. The estimate for Wednesday draws rejects the hypothesis that the two are 

uncorrelated, thus also rejects OLS and Tobit specifications. The Saturday estimate of 𝜆𝜆 fails 

to reject the null, perhaps because the typical level of sales is sufficiently high that the inverse 

supply survey is sufficiently close to horizontal. In contrast, Wednesday sales are typically 

much lower and this leads to rejection of exogeneity for Wednesday draws because the slope 

of the inverse supply curve at that lower level of sales is steeper. 

Table 2:  Heckman selection model estimates for rollover size and probability 

 Saturday Wednesday 

Dependent Variable 𝑹𝑹𝒕𝒕𝑺𝑺𝑺𝑺𝒕𝒕|𝑹𝑹𝒕𝒕𝑺𝑺𝑺𝑺𝒕𝒕 > 𝟎𝟎 𝑹𝑹𝒕𝒕𝑾𝑾𝑾𝑾𝑾𝑾|𝑹𝑹𝒕𝒕𝑾𝑾𝑾𝑾𝑾𝑾 > 𝟎𝟎 

𝑊𝑊3,𝑡𝑡−1 − 𝜋𝜋3𝑆𝑆𝑡𝑡−1 -4.911*** 
(1.2904) 

-6.695*** 
(1.0356) 

𝑆𝑆𝑡𝑡−1 1.029*** 
(0.0330) 

0.722*** 
(0.0770) 

𝑆𝑆𝑡𝑡−2 -0.091*** 
(0.0209) 

-0.106* 
(0.0571) 

Constant -12.539*** 
(1.946x106) 

-41.083*** 
(5.7091) 

Selection Equation 𝐏𝐏𝐏𝐏 (𝑹𝑹𝒕𝒕𝑺𝑺𝑺𝑺𝒕𝒕 > 𝟎𝟎) 𝐏𝐏𝐏𝐏 (𝑹𝑹𝒕𝒕𝑾𝑾𝑾𝑾𝑾𝑾 > 𝟎𝟎) 

𝛥𝛥𝑠𝑠𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚𝑠𝑠,𝑡𝑡−1 0.189*** 
(0.0553) 

0.026 
(0.0414) 

𝛥𝛥𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙𝑚𝑚,𝑡𝑡−1 0.338*** 
(0.0543) 

0.109** 
(0.0529) 

𝑆𝑆𝑡𝑡−1 -0.079*** 
(0.0216) 

-0.0290 
(0.0215) 

𝑆𝑆𝑡𝑡−2 -0.000 
(0.0151) 

-0.010 
(0.0207) 

Constant 0.223 
(1.4474) 

-0.803 
(1.8896) 

Observations 868 868 
Censored observations 616 750 

𝜆𝜆 -0.0561 2.4478*** 
𝜒𝜒(1)
2  test of 𝜆𝜆 = 0 0.06 17.01 

P-value 0.8131 0.000 
Notes: Robust standard errors in parentheses. ***/**/* denotes statistical significance at 1%,5%, 10% 
confidence. Trend and seasonality controls omitted from reporting. Sales variables in millions. 
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Long-run elasticity estimates in Table 3, derived from using instrumented price, support 

this. The OLS and H2S elasticities are not significantly different from each other, while the 

Wednesday estimates are significantly different. The price elasticity estimate for Saturday 

remains qualitatively at -0.6 suggests that revenue could be increased by making the game more 

expensive. However, for the Wednesday game a price elasticity estimate of -1.5 suggests that 

the game is over-priced and revenues could be increased by making the game more attractive 

to play.11 Assuming a price elasticity of -1 would maximise revenues for the lotto monopolist, 

then the estimates from Table 2 and rearranging the elasticity equation (7) suggests, ceteris 

paribus, that increasing the price of Saturday draws from £0.49 to £0.77 and reducing the price 

of Wednesday tickets from £0.50 to £0.36 would increase revenues from the games.  

Table 3: Second-stage estimates of lotto demand 

 OLS Control Function 
using Heckman First-Stage 

Dependent variable 𝑺𝑺𝒕𝒕𝑺𝑺𝑺𝑺𝒕𝒕 𝑺𝑺𝒕𝒕𝑾𝑾𝑾𝑾𝑾𝑾 𝑺𝑺𝒕𝒕𝑺𝑺𝑺𝑺𝒕𝒕 𝑺𝑺𝒕𝒕𝑾𝑾𝑾𝑾𝑾𝑾 

𝑆𝑆𝑡𝑡−1 0.114** 
(0.0576) 

0.119*** 
(0.0391) 

0.133** 
(0.0546) 

0.0643* 
(0.0332) 

𝑆𝑆𝑡𝑡−2 0.107*** 
(0.0288) 

0.0657*** 
(0.0318) 

0.102*** 
(0.0284) 

0.0796** 
(0.0321) 

𝑃𝑃𝑡𝑡 -41.677*** 
(3.6558) 

-30.768*** 
(2.1264) 

- 
- 

- 
- 

𝑃𝑃𝑡𝑡�  - 
- 

- 
- 

-47.283*** 
(3.5934) 

-55.856*** 
(4.6827) 

Constant 77.755*** 
(3.5936) 

28.128*** 
(2.3921) 

79.771*** 
(3.5393) 

45.237*** 
(2.5605) 

     
LR Elasticity -0.5561*** 

(0.0481) 
-0.7499*** 

(0.0475) 
-0.6416*** 

(0.0475) 
-1.4718*** 

(0.1172) 
Durbin-Watson d 1.983 1.895 2.030 1.951 
ARCH LM test  
(𝐻𝐻0: no ARCH effects) 

0.087 0.590 0.097 0.153 

ARCH LM (p-value) 0.7682 0.4424 0.7557 0.6955 
AIC 4109.37 3468.07 4060.98 3699.79 

Observations 868 868 867 868 
𝑅𝑅2 0.943 0.898 0.946 0.867 

Notes: Robust standard errors in parentheses. ***/**/* denotes statistical significance at 1%,5%, 10% 
confidence. Trend and seasonality controls omitted from reporting. Sales variables in millions.  

                                                 
11 𝜒𝜒2 tests of price elasticity IV estimates’ statistical difference from -1 yields values of 57.97 (p=0.000) 
for Saturday and 17.37 (p=0.000) for Wednesday.  
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7. Reduced form model of the effect of rollovers 

A frequent criticism of modelling lotto demand using effective price models is that their 

foundations lie in expected utility theory which is notoriously ineffective at rationalising unfair 

bets (Forrest et al, 2002). Moreover, these models assume that the effect of prize sizes – 

particularly jackpot prizes – only affect demand for lotto games through their effect on the 

expected value of winnings, which is simply an average of the prize distribution. However, 

there is a further thread to the literature that suggests that gambling responds to higher moments 

of the prize distribution. In particular, the idea that gamblers are positively motivated by 

skewness in the prize distribution is commonplace (see, for example, Golec and Tamarkin, 

1998). Cain et al (2002) show that the Golec and Tamarkin racetrack results fail to control for 

the collinearity between moments. In the context of lotto, Walker and Young (2001) show that 

higher moments of the prize distribution have a significant effect on sales.  

A theoretical rationale of a preference for skewness is implicit in Prospect Theory 

where the values associated with risky prospects are multiplied by decision weights which “… 

measure the impact of events on the desirability of prospects, and not merely on the perceived 

likelihood of these events” (Kahneman and Tversky, 1979, p.280). The theory suggests that 

individuals tend to overweight low probability events and underweight high probability events 

when making decisions in the face of uncertainty. This tendency of players to overestimate the 

chance of low probability events (longshots) occurring may be sufficient to make unfair 

gambles attractive. Quiggin (1991) uses a rank-dependent utility function to explain why risk-

averse people might play unfair gambles if such games comprise a large number of smaller 

prizes and a few large prizes, which is how most lottery games are structured. Thus, under this 

argument, large prizes might be particularly relevant in determining sales. This motivates a 

specification where variation in the largest prize is the proximate determinant of sales variation. 

Such a specification has been used by Forrest et al (2002) and so this section replicates their 

work, but using conscious selection as the identification strategy. Moreover, we extend our 

work to include a fully flexible semi-parametric specification as well as one with higher order 

polynomial transformations of the rollover size to account for the fact that players may be 

motivated by prizes beyond the effect of the average size of the prize distribution.  

Given the large size of jackpots relative to other prizes, variations in top-tier prize pools 

have a much larger effect on the higher moments than the average (expected) value of a lottery 
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ticket. This may explain why Cook and Clotfelter (1993) observe that “bettor’s evaluation of a 

lotto bet tends to be more sensitive to the size of the jackpot than the objective probability of 

winning” (p. 638) and that “bigger is better” when it comes to lotto prizes. Forrest et al (2002) 

evaluate the extent to which jackpot models are better able to explain ticket sales relative to 

effective price models. Their jackpot model predicts that an additional £1 million in the jackpot 

size would increase sales by £22,000 (Wednesday) and £53,000 (Saturday), conditional on the 

total prize pool remaining the same. Using rollover size as their identification strategy, they 

find that jackpot models yield significantly higher adjusted 𝑅𝑅2 statistics for both draw days 

compared to the corresponding price models. However, non-nested tests were inconclusive.  

This section is concerned with estimating the following: 

𝑆𝑆𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1𝑆𝑆𝑡𝑡−1 + 𝛽𝛽2𝑆𝑆𝑡𝑡−2 + 𝛽𝛽3𝑅𝑅𝑡𝑡� + 𝛽𝛽4𝑅𝑅𝑡𝑡2� + 𝛽𝛽5𝑅𝑅𝑡𝑡3� + 𝛾𝛾𝑋𝑋𝑡𝑡 + 𝜀𝜀𝑡𝑡. (12) 

Since rollover size is endogenous to sales, causal estimation of equation (12) is again 

reliant on IV techniques. Fortunately, it is possible to recycle our identification strategy and 

the Heckman selection model estimates presented in Section 6. Rather than imposing the strict 

functional form that sales if linear in the expected price whose variation is driven by equation 

(2), estimation of this rollover model simply includes the (cibic in) predicted values of rollover 

size, 𝑅𝑅𝑡𝑡�, from the Heckman selection model in place of 𝑅𝑅𝑡𝑡. 

Table 4 presents OLS and instrumented rollover estimates of this model for both 

Wednesday and Saturday games12. OLS continues to show a significant, positive relationship 

between current and lagged sales in both the Saturday and Wednesday games. For Wednesday 

draws the higher order expansions of rollover size are statistically significant, with sales 

responding positively to 𝑅𝑅𝑡𝑡2 and negatively to 𝑅𝑅𝑡𝑡3. However, an F-test  suggests that, for 

Saturday draws,  𝑅𝑅𝑡𝑡2 and 𝑅𝑅𝑡𝑡3 are jointly insignificant. These OLS estimates suggest that an £1m 

increase in rollover size would induce an increase in sales by £1.1m (£0.5m) for a given 

Saturday (Wednesday) draw. Since the operator returns approximately half of these extra sales 

in prizes, it would appear that augmenting the jackpot prize would be an ineffective way of 

increasing revenue for good causes.  

                                                 
12 Testing revealed that semiparametric estimation can be approximated by a parametric estimation of a regression 
including cubic expansion of rollover size. Hence, only regression estimates of this specification are reported here. 
Statistics from these tests are reported in Table 5. Estimates of models which are linear and quadratic in rollover 
size are reported in the Appendix. 
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Table.2:  OLS and Heckman-instrumented estimates of rollover induced ticket demand 

 OLS Heckman First-Stage 
Dependent variable 𝑺𝑺𝒕𝒕𝑺𝑺𝑺𝑺𝒕𝒕 𝑺𝑺𝒕𝒕𝑾𝑾𝑾𝑾𝑾𝑾 𝑺𝑺𝒕𝒕𝑺𝑺𝑺𝑺𝒕𝒕 𝑺𝑺𝒕𝒕𝑾𝑾𝑾𝑾𝑾𝑾 
𝑆𝑆𝑡𝑡−1 0.107** 

(0.0444) 
0.068*** 
(0.0212) 

-1.222*** 
(0.3656) 

-0.361*** 
(0.1110) 

𝑆𝑆𝑡𝑡−2 0.119*** 
(0.0262) 

0.096*** 
(0.0270) 

0.247*** 
(0.0498) 

0.120*** 
(0.0461) 

𝑅𝑅𝑡𝑡 1.234*** 
(0.3165) 

0.400* 
(0.2199) 

- 
- 

- 
- 

𝑅𝑅𝑡𝑡2 -0.096 
(0.1236) 

0.095** 
(0.0429) 

- 
- 

- 
- 

𝑅𝑅𝑡𝑡3 0.008 
(0.0092) 

-0.002 
(0.0014) 

- 
- 

- 
- 

𝑅𝑅𝑡𝑡� - 
- 

- 
- 

1.853*** 
(0.4007) 

0.519** 
(0.2123) 

𝑅𝑅𝑡𝑡2�  - 
- 

- 
- 

-0.033 
(0.0200) 

0.029 
(0.0387) 

𝑅𝑅𝑡𝑡3�  - 
- 

- 
- 

0.000 
(0.0004) 

-0.001 
(0.0012) 

Constant 55.127*** 
(2.4441) 

14.779*** 
(1.6803) 

71.86*** 
(5.6343) 

39.54*** 
(7.2570) 

F-test 𝑅𝑅𝑡𝑡2,𝑅𝑅𝑡𝑡3 = 0 0.43 38.04*** 5.96*** 4.22** 
Prob>F 0.6503 0.0000 0.0027 0.0151 
Durbin-Watson d-stat 1.914 1.605 1.959 1.988 
ARCH LM test 
(H0: no ARCH effects) 

0.032 2.120 0.040 0.024 

ARCH LM test  
(p-value) 

0.858 0.1454 0.8406 0.8777 

AIC 3941.94 2858.93 4455.42 4373.87 
Observations 868 868 868 868 
𝑅𝑅2 0.953 0.9496 0.916 0.711 
Notes: Robust standard errors in parentheses. ***/**/* denotes statistical significance at 1%,5%, 
10% confidence. Trend and seasonality controls omitted from reporting. Sales and rollover size 
variables in millions. 
 

When controlling for endogeneity in the size of the rollover, the relationship between 

current sales and sales for the immediately preceding draw is negative and significant for both 

Wednesday and Saturday games. This suggests that the positive relationship between current 

and past sales in the price model is erroneous and was not being detected because of the 

restrictive nature of the functional form. Similarly, the positive coefficients from OLS 

estimates of the rollover model may be due to not controlling for the correlation between 

rollover size and lagged sales. F-tests of the joint significance of 𝑅𝑅𝑡𝑡2�  and  𝑅𝑅𝑡𝑡3�  suggest that the 

price model was not detecting the effects of higher moments of prizes, which were instead 
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being captured by higher sales in the previous draw. The instrumented estimates suggest an 

increase in rollover size of £1m would increase Saturday sales by approximately £1.8m and 

Wednesday sales by £0.5m.  

In order to evaluate whether this reduced form model is preferable non-nested 

hypothesis testing developed by Cox (1961), Cox (1962), and later by Pesaran (1974) is used. 

This test compares two models, 𝑀𝑀1 and 𝑀𝑀2, tests two hypotheses of the form: 𝐻𝐻0:𝑀𝑀1 superior 

to 𝑀𝑀2 and 𝐻𝐻0:𝑀𝑀1 not superior to 𝑀𝑀2. The test is then repeated where the null hypothesis is re-

defined as 𝑀𝑀1 superior to 𝑀𝑀2. Determining a superior model using non-nested hypothesis 

testing requires both rejecting the null of the inferior model and not rejecting the null hypothesis 

of the superior model. As such, there are four possible outcomes: a rejection of 𝑀𝑀1, a rejection 

of 𝑀𝑀2, failure to reject both, and a rejection of both. The latter two outcomes would be 

inconclusive whilst the former would suffice for determining model superiority.  

Table 5 presents the results from the Cox-Pesaran test. This test is repeated for both 

Saturday and Wednesday draws and for both OLS and instrumented estimation regimes. For 

Saturday games, OLS estimates suggest, albeit only at the 1% level, that the rollover model is 

superior to the price model. When controlling for endogeneity, the test is inconclusive in testing 

the competing models of Saturday ticket sales.  For Wednesday sales, both non-nested testing 

of both OLS and instrumented estimates are inconclusive. The rejection of both the competing 

models mirrors the results found in Forrest et al (2002) who suggest that an improvement to 

both models would to allow for a more flexible specification of the role of jackpot prizes. This 

encourages proceeding with a semi-parametric estimation routine. 

Table 3:  Cox-Pesaran non-nested hypothesis testing of model preference 

 OLS Heckman First-Stage 
Saturday z-statistic 𝑝𝑝 > |𝑡𝑡| z-statistic 𝑝𝑝 > |𝑡𝑡| 
𝐻𝐻0: Rollover model preferred 1.88 0.030 -108.75 0.000 
𝐻𝐻0: Price model preferred -13.95 0.000 -2.46 0.007 
 OLS Heckman First-Stage 
Wednesday z-statistic 𝑝𝑝 > |𝑡𝑡| z-statistic 𝑝𝑝 > |𝑡𝑡| 
𝐻𝐻0: Rollover model preferred -6.51 0.000 -482.09 0.000 
𝐻𝐻0: Price model preferred -55.48 0.000 -2.53 0.006 
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This section has so far assumed that 𝑔𝑔, from equation (12) below, is somewhat 

arbitrarily cubic in 𝑅𝑅𝑡𝑡, whilst the price model estimated in Section 6 assumed that 𝑔𝑔 mediates 

the effect of rollover size solely through price. Allowing 𝑅𝑅𝑡𝑡 to enter non-parametrically 

overcomes the limitations inherent to imposing such arbitrary constraints, regardless of 

whether those constraints are guided by theory or not. Specifically, the semi-parametric 

technique used here estimates directly the following specification: 

𝑆𝑆𝑡𝑡 = 𝛽𝛽′𝑿𝑿𝑡𝑡 + 𝑔𝑔(𝑅𝑅𝑡𝑡) + 𝜀𝜀𝑡𝑡. (12) 

This model of sales is estimated using methods developed by Robinson (1988). 

Following contributions made by Blundell et al (1998) and Blundell and Powell (2003) to this 

estimation method in the presence of endogenous regressors, rollover size is instrumented as 

per the Heckman first-stage in Section 613, and the residual of this first stage is then included 

in the non-parametric component. Other controls, 𝑿𝑿𝑡𝑡, form the parametric component of this 

specification and include own and cross lagged sales and variables to control for trend.  

Table 6 reports the coefficient estimates of the parametric component. As with the 

majority of estimates above, coefficients on both own and cross lagged sales are positive and 

highly significant for both Wednesday and Saturday draws. Moreover, the coefficient on the 

residual from the first stage is also significant indicating the assumption that rollover size is 

endogenous is justified. A test developed by Hardle and Mammen (1993) reveals that both 

Wednesday and Saturday models are statistically different from a parametric fit which is linear 

in rollover size, and the Saturday modelling is statistically different from parametric fits which 

are quadratic and cubic in rollover size at the 5% level.  

Estimates for Wednesday, however, are not statistically different from either the 

quadratic and cubic parametric rollover models. The difference in these tests between 

Wednesday and Saturday models are not surprising upon examination of Figure 6 which are 

plots of the nonparametric estimates of the function 𝑔𝑔 for Wednesday and Saturday draws, 

respectively. For Saturday, the relationship is highly non-linear, with modest increases in sales 

for single and double rollovers in the £0-10m range, but large increases in sales for treble 

rollovers, almost all of which are over £10m. For the Wednesday draw it can be seen that the 

                                                 
13 Details of this estimation procedure can be found in the Appendix. 



28 

 

non-parametric fit indeed looks close to quadratic, with what seems to be an increasing gradient 

for larger rollover sizes. 

Differing estimates suggest that players in Wednesday and Saturday draws respond 

differently to increases in rollover sizes. Moreover, the non-linear relationship between rollover 

size and sales for both Wednesday and Saturday draws does indicate that previous literature 

using price variation alone is not sufficient to accurately capture the tresponse of players to 

changes in the prize distribution. 

Table 4:  Parametric coefficient estimates from the semi-parametric models of sales 

Dependent Variable 𝑺𝑺𝒕𝒕𝑺𝑺𝑺𝑺𝒕𝒕 𝑺𝑺𝒕𝒕𝑾𝑾𝑾𝑾𝑾𝑾 

𝑆𝑆𝑡𝑡−1 0.186*** 
(0.0616) 

0.243*** 
(0.0567) 

𝑆𝑆𝑡𝑡−2 0.153*** 
(0.0248) 

0.220*** 
(0.0409) 

𝜌𝜌 -4.225*** 
(1.6615) 

-4.243*** 
(1.1715) 

t-test of the non-parametric vs 
parametric fitted models: 

  

Linear 
p-value 

3.592*** 
0.00 

4.069*** 
0.00 

Quadratic 
p-value 

2.595** 
0.04 

0.524 
0.63 

Cubic 
p-value 

1.983** 
0.04 

0.335 
0.96 

𝑅𝑅2 0.9472 0.9477 
Observations 845 852 
Notes: Robust standard errors in parentheses. ***/**/* denotes statistical significance 
at 1%,5%, 10% confidence. Trend and seasonality controls omitted from reporting. 
Sales variables in millions. 
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Figure 6:  Non-parametric estimates of rollover size effects for Saturday and Wednesday 

 
Notes: 95% confidence interval. Red line is the linear fit. Green dots / yellow triangles / blue squares denote single 
/ double / treble rollovers.  
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8. Evaluating lotto reforms 

Changes made to the UK lotto game in October 2013 and October 2015 were likely to 

have been in response to the dwindling sales which can be seen in Figure 5. The 2013 changes 

saw the sticker price increase from £1 to £2, a change in the share of prize money allocated to 

each prize tier which saw a larger share of the pari-mutuel prize fund being allocated to the 

jackpot, an increase in the fixed-prize awarded for matching 3 of the 6 winning numbers from 

£10 to £25, and 50 fixed raffle prizes of £20,000 for each draw. In 2015, the set of numbers 

from which winning combinations were drawn (and from which players could choose) was 

increased to 59, a prize of one free ticket to the following draw for matching two numbers was 

introduced, the number of £20,000 raffle prizes available each draw was reduced to 20 and a 

£1m raffle prize was added. Also in 2015, the cap on the number of consecutive draws for 

which the prize could have no winners was removed, with the operator instead allowing the 

prize to “roll-over” until it reached £50m after which, if it had not been won again, would be 

shared between winners of the next-highest prize tier. This cap was lowered in August 2016 to 

£22m. The natural question to ask is whether the changes were effective in rejuvenating sales 

and, if so, how effective were they? 

The price model estimates from Section 3 tentatively suggested that lotto sales could 

be increased if the Saturday draw, where demand is price inelastic, were made more expensive 

to play relative to the Wednesday draw, where demand is price elastic. Introducing raffle prizes 

from 2013 onwards could, at least in theory, have achieved precisely this. The 50 raffle prizes 

of £20,000 for each draw, which any given ticket is equally likely to win, are paid before prize 

money is shared amongst the pari-mutuel prize funds. Effectively, this change reduces the value 

of money made available to pari-mutuel prizes by £1m. This then influences the effective price 

by reducing the size of a rollover, should one occur.  

The implication of this change for effective price is two-fold. Firstly, should there be 

no winners of the jackpot prize in the current draw, the increase in the effective price (caused 

by money lost to the rollover) is smaller than it would otherwise have been if there were no 

raffle prizes awarded. Having no winners of the jackpot prize occurs more frequently on 

Wednesday draws than Saturday due to lower sales. Therefore, this smaller increase in effective 

price will be experienced more frequently in Wednesday draws and should decrease the 

average price of Wednesday draws relative to that of Saturday, compared to the old design.  
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Secondly, the decrease in price for the subsequent draw is smaller than it would have 

otherwise been because the size of the rollover has been reduced. Again, this decreases the 

average price of Wednesday draws relative to Saturday because Wednesday have fewer 

jackpots enhanced by rollovers from Saturday than vice versa. Thus, this smaller decrease in 

price is experienced less frequently on Wednesdays than on Saturdays and will decrease the 

relative price of Wednesday draws on average. These two effects are amplified by the fact that 

the £1m taken from the pari-mutuel prize pool is a larger share of the pool for Wednesday 

draws than it is for Saturday draws. Moreover, the changes in 2015 saw even more money 

(£1.4m per draw) being awarded in raffle prizes, partly at the expense of the jackpot.  

However, other changes implemented simultaneously in 2013 have an opposing effect 

on Wednesday prices relative to Saturdays. In particular, the share of the pari-mutuel prize pool 

allocated to the jackpot prize increased from around 50% to over 80% at the expense of prize 

money allocated to the lower pari-mutuel prize tiers. This increase in the share of prize money 

allocated to the jackpot means that the raffle prize money deducted from the pari-mutuel prize 

fund was unlikely to affect the average size of the jackpot and, by extension, the size of 

rollovers and their effect on effective price when they occur. Moreover, an increased frequency 

of rollovers arising from doubling the sticker price in 2013 (also doubling the effective price 

for both Wednesday and Saturday draws and fewer tickets being bought overall) and increasing 

the difficulty of the game in 2015 will likely lead to an increased effective price for both games.  

Whilst theory can predict the direction of the effect of each of the design changes 

discussed above, little is known about the magnitude of the effect of changing game-specific 

parameters has on the demand for tickets, which is not surprising given the unique way in 

which the price of lotto, rollovers, and sales are all endogenous to one another. Thus, given the 

conflicting effects that the simultaneous design changes are predicted by theory to have on the 

price of lotto tickets, whether or not they are collectively effective in reviving lotto sales 

revenue is unclear. A naïve answer can be found by simply comparing sales figures for each 

draw before and after the changes.  

Figure 7 illustrates the sales figures for Wednesday and Saturday draws of the UK lotto 

from November 2011 to July 2017 – allowing some comparison to be made between ticket 

sales for the pre-2013, post-2013 and post-2015 designs. The red vertical lines correspond to 

the dates on which the first draws took place of the new designs. The 2013 reform appears to 
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have had an immediate impact on sales figures, particularly for Saturday draws, causing an 

apparent parallel shift upwards in both Wednesday and Saturday revenue numbers. The 2015 

re-design does not obviously display such an increase in sales, relative to the 2013 design, but 

does produce a small subset of draws in early 2016 where sales reached in excess of £90m for 

a Saturday draw and over £40m for a Wednesday draw. These spikes correspond to an 

unusually large rollover which occurred due to the operator removing a cap on the number of 

consecutive draws that a rollover was allowed to happen – instead opting to terminate 

consecutive rollovers when the jackpot prize reached £50m in value14. After the immediate 

shift in sales following the 2013 design changes, sales – particularly on Saturday – appear to 

continue to follow the downward trend visible in Figure . Moreover, the sales depicted towards 

the end of the sample in Figure 3 seem to return to similar figures seen before October 2013 – 

suggesting that the changes made to the game offered only a temporary boost in sales. 

Figure 7: Draw sales for the UK lotto (Nov 2011-Jul 2017) 

 

                                                 
14 In 2016, the cap on the value which the rollover prize could reach was lowered to £22m. If the rollover reaches 
this amount, and there are no winners in the following draw, then it is shared between winners of the next highest 
prize tier.  
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Table 7 compares sales revenue for the two-year period before the 2013 reform with  

the post-2013 design and the post-2015 design. Following the 2013 change, average weekly 

revenues rose by around £5m (over 10%), an increase of just under £2m in revenues from 

Wednesday draws and around £3m for Saturday draws. The larger proportionate rise on 

Wednesday is consistent with the raffle prizes being more highly valued when sales are low. 

The higher standard deviation in revenues compared to the pre-2013 design reflects the fact 

that rollovers – which induce increases in sales – occur much more frequently because of the 

fall in the quantity of tickets sold. In contrast the late 2015 reform appears to have had an 

approximately 10% negative effect on sales – which was proportionately twice as large on 

Saturday as Wednesday, perhaps reflect the further shift towards raffle prizes that are more 

valuable for Wednesdays with its lower level of sales. 

Table 7:  Comparison of sales revenues between game designs (£m per week) 

 Pre-2013 
game 

Post-2013 
game 

Post-2015 
game 

Wednesday 15.772 
(1.4209) 

17.532 
(3.4835) 

16.404 
(3.9801) 

Saturday 28.776 
(1.9675) 

32.283 
(2.7633) 

28.033 
(7.9474) 

Weekly 44.548 
(3.0683) 

49.815 
(4.8408) 

44.437 
(11.5762) 

Notes: Pre-2013 sales only considered for the two years (104 weeks) before the 
original 2013 game re-design. Standard deviations in parentheses. 

 

Whilst informative, the story told by Figure 7 and Table 7, that sales increased by 

roughly £5m per week following the 2013 reform before falling back to pre-2013 levels, are 

only indicative of the (lack of) success of these reforms. To properly evaluate the effectiveness 

of the changes, one would need to estimate the level of sales under the original game design 

over the same time period – for which, clearly, there is no data. The most obvious approach to 

constructing this missing counterfactual is to use out of sample forecasts from the estimates of 

the models presented earlier. To give a flavour of the implications we use the “structural” model 

(columns 3 and 4 of Table 3) where all aspects of the reform are assumed to be mediated 

through the expected value of tickets.  

Given the autocorrelation of sales, and the endogeneity of both price and rollovers this 

approach requires dynamic forecasting. This is fraught with difficulty since, without the 
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counterfactual data, the variation in “price” is driven by both the counterfactual size and, 

particularly, the counterfactual frequency of rollovers, which are not known. The endogeneity 

of rollovers to sales makes deriving these from the equations of the model difficult.  Our 

approach is to anchor the predictions at the last week of the original design and use these as the 

lagged values in the following week. On the basis of the last pre-reform sales figures for 

Wednesday and Saturday we compute the expected rollover probability and size in the 

following draw.  

The one parameter we lack is the effect of the sticker price on demand.  If tickets were 

perfectly divisible then it might be reasonable to assume that the sticker price has no effect: 

doubling the sticker price will also double the prize pool and the game remains effectively the 

same as before. However, there is no facility for buying half a ticket - although one might agree 

with someone else to share the costs (and benefits) of a single ticket. Someone who is only on 

the margin of buying a £1 ticket are likely to drop out rather than buy a £2 ticket, given that 

half a £2 ticket can no longer be obtained. 

But we have no way of inferring what the effect of the sticker price reform has been 

from the pre-reform time series data. Instead we use the available microdata and assume that 

tickets are perfectly indivisible together with estimates of the probability of buying none, one, 

two, three etc. We observe the distribution of (household) purchases using cross section data 

in the Living Costs and Food Surveys corresponding to Nov 2012 - Oct 2013 when tickets were 

available at £1 each; and those from Oct 2013 to Sept 2014 when tickets cost £2.  LCF collects 

lottery spending through a diary record for each household. We find that there is under-

reporting in the data, by comparing with the time series sales data, of approximately 31% (both 

before and after the reform). The data records fortnightly spend, and less than 5% of 

participating households record non-integer amounts. However, 17% of participating 

household house record odd (i.e not even) integer amounts indicating that they do not buy the 

same number of £1 tickets in both weeks. Thus, we round the data into the nearest even integer 

to get an approximation of weekly tickets bought.  

It is not possible to say where in the distribution of spending this shortfall comes from. 

For simplicity, we overweight all those households who purchase at least one ticket in each of 

the two years of data separately to ensure that the average weighted spending in each year 

matches the average official sales revenue figures. We underweight the game non-participitants 
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by the same degree to ensure that the weighted data yields the same unweighted sample size. 

That is, we assume that the under-recoding is entirely due to players misreporting zero 

expenditure when in fact they have bought tickets. The participation rate is 40% in the diary 

fortnight averaged over the year immediately prior to the £2 reform and 29% in the year 

immediately after the £2 reform. We also assume that such forgetfulness is random, so we 

inflate the proportion recording £1 by the same proportionate rise as the proportion recording 

£2 etc.  

We treat demand as a latent variable and estimate a zero-inflated negative binomial 

model to estimate the probability of buying 0, 1, 2, 3, etc in the diary fortnight in the 12 months 

before the reform as a function of gross income (see Appendix section E for the distribution of 

lotto expenditure across the income distribution), a quadratic function of the age of the 

household head, a dummy for male household head, dummies for each fortnight of the year, 

dummies for each region, and dummies for one, three, four or more adult households. We then 

predict how many would spend  £2, £4, £6 etc in a week if  1, 3, 5 etc are no longer available. 

We do this by predicting the probabilities that those observed to buy a £2 ticket in the 

postreform year would be more likely to buy 0 rather than 2, and the same for  those who would 

buy or 2 over 0 (and 2 vs the most likely of 1 and 3, etc). We then gross up these probabilities 

proportionately to match the overall official sales in that post reform year. We then compare 

the proportions predicted to spend nothing, £2, £4, etc. with the actual proportions in the 

following year of LCF data (again corrected for under-reporting). We find we underpredict the 

actual proportions of £2 by 38%, £4 by 30%, and £6 by 25%, and the estimates beyond that are 

very imprecise. We aggregate these to find an overall over-prediction of 35%. Thus, our best 

guess is that doubling the sticker price was responsible for a drop in the number of tickets 

bought by about one third across the year. Unfortunately, we are not able to do this separately 

for Wednesday and Saturday, which is a pity since there is appears to be some difference in the 

aggregate data of the size of the drop in the ticket sales figures. 

We then proceed to simulate the aggregate sales. For each game we used the lagged 

sales figures to forecast the level of sales in the next draw and the probability that there will be 

no winners, using the observed winning numbers and the prior level of sales. We assume that 

the time trend and the pattern of autocorrelation remains the same. We model the probability 

of matching 3 numbers and deduct these (now £25) fixed prizes from the pari-mutuel pool. 

This rollover probability could be used to weight the forecast for the following draw – that is, 



36 

 

we could make two forecasts for if a rollover occurs or not and weight the two predicted sales 

together. We could then use these two predictions to include as the lagged dependent variables 

in the following draw, which would also have two outcomes. This geometric series would 

quickly result in billions of calculations being required. Our alterative is to simulate only one 

outcome from each draw and at each iteration take a draw from the binomial distribution that 

determines whether a rollover occurs of not. We apply the appropriate cap to rollovers.  We 

cumulate sales until the end of 2015 when the second reform kicks-in, and average the result.  

The second reform skews the pari-mutuel prizes towards the jackpot, changes the 

rollover cap so this switches on after the jackpot reaches £50m, and changes the number of 

numbers by adding 50-59. We continue to apply the same adjustment for the £2 ticket as before. 

We assume that these are chosen with the same probability that 32 to 49 were chosen prior to 

this second reform. We adopt the same prediction process as with the first reform to prevent 

the number of predictions we have to make from exploding. We now use this to also simulate 

the probability of matching 2 balls since this entitles such winners to a free ticket in the next 

draw. We assume that all such 2-ball prizes are claimed and that these are financed from 

reducing the prize pool for the pari-mutuel prizes. Again we cumulate the results, for both 

draws, until the end of the data series and average.  

We finally need to simulate the counterfactual level of sales that would have occurred 

had the game design not be changed. We assume the econometric parameters still apply and 

that the game design remains the same. However, because we assume that there will continue 

to be the same trend decrease in sales, we now have to predict how the rollover probability 

changes over time. Thus, we ignore the post 2012 reform data and project sales forward one 

week at a time allowing for the downward trend. Each week we compute the rollover 

probability from the predicted sales in the previous week. And each week we proceed as before 

and compute the new level of sales assuming that the rollover had occurred with the calculated 

probability. We repeat for subsequent weeks and cumulate the results. In the case of the second 

reform period we no longer know what the numbers on the winning ticket would have been 

since there are now ten additional numbers. Instead, we generate pseudo winning numbers from 

the 49 original numbers assuming that the degree of conscious selection continued to remain 

the same. 
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Table 8 shows the actual and forecast sales, per week, in nominal terms (i.e not 

adjusting for inflation over the post reform years). Sales revenue, if the original game design 

have been retained, would have continued to fall to £43.9m per week in the first reform period 

and then down to £40.2m in the second reform period. Thus, the first reform resulted in a large 

rise in sales of £5.9m per week. However, the second reform returned sales to pre-2013 levels. 

Note, however, that this is not as bad as might be thought because the counterfactual level of 

sales would also have fallen, to £40.7m. Overall, the second reform had relatively modest 

adverse effects of revenue, relative to the first reform design, and this is likely to be due to the 

longer odds coming on top of the lower numbers if tickets sold due to the £2 sticker price.  

Table 8:  Comparison of sales revenues across game designs (£m per week) 

 Pre-2013 
game 

Post-2013 
game 

Post-2015 
game 

Actual sales revenue in the 
three periods 

44.5 49.8 44.4 

Predicted sales revenue under 
old design 

44.5 43.9 40.7 

Difference between actual and 
predicted sales revenue 

0 5.9 3.7 

Notes: Pre-2013 sales only considered for the two years (104 weeks) before the original 
2013 game re-design.  

 

9. Conclusion 

This paper has modelled the sales of lotto in the UK under the assumption that sales are 

driven by the effect of rollovers assuming that the transmission mechanism is only through the 

mean of the prize distribution. By exploiting two of the institutional aspects of the game, a 

novel strategy to identify the causal effect of effective price of a ticket has been employed. The 

resultant estimates suggest that the Wednesday draw should be made more attractive relative 

to the Saturday draw – a novel finding for this literature. Models of lotto demand in which the 

mean of the prize distribution is the key dependent variable are often criticised on the grounds 

that they are based on expected utility theory which is notoriously ineffective at explaining 

why gambling occurs amongst otherwise risk-averse individuals. This paper further extends 

the existing literature by adopting a more pragmatic reduced form model that is cubic in the 

rollover size, rather than assuming that the effect on sales is only via the expected price. The 

same instrumental variables strategy used to identify the price model is employed to overcome 
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the endogeneity of rollover size, and estimates suggest £1 million increases in the jackpot prize 

from rollovers increases Saturday sales by around £1.8 million and Wednesday sales by £0.5 

million. A semi-parametric model that allows the effect of rollover size on sales to be fully 

flexible is also estimated. Whilst testing formally rejects the parametric reduced form of 

modelling, the semi-parametric model is effectively economically equivalent to the parametric 

model in its effects.  

Finally, major re-designs to the UK’s main lotto game in 2013 and 2015 which were 

likely implemented in response to declining sales figures are assessed. Simple comparison of 

pre- and post-redesign revenues shows that the 2013 changes were a relative success, 

increasing sales from an average of £44.5 million per week to £49.8 million – equivalent to 

over £275 million per year in extra revenues. The 2015 renovation of the game proved less 

successful, seeing sales return to their pre-2013 levels but when compared with the 

counterfactual level of sales the damage relative to the 2013 reformed design is modest. 

However, our crude attempts to forecast sales out of sample from the model developed from 

the original game design mirror suggests that the decline in sales seems likely to continue, 

although we will need a longer run of post re-design sales to have the power to reject the 

hypothesis that the trend has changed.  
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Appendix 

A Estimates with rollovers as instruments 

Table A1  Comparison of second stage estimates of lotto demand using rollover size and 
conscious selection as instruments 

Instrument: Rollover Size Conscious Selection 
Dependent 
Variable 

𝑺𝑺𝒕𝒕𝑺𝑺𝑺𝑺𝒕𝒕 𝑺𝑺𝒕𝒕𝑾𝑾𝑾𝑾𝑾𝑾 𝑺𝑺𝒕𝒕𝑺𝑺𝑺𝑺𝒕𝒕 𝑺𝑺𝒕𝒕𝑾𝑾𝑾𝑾𝑾𝑾 

 (1) (2) (3) (4) 
𝑆𝑆𝑡𝑡−1 0.137*** 

(0.0478) 
0.119*** 
(0.0258) 

0.133** 
(0.0546) 

0.0643* 
(0.0332) 

𝑆𝑆𝑡𝑡−2 0.109*** 
(0.0264) 

0.028** 
(0.0276) 

0.102*** 
(0.0284) 

0.0796** 
(0.0321) 

𝑃𝑃𝑡𝑡�  -
48.717*** 
(3.9276) 

-34.904*** 
(1.8253) 

-
47.283*** 
(3.5934) 

-
55.856*** 
(4.6827) 

Constant 81.245*** 
(3.4573) 

30.285*** 
(1.8068) 

79.771*** 
(3.5393) 

45.237*** 
(2.5605) 

LR Elasticity -
0.6510*** 
(0.0524) 

-0.8545*** 
(0.0464) 

-
0.6416*** 
(0.0475) 

-
1.4718*** 
(0.1172) 

Observations 868 868 867 868 
𝑅𝑅2 0.9526 0.9403 0.946 0.867 
Notes: Robust standard errors in parentheses. ***/**/* denotes statistical significance at 1%,5%, 
10% confidence. Trend and seasonality controls omitted from reporting. Sales variables in millions.  
 

 
B. Consumer Surplus, Tax, and Deadweight Loss 

Assuming a linear demand function for lotto tickets, it is possible to provide estimates 

of long-run tax revenues, consumer surplus and, due to the existence of tax and good causes 

receipts, deadweight loss using estimates from Table 3. Figure A1 shows such a demand curve, 

for Saturday tickets, parameterised using column 5 of Table 3, as well as indicating average 

price (dashed line) and marginal cost (dot-dashed line) which is the amount per £1 spent on 

National Lottery tickets shared between the operator and the vendor. This suggests consumer 

surplus is in the region of £20m per draw (£1b per annum) for Saturday games and £3m per 

draw (£150m per annum) for Wednesday draws. Tax and good causes revenues are 

approximately £16m per draw for Saturday and £8.8m per draw for Wednesday (approximately 

£1.3b per annum combined) and deadweight losses are estimated to be £7.8m for Saturday and 

£3.4m for Wednesday (approximately £582m per annum combined). Figure A1shows such a 

demand curve, for Saturday tickets, parameterised using column 5 of Table 3, as well as 

indicating average price (dashed line, 𝑃𝑃 = £0.51) and marginal cost (dot-dashed line, £0.10) 
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which is the amount per £1 spent on National Lottery tickets shared between the operator and 

the vendor. This suggests consumer surplus is in the region of £20m per draw (£1b per annum) 

for Saturday games and £3m per draw (£150m per annum) for Wednesday draws. Tax and 

good causes revenues are approximately £16m per draw for Saturday and £8.8m per draw for 

Wednesday (approximately £1.3b per annum combined) and deadweight losses are estimated 

to be £7.8m for Saturday and £3.4m for Wednesday (approximately £582m per annum 

combined).  

Figure A1:  Linear demand for Saturday lotto tickets 

 
C. Semi-parametric Estimation 

The semi-parametric approach used here is the partially linear model and is estimated 

using the double residual method developed by Robinson (1988). Partially linear models 

contain an assumed linear parametric component of variables, 𝑿𝑿𝑡𝑡, with unknown parameters, 

𝛽𝛽, and an unknown function, 𝑔𝑔, of a variable, say 𝑅𝑅𝑡𝑡, for which we cannot make assumptions 

of the functional relationship between itself and the dependent variable, say 𝑆𝑆𝑡𝑡. Specifically, 

the model can be written as,  𝑆𝑆𝑡𝑡 = 𝛽𝛽′𝑿𝑿𝑡𝑡 + 𝑔𝑔(𝑅𝑅𝑡𝑡) + 𝜀𝜀𝑡𝑡. Consistent estimation of this requires 

that 𝐸𝐸(𝜀𝜀𝑡𝑡|𝑿𝑿𝑡𝑡,𝑅𝑅𝑡𝑡) = 0. Robinson’s estimator for the parameter vector, 𝛽𝛽, and unknown 

function, 𝑔𝑔, can then be obtained by transforming the model to become 𝑆𝑆𝑡𝑡 − 𝐸𝐸(𝑆𝑆𝑡𝑡|𝑅𝑅𝑡𝑡) =

 𝛽𝛽′�𝑿𝑿𝑡𝑡 − 𝐸𝐸(𝑿𝑿𝑡𝑡|𝑅𝑅𝑡𝑡)� + 𝜀𝜀𝑡𝑡 and replacing 𝐸𝐸(𝑆𝑆𝑡𝑡|𝑅𝑅𝑡𝑡) and 𝐸𝐸(𝑿𝑿𝑡𝑡|𝑅𝑅𝑡𝑡) by their respective non-

parametric estimators, 𝑚𝑚�ℎ𝑆𝑆(𝑅𝑅𝑡𝑡) and 𝑚𝑚�ℎ𝑿𝑿(𝑅𝑅𝑡𝑡), which are found using kernel density estimates 

with bandwidths ℎ. Robinson showed that using OLS to estimate this transformed model 
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yields  �̂�𝛽 coefficients which converge at a rate of √𝑛𝑛. After estimating 𝛽𝛽, it is then possible to 

estimate the function 𝑔𝑔 using the following, 𝑔𝑔�ℎ(𝑅𝑅𝑡𝑡) = 𝑚𝑚�ℎ𝑆𝑆(𝑅𝑅𝑡𝑡) − 𝛽𝛽′𝑠𝑠�ℎ
𝑿𝑿(𝑅𝑅𝑡𝑡). If 𝑅𝑅𝑡𝑡 is 

endogenous, such that 𝐸𝐸(𝜀𝜀𝑡𝑡|𝑅𝑅𝑡𝑡) ≠ 0 or 𝐸𝐸(𝑆𝑆𝑡𝑡|𝑅𝑅𝑡𝑡) ≠ 0, this approach will yield inconsistent 

estimators since 𝐸𝐸(𝜀𝜀𝑡𝑡|𝑅𝑅𝑡𝑡) would be non-zero. Blundell et al. (1998) develops a method for 

estimating such partially linear models when the non-parametric variables are endogenous.  

Their approach relies on the existence of some instrumental variable, 𝑍𝑍𝑡𝑡, such that 𝑅𝑅𝑡𝑡 =

𝛾𝛾𝑍𝑍𝑡𝑡 + 𝜈𝜈𝑡𝑡 with 𝐸𝐸(𝜈𝜈𝑡𝑡|𝑍𝑍𝑡𝑡) = 0 and 𝐸𝐸(𝜀𝜀𝑡𝑡|𝑅𝑅𝑡𝑡, 𝜈𝜈𝑡𝑡) = 𝜌𝜌𝜈𝜈𝑡𝑡. Then 𝜀𝜀𝑡𝑡 = 𝜌𝜌𝜈𝜈𝑡𝑡 + 𝜂𝜂𝑡𝑡 and an analogue of 

Robinson’s partially linear model holds as follows: 𝑆𝑆𝑡𝑡 = 𝛽𝛽′𝑿𝑿𝑡𝑡 + 𝑔𝑔(𝑅𝑅𝑡𝑡) + 𝜌𝜌𝜈𝜈𝑡𝑡 + 𝜂𝜂𝑡𝑡 which we 

can then re-write and then estimate, as per Robinson’s methodology,   

𝑆𝑆𝑡𝑡 − 𝐸𝐸(𝑆𝑆𝑡𝑡|𝑅𝑅𝑡𝑡) =  𝛽𝛽′�𝑿𝑿𝑡𝑡 − 𝐸𝐸(𝑿𝑿𝑡𝑡|𝑅𝑅𝑡𝑡)� +  𝜌𝜌�𝜈𝜈𝑡𝑡 − 𝐸𝐸(𝜈𝜈𝑡𝑡|𝑅𝑅𝑡𝑡)� + 𝜂𝜂𝑡𝑡. 

D. Auxiliary Rollover Model Estimates 
Estimates in Table A are auxiliary to those found in  order to evaluate whether this 

reduced form model is preferable non-nested hypothesis testing developed by Cox (1961), Cox 

(1962), and later by Pesaran (1974) is used. This test compares two models, M1 and M2, tests 

two hypotheses of the form: H0: M1 superior to M2 and H0: M1 not superior to M2. The test is 

then repeated where the null hypothesis is re-defined as M1 superior to M2. Determining a 

superior model using non-nested hypothesis testing requires both rejecting the null of the 

inferior model and not rejecting the null hypothesis of the superior model. As such, there are 

four possible outcomes: a rejection of M1, a rejection of M2, failure to reject both, and a 

rejection of both. The latter two outcomes would be inconclusive whilst the former would 

suffice for determining model superiority. Table 5 presents the results from the Cox-Pesaran 

test. This test is repeated for both Saturday and Wednesday draws and for both OLS and 

instrumented estimation regimes. For Saturday games, OLS estimates suggest, albeit only at 

the 1% level, that the rollover model is superior to the price model. When controlling for 

endogeneity, the test is inconclusive in testing the competing models of Saturday ticket sales.  

For Wednesday sales, both non-nested testing of both OLS and instrumented estimates are 

inconclusive. The rejection of both the competing models mirrors the results found in Forrest 

et al (2002) who suggest that an improvement to both models would to allow for a more flexible 

specification of the role of jackpot prizes. This encourages proceeding with a semi-parametric 

estimation routine. 

Table A2 in which demand for lotto tickets dependent on a function that is cubic in 

rollover size. 
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Table A2: Heckman-instrumented estimates of linear and quadratic rollover induced demand  

 Heckman First-Stage 
Dependent Variable 𝑺𝑺𝒕𝒕𝑺𝑺𝑺𝑺𝒕𝒕 𝑺𝑺𝒕𝒕𝑾𝑾𝑾𝑾𝑾𝑾 𝑺𝑺𝒕𝒕𝑺𝑺𝑺𝑺𝒕𝒕 𝑺𝑺𝒕𝒕𝑾𝑾𝑾𝑾𝑾𝑾 
 (1) (2) (3) (4) 

𝑆𝑆𝑡𝑡−1 -1.539*** 
(0.3587) 

-0.357*** 
(0.0989) 

-1.253*** 
(0.3722) 

-0.333*** 
(0.1031) 

𝑆𝑆𝑡𝑡−2 0.255*** 
(0.0492) 

0.117*** 
(0.0434) 

0.247*** 
(0.0500) 

0.122*** 
(0.0459) 

𝑅𝑅𝑡𝑡� 1.684*** 
(0.3396) 

0.654*** 
(0.1434) 

1.641*** 
(0.3330) 

0.704*** 
(0.1438) 

𝑅𝑅𝑡𝑡2�  - 
- 

- 
- 

-0.011*** 
(0.0039) 

-0.006 
(0.0080) 

Constant 78.386*** 
(5.3897) 

38.885*** 
(6.2732) 

72.913*** 
(5.4966) 

37.247*** 
(6.5729) 

Durbin-Watson d-stat 1.9685 1.9905 1.9625 1.9868 
ARCH LM test (H0: no ARCH effects) 0.051 0.034 0.062 0.027 
ARCH LM test (p-value) 0.8219 0.8529 0.8038 0.8706 
AIC 4464.907 4374.156 4455.880 4375.155 
Observations 868 868 868 868 

𝑅𝑅2 0.9146 0.7099 0.9156 0.7103 
Notes: Robust standard errors in parentheses. ***/**/* denotes statistical significance at 1%,5%, 10% confidence. Trend and 
seasonality controls omitted from reporting. Sales and rollover size variables in millions. 
 
E .  Lottery spending data in Living Standards and Food Survey 

 
Figure A3: Local polynomial fit (95% CI) of weekly lotto expenditure versus gross income 

 
Note: Source Wheeler (2018). Data is trimmed to exclude the upper and lower 1% of households by 
gross normal income 
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