
Towards Emergent Microservices for Client-Tailored Design
Roberto Rodrigues Filho

Lancaster University
Lancaster, UK

r.rodriguesfilho@lancaster.ac.uk

Marcio Pereira de Sá
Federal University of Goiás

Goiânia, GO, Brazil
marcio.pereira@inf.ufg.br

Barry Porter
Lancaster University

Lancaster, UK
b.f.porter@lancaster.ac.uk

Fábio M. Costa
Federal University of Goiás

Goiânia, GO, Brazil
fmc@inf.ufg.br

Abstract
Contemporary systems are increasingly complex, with both large
codebases and constantly changing environments whichmake them
challenging to develop, deploy and manage. We consider two re-
cent efforts to tackle this complexity: microservices and emergent
software. Microservices have gained recent popularity in industry,
in which monoliths of software are broken down into compositions
of single-objective, end-to-end services running on HTTP which
can be scaled out on cloud hosting systems. From the research
community, the emergent systems concept demonstrates promise
in using real-time learning to autonomously compose and optimise
software systems from small building blocks, rapidly finding the
best behavioural composition to match the current deployment
conditions. We argue that emergent software and microservice ar-
chitectures have strong potential for synergy in complex systems,
offering mutually compatible lessons in dealing with complexity
via scale-out design and real-time client-tailored behaviour. We
explore self-designing microservices, built with emergent software,
to demonstrate the complementary boundaries of both concepts
– and how future intersections may offer novel architectures that
lie at a compelling point between human- and machine-designed
systems. We present the conceptual synergy and demonstrate a
specific microservice architecture for a smart city example where
scoped microservices are continually self-composed according to
the demands of the applications and operating environment. For
the purpose of reproducibility of the study, we make available all
the code used in the evaluation of the proposed approach.
ACM Reference format:
Roberto Rodrigues Filho, Marcio Pereira de Sá, Barry Porter, and Fábio M.
Costa. 2018. Towards Emergent Microservices for Client-Tailored Design.
In Proceedings of Middleware’18, Rennes, France, December 2018, 6 pages.
DOI: 10.1145/nnnnnnn.nnnnnnn

1 Introduction
Distributed systems remain highly complex to design and maintain.
This complexity comes from large code bases, a collection of added
failure modes, and dynamicity in the deployment environment
which makes it difficult to predict how best to optimise a system.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions@acm.org.
Middleware’18, Rennes, France
© 2018 ACM. 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
DOI: 10.1145/nnnnnnn.nnnnnnn

Reducing this complexity for systems developers continues to
be a key focus of research in both industry and academia. We draw
together two recent trends in this area, microservices and emergent
software, to demonstrate how they offer mutually complementary
lessons in addressing aspects of systems complexity.

Microservices encourage the development of single-objective
services with strong encapsulation, loose coupling and independent
deployment. They operate over HTTP, making them inherently
compatible with most existing systems on the web and enabling
them to be developed in a multitude of implementation languages.
Their stateless design also supports scale-out mechanics naturally,
so that automated processes can manage scaling to user demand.
However, their outward-facing API specification is ad-hoc, and
recent efforts have examined how to offer more explicit interface
descriptions – to in turn enable automated composition.

Emergent software systems (ESS), recently demonstrated as a
successful approach to reducing complexity in local system build-
ing [8], use a concept of continuous self-assembly over a library of
small component building blocks. Combined with real-time learn-
ing, this automatically derives systems that are functionally correct
and constantly improve their performance according to the current
characteristics of the deployment environment, by finding alter-
native compositions of building blocks which maximise a reward
function of interest. The building blocks used for emergent software
are strongly encapsulated, with their dependencies resolved by an
external managing process; because they are designed to build local
systems, the building blocks are very fine grained and some of them
will carry state that is transferred across the adaptations that occur
while improved behavioural compositions are sought.

While microservices represent a clean approach to build dis-
tributed applications, their internal implementations are largely
ad-hoc, despite recent efforts to adaptmodel-driven techniques used
for traditional SOA [9]. ESS techniques can be used to effectively
bridge this gap, providing a natural way to build microservices
that are inherently adaptable at a fine granularity level. In turn, mi-
croservice architectures may be leveraged by providing a simplified
yet effective approach for remote interaction and state handling
and by reducing the search space of ESS techniques to the scope
of individual microservices. Put simply, their combination enables
the effective use of human design at the macro level (to design the
microservice architecture of an application) and machine-driven
design at the micro level (to create the internal implementation of
each required microservice).

Based on these observations of complementarity, we make the
following contributions in this paper:

Middleware’18, December 2018, Rennes, France R. Rodrigues-Filho et al.

1. We present an approach to building micro-services in an emer-
gent way, to yield a runtime search space of behavioural variation
whichmachine learning can navigate at runtime to tailor the system
to the current environment and client behaviour.

2. We discuss how we may best divide responsibilities between a
human engineer and the machine’s own learning and analysis capa-
bilities, including the separation of business logic from behavioural
variation points, and how future work may see the boundaries
blurred at a distributed level between microservice composition
and automated distribution of emergent systems.

3. We demonstrate a proof-of-concept implementation of emer-
gent microservices using a smart city example, and experimentally
show how real-time client-tailored design of individual microser-
vices can benefit the performance of the overall system. We make
available all of our source code for download1 with instructions to
reproduce our experiments.

In the remainder of this paper we discuss the relevant back-
ground on emergent software systems and microservices in Sec. 2,
and related work in Sec. 3; in Sec. 4 we discuss how these two con-
cepts can already be combined in compelling ways and how they
may blur the boundaries of human- and machine-designed systems
in the future; and in Sec. 5 we present early work on evaluating
the combined approach, using a smart city platform and a related
application scenario to explore the implementation of emergent
microservices.

2 Background
2.1 Emergent Software Systems
Emergent Software Systems, as described in [4, 8], use continuous
self-assembly over a pool of small software building blocks to de-
rive systems that are autonomously composed as a factor of the
operating environment and human-provided high-level goals. Start-
ing from no initial knowledge, the ideal composition of behaviour
for each range of observed deployment environment conditions is
automonously learned using real-time reinforcement learning. The
avoidance of pre-defined models or training means that the system
basis its decision making purely on what is actually experienced in
its deployment setting and how that affects its behaviour.

In order to realise this concept, emergent software systems rely
on a framework, illustrated in Fig.1. The framework is composed
of three main modules: Assembly, Perception and Learning. The
Assembly module assumes a runtime-adaptive component model
which explicit dependencies, and starts from a single ‘main’ compo-
nent to derive all possible dependency resolutions (recursively) that
result in a functionally correct system; this generates a set of valid
compositions of behaviour. The Perception module is responsible
for monitoring the system’s performance status (according to some
metrics of interest) and the operating environment. By adding spe-
cial proxy components in strategic places, the Perception module
can extract information from specific parts of the system (such as
execution time of certain functions). Finally, the Learning module
implements the reinforcement learning algorithm that conducts the
learning process as the system executes; it epxeriments with each
available composition (causing the system to adapt as necessary to
reach that composition) and observes the resulting perception data

1All experiments and code from this paper are available at
http://research.projectdana.com/arm2018rodrigues

Figure 1. Emergent software system framework architecture.

to learn which software composition maximises the satisfaction of
the defined metrics under each environment.

One of the key challenges in using emergent systems is that
the search space for real-time machine learning can become very
large as the scale of the software increases, requiring mitigation
strategies such as dividing the system into smaller sub-systems
each of which are emergent and contribute to the global picture.

2.2 Microservices
Microservices, as an architectural style, can be seen as an evolution
in the way of realising Service-Oriented Architectures (SOA) [10].
Each microservice is a cohesive, independent service running in
its own process, typically within a container, and communicating
via messages (typically via RESTfull HTTP requests or a message
queuing system) [3]. Microservices distinguish themselves from tra-
ditional SOA services as they are inherently distributed and follow
the single responsibility pattern, resulting in focused, finer-grained
and loosely coupled services. Furthermore, microservice architec-
tures are typically used to build a single application or system, as
opposed to targeting the integration of different applications as
in more conventional SOA. A microservice architecture is thus a
distributed composition of individual microservices that are coor-
dinated to implement the functional and non-functional concerns
of a particular distributed application.

The fact that microservices have bounded context, as defined by
the single responsibility pattern, makes them ideal to handle the
problem of search space explosion discussed above. Moreover, mi-
croservice architectures in which individual microservices are built
in an emergent way can be exploited as a straightforward means
to extend the benefits of ESS to distributed systems. In turn, ESS
techniques represent an effective approach to build environment-
tailored and self-adaptive microservices.

3 Related Work
The problem of designing and implementing microservices has
been extensively targeted both by the industry and academia. The
focus has mainly been on the definition of service boundaries (such
as by using domain-driven design and data isolation patterns), on
the issues of dealing with failure in distributed systems, and on in-
frastructure issues (e.g., deployment and scalability automation) [7].

Towards Emergent Microservices for Client-Tailored Design Middleware’18, December 2018, Rennes, France

In this section we limit the review to existing proposals that aim to
facilitate the flexible design of adaptive microservice architectures.

Microservice architectures are inherently adaptive. They strongly
encourage encapsulation, loose coupling, substitutability, and inde-
pendent deployment. As a result, microservice-based applications
can be adapted by dynamically replacing the implementation of
individual microservices and by creating/deleting instances of exist-
ing ones. Additionally, the use of flexible choreography definition
languages, such as Jolie [6], enables adaptation of the distributed
coordination protocol, allowing the architecture itself to change as
new microservices are added or deleted. Microservice adaptation
at this macro level has also been proposed in [5], which provides
an approach to rewrite deployment descriptors and adapt the cur-
rent deployment of a microservice architecture according to new
requirements and resource availability.

In [2], models@runtime and component-based software engi-
neering are proposed as part of a vision to apply the principles
of continuous software engineering to microservices. Individual
microservices are designed and implemented as configurations of
components and a runtime model provides a reflective interface for
dynamic inspection and adaptation of such configurations. In com-
mon with our approach, model-integrating microservices enable
both micro and macro adaptations, leveraging a dynamic compo-
nent model for the former and the properties of microservices
(notably encapsulation and independent deployment) for the latter.
However, model-integrating microservices rely on the existence of
suitable DSLs and modeling tools for expressing and manipulating
the component models, in addition to the necessary involvement
of humans in the design of the initial component model of each
microservice (and, potentially, for its adaptation as well). In con-
trast, in our approach the component configuration emerges from
a set of fine-grained components and system goals, without human
involvement and without the need for additional modeling tools.

Finally, microservices are often used as building blocks for con-
structing large-scale systems. For the purpose of system optimisa-
tion, microservices are either replaced, added or removed from the
systems composition. In this paper, we concentrate on a fourth op-
tion, where the micro-architecture of microservices are themselves
adaptive (in a model-free manner, as opposed to [2]), showing a
different dimension to be explored in the optimisation process of
large distributed systems. For emergent systems themselves, mi-
croservices offer a way to extend emergent systems naturally intro
large-scale distributed systems by defining boundaries of responsi-
bility as the encapsulation offered by a microservice.

4 Approach
This section describes the methodology for creating new emergent
microservices, depicting the roles of both humans and participating
machines in the process. We describe the basic architecture for
a microservice, including our web framework that includes roles
for business logic as well as generalised non-functional variational
points to create a search space over which an emergent systems
process learns. We conclude the section with a discussion of the po-
tential implications of the described approach in future extensions.

4.1 Emergent Microservices Anatomy
The anatomy of an emergent microservice is depicted in Fig. 2. The
architecture is divided into four main groups of components that
have specific roles. The first group is represented in red. These are

components that are part of the web service framework and are
required to form any web-based application. The second group,
coloured in blue, are components that implement the microser-
vice’s business logic; these are reused less often and are specific
to each individual microservice. The yellow components represent
the third group. These are generic and highly reusable components
from a standard library of utilities (such as parsers or sorting algo-
rithms), and are reused across many different microservices and
other emergent applications. Finally, the fourth group, coloured
in green, represent non-functional requirements proxies that are
designed to operate specifically with the web service framework.
These are components that are autonomously added by the system
to experiment with non-functional concerns which are generic to
the business logic components. This framework offers two main
sources of variation to form a search space for an emergent system:
variations in utility component, such as alternative search or sort
algorithms which have different performance characteristics un-
der different inputs, and variations in non-functional requirements
proxies which can be injected into or removed from the system to
insert concepts such as caching in a generalised way.

Once these components are placed in a folder known to the
emergent systems framework, the machine takes over the design
process for the emergent microservice. The resulting architecture,
depicted in Fig. 2, is autonomously assembled and used as a base for
online experimentation to locate optimal compositions at runtime.
Further details on the component groups and on the machine’s role
in the microservice design are provided in the following sections.

4.2 Designing Emergent Microservices
The development cycle of emergent microservices involves actions
from both developers and the emergent systems framework (ma-
chine). Developers are responsible for i) implementing the compo-
nents that form the business logic of the microservice’s architecture,
ii) selecting and placing components in a specific folder (selective
deployment task), and iii) strategically annotating components
where non-functional requirement proxies are to be inserted.

Developers are entirely in charge of the development process of
the business logic components, and the development of these com-
ponents is no different from the usual development task. The key
is then to connect the business logic components to the framework
architecture. The connection process is done by implementing the
component that provides the ws.Web interface, illustrated as the
Dispatcher component in Fig.2. The ws.Web interface is used by the
ws.core component (the component that represents the requests to
the applications running on top of the web platform). By imple-
menting the ws.Web interface, the Dispatcher component forwards
specific requests, based on the URI in the request, to the appropriate
components.

While implementing business logic components, developers may
reuse existing interfaces (and their implementing components)
found in the repository. Highly reusable components such as data-
base drivers and data structures are part of this group. These com-
ponents often have implementation variants that are used by the
emergent framework to optimise the system, by finding the right
implementation variant for the execution environment – such as
alternative sorting algorithms or data parsers.

The last group of components that we introduce are special prox-
ies or interceptors which implement a non-functional concern and

Middleware’18, December 2018, Rennes, France R. Rodrigues-Filho et al.

Figure 2. Emergent microservice anatomy depicting the reusbale components, business logic, NFRP and the required components, on the
left. An example of an architectural composition on the right.

can be injected (or removed) at runtime in between any two compo-
nents. These proxies are often written specifically to operate with
particular interfaces in mind, such as ws.Web, as they take account
of the semantics of those interfaces. We refer to these components
as non-functional requirement proxies (NFRP). An example of an
NFRP is NFRPCache, where a cache proxy is autonomously inserted
between two components to cache content exchanged in function
calls. This can enable multiple executions of time-consuming func-
tions to be avoided once a return value is already cached, thus
decreasing the system’s overall response time. Although NFRPs
must be implemented with specific attention to a given interface,
once implemented they are then generic to all uses of that inter-
face; in the example of a microservice we implement NFRPs against
ws.Web which are then reusable across different microservices.

Finally, the machine role in the system’s design is entirely per-
formed at runtime. Once the components are selected and placed
in the microservice’s folder, and the path to the folder is given to
the Assembly module, the machine takes the available components
and assembles them into every possible architectural composition
available. Each composition represents one action for real-time
learning, where the selection causes the Assembly module to cal-
culate a delta between the current composition and the requested
one before performing a sequence of adaptations to move between
the two compositions.

As the system handles incoming requests from users, the frame-
work experiments with different architectural compositions to learn
which composition best satisfies the system’s high level goals. Once
the optimal composition is found for the current operating environ-
ment, the system exploits the benefits of the optimal composition,
and as soon as the optimal composition performance starts de-
caying, or a new operating environment is detected, the system
triggers the exploration phase again and starts experimenting dif-
ferent compositions in the new operating environment. Whenever
previously seen environments are encountered, the system is able
to remember the associated optimal composition and immediately
change its architecture composition to that known optimal.

4.3 Discussion
Our approach to designing emergent microservices has the poten-
tial to reduce the complexity of building performant microservices
which become tailored in their design to the current client workload,

while still supporting the scale-out properties and composition of
microservices at the macro level.

The use of microservices to define the boundaries of an emergent
system, in terms of the scale over which real-time learning needs
to operate, offers a useful way to control the granularity of an
autonomously-designed subsystem. We introduce two main classes
of components which deliver variation to form a search space for
machine learning: utility components from a standard library with
various different implementations, and injected proxies to deliver
generalised non-functional properties between specific components.
This allows the programmer to write the business logic of the
microservice while our framework injects behavioural variation
around this logic to maximise performance.

A third dimension of injected variation, which we consider for
future work, is in the distribution of individual components that
form amicroservice. Here a selected piece of business logic, or a util-
ity component, could be relocated to a remote host – or replicated
across a set of remote hosts – to control the distributed design of the
microservice. With this capability, the lines between microservices
would become far more blurred as an individual microservice could
scale out pieces of itself as appropriate; indeed, we could design
a single microservice representing a large-scale service which be-
comes distributed across a network in the most efficient way to
meet current demand.

5 Evaluation
In order to demonstrate and evaluate the overall approach pro-
posed in Section 4, we leverage existing research on microservice
architectures; specifically, we employed the Perception, Assembly
and Learning framework to the implementation of the InterSC-
ity smart city platform [1], which was designed from scratch as a
microservice architecture.

InterSCity provides microservice-based APIs to support the de-
velopment of smart city applications and services. Its microservices
provide a variety of basic city-related functionalities as follows.

The Resource Adaptormicroservice is responsible for integrating
city resources (e.g., public transport buses, traffic lights, and lamp
posts) with the platform, resolving issues related to heterogeneity
and concurrent access. In turn, Resource Catalog, Data Collector
and Actuator Controller are responsible, respectively, for the man-
agement of existing resources and the data collected from them, as

Towards Emergent Microservices for Client-Tailored Design Middleware’18, December 2018, Rennes, France

well as for managing actuation capabilities. Finally, applications can
discover and visualise city resources via the APIs of the Resource
Discovery and Resource Viewer microservices, respectively.

In order to demonstrate our approach, we built a new version
of the InterSCity platform from scratch, following the guidelines
described in Section 4 for the implementation of each microser-
vice. We used this version of InterSCity for a first evaluation of
the approach presented in the paper. We specifically examined the
effectiveness of the PAL framework for autonomously handling dif-
ferent variations of theData Collectormicroservice and directing its
adaptation in response to different client workload characteristics.
The component repository folder used to discover compositions
of the Data Collector was populated with NFRPs that implement
two different non-functional concerns, namely data compression
and caching. This enables four variations of the microservice’s in-
ternal architecture: with cache only (referred to as NFRPCache);
with both cache and compression (NFRPCacheCompression); with
compression only (NFRPCompression); and with neither cache nor
compression (NFRProxy, i.e., the pure business logic composition).
The intended role of the cache is to enhance the efficiency of the
microservice’s access to the underlying database as the same data
items may be requested multiple times by clients. Compression, in
turn, aims to reduce the size of the messages exchanged between
the microservice and its clients. Thus, when using the microservice
with compression, the header of the HTTP messages exchanged
with clients is changed to indicate the type of compression used,
so that the client can correctly handle the payload.

It is expected that the different compositions of the Data Collec-
tor described above will perform differently under different work-
loads. To verify this, we implemented two hypothetical applications
from the public transportation domain, a common application area
of the InterSCity platform. The first application is used by public
transport users to query the current location and estimated time
of arrival of buses, while the second one is used by transport engi-
neers to capture long-term data about the mobility of buses in a bus
route. Thus, the first application characterises a scenario with a low
volume of data and a high frequency of updates (as the bus location
is continuously changing). The second application, by comparison,
represents a scenario with a (relatively) high volume of data and a
low frequency of updates. In the real smart city deployment, the
particular mixture of these application usage types would vary over
the course of a day depending on what most users are doing.

For the purpose of machine learning, we set the non-functional
goal of the PAL framework to be response time to client requests,
where a lower average value is considered to be better. We measure
response time at the server-side with an injected measurement
proxy which records the length of time taken for the request han-
dling routine to complete; in practice this equates to the amount of
time taken for all HTTP response data to be sent to the client via a
TCP send function. We checked experimentally that the observa-
tions taken by the server in this way were well correlated with the
experience observed at the client side (which we cannot usually
instrument) and confirmed that the two points of view are highly
correlated under all conditions. Specifically, the client-side mea-
surements showed higher overall response times, accounting for
the extra latency of client data reception, but these response times
changed across different workloads with the same ratios observed
in the server-side response times.

We ran experiments to demonstrate the individual performance
of each of the fourData Collector compositions in the two scenarios.
The results, in terms of the response times observed at the server
side, are shown in Figures 3 and 4, respectively, and are discussed
next (NB: in both graphs, the orange line represents the resulting
behaviour when using the PAL framework, which will be discussed
at the end of this section). Both graphs use a logarithmic scale to
more clearly show the lower response times where most of the data
sits. All data shown here is taken from response time readings seen
at the server side, which are used to inform learning decisions.

1

10

100

1000

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
R

e
sp

o
n

se
 T

im
e

 (
m

s)

Time (s)

NFRPCache.o
NFRPCacheCompression.o
NFRPCompression.o
NRFProxy.o
Learning

Figure 3. Performance of the emergent microservice compared
with four fixed microservice compositions, exposed to the high
frequency of update and low volume of data. The spike in the
orange line represents the learning phase.

0.1

1

10

100

1000

10000

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70R
e

sp
o

n
se

 T
im

e
 (

m
s)

Time (s)

NFRPCache.o
NFRPCacheCompression.o
NFRPCompression.o
NRFProxy.o
Learning

Figure 4. Performance of the emergent microservice compared
with four fixed microservice compositions, exposed to the low
frequency of update and high volume of data. The spike in the
orange line represents the learning phase.

In the scenario considered in Figure 3, we can see that the two
compositions employing cache (represented by the blue and red
lines) have better performance than the other two (yellow and
green lines). This is because a single data item (representing the
current location of a bus) may be requested by different clients at
the same time. Compression in turn has the poorest performance
as the incurred overhead is not compensated by the diminishing
gains of compressing low volumes of data.

Middleware’18, December 2018, Rennes, France R. Rodrigues-Filho et al.

In the scenario analysed in Figure 4, again the compositions
that use caching perform visibly better, with the one using both
compression and caching being expected to perform slightly better,
due to the effects of compression being more evident with high
data volumes. The dominant effect is again played by caching.

The PAL framework was then used to experiment with the au-
tonomic composition of the Data Collector microservice using its
four possible compositions under the two workload scenarios. The
results are shown by the orange line in Figures 3 and 4. As can
be seen, in both scenarios, after the learning phase, which spans
approximately the first 20 seconds, the Learning module is able
to select the best performing composition according to response
time. For the scenario with high update frequency and low vol-
ume of data (Fig. 3), the Learning module selects the NFRPCache
composition corresponding to the blue line, and then follows this
line quite closely. Towards the end of the experiment we see that
this composition degrades slightly in performance compared to
the NFRPCacheCompression; the PAL framework does not change
its choice here because performance is still within a threshold of
the original learned value. If the performance moved out of this
threshold it would trigger a new round of learning to verify the
best decision. For the scenario with low update frequency and
high volume of data (Fig. 4), the PAL framework selects the NFRP-
CacheCompression composition as the best option; again we see
that this reflects the best-performance available and closelymatches
this performance over the course of the experiment.

Overall, the results clearly depict significant levels of improve-
ment in the microservice performance. In cases where there is a
substantial difference between the values from one architecture to
another, we successfully demonstrate that the emergent microser-
vice converges towards the optimal (or near optimal) composition.
It is important to highlight that microservice developers should fo-
cus their efforts only on the development of the bare business logic
of microservices, which might not, in most scenarios, represent the
optimal composition. Based on the results of the above experiment,
we argue that the added non-functional requirement proxies assist
in improving the microservice’s performance.

Furthermore, we argue that generalised non-functional require-
ment proxies can be used to transparently optimise any of the
remaining microservices that are part of the InterSCity macro-
architecture. We aim to refine this idea in future work, including
by introducing further generalised proxies which offer other non-
functional properties.Wewill also build on ourwork to demonstrate
that the approach applies to microservice architectures in general,
beyond the case study that we have presented here.

6 Conclusion
We have presented a methodology for constructing emergent mi-
croservices, combining two recent trends to tackle complexity in
modern software systems. Microservices offer a simple, strongly
encapsulated way to deliver distributed systems with good scal-
ing properties, while emergent systems offer a way to offload the
responsibility for the design of a system to real-time learning.

In combining these concepts, we gain an intuitive way to scope
the responsibility of the machine learning processes involved in
emergent systems, which aids in reducing the search space size of
possible behaviour compositions that is navigated at runtime; and
we gain a new dimension of optimisation in microservice architec-
tures which enables continuous tuning to the client workload.

We have applied the approach to a real case study of a smart city
platform, and demonstrated that a microservice in this platform is
able to quickly learn the most suitable behaviour at runtime when
given a goal of response time to optimise – a result achieved by
combining programmer-supplied business logic with generalised
non-functional proxies which can inject caching or compression
behaviour into the system.

In future work we will explore the macro level of microser-
vice composition in two major ways. First, how multiple emergent
systems (each modeled as its own microservice) can reach good
decisions when they are learning at the same time as part of the
same global system, so that a globally-good composition is located.
And second, how the ability to autonomously distribute individ-
ual components of a microservice (such as an XML parser) may
enable a more fluid scale-out architecture where sub-elements can
be replicated as demand on their utility increases or decreases over
time. This direction may, in turn, lead to redefining the boundary
between human and machine design in traditional microservices –
for example where a single emergent microservice can fragment
and scale itself out across multiple hosts as demand on it increases.

Acknowledgements
The research reported in this paper was partly funded by the Royal
Society – Newton Mobility Grant NMG-R2-170105 – and by the
Leverhulme Trust Research Project Grant The Emergent Data Centre,
RPG-2017-166. This research is also part of the INCT of the Future
Internet for Smart Cities funded by CNPq proc. 465446/2014-0,
CAPES proc. 88887.136422/2017-00, and FAPESP procs. 14/50937-1
and 15/24485-9.

References
[1] Arthur M Del Esposte, Fabio Kon, Fabio M Costa, and Nelson Lago. 2017. Inter-

SCity: A Scalable Microservice-based Open Source Platform for Smart Cities.. In
SMARTGREENS. 35–46.

[2] Mahdi Derakhshanmanesh and Marvin Grieger. Model-Integrating Microser-
vices: A Vision Paper.. In Software Engineering Workshops, Vol. 1559. CEUR
Workshop Proceedings.

[3] Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch Lafuente, Manuel Mazzara,
Fabrizio Montesi, Ruslan Mustafin, and Larisa Safina. 2017. Microservices: yester-
day, today, and tomorrow. In Present and Ulterior Software Engineering. Springer,
195–216.

[4] Roberto Rodrigues Filho and Barry Porter. 2017. Defining Emergent Software
Using Continuous Self-Assembly, Perception, and Learning. ACM Transactions
Autonomic Adaptive Systems 12, 3, Article 16 (Sept. 2017), 25 pages. DOI:https:
//doi.org/10.1145/3092691

[5] Maurizio Gabbrielli, Saverio Giallorenzo, Claudio Guidi, Jacopo Mauro, and
Fabrizio Montesi. 2016. Self-reconfiguring microservices. In Theory and Practice
of Formal Methods. Springer, 194–210.

[6] Claudio Guidi, Ivan Lanese, Manuel Mazzara, and Fabrizio Montesi. 2017. Mi-
croservices: a language-based approach. In Present and Ulterior Software Engi-
neering. Springer, 217–225.

[7] P. Jamshidi, C. Pahl, N. C.MendonÃğa, J. Lewis, and S. Tilkov. 2018. Microservices:
The Journey So Far and Challenges Ahead. IEEE Software 35, 3 (May 2018), 24–35.
DOI:https://doi.org/10.1109/MS.2018.2141039

[8] Barry Porter, Matthiew Grieves, Roberto Rodrigues Filho, and David Leslie. 2016.
REX: A Development Platform and Online Learning Approach for Runtime
Emergent Software Systems. In Proceedings of the 12th USENIX Symposium on
Operating Systems Design and Implementation. USENIX, 14.

[9] F. Rademacher, S. Sachweh, and A. ZÃĳndorf. 2017. Differences between Model-
Driven Development of Service-Oriented and Microservice Architecture. In 2017
IEEE International Conference on Software Architecture Workshops (ICSAW). 38–45.
DOI:https://doi.org/10.1109/ICSAW.2017.32

[10] Olaf Zimmermann. 2017. Microservices tenets. Computer Science - Research
and Development 32, 3 (01 Jul 2017), 301–310. DOI:https://doi.org/10.1007/
s00450-016-0337-0

https://doi.org/10.1145/3092691
https://doi.org/10.1145/3092691
https://doi.org/10.1109/MS.2018.2141039
https://doi.org/10.1109/ICSAW.2017.32
https://doi.org/10.1007/s00450-016-0337-0
https://doi.org/10.1007/s00450-016-0337-0

	Abstract
	1 Introduction
	2 Background
	2.1 Emergent Software Systems
	2.2 Microservices

	3 Related Work
	4 Approach
	4.1 Emergent Microservices Anatomy
	4.2 Designing Emergent Microservices
	4.3 Discussion

	5 Evaluation
	6 Conclusion
	References

