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Abstract— In this paper, a multivariate statistical technique 

combined with a machine learning algorithm is proposed to 

provide a fault classification and feature extraction approach 

for the wind turbines. As the probability density distributions 

(PDDs) of the monitoring variables can illustrate the inner 

correlations among variables, the dominant factors causing 

the failure are figured out, with the comparison of PDD of the 

variables under the healthy and unhealthy scenarios. Then 

the selected variables are used for fault feature extraction by 

using kernel support vector machine (KSVM). The presented 

algorithms are implemented and assessed based on the 

supervisory control and data acquisition (SCADA) data 

acquired from an operational wind farm. The results show 

the features relating specifically to the faults are extracted to 

be able to identify and analyse different faults for the wind 

turbines.  
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I.  INTRODUCTION 

In the modern world, the increasing demand for 
electricity usage has influenced electricity production 
technology and fault diagnosis strategies. In particular, a 
great number of wind turbines have been installed in remote 
and offshore areas.  The importance of condition 
monitoring (CM) and fault detection methods have 
increased dramatically in past decades [1], [2]. The global 
wind power operation and maintenance (O&M) cost is 
estimated to grow from 12 billion USD (2016) to 27 billion 
USD by 2026 [3]. As for the offshore wind farm, the O&M 
costs will be much higher due to the harsh environment, 
which can be between USD 0.027 and USD 0.048/kWh [4]. 
Hence, the CM method plays a vital role in the wind farm 
in order to monitor the condition of the wind turbines and 
thus reduce the O&M costs. Furthermore, the maintenance 
work can be scheduled in advance to reduce the shutdown 
time. There are various types of fault detection approaches, 
which can be classified into two categories: mechanistic 
methods and data-driven model-based approaches. As for 
the model-based approaches, it is not compulsory to 
consider the inner physical characteristic and process of the 
targeted system, compared with the mechanistic methods 
[5]. With regards to the model-based condition monitoring 
method especially in the detection of faults at their early 
stage, the multivariate statistical techniques have received 
a rising attention for condition monitoring of large-scale 
industrial systems in the past years [6].  

The paper addresses the problem of fault feature 
extraction and selection of monitoring variables by 
employing Kullback-Leibler divergence (KLD) and kernel 
support vector machine (KSVM). In this paper, different 
faults are discussed and classified. The highly correlated 
variables with regards to the wind turbine failures are 
extracted. In Section II, the basic knowledge of KLD and 
SVM with radical basis function kernel are introduced. The 
SCADA data and the modelling procedures are introduced 
in Section III. In Section IV, the probability density 
distribution (PDD) of each variable under different 
operation scenarios is analysed. Then the PDD differences 
between the healthy turbine and faulty turbine for the same 
variables are analysed by KLD. Larger KLD values 
indicate the variable has a larger difference between the 
healthy and faulty conditions. By setting an appropriate 
threshold for the KLD value, the variables, which have 
larger chances to trigger a specific fault are selected. The 
fault features are also extracted based on the KLD selected 
variables.   

II. METHODS 

A. Kullback-Leibler Divergence 

The KLD, also called Shannon entropy, is a probability 
measurement from information theory perspective. It is 
used to compare the one probability distribution against 
with another one [10]. To evaluate the discrimination 
between two PDDs, p(x) and g(x), of a random variable x, 
the Kullback-Leibler information 𝐼(𝑝 ∥ 𝑔) is calculated: 

𝐼(𝑝 ∥ 𝑔) = ∫ 𝑝(𝑥)𝑙𝑜𝑔
𝑝(𝑥)

𝑔(𝑥)
𝑑𝑥             (1) 

The divergence of the two distributions is a symmetric 
version of the information: 

𝐾𝐿𝐷(𝑝, 𝑔) = 𝐼(𝑝 ∥ 𝑔) + 𝐼(𝑝 ∥ 𝑓)        (2) 

It is only produced when ∑ 𝑝𝑥 = ∑ 𝑔𝑥 = 1 and the two 
distributions share the same support set. When the two 
distributions are same, the KLD of the two distributions is 
0. When the difference between the two distributions 
increases, the calculated value of KLD also increases. In 
other words, the bigger the KLD value, the larger the 
difference between two distributions that can be found.  

 

B. Kernel Support Vector Machine 

The support vector machine (SVM) is a machine 
learning algorithm that is developed from the statistical 
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learning with a better performance than many other 
methods, such as decision trees, discriminant analysis and 
nearest neighbour. It is a supervised learning method that 
has been widely applied in regression and classification [7], 
[8]. 

It is assumed that there are two classes for separation, 
which are denoted as {-1, 1}. For a given training data 
set 𝑇(𝑥, 𝑦): 

 𝑇(𝑥, 𝑦), (𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛 , 𝑦𝑛),  

  𝑥𝑛 ∈ 𝑅𝑛 ,   𝑦𝑛 ∈ {−1,1}.                         (3)  

where 𝑥  are the training vectors and 𝑦  are the indicator 
vectors indicating the class of 𝑥, respectively. In this case, 
{-1, 1} indicates the turbine under faulty and healthy 
condition, respectively. The hyperplane created by SVM is 
used to separate the two different classes that is specified 
by its weight w and the bias b [8]. The hyperplane can be 
described as: 

                (𝑤, 𝑥) + 𝑏 = 0       𝑤 ∈ 𝑅𝑛 , 𝑏 ∈ 𝑅           (4) 

It yields a corresponding decision function: 

𝑓(𝑥) = 𝑠𝑔𝑛((𝑤, 𝑥) + 𝑏)                   (5) 

The sign of 𝑓(𝑥) depends on the side of the hyperplane 
where the sample lies. An optimal hyperplane is the one 
that maximises the distance between the hyperplane and the 
nearest points to the hyperplane of both classes. The points 
of having the minimal distances to the hyperplane are called 
support vectors. The distance between the support vectors 
is called margin. In order to obtain the hyperplane, the 
weight and bias of support vectors should satisfy the 
equation |(𝑤, 𝑥) + 𝑏| = 1 . The optimal hyperplane with 
maximal margin 𝜏(𝑤) can thus be formulated as follows: 

min
𝑤∈𝑅𝑛,𝑏∈𝑅

𝜏(𝑤) =
1

2
‖𝑤‖2                   (6) 

subject to        𝑦𝑖((𝑤, 𝑥) + 𝑏) ≥ 1    ∀𝑖 = 1, … , 𝑛          (7) 

The decision function 𝑓(𝑥𝑖)  yields +1 for 𝑦𝑖 ∈ {1} 
while -1 for 𝑦𝑖 ∈ {−1} when the constraint (7) is satisfied. 
Furthermore, the Lagrange multipliers 𝛼𝑖 are introduced to 
adapt the Karush Kuhn Tucker conditions in order to 
optimise the w and b [9]. 

𝑚𝑎𝑥𝛼∈𝑅𝑛   𝐿(𝛼) = ∑ 𝛼𝑖
𝑛
𝑖=1 −

1

2
∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗(𝑥𝑖 , 𝑥𝑗)𝑛

𝑖,𝑗=1     (8) 

subject to             𝛼𝑖 ≥ 0    ∀𝑖 = 1, … , 𝑛                         (9)     

and                               ∑ 𝛼𝑖
𝑛
𝑖=1 𝑦𝑖 = 0                               (10)     

The optimal parameters 𝑤∗ and 𝑏∗ can be written as: 

𝑤∗ = ∑ 𝛼𝑖𝑦𝑖𝑥𝑖
𝑛
𝑖=1                           (11) 

𝑏∗ = −
1

2
(𝑤∗, 𝑥𝑎 + 𝑥𝑏)                   (12) 

where  𝑥𝑎 ∈ {1}  and 𝑥𝑏 ∈ {−1}  indicate the support 
vectors from two classes. Then the decision function from 
(5) can be written as: 

𝑓(𝑥) = 𝑠𝑔𝑛((𝑤∗, 𝑥) + 𝑏∗)                (13) 

By adapting the optimal parameters 𝑤∗  and 𝑏∗  from 
(11-12), the (13) in the feature space can be updated as 

𝑓(𝑥) = 𝑠𝑔𝑛 ((𝑤 ∙ 𝜙(𝑥)) + 𝑏) 

= ∑ 𝑦𝑖𝛼𝑖𝜙(𝑥)𝜙(𝑥𝑖) + 𝑏∗𝑛
𝑖=1                (14) 

The above equations are only suitable for linear 
separation problem. In general, most of the cases are non-
linearly separable. In order to solve the non-linearly 
separable problem, the kernel function is introduced for 
improving the computation efficiency. In this specific 
condition, the Radical Basis Function (RBF) or Gaussian 
kernel is used.  

The dot product (𝑥, 𝑥𝑖) can be substituted by the kernel 

𝑘(𝑥, 𝑥𝑖) = (𝜙(𝑥) ∙ 𝜙(𝑥𝑖))                (15) 

where 𝜙(𝑥) and 𝜙(𝑥𝑖) are the mapping of 𝑥, 𝑥𝑖  in hyper 
dimension. By adapting a RBF kernel, the kernel function 
can be written as: 

𝐾(𝑥, 𝑥𝑖  ) = 𝑒
(

−‖𝑥−𝑥𝑖‖
2

2𝜎2 )
= 𝑒(−𝛾‖𝑥−𝑥𝑖‖2)            (16) 

where σ  is the width of the kernel, which controls the 
smoothness of the decision boundary in the feature space 

and 𝛾 = −
1

2𝜎2. 

Thus, the decision function 𝑓(𝑥) for an unknown input 
x in the feature space can be extended to: 

𝑓(𝑥) = 𝑠𝑔𝑛 ((𝑤 ∙ 𝜙(𝑥)) + 𝑏) 

= ∑ 𝑦𝑖𝛼𝑖𝑒
(−𝛾‖𝑥−𝑥𝑖‖2) + 𝑏∗𝑛

𝑖=1          (17) 

In the regression cases, the SVM classification function 
from (13) can be expressed as follows to predict the value 
h(x)  

  ℎ(𝑥) = (𝑤∗, 𝑥) + 𝑏∗                      (18) 

By adapting RBF kernel to the regression function (18) 
in feature space, the prediction value can be extended to: 

𝑓(𝑥) = (𝑤∗, 𝑥) + 𝑏∗ 

 = ∑ 𝛼𝑖𝑒(−𝛾‖𝑥−𝑥𝑖‖2) + 𝑏∗𝑛
𝑖=1      (19) 

III. SCADA DATA 

The SCADA systems were initially developed 
independent of the control systems and then have evolved 
to the generation incorporated with the industrial control 
systems (IDS). Recently, SCADA systems have been 
developed and embedded into the distributed control 
system (DCS). It is a data control and acquisition system, 
which has been widely used for high-level supervisory 
management through controller such as programmable 
logic controller to interact with machineries or plants [11], 
[12].  The data used in this paper are from an operational 
wind farm in one-year duration consisting of 26 turbines 
with each turbine having 128 monitoring variables, 
including temperatures, active power and various speeds.  
The SCADA system applied in this particular wind farm 
sampled signals at 10 minutes intervals to cover a range of 
physical and electrical variables and digital control signals. 
However, the digital signals cannot reveal the working 
condition of the wind turbine; it is thus necessary to 
eliminate those variables before further processing [13].  



 

 

Figure 1. Time series data of (a) wind speed, (b) active power of a 
fault-free turbine, (c) active power of a turbine with gearbox bearing fault 
and (d) active power of a turbine with generator winding fault, from top 

to bottom 

Fig. 1 shows wind speed and the output active power of 
the turbines working in different conditions over one year. 
Fig. 1(a) shows the wind speed data measured on both 
healthy and faulty turbine. Fig. 1 (b-d) show the active 
power outputs over one year for the fault-free turbine and 
turbines with gearbox bearing fault and generator winding 
fault, respectively. The occurrence of the faults are labelled 
in red boxes. Compared with the turbine having a gearbox 
fault, the turbine with a generator fault clearly has a shorter 
faulty time duration. In order to prevent overheating to the 
critical components and further damage the whole turbine, 
the turbines were operated with power output being 
reduced to half.  

Fig. 2 illustrates the procedures of variable selection 
and fault feature extraction. In order to obtain the PDD 
ideally, the data samples should be selected as much as 
possible. In the fault classification and feature extraction 
procedures, 50000 samples measured over one year are 
selected. Two turbines are selected for modelling: one has 
a gearbox fault while another has a generator winding fault. 
The faulty data can be selected based on time sequential 
information. First, the PDDs of all the monitoring variables 
are calculated with the data under healthy and faulty 
conditions. Then the two types of PDD are compared by 
calculating the KLD values between them. By sorting the 
KLD values of the monitoring variables in descending 

order, the monitoring variables related specifically to the 
fault can be discovered. Finally, the features associated 
with the gearbox bearing fault and generator winding fault 
are extracted by the KSVM.  

Faulty turbine

Calculate 

probability density 

distribution

Calculate KLD 

Select specific 

variables 

Extract fault 

feature using 

KSVM

Healthy data Faulty data

Calculate 

probability density 

distribution

 
Figure 2. Fault classification and feature extraction 

IV. RESULT AND DISCUSSION 

A. Variable selection using KLD 

As mentioned above, the digital constants and control 
signals are removed in the data pre-processing, totally 78 
variables are then retained for further analysis. The KLD 
values are calculated based on same variable under healthy 
and faulty conditions. By sorting the KLD values in 
descending order and eliminate the variables that are 
infinite or cannot be computed, the KLD values of 22 
variables related to the gearbox fault are given in Table I. 

TABLE I. KLD VALUE OF GEARBOX BEARING FAULT 
VARIABLES 

Variable 
Nacelle 

temperature 

Wind 

direction 

Nacelle 

position 

Pitch 

converter 

temperature 

2 

KLD 15.89 14.95 14.51 7.47 

Variable 
Hydraulic fluid 

temperature 
Pitch angle 2 

Pitch 

Converter 

Temperature 

1 

Pitch 

Converter 

Temperature 

3 



KLD 6.49 5.52 4.87 4.68 

Variable 

Power 

Switchboard 

Temperature 

Gearbox Oil 

Pressure 

Behind Pump 

Temperature 

of generator 

cooling 

water return  

Temperature 

of gearbox 

oil heat 

exchanger 

output  

KLD 4.68 2.44 1.69 1.14 

Variable 
Hygrometer 2 

temperature 

Generator 

speed  

Generator 

speed (to-

default) 

Wind speed 

right-hand 

KLD 1.11 0.86 0.7 0.51 

Variable Wind speed 
Wind speed 

left-hand 

Minimum 

pitch angle 

Oscillation 

signal Z 

KLD 0.51 0.5 0.39 0.19 

Variable 
Maximum pitch 

speed 

Temperature 

of Cooling 

water return  

   

KLD 0.16 0.16    

 

All 22 KLD values show the differences between 
healthy condition and faulty condition. The larger value 
indicates larger difference. It can be observed from the 
Table I that some variables are related to the environmental 
condition, such as wind speed and direction. The 
environmental related variables can be ignored in the 
variable selection because they do not have a direct impact 
on the fault. By eliminating these variables, pitch system, 
gearbox and generator related variables are retained.  

 

Figure 3. PDDs between healthy and faulty conditions of (a) gearbox 
oil heat exchanger temperature and (b) gearbox oil pressure behind pump 

Fig. 3 shows examples of the PDDs of the gearbox oil 
exchanger temperature and gearbox oil pressure behind 
pump under healthy and faulty conditions. It can be 
observed from the top plot of Fig.3 that when the turbine is 
under the healthy condition, the PDD of gearbox oil 
exchanger is similar to Gaussian distribution with an 
average temperature around 55 °C. In addition, the gearbox 
oil pressure behind pump also indicates the abnormal 
behaviour of this turbine. Consequently, the pressure 
tended to be higher when fault occurred, compared with the 
healthy condition.  

TABLE II. KLD VALUES OF GENERATOR WINIDING FAULT 
VARIABLES 

Variable 

Temperature of 

cooling water 

return 

Wind speed 

left-hand 
Wind speed 

Pitch 

converter 

temperature 

2 

KLD 37.89 11.73 11.7 11.62 

Variable 
Wind speed 

right-hand 

Hygrometer 

2 temperature 

Gearbox oil 

pressure 

Behind 

Pump 

Pitch 

converter 

temperature 

1 

KLD 11.25 10.26 8.26 5.5 

Variable 

Temperature of 

generator 

cooling water 

return  

Oscillation 

signal Z 

Hydraulic 

fluid 

temperature 

Nacelle 

temperature 

KLD 3.7 2.92 1.81 1.43 

Variable 

Temperature  of 

gearbox oil heat 

exchanger 

output  

Pitch angle 1 
Minimum 

pitch angle 
Pitch angle 3 

KLD 1.06 0.45 0.45 0.37 

Variable 
Pitch angle 

average 1-3 

Generator 

speed  

Generator 

speed (to-

default) 

Pitch angle 2 

KLD 0.33 0.28 0.28 0.26 

Variable 
Generator 

temperature 
   

KLD 0.2    

 
Table II shows KLD values of the selected variables 

related to generator winding fault. There are 21 variables 
are selected for this specific fault. It can be observed from 
the table that the pitch system, gearbox and generator 
related variables are selected.  

Fig. 4 shows two variables’ PDDs of the turbine with 
generator winding fault. For this specific fault, both the 
temperatures of generator cooling water and generator 
winding tended to shift towards higher temperature zone 
compared with the normal condition.  This clearly indicates 
the abnormal behaviour of generator when fault appears.  

 

Figure 4. PDDs between healthy and faulty conditions of (a) 
generator cooling water return temperature and (b) generator temperature 

B. Feature extraction using KSVM 

It can be concluded from the both Table I and II that the 
pitch system, generator system and gearbox system tended 
to be the three most abnormal systems of the turbines when 
faults occur. The variables are chosen from gearbox, 



generator and pitch systems to separate the fault and normal 
conditions.  

The relationship between generator speed and wind 
speed can be hard to discover, which is shown at top plot of 
Fig. 5. In order to extract the real behaviour of the generator 
speed against the wind speed, the KSVM is applied as a 
regression model to find the relationship between generator 
speed and wind speed. A threshold is also added to help the 
data selection for this regression model. The bottom plot of 
Fig. 5 shows the comparison between original generator 
speed curve and filtered generator speed curve, where the 
yellow curve indicates the filtered generator speed curve. 
The relationship between generator speed and wind speed 
can be revealed clearly now by adapting KSVM regression.   

Then the KSVM is applied to divide the normal and 
fault data into two groups. Fig.6 shows the extracted feature 
of the gearbox bearing fault. The blue dots indicate the 
normal feature and the red crosses indicate the gearbox 
bearing fault, which is separated by the yellow plane. It can 
be observed from the figure in order to prevent dramatic 
damages to the turbine, the power output is reduced to half. 
This is due to the fact that the changing of pitch angle 
controls the output power. Any point within the yellow 
plane are considered as the abnormal date related to the 
fault. The plane created by KSVM is used to extract the 
fault feature can be described as(𝑥 − 1136.12)2 + (𝑦 −
2319.04)2 + (𝑧 + 1916.93)2 − 9300391.69 < 0. When 
the equation is above zero, it can be considered as healthy 
condition. When the gearbox bearing fault occurs, the 
inequality is satisfied.  

 

Figure 5. Original generator speed curve vs. filtered generator speed 

curve 

Fig. 7 shows the generator speed curve against wind 
speed for the turbine with generator winding fault. In order 
to extract the key information, same method has been 
applied. As the bottom plot of Fig. 7 shows, the feature is 
revealed by KSVM.  

 

 
Figure 6. Gearbox bearing fault feature extraction 

 

Figure 7. Original generator speed curve vs. filtered generator speed 
curve 

 
Figure 8. Generator winding fault feature extraction 

 

Based on the active power, generator cooling water 
temperature and pitch converter temperature, the generator 
winding fault feature can be extracted as shown in Fig. 8. 
The plane which is used to extract the fault feature is also 
created by KSVM. It is described as the inequality (𝑥 −
1251.33)2 + (𝑦 + 5895.003)2 + (𝑧 − 6673.873)2 −
79617582.07 < 0. When the inequality is established, the 
generator winding fault can be found. It can be observed 
from the figure that when the fault appears, the pitch 



converter temperature tends to be higher while the 
generator temperature is still in a low temperature zone.  

V. CONCLUSIONS 

This paper presents a novel fault diagnosis and 
detection method based on a multivariate statistical 
technique combined with the machine learning algorithm 
based on KSVM. 

The turbines with a gearbox bearing fault and a 
generator winding fault are tested by using the proposed 
model. The results are drawn as follows. 

 The fault can be localised via calculating the 
KLD values between healthy and faulty 
conditions. 

 The amplitudes of KLD values indicates the 
contributions brought by the variables to the 
fault. 

 By selecting the most significant variables for 
classification model training, it reduces 
computation load and improve efficiency.  

 The fault feature separation plane can extract 
the gearbox bearing fault the generator 
winding fault accurately. 

Further work will focus on applying the fault feature 
model to the turbines with other faults based on deep 
learning algorithms. Other multivariate statistical 
techniques such as Wasserstein metric will be considered 
and incorporated for fault diagnosis. 
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