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Subgroup analysis has important applications in the analysis of controlled clinical trials. Sometimes the
result of the overall group fails to demonstrate that the new treatment is better than the control therapy, but
for a subgroup of patients the treatment benefit may exist; or sometimes the new treatment is better for the
overall group but not for a subgroup. Hence we are interested in constructing a simultaneous confidence
interval for the difference of the treatment effects in a subgroup and the overall group. Subgroups are
usually formed on the basis of a predictive biomarker such as age, sex or some genetic marker. While, for
example age can be detected precisely, it is often only possible to detect the biomarker status with a certain
probability. Because patients detected with a positive or negative biomarker may not be truly biomarker
positive or negative, responses in the subgroups depend on the treatment therapy as well as on the sensitivity
and specificity of the assay used in detecting the biomarkers. In this work we show how (approximate)
simultaneous confidence intervals and confidence ellipsoid for the treatment effects in subgroups can be
found for biomarker stratified clinical trials using a normal framework with normally distributed or binary
data. We show that these intervals maintain the nominal confidence level via simulations.
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1 INTRODUCTION

Biomarkers are measurable indicators of biological conditions. This could be gene expression, the presence
of a certain antibody or some proteins. With the development and use of biomarkers, modern medicine
shifts from empirical to precision medicine (Kelloff and Sigman, 2012; Henry and Hayes, 2012). While
for empirical medicine drugs under study target the whole population, precision medicine allows the drugs
to target some specific subgroups of the population. Since a different status of a biomarker indicates a
different biological condition, it is not unusual that patients from different (predictive) biomarker subgroups
respond differently to the same drug in clinical trials. Sometimes the response from the overall group fails
to demonstrate that the new treatment is better than the control or existing therapy, but for a subgroup
of patients the treatment benefit may exist; or the new treatment is significantly better than control for the
overall group but not for the subgroups. Hence subgroup analysis is becoming increasingly popular (Friede
et al., 2012; Spienssens and Debois, 2010).

Biomarker stratified designs are often used to determine the subgroups of patients that benefit (most)
from the new drug (see, for example, Freidlin et al., 2010; Baker et al., 2012; Kaplan et al., 2013; Man-
drekar and Sargent, 2009; Simon, 2010) . The patients are classified into subgroups according to the
biomarker status before being randomized within each subgroup into treatment and control arms.

As the patients in different biomarker subgroups may respond very differently to the same drug, it is
important to know which subgroup does in fact benefit and how much it benefits from the drug in order
to optimize the treatment outcome and minimize adverse events. Point estimation of the treatment effect
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(i.e. the difference of mean responses between treatment and control arms) has often been performed
in analyzing the results in some predefined biomarker subgroups. However, the point estimate is based
on random observations of the individual response and hence is almost never the true effect. For some
samples of the population, the point estimate could be reasonably close to the true effect, but in some
unlucky circumstances the estimates may indicate effects entirely by chance. With the randomness of
response of individual patients and the uncertainty of the biomarker detection, interval estimation should
be employed to evaluate the treatment effects in true biomarker subgroups. Confidence ellipsoids and
simultaneous confidence intervals for the treatment effects, which give a direct indication (simultaneously)
whether subgroups are likely to have treatment effects, are the ideal statistics to be used in addressing this
issue.

Furthermore, while some biomarkers can be detected precisely, it is often only possible to detect the
biomarker status with a certain probability. Therefore the estimates of the treatment effects in the true
biomarker subgroups depend on the response of patients in the subgroups as well as on the sensitivity and
specificity of the assay used. Without taking into consideration the sensitivity and specificity, the resulting
estimates are in fact the treatment effects in the observed biomarker subgroups rather than in the true
biomarker subgroups (see, for example, Freidlin et al., 2012; Brusselle et al., 2013; Jubb et al., 2011). Liu
et al. (2014) proposed a method for correcting the bias in the estimated effects caused by the biomarker
misclassification in a normal framework. In this paper, we build upon their method and we derive a
variance-covariance matrix for the treatment effects for two different cases: (1) numbers in each biomarker
subgroup are random and (2) when the they are fixed through stratification. We then propose a simultaneous
confidence ellipse and simultaneous confidence intervals for the treatment effects in different populations
when the membership to the population is imperfect. We consider normally distributed and binary data in
our evaluations and consider the simple case of only a single biomarker that is either positive or negative,
although the method developed can be extended to the situation where more than two (sub)groups are used.

2 METHOD

Suppose there is a new therapy for treating a given disease and we want to determine whether it works better
than the control therapy (active control or placebo). Some prior knowledge suggests that the existence of
treatment effects may be related to the positive or negative status of a certain biomarker. A clinical trial is
designed for this purpose: a fixed number of patients are recruited and classified into two subgroups with
respect to their test results of the biomarker status. In each of the subgroups, patients are randomized to
treatment and control arms.

LetN be the number of patients recruited into the study and γ be the prevalence of the positive biomark-
er among the population under study, that is, the probability of each individual having a positive biomarker.
Let λ1 and λ2 be the sensitivity and specificity of testing the biomarker. In order to be usable, both the
sensitivity and specificity should be strictly greater than 0.5. We assume γ, λ1 and λ2 are either given by
medical experts or estimated from previous studies. Let ⊕ and 	 denote the test results of the biomarker
status and + and − the true biomarker status. Note that the test results of the biomarker status may not be
the true biomarker status, depending on the sensitivity and specificity of the test.

By using Bayesian Theory, the probabilities that an individual classified into the biomarker positive
subgroup or the negative subgroup using such test are given by

p⊕ = γλ1 + (1− γ)(1− λ2).

We consider two different designs: in the first design the total number of patients is fixed but the number
of patients in each subgroup is random following a binomial distribution, Binom(N, p⊕), while in the
second design we fix the number of subjects in each biomarker subgroup through stratification. We as-
sume the sample size of patients in the true positive biomarker subgroup follows a binomial distribution
Binom(N, γ). The responses are denoted by Y ijk, i ∈ {T,C}, j ∈ {⊕,	,+,−} and k = 1, 2, · · · , N i

j
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where T and C denote the treatment and control arms and N i
j denote the corresponding sample size. For

example, Y C⊕2 denotes the response of the second subject in the control arm in the detected biomarker pos-
itive subgroup. Note that responses in the true biomarker positive/negative subgroups are not observable
unless the sensitivity/specificity equals one. The sample means are denoted by Ȳ ij , and are again observ-
able only for j ∈ {⊕,	}. Next, we consider the construction of confidence regions for the treatment
effects in the two subgroups when the response distributions are normal and Bernoulli, and then extend the
method for comparisons of one subgroup versus the full population.

2.1 Confidence region with Normally distributed response

In this section, we assume Y ijk ∼ N(µi,j , σ
2
i,j) with unknown mean µi,j and unknown variance σ2

i,j for
j ∈ {+,−} and all the responses, either within or between the four arms, are independently distributed.

Let µµµ = (µ
+,T
− µ

+,C
, µ
−,T
− µ

−,C
)′ be the vector of treatment effects that we are interested in; that

is the differences in the mean treatment effects amongst all truly biomarker positive and negative patients,
respectively. Note that simple estimates of µµµ based on sample means are not available as we only know the
status based on the diagnostic test. We want to construct confidence ellipses and simultaneous confidence
intervals for µµµ. The mean treatment effects in the observed subgroups are expressed as

E(Ȳ i⊕) = w1µ
+,i

+ (1− w1)µ
−,i

(1)

E(Ȳ i	) = (1− w2)µ
+,i

+ w2µ−,i
(2)

where i ∈ {T,C} and w1 and w2 denote the true positive and true negative (predictive) rate, i.e.,

w1 =
λ1γ

λ1γ + (1− λ2)(1− γ)

w2 =
λ2(1− γ)

λ2(1− γ) + (1− λ1)γ
.

Note that µ
+,i

and µ
−,i

can be found from Equations (1) and (2):

µ
+,i

= m1E(Ȳ i⊕) + (1−m1)E(Ȳ i	)

µ
−,i

= m2E(Ȳ i	) + (1−m2)E(Ȳ i⊕)

with m1 = w2/(w1 + w2 − 1) and m2 = w1/(w1 + w2 − 1). Hence if we define

VVV =

(
V1

V2

)
=

(
m1(Ȳ T⊕ − Ȳ C⊕ ) + (1−m1)(Ȳ T	 − Ȳ C	 )
m2(Ȳ T	 − Ȳ C	 ) + (1−m2)(Ȳ T⊕ − Ȳ C⊕ )

)
,

it is clear that E(VVV ) = µµµ, that is, VVV is an unbiased estimate of the vector of treatment effects in the true
positive biomarker subgroup and true negative biomarker subgroup. The derivation of VVV can also be found
in Liu et al. (2014).
The variance-covariance matrix of VVV , Σ, is usually not known. Liu et al. (2014) provided the estimates of
the variances of V1 and V2 for the case that the subgroup sample sizes are fixed through stratification. We
estimate the covariance between V1 and V2 and extend the estimates to case (1) where the subgroup sample
sizes are treated as random variables. Our variance-covariance matrix is given by

Σ̂ =

(
Σ̂11 Σ̂12

· Σ̂22

)
:=

(
m2

1S
2
⊕ + (1−m1)2S2

	 m1(1−m2)S2
⊕ +m2(1−m1)S2

	
· (1−m2)2S2

⊕ +m2
2S

2
	

)
where S2

⊕ = E( 1
NT
⊕

)
(
σ̂2

⊕,T
+ σ̂2

⊕,C

)
and S2

	 = E( 1
NT
	

)
(
σ̂2

	,T
+ σ̂2

	,C

)
are the estimated variances of

Ȳ T⊕ − Ȳ C⊕ and Ȳ T	 − Ȳ C	 and σ̂2
j,i

is the usual estimate of σ2
j,i

with j ∈ {⊕,	} and i ∈ {T,C}. It can be
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shown that if the observed biomarker status is exactly the true biomarker status, that is, when λ1 = λ2 = 1,
we have w1 = w2 = 1 and m1 = m2 = 1. Note that in practice, we need at least 2 patients in each arm in
order to estimate the variances. The computation of the expectation in the first case therefore becomes

E(
1

N i
⊕

) =
Σ0.5N−2
n=2

1
n

(
0.5N−2

n

)
pn⊕(1− p⊕)0.5N−2−n

Σ0.5N−2
n=2

(
0.5N−2

n

)
pn⊕(1− p⊕)0.5N−2−n

E(
1

N i
	

) =
Σ0.5N−2
n=2

1
n

(
0.5N−2

n

)
(1− p⊕)np0.5N−2−n

⊕

Σ0.5N−2
n=2

(
0.5N−2

n

)
(1− p⊕)np0.5N−2−n

⊕

in order to incorporate the practical consideration. By applying Jensen’s inequality, it can be shown that
1

E(NT
⊕)
≤ E( 1

Ni
⊕

) and 1
E(NT

	)
≤ E( 1

Ni
	

). In the case of the second design, that is, the sample size of

the positive biomarker subgroup, N⊕, is fixed through stratification, the expectations E( 1
NT
⊕

) and E( 1
NT
	

)

simply become 1
NT
⊕

and 1
NT
	

. The variances of treatment effects proposed in Liu et al. (2014) can be seen

as a special case of Σ̂11 and Σ̂22 in our variance-covariance matrix.
The sensitivity and specificity of the biomarkers are assumed known in the above inference. However,

often there will be situations where the sensitivity and specificity are not known with certainty but come
from clinical opinion or are estimated from previous data. In this case, we can assume that the observed
or estimated sensitivity, λ̂1, and specificity, λ̂2, are random variables with unknown mean λi for i =

1, 2. Since λ̂i is essentially a proportion, it is natural to assume logit(λ̂i) follows a normal distribution
centered at logit(λi). Then asymptotically the resulting estimate of (m1,m2), (m̂1, m̂2), follows a normal
distribution where the covariance matrix is found by using the Delta method. The test statistic becomes

VVV =

(
V1

V2

)
=

(
m̂1(Ȳ T⊕ − Ȳ C⊕ ) + (1− m̂1)(Ȳ T	 − Ȳ C	 )
m̂2(Ȳ T	 − Ȳ C	 ) + (1− m̂2)(Ȳ T⊕ − Ȳ C⊕ )

)
.

The covariance matrix of the statistic VVV is then computed following the law of total variance/covariance.
See the supplementary material for details.

If the sample size is large, according to the Central Limit Theorem, asymptotically we have

(V − µV − µV − µ)′Σ̂−1/2 ∼ N(000, I). (3)

Let (z1, z2)′ = (V − µV − µV − µ)′Σ̂−1/2, then z1 and z2 are i.i.d following a standard normal distribution. Hence(
(V − µV − µV − µ)′Σ̂−1/2

)(
(V − µV − µV − µ)′Σ̂−1/2

)′
= z2

1 + z2
2 ∼ χ2

2.

Based on the above asymptotic results, confidence regions and simultaneous confidence intervals can be
constructed straightforwardly:
A natural 1− α confidence ellipse for µµµ is given by{

θθθ:(V − θV − θV − θ)′Σ̂−1(V − θV − θV − θ) < χ2
2,α

}
(4)

and an exact simultaneous confidence interval is given by{
V1 − r

√
Σ̂11 < µ

+,T
− µ

+,C
< V1 + r

√
Σ̂11, V2 − r

√
Σ̂22 < µ

−,T
− µ
−,C

< V2 + r

√
Σ̂22

}
(5)

where the critical constant r is such that

P

{
V1 − r

√
Σ̂11 < µ

+,T
− µ

+,C
< V1 + r

√
Σ̂11, V2 − r

√
Σ̂22 < µ

−,T
− µ
−,C

< V2 + r

√
Σ̂22

}
= 1−α.
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The exact simultaneous confidence interval is ‘exact’ in the sense that it gives an exact 1 − α confidence
level if the distribution in (3) is exact. The critical constant r can be found by using the method given by
Genz and Bretz (2009) and can be computed directly using, for example, the R package mvtnorm (Genz
and Bretz, 2009; Genz et al., 2016). If we choose r = Zα/4 where Zα is the upper α-quantile number of a
standard normal distribution, (5) becomes a Bonferroni confidence interval (Dunn, 1961). The Bonferroni
confidence intervals are slightly conservative given that the approximation in (3) is accurate. An alternative
conservative simultaneous confidence interval is given by simply projecting the confidence ellipse on the
axes (referred to as SCIs without shrinkage henceforth), but this is often very conservative compared with
the other confidence intervals we considered above.

2.2 Extension to binary response data

The most commonly used confidence intervals for the proportion, p, of a Bernoulli distribution Bern(p) is
based on a Normal approximation confidence interval, also called the Wald confidence interval, which has
the form {

p̂− zα/2

√
1

N
p̂(1− p̂), p̂+ zα/2

√
1

N
p̂(1− p̂)

}
where N is the sample size and p̂ is the sample proportion. For a difference in proportions, let p̂1 and p̂2

be the sample proportions and N1 and N2 be the relevant sample sizes, the Wald confidence interval for
p1 − p2 is given byp̂1 − p̂2 − zα/2

√
p̂1(1− p̂1)

N1
+
p̂2(1− p̂2)

N2
, p̂1 − p̂2 + zα/2

√
p̂1(1− p̂1)

N1
+
p̂2(1− p̂2)

N2

 .

However, it has been shown that the coverage of the Wald confidence interval is not satisfactory, especially
when the value of the proportion parameter is close to either 0 or 1 (Brown et al., 2001; Agresti and Caffo,
2000). Various alternative confidence intervals have been proposed to deal with this ‘boundary effect’ (see,
for example, Anbar, 1983; Wilson, 1927; Newcombe, 1998), among which the method given by Agresti
and Coull (1998) seems to be both simple and effective (Brown et al., 2001). The basic idea of their method
is to adjust the Wald interval by adding some pseudo data to the response. If the confidence interval is for
the proportion parameter, then add 2 successes and 2 failures; if it is for the difference between two pro-
portions, then add 1 success and 1 failure to each sample group (Agresti and Caffo, 2000). In this section,
we adapt their method in the construction of confidence ellipse and simultaneous confidence intervals for
the difference between proportions in the presence of misclassification.

Assume that the response of patient k in treatment arm iwith true biomarker status j follows a Bernoulli
distribution Y ijk ∼ Bern(πij) for i ∈ {T,C} and j ∈ {+,−} where πij is the unknown proportion param-
eter of the Bernoulli distribution. For j ∈ {⊕,	}, πij represents the response rate in the corresponding
observed biomarker subgroup. All the responses, either within or between the four arms, are assumed to
be independently distributed. Note that when the sensitivity and specificity are not equal to 1, the num-
bers of positive responses in the observed subgroups, for example ΣkY

T
⊕,k, are the weighted sum of two

Binomial distributions, Binom(NT
+ , π

T
+) and Binom(NT

− , π
T
−). It can be shown that Σnk=1Y

T
⊕,k condi-

tional on a fixed total sample size n also follows a Binomial distribution. Therefore, each realization of
Y T⊕,k, k = 1, · · · , n can be seen as n samples from a Bernoulli distribution. This holds for other observed
subgroups as well. Hence if we let µµµ = (πT+ − πC+ , πT− − πC−)′ be the vector of treatment effects in the two
biomarker subgroups, following Section 2.1, an estimate of µµµ is given by

VVV b =

(
π1

π2

)
=

(
m1(πT⊕ − πC⊕) + (1−m1)(πT	 − πC	)
m2(πT	 − πC	) + (1−m2)(πT⊕ − πC⊕)

)
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where πij =
ΣkY

i
jk+t

Ni
j+2t

for i ∈ {T,C} and j ∈ {⊕,	} with t being the added number of successes and

failures in that arm. The variance-covariance matrix Σ̂b is given by Σ̂ in Section 2.1 but with σ̂2
j,i

=

πij(1 − πij) for i ∈ {T,C} and j ∈ {⊕,	}. Then the confidence ellipse and SCIs can be constructed by
substituting VVV b and Σ̂b for VVV and Σ̂ in (4) and (5) in Section 2.1.

2.3 Extension to the entire group

If the interest is on the treatment effects of one subgroup, for example the biomarker positive subgroup
µ
+,T
− µ

+,C
, and the full sample population µ

T
− µ

C
, the test statistic VVV ∗ can be easily obtained by using

simple matrix transformation

VVV ∗ =

(
1 0
γ 1− γ

)
× VVV

and the estimated variance-covariance matrix is given by

Σ̂∗ =

(
1 0
γ 1− γ

)
× Σ̂×

(
1 0
γ 1− γ

)′
.

Then the confidence ellipse and simultaneous confidence intervals constructed above can be directly ap-
plied by substituting VVV ∗ and Σ̂∗ for VVV and Σ̂.

If the interest is on the treatment effects of both the subgroups and the full population, then the test
statistic is given by

VVV ∗ =

 1 0
0 1
γ 1− γ

× VVV
where any two elements in VVV ∗ determine the third one given γ. Hence the SCIs for the treatment effects in
the two subgroups and the whole group are simply the SCIs for the treatment effects in the two subgroups
and the weighted combination of these SCIs, with weights γ and 1− γ, in the whole group. For example,
by substituting VVV ∗ for VVV the limits of the SCIs in expression (5) becomes

 V1 − r
√

Σ̂11

V2 − r
√

Σ̂22

γ(V1 − r
√

Σ̂11) + (1− γ)(V2 − r
√

Σ̂22)

 ,

 V1 + r
√

Σ̂11

V2 + r
√

Σ̂22

γ(V1 + r
√

Σ̂11) + (1− γ)(V2 + r
√

Σ̂22)


 .

3 EXAMPLE

In Corren et al. (2011), a clinical trial was designed and conducted to compare the efficacy (the relative
change in prebronchodilator forced expiratory volume in 1 second (FEV1) from baseline to week 12)
of lebrikizumab in adults with Asthma. Patient subgroups were pre-specified according to baseline type
2 helper T-cell status (Th2-high or Th2-low). The Th2 status were assessed on the basis of total IgE
level and blood eosinophil count. Patient with a total IgE level of more than 100 IU per milliliter and an
eosinophil count of 0.14 × 109 cells per liter or more was classified to the Th2-high subgroup, otherwise
was classified to the Th2-low subgroup. The gene expression microarrays of a group of 42 patients were
analyzed to estimate the sensitivity(λ1 = 0.86), specificity(λ2 = 0.65), true positive rate (w1 = 0.73)
and true negative rate (w2 = 0.83) of this classification (see Table S2 in Supplementary Appendix in
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Table 1 Mean relative change from baseline FEV1 in patients at 12 weeks with known sample sizes

Placebo Lebrikizumab
mean (SD) sample size mean (SD) sample size

all patients 4.27 (15.36) 112 9.78 (19.71) 106
Th2-high 3.12 (14.92) 54 9.54 (18.18) 58
Th2-low 5.35 (15.81) 58 10.08 (21.62) 48
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Exact SCIs
Bonferroni SCIs
SCIs without shrinkage
Estimated Treatment Effects
Observed Treatment Effects

Figure 1 The confidence ellipse and the simultaneous confidence intervals for the treatment effects in the
example in Section 3.

Corren et al. (2011)). In total, 112 of the eligible patients were classified into the Th2-high subgroup and
the remaining 106 were classified into the Th2-low subgroup. Patients in each subgroup were randomly
assigned to receive lebrikizumab or placebo. The outcomes were recorded in Table 1.

In order to establish whether the new therapy is effective, we want to construct a confidence ellipse
and simultaneous confidence intervals for the treatment effects (% change in FEV1 in eligible patients) in
the Th2-high and Th2-low subgroups. The confidence ellipse and simultaneous confidence intervals are
constructed by using the methods introduced in Section 2 and plotted in Figure 1. Note that the ‘estimated
treatment effects’ denoted by a solid dot is the estimate of the treatment effects in the true biomarker
subgroups, while the ‘observed treatment effects’ denoted by a triangle represents the treatment effects
in the observed biomarker subgroups; they will overlap with each other if the sensitivity and specificity
both equal to 1. The confidence ellipse is given by the solid ellipse and the 3 simultaneous confidences
intervals are given by the projection of the 3 rectangular regions onto the two axes. It is shown that the
‘exact’ SCIs lie within the Bonferroni SCIs and the ‘SCIs without shrinkage’ and the latter contains also the
confidence ellipse, as expected by construction. Although the observed treatment effects and the estimated
treatment effects are larger than 0 in both axes, it is shown that both the confidence ellipse and simultaneous
confidence intervals contain the origin 0. Hence in this example, we cannot conclude that the new therapy
is significantly better than the placebo in either of the subgroups.
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Figure 2 Cumulative density of χ2
2 and (V − µV − µV − µ)′Σ̂−1(V − µV − µV − µ) with different values of λ1 and λ2. Assume

µ
+,T

= 2, µ
+,C

= µ
−,T

= µ
−,C

= 1, σ
+,T

= σ
+,C

= σ
−,T

= σ
−,C

= 1, N = 100, γ = 0.3. The result is
computed by 1, 000, 000 simulation.

4 SIMULATION

In this section, simulations are used to assess finite sample properties of the asymptotic normal distribution
in (3). Note that if normality in (3) holds, the statistic (V − µV − µV − µ)′Σ̂−1(V − µV − µV − µ) should follow a chi-squared
distribution with 2 degrees of freedom, i.e., the density of the statistic (V − µV − µV − µ)′Σ̂−1(V − µV − µV − µ) should be
close to that of a chi-squared distribution when the sample size is large. Assume µ

+,T
= 2, µ

+,C
= µ

−,T
=

µ
−,C

= 1, σ
+,T

= σ
+,C

= σ
−,T

= σ
−,C

= 1, N = 100, γ = 0.3. Firstly, we assume the sensitvity and
specificity are constants. For λ1 and λ2 equal to 0.7, 0.8 and 0.9, we randomly draw 1, 000, 000 samples
and compute (V − µV − µV − µ)′Σ̂−1(V − µV − µV − µ) and the results are plotted in Figure 2. It is shown that the cumulative
distribution curves of the χ2

2 approximation almost overlap with the true χ2
2 cumulative distribution curve

for all 3 sensitivity and specificity settings, indicating the asymptotic distribution in (3) is valid.
Next, we plot the confidence ellipses for the treatment effects with respect to random sample size (N⊕ ∼

Binom(N, p⊕) with γ = 0.3) and fixed sample size (N⊕ = 30) using the simulation setting above. The
reason we choose to use N⊕ = 30 for the fixed sample size design is that for γ = 0.3, the expectation of
N⊕ ∼ Binom(N, p⊕) with perfect biomarker is 30. Different levels of λ1 and λ2 are used to illustrate
the changes of confidence region with respect to sensitivity and specificity of biomarkers (Figure 3). It is
clear that when the sensitivity and specificity are close to 1, the confidence ellipses are similar to those
with perfect biomarker (i.e. λ1 = λ2 = 1), and the confidence ellipse expand when the sensitivity and
specificity decrease. This coincides with our expectation, as when the uncertainty increases the confidence
region should expand to meet the same coverage requirement.

The coverage probability and area of the 95% confidence ellipse and simultaneous confidence intervals
with total sample size 100 and 1000 for normally distributed data are provided in Table 2. It is shown that
the coverage probability is positively related to the sample size while the area in the confidence region is
negatively associated with both the sample size and the sensitivity and specificity of the biomarker. When
the sample size increases, the precision improves and hence the coverage probability of the confidence
region and the exact simultaneous confidence intervals are closer to the nominal 95% level. Furthermore,
from Table 2 it is shown that the areas of the confidence regions change faster if we vary the specificity
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Figure 3 Plots of confidence regions of treatment effects in the combination of random sample size
(N⊕ ∼ Binom(N, p⊕)) or fixed sample size (N⊕ = Np⊕) and different levels of sensitivity and speci-
ficity of the biomarker. The simulation setting is N = 100, γ = 0.3, µ
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= 2, µ
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= µ
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and σ
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while fixing the sensitivity, than if we vary the sensitivity and fix the specificity, i.e., specificity has a
larger impact on area size compared to sensitivity. This is because in the simulation setting, we assume the
prevalence of the target population with true positive biomarker, γ, is equal to 0.3, hence misclassification
is more sensitive with specificity than sensitivity. For example, if the sensitivity decrease by 10% then
0.3 × 10% = 3% more patients will be misclassified. But if the specificity decreases by 10%, there will
be (1 − 0.3) × 10% = 7% more patients misclassified. On the other hand, if we assume γ < 0.5, the
impact of specificity and sensitivity on the confidence region will be the other way round; if γ = 0.5, the
sensitivity and specificity will have equal impact.

The coverage probability of the confidence region versus the sample size is depicted in Figures 4. It is
shown that the coverage probability increases quickly when the total sample size increases from 50 to 200
and then slowly approaches the true coverage. The coverage probabilities of both the Bonferroni SCIs and
the SCIs without shrinkage tend to go above 95% as they are conservative confidence intervals, that is, in
theory the true coverage should be greater than 95%. However, when the sample size is small (< 200),
it seems the Bonferroni SCIs is better than the exact SCIs in the sense that it provides a better coverage
probability. If one would like a region with guaranteed confidence level, then the SCIs without shrinkage
might be the choice as they are almost always over-coverage. The area of the confidence regions increase
when the sensitivity and specificity or the sample size decrease because, as is pointed out earlier, when the
uncertainty increases the confidence region should expand to meet the same coverage requirement.
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More simulation scenarios with constant sensitivity and specificity are included in the supplementary
materials: Table S1 and Figure S1 in Section C show that the coverage probabilities of the confidence
regions changed very slightly when varying the prevalence of the positive biomarker among the population,
and the area of the confidence regions decreases significantly when the prevalence increases towards 50%;
Table S2 illustrates the influence of variance on the area of the confidence regions while the confidence
level is less affected; Table S3 compares the coverage level and area of the regions in these situations: (1)
There are treatment effects in both subgroups, in one of the subgroups and in none of the subgroups. It
seems that the coverage probability is similar among the three situations, and the area is larger in the case
where treatment effect only exist in one of the subgroups.

Next, we assume the sensitivity and specificity are random variables rather than constants. Table S4 in
Section C in the supplementary materials shows the resulting coverage and area of the confidence regions
with different combinations of λ1 and λ2. Note that here λ1 and λ2 represent the expected values of the
sensitivity and specificity. The relative performance of the four confidence regions is similar to when we
assume constant sensitivity and specificity: The SCI without shrinkage is the largest in both the coverage
and the area and the only one that guarantees the nominal confidence level (95%). Comparing with Table
4, it shows that the coverages in the random sensitivity and specificity case are smaller than if those are
constants. For example, if we assume the sensitivity and specificity are both 0.9 then the coverage of
the confidence ellipse is 94.8 (Table 4) comparing with 94.5 if we assume the sensitivity and specificity
are random variables with both expectations equal to 0.9 (Table S4). The drop in coverage is caused by
approximating the distribution of m1 and m2 when deriving the variance-covariance matrix of the test
statistic VVV .

For the case of binary response data, we assume the true binary response rates for the relevant treatment
arm and biomarker subgroup are πT+ = 0.9, πC+ = πT− = πC− = 0.2 in order to explore the ‘boundary ef-
fect’. The sensitivity and specificity are assumed equal for simplicity and the added number of success(es)
and failure(s) in each arm, t, varies from 0.1 to 2. Note that it is not possible to consider the case where t=0
since, for small sample sizes, there is a non-negligible chance the confidence region will be undefined due
to a zero count in one of the observed groups. The prevalence of true positive biomarker is 0.3, the same
as in the normal case. The coverage probability and areas of the confidence regions, based on 100,000
simulations for each setting, are given in Table 3. The results show a similar trend as in the normal case
if we change the sensitivity/specificity or the sample size for a fixed t. When t increases, the coverage
probability increases and so is the area in the confidence region. Further more, the increment is smaller for
a total sample size of 1000 than that of 100. This is nature due to the fact that the proportion of 4 × t in
1000 is smaller than if it is in 100 and so is its influence on the confidence region. For a sample size of 100,
it seems t = 1 is a reasonable choice as the nominal confidence level is guaranteed in all four confidence
regions, at least for a reasonable sensitivity and specificity. As for N = 1000, t = 1 gives good coverage
for the case when the sample sizes in the subgroups are random. However, if the subgroup sample size
is prefixed, the Bonferroni SCIs is recommended as its coverage is the closest to the nominal confidence
level while only the SCI without shrinkage guarantees that level. The coverage probability versus t for a
total sample size 100 is also plotted in Figure 5.

In general, we find throughout our simulations that the confidence ellipse and the exact SCIs are gener-
ally close to the nominal 95% confidence level but sometimes under cover, and the SCIs without shrinkage
is almost always substantially conservative, especially when the Normal approximation is accurate. The
Bonferroni SCIs is generally be close to nominal coverage without systematic bias and hence the best
choice for two-subgroup problems. The main factor that affects the coverage probability is the sample
size – a greater sample size is associated with better coverage. The area of the region is affected by many
factors: the prevalence of the positive biomarker, the variance of the sample comparing to the mean and
the sample size, which all contribute to the variability of the estimates. Hence the area of the region is
negatively associated with the variability in order to satisfy the coverage requirement.
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Figure 4 Plots of coverage probability of confidence regions with γ = 0.3, µ
+,T

= 2, µ
+,C

= µ
−,T

=

µ
−,C

= 1, communal variance σ = 1 and N⊕ = Nγ.

5 CONCLUSION AND DISCUSSION

In subgroup analysis, the confidence regions of treatment effects are frequently used to evaluate the ac-
curacy of the estimate. However, when constructing confidence regions the sensitivity and specificity of
the biomarker is typically ignored. As is shown in the example in Section 3, the estimates of treatment
effect in the observed biomarker subgroups are different from those in the true biomarker subgroups. If the
interest is in constructing confidence regions for the treatment effects in the observed (detected) biomarker
subgroups, then clearly there’s no need to take into consideration the impact of the sensitivity and speci-
ficity. But if the interest is in the confidence regions in the true biomarker subgroup, then the sensitivity
and specificity need to be considered in order to give an accurate estimate. Hence we recommend the use
of the statistics VVV and Σ̂ when constructing confidence regions for the treatment effects in true biomarker
subgroups.

In this paper, the construction of confidence regions for treatment effects in biomarker subgroups with
both perfect and imperfect biomarker in preplanned clinical trials is discussed. An asymptotic normal
distribution for the treatment effects is given and a confidence ellipse and three simultaneous confidence
intervals based on the asymptotic distribution are constructed. The method provided in this paper is s-
traightforward and the relevant coverage probabilities seem to be satisfactory. From the simulation result
in Section 4, it is shown that for normally distributed data the exact SCIs work well if the normal approxi-
mation is accurate, otherwise (e.g. when the sample size is small) the Bonferroni simultaneous confidence
intervals and simultaneous confidence intervals without shrinkage provide better (greater) coverage. For

c© 0000 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com



14 F. Wan et al.: Confidence regions for treatment effects in subgroups

0.0 0.5 1.0 1.5 2.0

0.
90

0.
92

0.
94

0.
96

0.
98

coverage of exact SCI

added number of success and failure

co
ve

ra
ge

0.0 0.5 1.0 1.5 2.0

0.
90

0.
92

0.
94

0.
96

0.
98

ellipse

added number of success and failure

co
ve

ra
ge

0.0 0.5 1.0 1.5 2.0

0.
92

0.
94

0.
96

0.
98

1.
00

SCI without shrinkage

added number of success and failure

co
ve

ra
ge

0.0 0.5 1.0 1.5 2.0

0.
90

0.
92

0.
94

0.
96

0.
98

Bonferroni SCI

added number of success and failure

co
ve

ra
ge

λ =1, fixed
λ =1, random

λ =0.9, fixed
λ =0.9, random

λ =0.8, fixed
λ =0.8, random

Figure 5 Plots of coverage probability of confidence regions with γ = 0.3, N = 100, πT+ = 0.9,
πC+ = πT− = πC− = 0.2 using 100, 000 simulation.

binary data, adding 1 success and 1 failure to each treatment arm (that is, t = 1) seem to generally work
well with a better balance between over-coverage and under-coverage compared to other choices of t.

Acknowledgements This work is independent research arising in part from Dr Jaki’s Senior Research Fellowship
(NIHR-SRF-2015-08-001) supported by the National Institute for Health Research and Dr Kunz’s Medical Research
Council fellowship (MR/M014525/1). Funding for this work was also provided by the Medical Research Council
(MR/M005755/1 and MR/K025635/1). The views expressed in this publication are those of the authors and not
necessarily those of the NHS, the National Institute for Health Research or the Department of Health.

References
Agresti, A. and Caffo, B. (2000). Simple and Effective Confidence Intervals for Proportions and Differences of Pro-

portions Result from Adding Two Successes and Two Failures. The American Statistician 54(4), 280-288.
Agresti, A. and Coull, B.A. (1998). Approximate Is Better than ‘Exact’ for Interval Estimation of Binomial Propor-

tions. The American Statistician 52(2), 119-126.
Anbar, D. (1983). On Estimating the Difference between Two Probabilities, with Special Reference to Clinical Trials.

Biometrics 39(1), 257-262.
Baker, S., Kramer, B., Sargent, D. and Bonetti, M. (2012). Biomarkers, subgroup evaluation, and clinical trial design.

Discovery Medicine 13(70), 187-192.
Brown, L.D., Cai, T. and DasGupta, A. (2001) Interval Estimation for a Binomial Proportion.Statistical Science.

Statistical Science 16(2), 101-117.

c© 0000 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com



Biometrical Journal 0 (0000) 0 15

Brusselle, G.G., Vanderstichele, C., Jordens, P., Slabbynck, H., Ringoet, V., Verleden, G., Demedts, I.K., Verhamme,
K., Delporte, A., Demeyere, B., Claeys, G., Boelens, J., Padalko, E., Verschakelen, J., Van Maele, G., Deschep-
per, E. and Joos, G.F. (2013). Azithromycin for prevention of exacerbations in severe asthma (AZISAST): a
multicentre randomised double-blind placebo-controlled trial. Thorax 68, 322-329.

Corren, J., Lemanske, R.F.Jr, Hananian, N.A., Korenblat, P.E., Parsey, M.V., Arron, J.R., Harris, J.M., Scheerens, H.,
Wu, L.C., Su, Z., Mosesova, S., Eisner, M.D., Bohen, S.P., Matthews, J.G. (2011). Lebrikizumab treatment in
adults with Asthma. The New England Journal of Medicine 365(12), 1088-98.

Dunn, J.O. (1961). Multiple Comparisons Among Means. Journal of the American Statistical Association 56(293),
5264.

Friede, T., Parsons, N. and Stallard, N. (2012). A conditional error function approach for subgroup selection in adaptive
clinical trials. Statistics in Medicine 31(30), 43094320.

Freidlin, B., McShane, L.M. and Korn, E.L. (2010). Randomized clinical trials with biomarkers: Design issue. Journal
of the National Cancer Institute 102(3), 152-160.

Freidlin, B., McShane, L.M., Polley, M.C. and Korn, E.L. (2012). Randomized Phase II Trial Designs With Biomark-
ers. Journal of Clinical Oncology 30(26), 3304-3309.

Genz, A. and Bretz, F. (2009). Computation of Multivariate Normal and t Probabilities. Springer Science and Business
Media 195.

Genz, A., Bretz, F., Miwa, T., Mi, X., Leisch, F., Scheipl, F. and Hothorn, T. (2016). mvtnorm: Multivariate Normal
and t Distributions. R package version 1.0-5. http://CRAN.R-project.org/package=mvtnorm.

Henry, N.L. and Hayes, D.F. (2012). Cancer biomarkers. Molecular Oncology 6(2), 140146.
Jubb, A.M., Miller, K.D., Rugo, H.S., Harris, A.L., Chen, D., Reimann, J.D., Cobleigh, M.A., Schmidt, M., Langmuir,

V.K., Hillan, K.J., Chen, D.S. and Koeppen, H. (2011). Impact of Exploratory Biomarkers on the Treatment
Effect of Bevacizumab in Metastatic Breast Cancer. Clinical Cancer Research 17(2), 372-381.

Kaplan, R., Maughan, T., Crook, A., Fisher, D., Wilson, R., Brown, L. and Parmar, M. (2013). Evaluating Many
Treatments and Biomarkers in Oncology:A New Design. Journal of Clinical Oncology 31(36), 4562-8.

Kelloff, G.J and Sigman, C.C. (2012). Cancer biomarkers: selecting the right drug for the right patient. Nature Reviews
Drug Discovery 11(3), 201-214.

Liu, C., Liu, A., Hu, J., Yuan, V. and Halabi, S. (2014). Adjusting for misclassification in a stratified biomarker clinical
trial. Statistics in Medicine 33(18), 3100-3113.

Mandrekar, S.J. and Sargent, D.J. (2009). Clinical Trial Designs for Predictive Biomarker Validation: Theoretical
Considerations and Practical Challenges. Journal of Clinical Oncology 27(24), 4027-4034.

Newcombe, R.G. (1998). Statistics in Medicine. Improved Confidence Intervals for the Difference between Binomial
Proportions Based on Paired Data. Statistics in Medicine 17, 2635-2650.

Simon, R. (2010). Clinical trials for predictive medicine: new challenges and paradigms. Clinical Trials 7(5): 516524.
Spienssens, B. and Debois, M. (2010). Adjusted significance levels for subgroup analysis in clinical trials. Contempo-

rary Clinical Trials 31(6), 647-656.
Wilson, E.B. (1927). Probable Inference, the Law of Succession, and Statistical Inference. Journal of the American

Statistical Association 22(158), 209-212.

c© 0000 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com



16 F. Wan et al.: Confidence regions for treatment effects in subgroups

c© 0000 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com


