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Abstract 

Avian avulaviruses serotype 1 (abbreviated as APMV-1 for the historical name avian paramyxovirus 1) are capable of 
infecting a wide spectrum of avian species with variable clinical symptoms and outcomes. Ease of transmission has 
allowed the virus to spread worldwide with varying degrees of virulence depending upon the virus strain and host 
species. The emergence of new virulent genotypes from global epizootics, and the year-to-year genomic changes 
in low and high virulence APMV-1 imply that distinct genotypes of APMV-1 are simultaneously evolving at different 
geographic locations across the globe. This vast genomic diversity may be favoured by large variety of avian species 
susceptibility to APMV-1 infection, and by the availability of highly mobile wild birds. It has long been considered that 
waterfowls are not sensitive to APMV-1 and are unable to show any clinical signs, however, outbreaks from the 90′s 
contradict these concepts. The APMV-1 isolates are increasingly reported from the waterfowl. Waterfowl have strong 
innate immune responses, which minimize the impact of virus infection, however, are unable to prevent the viral 
shedding. Numerous APMV-1 are carried by domestic waterfowl intermingling with terrestrial poultry. Therefore, com-
mercial ducks and geese should be vaccinated against APMV-1 to minimize the virus shedding and for the prevention 
the transmission. Genetic diversity within APMV-1 demonstrates the need for continual monitoring of viral evolution 
and periodic updates of vaccine seed-strains to achieve efficient control and eradication of APMV-1 in waterfowls.
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and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/
publi cdoma in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

1 Introduction
Newcastle disease (ND) is one of the most devastating 
and commonly prevalent diseases in the poultry industry, 
around the world. Owing to immense economic losses, 
World Organization for Animal Health has categorized 
the disease as “notifiable” [1]. The disease outbreaks are 
enormous and the host spectrum is broad, thus making 
ND as one of the primary limiting factor in the develop-
ment of the poultry industry, especially in the develop-
ing countries [2, 3]. It is caused by the Avian avulavirus 1 
(APMV-1), which belongs to the Avulavirus genus within 
Paramyxoviridae family. All APMV-1 strains can be clas-
sified into velogenic (highly virulent), mesogenic (inter-
mediate virulent) and lentogenic (non-virulent) based 
on the intracerebral pathogenicity index (ICPI) in day 
old specific pathogen free (SPF) chickens [4, 5] or nature 
of three amino acids at the position 113–116 in the 
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un-cleaved fusion protein cleavage site. APMV-1 is con-
sidered to be virulent, if these amino acids are basic in 
nature with a phenylalanine at position 117, and having 
ICPI value of 0.7 in 1 day old chicks [3, 6].

APMV-1 is a single-stranded, negative-sense, non-seg-
mented and enveloped RNA virus with genome length of 
15.2 kb. APMV-1 genome encodes for six co-linear genes 
that translate into six proteins and two non-structural 
proteins. Structural proteins include nucleoprotein (NP), 
matrix (M), fusion (F), hemagglutinin–neuraminidase 
(HN), phosphoprotein (P) and large RNA-dependent 
RNA-polymerase (L). The RNA editing of the P gene 
can result in the expression of V and W only in the virus 
infected cells [7–10]. Virulence of APMV-1 varies and 
depends upon the host species, and chicken and turkey 
are more susceptible than ducks and geese.

Generally, waterfowls were considered to be the natu-
ral reservoir for APMV-1 [1]; commonly for lentogenic 
APMV-1 [11]. Traditional view on the resistance of 
waterfowl against APMV-1 has been challenged since 
the report of continuous outbreaks in different prov-
inces of china in goose (1997) [12, 13] and ducks (2002) 
[14]. Number of clinical ND outbreaks are increasing in 
the waterfowls [15–18]. Outbreaks of ND in ducks and 
geese indicate that these are not only the carrier, but also 
show clinical outcome of the disease. Factors that led to 
the change in the pathogenic spectrum of APMV-1 in 
waterfowl remain elusive. Investigation of the molecular 
mechanisms of increased pathogenicity of APMV-1 in 
waterfowls would provide foundations in designing any 
control strategies for the disease, as well as to improve 
health and welfare standards of the waterfowl.

The purpose of this review is to analyze our current 
understanding on the host-spectrum, molecular patho-
biology of APMV-1 in waterfowls, and host immune 
responses that may play crucial roles in the disease pre-
vention and control.

2  Susceptibility of waterfowls for APMV‑1 
infection

The Class I APMV-1 isolate was reported in 2006, 
however, currently these isolates are frequently being 
reported. Recent epidemiological studies direct that 
class I APMV-1 are common in domestic waterfowl. 
All viruses belong to class I are avirulent except JS10-
A10 and 9a5b strains [19, 20] which were generated by 
experimental consecutive passages through chicken. 
Amongst all genotypes of Class II, genotype I and II are 
the most prevalent genotypes in the waterfowl and have 
been isolated from many countries (summarized in 
Table 1). Waterfowl-origin isolates belonging to genotype 
VII of APMV-1 are constantly increasing especially in 
China, Republic of Korea, and Taiwan [16, 21–32]. These 

emerging outbreaks are increasing the global burden of 
APMV-1 and causes heavy economic losses [24]. Geno-
type IV and V have not been isolated from the water-
fowl (Table 1). Collectively, these epidemiological studies 
clearly demonstrate the susceptibility of waterfowls for 
APMV-1 and their possible roles in the epizootiology of 
viruses.

Most of our understanding on the surveillance of 
APMV-1 in wild birds came from epidemiological studies 
on avian influenza viruses. Thus, it is required to design 
APMV-1 dedicated studies to effectively assess the true 
prevalence of the virus in wild birds. It is essential to 
understand and establish the foundations to devise con-
trol strategies, especially in wild-birds populated and 
highly vulnerable commercial poultry areas.

3  Pathogenicity and special immune responses 
of waterfowl

Waterfowls are less susceptible to APMV-1 compared to 
chickens, such as ducks and geese. A key reason for less 
susceptibility of waterfowl to APMV-1 is the presence of 
retinoic acid-inducible gene I (RIG-I). RIG-I is absent in 
the chicken [33] whereas it is present in ducks and goose 
(Figure  1) [7, 34]. RIG-I and melanoma differentiation-
associated gene 5 (MDA5) are the foremost part of reti-
noic acid inducible gene-like receptors (RLRs) (Figure 1), 
which senses the cytoplasmic RNA [35]. These sen-
sors can detect the nucleic acids of negative sense RNA 
such as APMV-1 and influenza viruses [36, 37], result-
ing in the production of the IFN type I and III, cytokines, 
chemokines and expression of the antiviral genes [38]. 
There is a vital role of the RLRs in the recognition of the 
viruses and antiviral immune responses in macrophages, 
fibroblast, and dendritic cells [39, 40]. The V protein of 
APMV-1 blocks the “downstream” signaling pathway by 
interacting with MDA5 resulting in blockage of strong 
antiviral response of IFN-β in chicken, which provide 
the benefit to waterfowl via RIG-I pathway [41, 42]. Posi-
tive correlation exist between the resistance to APMV-1 
infection and expression of the antiviral genes includ-
ing RIG-I, IRF3, IRF7 and IFN-β [43] which was further 
confirmed in a study demonstrating increased expression 
of RIG-I ultimately leading to decreased APMV-1 load 
in vitro as well as in vivo [34].

APMV-1 infection increases the expression of inter-
leukin (IL) IL-1β, tumor necrosis factor-α-like fac-
tor and interferon (IFN)-β in duck embryo fibroblast 
(DEF) cells. Distinct innate immune responses of the 
waterfowl against APMV-1 may reason the resistance 
of waterfowls to these infections [44]. A higher level of 
innate immune genes expression has been observed in 
chicken embryo fibroblast (CEF) compared to the DEF 
cells [44]. An experimental study reveals that APMV-1 
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Table 1 Field surveillance of ducks and geese for Avian avulavirus 1 

Class Genotype Specie/host Region Year(s) of isolation References

I 1 Duck, Mallards Teal (Zhejiang, Jiangsu, Guangxi, 
Guizhou, Fujian, Guangdong, 
Hubei, Guangxi, Shandong, 
Shanghai) China

Sweden
(Hyogo) Japan
USA
(Central and Southern) Finland

2002, 2007, 2008, 2011, 2013, 2015, 
2016

[11, 22, 69, 75–79]

I 2 Duck
Teal, Mallards

(Florida, Kentucky, Maryland, North
Carolina, Pennsylvania, South Caro-

lina, Vermont and Virginia) USA
Central and Southern, Finland
(Jiangsu, Anhui, Zhejiang, Fujian, 

Shanghai) China
(Chonbuk) Republic of Korea

2009
2006, 2010
2002, 2006, 2007
2007

[54, 77, 80]

I 3 Duck (Shandong, Jiangsu, Zhejiang, 
Jiangxi, Guangdong, Shanghai,) 
China

2004, 2005, 2008, 2009, 2010, 2012, 
2013

[21, 63, 68, 81, 82]

I 4 Duck (Jiangsu) China 2010 [83]

I 5 Duck (Florida, Kentucky, Maryland, North
Carolina, Pennsylvania, South Caro-

lina, Vermont and Virginia) USA

2009 [80]

II I Duck
Teal, Mallard

(Shandong, Henan, Jiangsu, Anhui, 
Zhejiang, Anhui, Gaoming, Guang-
zhou, Guangdong) China

(Gyeongbuk, Chonnam, Chungbuk, 
Chonbuk, Cheju) Republic of 
Korea

(Republic of Sakha) Russia
(Island of Öland i.e. Southern part) 

Sweden
Luxembourg
Yobe State, Nigeria
(Central and Southern) Finland
(Tohoku) Japan
(Northern Queensland) Australia
(South Dakota, Minnesota) USA
Taiwan

1995, 2004, 2005, 2006, 2007, 2008, 
2009, 2010, 2011

[21, 22, 32, 54, 77, 82, 84–96]

Pintail Tohoku, Japan 2003 [97]

II II Duck (Anhui, Yunfu) China
Luxembourg
Republic of Korea
(Tohoku) Japan
(North Dakota, South Dakota, Min-

nesota) USA
(Baluchistan, Sindh, Punjab) Pakistan

2005, 2005–2013, 2006–2008, 
2006–2009, 2008, 2014–2016

[22, 30, 87, 91, 93, 95, 98]

II VI Duck/mallards Finland 2006 [96]

II VII Duck
Mallards
Black swan, Goose

(Guizhou, Jiangsu, Beijing, Anhui, 
Guangdong, Yunfu) China

(Adygea) Russia
Serbia
(Gyeongnam) Republic of Korea
Taiwan
(Punjab, Khyber Pakhtun Khwa) 

Pakistan

2000, 2005, 2006, 2007, 2008, 2009, 
2010, 2014, 2015, 2016

[16, 21–32, 98–101]

II IX Duck (Jiangsu, Beijing, Shandong, South-
ern China, Guangxi) China

2009, 2010, 2011 [16, 24, 28, 31, 102]

II XVIII Duck Yobe State, Nigeria 2008 [88]

I 1 Geese (Alaska) Japan
USA

1991, 2007 [11, 103]

I 3 Geese (Jiangsu, Shanghai, Shandong) 
China

2008, 2009, 2011, 2012 [63]
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stimulate a strong and intense expression of the IFN-β 
in ducks compared to chickens [42], and also up-reg-
ulate the IFN-β, IFN-regulatory factor 7 (IRF-7), and 

decreases the virus titer in goose lung and air-sac post-
infection [34]. These observations dictate that the 
strong innate immune responses is a plausible reasons 

Table 1 (continued)

Class Genotype Specie/host Region Year(s) of isolation References

II I Geese Yobe State, Nigeria 2008 [88]

II II Geese (Jiangsu) China 2003, 2006 [104, 105]

II III Geese (Jiangsu, Guangxi) China 2005, 2006 [106]

II VI Geese (Jiangsu, Guangdong) China 1998, 2013 [18, 107]

II VII Geese (Jiangsu, Guangxi, Anhui, Jilin, 
Shanghai) China

1997–2001, 2003–2008 [18, 27, 30, 31, 104–106, 108, 109]

II IX Geese China 1997 [31]

II XII Geese China 2010, 2011 [110]

Figure 1 Pictorial representation of un-inhibited Avian avulavirus 1 (APMV-1)-induced type I interferon (IFN) response in waterfowl 
cells. After the fusion of virion and plasma membrane, the viral RNA enters the cytoplasm, where it is recognized by retinoic acid-inducible gene 
I (RIG-I), melanoma differentiation-associated gene 5 (MDA5), or toll like receptor (TLR) 3 and initiates downstream signaling mediated through 
mitochondrial antiviral-signaling protein (MAVS). Activated MAVS, stimulate the translocation of interferon regulatory factor 3 (IRF3) to the 
nucleus, leading to the transcription of type I IFNs (IFN-α and β). These upregulations of IFNs may last for is 8–12 h (early phase). Then, these IFNs 
stimulate JAK–STAT pathway leading to phosphorylation of STAT1 and STAT2 molecules, which (together with factors that are currently unknown in 
waterfowl) results in the formation of the IFN-stimulated gene factor 3 (ISGF3) transcription factor complex. This multifunctional transcription factor 
initiates the transcription of hundreds of IFN-stimulated genes (ISGs), which subsequently establish the antiviral state against the invading viruses. 
Several well-characterized ISGs are revealed in the figure.
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for less susceptibility of duck [42] and geese because 
its strong protective effects have been revealed to 
decrease the virus titer in goose-transfected cell [34], 
which may not be compensated by the IFN-α [33]. 
Recently, Yang et al. [45] have demonstrated that over-
expression of 2′–5′-oligoadenylate synthetase-like 
gene lessens the replication of APMV-1 in goose cells. 
In conclusion, waterfowls have diverse innate immu-
nity components, which possibly increase their resist-
ance to the APMV-1 [42].

4  Clinical findings
Besides the strong innate immune responses, waterfowl 
are generally considered long-term carrier of APMV-1 
and disease outbreaks have been reported since 1997 
[12–14], and were confirmed by follow up experimen-
tal studies. Clinically and naturally infected ducks and 
geese with APMV-1 show clinical signs such as elevated 
body temperature, excessively excreted oral mucus, 
dried cloaca, watery, greenish-white diarrhea, vain 
attempts of eating and drinking, listlessness, anorexia, 
crouch, eyelid edema and emaciation [14, 23, 46, 47]. 
Ducks may show up to 70% decrease in egg production, 
80% morbidity and 67% mortality [15, 48] however the 
mortality in ducks varies with the different breeds, 
virus strain and dose of virus [15]. Some birds also 
show weakness of legs and wing along with unilateral 
or bilateral incomplete paralysis and the effects of this 
paralysis increases with progression of the disease [46]. 
Duck and geese also show the neurological signs such 
as muscular trembles, muscular dis-coordination, cir-
cling, and twisting of head and neck [23, 46, 48]. These 
clinical signs disappear according to infection status; 
mildly affected recover sooner and severely affected 
birds may recover after 15 days of infection [22, 46].

APMV-1 infected ducks and geese show the gross 
lesions on the immune organs such as bursa, spleen, 
thymus, mild to severe tracheitis, kidney enlargement, 
necrosis of pancreas, congestion on the meninx and in 
the brain and diffuse brain edema, focal hemorrhages 
in the mucosa of the proventriculus and intestine (espe-
cially duodenum and upper part of jejunum) [14, 22, 
23, 46]. Bursal atrophy, hemorrhagic thymus and sple-
nomegaly with white necrotic spots were found in the 
APMV-1 infected geese and duck [23, 46]. These lesions 
and histopathological changes may be due to higher 
viral loads, multi-systemic distribution of the virus in 
these immune organs [23]. As these immune organs are 
the reservoir of immune cells, and their destruction may 
lead to low antibody titer and other infections.

5  Experimental infection studies of ducks 
and geese with APMV‑1

Experimental infection studies are necessary to deter-
mine the virulence and pathogenesis, in different bird 
types, age, species, intervention strategies, evaluation, 
comparison of vaccines etc. Different scientists propose 
diverse reasons for experimental infection studies and 
the design of the experimental infection studies varies 
greatly with the above-mentioned factors. Experimental 
infection studies on the pathogenesis, infection route, 
most susceptible age, bird line and immune responses are 
limited in waterfowl and available information is summa-
rized in Additional file 1 and are briefly discussed below.

Kang et al. [44] have studied the immune related gene 
expression of chicken and duck embryonic fibroblast 
(CEF, DEF), by infecting them with APMV-1 of mod-
erate virulent strain NH-10 and highly virulent strain 
SS-10. Upregulated expression of the Toll like receptor 
(TLR) 3, TLR7, IL-1β, IL-6, IFN-α, IFN-γ, MHC-I and 
MHC-II were observed both in CEF and DEF, however, 
these expression levels were higher in CEF (mechanism 
is described briefly in Figure 1). Peking duck infection at 
3 week of age with NH-10 and SS-10 via intranasal route 
showed the systemic replication of the virus into small 
intestine, cecal tonsils, brain, lung, bursa of Fabricius, 
thymus, and spleen. This study also demonstrated the 
increased expression of the TLR3, TLR7, RIG-I, MDA5, 
IL-1β, IL-2, IL-6, IL-8, IFN-α, IFN-β, IFN-γ in lungs com-
pared to thymus. Furthermore, the higher expression 
level of TLR3, TLR7, IL-1β, IL-2, IL-8, IFN-α, IFN-γ and 
MHC II were induced by NH-10 than SS-10 in the lungs. 
Whereas, the expression of the IL-6 and IFN-β in lung 
as well as thymus was higher for SS-10 group [7]. Simi-
larly, a study of the Zhong et  al. [49] has demonstrated 
the upregulation of the viperin (an IFN stimulated gene) 
in the DEFs and also in the spleen, kidneys, liver, brain, 
and blood of Changbai ducks infected with G7 APMV-1 
through intranasal or intramuscular route. Experimen-
tal infection of geese with genotype VII APMV-1 up-
regulate the expression of TLR 1–3, 5, 7, and 15, avian 
β-defensin 5–7, 10, 12, and 16, IL-8, IL-18, IL-1β, and 
IFN-γ, and MHC class I in different tissues [50].  

Intranasal inoculation of the Japanese commercial 
ducks and chicken males with artificially made APMV-1 
class I virus 9a5b results in the higher IFN-β in the duck 
compared to chicken. This study also demonstrated that 
replication, distribution, tissue damage and apoptosis 
were more in the immune organs of the chicken com-
pared to duck [42]. Intramuscular infection of different 
ducks (mallard, Gaoyou, Shaoxing, Jinding, Shanma, and 
Peking ducks) with JSD0812 strain showed that different 
strains vary in the susceptibility to the disease [46]. Mal-
lard are the most susceptible and Peking ducks are the 
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most resistant species of birds. Infection of the Gaoyou 
duck at 15, 30, 45, 60, and 110 with different routes indi-
cate that their susceptibility to disease and virus shed-
ding decreases with the age and birds seldom die after 
infection through the natural route [46]. Experimental 
co-infection of ducks with APMV-1, and low or high 
pathogenic avian influenza virus (LPAIV and HPAIV) 
indicate that it decreases the virus shedding and trans-
mission to the naïve ducks by contact [51]. Duck after 
immunization with inactivated vaccine of APMV-1, and 
challenge with the same live virulent Kenyan APMV-1 
resulted in the development of more antibody titer than 
the unchallenged birds [52]. Experimental infection of 
geese with virulent APMV-1 genotype VIId and goose 
origin APMV-1 showed the extensive replication of geese 
in the immune organs which correlated with the clinical 
signs and lesions [12, 23] and also it transmission to SPF 
chickens [12]. Geese and chicken were vaccinated, then 
infected with goose-origin APMV-1/NA-1 and chicken-
origin APMV-1/F48E9, and F48E8 viruses (Additional 
file 1). Geese are more resistant to F48E8 virus after vac-
cination. Results indicate that NA-1 vaccine provides 
a better protection in the form of less morbidity, less 
mortality and less virus shedding after challenge [53]. 
Although several natural outbreaks and experimental 
infections of APMV-1 in waterfowl had been reported. 
However, it remain to be clarified whether it cause the 
disease in waterfowl [46]. Inconsistent results in the 
infection of APMV-1 in waterfowl are due to  APMV-1 
strain, dose and rout of inoculation, breed, and maternal 
antibody titer (Additional file 1). Ducks are more resist-
ant to infection through natural route than the geese [46].

In conclusion, these studies indicate that different 
viruses affect the immune organs and innate immune 
genes in diverse mechanisms. Waterfowls are more sus-
ceptible to APMV-1 infection at an early age, and through 
natural route results in less damage to immune organs. 
More comprehensive and detailed studies are warranted 
for the control of ND in waterfowl.

6  Role of waterfowls in emergence of APMV‑1
Waterfowl are naturally infected with large number 
of the viruses which are avirulent and do not cause 
the diseases in domesticated poultry. Waterfowl are 
commonly considered to be the natural host as well 
as carrier of APMV-1 [4]. APMV-1 isolates from the 
waterfowl are generally lentogenic or potentially path-
ogenic [54], and may be transmitted to the avian spe-
cies, leading to increase attention for their role in the 
transmission/spread and emergence of ND [55–57]. 
There are increasing concerns about the increased 
virulence from the lentogenic to mesogenic to virulent 
pathotypes upon cyclic replication in poultry. These 

lentogenic isolates may converted to pathogenic viruses 
through serial passage in susceptible birds [19, 20, 58] 
and one such isolate have already been documented to 
be the causative agent of the outbreak in the Ireland 
[59], but disappeared quickly. All the Class I APMV-1′s 
had been isolated from the waterfowl, indicating them 
the natural carrier of these viruses (Table 1). Live bird 
market (LBM) epidemiological study in United States 
indicated that from avirulent viruses, 70% belong to 
class I and 30% belongs to Class II [60]. There is close 
phylogenetic relationship between the avirulent viruses 
isolated from the LBM and waterfowl, indicating that 
APMV-1′s may be transmitted from the waterfowl to 
the domestic poultry [60, 61]. Transmission of APMV-1 
may occur through different routes like, ingestion of 
the contaminated feed, water air, contaminated feces, 
animals, humans, contaminated eggs etc. [62]. Mostly 
domestic waterfowl are reared in semi-closed areas, 
where they may have the contact with the wild birds 
and domestic poultry. Therefore, it provides the best 
natural environment for the spread of APMV-1′s [20, 
63].

Waterfowl and shorebirds are not only the host, but are 
also infected by the APMV-1 and these viruses can also 
cause the disease in domesticated poultry [55, 56, 64]. 
Many virulent isolates from the domestic poultry cannot 
cause disease in waterfowl [21, 53]. Most prevalent viru-
lent genotype VII causing the endemics in China, Japan, 
Korea [18, 60, 65] are co circulating into the ducks and 
chicken [66]. This coevolution was further confirmed 
when the results of Huang et al. [67] declared that some 
of the circulating APMV-1 had the multiple homolo-
gous genomes from chicken, ducks and geese. So, there 
is dire need to modernize the housing system of water-
fowl according to biosecurity point of view to prevent 
their contact with terrestrial poultry and wild birds. Oth-
erwise, number of virulent [16, 21–29] and avirulent [21, 
63, 68, 69] isolates from the waterfowl may easily trans-
mit to commercial poultry farm.

APMV-1 infected waterfowls shed the virus for an 
extended period of time [24] whereas, the infected chick-
ens clears themselves rapidly and shed virus for short 
duration [70]. This prolonged virus shedding may facili-
tate the transmission, persistence and evolved to get 
some point mutation in the virus [66]. Major issue that 
should be concerned for virologists is the high evolution 
rate of some Class I APMV-1 isolates from waterfowls. 
Pathogenicity of some Class I APMV-1 isolates are con-
stantly increasing and they are naturally converted to 
low virulent from avirulent viruses (unpublished findings 
from our lab). This was confirmed by the results of the 
Meng et al. [20] and Shengqing et al. [19] in which they 
artificially develop the virulent viruses through serial 
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passage in the air sac and brain of chicken, from aviru-
lent viruses of waterfowl origin. Although the conditions 
provided in these studies are not naturally existing but 
recovery of the virus from the air sacs after challenged 
via nasal or ocular route indicate the possibility of this 
mechanism.

In conclusion waterfowl plays a vital role in the trans-
mission and re-emergence of ND in terrestrial poultry. It 
is recommended that rearing facilities of the waterfowl 
should be separated from commercial poultry.

7  Recent advances and challenges for control 
of Newcastle disease

Cumulating evidences indicate that genetic resistance to 
APMV-1 exists in various breeds of waterfowl [15]. Com-
prehensive studies are needed to determine the genetic 
variability against APMV-1 in different breeds of water-
fowls. Genetic resistance of more susceptible breeds can 
be improved by including the resistant birds in the breed-
ing programs of the commercial waterfowl [6]. APMV-1 
resistant breeds should be used to produce highly effi-
cient transgenic poultry birds [6].

Although constant outbreaks of ND have been 
reported in waterfowl from China and other East Asian 
countries, however, vaccination against ND in water-
fowl is still a matter of debate. There are two consor-
tia of scientists; one favors the vaccination and, others 
think that domestic waterfowl should not be vaccinated. 
These veterinarians have their own views, scientist, in 
the favors of vaccination argue, that it will decrease the 
chances of outbreaks and lessons the virus shedding. 
But, scientists, which are against vaccination argue that 
it will increase the virus burden on the birds, conse-
quently increase the variation rate. The annual rate of 
change of virulent viruses could be as high as ten times 
the rate of change of low virulence APMV-1, suggesting 
that other selective pressures such as vaccination may 
accelerate the rate of evolution of virulent viruses [71, 
72]. They claim that the rearing conditions of waterfowl 
could not be changed in future because they require 
water for breeding. Therefore, it is not plausible to pre-
vent their contact with wild birds, resulting in transfer of 
the wild bird viruses to domestic waterfowls. Secondly, 
they claim vaccine will develop the antibody titers that 
will interact with the virus in the future exposures. These 
antibody responses may force the viruses for evolution. 
Our viewpoint supports the group of scientists, which 
claims that birds should be vaccinated. Because, it had 
already been established that APMV-1 cause the disease 
in waterfowl [7, 46, 49, 52] and vaccination prevent the 
chances of the outbreak. Second most important rea-
son is the prolonged virus shedding by non-vaccinated 
birds, which may transfer to other poultry species and 

cause heavy economic losses. Theory, that vaccination 
will increase the virus burden is not very interesting in 
case of waterfowl because, without vaccination we have 
to face the same consequences of the high evolution rate. 
Waterfowls are naturally infected with large and diverse 
groups of viruses [73]. Development of the vaccines for 
waterfowl may require strains of waterfowl origin [53] 
because some lentogenic vaccines phylogenetically are 
far away than the infectious virus thus may provide par-
tial protection to waterfowl [74]. Vaccine should also be 
killed because live vaccine virus replicates in the body 
and leads to shedding of the virus. Virus shedding of live 
vaccine may interact with the other APMV-1’s present in 
the environment or birds and results in recombination 
and future evolution.

8  Conclusions
Waterfowls are not only the carrier but also susceptible to 
APMV-1. Strong innate immune responses may attribute 
to the less susceptibility of ND to waterfowl. Viral shed-
ding by waterfowl for prolonged duration may increase 
the transmission, evolution and emergence of new viral 
strains. A number of APMV-1 isolates from the water-
fowl are reported with high mutation rate, which is an 
alarming matter and may cause the endemics in future. 
Pathogenicity of ND is affected by different factors such 
as type, dose, and inoculation route of the virus, and spe-
cies and age of birds.

Further studies are needed to explore the mechanism, 
and its intervention to prevent the virus shedding by 
the waterfowl for a long period. Continuous studies are 
also required to monitor the APMV-1 in the waterfowl, 
which may be the future threat to commercial poul-
try industry. Studies on the humoral immune responses 
of waterfowl are crucial to develop better intervention 
strategies. It is recommended that rearing facilities of 
the waterfowl including ducks and geese should be sepa-
rated from chicken and turkey flocks to prevent the virus 
transmission.

Additional file

Additional file 1. Experimental infection studies of ducks and geese 
with Avian Avulavirus 1. Table summarizes the pathobiological findings 
and immune responses of waterfowl after experimental challenge with 
Avian Avulavirus 1.
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