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Abstract

In this thesis we use a combination of density functional theory and equilibrium

Green’s function to study thermoelectricity in molecular scale. We have aimed

to improve the efficiency of single molecules in converting heat to electricity by

carefully designing them. We introduced a novel strategy for designing molecules

with low thermal conductance. This strategy states that adding side branches

of different length to the backbone of a molecule can eliminate phonon transport

through the backbone over a wide range of frequencies. Moreover, we demonstrate

that chemical modification of thiophene molecular wire to ethylenedioxy-thiophene

molecular wire can improve their thermoelectric efficiency. Furthermore, to demon-

strate that the adopted molecular designs will be effective when scaled up to a

self-assembled monolayer (SAM) of molecules, we model three independent exper-

iments on gold-SAM-graphene vertical transport devices. The agreement between

our calculations and the experiments elucidates the survival of quantum interfer-

ence effect on a single molecular level in SAM devices. The work presented in

this thesis has received considerable attention from many experimental groups in

the UK and overseas stimulating novel experimental studies which are ongoing at

present.
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Chapter 1

Introduction

Molecular electronics studies electronic structures and charge transport across de-

vices in atomic scales. These devices can vary from single molecules to multiple

molecules, carbon nanotubes and other atomic structures.1–3 The first molecular

electronic device was the Avriam and Ratner rectifier in 1974 where they consid-

ered placing a single molecule consisting of electron donor and accepter compart-

ments between two metal electrodes and showed that the transport properties of

this device are controlled by the properties of this molecule.4 Later in 1980s the

invention of scanning tunneling microscope (STM)5 and atomic force microscope

(AFM)6 led to further recognition of this field. Devices with molecular building

blocks have a broad range of applications in various fields such as transistors,7–10

switches,11,12 rectifiers,13,14 interconnects,15,16 sensors,17,18 memories19,20 and pho-

tovoltaics.21

The attraction of single-molecule electronics has arisen from their potential for

sub-10nm electronic switches and rectifiers and from their provision of sensitive

platforms for single-molecule sensing.22–43 Moreover, molecular recognition can

lead to carefully designed molecules which provide tunable transport and desirable

electronic properties.44–47

Molecular electronics has been advancing rapidly in the past 40 year both exper-

1
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imentally and theoretically. Powerful experimental methods have been developed

to study devices at the single molecule scale such as mechanically controlled break

junctions,48–50 STM break junctions51 and conductive atomic force microscopy.52

Theoretical methods have also developed hand in hand with the experiments.53,54

Development of Density functional theory (DFT) provided a method for study-

ing finite systems55 or perfectly periodic systems.56 Later combining DFT with

Green’s function methods allowed for studying small systems (molecules) that are

connected to a continuum (electrodes).57–59 Today, availability of computational

resources has made DFT one of the most reliable and widely used methods for

calculating the electronic structure of atomic structures. This provides an ex-

cellent platform for initiating charge transport calculation in molecular devices.

Together, these methods allow us to understand basic properties at the molecular

scale and explore their potential use as a basic building block for next generation

nano-electronic devices.

One of the main applications of the field of molecular electronics is power genera-

tion from waste heat. In recent years, the potential of self-assembled monolayers

for removing heat from nano-electronic devices and thermoelectrically converting

waste heat into electricity has been recognized.43,60–69 This is achieved through the

seebeck effect dicovered in 1821 by T. J. Seebeck who showed two different met-

als in a junction would deflect a compass magnet when connected to heat baths

of different temperatures.70 The reverse phenomena is known as Peltier effect

which describes the emission of heat by current traveling through two different

contacting metals. The efficiency of a material in converting heat to electricity

depends on several factors. Firstly, it depends on the electrical (G) and thermal

(κ) conductivity of the material. Secondly, The Seebeck coefficient also known

as thermoelectric sensitivity (S) which is a meausre of the thermoelectric volt-

age induced in response to a temperature difference across that material. Finally,

the thermoelectric efficiency depends on the tempreture difference applied accors

the material. Therefore the thermoelectric efficiency is often describe using the
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thermoelectric figure of merit, ZT = GS2T/κ.

The combined electricity consumption of IT systems (communication networks,

personal computers, data centres, etc.) was 900 TWh in 2012, or 4.6% of global

electricity use, and this figure is set to double by 2025.71 To meet this challenge,

research laboratories around the world are competing to create high-performance

thermoelectric materials, starting from single molecules22–43 and scaling up to self-

assembled molecular films (SAMs).60–66,72–75

The ZT record for inorganic materials is ZT ≈ 2.2 at temperatures over 900 K.68,69

However, this low level of efficiency means that the widespread use of thermoelec-

tricity for energy harvesting is not economic. Organic thermoelectric materials

may be an attractive alternative, but at present the best organic thermoelectric

materials have a ZT = 0.42 at room temperature,76,77 which is still too low. To

overcome this barrier, several groups are now attempting to identify design strate-

gies for optimising the thermoelectric properties of single molecules, with a view to

subsequent translation of their enhanced functionality to self-assembled molecular

layers.

To approach a commercially feasible state for such devices which requires not

only size reduction but also efficiency, the meaningful design of molecules as the

active components is necessary. In this thesis we study molecular junctions with

the focus of improving their thermoelectric efficiency. We approach this problem

by first representing a design strategy to minimise the phonon transport through

single molecules. Secondly we move to improve electrical conductance of single

molecules through doping and chemical modification. Finally we combine the

obtained knowledge to design and simulate SAM devices.

This thesis is organised as follows: In the second chapter we discuss the theoreti-

cal background for simulating molecular devices and studying their electrical and

thermal conductance. The proof and derivation details of some sections is provided

in the appendices A to D. These chapters will provide the necessary theoretical
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background for understanding our results which are presented in chapters three,

four, five, six and seven. Appendix E presents a computer script to accompany

results in chapter five. The sixth chapter is dedicated to the conclusion.



Chapter 2

Methodology

Theoretical condensed matter physics aims to understand the electronic properties

of materials by formulating their very fundamental building blocks, electrons and

nuclei. The interactions between electrons and nuclei result in an extraordinary

range of properties in molecules, solids, polymers, 2D-materials, etc., which has

intrigued the curiosity of many physicists in the past. Electronic transport, in par-

ticular has been a very successful branch of condensed matter which has received

a great deal of attention. However, the enormity of the number of these inter-

actions as well as computational limits of our time makes theoretical condensed

matter a very challenging field. In the past 50 years, physicist have approached this

problem creating different methods of various accuracy, impact and scale. Some

of these methods are Molecular Dynamics (MD), Density Functional Theory

(DFT), Monte Carlo (MC) , Quantum Monte Carlo (QM) and Tight Binding

theory (TB).78–80

As discussed in the Introduction, our aim is to study the transport of electrons

and phonons through single molecules when connected to electrodes. To achieve

this goal, we have utilised DFT and tight binding methods to describe our sys-

tems. Furthermore, to obtain electron transport through such systems, we use the

Equilibrium Green’s Function (EGF) approach explained in section 2.7 in detail.

5



2.1. Many-body problem 6

2.1 Many-body problem

In the field of theoretical solid state physics, in order to gain access to the observ-

able properties of a system comprising of many atoms, it is desirable to find the

solution to the Schrödinger equation (Eq. 2.1)

ĤΨi(r,R) = EiΨi(r,R), (2.1)

where the wavefunction is a function of electronic (r) and nuclear (R) coordinates.

In order to achieve this goal one needs a full description of the electronic structure

of the system, which is given by the Hamiltonian operator. For an interacting

system of electrons and nuclei similar to figure 2.1, the Hamiltonian operator can

be written as the sum of the kinetic energies of the electrons and nuclei (T̂ ) and

the Coulomb interactions between them (V̂ ) as follows:

x

y

i
j

α

β
ri rj

Rα

Rβ

z

ri − rj

Rα
−
Rβ

r i
−

R
α

Figure 2.1: A schematic description of a many body problem. i and j are electronic
labels. α and β are the nuclei labels. r and R denote the vector coordinates of
the electrons and nuclei respectively.

Ĥ =
∑
i

~2

2me

∇2
i︸ ︷︷ ︸

T̂e

−
∑
α

~2

2MA

∇2
α︸ ︷︷ ︸

T̂n

+
∑
i 6=j

e2

|ri − rj|︸ ︷︷ ︸
V̂e−e

+
∑
α 6=β

ZαZβe
2

|Rα −Rβ|︸ ︷︷ ︸
V̂n−n

−
∑
i,α

Zαe
2

|ri −Rα|︸ ︷︷ ︸
V̂e−n

,

(2.2)
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where Mα, Rα and Zαe are the mass, coordinates and the charge of the αth nucleus.

Similarly, me, ri and−e are the mass, coordinates and the charge of the ith electron.

In what follows we have adopted the Hartree atomic units (e = ~ = me = 4πε0 =

1) for simplicity. Clearly for any system with more than a few electrons and

nuclei, finding the eigenstates and eigenvalues of the Schrödinger equation becomes

impractical. To reduce the size of this problem, one can employ the traditional

Born-Oppenheimer approximation which assumes that due to the large mass of

nuclei, T̂n � T̂e. This allows us to split the electronic and nuclear motions.

2.2 Born-Oppenheimer approximation

The Born-Oppenheimer approximation assumes that the masses of the nuclei are

large in comparison with the electrons and therefore their kinetic energy (T̂n) is

negligible in comparison.81 Therefore we can rewrite the Schrödinger equation for

electronic Hamiltonian:

Ĥeψi(r; R) = Ee
i (R)ψi(r; R), (2.3)

where the electronic Hamiltonian is given by,

Ĥe = −
∑
i

~2

2me

∇2
i +

∑
i 6=j

e2

|ri − rj|
+ V̂ext. (2.4)

In the equation above, V̂ext represents an external potential acting on the electrons

due to the frozen nuclei. This function varies for each nuclear arrangement. There-

fore, the electronic wavefunction (ψ(r; R)) does not explicitly depend on nuclear

coordinates. As a result, we can decouple the electronic and nuclear wavefunction

in the total wave function. Hence the total wave function reads,

Ψi(r,R) =
∑
j

σij(R)ψj(r; R), (2.5)
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where σij(R) describe the nuclear motion and is solely determined by solving a

nuclear equation.

2.3 Density functional theory

Density Functional Theory (DFT), is one of the most commonly used approaches

today for solving the many-body problem we introduced in equation 2.4.78,79 This

method was first introduced by Hohenberg and Kohn in 1964 who showed that

the ground state energy of a system of interacting electrons is a unique functional

of the electronic charge density.82 Later in 1965 Kohn and Sham provided a

method to relate the ground states of a system with interacting particles to a

non-interacting particles system through their charge density.83 In the next two

sections we describe these methods in detail.

2.3.1 The Hohenberg-Kohn theorems

The Hohenberg-Kohn (HK) theorem is the foundation of density functional theory

and applies to any system of electrons moving in an external potential. In this the-

orem the ground state energy of a fully interacting N-electron system is described

via its electron density (ρ(r)) which reduces the size of the problem considerably.82

ρ(r) =

∫ N

i

ψ(r)ψ∗(r) (2.6)

The Hohenberg-Kohn theorem consists of two simply stated theorems. These two

theorem are based on the fact that two many-body problems can be different via

external potential and/or the number of particles in them.

• Theorem 1. The first theorem states that there is a unique correspondence

between the external potential (Vext(r)) of the many-body Hamiltonian and
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the corresponding ground state electronic density. This can be easily proven

using contradiction. We start from the assumption that two potentials Vext(r)

and V ′ext(r) which differ by more than a constant give rise to the same density

ρ(r), yielding two different Schrödinger equations using resultant Ĥ and Ĥ ′.

Variational principle states that the energy is minimal with respect to a

variation of the wave function, and is an upper bound to the ground state

energy. Assuming that the total energy from one of the Schrödinger equations

corresponds to the ground state, we have

E0 =
〈
ψ0

∣∣∣Ĥ∣∣∣ψ0

〉
<
〈
ψ′0

∣∣∣Ĥ∣∣∣ψ′0〉 . (2.7)

This arises from the difference between the two Hamiltonians,

〈
ψ0

∣∣∣Ĥ∣∣∣ψ0

〉
=
〈
ψ0

∣∣∣Ĥ ′∣∣∣ψ0

〉
+ 〈ψ′0 |Vext(r)− V ′ext(r)|ψ′0〉 (2.8)

Therefore we can write,

E0 < E ′0 + 〈ψ0 |Vext(r)− V ′ext(r)|ψ0〉 , (2.9)

where the difference between the two potentials is a direct consequence of

the inequality. Similarly we can write,

E ′0 < E0 − 〈ψ0 |Vext(r)− V ′ext(r)|ψ0〉 . (2.10)

Adding the above two inequalities we have ,

E ′0 + E0 < E0 + E ′0 + 〈ψ0 |Vext(r)− V ′ext(r)|ψ0〉 − 〈ψ0 |Vext(r)− V ′ext(r)|ψ0〉 .

(2.11)
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Since we assume that both potentials have the same corresponding electron

densities, ρ(r), the two terms on the right hand side add up to zero,

∫
d3rρ(r) [Vext(r)− V ′ext(r)]−

∫
d3rρ(r) [Vext(r)− V ′ext(r)] = 0, (2.12)

resulting in E ′0 + E0 < E0 + E ′0 which is wrong. Therefore we can conclude

that the potential Vext(r), must be unique. This conclusion allows us to write

the total energy as a function of the electron density,

E (ρ(r)) =

∫
Vext(r)ρ(r)dr +

〈
ψ0

∣∣∣T̂ + V̂
∣∣∣ψ0

〉
︸ ︷︷ ︸

F [ρ(r)]

, (2.13)

where F [ρ(r)] is a unique and universal functional of the electron density

which does not depend on the external potential.

• Theorem 2. Hohenberg showed that the minimum of the energy functional

E (ρ(r)) can be obtained variationally from

E (ρ(r)) =
〈
ψ
∣∣∣Ĥ∣∣∣ψ〉 > E0 (ρ(r)) . (2.14)

E (ρ(r)) is at its minimum only and only if ρ(r) is the ground state charge

density and all ground state properties of a many-body system can be ob-

tained from ρ(r). Therefore evaluating the following equation will lead us to

the ground state charge density,

δE[ρ(r)]

δρ
= 0. (2.15)

In order to evaluate the above energy one requires to describe the density

functional (F [ρ(r)]) which could depend on properties such as polarization.

Unfortunately the exact form of this functional is unknown and the accuracy

of a DFT calculation depends on the approximations made to obtain F [ρ(r)].
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2.3.2 Kohn-Sham equation

The Kohn-Sham approach is a self-consistent method which describes an interact-

ing system of electrons, using a auxiliary non-interacting system in an effective

potential (Veff (r)) which yields the same ground state charge density (ρ(r)) as the

original problem.83,84 The effective potential is as follows,

Veff (r) =

∫
dr′

e2ρ(r′)

|r− r′|
+ Vext(r) + Vxc(r), (2.16)

where the first term is the electrostatic energy (referred to as Hartree energy),

Vext is the external potential due to the presence of stationary nuclei and Vxc is

the exchange-correlation potential which describes the remaining contribution of

interacting electrons to the exact energy of the system and is the derivative of

exchange energy,

Vxc(r) =
δExc (ρ(r))

δρ(r)
. (2.17)

Therefore the Kohn-Sham Hamiltonian reads,

ĤKSφi(r) =

[
−∇2

r

2me

+ Veff (r)

]
φi(r) = εiφi(r). (2.18)

ĤKS isolates the kinetic energy of individual particles which interact individually

with an effective potential and εi are the eigenvalues of such system. Note that the

eigenvalues obtained from the Kohn-Sham equations are auxiliary and do not carry

quantitative information.84 φi(r) are the Kohn-Sham wavefunctions which describe

the motion of ith particle in an effective potential (Veff (r)). The dependency of

Veff (r) on the ρ(r) results in the self-consistency of the Kohn-Sham method.

2.3.3 Exchange-correlation functional

The electronic wavefunction must satisfy the Pauli-exclusion principle meaning

that electrons of a given spin are surrounded by a region where the density of
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electrons with the same spin is reduced. Keeping the electrons of the same spin

away from each other is referred to as exchange interaction and it reduces the

Coulomb repulsion in equation 2.16. The correlation energy is the remaining dif-

ference to the exact total energy of the system with interacting electrons. A

crude explanation is that the motion of one electron is affected by the motion of

other electrons in a correlated system and the correlation energy compensates for

the lack of this effect in a non-interacting system. These two corrections to the

Hartree energy are commonly known as the ‘exchange-correlation hole’ that sur-

rounds every electron in the system. Since it is not possible to find the exact form

of the exchange-correlation energy, approximation is inevitable and the quality of

this approximation determines the accuracy of a DFT calculation.84 The simplest

approximation for the xc-functional is the Local Density Approximation (LDA)

which derives the Exc from the local electron density, assuming that electrons

behave like a homogeneous gas:85

ELDA
xc (ρ(r)) =

∫
ρ(r)εhomxc (ρ(r)) dr, (2.19)

where εhomxc is the xc energy of the homogeneous gas with a density of ρ(r). This

approximation is accurate for slowly varying electron densities. Despite the sim-

plicity of LDA functional, it has been used in this work when the accuracy has

been satisfactory.

The LDA functional can be improved by including the gradient of the density (∇ρ)

which takes into account more of the non-local many body effects (Eq. 2.20).

This is known as the Generalised Gradient Approximation (GGA) of the xc-

functional,86,87

EGGA
xc (ρ(r)) =

∫
ρ(r)εLDAxc Fxc (ρ, |∇ρ|) dr. (2.20)

In the above expression for GGA xc-functional (EGGA
xc ), Fxc is a function of the

electron density and its gradient. GGA produces better results when itcomes to

structural properties and is used in this work when necessary.
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2.4 Motion of nuclei

Once the electronic state is obtained from equation 2.18 within the Born-Oppenheimer

approximation, we can then obtain evolution of the nuclei coordinates in time.

Since electronic motion is very fast in comparison with the nuclei, their coordi-

nates can be replaced by their average value. Therefore we can describe the motion

of nuclei in an average field of electrons. Assume there is a nuclear wave function

which gives the minimum expectation value of the nuclear Hamiltonian

Etot
0 (R) =

〈
ψ0

∣∣∣Ĥ(R)
∣∣∣ψ0

〉
=

〈
ψ0

∣∣∣∣∣−
M∑
α

1

2Mα

∇2
α

∣∣∣∣∣ψ0

〉
+ Ee(Rα) +

〈
ψ0

∣∣∣∣∣
M∑
α

M∑
β

ZαZβ
Rαβ

∣∣∣∣∣ψ0

〉

=

〈
ψ0

∣∣∣∣∣−
M∑
α

1

2Mα

∇2
α

∣∣∣∣∣ψ0

〉
+ Ee(Rα) + En(Rα)

(2.21)

Once the ground state energy is found, we can derive the forces using Hellmann-

Feynman theorem. The equilibrium geometry of a system with several atoms (R0),

then is found by evaluating the equation below,

FA(Req) = − ∂Eeq
∂RA

∣∣∣∣
R=R0

= 0. (2.22)

This process is referred to as geometry relaxation (or geometry optimisation)

within this work.

2.5 SIESTA implementation of DFT

The Spanish Initiative for Electronic Simulations with Thousands of Atoms (SIESTA)

code is a well known implementation of the DFT method.88 SIESTA uses peri-

odic boundary conditions to solve the Kohn-Sham equations which is suitable for

studying crystals and in our case metallic electrodes. The supercell is represented

utilising Bloch’s theorem in this code where the single particle wavefunction for
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band j is,

ψj,k(r) = eikruj,k(r), (2.23)

where k is the reciprocal lattice vector in the first Brillouin zone and uj,k(r) is

the lattice periodic function. Therefore equation 2.18 can be solved for each k-

point to obtain a set of Kohn-Sham eigenstates. In order to solve the Kohn-Sham

equations, SIESTA uses various approximation schemes which are discussed in the

following two sections.

2.5.1 Pseudopotential approximation

As previously discussed, the Kohn-Sham method has proved to be effective when

solving many body problems. Nonetheless, solving an eigenvalue problem for a

system of many atoms (such as a molecule) requires large computer time. To reduce

the number of electrons, the interactions between the electrons and the ionic cores

are represented by norm-conserving pseudopotentials in SIESTA according to the

Troullier-Martins parametrization.89 Pseudopotentials replace the core electrons

and provide the same potential for valance electrons as these core electrons. This

approximation is done on the grounds that the core electrons in an atom do not

have an active role in chemical bonding and are relatively independent of the

chemical environment of the atom. This approximation is shown schematically in

figure 2.2.

The all-electron wavefunction (ψall) is a combination of the core and valance elec-

trons wavefunctions and has to satisfy the orthogonality condition. Since the core

states are tightly bound to the nucleus, they are localised in its vicinity. Thus,

the valance states need to oscillate rapidly in the vicinity of the core in order to

preserve the orthogonality constraint (dashed pink in Fig 2.2). Resultantly, the

kinetic energy of the valance electrons counteracts the large potential energy due

to the Coulomb interactions (-Veff/r). Therefore, it is reasonable to approximate



2.5. SIESTA implementation of DFT 15

Figure 2.2: Schematic illustration of the pseudopotential approximation. All-
electron potential (light blue) and pseudopotential (dark blue) converge to the the
same function outside the cut-off radius (rc). This is the same for the correspond-
ing wavefunctions (purple and pink).

the strong coulomb interaction and core electrons and introduce a pseudopoten-

tial (Vpseudo) which replaces the core electrons and provides the same potential for

valance electrons as these core electrons. As a result the new pseudo-wavefunction

(φpseudo) is much smoother in the vicinity of the core as shown in figure 2.2.

2.5.2 Numerical Atomic Orbitals (NAO)

Numerical atomic orbitals are localised basis sets in which the valance electronic

states are Linear Combination of Atomic Orbitals (LCAO).90 Adoption of the

LCAO method for Kohn-Sham wavefunction yields,

φi =
L∑
j=1

cjiχj. (2.24)

For an atom with total number of L orbitals, χj is the jth atom centred orbital.

To obtain a numerical solution for the Kohn-Sham equations, SIESTA employs
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the LCAO method which is highly localised (short cut-off range) and therefore

creates sparse Hamiltonian and overlap matrix. The variational parameters in the

construction of these orbitals are the size (number of atomic orbitals per atom),

range (spatial extension of the orbitals or the cut-off radius) and shape (of the

radial part). These atom centred orbitals can be written as

z

y

x

RI

rI = r −RI

r

r̂I =
rI

jrI j

Figure 2.3: A schematic description of vector coordinates utilised to describe basis
sets

χIlmn(r) = RIln(|rI |)Ylm(r̂I). (2.25)

Each basis set is a product of a radial wavefunction (Rln) and a spherical harmonic

(Ylm). Where I is the index of the atom, l is the orbital angular momentum,

m is the magnetic quantum number and n provides the possibility of possessing

multiple orbitals for the same angular momentum numbers. The radial term can

be obtained by solving the Kohn-Sham Hamiltonian for the isolated particular

pseudo-atom species on a radial grid. Depending on the available time, computer

power and the accuracy required one can choose the size of the basis set. The

minimal basis set also known as single-ζ, has one radial function per angular

momentum. Multiple-ζ basis sets have multiple orbitals (n) corresponding to the

same angular momentum with different radial parts. It is also possible to have
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shells of different atomic symmetry in a basis set (usually obtained by applying

a small electric field to the orbital) thus introducing angular flexibility. These

basis sets are referred to as multiple-ζ polarized basis sets. Throughout this work,

unless stated otherwise, we have used double-ζ polarized basis set which is a good

compromise between the accuracy we require and our available resources.

2.6 Dynamical matrix

In addition to the study of electronic structures and electron transport through

single molecules, in this thesis we have studied the transmission probability of

phonons through similar devices. The work is confined to the harmonic approxi-

mation, hence we have neglected phonon-phonon interactions. This approximation

was taken into account due to the scale of our systems and the unimportance of

phonon-phonon scattering effect in this scale.91 In the harmonic approximation

limit the description of vibrational properties of a system similar to figure 2.4 is

purely determined by the spring constants between atom i and j in all directions.

The spring constants can be presented in matrix form (Dynamical matrix) which

can be used to solve the equation of motion. To obtain the Dynamical matrix of

our systems we have adapted finite differences method. The following steps were

taken to construct the Dynamical matrix:

• The structures are initially relaxed with a maximum residual force of 0.01

eV/Å.

• The atoms are displaced by diξ = ±0.01nm where d = {x, y, z} as illustrated

in figure 2.4 (6 displacements for each atom). For each displacement the force

on all atoms was calculated using SIESTA. Note that the displacement range

must be kept in the limit where the harmonic oscillation approximation is

valid.
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Figure 2.4: Deviation of atoms from their equilibrium position for the purpose of
using finite differences method to obtain the vibrational properties of a system.
Mi and Mj are the masses of the ith and jth atoms.

• The Hessian matrix (force constant matrix) was then constructed using the

equation below.

Kiξ,jν =
∂2E

∂diξ∂djν
=
Fjν(diξ)− Fjν(djν)

2diξ
, (2.26)

where E is the total energy and the force vectors were obtained from SIESTA.

Considering the momentum conservation we can find the intra atomic ele-

ments using the equation below,

Kiξ,iν = −
∑
k 6=i

Kiξ,kν . (2.27)

• Having obtained the Hessian matrix we can easily compute the Dynamical

matrix (D) using the following equation,

Diξ,jν =
Kiξ,jν√
MiMj

, (2.28)

with Mi and Mj being the mass of atom i and j.

The phonon eigen-frequencies and eigen-functions are obtained by solving the

equation of motion as below,

Dφi = ω2φi. (2.29)
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2.7 Quantum theory of transport

In the macroscopic regime, where the impurities (scatterers) are distributed ran-

domly in a material, the conductance is given by

G = σA/L, (2.30)

where A and L are the area and length of the conductor and σ is the conductivity.

In such system, Ohm’s law is applicable as the large number of scatterers reduce

the collective electron drift motion. According to equation 2.30, in the limits that

A → 0, G → 0 and if L → 0 , G → ∞. However experiments on quantum point

contacts contradict these conditions and demonstrate that Ohm’s law fails on a

small scale.92,93 The characteristic lengths in which Ohm’s law fails to predict the

conductance are as follows:79

1. De Broglie wave-length λF : Where the width of the conductor is of the order

of λF the problem is equivalent to a particle in a box problem and the wave

like nature of electrons must be taken into account.

2. The mean free path Lm: The average distance that an electron passes without

changing its momentum.

3. The phase relaxation length Lφ: The average distance that an electron passes

without phase loss which takes place due to inelastic scattering caused by

the electron-electron and electron-phonon interactions.

If the length of a conductor is not considerably larger than any of the named length

scales, the wave nature of electrons play an important role in the conductance of

the device. Therefore a fully quantum mechanical treatment of such devices is

necessary.

Landauer was the first to suggest a formalism which established a direct relation
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Figure 2.5: (a) Scatterer (white) placed between two leads (yellow). The leads are
connected to two reservoirs with chemical potential µ1 (pink) and µ2 (blue) where
µ2 is elevated by eV . (b) The dispersion relation.

between the conductance and transmission probability of electrons in a one di-

mensional mesoscopic device. This idea was then generalised to a multi-channel

(three dimensional) conductor by Fisher-Lee.94 Later this theory was expanded

by Büttiker to multi-probe devices.95,96 The following section gives an overview of

this theory.

2.7.1 The Landauer-Büttiker approach

To find the conductance of a system in the mesoscopic coherent regime, we intro-

duce the system in figure 2.5.a where a scatterer (white) is attached to two leads

(yellow). The transmission of electrons in the leads is ballistic therefore no energy

is lost in the lead area. The leads are then connected to two reservoirs with chem-

ical potential µ1 (pink) and µ2 (blue) where electrons reach thermal equilibrium.

We assume that all contacts are non-reflecting therefore the reservoir are the ana-

logue of radiative black body which absorbs electrons with no reflection and emit

electrons with a constant thermal distribution. The two reservoirs are connected

through contact points to a source and drain where a small voltage is applied such

that the difference between the two Fermi levels is given by eV = µ2−µ1. The size

of the device follow the characteristic lengths, hence this problem can be treated
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as a scattering problem. The conductance of this system can be written as,

G =
I

V
=

eI

µ2 − µ1

. (2.31)

In what follows we derive the Landauer-Büttiker formula which allows us to cal-

culate the current in equation 2.31. In the system introduced in figure 2.5.a x is

the transverse and y the longitudinal direction. In the leads region, the confining

potential in the x direction (V (x)) is a parabolic potential given by,

V (x) =
1

2
m∗ω2

0x
2. (2.32)

The Hamiltonian for such system can be written as,

H =
p2
x

2m∗
+ V (x) +

p2
y

2m∗
. (2.33)

Central to all quantum mechanical problems are the solutions to the Schrödinger

equation. In the transverse direction the solutions are those of a harmonic oscillator

(due to the presence of V (x)) which are shown in red in Fig. 2.5.a. In the

longitudinal direction however, given there is no confinement, the solutions are

plane waves of the form,

ψ(x, y) =
1√
L
eikyξ(x). (2.34)

Therefore the dispersion relation (En(k)) is a parabola. The parabola associated

with every mode in transverse direction is referred to as a sub-band shown in

figure 2.5.b, also referred to as scattering channel. When the chemical potential

in reservoir 1 and 2 are different, (the occupied states are highlighted by green in

the sub-bands) the current from left to right is given by,

I = nev, (2.35)
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where e is the charge of an electron, n is the number of transported electrons and

v is the group velocity. The number of incident electrons to the scattering region,

must be obtained from the occupied states in the sub-bands and can be deriven

from the density of states. The fraction of transmitted electrons is determined by

the transmission coefficient Tn. Hence, current can be written as,

I =
e

2

N∑
n=1

∫ µ2

µ1

dE · dNn

dE
· vn · Tn. (2.36)

The sum in the above equation is over all transverse sub-bands and vn is the

group velocity of the electrons in the nth sub-band. The factor of 1
2

accounts for

the spin of electrons. The density of states and group velocity for a one dimensional

propagator are given by,

dNn

dE
=

2

π

(
dEn
dky

)−1

, vn =
1

~

(
dEn
dky

)
, (2.37)

substituting Eq.2.37 in Eq.2.36, I reads

I =
2e

h
(µ2 − µ1)

N∑
n=1

Tn. (2.38)

Hence the conductance is,

G =
I

V
=

2e2

h

N∑
n=1

Tn. (2.39)

According to the Landauer theory the conductance of a perfect ballistic conductor,

is 2Ne2

h
which is referred to as the quantum of conductance. The experiments done

on monoatomic gold wire between two gold surfaces agree with this theory.97–99 It

is important to remember that electrons which are propagating in the nth channel

in the left lead have a probability to propagate in the mth channel in the right
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lead. Therefore the transmission coefficient is,

Tn =
∑
m

|tnm|2 , (2.40)

where t is the transmission amplitude. Doing the sum over all channels in equation

2.39 we derive the following,

G =
2e2

h
Tr(tt†). (2.41)

Combining the transmission amplitudes with reflection amplitudes rnm (i.e the

probability for an electron travelling in the nth channel to be reflected back in to

the mth channel of the same lead) we can obtain the scattering matrix,

S =

r t′

t r′

 , (2.42)

where t and r are the transmission amplitudes for electrons travelling with positive

momentum and t′ and r′ are for negative momentum. These amplitudes can be

obtained using the famous Fisher-Lee relations which relate the scattering ampli-

tudes to the surface Green’s function of the system. The derivation of Fisher-Lee

equations are discussed in great detail in section 2.7.2 for a multi channel system

and in appendix B for a simplified single channel system.

2.7.2 Equilibrium Green’s Function method

The conductance of the molecular device is an equilibrium property determined

purely by the electronic structure in the equilibrium junction. The theoretical

treatment of electron transport through such devices requires the combination of

techniques which calculate the electronic structure (as discussed in DFT section)

and use that to obtain the electron transport probabilities.
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Figure 2.6: A quantum system coupled to the left (R) and right (R) leads. HS is
the non-interacting Hamiltonian of the scattering region.

In any computational study of a Lead/Device/Lead system, one faces the compli-

cation of dealing with semi-infinite Hamiltonians describing the leads. This hurdle

can be dealt with using a general technique to calculate the Green’s function of

such system and hence convert the infinite problem to a finite problem which only

involves the device and the surfaces of the leads, where all contributions from the

leads are incorporated into the self-energies.57,100,101 In this section we outline

this equilibrium method which allows us to find the reflection and transmission

amplitudes of the scattering matrix introduced in the previous section.

Figure 2.6 shows a scatterer placed between two leads (namely L and R). The

leads are periodic and consist of principle layers (H0
L/R) which are coupled together

via a coupling matrix H1L/R. We start with Schrödinger equation of the system

in figure 2.6,

Hψ = ESψ, (2.43)

where H is the full electronic mean-field Hamiltonian of the system and S is the

overlap matrix (obtained from SIESTA code in this thesis). The use of a local

basis in SIESTA allows us to extract H and S into the following format,


HL HLS 0

HSL HS HRS

0 HSR HR



ψL

ψS

ψR

 = E


SL SLS 0

SSL SS SRS

0 SSR SR



ψL

ψS

ψR

 , (2.44)

where HSL = H†LS and HSR = H†RS represent the interactions between the

left(right) lead and the scattering region. It is crucial to bear in mind that HL(R),
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HSL and HSR are matrices of semi-infinite dimension. Similarly ψL(R) are semi-

infinite length vectors.

For mathematical convenience we rearrange the blocks of matrices in equation 2.44

such that the system is represented by two main blocks, the leads(outside) and

the scattering region which are connected via a perturbation. (Fig. 2.7)

�O

�L �R

� RS

Figure 2.7: System is divided into 3 highlighted blocks. Green representing all
the leads (HO), red is the scattering region (HS) and blue includes all the matrix
elements connecting the leads to the scattering region (HP ).

Therefore the Hamiltonian of the whole system may be represented as a 2 × 2

matrix,

H =

HO HP
OS

HP
SO HS

 , (2.45)

where HO and HS are the non-interacting units which are connected via a per-

turbation matrix, HP given below,

�P �

�

B

B

B

B

B

B

@

��S

�RS

��S

�RS

1

C

C

C

C

C

C

A

�

�
. (2.46)

Note that the highlighted blocks are zero due to absence of any connection between

the Left and the right lead. In general an equation of form 2.44 can be solved using

the retarded Green’s function (see appendix A for details). The retarded Green’s
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function is defined by the relation,

[ES −H ]GR = I, (2.47)

which is related to the Green’s function of the non-interacting units by the means

of Dyson’s equation. (proof of which is available in appendix C)

(g−1 −HP )GR = I, (2.48)

where GR is the Green’s function of the perturbed system and g is the Green’s

function of non-interacting leads and the scattering region. (Eq. 2.49)

g =



ḡL

ḡR

0

0
ḡnn ḡnm

ḡmn ḡmm


=

 gO gOS

gSO gS

 (2.49)

In the equation above, ḡL and ḡR are the Green’s function of the left and right lead

and can be easily obtained as shown in Appendix B. In the intermediate derivations

the superscript R for the retarded Green’s function is ignored. Substituting the

matrices in Dyson’s equation (Eq. 2.48) we have,

 g−1
O −HP

OS

−HP
SO g−1

S


GOO GOS

GSO GSS

 = I. (2.50)

Solving this matrix equation we find the following,

GSS = gS + gSH
P
SOGOOH

P
OSgS, (2.51)

GOO = gO + gOH
P
OSGSSH

P
SOgO, (2.52)
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where the self energy is given by

Σ = HP
SOgOH

P
OS =

H2
LSḡL 0

0 H2
RSḡR

 . (2.53)

The self-energy (Σ) consists of a real and an imaginary part,

Σ = σ − iΓ, (2.54)

where σ = Σ†+Σ
2

and Γ = −Σ†−Σ
2i

. It is important to mention that if the leads

are not semi-infinite and the system is closed, then the self-energy is hermitian

(Σ† = Σ) and Γ = 0. For that reason ΓR/L are also referred to as the injection

rates. As equation 2.53 reveals, the importance of self energies is due to the fact

that they are purely determined by the coupling Hamiltonians HSR, HSL and

the retarded Green’s function of the leads. This means that the self-energies are

independent of the scattering region and are solely affected by the lead contacts.

From the Fisher-Lee equations the transmission amplitude between the scattering

channels p and q for when p 6= q is provided by

t = i~√vpvqGpq
OO. (2.55)

For p = q, the reflection amplitude is

r = (i~vpGpp
OO − 1) e−2ikp . (2.56)

To find the pqth element of the leads Green’s function we use equation 2.52 to

write

Gpq
OO = 〈p|GOO |q〉

= 〈p| gO |q〉+ gpO 〈p|H
P
OSGSSH

P
OS |q〉 g

q
O,

(2.57)
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where the Green’s function of the pth lead is given by

gO =
∑
p=L,R

|p〉 gpO 〈p| . (2.58)

For when p 6= q, the first term in the equation 2.57 is zero. Although HP
OS and

HP
SO are infinite matrices, the only non-zero elements are coupling elements to the

leads. Therefore g
p/q
O in the second term only needs to be evaluated at the leads

surfaces. We can simplify equation 2.57 to the following,

Gpq
OO = gpO 〈Sp|GSS |Sq〉 gqO, (2.59)

where the dimensionality of vector Sp/q is the number of sites (orbitals) in the

scattering region. Since T = |t|2, we need to find |Gpq
OO|

2,

|Gpq
OO|

2 = |gpO|
2 〈Sp|GSS |Sq〉 |gqO|

2 〈Sq|G†SS |Sp〉 . (2.60)

Using cyclic invariance under traces we can rearrange equation 2.60 to have,

|Gpq
OO|

2 = Tr
[
|Sp〉 |gpO|

2 〈Sp|GSS |Sq〉 |gqO|
2 〈Sq|

]
. (2.61)

We define

|Sp〉 |gpO|
2 〈Sp| =

2Γp

~vp

, |Sq〉 |gqO|
2 〈Sq| =

2Γq

~vq
.

(2.62)

Substituting in equation 2.61,

|Gpq
OO|

2 = Tr
[
ΓpGSSΓqG†SS

]
. (2.63)

The transmission coefficient from lead p to lead q is given by

TR,L = |t|2 = 4Tr
[
ΓpGSSΓqG†SS

]
, (2.64)
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where GSS is given by,

GSS =
(
g−1
S −Σ

)−1
. (2.65)

Since gs is the Green’s function of the non-interacting scattering region, it involves

inverting a finite matrix which is numerically possible.

2.8 Thermoelectric properties of materials

Thermoelectric power generation in the presence of a temperature gradient is

known as the Seebeck effect and its efficiency is described by the figure of merit,

ZT ,

ZT =
GS2T

κph + κe
, (2.66)

where G is the electrical conductance, S is the Seebeck coefficient and κe and κph

are the electronic and phononic contribution to the thermal conductance.

The numerical method used in this thesis for calculating ZT , is discussed at length

in appendix D.



Chapter 3

A festive strategy for suppressing

phonons in single molecules:

Molecular Christmas trees

For the purpose of designing self-assembled molecular films with high thermoelec-

tric efficiency, it is desirable to minimise the phonon contribution to their thermal

conductance, whilst preserving their electrical properties. Here we highlight a

new strategy for minimising the phonon thermal conductance of Christmas-tree-

30
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like molecules composed of a long trunk, along which phonons can propagate,

attached to pendant molecular branches. We demonstrate that phonon transport

along the trunk is suppressed by Fano resonances associated with internal vibra-

tional modes of the branches and that thermal conductance is suppressed most

effectively in molecules with pendant branches of different lengths. As examples,

we use density functional theory to demonstrate the reduction in phonon trans-

port in tree-like molecules formed from alkane or acene trunks with various pendant

branches. Suppression of thermal conductance arises from a combination of the

stiffness of the attachment of the pendant branches to the trunk and the number

and frequency of the normal modes of vibration of the branches. The effective-

ness of this ‘Christmas-tree strategy’ for reducing phonon thermal conductance is

further enhanced by multiple scattering of phonons from the connections between

the branches and the trunk. It can be implemented without significantly affecting

electrical properties.

3.1 Introduction

When a thermoelectric material is placed between a heat source and a heat sink

with a temperature difference ∆T , the voltage generated between them is given by

∆V = −S∆T , where S is the Seebeck coefficient or thermopower. Thermoelec-

tricity in molecular films has attracted increasing interest, following the seminal

works,25,37 in which the Seebeck coefficient S of single molecules was measured

for the first time. Later experimental and theoretical studies33–35,45 reported novel

strategies for controlling the sign and magnitude of S.

However these studies provide only part of the fundamental knowledge needed

to understand and optimise thermoelectricity on the nanometre scale, because

they ignore the crucial role of phonons. Understanding the thermopower S and

electrical conductance G of nano-scale materials is not sufficient, because the key
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parameter for thermoelectric power generation is the dimensionless thermoelectric

figure of merit ZT = GS2T/κ , where T is the temperature and the thermal

conductance is κ = κe + κph, where κe is the electronic contribution to thermal

conductance, while κph is the contribution from phonons. ZT is a measure of

the efficiency of energy conversion from heat to electricity and unless ZT exceeds

unity, a material is not competitive. Since phonons play no useful role in the

conversion of heat into electricity, strategies for minimizing κph are highly desirable.

In inorganic materials, nanostructuring has been utilised to reduce κph.
69,102–106

Recently some theoretical studies have probed this issue in single molecules.107–109

These studies introduce single molecules which have low phonon conductance.

Herein, we take a significant step forward by introducing a general strategy to

design molecules which reduce phonon transport. We show that this method can

be applied to any molecule. In what follows, our aim is to develop a new strategy

for reducing molecular-scale phonon transport by attaching pendant ‘branches’ to

the backbones or ‘trunk’ of molecules. Figure 3.1a shows an example of a SAM

formed from molecules with alkane trunks (oriented vertically), while figure 3.1b

shows examples of molecules to which various pendant branches are attached to

the trunks (in this case the trunks are oriented horizontally). In what follows we

demonstrate that these branches can be designed to suppress phonon transport

over a range of frequencies, leading to a significant reduction in κph.

3.2 Dynamics of model Christmas trees

To illustrate why pendant branches suppress phonon transport, consider an in-

finite linear harmonic chain of single-degree-of-freedom masses m, connected by

nearest neighbour springs of force constant γ, whose dispersion relation is given by

the textbook expression mω2 = 4γsin2ka/2, where a is the spacing between the

masses, ω is the phonon frequency and k is their wavenumber. The brown vertical

trunks of figure 3.2 are composed of such a chain. For such an ideal crystalline
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Figure 3.1: (a) A SAM connected between hot and cold electrodes. (b) Examples of
molecules possessing pendant groups (oriented vertically) connected to molecular
trunks (oriented horizontally) formed from alkyl chains.

Figure 3.2: Idealised examples of vertical molecular backbones, with pendant side
branches. The mass of the brown ‘atoms’ is m and the mass of the green ‘atoms’
is M . The brown spring constants are γ and the green spring constants are α.
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Figure 3.3: (a) Single side branch. (b) Chain side branch with N sites. γ, α and β
are the Hessian matrix elements between the illustrated sites.

chain, the transmission coefficient T (ω) describing phonons of frequency ω enter-

ing the chain from the top and exiting from the bottom (ie. travelling from −∞ to

+∞) is unity, provided the phonon frequency ω lies between zero and the Debye

frequency ΩD of the chain, where Ω2
D = 4γ/m. Now consider a pendant mass M

attached by a spring of force constant α, to one of the atoms of such a chain, as

shown in figure 3.3a. In order to obtain the phonon transmission through such

system we solve the dynamical equation. Dynamical equation for a set of masses

labeled i connected to their nearest neighbours, is given by:

miω
2ψi = (

∑
j

γij)ψi −
∑
j

γijψj, (3.1)

where γij is the spring constant between i and j. This equation can be written in

terms of the force constant matrix (Hessian matrix) by introducing the amplitudes

φj = m1/2ψi, which satisfy

ω2φi =
∑
j

Hijφi. (3.2)

Hence, the force constant matrix is given by:

Hij =


∑

j
γij
mi

if i = j

− γij√
mimj

if i 6= j

(3.3)
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As an example, for the lattice in figure 3.3, Hij = −γ′/m = −γ for sites i and

j on the trunk and Hii = 2γ′/m = 2γ = ε0 for all sites on the trunk except

for site zero. For the pendant site P , which is coupled to site 0 by a spring of

strength α′, HPP = ε1 = α′/M and the matrix element between the pendant site

and site 0 of the trunk is H0P = −α′/
√
mM = −α. Finally for site 0 of the trunk,

H00 = ε0 + ε2 where, ε2 = α′/m. Therefore, the sub-block of the infinite Hessian

matrix involving sites in the vicinity of P and 0 is of the form:

H =

−2 −1 0 P 1 2



ε0 −γ 0 0 0 0 −2

−γ ε0 −γ 0 0 0 −1

0 −γ ε0 + ε2 −α −γ 0 0

0 0 −α ε 0 0 P

0 0 −γ 0 ε0 −γ 1

0 0 0 0 −γ ε0 2

(3.4)

Using decimation or equivalently the recursive Green’s function method,110 the

above problem can be mapped onto an equivalent infinite chain with one impurity

(Fig.3.4), where the onsite energy of the scatterer is given by,

ε = ε2 +
α2

E − ε1

. (3.5)

For the decimated problem, the dynamical equation takes the form

Figure 3.4: The side branch in figure 3.3a can be decimated to yield an infinite
chain with a single impurity whose onsite energy is ε.

(ε0 + ε)φ0 − γφ1 − γφ−1 = Eφ0, (3.6)
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where, the dispersion relation of the infinite chain is E = ε0 − 2γ cos(k). For such

a lattice, matching the wave amplitude φj on the left and right of the scatterer

yields the following amplitude t of transmitted phonons.

t =
1

1− ε
2iγ sin(k)

, (3.7)

and consequently,

T = |t|2 =
1

1 + ( ε
2γ sin(k)

)2
. (3.8)

Therefore the transmission coefficent is

T (ω) = 1/[1 + x], (3.9)

where x = ( ε
2γ sin(k)

)2. The dispersion relation can be written in the form

(ε0 − E)2 − 4γ2 = 4γ2 sin2(k) (3.10)

and therefore,

x =
ε2

4γ2 − (ε0 − E)2
=

ε2

E(4γ − E)
. (3.11)

We can decimate the problem with one side branch to an infinite chain with one

scatterer, where the onsite energy of the scatterer is given by ε.

ε = ε2 +
α2

E − ε1

(3.12)

From equation 3.12 and equation 3.11 we can conclude,

x =
Ω4
mω

2

(Ω2
M − ω2)2(Ω2

D − ω2)
, (3.13)

where Ω2
m = −α′/m, the Debye frequency of the chain is given by Ω2

D = 4γ′/m

and transmitted phonons frequency is ω. To quantify this effect (known as a Fano

resonance,22) we note that if the brown masses in the trunk of figure 3.2a are of
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infinite mass, then the green pendant mass would behave as a harmonic oscillator

with a single vibrational normal mode of frequency ΩM given by Ω2
M = α/M . For

the structure of figure 3.2a, when the brown masses are finite, one finds equation

3.13. Now consider the more general problem (Fig. 3.3b) with N atoms in the

pendant branch β. In what follows β′ is the spring constant between two sites

in the pendant branch, M is the mass of sites on the pendant branch and α′

is the spring constant connecting atom 0 of the trunk to atom P of the side

branch for which the Hessian matrix element H0P = −α′/
√
mM = −α. When

H0P = 0, the dynamical matrix H is block diagonal, with an infinite block hAA

describing couplings involving sites belonging to the trunk only and a finite block

hBB describing coupling between sites belonging to the branch only. For a pendant

branch comprising a simple linear chain hBB is an N ×N matrix of the form

hBB =



ε1 −β

−β ε3 −β

−β ε3 −β
. . .

ε3/2


, (3.14)

where, similar to the previous description of the Hessian matrix (Eq. 3.3), β =

−β′/M and ε3 = 2β′/M . More generally, hBB is a matrix of dimensions equal to

the number of normal modes of the branch. The Green’s function associated with

the branch is given by

gB = (E − hBB)−1. (3.15)

Similarly the Green’s function associated with the trunk is

gA = (E − hAA)−1, (3.16)

where, h is an N × N matrix , The only present connection between the side

branch and the infinite chain is −α. Therefore, according to Dyson’s equation,
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when H0P is non-zero, the Green’s function sub-matrix GAA involving sites l and

m belonging to the trunk is

(GAA)lm = (gA)lm + (gA)lp(hAB)qp(GBB)qr(hBA)rs(gA)sB, (3.17)

where

(GBB)PP = (g−1
B − Σ)−1

= [(gB)−1
PP − α

2(gA)00]−1

. (3.18)

More generally for the branch of N degrees of freedom in the lattice of figure 3.3b,

we define

ε1 = E − 1

(gB)PP
(3.19)

which is simply the energy-dependent site energy that would arise if all sites of the

branch except site 1 were decimated. This means that if the site energy ε1 in the

lattice of figure 3.3a is replaced by ε1 of equation 3.19, then the resulting scattering

properties are identical to those of the lattice of figure 3.3a. From equation 3.19

and 3.5 is replaced by

ε =
α′

m
[1 +

α′(gB)PP
M

] = Ω2
m[1 + Ω2

M(gB)PP ], (3.20)

where, Ω2
m = α′

m
and Ω2

M = α′

ρ
.

Consequently x is replaced by

ε = Ω2
m[1 + Ω2g11]. (3.21)

x =
Ω2
m

ω2(Ω2
D − ω2)

[
1 + Ω2

M(gB)PP
]

(3.22)

Since (gB)PP diverges when ω coincides with a normal mode frequency of the

pendant chain, x also diverges and phonon transmission vanishes.

It is interesting to note that at zero frequency, this expression yields x = 0 and
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the transmission coefficient equals unity, as it must by translational invariance.

To demonstrate this feature, we note that the relationship between the Greens

function (gB)PP of the chain attached to a wall and the Greens function g0 of the

chain in free space (ie when ε1 = 0 ), is

(gB)PP = (g−1
0 − ε2)−1 =

g0

1− g0Ω2
M

, (3.23)

Hence,

x =
Ω2
m

ω2(Ω2
D − ω2)[1− g0Ω2

M ]
(3.24)

Since g0 diverges and x vanishes when ω coincides with a normal mode frequency

of the pendant chain in free space and since one of these modes is a zero frequency

translationally-invariant mode, the zero-frequency transmission coefficient is equal

to unity.

Therefore, at lower frequencies g0 becomes infinite and x = 0. On the other

hand, if ω2 = Ω2
M , g diverges, therefore x =∞ and consequently the transmission

coefficient (Eq. 3.9) is suppressed. Unsurprisingly, the presence of the pendant

mass reduces the value of T (ω) below the ideal value of unity. However perhaps

more surprisingly, at a certain frequency Ω, the presence of the pendant group

causes x to diverge and T (ω) to vanish. This suppression of transmission along

a chain, which occurs when the frequency ω of a phonon travelling along the

trunk resonates with a normal mode ΩM of a pendant branch, is a generic feature,

which we aim to exploit in the design of molecules with low phonon thermal

conductance. Figure 3.2b shows an example of a vertical trunk (coloured brown)

with two pendant branches (coloured green) of different lengths, which would cause

T (ω) to vanish at their respective normal mode frequencies.

To minimise the phonon thermal conductance κph, it will be necessary to eliminate

phonon transmission along a molecular trunk at all frequencies between zero and
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kBT and for this purpose, it is desirable to attach multiple pendant groups with

a variety of different normal mode frequencies to the trunk. Figure 3.2c shows an

example of a ‘Christmas tree’ type structure with pendant branches of increasing

lengths connected to a vertical molecular trunk. In this model, as the number of

branches increases along the trunk, the number of sites per branch is increased by

one (therefore, in a system with 6 side branches the maximum length is 3 sites). In

this case the variety of normal-mode frequencies associated with different-length

branches suppresses phonon transmission over a wide range of frequencies. This

Christmas tree strategy is illustrated in figure 3.5, which shows the transmission

coefficient T (ω) for structures with 3.2a, 3.2b and 3.2c containing side branches of

one, three and ten different lengths respectively and demonstrates that the number

of zeros in T (ω) increases with the number of side branches. Figure 3.5d shows the

(c) (d)

(b)(a)

Figure 3.5: For model Christmas trees formed from single-degree-of-freedom
masses, such those shown in figure 3.2, (a), (b) and (c) show the transmission
coefficient for N=1, 3 and 10 side branches respectively. In each case, the lengths
of the branches increase sequentially from 1 to N . (d) The phonon thermal conduc-
tances of structures 3.5a (black), 3.5b (red) and 3.5c (blue) obtained by combining
the transmission coefficients 3(a− c) with equation 3.27. Results are shown on the
scale of Debye temperature TD = ~ΩD/KB.

effect of these zeros on the phonon thermal conductance κph(T ) at temperature T ,



3.2. Dynamics of model Christmas trees 41

obtained by evaluating the formula

κph(T ) =
1

2π

∫ ∞
0

~ωTph(ω)
∂fBE(ω, T )

∂T
dω, (3.25)

where, fBE(ω, T ) = (e~ω/kBT − 1)−1 is the Bose-Einstein distribution function and

Tph(ω) is the transmission coefficient for phonons of energy ~ω22 travelling along

a backbone. Since

∂fBE(ω, T )

∂T
=

~ω
kBT 2

e~ω/kBT

(e~ω/kBT − 1)2
, (3.26)

κph(T ) =
kB
2π

∫ ∞
0

Tph(ω)
~ω
kBT

e~ω/kBT

(e~ω/kBT − 1)2
dω. (3.27)

In this expression, the quantum of thermal conductance is g0 =
(π
6

)(kB)2

~ T =

9.456 × 10−13( W
K2 )T . As an example, at room temperature, the quantum of ther-

mal conductance g0 is 284pW/K, which is the maximum room-temperature phonon

thermal conductance per channel and occurs only if the upper cut off of the phonon

channel is greater than approximately 5kBT . Figure 3.5d shows the thermal con-

ductance versus temperature for each of the structures in figures 3.5a − c and

demonstrates that thermal conductance is suppressed by the presence of pendant

branches. To suppress phonon transmission further, one possible strategy is to in-

crease the width of the Fano resonances by increasing the strength of the coupling

α between the side branches and the trunk. For a system with 5 side branches,

figures 3.6a − c shows Tph(ω) when α = 0.2, 0.4 and 0.7 respectively and demon-

strate that the width of Fano resonances increases with increasing α. Figure 3.6d

shows that this leads to a corresponding suppression of the thermal conductance.

It is worth mentioning that when a trunk is attached to more than one branch, as

in figures 3.2b and 3.2c, then in addition to suppression due to Fano resonances,

phonons also undergo multiple scattering from the points of attachment of the

branches to the trunk. To distinguish between these two effects and to highlight

the importance of Fano resonances, figure 3.7a shows the transmission coefficient

(black curve) of the six-branch Christmas tree shown on the same panel. For com-
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(c)

(a)

(d)

(b)

Figure 3.6: (a − c) Transmission coefficients of a Christmas-tree with 10 side
branches, when α = 0.2, 0.4 and 0.7. (d) The corresponding thermal conductances
versus temperature.

parison, the red curve of figure 3.7a shows the transmission coefficient obtained

when the masses of the branches are set to infinity, so that their normal mode

frequencies are also at infinity, therefore Fano resonances are absent and only mul-

tiple scattering from the attachment point remains. Clearly the latter contributes

to a reduction in phonon transmission. Figure 3.7b shows the corresponding ther-

mal conductances and demonstrates that the lowest thermal conductance (black

curve) is obtained when both Fano resonances and multiple scattering are present.

(a) (b)

Figure 3.7: Red and black cures curve shows the Tph(ω) (on the left) and κph (on
the right) for chain attached to wall and chain with three side branches respectively.
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Molecular Christmas trees formed from branches of different lengths are typically

asymmetric and therefore it is of interest to ask if asymmetry is important. As

shown in figure 3.8, symmetry can be restored by adding further branches. How-

ever, such additions barely change the thermal conductance; therefore we conclude

that presence of asymmetry or otherwise is not central to the Christmas tree strat-

egy.

Although many of the molecules studied above are asymmetric, such asymmetry

is not crucial. Figure 3.8a compares the transmission probability and phonon

thermal conductance of a model asymmetric molecule with branches of 1, 2, 3

masses (black curves) with that of a symmetric molecule formed by adding further

branches of 3, 2 and 1 masses (red curves). In the symmetric scatterer, repetition

of branches does not introduce more Fano resonances and therefore the thermal

conductance of the symmetric molecule is close to that of the asymmetric molecule.

(a) (b)

Figure 3.8: (a) Transmision coefficient comparison for illustrated models. (b) The
phonon conductance. This demonstrates that the presence of branches of different
lengths is desirable.

3.3 Dynamics of molecular Christmas trees

So far we have considered only an ideal model of vibrations, using artificial single-

degree-of-freedom masses. To examine whether or not the ‘Christmas-tree’ phonon-

reduction strategy applies to more complicated molecules, we now use density-

functional theory (DFT) to analyse phonon transmission along the alkane chains
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shown in figure 3.1b, containing various pendant branches using the method of ref-

erence,74 in which the dynamical matrix is constructed from the forces calculated

using DFT88 and the Gollum transport code101 is used to calculate the phonon

transmission coefficient.

Figure 3.9 shows the transmission coefficients and thermal conductances of molecules

1, 2 and 3 of figure 3.1b, with side branches of CH3 for molecule 1, CH3 and C2H5

for molecule 2 and CH3, C2H5 and C3H7 for molecule 3. This demonstrates that

the Christmas tree strategy successfully suppresses phonon transport in a realistic

molecule. To allow us to focus on phonon scattering due to pendant branches only,

(c)C2H5CH3 C3H7 (d)

(a)CH3 (b)C2H5CH3

Figure 3.9: DFT results for the transmission coefficients and thermal conductances
of molecules 1 (black), 2 (red) and 3 (blue) of figure 3.1b, where the trunks are
formed from infinitely-long alkyl chains.

the side branches in the molecules of figure 3.9 are attached to an infinitely-long

alkane trunk, which also acts as a waveguide for phonons entering and leaving

the scattering region. This idealisation avoids interface scattering at electrode

molecule interfaces that would be present in a real device and would further re-

duce phonon transport. In the absence of pendant branches, the transmission

coefficient is simply equal to the number of open scattering channels, which is

plotted as a function of frequency in figure 3.10 and vanishes in the approximate
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frequency ranges 63−87meV . Since the number of open channels is also an upper

bound to Tph(ω), this leads to gaps in Tph(ω) over these frequency ranges, which

are visible in figures 3.9 a− c.

(a) (b)

Figure 3.10: (a) Number of open phonon channels in an infinite alkyl chain versus
frequency. (b) Phonon conductance for a perfect infinite alkane chain.

For an isolated molecule, the weight of a normal mode of vibration on the side

branches can be characterised using the participation ratio PR defined by

PR =
3N∑
i

|ψi|2 (3.28)

where the sum is over all degrees of freedom belonging to the side branches and

is the amplitude of an eigenstate on the degree of freedom of a branch. To show

that the Fano resonances are associated with the side branches, we compare the

PR of all degrees of freedom of atoms in side branches of molecule 3 in figure 3.1b

in a frequency range of 80mev to 110mev. As figure 3.11 illustrates, a high value

of PR corresponds to a nearby Fano resonance in transmission function and in the

regions that the PR of side branches is low, the transmission is high. This is found

to be a generic feature of all molecules studied here.

Figure 3.12 shows the total participation ratio of side branches, as well as the

participation of each side branch. The animation of the named vibrational modes

are provided in the supplementry information of reference.111

The difference between connecting a phonon guide to a heavy stationary mass,
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Figure 3.11: Comparison between the participation ratio (upper panel) and the
transmission coefficient (lower panel).

Figure 3.12: Participation ratio of CH3 side branch(red), C2H5 side branch (green)
and C3H7 (blue). The sum of participation ratio of all side branches(black).

heavy moving branch with no internal degrees of freedom, and a side branch with

internal degrees of freedom are discussed in this section. In the first case, phonon

waves reflect from the point of contact. In the second case, we allow this heavy

object to move. Therefore, the object has modes of vibration in lower frequencies

according to the movements of the entire object. In the third system, we have

a side branch with internal degrees of freedom, for example a C2H5 branch at-

tached to an alkane chain. This side branch has degrees of freedom related to the

movements of the entire branch in lower frequencies as well as the internal modes

of vibration in higher frequencies. This concept is shown in figure 3.13, where
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(a)

Figure 3.13: Black shows the Alkane with C2H5 branch, red is alkane with heavy
side branch(no internal degrees of freedom) and green is an alkane branch attached
to a wall.

the phonon conductances of the systems discussed (shown on the right hand side)

are shown. As explained earlier, a system with a heavy moving mass(red) has a

lower conductance in lower frequencies due to the appearance of Fano resonances

in lower frequencies (centre of mass movements). However, a system with a C2H5

side branch, although it has a lighter mass, has the overall lower phonon conduc-

tance due to the appearance of many Fano resonances associated with the modes

of vibration of the side branch.

As discussed earlier, stronger coupling to the main branch can further suppress

phonon transmission along the trunk. In real molecules, this can be achieved

by changing the type of atom connecting the side branch to the trunk, which will

change the length and the stiffness of the bond connecting the branch to the trunk.

To show this we first compare the transmission coefficients of molecule 1, 4 and

5 (CH3, OH and NH2) of figure 3.1b. Each of these molecules contain a single

side branch, but with terminal branch atoms C, N and O connected to the trunk.

Our DFT calculations shows that the minimum-energy bond lengths of terminal

branch atoms C, N , and O connected to the alkyl trunk are 1.51, 1.44 and 1.41 Å

respectively. The transmission coefficient for the named 3 molecules are shown in

figure 3.15a−c. As expected, figure 3.14d shows that phonon thermal conductance

is smaller in the presence of the shorter bond lengths between the N− and O−

terminated side branches and the trunk. Similarly thermal conductance is higher
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(c)OH (d)

(a)CH3 NH2 (b)

Figure 3.14: Figures (a), (b), (c) show the phonon transport through molecules 1,
4 and 5 of figure 3.1 b respectively. Figure (d)compares the phonon conductance
in molecules a, b and c.

in the presence of the longer bond length between the C−terminated branch and

the trunk.

To show that this effect is purely due to the strength of coupling and is not affected

by the length of the side branch, we repeat the same calculation for molecules 6, 7

and 8 of figure 3.1b. The side branches on these three molecules (C2H5, OCH3 and

NCH3) are longer than molecules 4 and 5. Therefore, the number of vibrational

modes of the side branches of these molecules are more. Consequently, these

molecules have lower phonon conductance in comparison with molecules 4 and 5.

Since the overal conductance is lower, the effect of the coupling strength is subtle.

Similar to molecules 1, 4 and 5, for the molecules 6, 7 and 8 the more strongly

coupled side branch (OCH3) has the lowest phonon conductance. (Fig. 3.14d)
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(c)O (d)

C2H5
(a) (b)NH

Figure 3.15: Phonon transmission through alkane trunks with (a) C2H5, (b) NCH4

and (c) OCH3 side branches Figure (d) shows the phonon thermal conductances
of alkyl trunks with OCH3 (blue), C2H5 (black) m,kand NCH4 (red) branches.

3.4 Shape vs number of branches

A subtle question is whether or not it is more favourable to incorporate a larger

number of small though different side branches or a smaller number of more com-

plex branches. In order to understand the best choice of side branches, we have

compared a system with two side branches, CH3 and C2H5 and a system with one

single side branch with equivalent mass and number of atoms (C3H7). Figure 3.16

shows that CH3 and C2H5 have 8 modes of vibration in the frequency range of

0 to 55, when attached to a rigid wall. However C3H7 has only 6 modes in the

same frequency range. This is due to the fact that each side branch has a number

of lower frequency modes which are controlled by the side branch weak coupling

to the trunk. Although C3H7 has the same number of atoms and more modes

of vibration they appear at higher frequencies, since they are controlled by intra

molecule coupling which are stronger bonds. Due to the appearance of more modes

of vibration and consequently more Fano-resonances in the transmission function,

phonon conductance of the system with two side branches (CH3 and C2H5) is
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significantly lower than the system with a single long branch (C3H7). Therefore,

we conclude that a larger number of simple branches is more favourable than a

single but more-complicated side branch.

(a)C2H5CH3 (b)C3H7

(c)

C2H5CH3

C3H7

Figure 3.16: (a) Participation ratio of two side branches CH3 and C2H5 when
attached to a rigid wall and (b) for C3H7. (c) Comparison of the phonon conduc-
tances of the illustrated system.

The participation ratios of each branch typically show peaks at different frequen-

cies. The total participation ratio is the sum of the participation ratios of each

branch. This means that having a greater number of side branches creates more

Fano resonances in the transmission function in the energy range of interest.

As demonstrated in figure 3.16, at least for alkane branches the former is the more

effective. For example a structure with one methyl and one ethyl side branch has

a lower thermal conductance than a structure with a single propyl side branch.

Similarly a structure with single methyl, ethyl and propyl side branches has a

lower thermal conductance than a structure with a single hexyl branch. This

occurs because each side branch contributes a number of low frequency modes

controlled by the relatively-weak coupling between the branches and the backbone
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Figure 3.17: Participation ratio of all side branches in molecule 2 in figure 3.1b
(Black) participation ratio of C2H5 side branch (Green) and participation ratio of
CH3 (Red).

C2H5CH3 C3H7 (a) (b)C6H13

(c)
C2H5CH3 C3H7

C6H13

Figure 3.18: (a) Participation ratio of three side branches CH3, C2H5 and C3H7

when attached to a rigid wall and (b) for C6H13. (c) Comparison of the phonon
conductances of the illustrated system.
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and therefore the number of such modes increases with the number of branches.

In contrast, although a longer branch has more low frequency modes than a short

branch, these are controlled by the intra-molecular couplings, which are generally

stronger than intermolecular couplings. Consequently, many shorter branches of

different lengths with a collective total of N alkyl units, lead to more low-frequency

modes than a single large branch, with the same number of N alkyl units.

3.5 Heavier side branches

Clearly thermal conductance below a temperature T can only be affected by Fano

resonances of frequency ω lower than kBT/~ and therefore to reduce the low-

temperature thermal conductance high-mass pendant branches with low-frequency

normal modes of vibration are of interest. To illustrate this feature, figure 3.19

compares the phonon transmission and thermal conductance of molecule 3 of figure

3.1b, with the same molecule where all carbons on side branches are replaced by

13C.

Figure 3.19 c clearly demonstrate that heavier side branches move the Fano-

resonances to lower frequencies and suppress the phonon conductance further,

in the temperature range of desire.

3.6 Christmas-tree strategy for an acene trunk

To demonstrate that the Christmas-tree strategy is generic and applies to different

molecular trunks, we have also examined phonon transport along molecules with

an acene trunk, which is more rigid than an alkane chain. As expected, phonon

transmission is suppressed by the presence of pendant branches. A systematic

study is conducted on an infinite acene chain, with the side branches illustrated

in figure 3.20.
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(a)C2H5CH3 C3H7 (b)

(c)C2H5CH3 C3H7

12C
13C

Figure 3.19: Phonon transmission through molecule 3 in figure 3.1b (b) Phonon
transmission for molecule 3 where all the carbons in the side braches are replaced
by 13C. (c) Comparison between the phonon thermal conductance of both systems.

Figure 3.20: Examples of acene branch with various side branches.

Phonon transmission for molecules a, b and c in figure 3.20 are shown in figure

3.21(a−c). Comparing the phonon conductances of these three molecules in figure

3.21d shows that the phonon conductance is suppressed by increasing the number

of side branches. The phononic open channels of an infinite acene chain are shown

in figure 3.22.
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(d)

(a) (b)

(c)

Figure 3.21: (a− c) Transmission coefficient for phonons through molecules a− c
in figure 3.20. (d) Phonon conductance for molecule a− c respectively.
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Figure 3.22: The number of open channels in an infinite acene chain.

Figure 3.23: The relaxed geometry of two systems with acene trunk and C60 side
branch where C60 is attached to the trunk via different connections.
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To show that the strength of the coupling between the side branch and the trunk

can be utilised to tune the phonon transmission and thermal conductance for an

acene trunk as well, we consider two separate systems shown in figure 3.23. In

system A two single C −C bonds are formed on either side of the acene and C60.

In system B, C60 is attached to acene using a pyrrole. Figure 3.24a and b shows

the phonon transmission through the above systems over a frequency range of 0 to

30 meV and figure 3.24 shows the resulting thermal conductances. As expected,

(a) (b)

(c)

Figure 3.24: Comparison between the phonon conductances for the structures A
and B. (c) Comparison between the phonon conductances for the structures A
and B.

structure A, in which the pendant C60 is attached to the trunk via two covalent

bonds has a lower conductance in comparison with system B since nitrogen forms

a weaker bond with the trunk.

Figure 3.9d clearly demonstrates that the suppression of thermal conductance in-

creases with the number of branches. It is interesting to note that in contrast with

studies of energy transfer in conjugated dendrimers, the reflection of phonons due

to Fano resonances is energy conserving and involves no energy transfer into the

branches.
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3.7 Gold lead

Finally, to demonstrate that molecular Christmas tree strategy is effective in

the presence of metallic electrodes, figure 3.25 shows the phonon conductance

of molecules 2 and 7 when attached to gold leads by S −Me anchor groups. This

shows that increasing the number of pendant branches from one to two causes a

18% decrease in phonon conductance and demonstrates that the Christmas tree

strategy remains effective.

CH3

CH3

CH3
S

S

C2H5

CH3

CH3

S
S

C2H5

Figure 3.25: Phonon conductance through molecule 2 and 7 when placed between
two gold leads.

3.8 Conclusion

We have demonstrated that when pendant branches are attached to a long molec-

ular trunk, phonon transport along the trunk is suppressed by Fano resonances

associated with internal vibrational modes of the branches. We first presented the

principles of this strategy using a simple idealised model of vibrations and then

used density functional theory to demonstrate its efficacy in real molecules with
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trunks made from alkyl chains. In both cases, thermal conductance suppression

arises from a combination of the stiffness of the attachment of the pendant branch

to the trunk and the number and frequency of the normal modes of vibration of

the branches. This ‘Christmas-tree strategy’ for reducing phonon thermal conduc-

tance is further enhanced by multiple scattering of phonons from the connections

between the branches and the trunk. For the purpose of increasing the thermo-

electric efficiency of molecular films, this strategy for the molecular engineering of

phonons is attractive because electrically-inert pendant groups are often attached

to molecular trunks to increase their solubility in common solvents. Such group

barely affect electrical properties, but as demonstrated above can have a marked

effect on thermal properties. Therefore the Christmas tree strategy allows us to

engineer the denominator of ZT , without affecting the numerator.



Chapter 4

Thermoelectric properties of

thiophene and EDOT molecular

wires

The design of thermoelectric materials for the efficient conversion of waste heat

into electricity requires simultaneous tuning of their electrical and thermal conduc-

tance. A comparative theoretical study of electron and phonon transport in thio-

phene and ethylenedioxythiophene (EDOT) based molecular wires is performed.

It is shown that modifying thiophene by substituting ethylenedioxy enhances the

thermoelectric figure of merit ZT for molecules of the same length. Furthermore, it

58
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is demonstrated that the electrical conductance of EDOT-based wires decays more

slowly with length than that of thiophene-based wires and that their thermal con-

ductance is lower. The room-temperature ZT of undoped EDOT is found to be

rather low. However, doping of EDOT by the electron acceptor tolunenesulfu-

nate increases the Seebeck coefficient and electrical conductance, while decreasing

the thermal conductance, leading to a thermoelectric figure of merit as high as

ZT = 2.4.

4.1 Introduction

The key property characterising the efficiency at which thermal energy is con-

verted into electrical energy is the dimensionless thermoelectric figure of merit

ZT = GS2T/κ , where G is the electrical conductance, S is the Seebeck coeffi-

cient, T is temperature and κ is the thermal conductance. Therefore optimisa-

tion of ZT requires design of materials which maximise the numerator (ie. the

power factor GS2) and simultaneously minimise the denominator (ie. the thermal

conductance). Strategies for increasing the power factor GS2 of single-molecule

junctions focus on optimising electron transport properties by tuning the energetic

position of the frontier orbitals of the molecule relative to the Fermi energy EF

of the electrodes. If Tel(E) is the transmission coefficient of electrons of energy

passing from one electrode to the other through a molecule, then the Seebeck co-

efficient S is approximately proportional to the slope of the −lnTel(E), evaluated

at EF , whereas the electrical conductance is proportional to Tel(EF ). Therefore,

it is favourable to use molecular design to control the position of the resonances

in Tel(E), which occur when the electron energy E coincides with a molecular

energy level.35,112,113 The thermoelectric properties of bulk oligothiophene deriva-

tives have received attention,76,77,114–123 due to their conjugated nature, which

provides π orbital overlap along the backbone of the molecule and favours electron

transport. Moreover, chemical modification of the oligothiophenes can be used
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Figure 4.1: Optimised geometry of the thiophene series (left) and EDOT series
(right) for n=1 to 4 units contacted between gold electrodes.

as a tool to improve their conductance.34,116–123 Ethylenedioxythiophene (EDOT)

is a derivative of thiophene obtained by ethylenedioxy substitution, which in its

polymeric form is reported to reduce the charge carrier effective mass and the

HOMO-LUMO gap.116,122,123 The EDOT based organic polymer, in its doped

form (PEDOT:PSS) has the highest recorded ZT = 0.42 for a bulk organic semi-

conductor.76,77,120 Here we calculate and compare the ZT of a family of oligoth-

iophene and EDOT-based single-molecule junctions as a function of their length.

Our calculations reveal that in all cases, the ZT of EDOT exceeds that of the cor-

responding oligothiophenes. Furthermore, we have used Tolunenesulfunate (TOS)

which is the building block of PSS,77 an electron acceptor, for doping the EDOT

monomer which results in significant improvement of ZT .

4.2 Conductance

The calculated room-temperature electrical conductances for the two series of

thiophene and EDOT-based wires are shown in figure 4.3a and 4.3b respectively.

All energy axes are plotted so that the DFT predicted Fermi energy (EDFT
F ) is

at zero therefore the axes read E − EDFT
F . The DFT-predicted Fermi energy

(E − EDFT
F = 0eV ) sits close to the HOMO resonance in both cases and would

lead to high conductance values (T1 has a value of 0.47G0 and E1 0.48G0). Experi-
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mental measurements on a thiophene series show a measured conductance value of

G = 3× 10−3G0 and a Seebeck coefficient of S = 8µV/K for molecule T1.114 The

discrepancy arises from the incorrect energy level alignment of the molecules with

the Fermi energy of gold leads. This is a known problem in DFT-based quantum

transport calculations and leads to overestimation of the conductance. Various

methods have been employed to correct this including the DFT+Σ124 and scissor

corrections.125 In the case of thiol based anchor groups, where the molecule des-

orbs a hydrogen atom on the gold, the application of these corrections is somewhat

artificial, since the molecule without hydrogens does not exist in the gas phase.

Therefore, in what follows, we use the measured conductance and Seebeck coef-

ficient of T1 molecule to locate the relative position of the HOMO. Shifting the

DFT predicted Fermi energy to EF −EDFT
F = 0.35eV yields G = 8× 10−3G0 and

S = 20.3µV/K which is in reasonable agreement with the experimental measure-

ments. Therefore, in what follows, we adopt this value of Fermi energy. (Fig. 4.2)

Figure 4.3c shows the conductance ln(G/G0) vs L for the four different lengths of
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Figure 4.2: The Seebeck coefficient of T1 (black), Experimental value for the
Seebeck coefficient of T1 (red) and the relatively chosen Fermi energy.

EDOT (red) and thiophene (black), and as expected for coherent tunneling, we

find a clear exponential decrease of conductance with oligomer length in both cases

(G ∼ e−βL). Figure 4.3d shows that the beta-factor obtained from the slopes of

such plots at different Fermi energies (EF ), and demonstrates that the beta-factor

of the EDOT series (E1-E4) is lower than that of thiophene (1nm−1 to 1.75nm−1
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respectively) over a range of Fermi energies in the vicinity of our chosen Fermi

energy EF − EDFT
F = 0.35eV . Figures 4.3a and 4.3b show that the off-resonant

conductance in the HOMO-LUMO gap is lower for the thiophene, due to the fact

that the EDOT has a smaller HOMO-LUMO gap. This mirrors the comparable

behaviour in polymers116 and suggests that the observed reduction in the HOMO-

LUMO gap is purely due to the chemical modification of the molecule. As noted

in the literature,116 the donor-type ethylenedioxy substitution causes anti-bonding

interactions between the O and C on the molecule backbone, which destabilizes

both HOMO and LUMO and leads to reduction of the gap. To optimise the nu-
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Figure 4.3: Room temperature conductance for the (a) thiophene (a) and (b)
EDOT molecular wires shown in figure 4.1. (c) Conductance vs length at EF −
EDFT
F = 0.35eV . (d) Beta factor vs. Fermi energy. The predicted value for the

decay constant of oligothiophene is somewhat lower than the experimental value
of β = 2.9nm−1,30,114 because DFT underestimates the HOMO-LUMO gap.

merator of ZT , we next investigate the Seebeck coefficient S. The value of S is

proportional to the slope of the transmission at the Fermi Energy. This means that

S is high when EF is greater than the energy of HOMO resonance and smaller

than the energy of the middle of the HOMO-LUMO gap. Figure 4.4 shows a com-

parison between the Seebeck coefficient of the thiophene and EDOT series in the

vicinity of EF −EDFT
F = 0.35eV For the same length of oligomer, the Seebeck co-
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efficients of the EDOT series are lower than those of the thiophene series, because

the higher HOMO-LUMO gap of the former leads to a lower mid-gap transmission

coefficient and therefore to a higher slope. Figure 4.4 also demonstrates that in

both molecular series, S increases with molecular length in agreement with previ-

ous work.114,115 As shown in figure 4.4, this trend does not depend on the value

of the Fermi energy.
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Figure 4.4: (a) Seebeck coefficient against Fermi energy for thiophenes and EDOTs
over a range of −0.2 < EF − EDFT

F < 0.6 (b) Seebeck coefficient over a range of
Fermi energy in the vicinity of chosen Fermi energy EF − EDFT

F = 0.35eV .

4.3 Thermal conductance

The thermal conductance κ = κe+κph in the denominator of ZT is composed of two

terms: the thermal conductance due to electrons (κe) and the thermal conductance

due to phonons (κph). For both series, increasing the length of molecular wire

has two effects on the transmission coefficient. The first is a narrowing of the

phonon transmission resonances with increasing length, which reduces the thermal

conductance. The second is an increase with length of the number of phonon modes

below the Debye frequency of the electrodes, which tends to increase the thermal

conductance (23meV in the present calculations).74 This trend can be followed in

the transmission coefficient of both series in figure 4.5 and figure 4.6. These two

factors control the area under the phonon transmission curves and therefore the

integral in equation 3.27.74
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As a result of this competition, for the EDOT series, although the longer molecules

E3 and E4 have a lower thermal conductance than the shorter molecules E1 and

E2, there is very little difference between E1 and E2, whilst E4 a slightly higher

thermal conductance than E3. Similarly for the thiophene series, the phonon

conductance of T2 is lower than that of T1, as expected. However, the thermal

conductance then increases for T3 and T4, because due to mode softening, the

number of modes entering the Debye window dominates. Similar non-conventional

behaviour has been observed in recent measurements of alkane chains.73
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Figure 4.5: Phonon transport through the thiophene series.

As expected due to the discussion above, comparison between figure 4.7a and

figure 4.7b reveals that the phonon contribution is greater than the electronic

contribution. However the ratio κph/κe is lower for the EDOT series than for the

thiophene series, which makes the former more attractive for thermoelectricity.

This is due to the higher value of κph for thiophenes, which arises from rotational

vibrational modes of the thiophene rings. These become more restricted after

ethylenedioxy substitution and the phonon conductance of the EDOT series is

lower than that of the thiophene series.111
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Figure 4.6: Phonon transmission through the EDOT series.
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Figure 4.7: (a) The electronic thermal conductance at 300 K over a range of
EF −EDFT

F (b) the phonon thermal conductance of both the EDOT and thiophene
series.

4.4 Figure of merit ZT

Figure 5 shows the thermoelectric figure of merit (ZT ). At the benchmarked Fermi

energy of EF −EDFT
F = 0.35eV the value of ZT is much less than 1. However, at

lower values of the Fermi energy, ZT of molecule E4 is as high as 3, because the

system is closer to the HOMO resonance.

The combination of higher Seebeck coefficient and electrical conductance, as well

as a lower κph/κe ratio results in a much higher ZT for EDOT series in comparison

with the thiophene series.
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Figure 4.8: (a) ZT in a range of Fermi energy from −0.2 to 0.6 (b) over a range
of Fermi energy in the vicinity of chosen Fermi energy EF − EDFT

F = 0.35eV

4.5 Doping EDOT

This suggests that ZT could be enhanced by doping with an electron acceptor,

which would cause the molecular energy levels to increase in energy relative to

the Fermi energy. To investigate the tunability of ZT via doping, we have doped

EDOT monomer (E3) with Tolunesulfonate (TOS) which is an electron acceptor.

The charge transfer process in an EDOT:TOS complex is discussed at length in

the literature.77

Figure 4.9: (a) Toluenesulfonate (TOS) and EDOT:TOS in the junction and the
comparison between the logarithm of conductance (b), Seebeck coefficient (c) and
the (d) ZT of E3 in a doped and undoped state.
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The gold electrodes are the same in both calculations (with and without the

dopant). Therefore, the Fermi energy is kept constant for both calculations and is

EF − EDFT
F = 0.35eV . As expected, doping shifts the HOMO and LUMU hence

bringing a higher slope towards the Fermi energy which yields to a significantly

larger Seebeck coefficient and value of conductance. This results in a ZT value of

2.4.

4.6 Conclusion

We have studied the length dependence of the thermoelectric properties of thio-

phene and EDOT molecular wires. By converting the basic thiophene unit to

EDOT, where a thiophene oligomer is modified by adding ethylenedioxy, we have

demonstrated that the electronic conductance decay factor is smaller for EDOT

and its thermal conductance is lower. Consequently, the thermoelectric perfor-

mance of EDOT exceeds that of the corresponding oligothiophenes for all lengths

studied. The room-temperature ZT of undoped EDOT was found to be rather

low. However, doping of EDOT by the electron acceptor Toluenesulfonate (TOS),

which moves the HOMO closer to the Fermi energy leads to room-temperature

ZT values as high as 2.4.



Chapter 5

Cross-plane Conductance through

a Graphene-Molecular

Monolayer-Gold Sandwich.

The functionality offered by single-molecule electrical junctions have yet to be

translated into monolayer or few-layer molecular films, where effective and repro-

ducible electrical contact represents one of the challenging bottlenecks. Here we

take a significant step in this direction by demonstrating that excellent electri-

cal contact can be made to a monolayer biphenyl-4, 4’-dithiol (BPDT) molecular

film, sandwiched between gold and graphene electrodes. This sandwich device

structure is advantageous, because the current flows through the molecules to

the gold substrate in a ‘cross-plane’ manner, perpendicular to the plane of the

graphene, yielding high-conductance devices. We elucidate the nature of cross-

plane graphene-molecule-gold transport using quantum transport calculations and

introduce a simple analytical model, which captures generic features of the current-

voltage characteristic. Asymmetry in junction properties results from the dispar-

ity in electrode electrical properties, the alignment of the BPDT HOMO-LUMO

energy levels and the specific characteristics of the graphene electrode. The exper-

68
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imental observation of scalability of junction properties within the junction area,

in combination with the theoretical description of the transmission probability of

the thiol-graphene contact, demonstrate that between 10%-100% of the molecules

are contacted to the electrodes, which is several orders of magnitude greater than

achieved to date in the literature.

5.1 Introduction

Single-molecule electronic devices, have been widely studied as a possible route

to drive Moore’s Law to the next level of sub-10 nm electronics.126–128 Various

methods have been used to explore electron transport characteristics of molecular

structures, including scanning tunneling microscopy,129 mechanical break junctions

and eutectic gallium–indium junctions.130,131 At the single-molecule level, quan-

tum interference effects are particularly evident and open up many possibilities

for functional design of electronic and thermoelectric devices.132,133 However, for

many of these applications, those features that are attractive at the single molec-

ular level, should be scaled up to self-assembled molecular (SAM) films without

losing the single-molecule functional advantages through inhomogeneous broaden-

ing, intermolecular interactions and defects.134 For the study of vertical transport

through SAM layers, direct evaporation of a metal top electrode onto organic

molecules has not proved feasible as it leads to short circuits via pinholes in the

organic layer. Various attempts have been made to overcome this problem, such as

the addition of a conducting protective layer between the organic molecules and the

top electrode.61,135 Also, a mechanically transferred electrode has recently been

reported to replace the direct formation of the metal electrode onto the SAM.136

Nevertheless, a widespread observation is that scale up of junctions to practical

device dimensions produce irreproducible properties that vary with the electrode

choice. Moreover, it is observed that the (apparent) resistance per molecule in-

creases by up to a factor of 108 in large area junctions (consisting of 103 to 108
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molecules).137–139 In addition, the unique properties of the organic molecules can

be lost by the addition of the protective layer, and the minimum thickness of the

transferred metal may limit miniaturization of the molecular devices. Graphene,

as a monolayer of sp2 - hybridised carbon atoms,140 offers an opportunity in this

regard as it presents electron mobility of up to 106 cm2V −1s−1 at room tem-

perature,141 ultralow resistivity,142 ultrahigh breaking strength of 1 TPa and a

controllable doping level.143 However to date, monolayer CVD graphene-based

solid state vertical transport devices have rarely been explored.135,144

The aim in this present work is to study the tunneling current through a self-

assembled monolayer (SAM) of molecules sandwiched between two electrodes and

to demonstrate that excellent electrical contact can be achieved. For this purpose,

we sandwich a monolayer biphenyl-4, 4’-dithiol (BPDT) molecular film, between

gold and graphene electrodes and measure the cross-plane current flowing perpen-

dicular to the plane of the graphene, through the SAM and the gold. The aim of

this study is to understand the fundamental characteristics of such graphene-SAM-

gold devices. We chose BPDT for the molecular layer, because the single-molecule

electrical conductance of BPDT has been measured and calculated and it is known

to form a tightly packed SAM on gold.145–147 In addition to detailed characteri-

sation of the graphene-BPDT-gold sandwiches, we carry out calculations of their

electrical conductance using density functional theory (DFT) combined with quan-

tum transport theory. We also develop a simple analytical model, which captures

the key features of room-temperature transport through such devices and enables

qualitative understanding of device characteristics.

This project was a combined project with experimental groups in Imperial College

London and Birmingham University.
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Figure 5.1: (a) Optical image (graphene is shown as light grey colour)
(b) cross-section schematic illustration of the vertical transport device. (c)
Au/BPDT/graphene model used for calculations. Representative (d) I-V and (e)
dI/dV vs V characteristics of the vertical transport device (offset of the minimum
differential conductance indicated by the blue arrow). (f) The experimentally
determined zero bias conductance (GSAM) versus junction width. The red dash
curve is a guide to show the expected trend of GSAM with junction area assuming
100% coverage.

5.2 The I-V characteristics of the device

To characterise precisely the conductance across graphene/BPDT/Au sandwiches,

individual devices are designed in a four-probe configuration. The horizontal bot-

tom electrode is made of Cr(2nm)/Au(60nm) on top of SiO2/Si substrate, while

the top graphene electrode is located between two Au contacts. The current im-

posed between one pair of graphene/Au arms and the voltage drop is measured

across the other pair, as shown in figure 5.1a.

Due to the π-π interaction between parallel benzene rings in BPDT molecules, the

molecular layer is packed tightly onto the surface of the Au electrode, avoiding a

short circuit between the graphene and Au electrodes, as shown in figure 5.1b.

Figure 5.1d shows the experimentally measured current-voltage (I-V) characteris-
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tic of a 18 × 18µm2 graphene/BPDT/Au device. The corresponding differential

conductance dI/dV is shown in figure 5.1b. Figure 5.1f illustrates how the zero

bias conductance varies with junction width. The scaling is close to that ex-

pected from the variation of the junction area, which suggests a rather uniform

connectivity of molecules to the graphene top contact particularly for the smaller

junctions. The zero-bias conductance of the 18×18µm2 junction is estimated to be

GSAM = 3× 10−3S (the value of conductance at V = 0 in figure 5.1e). To obtain

the average zero-bias conductance per molecule GM of the SAM, we first estimate

the number of molecules (N) in the film and then write, GM = GSAM/N . To esti-

mate the number of molecules per unit area x of our thin film, we carried out cyclic

voltammetry analysis, which yielded a charge density of (62±2)×10−6(C · cm−2).

The corresponding number of molecules per unit area is therefore,

x =
(62± 2)∆10−6

1.602× 10−19C
= (3.75 ≈ 4.00)× 106(µm)−2. (5.1)

Since the area of the SAM is 18 × 18µm2, the total number of molecules is

N = (1.2 ∼ 1.3)× 109 and therefore GM = GSAM/N = (2.3 ∼ 2.5)× 10−3nS. Ide-

ally, we would like to compare this with a direct measurement of the single-molecule

conductance of BPDT in a single-molecule gold-BPDT-graphene device. Unfor-

tunately, such measurement is not straightforward: in the absence of a covalent

BPDT-graphene interaction, this would most likely require a graphene-based (flat)

‘tip’ to contact an individual BPDT molecule immobilised on Au. When both elec-

trodes are gold, the measured conductance of a single BPDT molecule obtained by

STM is 1.82nS under ambient conditions. However, the DFT modelling (Fig.5.2a.)

predicts that the conductance of a single BPDT molecule calculated between gold

and graphene electrodes should be approximately a factor of 10−2 ∼ 10−3 lower

than this value, which leads to a calculated GM of GM = 10−2 ∼ 10−3nS. Bear in

mind that the experimental value of conductance for single molecule between gold

and graphene electrodes can be predicted using the calculated ratio given in the
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Figure 5.2: (a) The predicted room-temperature electrical conductance of a n-
doped graphene/BPDT/Au junction (blue) and a p-doped graphene/BPDT/Au
(pink), divided by the room temperature single-molecule conductance of the
Au/BPDT/Au junction. The predicted ratio depends on the doping of the
graphene and on the precise location of the Fermi energy EF relative to the frontier
orbitals of the molecule. However, over a range of such values in the vicinity of the
DFT-predicted Fermi energy (shown shaded in green) the ratio varies from 10−2

to 10−3. (b) Overview of the parameters involved in the generic model where Γ1,2

are level broadening due to contact with the source and drain and εm is maximum
energy of the molecular orbital.

following equation

GM = Gexp
Au/BPDT/Au ×

GCalc
Au/BPDT/Gr

GCalc
Au/BPDT/Au

, (5.2)

whereGexp
Au/BPDT/Au is the experimentally measured conductance of a single molecule

from STM, GCalc
Au/BPDT/Gr is the calculated single molecule conductance between a

gold and graphene electrode and GCalc
Au/BPDT/Au is the calculated single molecule

conductance between two gold electrodes.

Comparison with our measured value of GM = 2.3 × 10−3nS as well as the ap-

proximate scaling of the conductance with junction area (shown in figure 5.1f ,

leads us to conclude that between 10% and 100% of the molecules in our SAM are

electrically-connected to the electrodes.

The conductance of the GAu/BPDT/Au, GAu/BPDT/Gr with n-doped and p-doped

graphene is shown in figure 5.3.
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Figure 5.3: The predicted room-temperature electrical conductance of a n-doped
graphene/BPDT/Au junction (blue) and a p-doped graphene/BPDT/Au (pink),
and Au/BPDT/Au (yellow) in units of G0. The predicted ratio of conductance per
molecule for graphene/BPDT/Au to Au/BPDT/Au depends on the doping of the
graphene and on precise location of the Fermi energy EF relative to the frontier
orbitals of the molecule. However, over a range of such values in the vicinity of
the DFT-predicted Fermi energy the ratio varies from 10−2 to 10−3.

5.3 Analytical model

To describe this interplay, we recall the Breit-Wigner formula for the transmission

coefficient T (E) describing electrons of energy E passing from a source to a drain

via a single molecular energy level,22

T (E) =
4Γ1Γ2

(E − ε)2 + (Γ1 + Γ2)2
. (5.3)

In this expression, Γ1 and Γ2 are the level broadening due to contact with the

source 1 and drain 2, while ε is the energy of the molecular orbital, shifted slightly

by the real part of the self-energy due to the contacts. Clearly, when E = ε, T (E)

achieves a maximum value of

T (E) =
4Γ1Γ2

(Γ1 + Γ2)2
. (5.4)
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and for a symmetric junction where Γ1 = Γ2, Tmax = 1. The quantity Γ1 involves

a product of the local density of states in the source electrode, the matrix element

coupling the molecular orbital to the source and the amplitude of the molecular

orbital in the vicinity of the contact to the source. The quantity Γ2 involves

corresponding quantities evaluated at the drain. If the source is gold, whose local

density of states is almost energy independent on the scale of the level broadening

and kBT , then Γ1 is approximately independent of energy. On the other hand

if the drain is graphene, whose local density of states is reduced near the Dirac

point, Γ2 is energy dependent and is a minimum at the Dirac point. Therefore in a

gold-molecule-graphene junction Γ1 will depend on both the source-drain voltage

VD and (in a three-terminal device) on the applied gate voltage VG. In general, ε

will also depend on these voltages and therefore for a gold-SAM-graphene device,

the transmission per molecule will take the form

T (E, VD, VG) =
4Γ1Γ2(E, VD, VG)

(E − ε(VD, VG))2 + (Γ1 + Γ2(E, VD, VG))2
. (5.5)

where Γ1 and Γ2(E, VD, VG) are the level broadenings. In a pristine monolayer

device, Γ2 would vanish at the Dirac point, but in a real device, due to inhomo-

geneous broadening, Γ2 will not vanish precisely. Therefore we assume an energy

dependence of the form

Γ2(E, VD, VG) = Γ0 + α[E − EDirac]z. (5.6)

In this equation the exponent z characterizes the energy dependence of the average

density of states in the graphene, whose spatially-averaged Dirac point is EDirac.

Since the latter can be tuned by both VD and VG, we assume a simple linear

dependence

EDirac = EDirac
0 − γD|e|VD − γG|e|VG (5.7)
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Figure 5.4: The current at a given source and gate voltage is obtained by in-
tegrating the transmission curve T (E, VG, VD) over energies between EGold

F to
EGold
F − |e|VD.

and similarly we write for the location of the molecular orbital relative to the Fermi

energy of gold.

ε− EGold
F = εm − βD|e|VD − βG|e|VG, (5.8)

where βD, βG, γD and γG are the lever arms which can vary in different experiments.

If γD = 1 and VG = 0, then adjusting VD does not change the charge on the

graphene, whereas if γD < 1, the graphene acquires charge when VD is non-zero.

Since the molecule is strongly bound to the gold and very weakly bound to the

graphene, the energy levels of the molecule are less affected by the source drain

voltage and therefore in what follows we assume βD = 0. The absence of an

electrostatic gate in our experiments is reflected in the model by choosing βG = 0

and γG = 0. The current is then given by

I(VD, VG) =

∫ EGoldF −γD|e|VD

EGoldF

T (E, VD, VG)dE, (5.9)

where I0 = 2e/h. This means that a Dirac point entering the integration area

would appear as a dip in the dI/dV curve and the position of the Lorentzian (Eq.

5.6) relative to the Dirac point would create asymmetry in the dI/dV .

Figure 5.4 shows examples of transmission functions at three different drain volt-

ages. The asymmetry and dip in the dI/dV can appear in four different forms

depending on the doping of the graphene and whether the transport is HOMO or
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LUMO dominated (ie. if EGold
F lies closest to the HOMO or closest to the LUMO).

As shown in figure 5.5, if the graphene is electron doped the dip will appear at

negative bias voltages. For systems with p-doped graphene, it appears at positive

bias voltages. It is worth mentioning that the units of conductance and current

used in these plots are G0 = 2e2/h and I0 = 2e/h. Figure 5.6 shows the four

possibilities for when z = 2.

The broad minimum in the experimental differential conductance plot figure 5.1e

suggests that there is a distribution of Dirac points within the device, associated

with inhomogeneities in the doping. To simulate this effect we average twenty dif-

ferential conductance plots (light grey in Figure 5.7a) with slightly different Dirac

points, whose average yields the red curve in Figure 5.7a. The fitted parameters

in the red curve of Figure 5.7a suggest that in the experiment, graphene is overall

p-doped and transport is LUMO dominated. Note that the broadening of the min-

ima can also be modelled for higher orders of the exponent in equation 5.6 (Fig.

5.6).

To check if this is consistent with the film properties, we performed Kelvin Force

microscopy (KFM) and RAMAN spectroscopy measurements to determine the

doping of the graphene. Figure 5.7b shows the work function image of the graphene/

BPDT/Au junction area (blue-ish squares). From this image, it is clear that the

graphene electrode over the gold/BPDT area is differently doped with respect to

the graphene on the bare SiO2 surface. Within the junction area, the graphene

lying on BPDT shows a distribution of surface properties. The specific patterns

are attributed to the surface arrangement of the BPDT molecules after the solvent

drying process. The blurry edges between electrodes and SiO2 are attributed to

surface charging on the insulating SiO2 substrate. Statistical analysis of the work

function difference within the junction areas is compared to that of the graphene

on SiO2 presented in Figure 5.7c. The centre of the distribution shifts negatively

indicating that graphene is more electron doped when transferred onto BPDT in

comparison with graphene on SiO2. The KFM images show the difference in work
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Figure 5.5: Four possible scenarios for the dip and asymmetry in dI/dV curve of
Gr/SAM/Au devices. The transport and graphene are (a) LUMO and p-doped
(EDirac = 0.1 and εm = 0.5) (b) LUMO dominated, n-doped (EDirac = −0.1 and
εm = 0.5) (c) HOMO dominated, n-doped (EDirac = −0.1 and εm = 0.5) and (d)
HOMO dominated, p-doped (EDirac = +0.1 and εm = 0.5). For all four scenarios
Γ0 = 0.1, α = 1 and z = 1. In each quadrant, the transmission coefficient Te(E) vs
energy E−EGold

F (the energy, relative to the Fermi energy of the gold) is plotted at
various drain voltages VD (top graph), the differential conductance (dI/dV ) and
the current (I) verses the drain voltage are plotted (middle graphs left and right,
respectively) and a schematic showing the position of the Fermi energy of the gold
relative to graphene (bottom diagram).
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Figure 5.6: Four possible scenarios for the dip and asymmetry in dI/dV curves.
All parameters are the same as 5.5 except for the exponent in equation 5.6, z = 2.
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Figure 5.7: (a) The theoretical model (red) fit to the experimental dI/dV (blue)
for the parameters, Γ0 = 0.003, α = 1, γ0 = 0.002, γ1 = 1, εm = 0.1 and
−0.1 < EDirac

0 < 0.4. (b) The differential conductance characteristics of IA3
(minimum indicated by blue arrows). (c) KFM work function mappings of device
IA3 with respect to the gold tip. (d) The corresponding statistical analysis of the
work function across the junction area on BPDT of IA3 as well as one of the areas
where graphene lies on the SiO2. (e) Optical images of the mapped graphene areas
on IA3. (f) Corresponding statistical analysis of G band position.
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function with respect to the work function of KFM tip; the absolute values of

the peak positions do not provide quantitative information, but since they are

offset by the same amount, the difference between the positions of the two peaks

is a meaningful quantity. Notably, CVD graphene under ambient conditions on

SiO2, is always p-doped. This is due to the charge transfer to the substrate as

well as adsorption of water molecules and other contaminations from air, which

act as the hole dopants.148 In these vertical transport devices, graphene becomes

more heavily p-doped when it is transferred onto BPDT, attributed to the com-

bined influence of the BPDT molecules and the Au electrode at the far end of

the graphene strip.149 Raman spectroscopy analysis is provided in figure 5.7e and

f . The white horizontal bars are Au bottom electrodes, whilst the darker grey

squares are the cross-plane SAM-based junctions. Raman spectroscopy has been

carried out across a similar area including graphene on BPDT (outlined as black

dash line) and graphene on bare SiO2 (outlined as red dash line). The position of

G band positively shifts from 1583 cm−1 to 1584 cm−1, when graphene is doped

by BPDT/Au stack. Positively shifted peaks indicate the graphene is p-doped

as the theoretical model predicts. In addition to the shifted distribution centre,

the full-width half-maximum (FWHM) of the distribution characteristics have also

increased, indicating a more dispersed and inhomogeneous doping condition with

the effect from BPDT/Au stack underneath.150

5.4 DFT Modelling the I-V characteristics of the

device

In addition to the analytical model of equation 5.5, we performed DFT-based mod-

elling of the geometry-optimised structure shown in figure 5.1c. To construct the

system, the ground state Hamiltonian and optimized geometry of each molecule

was obtain using local density approximation (LDA) exchange correlation func-
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tional along with double-ζ polarized (DZP) basis sets and the norm conserving

pseudo potentials. The real space grid is defined by a plane wave cutoff of 185 Ry.

The geometry optimization was carried out to a force tolerance of 0.01eV/A. This

process was repeated for a unit cell with the molecule between gold and graphene

electrodes where the optimized distance between graphene and the thiol anchor

group was found to be 2.9Å. Figure 5.1c shows a unit cell of the system analysed,

in which each unit cell contains a single BPDT molecule and the whole structure

is repeated periodically by summing over k-points in the transverse direction of

graphene plane. Electron flow is assumed to be from the source (gold electrode),

through BPDT and into the drain (planar graphene electrode).

To model the source-drain and gate voltage in the experiment we use a model

where the gold lead is earthed, therefore the Fermi energy of gold (EGold
F ) is not

affected by source drain or gate voltage. However, the Fermi energy of graphene

is a function of source drain and gate voltage (Eq. 5.10)

EGr
F (VD, VG) = EGold

F − γDVD − γGVG, (5.10)

where all variables are consistent with section 5.3. The devices in this study are

not gated (ie. γG = 0) and mentioning the gate voltage in the formalism is purely

to maintain generality. In order to introduce a source-drain voltage to the mean-

field Hamiltonian obtained from DFT, consider the Bloch Hamiltonian of one of

the leads

H0 |ψj〉+H1 |ψj+1〉+H†1 |ψj−1〉 = ES |ψj〉 , (5.11)

where H0 is the Hamiltonian of each building block (principle layer), H1 is the

coupling between two principle layer, S is the overlap matrix. Assuming |ψj〉 to

be a plane wave,

|ψj〉 = |χ〉 eikj, (5.12)
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Figure 5.8: (a) n-doped and (b) p-doped graphene at zero bias voltage with 16 K
points in the transverse direction.

we have, (
H0 |ψj〉+H1 |ψj+1〉+H†1 |ψj−1〉

)
|χ〉 = ES(k) |χ〉 . (5.13)

In order to make a rigid shift in the energy spectrum (in accordance to the source-

drain voltage), we make the following change to the Hamiltonian

Hlj → Hlj + εSlj, (5.14)

where ε = − e|VD
2

. One can calculate the transmission coefficient at each voltage

point and then obtain the current using equation 5.9. The dI/dV curves are

obtained by simply differentiating the I − V . The band structure of the graphene

obtained using the method explained above for a p-doped and n-doped system is

demonstrated in figure 5.8.

At zero bias, figure 5.9a shows the computed transmission coefficient as a function

of electron energy E. Since the graphene is doped in the experiments, we apply

a small shift to the band structure of the graphene to mimic hole doping (Fig.

5.9a red curve) and electron doping (Fig.5.9a blue curve), where the former is

relevant to our experiments. To account for asymmetry in the junction, at finite

source-drain voltage, we re-calculate the transmission coefficient at each source

drain-voltage to yield the series of finite-bias transmission curves shown in figure

5.9b, from which we obtain the finite-bias current and the differential conductance
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Figure 5.9: (a) Transport through a SAM with p-doped and n-doped graphene at
zero bias voltage. (b) The logarithm of transmission vs the energy relative to the
Fermi energy of gold at various source drain voltages. (c) Comparison between ex-
perimental and theoretical current (d) comparison of the average calculated dI/dV
for differently doped systems (blue) with the experimental dI/dV (red). The units
of conductance and current used in these plots are G0 = e2/h and I0 = 2e/h . Al-
though the asymmetry and the lowest conductance point in curve is similar to
the experimental data, the absolute value of the calculated conductance is greater
than that of experiment, in common with DFT transport calculations reported in
the literature and therefore the vertical axes have been scaled to aid comparison.
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shown in figure 5.9c and d. To obtain the latter, we noted that the work function

of gold is greater than that of graphene, so electrons are expected to transfer from

the graphene to the SAM/gold complex. The positively-charged graphene acts like

a positive electrostatic gate and lowers the energy levels of the SAM relative to the

Fermi energy of gold. This moves the LUMO of the molecules closer to the gold

Fermi energy and results in LUMO dominated transport, as also suggested by the

analytical model. To account for this shift and the fact that the graphene doping

varies over the area of the device, we computed the average of three I-V curves for

Fermi energies of the gold in the range 0.6± 0.1eV . The resulting average I-V and

dI/dV curves are shown in Figure 5.9c and d. The model captures all the essential

features of the experimental curves.

It is important to bare in mind that the EGF method (which is used in this work)

is only valid in the regime that the thermal broadening (KBT ) and the coupling to

the electrodes are comparable to the coulomb energy. Therefore it can only be used

for tunnelling regime. In the limits where electrons travel through an energy level

at a large rate, this theory is not valid and one might adopt other approaches such

as master equation approach. In this study applying the gate voltage will change

the Fermi energy with respect to the molecular energy levels. Therefore for large

gate voltages, on-resonance tunnelling would occur and the current method will

not be valid. However, as demonstrated, this is not the case in the experiments

and theoretical calculations presented in our work. Hence, the EGF method is

valid and provides a good comparison with the experiments.

5.5 Conclusion

In summary, the behaviour of cross-plane electron transport through a monolayer

graphene/BPDT/Au junction has been investigated using a four-probe measure-

ment. The asymmetric electrical transport characteristics observed in both I-V
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and dI/dV vs V measurements, arise from the asymmetric structure of the junc-

tion, combined with phase-coherent tunneling of electrons from the gold to the

graphene via the SAM. These are described using density functional theory and

a generic analytic model, which captures the interplay between the energetics of

molecular orbitals, the Dirac point of the graphene and inhomogeneity of doping

across the area of the graphene electrode. Comparison between single-molecule

conductance measurements as a function of junction area, combined with DFT

modelling suggests that between 10% and 100% of the molecules make electrical

contact to the larger area electrodes and approaching 100% make contact in our

smaller junctions. This result is encouraging and indicates that Au-SAM-graphene

sandwiches provide an efficient route to electrically contacting SAMS, while pre-

serving cross-plane phase-coherent transport.



Chapter 6

Quantum interference mediated

vertical molecular

Molecular transistors operating in the quantum tunneling regime, represent po-

tential electronic building blocks for future integrated circuits. However, due to

their complex fabrication processes and poor stability, traditional molecular tran-

sistors can only operate stably at cryogenic temperatures. Here through a com-

bined experimental and theoretical investigation, we demonstrate a new design

of vertical molecular tunneling transistors, with stable switching operations up to

room temperature, formed from cross-plane graphene/self-assembled monolayer

(SAM)/gold heterostructures. We show that vertical molecular junctions formed

from pseudo-p-bis((4-(acetylthio)phenyl)ethynyl)-p-[2,2]cyclophane (PCP) SAMs

exhibit destructive quantum interference (QI) effects, which are absent in 1,4-

bis(((4-acetylthio)phenyl)ethynyl)benzene (OPE3) SAMs Consequently the zero-

bias differential conductance of the former is only about 2% of the latter, result-

ing in an enhanced on-off current ratio for (PCP) SAMs. Field-effect control is

achieved using an ionic liquid gate, whose strong vertical electric field penetrates

through the graphene layer and tunes the energy levels of the SAMs. The re-

sulting room-temperature on-off current ratio achieved in PCP SAMs can reach

87
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up to ∼ 330, about one order of magnitude higher than that of OPE3 SAMs.

The demonstration of molecular junctions with combined the QI effect and gate-

tunability represent f4a critical step towards functional devices in future molecular-

scale electronics.

6.1 Introduction

Molecular electronics represents an attractive alternative for future electronic de-

vices with rich functionalities beyond current scaling limits.151,152 Since molecular

electronic devices can operate in the quantum tunneling regime, even at room

temperature, numerous quantum phenomena at the sub-nanometre scale can be

explored, such as nuclear spin resonance,153 quantum plasmons,154 thermoelectric

effects37 and quantum interference (QI) effects.22,155 Furthermore, with properly

designed device structures and functional molecules,156 various functions can be

implemented in molecular tunnel junctions, such as switches,157–159 diodes160,161

and transistors.162,163 Normally, molecular tunneling transistors, which are the

most probable electronic element in future integrated circuits, are fabricated by

placing a solid back gate164 or electrochemical gate165 to the side of molecular junc-

tions to tune the energy levels of the central molecules. However, due to the com-

plex device fabrication processes and low stability of such devices, these molecular

transistors can typically only operate stably at cryogenic temperatures. Here, we

report a novel design of a vertical molecular tunneling transistor with stable opera-

tion up to room temperature, based on a gate/graphene/self-assembled-monolayer

(SAM)/gold cross-plane vertical heterostructure.166,167 Since destructive QI sup-

presses molecular conductance at low-bias,22 which is beneficial for creating molec-

ular transistors with high on-off current ratio, we have investigated SAMs formed

from molecules with and without destructive QI effects.168 The conformation and

binding geometry of the molecules in the SAM are fixed169 by thiol anchor groups

to the gold electrode, which promotes stable charge transport through the molec-
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Figure 6.1: Schematic illustration of the vertical molecular tunnel transistor.
(a) Schematic illustration of the device structure for the fabricated device. (b)
Schematic diagrams of the molecular transistor with OPE3 SAMs and ionic liquid
(DEME-TFSI) gating. DEME+ ions are the cations and TFSI- ions comprise the
anions. (c) Chemical structure of the PCP and OPE3 molecules.

ular junctions. A strong gating electric field, generated from the electrical double

layer (EDL) of the ionic liquid,170 is vertically applied to the graphene/SAM/gold

junctions (Fig. 6.1). Due to the partial electrostatic transparency of graphene,171

the applied electric field penetrates through the graphene layer and tunes the en-

ergy levels of the SAM relative to the Dirac point of the graphene, resulting in

effective gate control and a significant conductance modulation in the molecular

transistors.

This work is a collaborative work with an experimental group in University of

California, Los Angeles (UCLA).

6.2 Modelling gold-SAM-graphene devices

The ground state Hamiltonian and optimized geometry of each molecule was ob-

tained using the density functional theory (DFT) code SIESTA.88 The local density

approximation (LDA) exchange correlation functional was used along with dou-

ble zeta polarized (DZP) basis sets and the norm conserving pseudo potentials.

The real space grid is defined by a plane wave cutoff of 185 Ry. The geometry

optimization was carried out to a force tolerance of 0.01 eV /Å. This process was
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Figure 6.2: Schematic structures for theoretical calculation. (a) Simulating PCP
SAM with gold and graphene electrodes. K = 30 k-points are employed in the
direction indicated. (b) The structure for a single PCP junction. (c) Band structure
of the graphene using 30 transverse k-points

Figure 6.3: (a) Schematic band diagram of the device with changed VD at graphene
electrode. (b) Schematic illustration of the working device with electrical double
layers. (c) Schematic band diagram of the device with changed VG.

repeated for a unit cell with the molecule between gold and graphene electrodes

where the optimized distance between graphene and the thiol anchor group was

found to be 2.9 Å.

To model the periodicity in the graphene and interaction between the molecules in

the SAM, the unit cell was repeated using a Bravais lattice with 30 k-points in the

transverse direction shown in figure 6.2. This models a SAM where molecules are

2nm apart. The gold electrode is considered to be a nano-wire and not periodic. A

mean field Hamiltonian and an overlap matrix was extracted from this converged

calculation. Figure 6.3 shows the working mechanism for gate voltage (VG) and

bias voltage (VD) dependency of the band structure of graphene and the energy

levels of the molecule. Since the gold lead is earthed, the Fermi energy of gold

(EGold
F ) is not affected by the source-drain or gate voltage. However, the Fermi
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energy of graphene is a function of the source-drain and gate voltages via the

following equation

EGr
F (VD, VG) = EGold

F − αVD − βVG, (6.1)

where VD and VG are the source-drain and the gate voltages and α and β are the

experimental lever arms, which could vary in each experiment. Similarly, applying

a gate voltage can move the energy levels of the molecule up and down in energy

(Eq. 6.2 and 6.3). (Fig. 6.3c)

εHOMO(VG) = εHOMO
m − γGVG; (6.2)

εLUMO(VG) = εLUMO
m − γGVG. (6.3)

The value for current is given by equation 6.4.

I(VD, VG) =
2e

~

∫ EGrF (VD,VG)

EGoldF

T (E, VD, VG)dE, (6.4)

where T (E, VD, VG), is the transmission coefficient from lead 1 to lead 3 calcu-

lated using quantum transport code GOLLUM.101 In what follows γG = 1. When

comparing theory with experiment, eg. in figure 6.6, a lever arm of α = 0.44 is

employed.

6.3 Properties of the molecules

In contrast to the fully conjugated molecular chain in OPE3, a fundamental differ-

ence of PCP molecules is the presence of spatially separated aromatic rings linked

by saturated methylene bridges in PCP. In this case, a current path mediated by

π-π overlap between aromatic rings acts in parallel with current paths through

the methylene bridges to create destructive QI features between the highest occu-

pied molecular orbital (HOMO) and the HOMO-1, as shown in figure 6.4b and in

the literature.168 When combined with interruption of the conjugation in the PCP



6.4. Current and conductance 92

Figure 6.4: Charge transport in gold/molecule/gold junctions. (a) Schematic il-
lustration of the PCP and OPE3 junctions. (b) Transmission functions T (E) for
PCP (purple) and OPE3 (blue).

molecule, this results in a lower transmission coefficient T (E) for the PCP molecule

compared with OPE3. In order to fully understand the origin of this difference, a

comparison between the molecular orbitals of PCP and OPE3 is presented figure

6.5.172

Figure 6.5 shows that for both molecules the inter-orbital quantum interference

between eg. the HOMO and LUMO is constructive, because their orbital products

have opposite signs, as discussed in reference.153 However the broken conjugation

of the PCP, which can be regarded as a form of intra-orbital destructive QI between

the left and right halves of the molecule, means that there is only a small electronic

coupling between the left and right halves of the molecule. This results in the

reduction of the conductance in PCP. It is worth mentioning that for OPE and

PCP with gold-gold contact the calculated ratio of the conductance is GOPE
GPCP

=

2.17×10−3

4.34×10−4 = 5, which is in agreement with the literature.151,152

6.4 Current and conductance

Figure 6.6b shows the calculated transmission coefficient through a gold-molecule-

graphene junctions using PCP (purple) and OPE (orange) molecules. The ratio of

the transmission coefficients for PCP and OPE at E −EGold
F is

TOPE(EGoldF )

TPCP (EGoldF )
≈ 135,
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Figure 6.5: PCP and OPE3 molecular orbitals, (a) The Molecular orbitals for
OPE3 (b) Molecular orbitals for PCP.

showing the same trend as the gold-molecule-gold calculation discussed in the

previous section.

The experimental current density (JD) vs. bias voltage VD and the differential

conductance (dJ/dV ) vs. VD are shown in figures 6.6c and 6.6d. The current

density (JD) for the PCP junction is considerably lower than that of the OPE3

junction, especially near zero bias, which is consistent with the transmission coef-

ficient characteristics of the respective molecules discussed above. The minima in

the dJ/dV curves are associated with the Dirac point of the graphene and their

positions relative to the zero VD indicates whether the graphene is p-doped or

n-doped. In figure 6.6d, the Dirac point for OPE3 and PCP samples occurs at

−0.3V and 0V respectively. Indicating that the graphene is n-doped in the OPE3

sample and negligibly doped in PCP sample. For this reason, in what follows,

when comparing our calculated T (E) with experiments the band structure of the

graphene is adjusted to place the Dirac point of the OPE3 system at −0.3eV and

for PCP system at 0eV resulting the dip in the transmission coefficients in figure

6.6b.

From the experimental results of figure 6.6d, the value of dJ/dV at zero bias for
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Figure 6.6: Charge transport in molecular junctions. (a) Schematic illustration of
the PCP and OPE3 junctions. (b) Transmission functions T (E) for PCP (purple)
and OPE3 (orange). (c) Plots of experimental current density (JD) versus bias
voltage (VD) for PCP and OPE3. (d) Differential conductance (dJ/dV ) to VD
plots for experimental PCP and OPE3. (e) Theoretical current (ID) to VD plots
for PCP and OPE3. (f) Theoretical differential conductance (dI/dV ) to VD plots
for PCP and OPE3.
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Figure 6.7: Experimental gating charge transport in molecular transistors. (a, d)
Experimental JD versus VD characteristics for PCP and OPE with VG changing
from −1 to 1V with step of 0.5V (b, e) Experimental dJ/dV versus VD character-
istics for PCP and OPE (colour code for gate voltages are consistent with panel
a)(c,f) Two-dimensional visualization of dJ/dV plotted versus VG and VD for PCP.

OPE3 is 71 times larger than that of PCP. This ratio is comparable with the

value of 65 obtained from the calculated results of figure 6.6f . The conductance

ratio of the gold-molecule-gold junction, is just about one tenth of junctions with

gold-molecule-graphene contacts. This indicates that the conductance for molecule

junctions with graphene electrode is more sensitive to the structure of molecules

and their relative energy alignment.

Figures 6.7a and 6.7d show typical gate dependent JD − VD characteristics mea-

sured at 200 K for PCP and OPE3 with gate voltage (VG) changing from −1 to 1V

with step of 0.5V . With VG changing from −1 to 1V , JD greatly increases with VG

for negative VD, while JD greatly decreases with VG for positive VD. On the other

hand, the gate dependent JD amplitude for OPE3 is evidently much smaller than

that for PCP. This demonstrates the better gate control over the vertical PCP

molecular transistors, compared with OPE3.

The conductance minima for both molecules move in a positive (negative) direction
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along the VD axis when the gate voltage is increased (decreased) (Figs. 6.7e). This

feature is independent of the type of molecule and is a reflection of the gate-voltage

dependence of the Dirac point of graphene. Figure 6.7c shows a two-dimensional

visualization of dJ/dV plotted versus VG and VD for PCP. The oblique diamond-

shaped low conductance region (green) indicates off-resonant transport, while the

red-orange high conductance region outside the diamond is due to the conductive

frontier molecular orbitals entering the bias window. Furthermore, a blue mini-

mum conductance region appears at the centre of the diamond, which corresponds

to the Dirac point of the graphene. For the OPE3 transistor (Fig. 6.7f), a similar

oblique diamond-shaped low conductance region can also be observed. However,

the relative conductance changing between centre low and outside high conduc-

tance regions for OPE3 is considerably smaller than that for PCP, which reflects

the better gating tunability for PCP. This is in agreement with the calculated

T (E) for PCP and OPE3 (Fig. 6.6b), as the difference between off-resonant and

resonant transport is more pronounced for PCP in comparison with OPE3. Fur-

thermore, the VG/VD gradient for the edges of diamonds at the second and fourth

quadrants is 0.2095 for OPE3, which is smaller than that of PCP with a value of

0.2493. This further demonstrates that the gate controllability for PCP is better

than that for OPE3.

In our theoretical model, the gate voltage can move the energy levels of the

graphene as well as the molecular energy levels (Eq. 6.1, 6.2 and 6.3). There-

fore, the position of HOMO and LUMO relative to the Fermi energy of the gold

varies with VG as shown in figure 6.8. Similar to the bias voltage lever arm (α),

we consider a gate voltage lever arm (β in equation 6.1).

The VD and VG dependent transmission coefficient T (E, VD, VG) was calculated us-

ing quantum transport code GOLLUM,101 and the current obtained from equation

6.4. The theoretical gate dependent ID − VD characteristics for PCP (Fig. 6.9b)

reveal that when VG changes from −0.6 to 0.6V , ID greatly increases with VG for

negative VD, while ID decreases with VG for positive VD. A similar theoretical gate
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Figure 6.8: Gate dependent transmission for molecular transistors. Transmission
functions T (E) for PCP (a) and OPE3 (b) with VG changing from −0.6 to 0.6V
at step of 0.3V .

dependent ID−VD characteristic is also obtained for OPE3 (Fig. 6.9e), though the

gate dependent change in ID is smaller than that for PCP. Furthermore, from the

gate dependent dI/dV −VD characteristics for PCP (Fig. 6.9c), it can be observed

that the dI/dV − VD curve shifts in a positive direction with VG changing from

−0.6 to 0.6V , especially for the lowest conductance points. For OPE3, a similar

gate dependent dI/dV − VD curve is obtained, but with a relatively smaller am-

plitude (Fig. 6.9f), in qualitative agreement with the experimental results (Fig.

6.7).

In the experimental dJ/dV of OPE3 sample, we can see that the Dirac point of

graphene moves up by 0.4V when gate voltage is increased by 1V (Fig. 6.7e). For

a similar change in gate voltage, the Dirac point moves 0.5V in the PCP sample.

Therefore, to compare our calculations with experiment, we choose β = 0.4. This

assumption allows us to model the sensitivity of these devices to the change in VG

and VD and yields agreement with our experiments. For example, a 1.2V change

in the gate voltage of PCP device, moves the Dirac point of the graphene by 0.48V

along the VD axis (light blue and pink curves in figure 6.9c). Similar behaviour

also occurs in OPE3 junctions (Fig. 6.9d); namely the orbital energies only vary

with VG, whereas the Dirac point and transmission minima are sensitive to both

VD and VG.

Transfer characteristics, which monitor the current modulation by varying VG at a

fixed VD, are widely used for evaluating the performance of transistors.173 Experi-
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PCP

OPE3

Figure 6.9: Theoretical gating charge transport in molecular transistors. (a, d)
Transmission coefficient T (E) versus for PCP and OPE3 junctions for −0.4 <
VD < 0.4 with steps of 0.2V . (b, e) Gate dependent theoretical ID − VD character-
istics for PCP and OPE3. (c, f) Gate dependent theoretical dI/dV − VD for PCP
and OPE3. VG is varied from −0.6,−0.3, 0.0, 0.3 to 0.6V in b,e,c,f .

Figure 6.10: Experimental transfer characteristics for the vertical molecular tran-
sistors with (a) PCP and (c) OPE3. (b, d) On-off ratio for PCP and OPE devices.
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Figure 6.11: Theoretical transfer characteristics for the vertical molecular transis-
tors with (a) PCP and (c) OPE3. (b, d) On-off ratio for PCP and OPE devices.
VD is varied from −0.1,−0.2,−0.4,−0.6to− 0.8V in a and c.

mental transfer characteristics (JD−VG) for PCP at V D = −0.1,−0.2,−0.4,−0.6

and −0.8V are shown in figure 6.10a. It can be observed that the lowest current

point at VD = −0.1V is near VG = 0V . Increasing VD from −0.1 to −0.8V , the

lowest current point moves to more negative VD. Such shifting of the lowest current

point is due to variation on the Dirac point of the graphene electrode: with more

negative VD, increased negative VG is needed to move the central transmission dip

of the junction to the middle of the bias window. Furthermore, the on-off ratio,

which corresponds to the ratio between the highest and lowest currents in a JD−VG

curve, decreases with increasing VD. A highest on-off ratio of ∼ 320 is achieved

for PCP near VD = 0V . (Fig 6.10b) The on-off ratio decreases with increasing VD,

which can be attributed to electron transmission occurring over a wider bias win-

dow, with the conductance less sensitive to gating-induced movement of molecular

energy levels. Similar transfer characteristics (Fig. 6.10c) and a VD dependent

on-off ratio (Fig. 6.10d) also appears for OPE3, although with a peak on-off ra-

tio value of ∼ 4, which is only 10% of the PCP value. These behaviours cannot
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be observed for the graphene device without SAMs layer, which is indicative of

the unique field-effect behaviour for the vertical molecular transistors. The VD

dependent transfer characteristics for PCP and OPE3 were also investigated by

theoretical simulations. From the theoretical transfer characteristics (ID−VG) for

PCP (Fig. 6.11a) and OPE3 (Fig. 6.11c), as VD changes from −0.1 to −0.8V , it

can be observed that with increased negative VD, on-off ratios decrease, and the

lowest current points shift to the negative direction. In agreement with our mea-

surements, the peak value of on-off ratio for PCP is about one order of magnitude

higher than that of the OPE3 (Fig 6.11d).

6.5 Conclusion

In summary, we have demonstrated molecular transistors using vertical cross-plane

graphene/SAM/gold heterostructures and ionic liquid gating. We show that charge

transport across the vertical junction and transistor characteristics can be read-

ily tailored by selecting molecules with or without destructive QI features (e.g.

PCP vs. OPE3-based junctions). Importantly, we show that a graphene/PCP-

SAM/gold junction can show a significance current modulation by an ionic liquid

gate, with a maximum on-off ratio up to 330, which is about one order of magnitude

higher than that for OPE3. This better gate behaviour for PCP is a direct conse-

quence of the zero-bias conductance suppression induced by destructive QI. The

designed vertical molecular transistors with large on-off ratio could form the basic

electronic building blocks for future electronics and may offer a robust platform

for exploring gate dependent quantum transport phenomena,153,162,163 especially

when the ionic liquid gate is further replaced by solid high-k gate.173 Furthermore,

such QI-driven vertical molecular transistors, with sensitive gating applied outside

of top graphene electrode, can be further used for fabricating various functional

devices, such chemical and biological sensors.174,175 This work has stimulated an-

other collaborative project with the experimental group in UCLA who performed
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this study. This work studies the molecular magic-ratio of conductance in a self-

assembled monolayer which is discussed in the next chapter.



Chapter 7

Self-assembled

molecular-electronic films

controlled by room-temperature

quantum interference

If single-molecule, room-temperature, quantum interference (QI) effects could be

translated into massively parallel arrays of molecules located between planar elec-

trodes, then QI-controlled molecular transistors would become available as poten-

tial electronic building blocks for future integrated circuits and QI-based strategies

for designing ultra-thin functional materials would become possible. Here, through

a combined experimental and theoretical investigation, we demonstrate unequiv-

ocal signatures of room-temperature QI in vertical tunnelling transistors, formed

from self-assembled monolayers (SAMs), with stable room-temperature switching

operations. In contrast to artificial quantum dots, the electrical connectivity to

the central cores of single molecules can be controlled to atomic accuracy through

appropriate chemical synthesis. Consequently, it has been demonstrated that the

electrical conductance of single molecules can be varied by orders of magnitude

102
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in a deterministic manner, depending on their connectivity. Here, this signa-

ture of QI is translated into cross-plane graphene/SAM/gold molecular transistors

formed from molecules with graphene-like anthanthrene cores. The conductances

of vertical molecular junctions formed from anthanthrene-based molecules with two

different connectivities differ by a factor of approximately 34, in agreement with

theoretical predictions for their conductance ratio based on constructive QI effects

within the core. By further controlling the molecule-electrode interface using dif-

ferent terminal groups, such QI effects can be enlarged, and the conductance ratio

increased to 173. Field-effect control is achieved using an ionic liquid gate, whose

strong vertical electric field penetrates through the graphene layer and tunes the

energy levels of the SAMs. The resulting room-temperature on–off current ratio

of the lowest-conductance SAMs can reach up to 306, about one order of mag-

nitude higher than that of the highest-conductance SAMs. This demonstration

of QI effects in gate-tunable SAMs represents a critical step towards functional

ultra-thin-film devices for future molecular-scale electronics.

7.1 introduction

Single-molecule electronic junctions have been investigated intensively over the

past decade, not only as stepping stones towards functional devices/circuits made

from collections of molecules, but also because their room-temperature electri-

cal conductance is controlled by quantum interference (QI).155,176–184 Figure 7.1a

illustrates an example of a room-temperature QI effect, in a graphene-like (an-

thanthrene) molecular core, when electrical current is injected and collected via

the green arrows, or alternatively via the red arrows. If the core behaved like a

classical resistor network, then the electrical conductance for these two connectiv-

ities would be approximately equal. In contrast, theory predicts and experiment

confirms172,185,186 that the room temperature, single-molecule, low-bias electrical

conductance G1 for the green (7, 2′) connectivity is approximately two orders of
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Figure 7.1: Structures of the studied molecules. (a) A sketch of an anthanthrene
core with connectivities 7, 2′ and 1, 5′ (the numbering system is chosen for math-
ematical convenience and does not coincide with standard chemical notation).
(b) Chemical realisations of molecules with anthanthrene cores. 1 corresponds
to the 7, 2′ connectivity, while 2 and 3 correspond to the 1, 5′ connectivity.
R′ = 4− (2− ethylhexyloxy)phenyl,R = −OC8H17.

magnitude larger than the conductance G2 of the red (1, 5′) connectivity. This is a

clear signature of different degrees of constructive QI at room-temperature. Figure

7.2 is a demonstrattion of this principle for a tight-binding model of the core shown

in figure 7.1a. The chemical realisation of the green connectivity is molecule 1

of figure 5.1a, in which the terminal groups attached to electrodes inject a cur-

rent into the anthanthrene core via triple bonds. Similarly, molecules 2 and 3 are

realisations of the red connectivity, with different terminal groups, which can fur-

ther control interfacial coupling and energy level alignment between molecule and

electrode.187,188 Our aim is to create a SAM-based molecular tunnelling transistor

from these molecules and to demonstrate that these single-molecule signatures of

QI can be realised in self-assembled monolayer-based devices. We indeed find that

the electrical conductance of the SAM formed from 1 is significantly higher than

that of the SAM formed from 2 or 3. Furthermore, by applying an external gate,

we are able to assess their different field-effect performances.

In contrast to molecular tunnelling transistors fabricated by placing a solid back

gate164 or electrochemical gate165,189 to the side of molecular junctions, which can
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Figure 7.2: (a) Transmission coefficient for the connectivities in figure 7.1a for a
tight-binding model. (b) The ratio of the transmission coefficients. The conduc-
tance ratio for the connectivities discussed in figure 7.1a is 81.185

typically only operate stably at cryogenic temperatures, here we utilise a vertical

molecular tunnelling transistor with stable room-temperature operation, based on

a gate modulated graphene/SAM/gold cross-plane vertical heterostructure.166,167

The binding geometry of the molecules in the SAM are fixed169 by the terminal

anchor groups to the gold electrode and the inter molecular interactions in the

SAM, which promotes stable charge transport through the molecular junctions.

A strong gating electric field, generated from the electrical double layer (EDL)

of ionic liquid,170 is vertically applied to the graphene/SAM/gold junctions (Fig.

7.3a). Due to the partial electrostatic transparency of graphene,171 the applied

electric field penetrates through the graphene layer and tunes the energy levels of

the SAM relative to the Fermi energy of gold (EGold
F ), resulting in effective gate

control and a significant conductance modulation in the molecular transistors.

7.2 Results

In the absence of electrically active side chains, the ratio G1

G2
of the low-bias, single-

molecule conductances of 1 and 2 are predicted by a ‘magic number’ table,185 which

yields G1

G2
= 81 (Fig. 7.2). This simple ‘magic ratio theory’ illustrates how connec-
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Figure 7.3: Schematic illustration of the vertical molecular tunnelling transistor.
(a, b) Schematic illustration for the setup of the device with vertical ionic liquid
gate through graphene layer to SAMs and molecular structures for DEME+ cation
and TFSI- anion. (c) Optical photograph of the device with ionic liquid gate.

tivity alone contributes to conductance ratios, without including chemical effects

or coulomb interactions. When the latter are included, recent studies indicate that

the qualitative trend in the ratio is preserved (i.e., that G1

G2
� 1 ), but the precise

value should be calculated using ab initio methods. Our aim is to determine if

this signature of QI is preserved or modified in a SAM, and how it depends on

intermolecular interactions and the interplay between the molecular level and the

density of states of graphene.

Figure 7.4b shows the computed transmission coefficient for electrons passing

through all three junctions. Previous comparison between experiment and the-

ory revealed that electron transport through anthanthrene based molecules takes

place near the middle of the energy gap between the highest occupied molecular

orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO).185 There-

fore in the calculations presented below, the Fermi energy of the gold is located

near the middle of the HOMO-LUMO gap and all energy axes are plotted with

respect to the mid-gap energy Emid−gap
F = EGold

F . The computed ratio of their
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Figure 7.4: Charge transport in molecular junctions. (a) Schematic illustration
of molecular junction 1, 2 and 3, where the side chains of molecules are hidden.
(b) Transmission functions T (E) for 1 (red), 2 (green) and 3 (blue). (c) Plots
of experimental current density (JD) vs. bias voltage (VD) for 1, 2 and 3. (d)
Experimental differential conductance (dJ/dV ) vs. VD. (e) Theoretical current
(ID) vs. VD. (f) Theoretical differential conductance (dI/dV ) vs. VD.
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Figure 7.5: The local density of states for the anthanthrene core of the molecule
1, 2 and 3 of Figure 1. The wavefunction of the HOMO and the LUMO energy
levels of the core suggests that neither of the connectivities suggested in Figure 1
lead to inter-orbital destructive quantum interference.22

transmission coefficients in graphene-molecule-gold junctions for molecule 2 and 1

at E = EGold
F is 116. It should be emphasised that both molecules exhibit construc-

tive QI near their gap centres and the conductance ratio arises from the different

degrees of constructive QI associated with the different connectivities. Figure 7.5

illustrates that the constructive nature of the QI is also reflected in the molecular

orbitals of molecule 2 and 1. When the terminal groups of molecules are changed

from thiol to pyridine, the transmission coefficient in the junctions for molecule

3 at E = EGold
F is reduced to 1/7 of that for molecule 2. This indicates that the

QI effect acts in conjunction with the higher pyridine-gold interface resistance to

determine charge transport in the junctions.

The experimental current density (JD) vs. bias voltage (VD) and the differential

conductance (dJ/dV ) vs. VD are shown in Fig. 7.4c,d. As predicted by magic ratio

theory, the current density (JD) and for the 1, 5′ junction formed from molecule 2 is

considerably lower than that of the 7, 2′ junction formed from molecule 1, especially
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near zero bias, which is consistent with the transmission coefficient characteristics

of the respective molecules discussed above and theoretical results (Fig. 7.4e).

With pyridine terminal groups for the 1, 5′ junction, the JD for molecule 3 is further

reduced as forecasted in transmission functions. The minima in the dJ/dV curves

are associated with the Dirac point of the graphene and their position relative

to the zero VD indicates whether the graphene is p-doped or n-doped. In Fig.

7.4d, the Dirac point for molecule 1 and 2 samples occurs at -0.03 V and -0.05 V

respectively, indicating that the graphene is slightly n-doped in the presence of the

thiol-terminated SAMs. However, for sample 3 this minimum appears at 0.01V,

suggesting p-doped graphene in the case of a pyridine anchor group. For this

reason, in what follows, when comparing our calculated T (E) with experiments,

the band structure of the graphene is adjusted to place the Dirac point of each

system at the experimental value.

For the experimental dJ/dV results (Fig. 7.4d), the value of dJ/dV at zero bias for

molecule 1 is 29 times larger than that of molecule 2. This ratio is comparable with

the value of 84 obtained from the theoretical results of Fig. 7.4f . It is also worth

mentioning that for molecule 2 and 1 junctions with gold-molecule-gold contacts

(Fig. 7.7), the conductance ratio at zero bias is G1

G2
= 203, which indicates that

the interfacial contacts are playing a role in determining the conductance ratio.

After changing the terminal groups from thiol to pyridine to control the interfa-

cial contacts, the zero-bias differential conductance for molecule 3 is 1/5 of that

for molecule 2 which is comparable with the calculated value of 1/8.7 (Fig. 7.4).

To probe the field effect performances of these molecular junctions, DEME-TFSI

ionic liquid was used for gating, which has a large electrochemical window, a high

ionic conductivity, and a low freezing temperature for ion migration. When a gate

voltage (VG) is applied to the gate electrode, a Helmholtz electrical double layer

(EDL) self-organizing on the outside surface of graphene layer (Fig. 7.3a,b) gen-

erates a strong electric field up to 10 MV/cm to the molecular junction.170 The

gate performances of three transistors were measured at room temperature (298
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Figure 7.6: Gating charge transport in molecular transistors. (a, d, g) JD vs. VD
characteristics for 1 (a), 2 (d), and 3 (g) with gate voltage (VG) changing from
−1 to 1V with step of 0.5V . Insets show schematics of the 1, 2 and 3 transistors
with applied vertical electric field. (b, e, h) dJ/dV vs. VD characteristics for 1
(b), 2 (e), and 3 (h) with VG changing from −1 to 1V with step of 0.5V . (c, f , i)
Two-dimensional visualization of dJ/dV vs. VG and VD for 1 (c), 2 (f), and 3 (i).

Figure 7.7: (a) The structure of gold/molecule/gold junction 1, 2 and 3 for simu-
lation. (b) Transmission coefficient for gold/molecule/gold junctions for molecule
1(red), 2 (green) and 3 (blue). At E − Emid−gap

F = 0eV , the ratio of T1
T2

= 203,
T2
T3

= 52.
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K). Figures 7.6a, d and g show typical gate dependent JD − VD characteristics

for molecules 1, 2 and 3, respectively. Changing VG from −1 to 1V , greatly in-

creases JD for negative VD, while JD greatly decreases with VG for positive VD,

clearly demonstrating effective field-effect modulation of the molecular junctions.

Typical gate dependent dJ/dV − VD characteristics for molecules 1, 2 and 3 are

shown in figure 7.6b, e and h. When the gate voltage is increased from −1 to 1V ,

dJ/dV −VD curves for all three junctions move in a positive direction along the VD

axis, which reflects the gate-voltage dependent movement of the molecular orbital

energy levels. Figures 7.6c, f and i respectively show two-dimensional visualiza-

tions of dJ/dV plotted versus VG and VD for molecules 1, 2 and 3. The oblique

diamond-shaped low conductance region (green and blue) can be observed for all

three transistors, which indicate off-resonant transport through HOMO-LUMO

gap. While the red-orange high conductance region outside the diamond is owing

to the conductive frontier molecular orbitals coming into the bias window. The

relative conductance changing between center low conductance and outside high

conductance regions for molecule 1 is considerably smaller than that for molecule

2, which indicates the better gating tunability for molecule 1. This agrees with the

calculated T (E) for molecules 1 and 2 (Fig. 7.4b), as the difference between off-

resonant and resonant transport is more pronounced for molecule 2 in comparison

with molecule 1. For comparison between molecules 3 and 2, a blue lowest con-

ductance region appears at the center of the diamond for molecule 3 (Fig. 7.6f),

corresponding to the calculated lowest off-resonant transmission of 3 (Fig. 7.4b),

which further improves the gating tunability of molecule 3.

The conductance minima for molecule 1 are sharp features for all values of the

applied gate voltage. However, in the case of molecule 2 (Fig. 7.6e) the minimum

at VG = 0V is a broader feature, which splits into two sharper minima when

the gate voltage is increased to 0.5V and 1.0V . This is in agreement with the

calculated T (E) for molecules 1 and 2 (Fig. 7.4b). While T1 has no features

between the HOMO and LUMO apart from the Dirac point, T2 has two sharp
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Figure 7.8: Working mechanism for vertical molecular transistors. Transmission
coefficient T (E) vs. E − Emid−gap

F for molecular junction 1 (a), 2 (d) and 3 (g)
for −0.4 < VD < 0.4 with steps of 0.13V (red for VD = 0.4V ). Insets show
the structures of molecular junctions for simulation. Gate dependent theoretical
ID−VD characteristics for 1 (b), 2 (e) and 3 (h) for −0.6 < VG < 0.6 with steps of
0.2V (red for VG = 0.6V ). Gate dependent theoretical dI/dV −VD characteristics
for 1 (c), 2 (f) and 3 (i) for−0.6 < VG < 0.6 with steps of 0.2V (red for VG = 0.6V ).
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Figure 7.9: Transfer characteristics for the vertical molecular transistors. (a − c)
Experimental transfer characteristics for 1 (a), 2 (b) and 3 (c). (d−f) Theoretical
transfer characteristics for 1 (d), 2 (e) and 3 (f). VD is varied from -0.1, -0.2, -0.4,
-0.6 to -0.8 V in (a− f).

anti-resonances. For VG = 0 none of the anti-resonances are close enough to the

Fermi energy to appear in the dI/dV curves. By increasing the gate voltage, and

hence the relative position of the anti-resonances to the Fermi energy, one of the

anti-resonances is close enough to the Fermi-energy to be captured in the dI/dV .

The lever arms in the theoretical model, which give the best agreement between

theory and experiment, are α = 0.4, γ = 0.25 and β = 0.25.

Figures 7.8a, d and g show the VD dependence of T (E) versus for molecules 1,

2 and 3. It is assumed that the energies of the molecular levels relative to are

independent of VD and that positive (negative) bias voltage decreases (increases)

the Dirac point relative to EGold
F . The current is computed using equation 6.4 in

previous chapter by evaluating individual transmission coefficients T (E, VD, VG)

at every VD value and computing the associated current. The dI/dV curves are

then obtained by differentiating the current with respect to VD.

The VD and VG dependent transmission coefficient T (E, VD, VG) was calculated

using the quantum transport code the Gollum101 and the current obtained from

equation 6.4. The theoretical gate-dependent ID − VD characteristics for molecule
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2 (Fig. 7.8e) reveal that when VG changes from −0.6 to 0.6V , ID greatly increases

with VG for negative VD, while ID decreases with VG for positive VD. A similar the-

oretical gate dependent ID−VD characteristic is also obtained for molecule 1 (Fig.

7.8b), though the gate dependent change in ID is smaller than that for molecule 2.

Furthermore, from the gate dependent dI/dV − VD characteristics for molecule 2

(Fig. 7.8f), it can be observed that the dI/dV − VD curve shifts in a positive di-

rection with VG changing from -0.6 to 0.6 V, especially for the lowest conductance

points. For molecule 1, a similar gate dependent dI/dV − VD curve is obtained,

but with relatively smaller amplitude (Fig. 7.8c), in qualitative agreement with

the experimental results (Fig. 7.6). For molecule 3, gate dependent ID − VD

(Fig. 7.8h) and dI/dV − VD (Fig. 7.8i) curve with relatively larger amplitude

can be observed, which are similar with molecule 2. Moreover, lowest conduc-

tance minima appear in gate dependent dI/dV − VD curves (Fig. 7.8i), which is

consistent with experimental lowest conductance region (Fig. 7.6i). Transfer char-

acteristics, monitoring the current modulation with varying VG at a fixed VD, are

widely used for assessing the transistor performance.190 The VD dependent trans-

fer characteristics for molecules 1, 2 and 3 were investigated by both experiment

and theoretical simulations. Experimental transfer characteristics (JD − VG) for 1

at VD = −0.1,−0.2,−0.4,−0.6 and −0.8V are shown in Fig. 7.9a. It can be ob-

served that the lowest current point at VD = −0.1V is near VG = 0V ; and with VD

changing from −0.1 to −0.8V , the lowest current point shifts to more negative VD.

As the Dirac point of the graphene electrode dominates the conductance minima

for molecule 1 (Fig. 7.8a), such shifting of the lowest current point is due to the

variation of the Dirac point of the graphene electrode. Specifically, with more neg-

ative VD, an increased negative VG is needed to move the central transmission dip

of the junction to the middle of the bias window. This experimental phenomenon

is also confirmed by theoretical transfer characteristics (ID−VG) for 1 (Fig. 7.9d),

as VD changes from −0.1 to −0.8V . The on-off ratio, which corresponds to the

ratio between the highest and lowest currents in a JD − VG curve, is up to 26 for



7.3. Conclusion 115

molecule 1 near VD = 0V . In contrast, the highest on-off ratio for molecule 2

(Fig. 7.9b) is increased to 105 near VD = 0V , which is about 4 times of molecule

1. Furthermore, two conductance valleys can be obviously observed from JD − VG

curves, especially at VD = −0.1V , which is due to the QI-induced conductance

minima for molecule 2. This is clear from the theoretical transfer characteristics

(ID − VG) of molecule 2 (Fig. 7.9e), where two conductance valleys appear and

become mixed together with VD changing from −0.1 to −0.8V . Furthermore, the

on-off ratio decreases with increasing |VD|, which can be attributed to electron

transmission occurring over a wider bias window, with the conductance being less

sensitive to gating-induced movement of molecular energy levels. Similar transfer

characteristics appear for molecule 3 (Fig. 7.9c), and the highest on-off ratio is

further increased to 306 near VD = 0V , which is about 2.9 times of molecule 2

and 12.0 times of 1. This is consistent with the theoretical transfer characteristics

(ID − VG) for 3 (Fig. 7.9c), because two conductance valleys appear, and on-off

ratios decrease as VD changes from −0.1 to −0.8V .

7.3 Conclusion

In summary, we have demonstrated that unequivocal signatures of single-molecule

room-temperature QI can be translated into self-assembled molecular films. Fur-

thermore anthanthrene-based molecular transistors, formed from vertical cross-

plane graphene/SAM/gold heterostructures and ionic liquid gating, are shown to

exhibit stable room-temperature switching operations. With two different con-

nectivities to the anthanthrene core, QI effects lead to a conductances ratio of

approximately 34 for molecular junctions 1 and 2, which can be further enlarged

to 173 for junction 3 by controlling the molecule-electrode interface with different

terminal groups. Importantly, junction 3 can show a significance current modula-

tion by an ionic liquid gate, with a maximum on–off ratio up to 306, which is about

one order of magnitude higher than that for 1. This enhanced gate behaviour for
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3 is a direct consequence of the zero-bias conductance suppression induced by QI,

combined with a higher interfacial resistance. The designed QI-controlled molec-

ular transistors with large on-off ratio are potential electronic building blocks for

future integrated circuits and functional ultra-thin film materials.



Chapter 8

Conclusion

In this thesis we employed the well-known DFT to get insight into the electronic

structure of various molecular devices. Furthermore, we used a combination of

Landauer approach and equilibrium Green’s function theory to study electron and

phonon transport through molecular junctions. These methods are discussed in

chapter 2 at length. Using the named methods, we introduced powerful molecular

design techniques which can potentially improve the efficiency of thermoelectric

devices.

In the third chapter we introduced a powerful design technique to suppress un-

wanted phonon transport through single molecule. This method suggests that de-

signing the appropriate side branches can lead to suppression in the transmission

of phonons the frequency of which happens to resonate with the normal frequency

of the branches. This design method allows us to suppress phonon transport in

the desirable range of frequencies. The use of this strategy in designing single

molecules can have significant impact on the efficiency of self-assembled mono-

layers in conversion of heat to electricity. Adaptation of this design strategy in

experiments can also lead to the recognition of phononic quantum interference in

single molecules.

In chapter 4 we showed that chemical modification of thiophene chains by addition

117
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of ethylenedioxy group to the thiophene rings can enhance electronic conductance,

Seebeck coefficient and the figure of merit. We also showed that this addition

suppresses phonon transport since the added group act as side groups introduced

in chapter 3. This work can be expanded by investigating other dopant with the

aim of enhancing the ZT further and make synthesis of these molecules simpler.

In chapter 5 we discussed modelling of self assembled monolayer (SAM) of molecules

placed between gold and graphene electrodes. We showed that a simple analyt-

ical model can capture the generic features in the dI/dV characteristics of these

devices arising from the HOMO/LUMO dominated transport and doping of the

graphene electrodes. Furthermore, we performed more realistic calculations using

DFT and arrived at a close agreement with the experiments done on the same

devices. This work provides a great experimental and theoretical platform for fu-

ture investigation of various molecules in Gr/SAM/Au devices. It is essential to

expand this work and investigate room-temperature quantum interference in such

devices in future. This could be done by comparing the conductance of devices

containing molecules whose conductance differ only due to quantum interference

features. This will allow us to use molecular design for controlling the properties

of SAM devices. Furthermore, studying the presence of dopant which can poten-

tially enhance the ZT of these devices is one of the next natural steps. Phonon

transmission through these devices should be investigated fully in the future with

the consideration of new molecular design strategies similar to chapter 1 of this

work.

In chapter 6 we have discussed modelling of gates SAM devices. We utilize two

molecules one with destructive QI features and one without on on single molecule

level. We then demonstrate that the destructive QI survives in a SAM device at

room temperature. We prove our results by comparing the dI/dV ratios for two

molecules obtained by experiment and theory and presenting a good agreement.

In chapter 7 we compare the conductance of SAM devices made of molecules
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with various degrees of constructive QI through changing the connectivity of the

anchoring groups the graphene-like molecular core (also known as ‘magic-ratio’

rule). Comparing theory and experiment, we show that the ratio of conductance

of SAM devices made of these molecules is similar to that of single molecular

junctions.
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Appendix A

General Scattering problem

In this section we would like to solve a general scattering problem to find the

transmission and reflection amplitudes in the scattering matrix. Our scattering

problem consists of a scattering region , connected to two semi infinite leads as

demonstrated in figure A.1.

1 N N � 1 N � 20�1�2 N � 3

 j = eikj � re�ikj fj �j = teikj

"0 "0 "0"0"0"0

��L ��R

��
h

�� ����

Figure A.1: General scattering problem: Green object is the scatterer, the Hamil-
tonian of which is represented by h. The wavefunction in scattering region is fj in
the left lead is ψj and in the right lead is φj. The on-site energies in the leads are
ε0 and the hopping integral elements are −γ. The coupling between left and right
leads are represented as −γL and −γR.
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For the system represented in figure A.1, the discrete Shrödinger equation is

H



...

ψ−2

ψ−1

ψ0

f1

f2

...

fN

φN+1

φN+2

...



= E



...

ψ−2

ψ−1

ψ0

f1

f2

...

fN

φN+1

φN+2

...



. (A.1)

The Shrödinger equation can be written using matrix elements for the four main

conditions in this problem where j < 0 (Eq. A.2) , j > N+1 (Eq. A.6), inside the

scattering region where 1 ≤ j ≥ N (Eq. A.4) and the boundary condition where

j = 0 , j = N + 1 (Eq. A.5, A.3) as below:

ε0ψj − γψj−1 − γψj+1 = Ejψj for j < 0 (A.2)

ε0ψ0 − γψ−1 − γLf1 = Ejψ0 for j = 0 (A.3)

N∑
j=1

hijfj = Efi ⇒



∑
hijfj − γLψ0δ11 − γRφN+1δ1N = Efi∑
h1jfj − γLψ0 = Ef1∑
hNjfj − γRφN+1 = EfN

for j = 1, N

(A.4)

ε0φN+1 − γRfN − γφN+2 = EφN+1 for j = N + 1 (A.5)

ε0φj − γφj−1 − γφj+1 = Eφj for j > N + 1 (A.6)
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From equation A.2 and A.3 we get

γLf1 = γψ1. (A.7)

From equation A.5 and A.6 we get

γRfN = γφN . (A.8)

The following two vectors (|f〉 and |x〉) represent the wavefunction of the non-

interacting scattering region and the constant perturbation from the two leads in

the Shrödinger equation (Eq. A.9).

scattering region: |f〉 =



f1

f2

f3

...

fN−1

fN


perturbation: |x〉 =



−γLψ0

0

0

...

0

−γRφN+1


h |f〉 = E |f〉+ |x〉 , (A.9)

which rearranges to the following

|f〉 = (E − h)−1 |x〉 . (A.10)

We define the Green’s function of the scattering region to be

g = (E − h)−1. (A.11)

Hence we conclude that the Green’s function relates the wavefunction inside the

scattering region to the perturbation from the leads by the means of following
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equation

|f〉 = g |x〉 . (A.12)

f1

f2

f3

...

fN−1

fN


=



g11 g12 g13 . . . g1N

g21 g22 g23 . . . g2N

...
...

...
...

gN1 gN2 gN3 . . . gNN





−γLψ0

0

0

...

0

−γRφN+1


(A.13)

Writing the equation above using matrix elements and considering equations A.8

and A.7, we have can conclude that

f1 = γLψ0g11 − γRφN+1g1N =
γ

γL
ψ1 (A.14)

and

fN = γLψ0gN1 − γRφN+1gNN =
γ

γR
φN . (A.15)

Using the boundary conditions we know that

ψ0 = 1 + 1

ψ1 = eik + re−ik = eik − e−ik + e−ik + re−ik = 2i sin k + ψ0e
−ik

φN+1 = teik(N+1)

φN = teikN = φN+1e
−ik

(A.16)

Therefore we can write the boundary conditions as follows.

ψ0 =
γL
γ
eikf1 − 2i sin keik (A.17)

φN+1 =
γR
γ
eikfN (A.18)
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Defining the self-energies, ΣL and ΣR as following

ΣL/R =
−γ2

L/R

γ
eik = σL/R − iΓL/R, (A.19)

where the real part is σL/R =
γ2
L/R

γ
cos k and the imaginary part is ΓL/R =

γ2
L/R

γ
sin k.

Using the definition of the self-energies we can summarise equation A.17 and A.18

in to a matrix form. −γLψ0

−γRφN+1

 =

−ΣLf1

−ΣRfN

+

2γLie
ik sin k

0

 (A.20)

 −γLψ0

−γRφN+1

 =

ΣL 0

0 ΣR


︸ ︷︷ ︸

Σ̂

f1

fN

+

2iγLe
ik sin k

0

 (A.21)

In the Dirac notations reads

|x̂〉 = Σ̂
∣∣∣f̂〉+ |s〉 . (A.22)

Where |s〉 =
(
sL
0

)
, is the vector determining the position of the source (left or right

lead). From equation A.12 we know that
∣∣∣f̂〉 = ĝ |x̂〉. Therefore,

|x̂〉 = (I − Σ̂ĝ)−1 |s〉 . (A.23)

To solve the equation A.23 we start from the most inner block, Σ̂ĝ.

Σ̂ĝ =

ΣL 0

0 ΣR


g11 g1N

gN1 gNN

 =

ΣLg11 ΣLg1N

ΣRgN1 ΣRgNN

 (A.24)
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Therefore I − Σ̂ĝ is given by

1 0

0 1

− Σĝ |s〉 =

1− ΣLg11 −ΣLg1N

−ΣRgN1 1− ΣRgNN

 . (A.25)

Hence we can construct |x̂〉.

|x̂〉 =

1− ΣLg11 −ΣLg1N

−ΣRgN1 1− ΣRgNN


−1SL

0


=

1

det

1− ΣRgNN ΣLg1N

ΣRgN1 1− ΣLg11


SL

0


(A.26)

To demonstrate the relation between the wavefunctions and the Green’s function

we substitute the |x〉 vector in equation above

 −γLψ0

−γRφN+1

 =
SL
det

1− ΣRgNN

ΣRgN1

 . (A.27)

The transmission amplitude (φN+1 = teikN+1) is then given by

− γRteik(N+1) =
ΣRgN1SL

det
. (A.28)

t = 2i sin k
γRγL
γ

eike−ikN
gN1

det
. (A.29)

Therefore the transmission coefficient (T ) is

T = |t|2 = 4

(
γ2
R sin k

γ

)(
γ2
L sin k

γ

) ∣∣∣gN1

det

∣∣∣2 . (A.30)

Consequently we can write T in terms of ΓL and ΓR

T = 4ΓLΓR

∣∣∣gN1

det

∣∣∣2 , (A.31)
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where the determinant (det) is given by

det = (1− ΣRgNN) · (1− ΣLg11)− ΣLΣRg1NgN1

= 1− ΣRgNN − ΣLg11 + ΣLΣR(gNNg11 − g1NgN1).

(A.32)

To finally be able to get a numerical answer we need to extract the g11, g1N , gN1

and gNN . To do so, we use the completeness condition for the wavefunction to

write the following

g =
N∑
n=1

|vn >< vn|
E − λn

. (A.33)

Using the equation above the ijth element of the Green’s function (gij) can be

extracted as bellow

< i|g|j >=
v(i)v(j)

E − λn
. (A.34)

From equation A.34, we understand that g1N = gN1. This results in simplification

of equation A.32 to,

det = 1− ΣRgNN − ΣLg11. (A.35)

We can substitute the det and the Green’s function elements found above, in the

transmission coefficient.

T = 4ΓRΓL

[
(v(i)v(j))2

(E − λ)2

]
× 1∣∣∣1− ΣR

v(N)2

E−λ − ΣL
v(1)2

E−λ

∣∣∣2
=

4ΓRv(1)2ΓLv(N)2

|(E − λ)− ΣRv(N)2 − ΣLv(1)2|2

=
4Γ̂RΓ̂L∣∣∣E − λ− σ̂R − σ̂L + i

(
Γ̂R + Γ̂L

)∣∣∣2 .
(A.36)

We define,

λ̂ = λ− σ̂R − σ̂L. (A.37)

Hence we can write the transmission coefficient in the form of the well known
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Figure A.2: A Breit-Wigner resonance: the demonstration of level broadening due
to the imaginary part of the self-energy (Γ) and the shift in the resonances due to
the real part of the self energy(σ).

Breit-Wigner formula

T =
4Γ̂RΓ̂L

(E − λ̂)2 +
(

Γ̂R + Γ̂L

)2 . (A.38)

We can see from this equation that the real part of the self-energies (σ̂R+σ̂L) add to

the eigenvalues of the isolated object and shift the resonances in the transmission

coefficient as expected. The maximum of the transmission coefficient occurs when

Γ̂R = Γ̂L. Moreover, Γ̂R + Γ̂L defines the width of the resonances. This is also

known as level broadening associated with the imaginary part of the self-energies.

(Fig. A.2)



Appendix B

Green’s Function of a perfect one

dimensional lattice

Consider a perfect one dimensional chain where the on-site energies are given by

ε0 and the hopping integral elements are given by γ as shown in figure B.1. Using

the definition of Green’s function, we can write

[(E −H) g]jl = δjl =


1

. . .

1


jl

. (B.1)

Where H is the Hamiltonian of the doubly infinite chain. We can write the equa-

tion above in the following form

∑
i

Ejigil −
∑
i

Hjigil = δjl. (B.2)

"0 "0 "0 "0 "0 "0 "0 "0

j � 1jj � 1 l
"0

� � � � � � ��

Figure B.1: A perfect doubly infinite 1D chain with on-site energies of ε0 and
hopping elements of γ.

153



154

Since all the off diagonal elements in E matrix are zero, the only non-zero term

in the left side of the equation is for n = i = j. Therefore we can rewrite the

equation above as

Enngnl − δjl =
∑
i

Hjigil. (B.3)

For the chain described in figure B.1, equation above reads

ε0gjl − γgj+1,l − γgj−1,l = Egjl − δjl. (B.4)

In order to solve the equation above we make a guess for the Green’s function

gjl = Aeikj︸ ︷︷ ︸
j≥l

+Be−ikj︸ ︷︷ ︸
j≤1

. (B.5)

Therefore when j = l the Green’s function from left has to equal the Green’s

"0 "0 "0 "0 "0 "0 "0 "0

j � 1jj � 1 l
"0

� � � � � � ��

�k�k

Source

j � l j � l

gjl = Aeikjgjl = Be�ikj

Figure B.2: The Retarded Green’s function of an infinite one dimensional lattice.
The excitation at j = l causes the wave to propagate to the left and right with
amplitudes A and B

function from right

gl,l = Be−ikl = Aeikl = C ⇒ A = Ce−ikl, B = Ceikl. (B.6)

Solving equation B.4 for when j = l, we get

(ε0 − E)︸ ︷︷ ︸
2γ cos(k)

gl,l − γ gl+1,l︸︷︷︸
j≥l

−γ gl−1,l︸︷︷︸
j≤l

= −1. (B.7)
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for the off diagonal Green’s functions gl+1,l and gl−1,l we have:


gj,l = Ce−ik(j−l) j=l−1

===⇒ gl−1,l = Ceik

gj,l = Ce−ik(j−l) j=l+1
===⇒ gl+1,l = Ceik

(B.8)

Substituting in equation B.7 we get,

2Cγ cos(k)− Cγeik − Cγeik = −1 (B.9)

Given that cos(k) = 1
2
(eik + e−ik) we can rewrite the equation above as,

Cγ(−2i sin(k)) = −1 (B.10)

Therefore C reads

C =
1

2iγ sin k

v= 2γ sin k
~=====⇒ C =

1

i~v
, (B.11)

where v is the group velocity. Now we can combine the two Green’s functions for

the j ≤ l and j ≥ l.

j ≤ l⇒ gj,l = e−ikL(j−l)

i~v

j ≥ l⇒ gj,l = eikL(j−l)

i~v

⇒ gRjl =
eikL|j−l|

i~v
(B.12)

gR is called the retarded Green’s function where the boundary conditions cor-

responds to outgoing waves propagating from the point of excitation (source).

Advanced Green’s function (gA) is another possible answer for equation B.4 which

satisfies the boundary condition where the incoming waves disappear at the point

of excitation (sink). (Fig. B.3)

gAjl =
e−ik|j−l|

−i~v
(B.13)

Having found the Green’s function of a doubly infinite chain, we would like to

apply this knowledge to a scattering problem. More precisely we would like to find
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"0 "0 "0 "0 "0 "0 "0 "0

j + 1jj � 1 l
"0

� � � � � � ��

�k+k

Sink

j � l j � l

gjl =
e�ik(j�l)

�i�hvgjl =
eik(j�l)

i�hv

Figure B.3: Advanced Green’s function corresponds to the boundary condition
where two incoming waves disappear at the point of excitation

�j = A
�

eik�j � re�ik�j
�

�j = AteikRj

l

1 N N + 10

gjl =
teikRj

i�hv�
gjl =

eik�jj�lj
+re�ik��j�l)

i�hv�

j > Nj < 1

Figure B.4: A scattering problem where the scatterer has N sites and is connected
to two leads.

a relation between the scattering amplitude and the Green’s function. Consider a

system with a scatterer consist of N sites where two leads are connected to site 1

and N . The wavefunction of each side of the scattering region is shown in figure

B.4 where A is the overall amplitude of choice and kL/R are the wave numbers of

left and right lead. Considering that the source is located on site l on the left hand

side, the Green’s function is also demonstrated in figure B.4. Note that there is

an additional term in the Green’s function of the left lead which stands for the

reflection from the scattering region. Solving for the boundary conditions where

j = 0 and j = N+1 yields Fisher-Lee equations for the transmission and reflection

amplitudes

t = i~
√
vRvLgN+1,0e

−ikR(N+1) (B.14)

and

r =

(
g00

A0

− 1

)
= i~vLg00 − 1, (B.15)



157

where g00 and gN+1,0 are the surface Green’s functions of the left and right lead

respectively.



Appendix C

Dyson’s equation

As shown in appendix B, the Fisher-Lee equations are given as follows.

t = G10i~v

r = G00i~v − 1

(C.1)

To obtain the transmission and reflection amplitudes it is desirable to find G10 and

G00. Consider the problem where we have a doubly infinite chain and we add a

scatterer to it. (Fig. C.1) The full Hamiltonian of such system can be written as

H = HO +HS. (C.2)

1 N N � 1 N � 20�1�2 N � 3

"0 "0"0"0

Figure C.1: The scatterer can be defined as a perturbation (HS) to the doubly
infinite chain (HO).
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Where HO is the Hamiltonian of the doubly infinite chain and HS is the Hamilto-

nian of the scatterer (O stands for outside and S stands for scatterer). (Eq. C.3)

Although HS has the same infinite dimensions as HO, in practice, however, only a

small block of it is non-zero (h̄ in Eq. C.3).

H =



. . . . . .

. . . ε0 −γ

−γ ε0 −γ

−γ ε0 −γ

−γ ε0
. . .

. . . . . .


+

�

B

B

B

B

B

@

�h

1

C

C

C

C

C

A

0

N � 1

0 N � 1

�1

�N�1

(C.3)

We introduce the Green’s function of the whole system G according to the defini-

tion as

(E −H)G = 1. (C.4)

We define Ḡ to be the block of Green’s function associated with the scatterer.

G =

�

B

B

B

B

@

��

1

C

C

C

C

A

�00

���1

(C.5)

Substituting from equation C.2 for H, in equation C.4 and rearranging we get

(E −HO)G = HSG+ 1. (C.6)
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Considering (E − HO)g = 1, where g the Green’s function of the doubly infinite

chain, we can multiply the equation above with g

G = gHSG+ g. (C.7)

Equation above in matrix elements notation reads

Gij = gij + (gHSG)ij

= gij +
+∞∑
−∞

gilH
lk
S Gkj.

(C.8)

Although the sum in equation C.8 is from −∞ to +∞ the only non zero terms are

from 0 to N + 1 as demonstrated in equation C.3.

Gij = gij +
N+1∑

0

gilH
lk
S Gkj (C.9)

Therefore, we can reduce the problem to a finite problem where we replace g by ḡ

, G by Ḡ and HS by h̄.

Ḡ = ḡ + ḡh̄Ḡ (C.10)

Since these matrices are finite, the inversion of them is possible,

Ḡ = ḡ(1− ḡh̄)−1. (C.11)

Therefore we can write

Ḡ = (ḡ−1(1− ḡh̄))−1. (C.12)

Hence we find the so called ‘Dyson’s equation’ to be,

Ḡ = (ḡ−1 − h̄)−1. (C.13)

Note that finding Ḡ involves two matrix inversions which is always the case when

working with Green’s functions. The definitions used in this section are general
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1��1�2

"�"�"�

��

HS HO

�3 2 3

"� "1 "� "�

Figure C.2: Infinite chain with a single impurity.

an do not depend on the type of interactions being used therefore the properties

of the Green’s function can be used with any system. In the following two section,

we discuss two examples where the perturbation is a single and a 2× 2 impurity.

C.1 Example-Single impurity

Consider the example where the perturbation to the doubly infinite chain is just a

single site impurity.(Fig. C.2) Let’s remind ourselves of the the Green’s function

of a doubly infinite chain,

ḡjl =
eik|j−l|

i~v
. (C.14)

Therefore for ḡ we have,

ḡ = ḡ00 =
1

i~v
. (C.15)

Since in this case, h̄ = ε1 for Ḡ we have,

Ḡ = Ḡ00 = (i~v − ε1)−1. (C.16)

Therefore we can re-write the Fisher-Lee equation as,

t = i~vG00 =
i~v

i~v − ε1

. (C.17)
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1��1�2

"�"�"�

�

HS HO

�3 2 3

"� "1 "2 "�

Figure C.3: Infinite chain with a 2× 2 impurity.

Therefore the transmission coefficient is given by,

T = |t|2 =
1

1 + ( ε1
2γ sin(k)

)2
. (C.18)

C.2 Example - 2× 2 impurity

In the second example we would like to consider the example where the per-

turbation is a two site impurity.(Fig. C.3) Therefore the non-zero part of the

perturbation matrix to the doubly finite chain, h̄, is a 2× 2 matrix,

h̄ =

ε1 − ε0 −α + γ

−α + γ ε2 − ε0

 . (C.19)

remember h1 matrix should be the non zero part of the H1 matrix. H1 matrix

should satisfy the equation H = H0 + H1, where H is the total Hamiltonian of

our problem and H0 is the Hamiltonian of a one dimensional chain. Moreover , ḡ

reads,

ḡ =

g00 g01

g10 g11

 . (C.20)

Where the Green’s function of the doubly infinite chain is ,

gjl =
eik|j−l|

i~v
(C.21)
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1��1�2

"�"�"�

� = �
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�3 2 3
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Figure C.4: The special case where ε1 = ε2 = ε0 and α = 0, which yields to two
semi-infinite leads.

Therefore,

ḡ−1 =
i~v
det

 1 e−ik

e−ik 1

 (C.22)

Where det = 1 − e−2ik. To obtain the transmission and reflection amplitudes we

yet need to find Ḡ,

Ḡ = (ḡ−1 − h̄)−1 (C.23)

Substituting ḡ from equation C.22 we have

Ḡ =

i~v
det

 1 e−ik

e−ik 1

−
ε1 − ε0 −α + γ

−α + γ ε2 − ε0



−1

(C.24)

Ḡ =
det

i~v
.

1

DET
·

 1− h̄11.det
i~v eik + h̄12.det

i~v

eik + h̄12.det
i~v 1− h̄11.det

i~v

 , (C.25)

where the two determinants are as followed:

det = 1− e−2ik (C.26)

DET = (1− h̄11.det

i~v
)2 − (eik +

h̄12.det

i~v
)2 (C.27)

Having found Ḡ, we can now consider the special case where ε1 = ε2 = ε0 and α =

0.(Fig. C.4) This arrangement results in two semi-infinite lead which equivalent

to having a doubly infinite chain and introducing a perturbation by cutting the
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chain in the middle.

h̄ =

0 γ

γ 0

 (C.28)

Therefore we can write the determinant in equation C.27 as

DET = 1− (eik +
γ.det

i~v
)2

= 1− (eik +
det

2i sin(k)
)2.

(C.29)

Now if we evaluate Ḡ00 or Ḡ11, we will find the surface Green’s function at the end

of a semi-infinite chain.

Ḡ00 = Ḡ11 =
det

i~v
· 1

DET
=

1− e2ik

i2γ sin k
=
−eik

γ
(C.30)

Ḡ00 and Ḡ11 are also known as the surface Green’s function.



Appendix D

ZT

The thermoelectric effect also known as Seebeck effect refers to voltage generation

in a conductor or a semiconductor subjected to temperature gradient. The effi-

ciency of a thermoelectric device in converting heat to electricity is given by the

dimensionless variable, figure of merit (ZT ).

ZT =
GS2sT

κph + κe
(D.1)

ZT of a material can be tuned depending on the following variables:

• Seebeck coefficient , S = −∆V
∆T

: Voltage generated per degree of temperature

difference over a material.

• Thermal conductivity , κ = Q
∆T

: Heat carried per degree of temperature

difference over a material by electrons and phonons (κ = κe + κph).

• Electrical conductivity , G = I
∆V

.

• Peltier coefficients, Π = Q
I

.

In the equation for ZT , the term GS2 is called power factor. The importance of

power factor is that higher power factor is associated with more energy generation

165



166

−300−200−100 0 100 200 300

0

0.2

0.4

0.6

0.8

1

E
f

(E
)

KBT = 25mev
KBT = 70mev

Figure D.1: Fermi distribution of charges in a hot (red) and cold (blue) lead.

in a material (not necessarily more efficient). Combining the equations for S, κ

and G, we can construct a 2 by 2 matrix to relate ∆V and Q to I and ∆T . (Eq.

D.2) (
∆V

Q

)
=

1/G S

Π κ

( I

∆T

)
(D.2)

Herein we present a numerical method to calculate the coefficients presented in

the 2 by 2 matrix in equation D.2 for a nano-structure between two hot and cold

reservoirs.

Figure D.1 demonstrates the Fermi distribution of charges in a hot (red) and cold

(blue) lead. The distribution of charge carriers in the lead with raised temperature

is greater at higher energies. This means that in the hot lead, the high energy

electrons are transmitted with a higher probability.

The two reservoirs send electrons into the scattering region and the probability of

the occupancy of a particular channel is given by the Fermi function. If we pick

on a particular channel in the left lead, the number of electrons carried by this

channel to the right lead is given by,

δn =
2

~
T (E)[f1(E)− f2(E)] (D.3)

The number 2 in the nominator is for the channel being able to carry both spin
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up and spin down electrons. Therefore current is given by,

I =
2e

~

∫
dET (E) [f1(E)− f2(E)] (D.4)

Heat flux is,

Q̇ =
2

h

∫
dET (E)(E − Ef ) [f1(E)− f2(E)] (D.5)

Assuming the difference between f1 and f2 is small, we can do a Taylor expansion

of f1(E) with respect to temperature,

f1(E) = f2(E) +
∂f1

∂T
(T1 − T2) +

∂f1

∂Ef1
(Ef1 − Ef2) (D.6)

To differentiate the Fermi function for the first lead, we substitute the exponent

by x,

f1(E) =
1

e
E−Ef1
KBT + 1

=
1

ex + 1
(D.7)

Therefore f1 differentiated with respect to T1 and differentiated with respect to

Ef1 is ,

∂f1

∂T1

=

(
−∂f1

∂x

)(
E − Ef1
KBT 2

1

)
,

∂f1

∂Ef
=

(
−∂f1

∂x

)(
1

KBT

)
(D.8)

Substituting this into equation D.4

I

e
=

2

h

∫
dET (E)

(
−∂f1

∂x

)[
E − Ef1
KBT 2

1

(T1 − T2) +
Ef1 − Ef2
KBT

]
(D.9)

Therefore Q̇ reads,

Q̇ =
2

h

∫
T (E)

∂f

∂x
(E − Ef )

[
e∆V +

E − Ef
T

∆T

]
dE (D.10)

Therefore we can write a matrix which relates I and Q to ∆V and ∆T , where all
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the matrix elements are functions of transmission coefficient,

(
I

Q

)
=

2

h

 L0 −L1

T

−L1
L2

T
κ

(∆V

∆T

)
(D.11)

Where for x = E − Ef , Ln is given by the integral bellow,

Ln =

∫ 4KBT

−4KBT

T (E)
−∂f
∂x

(xn) dx (D.12)

Comparing this equation with equation D.2 we can write the Seebeck coefficient

as,

S = −−∆V

∆T
=
−1

eT

L1

L0

(D.13)

The electrical conductance (G) can be written using Landauer formula,

G =
2e2

h
L0 (D.14)

The electronic thermal conductance (κe) is given by,

κe =
2

hT

(
L2 −

L2
1

L0

)
(D.15)

Combining the above three equation we can write ZT as,

ZT =

(
L2
1

L0

)
L2

L0
−
(
−L2

1

L0

) (D.16)

This method will allow us to numerically calculate the figure of merit from the

transmission coefficient which is ideal for the purpose of this work.



Appendix E

Python code for solving the

analytical model provided in

chapter 3
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#   Analytical toy-model for studying Graphene/SAM/Au devices 
# 
#   Authors of this code :  M. Famili, I. Grace, C. J. Lambert 
# 
#   Please site the refering article in all your publications arising 
#   from your use of this code 
# 
import numpy as np 
import matplotlib.pyplot as plt 
import scipy as sp 
from scipy import integrate 
def fi_loc(array,value): 
 idx = (np.abs(array-value)).argmin() 
 return idx 
 
 
ED0=-0.2 
Gam0=0.1 
Gam1=0.5 
em=1 
z=1 
 
pref=7.74E-5 
alph=1 
gD=1 
gG=0 
bD=0 
bG=0 
dE=0.001 
dV=0.05 
 
VD=np.arange(-1,1.1,dV) 
VG=np.arange(-1,1,2) 
E=np.arange(-2,2,dE) 
EDir=np.zeros((len(VD),len(VG))) 
epsi=np.zeros((len(VD),len(VG))) 
Gam2=np.zeros(len(E)) 
T=np.zeros((len(E),len(VD),len(VG))) 
int_cur=np.zeros((len(VD),len(VG))) 
dif_cur=np.zeros((len(VD),len(VG))) 
Eplot=np.zeros((len(E),len(VG))) 
for v_d in range(len(VD)): 
 for v_g in range(len(VG)): 
  EDir[v_d,v_g]=ED0-gD*VD[v_d]-gG*VG[v_g] 
  epsi[v_d,v_g]=em-bD*VD[v_d]-bG*VG[v_g]  
 
for v_g in range(len(VG)): 
 print(v_g) 
 for v_d in range(len(VD)): 
  for e in range(len(E)): 
   Gam2[e]=Gam0+alph*abs(E[e]-EDir[v_d,v_g])**z 
   T[e,v_d,v_g]=4*Gam1*Gam2[e]/((E[e]-epsi[v_d,v_g])**2+(Gam1+Gam2[e]))**2  
  Tint=T[min(fi_loc(E,-VD[v_d]),fi_loc(E,0)):max(fi_loc(E,-VD[v_d]),fi_loc(E,0)),v_d,v_g] 
  int_cur[v_d,v_g]=(sp.integrate.trapz(T[min(fi_loc(E,-VD[v_d]),fi_loc(E,0)):max(fi_loc(E,-
VD[v_d]),fi_loc(E,0)),v_d,v_g],dx=dE)*VD[v_d]/abs(VD[v_d]))*pref 
  dif_cur[:,v_g]=np.gradient(int_cur[:,v_g],dV) 
  Eplot[:,v_g]=E 
Tplot=T[:,::10,:] 
VDplot=VD[::10] 
 
plt.figure(1) 
plt.subplot(212) 
for v_g in range(len(VG)): 
 for v_d in range(len(VDplot)): 
   plt.plot(Eplot,Tplot[:,v_d,:],label='$V_D=$'+str(round(-VDplot[v_d],2)),linewidth=1) 
plt.ylabel('$T(E)$') 
plt.xlabel('$E$') 
plt.legend() 
 
 
plt.subplot(221) 
plt.ticklabel_format(style='sci', axis='y', scilimits=(0,0)) 
plt.ylabel('$I$') 
plt.xlabel('$V_D(V)$') 
for v_g in range(len(VG)): 
    plt.plot(VD,int_cur[:,v_g],label='$V_G=$'+str(round(-VG[v_g],2)),linewidth=1) 
plt.legend() 
 
 
plt.subplot(222) 
plt.ticklabel_format(style='sci', axis='y', scilimits=(0,0)) 
for v_g in range(len(VG)): 
 plt.plot(VD,dif_cur[:,v_g], label='$V_G=$'+str(round(-VG[v_g],2)),linewidth=1) 
plt.legend() 
plt.ylabel('$dI/dV$') 
plt.xlabel('$V_D(V)$') 
plt.draw() 
plt.show() 
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