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Abstract

A firm raises capital from multiple investors to fund a project. The project suc-

ceeds only if the capital raised exceeds a stochastic threshold, and the firm offers

payments contingent on success. We study the firm’s optimal unique-implementation

scheme, namely the scheme that guarantees the firm the maximum payoff. This

scheme pays investors differential net returns (per unit of capital) depending on

the size of their investments. We show that if the distribution of the investment

threshold is log-concave, larger investors receive higher net returns than smaller

investors. Moreover, higher dispersion in investor size increases the firm’s payoff.

Our analysis highlights strategic risk as an important potential driver of inequality.
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1 Introduction

Firms often have worthwhile projects that require the participation of multiple investors.

A key problem is that these investors face strategic risk: if not enough of them choose

to invest, the firm will not have enough capital to implement its project and generate

a return. As a result, there may be outcomes in which some or all the investors choose

not to invest because they expect that others will not invest. These outcomes are bad

for the firm and typically inefficient.

This paper studies the firm’s optimal scheme that guarantees investment as the

unique outcome. In a world without contracting constraints, where payments can be

made contingent on third parties’ choices, eliminating the possibility of bad outcomes

would impose no extra cost on the firm. But the real world is not unconstrained, and

as pointed out by the literature, bilateral contracts are often all a firm can rely on.1

Guaranteeing investment then requires the firm to compensate investors for their strate-

gic risk, a risk that depends on the amount of capital each investor pledges. A natural

question arises: how does heterogeneity in investor size affect the firm’s scheme and the

returns yielded to the firm and the investors? In particular, does an optimal scheme

treat investors differently based on size, and, if so, which investors get better terms?

How does the distribution of capital among investors affect the firm’s profits and the

feasibility of investment?

Our model consists of a firm and a set of agents. The firm owns a project that

generates a surplus if implemented, and each agent has an amount of capital to invest,

which varies across the agents. The firm’s project can be implemented—i.e., the project

“succeeds”—only if the capital raised from the agents exceeds a stochastic, initially

unknown threshold.2 The firm offers each agent two payments for investing, one if the

project succeeds and another if it fails. Each agent then chooses whether to invest with

the firm or put her capital in a safe asset that pays a fixed net return. We characterize the

firm’s optimal unique-implementation scheme. This scheme specifies individual capital

amounts and the least-cost payments such that investing these amounts with the firm is

the unique Nash equilibrium outcome.3

1See Section 2 as well as the discussions in Innes and Sexton (1994) and Segal (2003).
2This threshold captures common factors such as the project involving inputs whose prices are

random, or the firm having a stochastic source of external credit to use as additional funding. More
abstractly, our model simply assumes that the probability of project success is increasing in the amount
of capital invested.

3Formally, we require that the equilibrium be unique if the payments that the firm offers under success
are increased by any positive amount. See Section 2 for details. Our unique implementation requirement
is equivalent to having the firm maximize its expected payoff in its worst possible equilibrium outcome.
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Our first main result addresses how the optimal returns that the firm offers vary with

investor size, given a fixed set of investors. We show that if the project fails, the firm

simply refunds the agents their capital, thus paying the same zero net return to each of

them.4 However, if the project succeeds, the firm pays the agents differential net returns

depending on the size of their investments. Under a distributional assumption (which

we discuss subsequently), we show that agents with larger amounts of capital receive

higher net returns (per unit of capital) than those with smaller amounts. This pattern

is consistent with evidence from private equity, where large limited partners are given

preferential terms compared to small ones (see, e.g., Clayton, 2017). By showing that

larger investors get more per unit invested, this result also has implications for dynamic

capital markets: we identify a mechanism through which capital becomes dispersed,

pointing to “winner-takes-all dynamics” such as those that arise in tournament theory

and models of superstars (Lazear and Rosen, 1981; Rosen, 1981).

Our second main result concerns the optimal set of investors for the firm. Fixing

the total amount of capital, we find that the firm benefits from dealing with agents

whose capital is more unequal. Specifically, any mean-preserving spread of the capital

distribution (in the sense of second-order stochastic dominance) reduces the firm’s cost

of raising any given level of agents’ capital. Higher dispersion in investor size therefore

increases the firm’s expected payoff from any given investment, as well as the range of

investments that are feasible. Furthermore, as an implication, we find that the firm

targets those agents with the largest endowments of capital, generating differences not

only in agents’ net investment returns but also in their access to investment opportunities.

Our last main result considers the relationship between the distribution of capital

and the distribution of returns. One might be tempted to conclude from our previous

results that not only larger investors are offered higher net returns, but also their return

advantage is larger when the agents’ investments are more unequal. We show that the

opposite is true, in the following sense: higher capital dispersion reduces the difference in

net returns between the largest and smallest investors. In fact, we find that this return

difference can decline to the extent that even the difference in the investors’ final capital

holdings declines when initial capital becomes more unequal.

To provide intuition for these results, we next describe a simple example. Consider

a project that requires I units of capital to succeed, where the threshold I is uniformly

distributed on the interval [0, 30]. If the project succeeds, it generates a fixed surplus

4This result applies to our benchmark setting with no initial firm capital. If the firm owns initial
capital, a subset of the agents are paid a positive net return under failure; yet, as shown in Section 5,
our qualitative conclusions are unchanged.
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A > 0 in addition to the initial investment. Suppose the firm wishes to guarantee full

investment by two agents, where agent 1 has 10 units of capital and agent 2 has 20 units.

The agents’ outside option is to invest in a safe asset that pays a net return of 10%.

In this simple example, the project succeeds for sure if both agents invest with the

firm. Hence, paying each agent a net return under success equal to the safe return

of 10% would suffice to induce an equilibrium in which both agents invest. However,

an equilibrium in which neither agent invests would also exist given this (or a slightly

higher) return. To implement full investment as the unique equilibrium outcome, the

firm must make it dominant for one of the agents to invest.

Consider first a scheme that makes investment dominant for agent 1. If only agent

1 invests, the project succeeds with probability 1/3, namely the probability that the

investment threshold is I ≤ 10. To ensure that agent 1 invests no matter what agent 2

does, it thus suffices to offer her a net return under success (slightly above) r satisfying

r/3 = 10%, i.e. r = 30%. Given agent 1’s participation, it then suffices to offer agent

2 a net return of 10% for her to also invest. It follows that the firm can guarantee full

investment at a cost of 10(30%) + 20(10%) = 5.

The alternative is to make investment dominant for agent 2. If only agent 2 invests,

the project succeeds provided that I ≤ 20, which occurs with probability 2/3. Thus, it

suffices to offer agent 2 a net return under success of 15% to guarantee her participation.

Since agent 1 will then invest as well if she is offered at least 10%, the firm’s cost is

now equal to 10(10%) + 20(15%) = 4, which is lower than under the previous scheme.

Intuitively, agent 2’s larger investment provides her with more self-insurance compared

to agent 1, and this allows the firm to pay a lower compensation for risk when agent

2’s participation is made dominant. Consequently, the firm uses a scheme that pays a

higher net return to the large investor compared to the small investor. This illustrates

our first main result.

Consider next transferring capital from the small to the large investor. For example,

suppose we transfer 4 units of capital from agent 1 to agent 2, so that the capital of

agent 1 becomes 6 and that of agent 2 becomes 24. Following analogous steps to those

above, the firm’s scheme in this case entails a net return under success of 12.5% for agent

2 and 10% for agent 1. The firm’s cost is equal to 6(10%) + 24(12.5%) = 3.6, which

is lower than the cost of 4 prior to the transfer. Because the large investor becomes

better self-insured when her capital is increased, the overall compensation for risk that

the firm has to pay declines. We thus obtain that when the distribution of capital is

more unequal, the firm’s expected payoff is higher, and a lower surplus A from success
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suffices for the investment to be profitable. This illustrates our second main result. Our

third main result is also clear in this exercise: the difference in the agents’ net returns is

smaller when their investments are more heterogeneous.

Our paper examines a general setting in which the number of agents and their capital

levels are arbitrary, as is the distribution of the investment threshold I. We identify a

condition on the distribution function of I under which our results hold for all capital

distributions. The condition is that the inverse of the distribution function be convex,

a property that is implied by log-concavity of the distribution and thus satisfied by

most commonly used distribution functions.5 Our analysis elucidates the role of this

condition and how our findings change if it is not satisfied. In the example above, the

condition implies a risk premium per unit of capital which is decreasing and convex in

the agents’ investments, and this is why the firm minimizes costs by first guaranteeing

the participation of the large investor.

We show that our results extend to a setting in which the firm has some initial capital

of its own. The firm in this case uses its initial capital to fully insure small investors,

thus continuing to offer higher net returns to larger investors. Our results are also robust

to alternative specifications of the project returns. Moreover, while derived for a firm

that maximizes its profits, our findings are also relevant to a social planner concerned

with agents’ welfare.

Beyond capital-raising, we discuss how our model may be applied to other contract-

ing problems with externalities. These include a monopolist offering exclusive dealing

contracts to buyers to deter market entry; a firm rewarding workers to complete a joint

task; and a bank offering interest and collateral to depositors to prevent a run. Hetero-

geneity is common in these situations, and our results can be useful to understand its

implications.

A broad insight from our analysis is that strategic risk may be a driver of inequality.

A profit-maximizing mechanism favors certain agents in order to pin down their choices

and reduce the strategic risk on the part of other agents. We show that under a plausible

condition, the more favorable terms are given to those agents who are already in a more

favorable position. The mechanism therefore exacerbates initial differences among the

agents, and it also benefits from these differences. Inequality being undesirable for a

number of reasons that we do not study, our paper uncovers important economic forces

that may be behind it. We discuss policy implications for a social planner in Section 6.

5These include the exponential, gamma, log-normal, Pareto, and uniform distributions (see Bagnoli
and Bergstrom, 2005).
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Related literature. Our model is one of multi-agent contracting, related to the work

by Segal (1999, 2003) and Bernstein and Winter (2012), among others. These are ab-

stract models with externalities among the agents which are exogenously given. In

contrast, we consider an applied problem in which the externalities among the agents

are endogenously determined by the firm’s contract offers, and in which contracts are

required to satisfy the firm’s budget constraint.

Our main departure from the literature is that we study agents who are heterogeneous

in their endowments. As such, we obtain a number of results that have no parallel in

other models. It is worth noting that while heterogeneity is our focus, our analysis also

has implications for the case in which agents are homogeneous. Specifically, we find

that the firm’s optimal scheme gives differential net returns to the agents even if they

all have the same amount of capital. This is analogous to the results in Winter (2004),

where an optimal team incentive scheme is shown to discriminate among ex ante identical

workers. Similar results appear in Segal (2003) and Eliaz and Spiegler (2015), as well

as in Inostroza and Pavan (2018) in the context of persuasion. Given that an optimal

scheme creates heterogeneity among homogenous agents, our paper studies the natural

question of how the scheme deals with heterogeneous agents.

Two related papers that analyze heterogeneity are Bernstein and Winter (2012) and

Sákovics and Steiner (2012). Unlike our model, neither of these feature contingent pay-

ments: the principal offers fixed subsidies for the agents to participate in the mechanism,

and agents’ benefits from participating and their externalities are exogenous. Bernstein

and Winter (2012) study how asymmetries in the agents’ bilateral externalities affect

the principal’s scheme and revenue. Instead, we look directly at differences in agents’

attributes, whose effects on the matrix of externalities may be complex and endogenous.

In fact, while in our model the magnitude of an investor’s externality is related to size,

we find that the relationship between size and contract terms depends on a distributional

condition, so a higher externality does not necessarily imply more favorable terms as in

Bernstein and Winter. The difference arises primarily from the fact that here agents’

externalities are neither bilateral nor additive. In our framework, the externality that

an agent exerts on another agent’s gains depends on who else is in the pool of investors.

Sákovics and Steiner (2012) consider a global game with incomplete information,

where agents differ in their influence over the aggregate action, benefit from project

success, and cost of investment. They obtain a coarse monotonicity result whereby agents

receive full, partial, or no subsidy depending on their influence-to-benefit ratio. There is

no analog in their paper to our finding that an optimal scheme increases agents’ initial
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differences, nor to the condition that we identify for this result to hold. Our analysis of

how payoffs change when agents become more heterogeneous is another departure from

their work.

Finally, there is a literature on capital-raising for new projects. Particularly relevant

is Akerlof and Holden (2018), which shares our motivation of examining the role of

investor size.6 The paper differs in various aspects, most importantly in that it is not

concerned with optimal mechanism design. The authors compare equilibrium outcomes

under different market configurations, using risk dominance to select among multiple

equilibria. They show that the presence of a large investor who moves first can change

the risk-dominant equilibrium from a low-investment to a high-investment one. In a

competitive market setting with many projects, the large investor can thus earn rents.

2 Model

2.1 Setup

A firm owns a project which yields a fixed surplus A > 0 if implemented. The firm can

implement the project only if the capital invested in it exceeds an initially unknown,

stochastic threshold I. We assume that I has a twice differentiable distribution function

F with support
[
0, I
]
, for some I > 0.7 Hence, if capital x is invested, with probability

F (x) the threshold satisfies I ≤ x and the project is implemented, yielding final capital

x+A.8 With the remaining probability 1−F (x) the threshold is I > x and the project

is not implemented, so the final capital is x. We will refer to project implementation as

success and to no implementation as failure.

We begin by assuming that the firm has no capital of its own, deferring the study

of how the firm would use any initial capital to Section 5. The firm raises capital from

a set of N > 1 heterogeneous agents, indexed by n ∈ S = {1, . . . , N}. Each agent n

has a capital endowment xn > 0. Instead of investing with the firm, agents can invest

their capital in a safe asset that pays a net return θ > 0. (All returns are net percentage

returns, meaning that if agent n invests xn in the safe asset, her payoff is (1 + θ)xn.)

All of this is common knowledge.

6See also Andreoni (1998) and Akerlof and Holden (2016).
7Setting the lower bound of the support to zero simplifies the exposition. As will be clear in the next

sections, our results are unchanged so long as this bound is smaller than the largest investor’s amount
of capital, and our problem is moot otherwise.

8In Section 6, we show that our results also apply if the firm’s surplus from implementing the project
is proportional to the capital invested instead of a constant amount.
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The order of moves is as follows. First, the firm offers each agent a contract speci-

fying payments in the events of project success and failure, as we describe in the next

subsection. Second, the agents decide simultaneously whether to invest with the firm

or put their capital in the safe asset. Finally, the investment threshold I is realized,

the project is implemented if and only if the capital raised by the firm exceeds I, and

payments are made.

2.2 Firm’s problem

The firm wishes to guarantee its maximum possible payoff. Its problem is to choose a

payoff-maximizing scheme subject to satisfying its budget constraint and to inducing a

unique equilibrium outcome.

As further discussed in Section 2.3, we focus on contracts that are bilateral and

simple. For each n ∈ S, the firm specifies an amount of capital xn ∈ [0, xn] and returns

(rn, kn) conditional on agent n investing xn in the firm’s project. The return rn is the

net return that agent n receives if the project succeeds; the return kn is the agent’s net

return in the case of failure.

Given a scheme specifying investments (xn)n∈S and returns (rn, kn)n∈S, denote agent

n’s decision by yn ∈ {0, 1}, where yn = 1 means invest xn with the firm and yn = 0

means invest xn in the safe asset. The firm’s budget constraint requires that the total

payments offered to the agents do not exceed the firm’s final capital, regardless of the

set of agents who invest in the project and whether or not the project is implemented.

That is, for all profiles of choices Y = (y1, . . . , yN), the firm’s scheme must satisfy

N∑

n=1

rnynxn ≤ A and
N∑

n=1

knynxn ≤ 0. (BC)

In addition, the firm’s scheme must implement the agents’ investments in a unique

outcome. The firm’s problem can be decomposed in two steps:

(i) For fixed capital amounts (xn)n∈S, find the optimal scheme (rn, kn)n∈S guaranteeing

investments (xn)n∈S.

(ii) Given step (i), find the optimal capital amounts (xn)n∈S, where xn ∈ [0, xn] for

each n ∈ S.

We will address step (i) in Section 3 and step (ii) in Section 4. We next formalize

the firm’s problem in step (i).
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Fix capital amounts (xn)n∈S where, to avoid trivialities and without loss, we take

xn > 0 for each n ∈ S. Given (xn)n∈S, say that a scheme (rn, kn)n∈S is incentive

inducing (INI) if Y1 ≡ (1, . . . , 1) is the unique Nash equilibrium of the game induced

by (rn, kn)n∈S. Since the set of INI schemes is open (because rn and kn take continuous

values), we define an optimal scheme as the least-cost scheme (rn, kn)n∈S such that, for

any ε > 0, raising rn by ε for each n ∈ S yields an INI scheme.9 Formally, let Un(yn,Y−n)

be agent n’s expected return on xn given net returns (rn, kn), investment choice yn, and

investment choices Y−n = (y1, . . . , yn−1, yn+1, . . . , yN) of the other agents:

Un(yn,Y−n) =

[
F

(
N∑

n′=1

yn′xn′

)
rn +

(
1− F

(
N∑

n′=1

yn′xn′

))
kn

]
ynxn + θ(1− yn)xn.

A profile Y ′ = (y′1, . . . , y
′
N) is a Nash equilibrium if and only if y′n ∈ argmaxy∈{0,1} Un(y,Y ′−n)

for all n ∈ S. Let E ((rn, kn)n∈S) be the set of Nash equilibrium profiles under scheme

(rn, kn)n∈S. An optimal scheme (rn, kn)n∈S must satisfy the following two conditions:

Y1 ∈ E((rn, kn)n∈S); (C1)

If Y ∈ E((rn, kn)n∈S),Y 6= Y1, then Un(1,Y−n) = Un(0,Y−n), yn = 0 for some n. (C2)

(C1) says that there exists a Nash equilibrium in which each agent n ∈ S invests xn

with the firm. (C2) says that in any Nash equilibrium in which some agents n ∈ S do not

invest xn with the firm, at least one such non-investing agent is willing to invest xn with

the firm. These conditions are necessary and sufficient for the scheme (rn + ε, kn)n∈S to

be an INI scheme for any ε > 0.10

Let XN ≡
∑N

n=1 xn. An optimal scheme (r∗n, k
∗
n)n∈S guaranteeing investments (xn)n∈S

solves the following program:

max
(rn,kn)n∈S

V =

(
A−

N∑

n=1

rnxn

)
F (XN)−

N∑

n=1

knxn (1− F (XN)) (P)

subject to (BC), (C1), and (C2).

9Note that an optimal scheme is not itself INI as it admits equilibria which are not full participation.
However, paying each agent slightly more under success eliminates all such equilibria. This definition is
equivalent to assuming that agents invest with the firm when indifferent given their conjectures.

10Necessity is immediate. Sufficiency follows from Lemma 1 in the next section.
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2.3 Discussion of assumptions

Before we solve the firm’s problem, it is worth discussing some of our model assumptions.

First, we have assumed that the firm cannot coordinate the agents to its preferred

equilibrium when multiple equilibria exist. This assumption is what motivates the re-

quirement of unique implementation, both in our paper and in related work (Segal,

2003; Winter, 2004; Bernstein and Winter, 2012). If there are multiple equilibria, agents

may play a non-desirable one; indeed, several experiments find that subjects are often

trapped in bad equilibrium outcomes in environments with externalities (see, e.g., De-

vetag and Ortmann, 2007). Our unique implementation requirement is equivalent to

having the firm maximize its profits in the equilibrium outcome yielding the lowest prof-

its for the firm.11 Naturally, if the firm could instead “pick” the equilibrium to be played

by the agents, then it would be able to extract the full surplus by specifying returns

(rn, kn) = (θ/F (XN), 0) for each n ∈ S and some (xn)n∈S. Under such a scheme, there is

an equilibrium that implements investments (xn)n∈S and keeps all agents to their outside

option, but equilibria with lower investment also exist.

Second, we have posited that the agents make their investment choices simultane-

ously, i.e. under imperfect information. Our analysis is unchanged if instead the agents

move sequentially, with each agent observing the decisions of her predecessors, so long

as we continue to consider all Nash equilibria of the game. If subgame perfection is

imposed, the problem becomes trivial: by offering rn = θ/F (XN) (plus ε > 0 arbitrar-

ily small) and kn = 0 to each agent n ∈ S, the firm induces investments (xn)n∈S as the

unique subgame-perfect Nash equilibrium of the sequential game, thus extracting the full

surplus.12 We view the simultaneous game as a simple (and stark) way to capture the

fact that investors in reality have limited information about others’ investment choices,

and their decisions are not sequential insofar as they can be revised.

Third, following the literature (Segal, 2003; Winter, 2004), we have assumed that the

firm can rely on bilateral contracts only. That is, contracts cannot directly condition

on third parties’ actions: the payment to an agent does not depend on other agents’

investment decisions except insofar as these decisions affect whether the project gets

implemented. The motivation for this restriction stems from the difficulty to verify in

practice the capital pledged by third parties. If an agent sues for breach of contract, a

court can require the agent to prove that she invested with the firm (or else she lacks

11See Segal (2003) for a general argument.
12If we impose subgame perfection but require that investment with the firm be a dominant strategy

in each subgame (as in Innes and Sexton, 1994, for example), then our results apply.
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standing to sue), and it can plausibly verify whether or not the firm implemented some

large project. It is less clear whether the court can identify the firm’s other investors and

the amounts that they invested. We focus on situations in which it cannot. If instead

contracts can condition on third parties’ choices, then again the firm would be able to

extract the full surplus.

Fourth, we have also restricted attention to contracts that are “simple.” Specifically,

our analysis abstracts from menu contracts in which the firm offers an agent n different

returns (rn(x′n), kn(x′n)) for different amounts x′n that the agent may choose to invest.

In a simple contract, the firm specifies an amount xn and returns (rn, kn) conditional

on the agent investing that amount (and zero returns otherwise). Naturally, only sim-

ple contracts are relevant if agents’ decisions are binary, as is the case when there are

indivisibilities in investment.13 Moreover, even when investment is fully divisible, we

provide conditions in the Online Appendix under which simple contracts are without

loss of optimality.14

Finally, we have required that the firm satisfy its budget constraint both on and off the

equilibrium path. That is, the firm must be able to follow through on its commitments

to the agents regardless of which agents decide to invest in the project.15 An alternative

possibility would be to allow the firm to offer any scheme (rn, kn)n∈S that satisfies its

budget constraint on the equilibrium path (i.e. under the investments (xn)n∈S), and

each agent n ∈ S would then assess the credibility of her offer (rn, kn) according to

her conjecture of others’ behavior. We show in the Online Appendix that, given our

focus on unique implementation, both possibilities yield the same results. We regard

the stronger budget-balance condition as more plausible, since the irrational behavior of

some investors cannot serve the firm with an excuse for not fulfilling its contracts with

other investors.

3 Optimal Scheme

In this section, we address step (i) of the firm’s problem: for fixed capital amounts

(xn)n∈S, we study the firm’s optimal scheme that guarantees these investments, namely

the scheme that solves program (P). Without loss, we take xn > 0 for each n ∈ S. We

begin by restating constraints (C1)-(C2) in program (P) using the following equivalence:

13Indivisibilities are common in applications where capital takes the form of a specific resource or
skill, or where the project requires a number of discrete investments. See Section 6 for some examples.

14See Segal (2003) for an analysis of menu contracts in a more general setting.
15This is analogous, for example, to the requirements in Holmström (1982).
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Lemma 1. (C1)-(C2) hold if and only if there exists a permutation π = (n1, . . . , nN) of

the set of agents such that, for each i ∈ S, agent ni is willing to invest with the firm if

agents (n1, . . . , ni−1) invest with the firm, no matter what the other agents do.

An optimal scheme makes it iteratively dominant for each agent to invest with the

firm. To see why this follows from (C1)-(C2), note that by (C2), there must exist an

agent n1 who is willing to invest with the firm when no other agent does. Moreover, by

(C1), this agent must also be willing to invest when all other agents do. We show that

as a result, n1 is willing to invest with the firm no matter what the other agents do. The

reason is that n1’s expected payoff from investing is a weighted average of her returns

under success and under failure, where the weights are the probabilities of each event

and thus achieve their highest and lowest values when all and none of the other agents

invest. Having established this property for n1, we then use an induction argument to

complete the proof of the “only if” claim in Lemma 1.16

Given this result, it will be useful (and without loss) to study schemes which specify

some permutation π = (n1, . . . , nN) of the set of agents and returns (ri, ki) for each

agent ni ∈ S. We proceed by first characterizing the optimal returns (r∗i , k
∗
i )i∈S and then

solving for an optimal permutation π∗ = (n∗1, . . . , n
∗
N).

3.1 Optimal returns

Given a permutation π = (n1, . . . , nN), denote the aggregate capital of the first i agents

in the permutation by Xi ≡
∑i

j=1 xnj
, where we omit the dependence on π to ease the

exposition. (Note that, as previously defined, XN corresponds to the total amount of

capital.) We obtain:

Proposition 1. Suppose that there exists an optimal scheme guaranteeing investments

(xn)n∈S. Any such scheme specifies some permutation π = (n1, . . . , nN) and returns

(r∗i , k
∗
i )i∈S such that, for each i ∈ S, agent ni is indifferent over investing with the firm

if agents (n1, . . . , ni−1) invest with the firm and agents (ni+1, . . . , nN) do not. Moreover,

the following returns are optimal:

r∗i =
θ

F (Xi)
and k∗i = 0.

An optimal scheme implies a permutation π = (n1, . . . , nN) such that the first agent

16The proof of Lemma 1 is general in that it does not rely on specific externalities between the agents.
The result will also apply to the setting studied in Section 5 in which the firm owns some initial capital.
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in the permutation is indifferent between investing and not when no other agent invests,

the second agent is indifferent between investing and not when the first agent invests

and the others do not, and so on. For intuition, recall that by Lemma 1, there is a

permutation π = (n1, . . . , nN) in which each agent ni is willing to invest when agents

(n1, . . . , ni−1) invest, no matter the rest. This implies that for each i ∈ S and each

j ∈ {i, . . . , N},
r∗iF (Xj) + k∗i (1− F (Xj)) ≥ θ. (1)

Now note that the firm’s budget constraint (BC) requires ki ≤ 0 for each i ∈ S; given

no initial capital of its own, the firm cannot credibly commit to pay an agent a positive

return under failure. Since the agents can obtain a net return θ > 0 by investing in the

safe asset, condition (1) then requires that the firm offer a strictly positive net return

ri > 0 under success. It follows that for each i ∈ S,

r∗i > 0 ≥ k∗i , (2)

and thus the scheme induces strategic complementarities. That is, under an optimal

scheme, each agent ni’s expected payoff from investing with the firm is increasing in the

other agents’ investments.

The strategic complementarities in turn simplify the agents’ participation constraints.

Given the inequalities in (2), we obtain that condition (1) is satisfied for each i ∈ S and

each j ∈ {i, . . . , N} if and only if it is satisfied for each i ∈ S and j = i: the firm can

induce agent ni to participate no matter what agents (ni+1, . . . , nN) do if it can induce

agent ni to participate when all such other agents do not. Furthermore, we show that

by optimality, condition (1) must hold with equality for each i ∈ S and j = i: otherwise,

the firm could lower a return ri and increase its payoff while preserving incentives and

relaxing its budget constraint. Therefore, we obtain

r∗iF (Xi) + k∗i (1− F (Xi)) = θ (3)

for each i ∈ S. This yields the first part of Proposition 1, which, in the literature’s

jargon, shows that any optimal scheme is a “divide and conquer” scheme.17

The second part of Proposition 1 uses the binding participation constraints in (3)

to derive optimal returns. We show that it is optimal to set (r∗i , k
∗
i ) = (θ/F (Xi) , 0)

17See Segal (2003). Divide and conquer strategies are also discussed in the literature on exclusionary
contracts, including Rasmusen, Ramseyer and Wiley (1991), Innes and Sexton (1994), and Segal and
Whinston (2000).
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for each i ∈ S. The idea is intuitive. The firm conditions on all agents (n1, . . . , nN)

investing in the project, whereas, as shown in (3), each agent ni conditions on only agents

(n1, . . . , ni) investing. Hence, the firm assigns a higher probability to success than each

agent ni does, which means that the firm values ri relative to ki more than each agent

ni. As a consequence, the firm benefits from reducing ri, and thus increasing ki, as much

as it can, subject to its budget constraint (BC) and the participation constraints in (3).

Formally, we show that if a scheme specifies ki < 0 for some i ∈ S,18 we can perform

a perturbation in which we increase ki by ε > 0 arbitrarily small and reduce ri so as

to keep the left-hand side of (3) unchanged. The perturbed scheme satisfies the firm’s

budget constraint and preserves the agents’ incentives. Moreover, we show that the

perturbation increases the firm’s expected payoff in (P). It follows that it is optimal to

set k∗i = 0 and thus, by (3), r∗i = θ/F (Xi) for each i ∈ S.19

Proposition 1 has important implications for the agents’ payoffs. The proposition

shows that the firm treats the agents symmetrically under failure: each agent is re-

funded her capital if the project is not implemented. However, in the case of success,

returns differ across the agents. Given the permutation π = (n1, . . . , nN), agents who are

positioned towards the beginning of the permutation are offered a higher net return (per

unit of capital invested) than those positioned later in the permutation. The reason is

that agents with a higher rank i condition on a larger set of other agents investing with

the firm; thus, given the strategic complementarities, their participation constraints are

less costly to satisfy. Clearly, in light of this result, a key question is how an optimal

permutation π∗ ranks the agents given the heterogeneity in their capital amounts. We

turn to this question in the next subsection.

A useful property of the returns in Proposition 1 is that they maximally relax the

firm’s budget constraint. Specifically, since k∗i = 0 for each i ∈ S, these returns minimize

not only the firm’s total costs but also its costs under success,
∑N

i=1 rixni
, for some

permutation π. It follows that an optimal scheme guaranteeing investments (xn)n∈S

exists if and only if a scheme with returns (r∗i , k
∗
i ) = (θ/F (Xi), 0) for some permutation

π satisfies (BC). As formalized in the next corollary, the latter requires that the firm’s

surplus A from success be large enough.

18Recall that the firm’s budget constraint requires ki ≤ 0 for each i ∈ S.
19These returns are strictly optimal for i ∈ {1, . . . , N − 1} and weakly optimal for i = N .

13



Corollary 1. An optimal scheme guaranteeing investments (xn)n∈S exists if and only if

there exists a permutation π = (n1, . . . , nN) such that

N∑

i=1

θ

F (Xi)
xni
≤ A.

We end our discussion of Proposition 1 with a remark. As noted above, the firm’s

scheme induces a supermodular game among the agents, namely one characterized by

strategic complementarities. As a result, our requirement of unique implementation in

Nash equilibria also yields unique implementation in rationalizable strategies.

Remark 1. Take an optimal scheme guaranteeing investments (xn)n∈S. Then (xn)n∈S

is a Nash equilibrium and no other outcome is rationalizable.

3.2 Optimal permutation

We now turn to the question of how an optimal permutation ranks the agents. Assume

hereafter that the condition in Corollary 1 holds, so an optimal scheme guaranteeing

investments (xn)n∈S exists. By Proposition 1, it is optimal for the firm to specify some

permutation π = (n1, . . . , nN) of the set of agents and returns (r∗i , k
∗
i ) = (θ/F (Xi), 0)

for each agent ni ∈ S. Substituting in the firm’s expected payoff in (P), under such a

scheme the firm obtains

V =

(
A− θ

N∑

i=1

xni

F (Xi)

)
F (XN) . (4)

It follows from (4) and Corollary 1 that a permutation π = (n1, . . . , nN) is optimal if

and only if it minimizes the firm’s costs under success, given by

θ

N∑

i=1

xni

F (Xi)
. (5)

The next proposition shows that (5) is minimized by ranking the agents in decreasing

order of the size of their investments, provided that a condition on the investment thresh-

old distribution holds. This condition is that 1/F (x) be convex (over the relevant range),

and it is satisfied by most commonly used distributions, as we explain subsequently.
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Proposition 2. Suppose 1/F (x) is convex for x ∈ [0, X], X > 0. Then for any in-

vestments (xn)n∈S with XN ≤ X, an optimal permutation is π∗ = (n∗1, . . . , n
∗
N) such

that

xn∗1 ≥ . . . ≥ xn∗N .

Consequently, larger investors receive higher net returns than smaller investors.

The logic for the optimal permutation is as follows. Given a permutation π =

(n1, . . . , nN), Proposition 1 shows that an optimal scheme compensates each agent ni ∈ S
on the marginal unit of capital invested in the project. That is, for each unit invested by

agent ni, the firm pays the agent a return under success r∗i = θ/F (Xi). If 1/F (x) is con-

vex, then the return curve θ/F (Xi) is decreasing and convex in the capital Xi invested

up to agent ni. This means that the firm benefits from moving down this return curve as

quickly as possible; the faster capital is accumulated along the sequence (xn1 , . . . , xnN
),

the lower is the sum of returns that the firm has to pay under success. It follows that

it is optimal to rank the agents in decreasing size order, from the agent with the largest

amount of capital to that with the smallest amount.

Intuitively, to guarantee investment, the firm has to compensate the agents for the

strategic risk that they face in addition to the fundamental risk. The risk premium for

agent ni is proportional to 1/F (Xi), which depends on the agent’s rank i and her amount

of capital xni
. Agents with more capital face less risk because their large investment

secures itself. This self-insurance reduces the risk premium that the firm has to pay to

large investors, and the magnitude of the reduction depends on how sharply the risk

premium drops as a function of investment. Proposition 2 thus says that large investors

should be placed in the permutation according to when the risk premium drops most

sharply with investment. If 1/F (Xi) is convex, this occurs when the existing investment

is small, so the firm places large investors early in the permutation.20

Figure 1 illustrates the result using the example described in the Introduction. We

take F uniform over [0, 30] and θ = 10%. The figure depicts the return curve θ/F (Xi),

showing that the return that the firm pays under success decreases at a decreasing rate

with each additional unit of capital invested in the project. If there are N = 2 agents

with capital x1 = 10 and x2 = 20, then by Proposition 2 the optimal permutation is

π∗ = (2, 1). That is, the firm sets n∗1 = 2 and n∗2 = 1 as agent 2’s capital amount is larger

than agent 1’s. The optimal returns under success are r∗1 = 15% for agent n∗1 = 2 and

20Conversely, if 1/F (Xi) is concave, the firm would benefit from placing large investors late in the
permutation. See Section 6.
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Figure 2 shows that if we now were to transfer � 2 (0, 1] units of capital from agent 1

to agent 2, we would lower the firm’s costs further. This is the essence of the result in

Proposition 3.

Figure 3 shows how the price of coordination defined in (8) changes as we modify

the distribution of capital. The figure depicts this price when dealing with N = 2

agents with capital x1 � � and x2 + �. We take x1 = 1, x2 and vary � from 0 to

1. When � = 1, the firm deals with one single agent with capital x = 3, so its costs

are equal to 3(10%) = 0.3. The price of coordination for any � 2 [0, 1) is equal to

✓(x2 + �)
⇣

1
F (x2+�)

� 1
⌘
. Given F uniform over [0, 3] and ✓ = 10%, this simplifies

to 10%(1 � �), so the price of coordination decreases linearly in this example as we

transfer capital from the small investor 1 to the large investor 2.
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projects in bS is larger than that in S.
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Our model therefore predicts that innovation will be higher in more unequal soci-

eties. A more unequal distribution of wealth fosters entrepreneurship by increasing the

profitability, and thus viability, of new projects. There is in fact empirical evidence

that wealth inequality is positively correlated with entrepreneurship (Naudé, 2010), and

the literature has pointed to credit constraints and di↵erential savings rates as possible

explanations. Our model reveals a di↵erent mechanism, which operates directly via an

entrepreneur’s costs of raising capital to fund new projects. Of course, while the result

suggests that wealth inequality could have positive e↵ects on social welfare by increasing

innovation, there are other important negative welfare implications of inequality that

our model does not reflect.

Our last result concerns the relationship between the distribution of the agents’ initial

capital and the distribution of their returns and final capital. Our analysis in Section 3.2

showed that given a fixed set S of N > 1 agents, an optimal scheme pays higher returns
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profitability, and thus viability, of new projects. There is in fact empirical evidence

that wealth inequality is positively correlated with entrepreneurship (Naudé, 2010), and

the literature has pointed to credit constraints and di↵erential savings rates as possible

explanations. Our model reveals a di↵erent mechanism, which operates directly via an

entrepreneur’s costs of raising capital to fund new projects. Of course, while the result

suggests that wealth inequality could have positive e↵ects on social welfare by increasing

innovation, there are other important negative welfare implications of inequality that

our model does not reflect.

Our last result concerns the relationship between the distribution of the agents’ initial

capital and the distribution of their returns and final capital. Our analysis in Section 3.2

showed that given a fixed set S of N > 1 agents, an optimal scheme pays higher returns
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Figure 1: Return curve for F uniform over [0, 30] and θ = 10%. Given N = 2 agents with
capital amounts x1 = 10 and x2 = 20, an optimal scheme specifies the permutation π∗ = (2, 1)
and pays returns under success of 15% and 10% to agents 2 and 1 respectively.

r∗2 = 10% for agent n∗2 = 1 (and the optimal returns under failure are equal to zero for

both agents), yielding a cost for the firm of 20(15%) + 10(10%) = 4. If the firm instead

ranks the agents according to π = (1, 2), then the returns are r1 = 30% for agent n1 = 1

and r2 = 10% for agent n2 = 2, yielding a higher cost of 10(30%) + 20(10%) = 5.

As stated in Proposition 2, this characterization of an optimal permutation has direct

implications on investors’ returns: given Proposition 1, it implies that larger investors

receive higher net returns than smaller ones. The analysis therefore provides an ex-

planation for the patterns of returns often observed in practice. As mentioned in the

Introduction, our results are consistent with evidence from private equity. Tan (2016)

and Clayton (2017), for example, point out an increasing tendency of private equity firms

to give preferential treatment to limited partners based on size. The empirical findings

in Dyck and Pomorski (2016) reveal that large investors receive higher net returns than

small investors even when restricting attention to private equity investments without

any preferential access. Proposition 2 suggests that these differential returns may arise

as a firm’s profit-maximizing solution to a coordination problem in investment.

By showing that larger investors get more per unit invested, the analysis also high-

lights a mechanism through which capital becomes dispersed. We find that the firm’s op-

timal scheme exacerbates agents’ initial differences. In fact, the results point to “winner-

16



takes-all dynamics,” whereby large investors become larger over time, even when differ-

ences in initial capital amounts may be small. These effects resemble those that arise,

albeit for different reasons, in tournament theory and models of superstars (Lazear and

Rosen, 1981; Rosen, 1981).21

The result in Proposition 2 holds under a condition on the distribution F of the

investment threshold. It is worth noting that this condition is implied by log-concavity:

Remark 2. If F (x) is log-concave, then 1/F (x) is convex.

Many familiar distributions are log-concave, including exponential, gamma, log-

normal, Pareto, and uniform (see Bagnoli and Bergstrom, 2005).22

Finally, one may wonder about the necessity of our condition on F . We can show that

if 1/F (x) is strictly concave for some x ∈ [0, X], X > 0, then there exist capital amounts

(xn)n∈S with XN ≤ X such that a permutation that ranks the agents in decreasing size

order is not optimal. Hence,

Remark 3. Convexity of 1/F (x) over the relevant range is not only sufficient but also

necessary for the statement in Proposition 2 to hold.

Our emphasis is on the case in which 1/F (x) is convex because, as noted, most of the

distributions that are frequently used satisfy this property. Moreover, 1/F (x) cannot

be globally concave (since 1/F (x) → ∞ as x → 0), and thus an analysis under 1/F (x)

concave must be conditioned on the range of capital [min{xn|n ∈ S}, XN ] given (xn)n∈S.

We discuss this possibility in Section 6.

4 Distribution of Capital

So far we have focused on step (i) of the firm’s problem, taking the amounts of capital

(xn)n∈S that the firm raises as given. We now consider step (ii): given that an optimal

scheme guaranteeing investments (xn)n∈S is characterized by Proposition 1 and Proposi-

tion 2, we study the optimal investments that the firm induces. Put differently, we ask:

how does the distribution of capital among the agents impact the firm’s payoff?

We compare distributions of capital using the following definition of mean-preserving

spread:

21In a dynamic setting, further considerations may come into play, as the firm could potentially offer
returns as a function of an agent’s history of investments. See Rey and Tirole (2007) for an insightful
related study in the context of cooperatives. A dynamic analysis is beyond the scope of this paper.

22Log-concavity of the distribution function is implied by, but weaker than, log-concavity of the
density function.
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Definition 1. Let H and Ĥ be right-continuous, nondecreasing functions from [0, X]

to {0, . . . , N}, for some X > 0. The function Ĥ is a mean-preserving spread of H

if it is second-order stochastically dominated by H: for all z ∈ [0, X],
∫ z

0
Ĥ (x) dx ≥∫ z

0
H (x) dx, with equality for z = X.

For any capital amounts (xn)n∈S and level x > 0, let H(x) denote the number of

agents n ∈ S whose capital xn does not exceed x. Clearly, the function H is a right-

continuous, nondecreasing function from R+ to {0, . . . , N}.23 As for the other direction,

let H be any right-continuous, nondecreasing function from [0, X] to {0, . . . , N}, for any

X > 0. Then the capital amounts induced by H are the amounts (xn)n∈S distributed

according to H: for each n ∈ S, xn = min {x ∈ [0, X] | H (x) ≥ n}.

4.1 Optimal investments

The next proposition shows that for any given total investment XN , the firm benefits

from the individual investments (xn)n∈S being more unequally distributed:

Proposition 3. Suppose 1/F (x) is convex for x ∈ [0, X], X > 0, and consider invest-

ments (xn)n∈S with XN ≤ X and distribution H. Let Ĥ be a mean-preserving spread of

H and (x̂n)n∈S the investments induced by Ĥ. The firm’s expected payoff under (x̂n)n∈S

is higher than that under (xn)n∈S.

For intuition, consider the example from the Introduction, with F uniform over [0, 30]

and θ = 10%. Suppose first that the firm raised capital from N = 3 agents with

x1 = x2 = x3 = 10. By our results in the previous section and as can be seen in Figure 1,

the firm’s optimal scheme would then entail costs equal to 10(30% + 15% + 10%) = 5.5.

Now suppose that two of these investors were “merged” into a single larger investor, so

the firm raises capital from N = 2 agents with x1 = 10 and x2 = 20. The firm’s costs

under an optimal scheme would then be lower, equal to 20(15%) + 10(10%) = 4. The

reason is that merging the agents reduces the strategic uncertainty: while each separate

agent faces uncertainty about the investment decision of the other agent, the merged

agent knows that she will invest her whole capital amount in the firm’s project. This

allows the firm to guarantee the same total investment at a lower risk premium.

Proposition 3 shows that this logic holds more generally. We find that any mean-

preserving spread of the distribution of capital increases the firm’s payoff. To see why this

23The function H differs from a cumulative distribution function insofar as its maximum value is not
1 but N .
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is the case, consider capital amounts (xn)n∈S with distribution H. Any mean-preserving

spread Ĥ can be obtained from H by performing a finite sequence of transfers from

smaller to larger investors (Rothschild and Stiglitz, 1970). We show that each such

transfer makes the firm better off. Fixing an optimal permutation π = (n1, . . . , nN)

under (xn)n∈S, a transfer from a small to a large investor allows the firm to move down

the optimal return curve θ/F (Xi) more quickly and thus reduce its costs. Intuitively, the

transfer lowers the required risk premium by increasing the self-insurance of the large

investor. This implies that the firm’s payoff under the induced amounts (x̂n)n∈S is higher

than that under (xn)n∈S given optimal returns and the original permutation π. Clearly,

changing to a permutation that is optimal under (x̂n)n∈S can only raise the firm’s payoff

further. It follows that this operation always benefits the firm.

In the limit, the operation in Proposition 3 would concentrate all the capital of the

agents in only one of them. In fact, if the firm raised capital from only one agent, this

agent would face no strategic risk, and the firm would be able to raise the total capital

XN by offering a net return under success equal to θ/F (XN). The firm’s costs in this

case would be minimized and equal to XNθ. The firm’s costs are higher when raising

capital from multiple agents because of the coordination problem governing the agents’

interaction. The price of coordination is the additional cost above XNθ that the firm

pays when dealing with N > 1 agents, given by θF (XN)
∑N

i=1 xn∗i

(
1

F (Xi)
− 1

F (XN )

)
for

Xi =
∑i

j=1 xn∗j . Proposition 3 implies that the price of coordination is lower the more

unequal is the distribution of agents’ investments. Figure 2 provides an illustration using

the example discussed above.

Proposition 3 has immediate implications on the feasibility of investment. Since a

more unequal distribution of capital among the agents increases the firm’s payoff from

any given investment, such a distribution also reduces the minimum surplus A that is

required from a project for investment to be profitable. As a consequence, we find that a

larger range of investments can be undertaken when the population of investors is more

heterogeneous.

Returning to the firm’s problem, the result in Proposition 3 also tells us what are the

optimal investments (x∗n)n∈S that the firm induces from the agents. For any given total

investment XN , we find that the firm raises as much capital as it can from the agents with

the largest capital endowments. This solution yields the most unequal distribution over

the agents’ investments (xn)n∈S that is feasible given the agents’ endowments (xn)n∈S,

and so it is optimal by Proposition 3.
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to agent 2, we would lower the firm’s costs further. This is the essence of the result in

Proposition 3.

Figure 3 shows how the price of coordination defined in (8) changes as we modify

the distribution of capital. The figure depicts this price when dealing with N = 2

agents with capital x1 � � and x2 + �. We take x1 = 1, x2 and vary � from 0 to

1. When � = 1, the firm deals with one single agent with capital x = 3, so its costs

are equal to 3(10%) = 0.3. The price of coordination for any � 2 [0, 1) is equal to

✓(x2 + �)
⇣

1
F (x2+�)

� 1
⌘
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Our model therefore predicts that innovation will be higher in more unequal soci-

eties. A more unequal distribution of wealth fosters entrepreneurship by increasing the

profitability, and thus viability, of new projects. There is in fact empirical evidence

that wealth inequality is positively correlated with entrepreneurship (Naudé, 2010), and

the literature has pointed to credit constraints and di↵erential savings rates as possible

explanations. Our model reveals a di↵erent mechanism, which operates directly via an

entrepreneur’s costs of raising capital to fund new projects. Of course, while the result

suggests that wealth inequality could have positive e↵ects on social welfare by increasing

innovation, there are other important negative welfare implications of inequality that

our model does not reflect.

Our last result concerns the relationship between the distribution of the agents’ initial

capital and the distribution of their returns and final capital. Our analysis in Section 3.2

showed that given a fixed set S of N > 1 agents, an optimal scheme pays higher returns
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eties. A more unequal distribution of wealth fosters entrepreneurship by increasing the

profitability, and thus viability, of new projects. There is in fact empirical evidence

that wealth inequality is positively correlated with entrepreneurship (Naudé, 2010), and

the literature has pointed to credit constraints and di↵erential savings rates as possible

explanations. Our model reveals a di↵erent mechanism, which operates directly via an

entrepreneur’s costs of raising capital to fund new projects. Of course, while the result

suggests that wealth inequality could have positive e↵ects on social welfare by increasing

innovation, there are other important negative welfare implications of inequality that

our model does not reflect.
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1. When � = 1, the firm deals with one single agent with capital x = 3, so its costs

are equal to 3(10%) = 0.3. The price of coordination for any � 2 [0, 1) is equal to
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the literature has pointed to credit constraints and di↵erential savings rates as possible

explanations. Our model reveals a di↵erent mechanism, which operates directly via an

entrepreneur’s costs of raising capital to fund new projects. Of course, while the result
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innovation, there are other important negative welfare implications of inequality that

our model does not reflect.
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showed that given a fixed set S of N > 1 agents, an optimal scheme pays higher returns
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Figure 2: Return curve for F uniform over [0, 30] and ✓ = 10%. If there are N = 3 agents
with capital amounts x1 = x2 = x3 = 10, the firm’s costs under an optimal scheme are equal
to 10(30%+15%+10%). If there are N = 2 agents with capital amounts x1 = 10 and x2 = 20,
the firm’s costs under an optimal scheme are equal to 20(15%) + 10(10%).

XN by o↵ering a net return under success equal to ✓/F (XN). The firm’s costs in this

case would be minimized and equal to XN✓. The firm’s costs are larger when raising

capital from multiple agents because of the coordination problem governing the agents’

interaction. The price of coordination is the additional cost above XN✓ that the firm

pays when dealing with N > 1 agents, given by

✓F (XN)
NX

i=1

xn⇤
i

✓
1

F (Xi)
� 1

F (XN)

◆

for Xi =
Pi

j=1 xn⇤
j
. Proposition 3 implies that the price of coordination is lower the

more unequal is the distribution of agents’ investments. Figure 3 provides an illustration

using the example discussed above.

Proposition 3 has immediate implications on the feasibility of investment. Since a

more unequal distribution of capital among the agents increases the firm’s payo↵ from

any given investment, such a distribution also reduces the minimum surplus A that is

required from a project for investment to be profitable. As a consequence, we find that

a larger range of projects can be undertaken when the population of investors is more

heterogeneous.
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Figure 2: Price of coordination for F uniform over [0, 30], θ = 10%, and N = 2 agents with
aggregate capital X2 = 30, as we increase

(
xn∗1 − xn∗2

)
from 10 to 30.

Corollary 2. Suppose 1/F (x) is convex for x ∈ [0, X], X > 0, and agents’ endowments

satisfy
∑N

n=1 xn ≡ XN ≤ X. Consider a permutation π = (n1, . . . , nN) that ranks the

agents in decreasing endowment order, i.e. with i ≤ i′ if and only if xni
≥ xni′ . For

any given total investment XN ≤ XN , an optimal scheme specifies investments (x∗ni
)i∈S

satisfying

x∗ni
=





xni
if i < i∗,

x∗ni∗
if i = i∗,

0 otherwise,

where i∗ ≡ max{i ∈ [0, N + 1] :
∑

i<i∗ xni
≤ XN} and x∗ni∗

≡ XN −
∑

i<i∗ xni
. Moreover,

letting X∗i ≡
∑i

j=1 x
∗
nj

, the optimal total investment X∗N then solves:

max
XN∈[0,XN ]

V =

(
A− θ

N∑

i=1

x∗ni

F (X∗i )

)
F (XN) . (6)

Note that the firm’s scheme may imply differences among the agents not only in

their net returns from investment but also in their access to investment opportunities.

Specifically, if the total capital available XN exceeds the amount XN that the firm raises,

then the firm targets the largest investors in the set and excludes smaller investors from
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the project.

Given the optimal individual investments as a function of XN , the second part of

Corollary 2 completes our characterization of the firm’s optimal scheme by solving for

the optimal total investment X∗N . The program in (6) follows directly from our charac-

terization in Proposition 1 and Proposition 2.

4.2 Distribution of returns

Our last result concerns the relationship between the distribution of capital among the

agents and the distribution of the agents’ net investment returns. Consider an optimal

scheme guaranteeing investments (xn)n∈S. By Proposition 1 and Proposition 2, the

scheme specifies a permutation π∗ = (n∗1, . . . , n
∗
N) ranking the agents in decreasing size

order and yields each agent ni an expected net return F (XN)r∗i . Since r∗i ≥ r∗i′ for

i ≤ i′, the range of net returns is equal to the difference between the largest and smallest

investors’ net returns, F (XN) (r∗1 − r∗N). We find that if the distribution of investments

becomes more unequal, the dispersion of net returns as measured by the range declines:

Proposition 4. Suppose 1/F (x) is convex for x ∈ [0, X], X > 0, and consider invest-

ments (xn)n∈S with XN ≤ X and distribution H. Let Ĥ be a mean-preserving spread of

H and (x̂n)n∈S the investments induced by Ĥ. The range of net returns offered by the

firm under (x̂n)n∈S is smaller than that under (xn)n∈S.

Recall that any mean-preserving spread Ĥ can be obtained from the original distri-

bution H by performing a finite sequence of transfers from smaller to larger investors.

To prove the proposition, we show that any such transfer keeps the smallest investor’s

net return unchanged (and equal to θ) while reducing the largest investor’s net return

(strictly if the transfer increases this investor’s capital). These effects apply regardless of

whether the identities of the smallest and largest investors change, and they imply that

the range of net returns becomes smaller. In this sense, we find that the firm’s scheme

is less discriminatory when the agents’ capital amounts are more heterogeneous.

The example from the Introduction offers an illustration. For F uniform over [0, 30]

and θ = 10%, compare two agents with capital amounts (x1, x2) = (10, 20) against two

agents with capital amounts (x̂1, x̂2) = (6, 24). Under an optimal scheme guaranteeing

full investment, agent 1 and agent 2 receive expected net returns of 10% and 15% re-

spectively in the former case, whereas in the latter case these expected net returns are

10% and 12.5%. The range is therefore smaller under the more unequal distribution of

capital: (12.5− 10)% < (15− 10)%.
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Of course, the range of agents’ capital amounts is larger when capital is more un-

equally distributed. In the example, this range is 20−10 under (x1, x2) and 24−6 under

(x̂1, x̂2). The net effect of heterogeneity on the range of final capital is thus unclear, as fi-

nal capital holdings depend on both the agents’ investments and their net returns. In the

example, the range of final capital is larger under (x̂1, x̂2): 24(1 + 12.5%)−6(1 + 10%) >

20(1 + 15%) − 10(1 + 10%). More generally, either direction is possible depending on

parameters. That is, perhaps surprisingly, we find that by reducing the dispersion of

net returns, a more unequal distribution of initial capital can lead to a more equal

distribution of final capital.24

5 Firm’s Initial Capital

Our model has considered a firm which owns no initial capital, so any payments it offers

to the agents must be self-financed by its project. In this section, we study how the firm’s

problem changes when the firm has some capital of its own. We show that our main

qualitative results continue to hold, with larger investors receiving higher net returns

than smaller ones. What is new is that the firm now uses its funds to insure part of

the investment, and we are able to provide a characterization of the level of insurance

offered to different investors depending on their size.

Suppose the firm has initial capital W > 0 and wishes to raise an additional amount

XN from the set S of N agents. Consider a scheme specifying investments (xn)n∈S and

returns (rn, kn)n∈S, where without loss we take xn > 0 for each n ∈ S. The firm’s budget

constraint now requires that, for all profiles of agents’ choices Y = (y1, . . . , yN), the

scheme satisfy
N∑

n=1

rnynxn ≤ W + A and
N∑

n=1

knynxn ≤ W. (BCW )

If W ≥ θXN , the problem is trivial: the firm can offer net returns (rn, kn) = (θ, θ)

to each agent n ∈ S and fund its project at the safe rate. As all the agents are given

full insurance, there is no coordination problem among them. In what follows, we thus

assume that the firm’s capital is limited, satisfying W < θXN .

The firm’s problem is the same as that in (P) but with the budget constraint given

by (BCW ) above (and with the total investment in the project now including the firm’s

capital W in addition to the capital XN raised from the agents). To solve this problem,

24For an example, take F (x) = x5 for x ∈ [0, 1], θ = 10%, and capital amounts (x1, x2) = ( 1
3 ,

2
3 ) and

(x̂1, x̂2) = ( 1
4 ,

3
4 ). The range of final capital is 0.81 under (x1, x2) and 0.79 under (x̂1, x̂2).
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observe first that Lemma 1 continues to hold in this setting. The firm’s scheme must thus

specify a permutation π = (n1, . . . , nN) such that, for each i ∈ S, agent ni is willing to

invest when agents (n1, . . . , ni−1) invest, no matter the rest. The key difference relative

to the analysis of Section 3.1 is that the firm can now pay positive returns under failure,

and hence, in principle, offer returns satisfying ki > ri to some agent ni ∈ S. Such an

agent’s expected payoff from investing with the firm would be decreasing in the other

agents’ investments. That is, unlike when W = 0, inducing strategic substitutabiliy is

now feasible.

Nevertheless, we are able to show that an optimal scheme for the firm induces strategic

complementarities among all the agents. Suppose by contradiction that ki > ri for some

agent ni ∈ S in any optimal scheme. Such an agent’s participation requires ki > θ, and

so by (BCW ) and W < θXN , there must exist j 6= i with kj < θ < rj. Furthermore,

by analogous logic as in Section 3.1, agent ni must be indifferent over investing with the

firm when all other agents invest, whereas agent nj must be indifferent conditioning on

only agents (n1, . . . , nj−1) investing. Since agent ni then conditions on a weakly higher

probability of success than agent nj, we consider a perturbation that reduces ki and

increases ri while at the same time increasing kj and reducing rj. We show that this

perturbation either contradicts the optimality of the original scheme or allows us to

construct another optimal scheme which satisfies ri ≥ ki for all i ∈ S.

Using the strategic complementaries, we obtain the following characterization:

Proposition 5. Consider the firm’s problem with initial capital W > 0. Suppose 1/F (x)

is convex for x ∈ [0, X], X > 0, and there exists an optimal scheme guaranteeing in-

vestments (xn)n∈S with XN ≤ X. Then an optimal such scheme specifies a permutation

π∗ = (n∗1, . . . , n
∗
N) satisfying

xn∗1 ≥ . . . ≥ xn∗N

and returns (r∗i , k
∗
i )i∈S satisfying

k∗i =
min{θxn∗i ,Wi}

xn∗i
and r∗i =

θ − k∗i (1− F (W +Xi))

F (W +Xi)
,

where Xi =
i∑

j=1

xn∗j , WN ≡ W , and Wi ≡ max{W−
N∑

j=i+1

k∗jxn∗j , 0} for i ∈ {1, . . . , N−1}.

An optimal scheme for the firm includes full-insurance contracts, with returns under

success and failure equal to the safe rate θ. That is, we find that the firm uses its initial

capital W to fully insure some of the capital XN that it raises from the agents. Since
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W is limited, only an amount of capital W/θ can be insured. Once W is depleted,

the firm faces the same problem that we solved in the previous sections, and hence it

guarantees investment using a scheme analogous to that characterized in Proposition 1

and Proposition 2.

Proposition 5 shows that the smallest investors are the ones who receive insurance.

The intuition is simple. The firm’s cost of fully insuring the portion of capital W/θ is

equal to W and thus independent of how this capital is distributed among the agents.

In contrast, the firm’s cost of raising the additional capital XN −W/θ does depend on

its distribution: by Proposition 3, this cost is minimized when XN −W/θ is raised from

the largest investors. Consequently, it follows that it is optimal for the firm to raise the

fully insured portion W/θ from the smallest investors.

The characterization in Proposition 5 shows that our results in Section 3 and Section 4

are robust to the firm owning initial capital.25 In addition, this characterization offers

predictions on the levels of risk afforded to investors of different size. Interestingly,

empirical studies find that large investors hold riskier portfolios than small investors, and

some of the explanations discussed in the literature include capital market imperfections

and investors’ risk aversion declining with wealth (see Carroll, 2000).26 We contribute

to this discussion from a different perspective, that of optimal design. Proposition 5

indeed predicts a high-risk, high-return investment for large investors and a low-risk,

low-return investment for small investors. Here, however, the distinction arises as an

optimal solution to the firm’s problem of raising capital in the presence of strategic risk.

6 Discussion

Below we discuss some applications and extensions of our model and results.

Applications. We have formulated our problem in the context of a firm that raises

capital to fund a project. There are various examples that may fit this description.

As mentioned, our results resonate with evidence from private equity investments. The

project in our model could also concern the building of a property to which agents

contribute with purchase commitments, or fund-raising for a charity as in Andreoni

(1998). We next discuss some further applications that relate to other literatures.

25Note that the smallest investors who receive full insurance also receive a lower net return on their
investment compared to other investors, since θ ≤ F (W +XN )r∗i + (1− F (W +XN ))k∗i for any i ∈ S.

26Capital market imperfections may cause entrepreneurs to finance their activities with their own
capital and to earn a high return on their investments.
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Exclusive contracts: A number of influential papers study how an incumbent firm may

coordinate buyers on signing exclusive dealing contracts (see Rasmusen, Ramseyer and

Wiley, 1991; Innes and Sexton, 1994; Segal and Whinston, 2000). Our analysis can be

applied to this question. Consider an incumbent monopolist offering exclusive dealing

contracts to buyers of different size, namely who differ in the number of units that

they demand.27 A potential entrant enters the market only if the total demand that has

contracted with the monopolist is below a stochastic threshold, and the monopolist offers

prices contingent on entry to guarantee a given total demand. Our results suggest that

under certain conditions on the threshold distribution, the monopolist will offer lower

unit prices to larger buyers compared to smaller ones. Moreover, the more heterogeneous

the buyer population, the higher the monopolist’s incentive to offer exclusive dealing

contracts to fight market entry.

Joint task: Consider a team incentive problem similar to that in Winter (2004) but

allowing for heterogeneity. A principal contracts with multiple agents who can contribute

towards a joint task. Agents differ in their ability, with more skilled agents being able

to make larger contributions than less skilled ones. Suppose that the probability of

completing the joint task is increasing in the sum of agents’ contributions, and the

principal offers rewards contingent on task completion in order to guarantee a level of

participation. Applying our results to this setting suggests that optimal rewards will

be convex: the principal compensates agents with high ability more than proportionally

relative to those with lower ability.

Bank runs: A sizable literature studies bank runs and how to prevent them. Consider a

simple setting in which N agents have their funds deposited in a bank and can withdraw

them at any time. Suppose there is a random threshold such that if the total withdrawal

exceeds it, a bank run occurs and the bank collapses. To exclude a run, the bank can

offer depositors collateral (to be paid in the case of a run) or a higher interest rate on

deposits (absent a run). A conjecture that can be derived from our analysis is that large

depositors will be treated more favorably than small ones even on a per-dollar basis,

whether it is collateral or an increased interest rate that is used to prevent the run.

Social planner and policy implications. We have solved the problem of a firm that

seeks to maximize its profits while guaranteeing a unique outcome. We point out here

that our results also have implications for a planner who internalizes agents’ welfare.

27Note that due to compatibility and cost considerations, these demands are often indivisible.
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Consider the problem of a planner who maximizes the probability of project success,

subject to budget and unique implementation constraints as those in program (P). Be-

cause the budget constraint requires limiting the cost of raising capital, the solution to

this problem coincides with that of the firm when the budget constraint is tight enough,

namely when the surplus A from project success is sufficiently small. Specifically, the

planner may have to give higher net returns to larger investors compared to smaller

investors in order to be able to self-finance the investment in the project. Furthermore,

the planner may benefit from a more unequal distribution of capital among the agents,

as such a distribution allows to reduce costs and make the investment viable.

Of course, things change if we take different social welfare functions, and in particular

if we consider a concern for inequality. Our analysis shows that the need to address

strategic risk gives rise to an important tradeoff between equality and efficiency.

Policy responses aimed at limiting inequality should support small investors, who

we find will be either excluded from investing or given worse terms than others. Inter-

mediaries that bundle the capital of many small private investors into a single larger

investment may help in this regard, provided that they do not extract the entire ad-

ditional surplus by charging high fees. Regulators can also generate instruments to

facilitate coordination. For example, it may be possible to promote platforms where

small investors can make commitments to invest that are legally binding but contingent

on a minimum total investment. Such instruments would reduce the strategic risk which,

we have shown, drives inequality.

Threshold distribution. Our analysis has focused on situations in which the distri-

bution F of the investment threshold satisfies the condition of 1/F (x) being convex. As

noted in Section 3.2, 1/F (x) cannot be globally concave, and it is indeed globally convex

for most commonly used distribution functions. Yet, it is worth considering how our

results would change if the condition on F is not met.

Given capital amounts (xn)n∈S, suppose 1/F (x) is concave over the whole relevant

range, namely for x ∈ [min{xn|n ∈ S}, XN ]. Then our results in Proposition 2 would be

reversed: given optimal returns (r∗i , k
∗
i )i∈S as characterized in Proposition 1, we would

find that an optimal permutation π∗ = (n∗1, . . . , n
∗
N) ranks the agents in increasing as

opposed to decreasing size order. The intuition is the same as in Proposition 2 but also

reversed: the firm benefits from placing large investors in the permutation according to

when the risk premium drops most sharply with investment, and if 1/F (x) is concave, this

occurs at the end of the permutation, when Xi =
∑i

j=1 xnj
is largest. The implication
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is that larger investors would now receive lower net returns than smaller investors, as

opposed to the case in which 1/F (x) is convex. The contrasting results that we obtain

in the two cases offer predictions that could be empirically tested.

Regarding the analysis in Section 4, we maintained the assumption of 1/F (x) convex

throughout that section for consistency with our results in Section 3. However, our

results on the distribution of capital in Section 4 are more general. In fact, if 1/F (x) is

concave over the whole relevant range, one can follow the same proof strategy used for

Proposition 3 to verify that the result sill applies, namely that the firm benefits from

distributions of capital which are more unequal.

Proportional surplus. Our model has assumed that project success yields a fixed

surplus A > 0, and only the probability of success varies with the amount of capital

invested in the project. More generally, the surplus from project success may also be

a function of the investment. Consider a simple case in which success yields a surplus

Rx if capital x is invested in the project, for some R > θ. Given a scheme specifying

investments (xn)n∈S and returns (rn, kn)n∈S, the firm’s budget constraint then requires

that, for all profiles Y = (y1, . . . , yN),

N∑

n=1

rnynxn ≤
N∑

n=1

Rynxn and
N∑

n=1

knynxn ≤ 0. (BCR)

Relative to the original budget constraint (BC), this constraint places further restric-

tions on the firm’s scheme. In fact, note that given R, (BCR) implies (BC) under a fixed

surplus AR ≡ RXN , as both constraints require that the sum of payments under success

do not exceed this amount. But (BCR) adds restrictions, by requiring that the payment

to any agent under success be no larger than the surplus generated by the project when

only such an agent has invested. That is, the firm’s budget constraint now requires

maxn∈S rn ≤ R.

Despite this difference, we can show that the analysis of Section 3 continues to apply

to this setting. Specifically, given R, consider the firm’s problem in (P) when project

success yields a fixed surplus equal to AR. As just explained, this is a relaxed problem

relative to the firm’s proportional surplus problem that is subject to (BCR). Hence, it

follows that if the solution to (P) described in Proposition 1 and Proposition 2 satisfies

(BCR)—namely, if this solution specifies r∗n∗1 ≤ R—then it is also a solution to the firm’s

proportional surplus problem. Moreover, note that among all schemes guaranteeing

investments (xn)n∈S subject to (BC), the solution to (P) minimizes the highest return
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that the firm has to pay to any agent n ∈ S under success. Therefore, if the solution

described in Proposition 1 and Proposition 2 specifies r∗n∗1 > R, no scheme can guarantee

investments (xn)n∈S while satisfying (BCR).

A Proofs

Throughout the Appendix, we abbreviate Nash equilibrium by NE.

A.1 Proof of Lemma 1

As defined in Section 3.1, denote the aggregate capital of the first i agents in a permu-

tation π = (n1, . . . , nN) by Xi ≡
∑i

j=1 xnj
.

(=⇒) We begin by proving that (C1)-(C2) imply a permutation as described in the

lemma. Suppose that (C1)-(C2) hold under a given scheme. Note that by (C2), there

must exist an agent n1 who is willing to invest with the firm when no other agent does.

If this was not true, there would be a NE in which no agent invests and no agent is

indifferent between investing and not, contradicting (C2). Hence, we have:

r1F (X1) + k1 (1− F (X1)) ≥ θ. (7)

Additionally, by (C1), agent n1 must be willing to invest with the firm when all other

agents do. Otherwise, there would not be a NE in which all agents invest with the firm,

contradicting (C1). Hence, we also have:

r1F (XN) + k1 (1− F (XN)) ≥ θ. (8)

For any set of agents SI ⊆ S ∪ ∅, let X(SI) ≡
∑

i∈SI
xni

be the aggregate capital of

the agents in SI . Since F (X1) ≤ F (X1 +X(SI)) ≤ F (XN) for SI ⊆ {2, . . . , N} ∪ ∅,
equations (7) and (8) imply

r1F (X1 +X(SI)) + k1 (1− F (X1 +X(SI))) ≥ θ

for all SI ⊆ {2, . . . , N} ∪ ∅. Therefore, agent n1 is willing to invest with the firm no

matter what the other agents do.

We now proceed by induction: for any i ∈ {2, . . . , N − 1}, suppose that there is an

agent ni who is willing to invest with the firm if agents (n1, . . . , ni−1) invest, regardless
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of what the other agents do. Then there must be an agent ni+1 who is willing to invest

with the firm if agents (n1, . . . , ni) invest and the other agents do not. Otherwise, there

would be a NE in which agents (n1, . . . , ni) invest with the firm, agents (ni+1, . . . , nN) do

not, and no non-investing agent is indifferent between investing and not, contradicting

(C2). Thus, we have

ri+1F (Xi+1) + ki+1 (1− F (Xi+1)) ≥ θ. (9)

Moreover, by (C1), agent ni+1 must also be willing to invest with the firm when all other

agents do:

ri+1F (XN) + ki+1 (1− F (XN)) ≥ θ. (10)

Since F (Xi+1) ≤ F (Xi+1 +X(SI)) ≤ F (XN) for SI ⊆ {i+ 2, . . . , N}∪ ∅, equations (9)

and (10) imply

ri+1F (Xi+1 +X(SI)) + ki+1 (1− F (Xi+1 +X(SI))) ≥ θ

for all SI ⊆ {i+ 2, . . . , N} ∪ ∅. Therefore, agent ni+1 is willing to invest with the firm if

agents (n1, . . . , ni) invest with the firm, regardless of what the other agents do.

(⇐=) We next prove that a permutation as described in the lemma implies (C1)-(C2).

First, note that since each agent ni ∈ S is willing to invest if (n1, . . . , ni−1) invest no

matter what the rest does, it must be that each agent ni is willing to invest when all

other agents invest. Hence, there exists a NE in which all agents invest, yielding (C1).

Next, suppose by contradiction that (C2) does not hold, namely there exists a NE

in which some agents do not invest with the firm and all such agents strictly prefer not

to invest. Call the set of non-investing agents SNI . We claim that if all agents ni ∈ SNI
strictly prefer not to invest, then SNI must be empty. Clearly, n1 cannot be in SNI ,

as n1 is willing to invest with the firm no matter what the other agents do. So n1

must be in the set of agents who invest, call it SI . Now proceed by induction: for any

i ∈ {2, . . . , N − 1}, suppose that agents (n1, . . . , ni) are in SI . Then by the permutation

stated in the lemma, agent ni+1 is willing to invest with the firm, and thus she cannot

be in SNI either. It follows that no agent is in SNI . Therefore, in any NE in which SNI

is nonempty, at least one agent in SNI is willing to invest, yielding (C2).
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A.2 Proof of Proposition 1

We begin by proving the first part of the proposition. By Lemma 1, any optimal scheme

specifies some permutation π = (n1, . . . , nN) and returns (ri, ki)i∈S which satisfy, for

each i ∈ S and each j ∈ {i, . . . , N},

riF (Xj) + ki (1− F (Xj)) ≥ θ. (11)

As argued in the text, the firm’s budget constraint (BC) requires ki ≤ 0 for each i ∈ S.

Given this and θ > 0, equation (11) then requires ri > 0 for each i ∈ S. It follows

that ri > 0 ≥ ki for each i ∈ S, and thus the left-hand side of (11) is increasing in

F (Xj). Since F (Xj) is increasing in j, it follows that (11) holds for each i ∈ S and each

j ∈ {i, . . . , N} if and only if, for each i ∈ S,

riF (Xi) + ki (1− F (Xi)) ≥ θ. (12)

We show that optimality requires (12) to hold with equality for each i ∈ S. Suppose

by contradiction that there is an optimal scheme under which (12) holds as a strict

inequality for some i′ ∈ S. Then consider a perturbation in which we reduce ri′ by

ε > 0 arbitrarily small while keeping all other returns unchanged. Since (12) was a strict

inequality for i′, this constraint continues to be satisfied for all i ∈ S. It is also clear

that the budget constraint (BC) is relaxed by the perturbation. Moreover, note that the

firm’s expected payoff is

V =

(
A−

N∑

i=1

rixni

)
F (XN)−

N∑

i=1

kixni
(1− F (XN)) , (13)

which is decreasing in ri for any i ∈ S. Therefore, we obtain that the perturbation

increases the firm’s expected payoff while preserving incentives and the firm’s budget

constraint, and thus the original scheme cannot be optimal.

We next prove the second part of the proposition. By the claims above, any optimal

scheme specifies some permutation π = (n1, . . . , nN) and returns (ri, ki)i∈S satisfying

riF (Xi) + ki (1− F (Xi)) = θ (14)

for each i ∈ S. We show that it is optimal to set ki = 0 for each i ∈ S, which combined

with (14) implies ri = θ/F (Xi) for each i ∈ S. Suppose by contradiction that this is not
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the case, i.e. any optimal scheme has ki′ < 0 for some i′ ∈ S. (Recall that by the firm’s

budget constraint, ki ≤ 0 for all i ∈ S.) Then consider the following perturbation: for

any such i′, we increase ki′ by ε > 0 arbitrarily small and reduce ri′ by εηi′ , where

ηi′ ≡
1− F (Xi′)

F (Xi′)
.

Since we had ki′ < 0, the perturbed scheme continues to satisfy the firm’s budget con-

straint (BC). Moreover, by construction, the left-hand side of (14) is unchanged by the

perturbation, so the agents’ incentives are preserved. Finally, note that the perturbation

changes the firm’s expected payoff V in (13) by

ε
(F (XN)− F (Xi′))

F (Xi′)
,

which is positive (and strictly positive if i′ ∈ {1, . . . , N−1}). Therefore, the perturbation

increases the firm’s expected payoff while preserving incentives and the budget constraint.

Since we can perform this perturbation whenever ki < 0 for some i ∈ S, this contradicts

the assumption that an optimal scheme with ki = 0 for each i ∈ S does not exist.

Finally, we prove that if an optimal scheme exists, there exists an optimal scheme

specifying some permutation π = (n1, . . . , nN) and returns (r∗i , k
∗
i ) = (θ/F (Xi), 0) for

each i ∈ S. As shown above, any optimal scheme specifies some permutation π =

(n1, . . . , nN) and returns (ri, ki)i∈S such that (14) holds for each i ∈ S. It is clear that

for each agent ni, the return ri that satisfies this binding participation constraint is

decreasing in ki. Thus, given a permutation π, setting ki as high as possible for each

i ∈ S, subject to (BC), minimizes the firm’s costs under success,
∑N

i=1 rixni
. It follows

that setting ki = 0 for each i ∈ S maximally relaxes the firm’s budget constraint. As

we have shown that setting (r∗i , k
∗
i ) = (θ/F (Xi), 0) for some permutation π is optimal

subject to the budget constraint, this proves the claim.

A.3 Proof of Proposition 2

Assume that 1/F (x) is convex for all x ∈ [0, XN ]. We proceed in two steps.

Step 1. Define

Ψ (a, b, c) ≡ 1

c

(
1

F (a+ b)
− 1

F (a+ b+ c)

)
− 1

b

(
1

F (a+ c)
− 1

F (a+ b+ c)

)
. (15)
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We show that for any a ≥ 0 and b > c > 0 satisfying a+ b+ c ≤ XN ,

Ψ (a, b, c) ≤ 0. (16)

To prove this claim, observe that

Ψ (a, b, c) =
1

c

∫ b+c

b

F ′ (a+ z)

(F (a+ z))2dz −
1

b

∫ b+c

c

F ′ (a+ z)

(F (a+ z))2dz.

Define ψ (z̃) = cz̃+b2−c2
b

. Note that ψ is linear with ψ (c) = b, ψ (b+ c) = b + c, and

ψ′(z̃) = c
b
. Hence, a change of variables yields:

Ψ (a, b, c) =
1

b

∫ b+c

c

(
F ′ (a+ ψ(z̃))

(F (a+ ψ(z̃)))2 −
F ′ (a+ z̃)

(F (a+ z̃))2

)
dz̃. (17)

Note that given b > c, ψ (z̃) ≥ z̃ for all z̃ in the integration region. Given a ≥ 0 and

a + b + c ≤ XN , the assumption that 1/F (x) is convex for all x ∈ [0, XN ] then implies

that the integrand in (17) is (weakly) negative. The claim follows.

Step 2. By Step 1, (16) holds for any a ≥ 0 and b > c > 0 satisfying a+ b+ c ≤ XN .

Using (15), this inequality can be rewritten as

b

F (a+ b)
+

c

F (a+ b+ c)
≤ c

F (a+ c)
+

b

F (a+ b+ c)
. (18)

We now show that there is an optimal permutation π∗ = (n∗1, . . . , n
∗
N) satisfying

xn∗1 ≥ . . . ≥ xn∗N . (19)

Suppose that some permutation π = (n1, . . . , nN) is optimal. If π satisfies (19), we are

done. Suppose instead that (19) is not satisfied. Take the lowest index j < N for which

xnj
< xnj+1

. We perform a perturbation in which we swap agents nj and nj+1. Note

that this swap has no effect on Xi for any i < j or i > j + 1. Hence, the perturbation

only affects the jth and (j + 1)th terms of the sum in the firm’s costs in (5). Under the

original permutation, these terms sum to:

xnj

F
(
Xj−1 + xnj

) +
xnj+1

F
(
Xj−1 + xnj

+ xnj+1

) . (20)
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The perturbation changes the sum of these terms to:

xnj+1

F
(
Xj−1 + xnj+1

) +
xnj

F
(
Xj−1 + xnj

+ xnj+1

) (21)

Letting a = Xj−1, b = xnj+1
, and c = xnj

, it follows from (18) that the sum in (21) is no

larger than the sum in (20). Therefore, the perturbation (weakly) reduces the firm’s costs

and thus increases the firm’s expected payoff. Note that we can proceed by performing

this perturbation for the next pair of agents with (higher) indices (i, i + 1) such that

xni
< xni+1

, repeating until the permutation satisfies (19). Since each perturbation

increases the firm’s expected payoff and the original permutation was optimal, we obtain

that a permutation satisfying (19) is optimal.

A.4 Proof of Proposition 3

The distribution Ĥ can be obtained from the original distribution H by performing a

finite sequence of capital transfers from small to large investors (Rothschild and Stiglitz,

1970). Thus, it suffices to show that each such transfer makes the firm better off.

Without loss of generality, we can consider the first such transfer. Let the permutation

π = (n1, . . . , nN) be optimal under (xn)n∈S. Take any two agents nj and n` where j < `

and, thus, xnj
≥ xn`

. For any ∆ ∈ (0, xn`
], let (x̂n)n∈S be the result of transferring

∆ units of capital from agent n` to agent nj. We will show that the firm’s minimized

costs under (x̂n)n∈S are lower than its minimized costs under (xn)n∈S when keeping the

permutation π unchanged. Since the transfer does not change the probability of project

success (as it does not affect the aggregate capital of the agents), it will follow that the

firm’s expected payoff under (x̂n)n∈S is higher than that under (xn)n∈S when keeping

the permutation π unchanged. Clearly, changing to a permutation that is optimal under

(x̂n)n∈S can only increase the firm’s payoff from these investments further, so this is

sufficient to prove the claim.

To show that the transfer from agent n` to agent nj reduces the firm’s costs when

keeping the permutation unchanged, note first that the costs from returns paid to agents

ni with rank i < j and i > ` are unaffected. The change in the firm’s minimized costs

in (5), divided by the constant θ > 0, is thus equal to

∆

F (Xj + ∆)
− ∆

F (X`)
−

`−1∑

i=j

[
xni

F (Xi)
− xni

F (Xi + ∆)

]
. (22)
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Replacing F (Xj + ∆) by F (Xj) and xni
by xni+1

, (22) is no larger than

∆

F (Xj)
− ∆

F (X`)
−

`−1∑

i=j

xni+1

[
1

F (Xi)
− 1

F (Xi + ∆)

]
.

This expression can be rewritten as

∆
`−1∑

i=j

xni+1
Λi,

where

Λi =
1

xni+1

[
1

F (Xi)
− 1

F
(
Xi + xni+1

)
]
− 1

∆

[
1

F (Xi)
− 1

F (Xi + ∆)

]

=
1

xni+1

∫ Xi+xni+1

Xi

F ′ (z)

(F (z))2dz −
1

∆

∫ Xi+∆

Xi

F ′ (z)

(F (z))2dz.

Define ψ (z̃) =
xni+1 z̃−Xi(xni+1−∆)

∆
. Note that ψ is linear with ψ (Xi) = Xi, ψ (Xi + ∆) =

Xi + xni+1
, and ψ′(z̃) =

xni+1

∆
. Hence, a change of variables yields:

Λi =
1

∆

∫ Xi+∆

Xi

(
F ′ (ψ(z̃))

(F (ψ(z̃)))2 −
F ′ (z̃)

(F (z̃))2

)
dz̃. (23)

Note that since ∆ ≤ xn`
and xn`

≤ xni+1
for all j ≤ i ≤ ` − 1, we have ∆ ≤ xni+1

for

all j ≤ i ≤ `− 1. Thus, one can verify that ψ (z̃) ≥ z̃ for all z̃ in the integration region

and j ≤ i ≤ ` − 1. Given Xi ≥ 0 and Xi + xni+1
≤ XN for all j ≤ i ≤ ` − 1, the

assumption that 1/F (x) is convex for all x ∈ [0, XN ] then implies that the integrand in

(23) is (weakly) negative. It follows that Λi ≤ 0 for all j ≤ i ≤ `− 1 and thus (22) is no

larger than a (weakly) negative number. The claim follows.

A.5 Proof of Proposition 4

The distribution Ĥ can be obtained from the original distribution H by performing a

finite sequence of capital transfers from small to large investors (Rothschild and Stiglitz,

1970). Thus, it suffices to show that each such transfer weakly reduces the range of net

returns. Denote the original investments by (xn)n∈S and the resulting investments follow-

ing a transfer by (x̂n)n∈S. Let π = (n1, . . . , nN) and π̂ = (n̂1, . . . , n̂N) be permutations
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that rank the agents in decreasing size order under (xn)n∈S and (x̂n)n∈S respectively,

where we consider only agents with strictly positive amounts of capital. The smallest

investor’s expected net return is the same under (xn)n∈S and (x̂n)n∈S, as it is equal to

F (XN) θ
F (XN )

= θ regardless of how XN is distributed among the agents. The largest

investor’s expected net return is equal to F (XN) θ
F (xn1 )

under (xn)n∈S and F (XN) θ
F (x̂n̂1

)

under (x̂n)n∈S. Note that since (x̂n)n∈S is the result of a transfer from a smaller to a

larger investor, x̂n̂1 ≥ xn1 . Thus, given F increasing, it follows that the transfer either

reduces or keeps unchanged the net return of the largest investor. The claim follows.

A.6 Proof of Proposition 5

We consider the firm’s problem with initial capital W > 0. As stated, suppose 1/F (x)

is convex for x ∈ [0, X], X > 0, and there exists an optimal scheme guaranteeing

investments (xn)n∈S with XN ≤ X. We show that an optimal such scheme specifies a

permutation π∗ = (n∗1, . . . , n
∗
N) and returns (r∗i , k

∗
i )i∈S as described in the proposition.

Optimal returns. We begin by showing that an optimal scheme specifies returns

(r∗i , k
∗
i )i∈S for some permutation π = (n1, . . . , nN). Observe that the result in Lemma 1

applies to this setting without change. Hence, any optimal scheme specifies some per-

mutation π = (n1, . . . , nN) and returns (ri, ki)i∈S which satisfy, for each i ∈ S and each

j ∈ {i, . . . , N},
riF (W +Xj) + ki (1− F (W +Xj)) ≥ θ. (24)

Suppose first that ri ≥ ki for some i ∈ S. By the arguments in the proof of Proposi-

tion 1, we must then have ri ≥ θ and (24) holding with equality for j = i:

riF (W +Xi) + ki (1− F (W +Xi)) = θ. (25)

Suppose next that ri < ki for some i ∈ S. Then analogous arguments now yield ki > θ

and (24) holding with equality for j = N :

riF (W +XN) + ki (1− F (W +XN)) = θ. (26)

Let us define

ηi ≡
1− F (W +Xi)

F (W +Xi)
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and

η̃i ≡




ηi if ri ≥ ki

ηN if ri < ki.

Note that by (25) and (26), if ri 6= ki, changing ki by ε > 0 arbitrarily small and ri by

−εη̃i preserves agent i’s incentives.

The following four claims yield that the returns (r∗i , k
∗
i )i∈S described in the proposition

are optimal.

Claim 1: There is an optimal scheme satisfying r∗i ≥ k∗i for all i ∈ S.

Proof: Suppose by contradiction that ki > ri for some i ∈ S in any optimal scheme. Take

any such scheme and i ∈ S. By (24), ki > θ, and by (BCW ) and (24), kj < θ < rj for

some j 6= i. Consider a perturbation in which we increase kj by ε > 0 arbitrarily small

and reduce rj by εη̃j, while at the same time reducing ki by ε
xnj

xni

and increasing ri by

εη̃i
xnj

xni

. Note that η̃i = ηN and η̃j = ηj ≥ ηN . The perturbed scheme therefore continues

to satisfy the firm’s budget constraint (BCW ) and, by (25) and (26), it preserves the

agents’ incentives. Moreover, the perturbation changes the firm’s expected payoff V by

xnj
εF (W +XN)

(
ηj − ηN

)
.

If we can pick j < N , the perturbation strictly increases the firm’s expected payoff,

contradicting the optimality of the original scheme. So suppose that in the original

scheme, k` ≥ θ for all ` 6= N . Then we can perform the perturbation for j = N

without affecting the firm’s expected payoff. Moreover, we can continue performing

this perturbation until we obtain k` = θ = r` for all ` 6= N . Since the perturbation

keeps
∑

`∈S k`xn`
unchanged and we end up with

∑
`6=N k`xn`

= θ
∑

`6=N xn`
, the fact

that we must have started with
∑

`∈S k`xn`
≤ W < θXN implies that we end up with

kNxnN
< θxnN

. Thus, we obtain kN < θ < rN , and this completes the construction of

an optimal scheme with r` ≥ k` for all ` ∈ S.

Claim 2: There is an optimal scheme satisfying k∗i ≥ 0 for all i ∈ S.

Proof: By Claim 1 and (25), there is an optimal scheme satisfying

r∗iF (W +Xi) + k∗i (1− F (W +Xi)) = θ (27)

for all i ∈ S. Claim 2 then follows from analogous arguments to those used in the proof

of Proposition 1.
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Claim 3: There is an optimal scheme satisfying
∑

i∈S k
∗
i xni

= W .

Proof: Suppose by contradiction that
∑

i∈S kixni
< W in any optimal scheme. Take any

such scheme. Note that there must exist j ∈ S with kj < θ. Then consider a pertur-

bation in which we increase kj by ε > 0 arbitrarily small and reduce rj by εηj. Since∑
i∈S kixni

< W , the perturbed scheme continues to satisfy the firm’s budget constraint

(BCW ), and by (27) it preserves the agents’ incentives. Moreover, the perturbation

changes the firm’s expected payoff V by

xnj
ε

(F (W +XN)− F (W +Xj))

F (W +Xj)
,

which is positive (and strictly positive if j ∈ {1, . . . , N − 1}). Since we can perform this

perturbation until
∑

i∈S kixni
= W , we obtain a contradiction, proving the claim.

Claim 4: In any optimal scheme, k∗i ∈ (0, θ) for at most one agent ni ∈ S.

Proof: Suppose by contradiction that there exists an optimal scheme specifying ki, kj ∈
(0, θ) for some i, j ∈ S, i 6= j. Without loss, take i > j. Then we can perform a

perturbation like the one considered in Claim 1: we increase kj by ε > 0 arbitrarily small,

reduce rj by εη̃j, reduce ki by ε
xnj

xni

, and increase ri by εη̃i
xnj

xni

. Since η̃j = ηj > ηi = η̃i,

the perturbation satisfies the firm’s budget constraint, preserves the agents’ incentives,

and strictly increases the firm’s expected payoff V .

Optimal permutation. Given the characterization of the optimal returns, we next

show that the permutation π∗ = (n∗1, . . . , n
∗
N) described in the proposition is optimal.

Consider a scheme specifying some π = (n1, . . . , nN) and (r∗i , k
∗
i )i∈S. Note that for some

iW ∈ S, we have (r∗i , k
∗
i ) =

(
θ

F (W+Xi)
, 0
)

for all i < iW and (r∗i , k
∗
i ) = (θ, θ) for all

i > iW . It then follows from Proposition 2 that an optimal ranking of agents ni for

i < iW satisfies

xn1 ≥ . . . ≥ xniW−1
.

Furthermore, by Proposition 3 and 1/F (x) convex, any mean-preserving spread of the

distribution of (xni
)i<iW lowers the firm’s cost. Instead, for agents ni for i > iW , neither

the ranking of these agents nor the distribution of their capital affects the firm’s cost.

The reason is that the firm’s cost of raising (xni
)i>iW is simply equal to

∑
i>iW

θxni
.

Consequently, it follows that it is optimal for the firm to specify a permutation satisfying

xn1 ≥ . . . ≥ xniW−1
≥ xniW+1

≥ . . . ≥ xnN
.
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To complete the proof, we next show that an optimal permutation also satisfies

xniW−1
≥ xniW

≥ xniW+1
. Note that this follows immediately if iW = 1 or

∑
i>iW

θxni
=

W . Suppose that neither of these holds. The firm’s cost of raising xniW
is equal to

F (W +XN)xniW
r∗iW + (1− F (W +XN))xniW

k∗iW .

Substituting with the optimal returns, taking into account that min{θxniW
,WiW } =

WiW , yields

F (W +XN)

F (W +XiW )

[
xniW

θ −WiW (1− F (W +XiW )))
]

+ (1− F (W +XN))WiW .

Rearranging terms yields

F (W +XN)
θ

F (W +XiW )

[
xniW

− WiW

θ

]
+ θ

WiW

θ
.

This expression shows that the firm’s cost of raising xniW
is equal to the cost of paying net

returns (riW , kiW ) = (θ, θ) on the portion of capital WiW /θ and net returns (riW , kiW ) =(
θ

F (W+XiW
)
, 0
)

on the remaining portion xniW
−WiW /θ. By Proposition 3 and 1/F (x)

convex, it follows that a permutation satisfying xniW−1
≥ xniW

≥ xniW+1
is optimal.
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