
Self-Organising Transparent

Learning System

Xiaowei Gu

A thesis presented for the degree of

Doctor of Philosophy

School of Computing and Communications

Lancaster University, England

Supervisor: Prof. Plamen P. Angelov, Ph.D., D.Sc., FIEEE, FIET

September 2018

i

Abstract

Machine learning, as a subarea of artificial intelligence, is widely believed to reshape

the human world in the coming decades. This thesis is focused on both the unsupervised and

supervised self-organising transparent machine learning techniques. One particularly

interesting aspect is the transparent self-organising deep learning systems.

Traditional data analysis approaches and most of the machine learning algorithms are

built upon the basis of probability theory and statistics. The solid mathematical foundation of

the probability theory and statistics guarantees the good properties of these learning

algorithms when the amount of data tends to infinity and all the data comes from the same

distribution. However, the prior assumptions of the random nature and same distribution

imposed on the data generation model are often too strong and impractical in real

applications. Moreover, traditional machine learning algorithms also require a number of free

parameters to be predefined. However, without any prior knowledge of the problem, which is

often the case in real situations, the performance of the algorithms can be largely influenced

by the improper choice.

Deep learning-based approaches are currently the state-of-the-art techniques in the fields

of machine learning and computer vision. However, they are also suffering from a number of

deficiencies including the computational burden of training using huge amount of data, lack

of transparency and interpretation, ad hoc decisions about the internal structure, no proven

convergence for the adaptive versions that rely on reinforcement learning, limited

parallelisation and offline training, etc. These shortcomings largely all hinder the wider

applications of the deep learning in real situations.

The novel approaches presented in this thesis are developed within the Empirical Data

Analytics framework, which is an alternative, but more advanced computational methodology

to the traditional approaches based on the ensemble properties and mutual distribution of the

empirical discrete observations.

The novel self-organising transparent machine learning algorithms presented in this

work for clustering, regression, classification and anomaly detection are autonomous, self-

organising, data-driven and free from user- and problem- specific parameters. They do not

impose any data generation models on the data a priori, but are driven by the empirically

observed data and are able to produce the objective results without prior knowledge of the

ii

problems. In addition, they are highly efficient and suitable for large-scale static/streaming

data processing.

The newly proposed self-organising transparent deep learning systems are able to

achieve human-level performance comparable to or even better than the deep convolutional

neural networks on image classification problems with the merits of being fully transparent,

self-evolving, highly efficient, parallelisable and human-interpretable. More importantly, the

proposed deep learning systems have the ability of starting classification from the very first

image of each class in the same way as humans do.

Numerical examples based on numerous challenging benchmark problems and

comparisons conducted with the state-of-the-art approaches presented in this thesis

demonstrated the validity and effectiveness of the proposed new machine learning algorithms

and deep learning systems and show their potential for real applications.

iii

Statement of Originality

I, Xiaowei Gu, confirm that the work presented in this thesis is my own. Where

information has been derived from other sources, I confirm that this has been indicated in this

thesis.

iv

Acknowledgements

Firstly, my utmost gratitude goes to my parents for their unconditional supports

throughout the years. Without them, it will not be possible for me to pursue the Ph.D. degree

in UK. I am deeply grateful to my supervisor, Professor Plamen Angelov, for all the very

kind guidance and assistances he provided. The huge amount of time and efforts he spent on

supervising me and the invaluable knowledge and experience he shared with me play the key

role to my research advance. I am pleased to thank Professor Jose Principe and Dr. Dmitry

Kangin for all the discussions and help. Many thanks go to the supervisor in my Master

period in China, Professor Zhijin Zhao for the knowledge, sets of thinking and research skills

she unreservedly passed to me. I also need to express my appreciation to Dr. Shen, Prof.

Wang and Mr. Xu for their very kind help and supports.

v

Table of Contents
Abstract ... i

Statement of Originality .. iii

Acknowledgements .. iv

List of Figures ... ix

List of Tables ... xii

Abbreviations ... xiv

1. Research Overview .. 1

1.1. Motivation .. 1

1.2. Research Contribution .. 3

1.3. Methodology ... 4

1.4. Publication Summary ... 4

1.5. Thesis Outline ... 6

2. Research Background and Theoretical Basis .. 8

2.1. Data Analysis Methodologies Survey .. 8

2.1.1. Probability Theory and Statistics ... 8

2.1.2. Typicality and Eccentricity-based Data Analytics .. 11

2.1.3. Empirical Data Analytics .. 13

2.2. Computational Intelligence Methodologies Survey ... 20

2.2.1 Fuzzy Sets and Systems .. 20

2.2.2. Artificial Neural Networks .. 24

2.2.3. Evolutionary Computation .. 28

2.3. Machine Learning Techniques Survey ... 28

2.3.1. Cluster Algorithms .. 28

2.3.2. Classification Algorithms .. 34

2.3.3. Regression Algorithms .. 42

2.3.4. Anomaly Detection Algorithms .. 47

vi

2.4. Conclusion .. 47

3. Unsupervised Self-Organising Machine Learning Algorithms 49

3.1. Autonomous Data-Driven Clustering Algorithm ... 50

3.1.1. Offline ADD Algorithm .. 50

3.1.2. Evolving ADD Algorithm ... 54

3.1.3. Parallel Computing ADD Algorithm ... 59

3.2. Hypercube-Based Data Partitioning Algorithm ... 63

3.2.1. Offline HCDP Algorithm .. 64

3.2.2. Evolving HCDP Algorithm ... 66

3.3. Autonomous Data Partitioning Algorithm ... 69

3.3.1. Offline ADP Algorithm ... 69

3.3.2. Evolving ADP Algorithm .. 73

3.3.3. Handling the Outliers in ADP ... 75

3.4. Self-Organising Direction-Aware Data Partitioning Algorithm 76

3.4.1. Offline SODA Algorithm .. 76

3.4.2. Extension of the Offline SODA Algorithm ... 80

3.4.3. Evolving SODA Algorithm ... 82

3.5. Conclusion .. 85

4. Supervised Self-Organising Machine Learning Algorithms 87

4.1. Autonomous Learning Multi-Model Systems .. 87

4.1.1. General Architecture ... 87

4.1.2. Structure Identification .. 88

4.1.3. Parameter Identification .. 91

4.1.4. System Output Generation .. 92

4.2. Zero Order Autonomous Learning Multi-Model Classifier 94

4.2.1. Multiple-Model Architecture ... 94

4.2.2. Learning Process ... 95

vii

4.2.3. Validation Process ... 98

4.3. Self-Organising Fuzzy Logic Classifier ... 98

4.3.1. Offline Training ... 99

4.3.2. Online Self-Evolving Training .. 102

4.3.3. Validation Process ... 104

4.4. Autonomous Anomaly Detection ... 105

4.4.1. Identifying Potential Anomalies .. 105

4.4.2. Forming Data Clouds with Anomalies .. 106

4.4.3. Identifying Local Anomalies from Identified Data Clouds 107

4.5. Conclusion .. 108

5. Transparent Deep Learning Systems ... 109

5.1. Fast Feedforward Nonparametric Deep Learning Network 109

5.1.1. Architecture of FFNDL Network for Feature Extraction 110

5.1.2. Architecture of FFNDL Network for Classification 114

5.2. Deep Rule-Based Classifier .. 115

5.2.1. General Architecture ... 116

5.2.2. Image Transformation Techniques .. 118

5.2.3. Image Feature Extraction .. 120

5.2.4. Massively Parallel Fuzzy Rule Base ... 122

5.2.5. Decision-Making Mechanism ... 123

5.3. Semi-Supervised DRB Classifier ... 124

5.3.1. Semi-supervised Learning Process from Static Datasets 126

5.3.2. Learning New Classes Actively .. 128

5.3.3. Semi-supervised Learning from Data Streams .. 131

5.4. Examples of DRB Ensembles .. 134

5.4.1. DRB Committee for Handwritten Digits Recognition 134

5.4.2. A Cascade of DRB and SVM for Handwritten Digits Recognition 137

viii

5.4.3. DRB Ensemble for Remote Sensing Scenes ... 141

5.5. Conclusion .. 144

6. Implementation and Validation of the Developed Algorithms 145

6.1. Evaluation of the Unsupervised Learning Algorithms 145

6.1.1. Autonomous Data-Driven Clustering Algorithm .. 148

6.1.2. Hypercube-based Data Partitioning Algorithm ... 153

6.1.3. Autonomous Data Partitioning Algorithm .. 159

6.1.4. Self-Organising Direction-Aware Data Partitioning Algorithm 162

6.2. Evaluation of the Supervised Learning Algorithms ... 166

6.2.1. Autonomous Learning Multi-Model System ... 167

6.2.2. Zero Order Autonomous Learning Multi-Model Classifier 178

6.2.3. Self-Organising Fuzzy Logic Classifier .. 181

6.2.4. Autonomous Anomaly Detection Algorithm .. 188

6.3. Evaluation of the Transparent Deep Learning Systems 193

6.3.1. Fast Feedforward Nonparametric Deep Learning Network 193

6.3.2. Deep Rule-Based System .. 198

6.3.3. Semi-Supervised Deep Rule-Based Classifier .. 210

6.4. Conclusion .. 217

7. Conclusion and Future Work ... 218

7.1. Key Contribution .. 218

7.2. Future Work Plans .. 219

References ... 221

ix

List of Figures

Figure 1. Main procedure of the subjective approach for FRB system identification. ... 23

Figure 2. Main procedure of the objective approach for FRB system identification. 23

Figure 3. General architecture of a multilayer feedforward NN. 25

Figure 4. Example of a decision tree. .. 39

Figure 5. Architecture of the ANFIS. .. 44

Figure 6. Main procedure of the offline ADD clustering algorithm. 54

Figure 7. Main procedure of the evolving ADD clustering algorithm. 58

Figure 8. Architecture of the parallel computing ADD clustering algorithm. 59

Figure 9. Main procedure of the clustering process of the i
th

 streaming data processor . 62

Figure 10. Main procedure of the fusion process. ... 63

Figure 11. Main procedure of the offline HCDP algorithm. ... 66

Figure 12. Main procedure of the evolving HCDP algorithm. .. 68

Figure 13. Main procedure of the offline ADP algorithm. .. 72

Figure 14. Main procedure of the evolving ADP algorithm. .. 75

Figure 15. Main procedure of the offline SODA algorithm. ... 79

Figure 16. Main procedure of the offline SODA algorithm extension. 82

Figure 17. Main procedure of the evolving SODA algorithm. .. 85

Figure 18. Structure of the ALMMO system. ... 88

Figure 19. Main procedure of the learning process of the ALMMO system. 93

Figure 20. Multiple-model architecture of ALMMO-0. .. 95

Figure 21. Main procedure of the learning process of ALMMO-0 classifier. 97

Figure 22. Diagram of the SOFL classifier for offline training. 99

Figure 23. Main procedure of the offline training process of SOFL classifier. 102

Figure 24. Main procedure of the online training process of SOFL classifier. 104

Figure 25. Main procedure of AAD algorithm. ... 108

Figure 26. Architecture of the FFNDL network for feature extraction. 110

Figure 27. Architecture of the FFNDL network for classification. 114

Figure 28. General architecture of DRB classifier. ... 116

Figure 29. Architecture of the DRB classifier for semi-supervised learning. 125

Figure 30. Main procedure of the offline semi-supervised learning of SSDRB classifier.

.. 128

Figure 31. Misclassified images by VGG-VD-16 DCNN. .. 128

x

Figure 32. Main procedure of the active learning of SSDRB classifier. 131

Figure 33. Main procedure of the online semi-supervised learning of SSDRB classifier.

.. 133

Figure 34. Architecture of DRB committee for training. .. 135

Figure 35. Architecture of DRB committee for classification. 137

Figure 36. Diagram of the cascade of DRB ensemble and SVM. 138

Figure 37. Architecture of the DRB ensemble for training. .. 139

Figure 38. Architecture of the DRB ensemble for classification. 139

Figure 39. Architecture of the SVM conflict resolution classifier. 141

Figure 40. Architecture of the DRB ensemble for remote sensing scenes. 142

Figure 41. Structure of the DRB classifier for remote sensing scenes. 142

Figure 42. Image segmentation with different sliding windows. 143

Figure 43. Clustering results of the ADD algorithm on A2 and S2 datasets. 149

Figure 44. Partitioning results of the offline HCDP algorithm with different granularity.

.. 155

Figure 45. Partitioning results of the evolving HCDP algorithm with different

granularity. ... 156

Figure 46. Partitioning results of the ADP algorithm on Pen-based handwritten digits

recognition dataset and Letter recognition dataset... 160

Figure 47. Partitioning results of the SODA algorithm on Wine dataset and Multiple

features dataset. .. 163

Figure 48. The evaluation of the extension of the offline SODA algorithm for streaming

data. .. 164

Figure 49. Prediction result for the QQSRM problem. ... 168

Figure 50. The evolution of number of data clouds/fuzzy rules. 169

Figure 51. Prediction result for the S&P problem. .. 173

Figure 52. Overall classification accuracy on the four benchmark datasets. 180

Figure 53. Overall time consumption for training on the four benchmark datasets. 181

Figure 54. The average training time consumption with different amounts of training

samples. .. 184

Figure 55. The average training time consumption per sample during the online training.

.. 185

Figure 56. Visualization of the synthetic Gaussian dataset. .. 189

Figure 57. The identified potential anomalies and the data clouds formed by them. 190

xi

Figure 58. The identified anomalies by the AAD algorithm. .. 190

Figure 59. The identified anomalies by the ODRW algorithm. 191

Figure 60. Example images on human action recognition problem. 194

Figure 61. Example images on object classification problem. 195

Figure 62. Curves of classification accuracy of the four methods on MNIST dataset. . 196

Figure 63. Examples of images from the database of faces. ... 198

Figure 64. Examples of images from Singapore dataset. .. 199

Figure 65. Example Images from UCMerced dataset. .. 199

Figure 66. Example images of Caltech 101 dataset. ... 200

Figure 67. The relationship curve of training time and recognition accuracy with

different amount of training samples. .. 202

Figure 68. Architecture of the DRB classifier for face recognition. 203

Figure 69. Architecture of the DRB classifier for object recognition. 208

Figure 70. The average accuracy curve of the SSDRB classifier with different values of

φ. .. 211

Figure 71. The average accuracy of the SSDRB classifier with different values of L. . 213

Figure 72. Accuracy comparison of the semi-supervised approaches on UCMerced

dataset. ... 215

Figure 73. Accuracy comparison of the semi-supervised approaches on Singapore

dataset. ... 216

Figure 74. Accuracy comparison of the semi-supervised approaches on Caltech 101

dataset. ... 217

xii

List of Tables

Table 1. A comparison between three types of fuzzy rules ... 22

Table 2. Illustrative example of AnYa fuzzy rules with MNIST dataset 123

Table 3. Experimental settings of the comparative algorithms 146

Table 4. Details of benchmark datasets for evaluating ADD algorithm 148

Table 5. Computational efficiency study under different experimental setting 150

Table 6. Performance evaluation and comparison of the ADD algorithm 151

Table 7. Performance evaluation and comparison of the ADD algorithm (continue - part

1) .. 152

Table 8. Performance evaluation and comparison of the ADD algorithm (continue - part

2) .. 153

Table 9. Details of benchmark datasets for evaluating HCDP algorithm 154

Table 10. Performance evaluation and comparison of the HCDP algorithm 157

Table 11. Performance evaluation and comparison of the HCDP algorithm (continue)

.. 158

Table 12. Details of benchmark datasets for evaluating ADP algorithm 159

Table 13. Performance evaluation and comparison of the ADP algorithm 161

Table 14. Performance evaluation and comparison of the ADP algorithm (continue) . 162

Table 15. Details of benchmark datasets for evaluating SODA algorithm 163

Table 16. Performance evaluation and comparison of the SODA algorithm 165

Table 17. Performance evaluation and comparison of the SODA algorithm (continue)

.. 166

Table 18. Example of fuzzy rules identified from the learning progress 170

Table 19. Performance demonstration and comparison on QQSRM problem 172

Table 20. Performance demonstration and comparison on S&P problem 173

Table 21. Overall classification performance-offline scenario 175

Table 22. Confusion matrices and the classification accuracy on PIMA dataset 176

Table 23. The average true positive rates and true negative rates of the classification

results on occupancy detection dataset .. 177

Table 24. Overall classification performance-online scenario 177

Table 25. Details of benchmark datasets for evaluating ALMMO-0 classifier 178

Table 26. Confusion matrices of classification results on Monk’s problem 179

Table 27. Influence of granularity on classification performance 183

xiii

Table 28. Classification performance (in accuracy) with different amount of data for

offline training ... 184

Table 29. Classification performance (in accuracy) with different amount of data for

online training following the offline training with 15% of the data 185

Table 30. Performance evaluation and comparison for the SOFL classifier 187

Table 31. Identified anomalies from the user knowledge modelling dataset 192

Table 32. Performance comparison of the anomaly detection algorithms 193

Table 33. Recognition results and comparison on MNIST dataset 196

Table 34. Time consumption for training process of the FFNDL network 196

Table 35. Experimental results of the FFNDL network on image classification 197

Table 36. Comparison between the DRB ensembles and the state-of-the-art approaches

.. 201

Table 37. Computation time for the learning process per sub-system (in seconds) 202

Table 38. Comparison between the DRB classifier and the-state-of-the-art approaches

.. 204

Table 39. Visual examples of the AnYa type fuzzy rules ... 205

Table 40. Results with different amount of training samples .. 205

Table 41. Comparison between the DRB classifier and the state-of-the-art approaches on

Singapore dataset ... 206

Table 42. Results with different amount of training samples on the Singapore dataset 206

Table 43. Comparison between the DRB classifier and the state-of-the-art approaches on

UCMerced dataset .. 207

Table 44. Results with different amount of training samples on the UCMerced dataset

.. 208

Table 45. Comparison between the DRB classifier and the state-of-the-art approaches on

Caltech 101 dataset .. 209

Table 46. Results with different amount of training samples on the Caltech 101 dataset

.. 209

Table 47. Performance of the SSDRB classifier with different values of φ 211

Table 48. Performance of the SSDRB classifier with different values of L 212

Table 49. Comparison of the semi-supervised approaches on UCMerced dataset 214

Table 50. Comparison of the semi-supervised approaches on Singapore dataset 216

Table 51. Comparison of the semi-supervised approaches on Caltech 101 dataset 217

xiv

Abbreviations

AAD − Autonomous Anomaly Detection (Algorithm)

ADD − Autonomous Data-Driven (Clustering Algorithm)

ADP − Autonomous Data Partitioning (Clustering Algorithm)

ALMMO − Autonomous Learning Multi-Model (System)

ANFIS − Adaptive-Network-Based Fuzzy Inference System

ANN − Artificial Neural Network

APC − Affinity Propagation Clustering

ASR − Adaptive Sparse Representation

BOVW − Bag of Visual Words

CBDNET − Convolutional Deep Belief Network

CDF − Cumulative Distribution Function

CEDS − Clustering of Evolving Data Streams

CLFH − Learning Convolutional Feature Hierarchies

CNN − Convolutional Neural Network

CSAE − Convolutional Sparse Autoencoders

DBSCAN − Density-Based Spatial Clustering of Applications with Noise

DCNN − Deep Convolutional Neural Network

DDCAR − Data Density Based Clustering with Automated Radii

DECNNET − Deconvolutional Networks

DENFIS − Dynamic Evolving Neural-Fuzzy Inference System

DLNN − Deep Learning Neural Network

DPC − Density Peaks Clustering (Algorithm)

DRB − Deep Rule-Based (System)

DT – Decision Tree

EC – Evolutionary Computation

ECM – Evolving Clustering Method

EDA − Empirical Data Analytics

EFUNN − Evolving Fuzzy Neural Networks

ELMC − Evolving Local Means Clustering (Algorithm)

ETS − Evolving Takagi-Sugeno (Fuzzy System)

FCM – Fuzzy C-Means (Algorithm)

xv

FCMMS − Fuzzily Connected Multimodal Systems

FFNDL − Fast Feedforward Nonparametric Deep Learning

FRB − Fuzzy Rule-Based (System)

FWRLS − Fuzzily Weighted Recursive Least Squares

GGMC − Greedy Gradient Max-Cut (Algorithm)

HCDP − Hypercube-Based Data Partition (Algorithm)

HOG − Histogram of Oriented Gradients

ID3 − Iterative Dichotomiser 3

IID − Independent and Identically Distributed

KDE – Kernel Density Estimation

KNN – K-Nearest Neighbours

LAPSVM – Laplacian Support Vector Machine

LCLC – Local-Constraint Linear Coding

LGC – Local and Global Consistence

LSLR − Least Square Linear Regression

LSPM − Linear Spatial Pyramid Matching

MNSIT – Modified National Institute of Standards and Technology

MSC – Mean-Shift Clustering

NN – Neural Network

MUFL – Multipath Unsupervised Feature Learning

NMIBC – Nonparametric Mode Identification Based Clustering

NMMBC – Nonparametric Mixture Model Based Clustering

PDF − Probability Density Function

PMF − Probability Mass Function

QQSRM − QuantQuote Second Resolution Market

RBF − Radical Basis Function

RCNET − Random Convolutional Network

RDE − Recursive Density Estimation

RLSE – Recursive Linear Least-Square Estimator

RS – Random Swap (Algorithm)

RSN − Regularized Shearlet Network

SAFIS − Sequential Adaptive Fuzzy Inference System

xvi

SDAL21M − Sparse Discriminant Analysis via Joint L2,1-norm Minimization

SFC − Sparse Fingerprint Classification

SIFTSC − Scale-Invariant Feature Transform with Sparse Coding

SODA − Self-Organised Direction Aware

SOFL − Self-Organising Fuzzy Logic

SOM − Self-Organising Map

SPMK − Spatial Pyramid Matching Kernel

SSDRB − Semi-Supervised Deep Rule-Based

S&P − Standard and Poor

SUBC − Subtractive Clustering

SVM − Support Vector Machine

SWLSLR − Sliding Window Least Square Linear Regression

TEDA − Typicality-and Eccentricity-Based Data Analytics

TLFP − Two-Level Feature Representation

TSVM − Transductive Support Vector Machine

1

1. Research Overview

This chapter presents the research motivation and summary of the research

contributions, publications and the research methodology. The chapter is organised as

follows. Section 1.1 gives the research motivation. The research contributions are described

in section 1.2. The methodology and publication summary are given in section 1.3 and

section 1.4, respectively. This chapter is finished by the thesis outline.

1.1. Motivation

Nowadays, due to the more matured electronic manufacturing and information

technologies as well as the widely distributed sensors networks, astronomical amount of

streaming data is generated from every area of daily activities. As the world has already

entered the Era of Big Data, data-intensive technologies are now being extensively used by

the developed economies and numerous international organisations. Having realised the

underlying economic benefits in these data, an increasing number of companies, corporations

and research institutions are involved in developing more advanced data analytic and

processing technologies.

Traditional data analytic methodologies [1]–[4] heavily rely on the classical probability

theory and statistics. The appeals of the traditional data analytic methodologies come from

their solid mathematical foundations and their ability that is always guaranteed when the

amount of the data tends to infinity and all the data comes from the same distribution, as

stated by the classical probability theory. Indeed, the traditional probability theory and

statistics [1]–[4] assume the actual data to be realisations of imaginary random variables and

further assume the prior distributions of these variables. However, these appeals also clearly

demonstrate the problems/deficiencies of the traditional methodologies:

1) It is impossible to collect or process the infinity amount of observations;

2) The very strong prior assumptions are often impractical in the real cases;

3) The distribution of the data, or the generation model, is not clear in advance.

These problems/deficiencies more often lead the traditional data analytic approaches to

generate the subjective results, which undermine the effectiveness and correctness of the

traditional data analytic approaches

2

Heavily relying on the probability theory and statistics, traditional machine learning

technologies, i.e. clustering, classification, prediction, fault detection, etc., often need users to

predefine various kinds of parameters and prior assumptions in order to guarantee an

effective result [5]–[18]. These predefined parameters and assumptions usually require users

to have a certain extent of prior knowledge and expertise. However, the prior knowledge is

more often unavailable in real cases as the purpose of data analytics is to analyse and

understand the unknown data, not to study the well-understood ones. It is also practically

impossible to empirically predefine parameters for complex problems.

Moreover, most of the existing data processing technologies [5]–[18] were mainly built

upon the basis of the traditional data analytic methodologies [1]–[4]. One cannot expect that

these approaches can get rid of the deficiencies that the traditional probability theory and

statistics suffer from. These data processing technologies often simplify the real data

representation and assume the data following a specific distribution, i.e. the most widely used

Gaussian. The actual data considered in the machine learning literature is usually discrete (or

discretized), which in traditional probability theory and statistics are modelled as a realisation

of the random variable, but one does not know a priori their distribution. If the prior data

generation hypothesis is verified, good results can be expected; otherwise, this opens the door

for many failures.

Besides, many well-known algorithms [5], [6], [13]–[16] as well as some recently

published ones [10] are restricted to offline data processing. Many algorithms also lack the

ability of following the ever-changing data pattern in streaming data. They require a full

retraining when new data patterns emerge.

As the one of so-called latest developments in the fields of machine learning and

artificial intelligence, deep learning [19] is a hot research area attracting the attention of

machine learning researchers as well as the public. Relying on extracting high-level

abstractions in data by using a multiple layer structure composed of linear and non-linear

transformations, the published methods have presented very promising results in image

processing [20]–[24]. Nonetheless, there are three major deficiencies in the current deep

learning methods:

1) The features extracted and the steps to get them by the encoder-decoder methods

have low-level of human interpretability (are opaque) [19]–[22];

3

2) The training process is off-line and requires a large amount of time as well as

complex computational resources [22]–[24];

3) There are too many ad hoc decisions in terms of structures and parameters [20]–[24].

These deficiencies largely hinder the applications of the deep learning networks in real

problems.

Aiming at overcoming the deficiencies deeply rooted in the traditional probability

theory and statistics, Empirical Data Analytics (EDA) framework is a systematic

methodology of nonparametric quantities recently introduced in [25]–[27] based on the

ensemble properties and mutual distribution of the empirical discrete observations. It touches

the very foundation of data analytics and serves as a strong alternative to the traditional

statistics and probability theory, but is free from the paradoxes and problems that the

traditional approaches are suffering from [26], [27].

The focus of this thesis is the novel machine learning algorithms and deep learning

systems developed within the EDA framework. Compared with traditional ones, these new

approaches presented in this thesis have the following distinctive features:

1) They are self-organising and self-evolving;

2) They are free from prior assumptions and user- and problem- specific parameters;

3) Their structure and operating mechanism are transparent and human interpretable.

These properties of the new approaches presented in this thesis make them appealing

alternatives to both traditional and state-of-the-art methods.

1.2. Research Contribution

This research work focuses on the novel self-organising transparent learning systems.

During the research, the following main contributions have been achieved:

1) Four novel unsupervised machine learning approaches have been developed for

clustering and data partitioning, and they are evaluated on benchmark datasets;

2) Four novel supervised machine learning approaches have been developed for

classification, regressions and anomaly detection problems, and they are evaluated on

benchmark datasets and real-world high frequency trading problems;

4

3) Two new types of deep learning networks have been proposed for image

classification problems, and they have been applied to various challenging benchmark

datasets from different areas.

1.3. Methodology

This research work is focused on new machine learning algorithms and systems, which

consists of the following parts:

1) Theoretical concepts research;

2) Algorithm implementation;

3) Application and validation.

Based on the theoretical concepts research, the mathematical and analytical description

of the proposed approaches are formulated and investigated, which directly gives an evidence

of the validity and effectiveness of the approaches as well as a basic understanding of their

boundaries and limitations.

Then, the algorithm implementation is to show the practical feasibility of the theoretical

concepts as well as to augment the theoretical analysis.

For the last part, the implemented theoretical concept is tested on benchmark problems

for evaluating its applicability and validity, and it also gives an evidence of the effectiveness

of the algorithms in real situations.

1.4. Publication Summary

The research work presented in this thesis was described in the following publications in

the chronological order by the submission dates:

A. Journal Papers

P. Angelov, X. Gu, D. Kangin, Empirical data analytics, International Journal of

Intelligent Systems, vol. 32(12), pp. 1261-1284, 2017.

P. Angelov, X. Gu, J. Principe, A generalized methodology for data analysis, IEEE

Transactions on Cybernetics, vol. 48(10), pp. 2981 - 2993, 2018.

P. Angelov, X. Gu, J. Principe, Autonomous learning multi-model systems from data

streams, IEEE Transactions on Fuzzy Systems, vol. 26(4), pp. 2213-2224, 2018.

5

X. Gu, P. Angelov, D. Kangin, J. Principe, A new type of distance metric and its use for

clustering, Evolving Systems, vol. 8 (3), pp.167-177, 2017.

X. Gu, P. Angelov, D. Kangin, J. Principe, Self-organised direction aware data

partitioning algorithm, Information Sciences, vol. 423, pp. 80-95, 2017.

P. Angelov, X. Gu, Empirical Fuzzy Sets, International Journal of Intelligent Systems,

vol.33(2), pp. 362-395, 2018.

X. Gu, P. Angelov, C. Zhang, P. Atkinson, A massively parallel deep rule-based

ensemble classifier for remote sensing scenes, IEEE Geoscience and Remote Sensing

Letters, vol.15(3), pp. 345-349, 2018.

X. Gu, P. Angelov, J. Principe, A method for Autonomous data partitioning,

Information Sciences, vol. 460–461, pp. 65-82, 2018.

P. Angelov, X. Gu, Deep rule-based classifier with human-level performance and

characteristics, Information Sciences, vol. 463-464, pp. 196-213, 2018.

X. Gu, P. Angelov, Semi-supervised deep rule-based approach for image classification,

Applied Soft Computing, vol. 68, pp. 53-68, 2018.

X. Gu, P. Angelov, Self-organising fuzzy logic classifier, Information Sciences, vol.

447, pp. 36-51, 2018

B. Conference Papers

X. Gu, P. Angelov, A. Ali, W. Gruver, G. Gaydadjiev, Online evolving fuzzy rule-based

prediction model for high frequency trading financial data stream, in IEEE Conference

on Evolving and Adaptive Intelligent Systems (EAIS), Natal, Brazil, 2016, pp.169 - 175.

P. Angelov, X. Gu, G. Gutierrez, J. Iglesias, A. Sanchis, Autonomous data density based

clustering method, in International Joint Conference on Neural Networks (IJCNN) ,

Vancouver Canada, 2016, pp.2405-2413.

P. Angelov, X. Gu, D. Kangin, J. Principe, Empirical data analysis: a new tool for data

analytics, in IEEE International Conference on Systems, Man, and Cybernetics (SMC),

Budapest, Hungary 2016, pp. 000052 - 000059.

X Gu, P. Angelov, Autonomous data-driven clustering for live data stream, in IEEE

International Conference on Systems, Man, and Cybernetics (SMC), Budapest,

Hungary, 2016, pp. 001128 - 001135.

6

X. Gu, P. Angelov, G. Gutierrez, J. Iglesias, A. Sanchis, Parallel computing TEDA for

high frequency streaming data clustering, in INNS Conference on Big Data,

Thessaloniki, Greece, 2016, pp.238-253.

P. Angelov, X. Gu, Local modes-based free-shape data partitioning, in IEEE Symposium

Series on Computational Intelligence (SSCI), Athens, Greece, 2016 pp.1-8.

P. Angelov, X. Gu, J. Principe, Fast feedforward non-parametric deep learning network

with automatic feature extraction, in International Joint Conference on Neural Networks

(IJCNN), Anchorage, Alaska, USA, 2017, pp. 534-541.

Angelov, X. Gu, Autonomous learning multi-model classifier of 0-order (ALMMo-0),

in IEEE International Conference on Evolving and Adaptive Intelligent Systems (EAIS),

Ljubljana, Slovenia, 2017, pp. 1-7.

X. Gu, P. Angelov, Autonomous anomaly detection, in IEEE International Conference

on Evolving and Adaptive Intelligent Systems (EAIS), Ljubljana, Slovenia, 2017, pp. 1-

8.

P. Angelov, X. Gu, MICE: Multi-layer multi-model images classifier ensemble, in IEEE

International Conference on Cybernetics (CYBCONF), Exeter, UK, 2017, pp. 1-8.

P. Angelov, X. Gu, A Cascade of deep learning fuzzy rule-based image classifier and

SVM, in IEEE International Conference on Systems, Man, and Cybernetics (SMC2017),

Banff, Canada, 2017, pp. 746-751.

1.5. Thesis Outline

The remainder of the thesis is organised as follows.

Chapter 2 - Research Background and Theoretical Basis: contains three parts, the data

analysis methodologies survey, computational intelligence methodologies survey and

machine learning techniques survey. The review serves as the research background and the

theoretical basis of the research works presented in the thesis.

Chapter 3 - Self-Organising Unsupervised Machine Learning Algorithms: proposes

four different unsupervised machine learning algorithms for clustering and data partitioning,

1) autonomous data-driven clustering algorithm [28]–[30]; 2) hypercube-based data

partitioning algorithm; 3) autonomous data partitioning algorithm [31] and 4) self-organising

direction-aware data partitioning algorithm [32], [33]. These approaches are developed within

7

the EDA computational framework, and thus, are nonparametric, self-organising and entirely

data-driven.

Chapter 4 - Self-Organising Supervised Machine Learning Algorithms: proposes a

first-order autonomous learning multi-model system for regression and classification [34], a

zero-order autonomous learning multi-model classifier [35], a self-organising fuzzy logic

classifier [36] and an autonomous anomaly detection algorithm [37]. These approaches are

also developed within the EDA framework, therefore, they are free from problem- and user-

specific parameters and prior assumptions.

Chapter 5 - Transparent Deep Learning Systems: proposes a fast feedforward

nonparametric deep learning network [38] and deep rule-based systems [39] for image

classification. The semi-supervised, active learning mechanism of the deep rule-based system

is presented [40]. Some successful examples of deep rule-based ensemble classifiers are also

given [41]–[43]. Compared with other deep learning approaches, the deep learning systems

developed within the EDA framework are transparent, nonparametric, feedforward, human

interpretable and free from ad hoc decisions.

Chapter 6 - Implementation and Validation of the Developed Algorithms: presents

numerical examples based on benchmark problems for validating the algorithms presented in

this thesis. A number of state-of-the-art approaches are involved for comparison for a better

evaluation [28]–[43].

Chapter 7 - Conclusion and Future Work: summarises this thesis and gives the

directions for further work.

8

2. Research Background and Theoretical Basis

In this chapter, a review of data analysis methodologies, computational intelligence

methodologies and machine learning techniques is presented serving as the research

background and the theoretical basis of this thesis.

2.1. Data Analysis Methodologies Survey

Data analysis can be described as a process of describing, illustrating and evaluating

data with the goal of discovering useful information, suggesting conclusions, and supporting

decision-making. Besides the engineering, natural sciences and economics, nowadays, other

scientific areas, i.e. biomedical, social science, etc., are also becoming data-centred.

In this section, the traditional data analytics approach (probability theory and statistics)

and the more recently introduced data-centred ones are reviewed.

2.1.1. Probability Theory and Statistics

A key concept in the field of pattern recognition is “uncertainty” [2], [3]. Uncertainty

exists in our daily lives as well as in every discipline in science, engineering, and technology.

Many actions have consequences that are unpredictable in advance just like tossing a coin or

throwing a dice, both of which are simple daily examples. Some of the more complex

examples can be, for example, stock prices changes, foreign currency exchange rates.

Probability theory is about such actions and their consequences. It starts with the idea of an

experiment, being a course of action whose consequence is not predetermined and this

experiment is reformulated as a mathematical object called a probability space [44]. Given

any experiment involving chance, there is a corresponding probability space, and the study of

such spaces is called probability theory [44].

Probability theory provides a consistent framework for the quantification and

manipulation of uncertainties and forms one of the central foundations for pattern recognition

and data analysis [2], [3]. Probability theory serves as the mathematical foundation for

statistics [3] and is essential to many human activities that involve quantitative analysis of

data. The core of the statistical approaches is the definition of a random variable, i.e. a

functional measure from the space of events to the real line, which defines the probability

theory [1]–[4]. Methods of probability theory also apply to study the average behaviour of a

mechanical system, where the state of the system is uncertain, as in the field of statistical

mechanics [45].

9

2.1.1.1. Discrete Probability Distribution

Initially, the probability theory considers only the discrete random variables, where the

concept of “discrete” means that the random variables take only finite or countably finite

values in the data space. A probability mass function (PMF) is a function that describes the

probability that a discrete random variable is exactly equal to some value. The PMF is the

primary means of defining a discrete probability distribution, and PMFs exist for random

variables including the multivariate ones in the discrete domains. The formal definition of a

PMF is as [44]:

For a random variable 𝑥 with the value range {𝑥} = {𝑥1, 𝑥2, 𝑥3, … } (finite or countable

infinite), the function,

𝑃𝑥(𝑥𝑘) = P(𝑥 = 𝑥𝑘) for 𝑘 = 1,2,3, …, (2.1)

is called the PMF of 𝑥, where the subscript 𝑥 indicates that this is the PMF of the random

variable, 𝑥 . As one can see from equation (2.1), PMF is a function that describes the

probabilities of the possible values for a random variable and the PMF is defined within a

certain range. In general, there is:

𝑃𝑥(𝑥) = {
P(𝑥) 𝑥 ∈ {𝑥}

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, (2.2)

and PMFs have the following properties [44]:

0 ≤ 𝑃𝑥(𝑥) ≤ 1; (2.3)

∑ 𝑃𝑥(𝑥)𝑥∈{𝑥} = ∑ P(𝑥)𝑥∈{𝑥} = 1; (2.4)

For {𝑥}𝑜 ⊆ {𝑥}, 𝑃𝑥(𝑥 ∈ {𝑥}𝑜) = ∑ P(𝑥)𝑥∈{𝑥}𝑜 . (2.5)

The cumulative distribution function (CDF) of the random variable 𝑥, evaluated at 𝑥𝑜, is

defined as:

𝐹𝑥(𝑥𝑜) = ∑ P(𝑦)𝑦∈{𝑥}∧𝑦≤𝑥𝑜
. (2.6)

From equation (2.6) one can see that for the discrete random variable 𝑥 , the

corresponding CDF increases only at the points where it “jumps” to a higher value, and is

constant between these jumps. The points where jumps occur are precisely the values that the

random variable 𝑥 may take. Therefore, the CDF of a discrete random variable is a

discontinuous function.

10

2.1.1.2. Continuous Probability Distribution

 Modern probability theory also considers the continuous random variables. A

probability density function (PDF) of a continuous random variable, is a function, whose

value at any given point in its value range can be interpreted as providing a relative likelihood

that the value of the random variable would be equal to that sample, meanwhile, the absolute

likelihood for a continuous random variable to take on any particular value is 0 [44].

In fact, the PDF is used to specify the probability of the random variable falling within a

particular range of values, as opposed to taking on any single value. This probability is given

by the integral of this variable’s PDF over that range.

For a continuous random variable, the probability for it to fall in to the value range of

[𝑥1, 𝑥2] is calculated as [44]:

𝑃𝑥(𝑥1 < 𝑥 < 𝑥2) = ∫ 𝑓𝑥(𝑥)𝑑𝑥
𝑥2

𝑥=𝑥1
, (2.7)

where 𝑓𝑥(𝑥) stands for the PDF of 𝑥. And the CDF of x calculated at 𝑥𝑜 is defined as [44]:

𝐹𝑥(𝑥𝑜) = ∫ 𝑓𝑥(𝑥)𝑑𝑥
𝑥𝑜

𝑥=−∞
, (2.8)

from which one can see that, the CDF of a continuous random variable is a continuous

function.

PDFs have the following similar properties as the PMFs have:

0 ≤ 𝑓𝑥(𝑥), (2.9)

∫ 𝑓𝑥(𝑥)𝑑𝑥
+∞

𝑥=−∞
= 1. (2.10)

One of the commonly used PDFs is the Gaussian function.

2.1.1.3. Problems in Probability Theory and Statistics

Kolmogorov defined the general problem of probability theory as follows [46]:

“Given a CDF, describe outcomes of random experiments for a given theoretical

model.”

Vapnik and Izmailov defined the general problem of statistics as follows [47]:

“Given independent and identically distributed (IID) observations of outcomes of the

same random experiments, estimate the statistical model that defines these observations.”

11

Traditional probability theory and statistics have strong and often impractical

requirements and assumptions. They also assume the random nature for the variables [26].

Indeed, the appeal of the traditional statistical approach is its solid mathematical foundation

and the ability to provide guaranteed performance when data is plenty and created from the

same distribution that is hypothesized in the probability law [27]. However, in the field of

machine learning, the actual data considered is usually discrete (or discretised), which in

probability theory and statistics are modelled as the realisations of the random variables.

Moreover, one does not know a priori their distribution. Good results can only be expected on

condition that the prior data generation hypothesis is verified. Otherwise, this opens the door

for failures, namely, meaningless results [27].

Even in the case that the hypothesised measure meets the realisations, one has to address

the difference of working with realisations and random variables, which brings the issue of

choosing estimators of the statistical quantities necessary for data analysis [27]. Moreover,

different estimators may provide different results. The reason is very likely that the functional

properties of the estimators do not preserve all the properties embodied in the statistical

quantities. Therefore, they behave differently in the finite (and even in the infinite) sample

cases [27].

One can conclude that, the major problem of the traditional data analytic approaches is

lying in the strong prior assumptions, which often fail in the reality. As a result, there is a

growing demand for alternative new concepts for data analysis that are centred at the actual

data collected from the real world rather than at theoretical prior assumptions that need to be

confronted for verification with the experimental data as is the case within the traditional

statistical approaches.

2.1.2. Typicality and Eccentricity-based Data Analytics

With this need identified (as stated in the end of the previous section), the so-called

Typicality- and Eccentricity-based Data Analytics (TEDA) approach was introduced in [48]–

[50] as a new concept to address these problems. The core idea of the TEDA approach [48] is

to use the data typicality and eccentricity scores calculated from the data for analysing its

ensemble properties. As it is concluded in [51], TEDA is a data analytics approach to a “per

point” online data analysis without making unrealistic assumptions.

TEDA framework includes the following three operators:

1) Cumulative proximity;

12

2) Eccentricity;

3) Typicality.

However, TEDA only considers discrete and unimodal operators with the condition that the

operators sum up to 1, not integrate to 1. Development of this concept into a systematic

framework under the name of Empirical Data Analytics (EDA) framework was done in [25]–

[27], and this PhD work was instrumental to this development. In the remainder of this

subsection, the three TEDA operators are summarised. The details of EDA framework will be

presented in the next subsection.

First of all, a real metric space 𝐑𝑀 and a particular data set/stream

{𝒙}𝐾 = {𝒙1, 𝒙2, … , 𝒙𝐾} (𝒙𝑖 = [𝑥𝑖,1, 𝑥𝑖,2, … , 𝑥𝑖,𝑀]
𝑇

∈ 𝐑𝑀) are considered, where 𝐾 > 2 ; the

subscripts denote data samples (for a set) or the time instances when they arrive (for a

stream). In the remainder of this thesis, all the mathematical derivations are conducted in the

𝐾𝑡ℎ time instance by default except when specially declared. The most obvious choice of 𝐑𝑀

is the Euclidean space, but TEDA definitions can be extended to Hilbert space as well.

2.1.2.1. Cumulative Proximity

Cumulative proximity, 𝑞, was firstly introduced in [48]–[50], which can be seen as a

square form of farness. It plays an important role in the TEDA framework and is derived

empirically from the observations without making any prior assumptions on the generation

model of the data. The cumulative proximity at 𝒙𝑖 , denoted by 𝑞𝐾(𝒙𝑖) , is expressed as

(𝑖 = 1,2,3, … , 𝐾):

𝑞𝐾(𝒙𝑖) = ∑ 𝑑2(𝒙𝑖, 𝒙𝑗)
𝐾
𝑗=1 , (2.11)

where 𝑑(𝒙𝑖, 𝒙𝑗) denotes the distance/dissimilarity between 𝒙𝑖 and 𝒙𝑗 , which can be of any

type.

2.1.2.2. Eccentricity

Eccentricity, 𝜉, is defined as the normalised cumulative proximity [48], [49]. It is an

important measure of the ensemble property qualifying data samples away from the mode,

and it is useful to disclose distribution tails and anomalies/outliers. The eccentricity at 𝒙𝑖,

denoted by 𝜉𝐾(𝒙𝑖), is expressed as (𝑖 = 1,2,3, … , 𝐾):

𝜉𝐾(𝒙𝑖) =
2𝑞𝐾(𝒙𝑖)

∑ 𝑞𝐾(𝒙𝑗)
𝐾
𝑗=1

=
2∑ 𝑑2(𝒙𝑖,𝒙𝑗)

𝐾
𝑗=1

∑ ∑ 𝑑2(𝒙𝑗,𝒙𝑘)𝐾
𝑘=1

𝐾
𝑗=1

, (2.12)

13

where the coefficient 2 is used because the distance between 𝒙𝑖 and 𝒙𝑗 is counted twice in the

denominator. From equation (2.12) one can see that 0 ≤ 𝜉𝐾(𝒙𝑖) ≤ 1 , and there is

∑ 𝜉𝐾(𝒙𝑗)
𝐾
𝑗=1 = 2.

Eccentricity can also be normalised as [49]:

𝜁𝐾(𝒙𝑖) =
𝜉𝐾(𝒙𝑖)

2
 . (2.13)

Therefore, for the normalised eccentricity, there is ∑ 𝜁𝐾(𝒙𝑗)
𝐾
𝑗=1 = 1

2.1.2.3. Typicality

Typicality, 𝜏, is defined as a complement of eccentricity (𝑖 = 1,2,3, … , 𝐾):

𝜏𝐾(𝒙𝑖) = 1 − 𝜉𝐾(𝒙𝑖). (2.14)

One can tell from the above that the typicality also can be summed up to a constant:

∑ 𝜏𝐾(𝒙𝑖)
𝐾
𝑗=1 = 𝐾 − 2, (2.15)

and it can be normalised as:

𝑡𝐾(𝒙𝑖) =
𝜏𝐾(𝒙𝑖)

𝐾−2
. (2.16)

Similar to the normalised eccentricity, the sum of the normalised typicality is sum up to

1, ∑ 𝑡𝐾(𝒙𝑖)
𝐾
𝑗=1 = 1.

The three TEDA operators can be updated recursively online on a sample-by-sample

basis, and the recursive calculation expressions are of paramount in streaming data

processing, the details of which can be found in [48]–[51].

2.1.3. Empirical Data Analytics

The latest development in the field of data analysis, Empirical Data Analytics (EDA)

computational methodology takes the TEDA framework one level further.

As a systematic methodology of nonparametric quantities introduced in [25]–[27] based

on the ensemble properties and mutual distribution of the empirical discrete observations, the

EDA framework is a strong alternative to the traditional statistics and probability theory, but

is free from the paradoxes and problems that the traditional approaches are suffering from

[26], [27]. This is because that all the non-parametric EDA quantities are derived from the

empirically observed data without making any prior assumptions or using predefined

parameters. Thus, it can be viewed as a powerful extension of the traditional probability

theory and statistical learning.

14

EDA framework touches the very foundation of data analytics, and thus, there are a

wide range of applications including, but not limited to, data analysis, clustering, data

partitioning, classification, prediction, anomaly detection, fuzzy rule-based (FRB) system,

deep rule-based (DRB) system, etc.

EDA also serves as the main theoretical basis of the self-organising transparent machine

learning techniques presented in this thesis. In this subsection, the nonparametric discrete

quantities within EDA framework and their corresponding recursive expressions are

summarised. The relationship between EDA quantities and the well-known Chebyshev

inequality [52] is presented as well.

The nonparametric discrete EDA quantities include:

1) Cumulative proximity;

2) Eccentricity and standardised eccentricity;

3) Unimodal and multimodal density;

4) Unimodal and multimodal typicality.

EDA framework shares the same expressions for cumulative proximity and eccentricity

with TEDA, but redefines the typicality in two different versions (unimodal and multimodal),

and further introduces standardised eccentricity, unimodal and multimodal density.

However, it has to be stressed that the EDA framework is not limited to the concepts

presented in this thesis, but to a much wider range in both discrete and continuous domains

[25]–[27].

Firstly, in addition to the TEDA framework presented in section 2.1.2, within the data

set/stream {𝒙}𝐾, it is further taken into consideration that some data samples may repeat more

than once, namely ∃𝒙𝑖 = 𝒙𝑗 , 𝑖 ≠ 𝑗. The set of the sorted unique data samples, denoted by

{𝒖}𝑁 = {𝒖1, 𝒖2, … , 𝒖𝑁}, and the corresponding number of occurrence, denoted by {𝑓}𝑁 =

{𝑓1, 𝑓2, … , 𝑓𝑁} (∑ 𝑓𝑗
𝑁
𝑗=1 = 𝐾), can be obtained automatically from the data, where 𝑁 denotes

the number of unique data samples. With {𝒖}𝑁 and {𝑓}𝑁, the primary data set/stream can be

constructed.

15

2.1.3.1. Standardised Eccentricity

As the value of eccentricity decreases very fast with the increase of the amount of data,

K (see equation (2.12)), the standardised eccentricity, 𝜀, is introduced as (𝑖 = 1,2,3, … , 𝐾)

[48], [49]:

 𝜀𝐾(𝒙𝑖) = 𝐾𝜉𝐾(𝒙𝑖) =
2𝑞𝐾(𝒙𝑖)

1

𝐾
∑ 𝑞𝐾(𝒙𝑗)

𝐾
𝑗=1

=
2∑ 𝑑2(𝒙𝑖,𝒙𝑗)

𝐾
𝑗=1

1

𝐾
∑ ∑ 𝑑2(𝒙𝑗,𝒙𝑘)𝐾

𝑘=1
𝐾
𝑗=1

. (2.17)

There is ∑ 𝜀𝐾(𝒙𝑗)
𝐾
𝑗=1 = 2𝐾.

2.1.3.2. Unimodal density

Unimodal density, D, was firstly introduced in [48] and is redefined as the inverse of

standardised eccentricity in [25], [26]. It plays as the indictor of the main mode within EDA

framework. The unimodal density at 𝒙𝑖, denoted by 𝐷𝐾(𝒙𝑖), is given as (𝑖 = 1,2,3, … , 𝐾):

𝐷𝐾(𝒙𝑖) = 𝜀𝐾
−1(𝒙𝑖) =

∑ 𝑞𝐾(𝒙𝑗)
𝐾
𝑗=1

2𝐾𝑞𝐾(𝒙𝑖)
=

∑ ∑ 𝑑2(𝒙𝑗,𝒙𝑘)𝐾
𝑘=1

𝐾
𝑗=1

2𝐾 ∑ 𝑑2(𝒙𝑖,𝒙𝑗)
𝐾
𝑗=1

, (2.18)

where 0 ≤ 𝐷𝐾(𝒙𝑖) ≤ 1. Unimodal density, in both the discrete and continuous forms, is very

fundamental and resembles the membership functions of fuzzy sets, which represents the

degree of truth in fuzzy logic and can take any value from the interval [0,1] [53]. More

details of fuzzy sets and systems are given in section 2.2.1. The link between the unimodal

density and membership function is explained in detail in [54].

2.1.3.3. Multimodal density

Multimodal density, 𝐷𝐺 [25]–[27] is valid at the unique data samples only. The

multimodal density at the unique data sample 𝒖𝑖 (𝑖 = 1,2,3, … ,𝑁), denoted by 𝐷𝐾
𝐺(𝒖𝑖), is

defined as the combination of the unimodal density weighted by the corresponding frequency

of occurrence of this unique data sample 𝑓𝑖 as:

𝐷𝐾
𝐺(𝒖𝑖) = 𝑓𝑖𝐷𝐾(𝒖𝑖) = 𝑓𝑖

∑ ∑ 𝑑2(𝒙𝑗,𝒙𝑘)𝐾
𝑘=1

𝐾
𝑗=1

2𝐾 ∑ 𝑑2(𝒙𝑖,𝒙𝑗)
𝐾
𝑗=1

. (2.19)

The expression of 𝐷𝐺 is fundamental because it combines information about the

frequencies of occurrence of data samples and their locations in the data space.

2.1.3.4. Unimodal Typicality

In EDA framework, the typicality in the TEDA is redefined and renamed as the

unimodal typicality, which is the normalised data density [25]–[27]. The unimodal typicality

at 𝒙𝑖, denoted by 𝜏𝐾(𝒙𝑖), is given as (𝑖 = 1,2,3, … , 𝐾):

16

𝜏𝐾(𝒙𝑖) =
𝐷𝐾(𝒙𝑖)

∑ 𝐷𝐾(𝒙𝑘)𝐾
𝑘=1

=
∑ 𝑑−2(𝒙𝑖,𝒙𝑗)

𝐾
𝑗=1

∑ ∑ 𝑑−2(𝒙𝑗,𝒙𝑘)𝐾
𝑘=1

𝐾
𝑗=1

. (2.20)

The unimodal typicality resembles the traditional unimodal PMF, but is automatically

defined in the data support unlike the PMF which may have nonzero values for infeasible

values of the random variable unless being specifically constrained [27].

2.1.3.5. Multimodal typicality

The multimodal typicality is newly introduced in EDA [25]–[27], which is directly

derived from the experimental data with the ability of providing multimodal distributions

automatically without the need of user decisions or any processing techniques [27]. The

multimodal typicality at a unique data sample 𝒖𝑖 (𝑖 = 1,2,3, … ,𝑁), denoted by 𝜏𝐾
𝐺(𝒖𝑖), is

expressed as a combination of the normalised unimodal density weighted by the

corresponding frequency of occurrence, 𝑓𝑖:

𝜏𝐾
𝐺(𝒖𝑖) =

𝑓𝑖𝐷𝐾(𝒖𝑖)

∑ 𝑓𝑘𝐷𝐾(𝒖𝑘)𝐾
𝑘=1

=
∑ 𝑓𝑖𝑑

−2(𝒖𝑖,𝒖𝑗)
𝐾
𝑗=1

∑ ∑ 𝑓𝑘𝑑−2(𝒖𝑗,𝒖𝑘)𝐾
𝑘=1

𝐾
𝑗=1

. (2.21)

The multimodal typicality has the following properties [27]:

1) Sums up to 1;

2) The value is within [0, 1];

3) Provides a closed analytic form;

4) No requirement for prior assumptions as well as any user- or problem- specific

thresholds and parameters;

5) Its value calculated on infeasible data is always zero.

2.1.3.6. Recursive Expressions

The recursive calculation expressions of the nonparametric EDA quantities play a

significant role in streaming data processing. They ensure the processing techniques to be of

one-pass type, and thus, minimise both the memory- and computation- loads.

A. General case

The general recursive expressions of the EDA quantities are given as follows [55]:

𝑞𝐾(𝒙𝑖) = 𝑞𝐾−1(𝒙𝑖) + 𝑑2(𝒙𝑖 , 𝒙𝐾); (2.22)

∑ 𝑞𝐾(𝒙𝑗)
𝐾
𝑗=1 = ∑ 𝑞𝐾−1(𝒙𝑗)

𝐾−1
𝑗=1 + 2𝑞𝐾(𝒙𝐾). (2.23)

17

With equations (2.22) and (2.23), all the EDA quantities given in the previous section

can be recursively calculated for all types of distance metric/dissimilarity. If the Euclidean

distance, Mahalanobis distance, cosine dissimilarity or some other types of

distances/dissimilarity are used, one can have more elegant recursive expressions.

B. Euclidean distance case

Using Euclidean distance, defined as 𝑑(𝒙𝑖, 𝒙𝑗) = ‖𝒙𝑖 − 𝒙𝑗‖ = √(𝒙𝑖 − 𝒙𝑗)
𝑇
(𝒙𝑖 − 𝒙𝑗),

the recursive expression of 𝑞𝐾(𝒙𝑖) and ∑ 𝑞𝐾(𝒙𝑗)
𝐾
𝑗=1 are given as:

𝑞𝐾(𝒙𝑖) = 𝐾(‖𝒙𝑖 − 𝝁𝐾‖2 + 𝑋𝐾 − ‖𝝁𝐾‖2); (2.24)

∑ 𝑞𝐾(𝒙𝑗)
𝐾
𝑗=1 = 2𝐾2(𝑋𝐾 − ‖𝝁𝐾‖2), (2.25)

where 𝝁𝐾 and 𝑋𝐾 are the means of {𝒙}𝐾 and {‖𝒙‖2}𝐾 , respectively, and both of them can

be updated recursively as:

𝝁𝐾 =
𝐾−1

𝐾
𝝁𝐾−1 +

1

𝐾
𝒙𝐾; (2.26)

𝑋𝐾 =
𝐾−1

𝐾
𝑋𝐾−1 +

1

𝐾
‖𝒙𝐾‖2. (2.27)

C. Mahalanobis distance case

Using Mahalanobis distance [56], defined as 𝑑(𝒙𝑖, 𝒙𝑗) = √(𝒙𝑖 − 𝒙𝑗)
𝑇
𝚺𝐾

−1(𝒙𝑖 − 𝒙𝑗), the

recursive calculation expressions of 𝑞𝐾(𝒙𝑖) and ∑ 𝑞𝐾(𝒙𝑗)
𝐾
𝑗=1 are given as:

𝑞𝐾(𝒙𝑖) = 𝐾((𝒙𝑖 − 𝝁𝐾)𝑇𝚺𝐾
−1(𝒙𝑖 − 𝝁𝐾) + 𝑋𝐾 − 𝝁𝐾

𝑇𝚺𝐾
−1𝝁𝐾)

 = 𝐾((𝒙𝑖 − 𝝁𝐾)𝑇𝚺𝐾
−1(𝒙𝑖 − 𝝁𝐾) + 𝑀) ; (2.28)

∑ 𝑞𝐾(𝒙𝑗)
𝐾
𝑗=1 = 2𝐾2(𝑋𝐾 − 𝝁𝐾

𝑇𝚺𝐾
−1𝝁𝐾) = 2𝐾2𝑀 ; (2.29)

where 𝝁𝐾 is the mean of {𝒙}𝐾 ; 𝚺𝐾 is the covariance matrix, 𝚺𝐾 =
1

𝐾−1
∑ (𝒙𝑘 −𝐾

𝑘=1

𝝁𝐾)(𝒙𝑘 − 𝝁𝐾)𝑇; 𝑋𝐾 =
1

𝐾
∑ 𝒙𝑘

𝑇𝚺𝐾
−1𝒙𝑘

𝐾
𝑘=1 ; 𝑋𝐾 − 𝝁𝐾

𝑇𝚺𝐾
−1𝝁𝐾 = 𝑀[51].

 𝚺𝐾 can be updated recursively as:

𝐗𝐾 =
𝐾−1

𝐾
𝐗𝐾−1 +

1

𝐾
𝒙𝐾𝒙𝐾

𝑇 ; (2.30)

𝚺𝐾 =
𝐾

𝐾−1
(𝐗𝐾 − 𝝁𝐾𝝁𝐾

𝑇). (2.31)

D. Cosine dissimilarity case

18

Using cosine dissimilarity, defined as 𝑑(𝒙𝑖, 𝒙𝑗) = √2 − 2𝑐𝑜𝑠 (𝜃𝒙𝑖,𝒙𝑗
) = ‖

𝒙𝑖

‖𝒙𝑖‖
−

𝒙𝑗

‖𝒙𝑗‖
‖

[32], [33], the recursive calculation expressions of 𝑞𝐾(𝒙𝑖) and ∑ 𝑞𝐾(𝒙𝑗)
𝐾
𝑗=1 are given as:

𝑞𝐾(𝒙𝑖) = 𝐾 (‖
𝒙𝑖

‖𝒙𝑖‖
− 𝝁̅𝐾‖

2

+ 𝑋̅𝐾 − ‖𝝁̅𝐾‖2); (2.32)

∑ 𝑞𝐾(𝒙𝑗)
𝐾
𝑗=1 = 2𝐾2(𝑋̅𝐾 − ‖𝝁̅𝐾‖2), (2.33)

where 𝝁̅𝐾 and 𝑋̅𝐾 are the means of {
𝒙

‖𝒙‖
}
𝐾

 and {‖
𝒙

‖𝒙‖
‖

2

}
𝐾

 , respectively, and both of them

can be updated recursively as:

𝝁̅𝐾 =
𝐾−1

𝐾
𝝁̅𝐾−1 +

1

𝐾

𝒙𝐾

‖𝒙𝐾‖
; (2.34)

 𝑋̅𝐾 =
𝐾−1

𝐾
 𝑋̅𝐾−1 +

1

𝐾
‖

𝒙𝐾

‖𝒙𝐾‖
‖

2

= 1. (2.35)

E. Direction-Aware distance case [33]

The direction-aware distance is a recently introduced distance metric combining the

advantages of Euclidean distance and cosine similarity in the Euclidean space domain. The

direction-aware distance consists of a magnitude component and an angular component and

has the following expression [33]:

𝑑(𝒙𝑖, 𝒙𝑗) = √𝜆𝑀𝑑𝑀
2 (𝒙𝑖, 𝒙𝑗) + 𝜆𝐴𝑑𝐴

2(𝒙𝑖, 𝒙𝑗), (2.36)

where 𝑑𝑀(𝒙𝑖, 𝒙𝑗) = ‖𝒙𝑖 − 𝒙𝑗‖ and 𝑑𝐴(𝒙𝑖, 𝒙𝑗) = √1 − 𝑐𝑜𝑠 (𝜃𝒙𝑖,𝒙𝑗
) =

1

√2
‖

𝒙𝑖

‖𝒙𝑖‖
−

𝒙𝑗

‖𝒙𝑗‖
‖ ; 𝜆𝑀

and 𝜆𝐴 are a pair of scaling coefficients, and there are 𝜆𝑀 > 0 and 𝜆𝐴 > 0.

In [33], the direction-aware distance is proven to be a full metric which satisfies the

following properties for ∀𝒙𝑖, 𝒙𝑗 [57]:

1) Non-negativity: 𝑑(𝒙𝑖, 𝒙𝑗) ≥ 0;

2) Identity of indiscernibles: 𝑑(𝒙𝑖, 𝒙𝑗) = 0 𝑖𝑓𝑓 𝒙𝑖 = 𝒙𝑗;

3) Symmetry: 𝑑(𝒙𝑖, 𝒙𝑗) = 𝑑(𝒙𝑗, 𝒙𝑖);

4) Triangle inequality: 𝑑(𝒙𝑖, 𝒙𝑗) + 𝑑(𝒙𝑖, 𝒙𝑘) ≥ 𝑑(𝒙𝑗 , 𝒙𝑘).

With the direction-aware distance, the recursive calculation expressions of 𝑞𝐾(𝒙𝑖) and

∑ 𝑞𝐾(𝒙𝑗)
𝐾
𝑗=1 are given as:

19

𝑞𝐾(𝒙𝑖) = 𝐾 ((‖𝒙𝑖 − 𝝁𝐾‖2 + 𝑋𝐾 − ‖𝝁𝐾‖2) +
1

2
(‖

𝒙𝑖

‖𝒙𝑖‖
− 𝝁̅𝐾‖

2

+ 1 − ‖𝝁̅𝐾‖2)); (2.37)

∑ 𝑞𝐾(𝒙𝑗)
𝐾
𝑗=1 = 𝐾2(2(𝑋𝐾 − ‖𝝁𝐾‖2) + 1 − ‖𝝁̅𝐾‖2), (2.38)

where 𝝁𝐾, 𝑋𝐾 and 𝝁̅𝐾 can be updated recursively using equations (2.26), (2.27) and (2.34).

2.1.3.7. Chebyshev Inequality

The well-known Chebyshev inequality in the traditional probability theory and statistics

[52] describes the probability that a certain data sample 𝒙, is more than 𝑛𝜎 distance away

from the mean, 𝝁, where 𝜎 denotes the standard deviation. With the Euclidean distance used,

the Chebyshev inequality can be reformulated as [2]–[4]:

𝑃(‖𝒙 − 𝝁‖2 < 𝑛2𝜎2) > 1 −
1

𝑛2
, (2.39)

and the possibility of the point 𝒙 to be an outlier is given by:

𝑃(‖𝒙 − 𝝁‖2 ≥ 𝑛2𝜎2) ≤
1

𝑛2. (2.40)

It can be proven that exactly the same result can be provided within EDA through the

standardised eccentricity for the Euclidean distance [49]:

𝑃(𝜀𝐾(𝒙𝑖) < 1 + 𝑛2) > 1 −
1

𝑛2; (2.41)

𝑃(𝜀𝐾(𝒙𝑖) ≥ 1 + 𝑛2) ≤
1

𝑛2. (2.42)

Similarly, the Chebyshev inequality in the form of density is expressed as [26]:

𝑃 (𝐷𝐾(𝒙𝑖) >
1

1+𝑛2
) > 1 −

1

𝑛2
 ; (2.43)

𝑃 (𝐷𝐾(𝒙𝑖) ≤
1

1+𝑛2
) ≤

1

𝑛2
. (2.44)

One can see that the attractiveness of equations (2.41)-(2.44) in comparison with

equations (2.39)-(2.40) is that no prior assumptions are required within EDA on the nature of

the data (random or deterministic), the generation model, the amount of data and their

independence. In addition, the results are more elegant and similar expressions can be derived

for Mahalanobis distance, cosine dissimilarity as well as other types of distance and

dissimilarity [26], [49].

20

2.1.3.8. Properties of the EDA quantities

The EDA framework is entirely based on the ensemble properties and mutual

distribution of the empirically observed data. Compared with the existing statistical

approaches, there are a few outstanding unique properties within EDA quantities [25]–[27]:

1) They are entirely based on the empirically observed experimental data and their

mutual distribution in the data space;

2) They do not require any user- or problem-specific thresholds and parameters to be

predefined;

3) They do not require any model of data generation to be assumed (random or

deterministic);

4) Individual data samples (observations) do not need to be independent or identically

distributed; on the contrary, their mutual dependence is taken into account directly

through the mutual distance between the data points/samples;

5) They also do not require infinite number of observations and can work with as little as

2 data samples;

6) They can be calculated recursively for many types of distance metrics.

2.2. Computational Intelligence Methodologies Survey

Computational intelligence is a set of nature-inspired computational methodologies and

approaches to address complex real-world problems to which mathematical or traditional

modelling struggles. The main approaches of computational intelligence include fuzzy

systems, artificial neural networks (ANNs), evolutionary computation (EC), etc.

This section gives a review focusing on fuzzy systems and ANNs. Deep learning, as the

later development of ANNs, will be also covered. A brief review on EC will be also

presented.

2.2.1 Fuzzy Sets and Systems

Fuzzy sets theory and fuzzy rule-based (FRB) systems were firstly introduced in the

seminal paper by Professor Lotfi Zadeh [53] over 50 years ago. The FRB systems are a set of

fuzzy rules. The antecedent parts of the fuzzy rules are determined by fuzzy sets, which are

defined by parameterised scalar membership functions. In this section, three types of fuzzy

rules (Zadeh-Mamdani type [58], Takagi-Sugeno type [59] and AnYa type [60]) are

reviewed. However, it has to be stressed that there are other types of fuzzy systems (relational

21

[61], etc.), only the most widely used and representative ones are considered in this thesis.

The FRB system identification process is reviewed briefly in this section as well.

2.2.1.1. Zadeh-Mamdani Type, Takagi-Sugeno Type and AnYa Type Fuzzy Rules

A fuzzy rule of Zadeh-Mamdani type has the following expression [58]:

𝐼𝐹 (𝑥1 𝑖𝑠 𝐿𝑖,1) 𝐴𝑁𝐷(𝑥2 𝑖𝑠 𝐿𝑖,2) 𝐴𝑁𝐷 …𝐴𝑁𝐷 (𝑥𝑀 𝑖𝑠 𝐿𝑖,𝑀)

𝑇𝐻𝐸𝑁 (𝑦𝑖 𝑖𝑠 𝐿𝑖,𝑜𝑢𝑡)
 , (2.45)

where 𝒙 = [𝑥1, 𝑥2, … , 𝑥𝑀]𝑇 ; 𝐿𝑖,𝑗 is the j
th

 reference value of the i
th

 fuzzy rule; 𝑦𝑖 is the

outcome of the i
th

 fuzzy rule.

 A fuzzy rule of Takagi-Sugeno type has the following expression [11], [59], [62]:

𝐼𝐹 (𝑥1 𝑖𝑠 𝐿𝑖,1) 𝐴𝑁𝐷(𝑥2 𝑖𝑠 𝐿𝑖,2) 𝐴𝑁𝐷 …𝐴𝑁𝐷 (𝑥𝑀 𝑖𝑠 𝐿𝑖,𝑀)

𝑇𝐻𝐸𝑁 (𝑦𝑖 = [1, 𝒙𝑇]𝒂𝑖)
 , (2.46)

where 𝒂𝑖 is the (𝑀 + 1) × 1 dimensional parameterised vector of the i
th

 fuzzy rule for linear

regression.

One can see that, the Zadeh-Mamdani type and Takagi-Sugeno type fuzzy rules share

the same type of antecedent (IF) part, but differ in the consequent (THEN) part. Usually, to

build the antecedent (IF) parts of the two types of fuzzy rules, a number of ad hoc choices

have to be made [63], which include:

1) The types of membership functions, i.e. triangular type, Gaussian type, bell type, etc.;

2) Linguistic terms for each rule;

3) The area of influence of each rule, i.e. hyper-rectangle, -sphere, -ellipsoid;

4) The prototypes for the fuzzy sets;

5) The parameters for the membership functions.

In contrast, as a recently introduced type of fuzzy rules, the AnYa type has a different,

simplified antecedent (IF) part, which can be viewed as a generalisation of the two

predecessors. A 0-order AnYa type fuzzy rule is expressed as [60]:

𝐼𝐹 (𝒙 ~ 𝒑𝑖) 𝑇𝐻𝐸𝑁 (𝑦𝑖 𝑖𝑠 𝐿𝑖,𝑜𝑢𝑡), (2.47)

and a 1
st
 order AnYa type fuzzy rule is expressed as [60]:

𝐼𝐹 (𝒙 ~ 𝒑𝑖) 𝑇𝐻𝐸𝑁 (𝑦𝑖 = [1, 𝒙𝑇]𝒂𝑖), (2.48)

22

where “~” denotes similarity, which can also be seen as a fuzzy degree of

satisfaction/membership [54], [60] or typicality [26]; 𝒑𝑖 is the prototype of the i
th

 fuzzy rule,

which is also the only decision required to be made by human experts, but it is still optional

as the prototype can also be identified via the data-driven approaches [54].

The AnYa type fuzzy rule simplifies the antecedent (IF) part of the traditional fuzzy rule

into a prototype [54], [60], which is a vector representing the focal point of the

nonparametric, shape-free data cloud consisting of data samples associated with this focal

point resembling Voronoi tessellation [64]. Compared with the antecedent (IF) part of the

traditional (Zadeh-Mamdani type and Takagi-Sugeno type) fuzzy rules, which (although the

structure and some of the parameters can be learnt from the data) requires heavy

involvements of human experts and prior knowledge of the problems to formulate the whole

rule, this simplification of the AnYa type significantly reduces the efforts of human experts

and, at the same time, largely enhances the objectiveness of the FRB system [60]. The

comparison between the three types of fuzzy rules is tabulated in Table 1 for clarity [55],

[60].

Table 1. A comparison between three types of fuzzy rules

Type Antecedent (IF) part
Consequent (THEN)

Part
De-fuzzification

Zadeh-Mamdani
Scalar, parameterised

fuzzy sets

Scalar, parameterised

fuzzy sets
Central of gravity

Takagi-Sugeno
Functional (usually

linear)

Fuzzily weighted

sum (average)

AnYa

0-order
Prototypes, data

clouds

Scalar, parameterised

fuzzy sets
Winner takes all

1
st
 order

Functional (usually

linear)

Fuzzily weighted

sum (average)

2.2.2.2. FRB System Identification

Initially, the fuzzy sets theory was introduced to approximate the data distribution by the

subjectivist definition of uncertainty, which completely departed from objective observation

and, instead, relies on the human experts’ knowledge [27]. The main issue in the design of

the fuzzy sets and FRB systems is how to define the membership functions by which they are

defined in first place [54].

The main procedure of the traditional way of designing FRB systems, namely, the

subjective approach, is summarised in Figure 1 [54].

23

Figure 1. Main procedure of the subjective approach for FRB system identification.

The subjective approach has its own very strong rationale in the two-way process of:

1) Formalising expert knowledge and representing it in a mathematical form through the

membership functions;

2) Extracting and representing from data human-intelligible and understandable,

transparent linguistic information in the form of IF …THEN… rules [55].

However, the following issues appear during the process:

1) Defining a membership function requires many ad hoc decisions;

2) Membership functions often differ significantly from the real data distribution.

Moreover, the so-called “curse of dimensionality” may result from handcrafting

traditional FRB systems for high dimensional problems because of the exponential growth of

the number of fuzzy sets required.

In 1990s, the so-called data-driven design approach (the objective one) started to be

popular and was developed [55]. The main procedure of the objective approach for FRB

system identification is depicted in Figure 2 [54].

Figure 2. Main procedure of the objective approach for FRB system identification.

Nonetheless, it is practically very difficult and controversial to define membership

functions both from experts and from data. This is also related to the more general issue of

assumptions made and handcrafting that machine learning (including statistical methods) are

24

facing. Therefore, in [54], an alternative membership function based on the Cauchy type data

density (equation (2.18)) [26], [27] is introduced to the AnYa type FRB system, which frees

the FRB system from ad hoc decisions and prior assumptions. In this thesis, the AnYa type

FRB system with the Cauchy type membership function is employed.

2.2.2. Artificial Neural Networks

Artificial neural networks (ANNs) are the computing systems inspired by the biological

neural networks of the animal brains aiming to resolve perception and recognition problems.

They are capable of approximating nonlinear relationships between inputs and outputs.

The basic elements of the ANNs are neurons, which receive input, change their internal

state (activation) correspondingly, and produce output depending on the input and activation.

ANNs are formed by connecting the output of certain neurons to the input of other neurons

forming a directed, weighted graph. The adaptive weights along paths between neurons and

the functions that compute the activation can be modified (adapted) by learning algorithms.

However, unlike the biological neural networks, once an ANN is formed, the connections

between artificial neurons are not usually added or removed.

One of the earliest and best known computational models for neural networks based on

mathematics and algorithms was introduced by Warren McCulloch and Walter Pitts in 1943

[65] called threshold logic, however, the technology available at that time were insufficient

for them to work on practical problems. In 1970s and 1980s, with the development of the

computational resources, a number of new, more complex ANNs started to emerge.

Nowadays, deep learning neural networks (DLNNs) have gained a lot of popularity in

both the academic circles and the general public [19], [66]. In fact, deep learning is the latest

name of ANNs [66]. However, DLNNs have also gone beyond the original neuroscientific

perspective, but appear to be a more general principle of learning multiple levels of

composition, which can be applied in machine learning frameworks that are not necessarily

naturally inspired [66]. Currently, the popular variants of the ANNs include, but not limited

to 1) feedforward neural networks [4]; 2) deep convolutional neural networks (DCNNs) [21],

[24]; 3) recurrent neural networks (long short-term memory) [67]; 4) deep belief networks

[68] and 5) spiking neural networks [69], etc.

As the feedforward neural networks (NNs) and DCNNs are directly related to the main

topic of this thesis, this section will focus on reviewing these two particular types.

25

2.2.2.1. Feedforward Neural Network

Feedforward NNs are a class of ANNs whose neurons form an acyclic graph where

information moves only in one direction from input to output. They are extensively used in

pattern recognition. The general architecture of a multilayer feedforward NN is depicted in

Figure 3.

Figure 3. General architecture of a multilayer feedforward NN.

A typical multilayer feedforward neural network consists of three types of layers: input

layer, one or more hidden layers and output layer. Each layer is a group of neurons receiving

connections from the neurons of the previous layer. Neurons inside a layer are not connected

to each other.

Input layer is the first layer of the network and it receives no connections from other

layers, but instead, uses input vector as its activation. Input layer is fully connected to the first

hidden layer. Each hidden layer is fully connected to the next hidden layer, and the last

hidden layer is fully connected to output layer. The activation of output units is considered to

be the output of the feedforward neural network. The output of the network is the result of the

transformations of input data through neurons and layers in a form of distributed

representation consisting of a huge number of weighted local representations across the entire

networks.

Backpropagation procedure (backward propagation of errors) is the most widely used

supervised learning algorithm for adapting connection weights of feedforward NNs [19].

Weights of the network are tuned to minimise square error between the system output and the

target value:

𝜀 = ∑ (𝑦𝑖 − 𝑡𝑖)
2

𝑖 , (2.49)

26

where 𝜀 stands for overall square error; 𝑦𝑖 is the system output corresponding to the i
th

input

and 𝑡𝑖 is the respective target value.

Backpropagation is nothing more than a practical application of the chain rule for

derivatives. The key insight is that the derivative of the objective function with respect to the

input of a layer can be computed by working backwards from the gradient with respect to the

output of that layer. The backpropagation equation can be applied repeatedly to propagate

gradients through all modules, starting from the output layer all the way to the input layer.

Once these gradients have been computed, it is straightforward to compute the gradients with

respect to the weights of each module [19].

Although feedforward NNs are very powerful, they suffer from the following

drawbacks:

1) The structure is complex and considered as a black box;

2) The structure identification requires a number of ad hoc decisions, i.e. number of

neurons, number of layers;

3) The training process is computationally expensive and once it is finished, the

parameters of the NNs cannot be updated and requires a full retraining if new data samples

are given.

2.2.2.2. Deep Convolutional Neural Network

Convolutional neural network (CNN) was firstly introduced by Kunihiko Fukushima

[70] almost 50 years ago and was significantly improved later [71].

Currently, DCNNs are the state-of-the-art approaches in the field of computer vision. A

number of publications have demonstrated that DCNNs can produce highly accurate results

in various image processing problems including, but not limited to, handwritten digits

recognition [22], [24], [72]–[74], object recognition [21], [23], [75], [76], human action

recognition [77], [78], remote sensing image classification [79]–[82], etc. Some publications

suggest that the DCNNs can match the human performance on the handwritten digits

recognition problems [22], [24], [73], [74].

Except the input and output layers, a typical CNN consists of a number of hidden layers,

which can be a combination of the following four types:

1) Convolution layer;

2) Pooling layer;

27

3) Normalisation layer;

4) Fully connected layer.

The convolutional and pooling layers in DCNNs are directly inspired by the classic

notions of simple cells and complex cells in visual neuroscience [83].

Convolutional layers apply a convolution operation to the input, passing the result to the

next layer. The role of the convolutional layer is to detect local conjunctions of features from

the previous layer.

Pooling layer is for merging semantically similar features into one. A typical max

pooling unit (which is the most commonly used one) calculates the maximum of a local patch

of units in each sub-region of the image. Neighbouring pooling units take input from patches

that are shifted by more than one row or column resulting in the reduction of the

dimensionality of the representation and the increase of robustness to small shifts and

distortions.

Normalisation layer is useful when using neurons with unbounded activations (e.g.

rectified linear neurons), because it permits the detection of high-frequency features with a

big neuron response, while damping responses that are uniformly large in a local

neighbourhood.

Fully connected layer connects every neuron in the previous layer to every neuron in it,

which is in principle the same as the feedforward NN as described in subsection 2.2.2.1.

However, one major difference between the fully connected layer in the DCNN and the one

in the feedforward NN is that the fully connected layer of the DCNN only connects to a small

region of the input volume, while the fully connected layer of feedforward NN connected to

all the neurons of the previous layer.

Recent DCNN architectures have 10 to 20 layers of rectified linear neurons, hundreds of

millions of weights, and billions of connections between units. Thanks to the very large

progress in hardware, software and algorithm parallelisation, the training times can be only a

few hours if enough computational resources are provided, which could be extremely

expensive. The performance of DCNN-based vision systems has caused most major

technology companies, including Google, Facebook, Microsoft, Baidu to initiate research and

development projects and to deploy DCNN-based image understanding products and services

[19].

28

Nonetheless, ANNs/DCNNs still have a number of deficiencies and shortcomings:

1) The computational burden of training using huge amount of data is still very heavy;

2) The training process is opaque, and the classifier has low or no human interpretability

(black box type);

3) The training process is limited to offline and requires re-training for samples with

feature properties different than the observed samples, as well as for samples from unseen

classes;

4) Its internal structure identification involves a number of ad hoc decisions, i.e. number

of layers, the order of the layers, the types of convolutional kernel, the type of pooling.

2.2.3. Evolutionary Computation

Evolutionary computation (EC) is a class of randomised search and optimisation

algorithms inspired by the principles of evolutional and natural genetics [84], [85]. The

origins of EC can be dated back to the late 1950’s [86]–[88], but the works from John

Holland [86], Ingo Rechenberg [89] and Lawrence Fogel [90] laid the foundation for its

popularity today.

Currently, the main components of EC include genetic algorithms [91], [92],

evolutionary strategies [93], genetic programming [94] and particle swarm optimisation [95],

[96]. However, this thesis focuses on the fuzzy systems and ANNs, and, thus, a detailed

review on the EC is not conducted. Nonetheless, one can find the more detailed, systematic

introductions to EC in [84], [85], [97].

2.3. Machine Learning Techniques Survey

In this section, the machine learning techniques including clustering, classification,

regression and anomaly detection will be reviewed.

2.3.1. Cluster Algorithms

Clustering, alternatively, data partitioning, has a variety of goals, all related to grouping

or segmenting a collection of data into subsets or “clusters” such that data samples within the

same cluster are more closely related to each other than other data samples assigned to

different clusters [4].

Clustering algorithms have long been considered as unsupervised machine learning

techniques for finding out the underlying groups and pattern within the data. Based on their

29

operating mechanism, clustering algorithms can be divided into the following main types

[98]:

1) Hierarchical clustering;

2) Centroid-based clustering;

3) Model-based clustering;

4) Density-based clustering;

5) Distribution-based clustering;

6) Soft-computing clustering.

Since there are a huge number of clustering algorithms published, it is impossible to

cover all the published algorithms within this thesis. In this section, only the most typical and

representative clustering algorithms of the six types are reviewed, and their later variants are

also given.

2.3.1.1. Hierarchical Clustering

A hierarchical clustering algorithm [99] produces a dendrogram representing nested

groupings of patterns and similarity levels at different granularities, which offers more

flexibility for exploratory analysis. The clustering result is achieved by cutting the

dendrogram at the desired similarity level [98]. Some studies suggest that hierarchical

algorithms can produce better-quality clusters [100]. There are two major types based on their

bottom-up or top-down fashion:

1) Agglomerative hierarchical clustering [101], [102]

The methods treat each data sample as a cluster of its own initially, and merge them

successively until obtain the desired cluster structure [98].

2) Divisive hierarchical clustering [103], [104]

The methods achieve the clustering result via a contrary direction. They treat all the data

samples as a single cluster and successively divide the cluster into sub-clusters until the

desired clustering structure is obtained [98].

More recently, a new type of hierarchical clustering approaches named affinity

propagation was introduced in [105], which can achieve the desired cluster structure without

cutting the dendrogram. This algorithm takes as input measures of similarity between pairs of

data points and simultaneously considers all data samples as potential exemplars. Real-valued

30

messages, whose magnitude represents the affinity of one data sample for choosing another

data sample as its cluster centre, are exchanged between data samples until a high-quality set

of exemplars and corresponding clusters gradually emerge. Nonetheless, this new approach,

in fact, optimises the dendrogram cutting by hardcoding the mathematical rules for achieving

the optimal partitions and predefining parameters.

In general, the hierarchical clustering approaches tend to maintain good performance on

datasets with non-isotropic clusters, including well-separated, chain-like and concentric ones.

The main drawbacks of the hierarchical approaches are:

1) The computation- and memory- efficiency of the approaches deteriorates fast with the

increase of the scale of the data;

2) They do not have back-tracking capability;

3) They require prior knowledge of the problem, which means the performance of the

hierarchical approaches is not guaranteed in real cases where the prior knowledge is not

available.

2.3.1.2. Centroid-based Clustering

Centroid-based clustering methods start from an initial partitioning and relocate

instances by moving them from one cluster to another. The methods require an exhaustive

enumeration process of all possible partitions and use certain greedy heuristics for iterative

optimisation.

The basic idea of the centroid-based clustering algorithms is to find a clustering

structure that minimises a certain error criterion that measures the distance of each data

sample to its representative value, and the process is called error minimisation. The most

well-known criterion is the sum of squared error.

The simplest and most commonly used algorithm is the k-means algorithm [5]. The k-

means algorithm starts by randomly initialise 𝑘 cluster centres, and then, the algorithm

iteratively assigns data samples to the closest centres and updates the centres until some

predefined termination condition is satisfied [98]. There are also other versions of k-means

algorithms including online k-means [106], batch k-means [107], etc.

Another method that attempts to minimise the sum of squared errors is the k-medoids

[108]. The k-medoids algorithm differs from the k-means in its representation of the different

31

clusters. Each cluster is represented by the most centric data sample in the cluster instead of

using the mathematical mean that may not belong to the cluster [108].

The centroid-based clustering approaches tend to work well with isolated and compact

clusters, and are the most intuitive and frequently used methods. However, they also have the

following drawbacks:

1) The number of clusters, which is 𝑘, needs to be defined in advance, which requires

prior knowledge of the problem;

2) The optimisation process is very time-consuming and exhaustive, and the

computation- and memory- efficiency of the approaches further deteriorates with the increase

of the scale of the data.

2.3.1.3. Model-based Clustering

The model-based approaches attempt to optimise the fit between the given data and

some mathematical models. Approaches of this kind not only identify the groups of data

samples but also find characteristic descriptions for each group [98].

The most frequently used method is the self-organising map (SOM) [109], [110], which

represents each cluster by a neuron. This algorithm constructs a single-layered network

through a learning process with the “winner takes all” strategy.

SOM algorithm is a useful approach for clustering analysis and it can visualise the

clustering results of high-dimensional data in 2D or 3D space. However, its performance is

sensitive to the initial selection of weight vectors and the free parameters including learning

rate, neighbourhood radius as well as the net size.

2.3.1.4. Density-based Clustering

Density-based clustering approaches assume that clusters exist in areas of higher density

of the data space. Each cluster is characterised by a local mode or maximum of the density

function [98].

One of the most popular density based clustering method is density-based spatial

clustering of applications with noise (DBSCAN) [6]. The main idea of the DBSCAN

algorithm is to group data samples that are very close together in the data space, and mark

data samples that lie alone in low-density as outliers.

32

DBSCAN requires two parameters: the maximum radius of the neighbourhood and the

minimum number of points required to form a dense region [6]. The algorithm starts with an

arbitrary sample that has not been visited before. The neighbourhood of this starting sample

is extracted and checked to see if this area contains a sufficient number of data samples. If so,

a cluster is started, otherwise, it is labelled as noise. If a data sample is found to be a dense

part of a cluster, its neighbouring area is also a part of this cluster, and, thus, all the data

samples located in that area are added to the cluster. The process continues until the density-

connected cluster is completely built. Then, an unvisited data sample is retrieved and

processed to form a further cluster or be identified as noise.

There are a number of modified DBSCAN algorithms published including: ST-

DBSCAN [111], ST-DBSCAN [112], P-DBSCAN [113], etc.

Mean shift algorithm [114]–[116] is also a popular density-based clustering approach

built upon the concept of kernel density estimation (KDE). In statistics, KDE is a non-

parametric way to estimate the PDF of a random variable. Mean shift algorithm implements

the KDE idea by iteratively shifting each data sample to the densest area in its vicinity until

all the data samples converge to local maxima of density.

eClustering algorithm [11] is the most popular online density-based clustering approach

for streaming data processing, which can self-evolve its structure and update its parameters in

a dynamic way. It is able to successfully handle the drifts and shifts of the data pattern in the

data streams [117]. eClustering algorithm opens the door for the evolving clustering

approaches and a number of modifications have been introduced later, i.e., evolving local

mean clustering (ELMC) algorithm [12], data density-based clustering with automated radii

(DDCAR) algorithm [10], clustering of evolving data streams (CEDS) algorithm [118]. The

eClustering algorithm is also one of the theoretical bases of the self-organising transparent

machine learning techniques described in this thesis in the later chapters.

The density-based clustering approaches can efficiently detect arbitrary-shaped clusters

and do not require the number of clusters to be predefined. However, the main drawbacks of

the density-based clustering approaches are as follows:

1) They require free parameters to be predefined, i.e. radius, window size, and if the free

parameters are not set properly, the performance and efficiency of the algorithms are not

guaranteed;

33

2) They usually assume the distribution model of the data, i.e. mixtures of Gaussians,

which is often not the case in real problems.

2.3.1.5. Distribution-based Clustering

Distribution-based methods assume that the points that belong to each cluster are

generated from a specific probability distribution, and the overall distribution of the data is

assumed to be a mixture of several distributions. Thus, these approaches are closely related to

statistics [98].

One prominent method is known as mixture models [119]–[123]. These approaches

assume the generalisation model of data to be a mixture of Gaussian distributions. They

randomly initialise a number of Gaussian distributions and iteratively optimise the parameters

to fit the data model.

The distribution-based clustering is able to produce complex clustering results that can

capture correlation and dependence between different features. However, there are clear

drawbacks of these approaches:

1) The prior assumptions made by the distribution-based clustering approaches are too

strong for real cases;

2) They require parameters to be set by users;

3) The computation- and memory- efficiency of these approaches are very low.

2.3.1.6. Fuzzy Clustering

Traditional clustering approaches generate partitioning, in which each data sample

belongs to one and only one cluster. Thus, the clusters are disjointed. Fuzzy clustering

extends this notion and suggests a soft clustering schema [98], which means a data sample

can belong to different clusters at the same time.

The most representative fuzzy clustering approach is the well-known fuzzy c-means

(FCM) algorithm [124]–[126]. FCM algorithm is based on the minimisation of the following

equation:

𝐹 = ∑ ∑ 𝜐𝑖,𝑗
𝑚‖𝒙𝑖 − 𝝁𝑗‖

2𝐶
𝑗=1

𝐾
𝑖=1 , (2.50)

where 𝐶 is the number of clusters; 𝝁𝑗 is the j
th

 cluster centre (j=1,2,…, C); 𝜐𝑖,𝑗 is the degree of

membership of 𝒙𝑖 in the j
th

 cluster; 𝑚 is fuzzy partition matrix exponent for controlling the

34

degree of fuzzy overlap. The general procedure of the fuzzy c-means algorithm is quite

similar to the k-means approach.

In the FCM algorithm [124]–[126] and its later modifications [124], [127], [128], each

cluster is a fuzzy set of all the patterns. Larger membership degrees suggest higher

confidence in the assignment and, vice versa. A non-fuzzy clustering result can also be

achieved by applying a threshold of the membership degrees.

The fuzzy clustering approaches are, generally, better than non-fuzzy centroid-based

approaches in avoiding local maxima. However, the major drawbacks of the fuzzy clustering

approaches are:

1) The number of clusters, which is “𝑐”, needs to be defined in advance, which requires

prior knowledge of the problem;

2) The design of membership functions requires ad hoc decisions and prior knowledge

of the problem as well.

2.3.2. Classification Algorithms

Classification is the task of assigning a class label to an input data sample. The class

label indicates one of a given set of classes. In contrast with clustering, classification is

usually considered as a supervised or semi-supervised learning technique [129]. In this

section, the most widely used and representative fully supervised classification approaches

are reviewed, which includes:

1) Naïve Bayes classifier;

2) K-nearest neighbour (KNN) classifier;

3) Support vector machine (SVM) classifier;

4) Decision tree (DT) classifier;

5) eClass classifier;

The popular semi-supervised classification approaches are also briefly reviewed.

2.3.2.1. Naïve Bayes Classifier

Naive Bayes classifier is one of the most widely studied and used classification

approaches deeply rooted in the traditional probability theory and statistics [130]. The naïve

Bayes classifier is based on the PDFs derived from training samples on the prior assumption

that different features of the data are statistically independent.

35

Under this assumption, the conditional PDF for a data sample 𝒙 belonging to the class

ℂ𝑖 (𝑖 = 1,2, … , 𝐶) is written as [130]:

𝑃(𝒙|ℂ𝑖) = ∏ 𝑃(𝑥𝑗|ℂ𝑖)
𝑀
𝑗=1 , (2.51)

and the class label of 𝒙 , denoted by 𝑦(𝒙), is given as:

y(𝒙) = argmax
𝑖=1,2,…𝐶

(𝑃(𝒙|ℂ𝑖)). (2.52)

With certain types of PDFs, the naïve Bayes classifier can be trained very efficiently

and it only requires a small number of training data for the training. However, the drawbacks

of the naïve Bayes classifier are also obvious:

1) Its prior assumption, although simple, is often not held in real cases;

2) The choice of the PDFs requires prior knowledge and can influence the efficiency

and accuracy of the classifier if it is not properly set;

3) Its model is over simple, which makes it insufficient in dealing with complex

problems.

2.3.2.2. KNN Classifier

Nearest neighbour rule [131] is the simplest nonparametric decision procedure for

deciding the label of an unlabelled data sample, 𝒙𝑜 . The mathematical expression of the

nearest neighbour rule is as follows:

y(𝒙𝑜) = argmin
𝒙∈{𝒙}𝐾

(𝑑(𝒙𝑜, 𝒙)) , (2.53)

where 𝑦(𝒙𝑜) is the estimated label of 𝒙𝑜, which comes from the label of the data sample

𝒙𝑛 ∈ {𝒙}𝐾 that is closest to 𝒙𝑜, 𝑑(𝒙𝑜 , 𝒙𝑛) = min
𝒙∈{𝒙}𝐾

(𝑑(𝒙𝑜, 𝒙)).

KNN algorithm [131]–[133] is the most representative algorithm employing the nearest

neighbour rule directly. The algorithm is also among the simplest of all machine learning

algorithms. The label of a particular data sample is decided by the labels of its 𝑘 nearest

neighbours based on the voting mechanism. The KNN algorithm mainly conducts

computation during the classification stage.

KNN classifier has been widely used in different areas, i.e. biology [134], remote

sensing [135], etc., and has a number of modifications being published [136]–[138]. KNN is

also one of the two most widely used classifiers (the other one is the SVM classifier, which

36

will be described in the next subsection) in the transfer learning approaches based on pre-

trained DCNNs and is able to produce highly accurate classification results [77], [139]–[141].

However, the main drawbacks of the KNN classifier are:

1) The best choice of 𝑘 is data dependent, which means that it requires prior knowledge

to decide, otherwise, the performance of the KNN approach is not guaranteed;

2) KNN classifier is also sensitive to the structure of the data. Its performance severely

deteriorates by the noisy, irrelevant features or unbalanced feature scales.

2.3.2.3. SVM Classifier

SVM [142] is one of the most popular classification approaches and has been widely

used in various areas including biology [143], economy [144] and natural language

processing [145]. SVM is also the other most widely used classifier in the transfer learning

approaches based on pre-trained DCNNs and is able to produce highly accurate classification

results [77], [139]–[141].

In essence, SVM is an algorithm for maximising a particular mathematical function with

respect to a given collection of data [146]. There are four very important basic concepts

within the SVM classifier [146].

1) Separating hyperplane;

Given a training set for a binary classification problem, denoted by {𝒙}𝐾 =

{𝒙1, 𝒙2, … , 𝒙𝐾} (𝒙𝑖 ∈ 𝐑𝑀) and the corresponding label, {𝑦}𝐾 = {𝑦1, 𝑦2, … , 𝑦𝐾} (𝑦𝑖 ∈ {−1, 1}).

If the two classes are linearly separable, one can find some dimensional hyperplanes that

separates the two classes [130], [146]. The points lie on the hyperplanes satisfying [147]:

𝒙𝑇𝒘 + 𝑏 = 0, (2.54)

where 𝒘 is a vector that is perpendicular to the separating hyperplane, namely, the normal.

2) Maximum-margin hyperplane;

As there exist many hyperplanes in the data space that can separate the data from two

classes, the SVM selects the hyperplane with the maximum distance from it to the nearest

data point on each side, which is also known as the maximum-margin hyperplane [130],

[146], [148]. This is formulated as [147]:

𝒙𝑖
𝑇𝒘 + 𝑏 ≥ 1 𝑖𝑓 𝑦𝑖 = 1

𝒙𝑖
𝑇𝒘 + 𝑏 ≤ −1 𝑖𝑓 𝑦𝑖 = −1

 . (2.55)

37

One can find the maximum margin by minimising ‖𝒘‖ . The constrains (equation

(2.55)) can be reformulated in Lagrangian expressions [147], which will be much easier to

handle by constrains on the Lagrange multiples:

𝐿𝑃 =
1

2
‖𝒘‖2 − ∑ 𝛼𝑖𝑦𝑖(𝒙𝑖

𝑇𝒘 + 𝑏)𝐾
𝑖=1 + ∑ 𝛼𝑖

𝐾
𝑖=1 ; (2.56)

𝐿𝐷 = ∑ 𝛼𝑖
𝐾
𝑖=1 −

1

2
∑ ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝒙𝑖

𝑇𝒙𝑗
𝐾
𝑗=1

𝐾
𝑖=1 , (2.57)

where the subscript 𝑃 stands for primal and 𝐷 for dual; 𝛼𝑖 (𝑖 = 1,2, … , 𝐾) are the positive

Lagrange multiples, one for each of the constrains (2.55). Equations (2.56) and (2.57) are

raised from the same objective function but with different constrains, and the solution is

found by minimising 𝐿𝑃 or maximising 𝐿𝐷.

It has proven that selecting the maximum-margin hyperplane is the key to the success of

the SVM as it maximises the SVM’s ability to predict the correct classification of previously

unseen examples [148].

3) Soft margin;

Although the data from two classes were assumed to be linearly separable in the

previous derivation, data cannot be separated as cleanly in many cases in reality. In order to

handle such cases, the SVM is modified by adding a soft margin, which can be done by

introducing slack variables, denoted by ϑ𝑖 (𝑖 = 1,2, … , 𝐾), to the constrains (2.55) [147]:

𝒙𝑖
𝑇𝒘 + 𝑏 ≥ 1 − ϑ𝑖 𝑖𝑓 𝑦𝑖 = 1

𝒙𝑖
𝑇𝒘 + 𝑏 ≤ −1 + ϑ𝑖 𝑖𝑓 𝑦𝑖 = −1

ϑ𝑖 ≥ 0 ∀𝑖

 . (2.58)

With this modification, the SVM is able to deal with errors in the data by allowing a few

anomalies to fall on the wrong side of the separating hyperplane. Essentially, this allows

some data samples to push their way through the margin of the separating hyperplane without

affecting the final result [146]. Meanwhile, it is necessary to limit the number of

misclassifications of the SVM to prevent the deterioration of the performance, therefore, a

user-specified parameter, denoted by 𝜚, is introduced for controlling the training errors. A

lager 𝜚 corresponds to a higher penalty to errors, and vice versa.

As a result, extra conditions are imposed on the solution for maximising dual

Lagrangian 𝐿𝐷 (equation (2.57)) [147]:

0 ≤ 𝛼𝑖 ≤ 𝜚

∑ 𝛼𝑖𝑦𝑖
𝐾
𝑖=1 = 0

. (2.59)

38

For primal Lagrangian 𝐿𝑃 (equation (2.56)), the formulation becomes [147]:

𝐿𝑃 =
1

2
‖𝒘‖2 + 𝜚 ∑ ϑ𝑖

𝐾
𝑖=1 − ∑ 𝛼𝑖𝑦𝑖(𝒙𝑖

𝑇𝒘 + 𝑏)𝐾
𝑖=1 − ∑ ι𝑖ϑ𝑖

𝐾
𝑖=1 , (2.60)

where ι𝑖 (𝑖 = 1,2, … , 𝐾) are the positive Lagrange multiples introduced to enforce the positive

of ϑ𝑖(𝑖 = 1,2, … , 𝐾).

4) Kernel function.

For a nonlinear separable case, it is impossible to find the maximum margin separating

hyperplane, and the soft margin is not going to help as well. To solve this problem, the kernel

function, which itself is a mathematical trick, is applied to the maximum margin hyperplanes.

The kernel function provides a solution to the nonlinear separable problems by adding an

additional dimension to the data and it projects the data from a low dimensional space to a

higher dimensional space [146].

Some common kernels include [147]:

Polynomial: 𝛫(𝒙𝑖, 𝒙𝑗) = (𝒙𝑖
𝑇𝒙𝑗 + 𝟏)

𝑝
;

Gaussian radical basis function: 𝛫(𝒙𝑖, 𝒙𝑗) = 𝑒
−

‖𝒙𝑖−𝒙𝑗‖
2

2𝜎2 and

Hyperbolic tangent: 𝛫(𝒙𝑖, 𝒙𝑗) = tanh (𝜅𝒙𝑖
𝑇𝒙𝑗 − 𝛿).

There is also a TEDA kernel recently introduced into the SVM [149].

Although the SVM classifier is one of the most widely used classifiers and is able to

exhibit very good performance in various classification problems, there are still a few major

drawbacks [130]:

1) It requires prior knowledge for choosing the kernel function. If the kernel function is

not correctly chosen, it performance is not guaranteed;

2) Its computational efficiency drops quickly in large-scale problems;

3) It requires a full retraining if more training samples are provided later;

4) It is less efficient in handling multi-class classification problems.

2.3.2.4. Decision Tree Classifier

Decision tree classifier is a commonly used nonlinear classification approach [150]–

[153] by mapping the input vectors in the data space to the output labels. The system is

organised into a tree structure that each node represents an elementary classification

39

algorithms and the leaves represent the output class labels. The system splits the entire data

space into unique regions corresponding to the classes in a sequential manner [130], [154],

[155]. An illustrative example of the decision tree is given in Figure 4[130].

Figure 4. Example of a decision tree.

Initially, the decision tree approach is an expert-based approach [130], later, the

recursive partitioning from the statistics makes it a data-driven approach [156]. Recursive

partitioning creates a decision tree by splitting the training data into subsets based on several

dichotomous independent variables. The process is termed recursive because each subset may

be split for an indefinite number of times until a particular stopping criterion is reached.

The most popular approaches for learning a decision tree include:

1) Iterative Dichotomiser 3 (ID3) [157], which calculates the information entropy of the

attributes to select the most appropriate one as the nodes of the tree;

2) C4.5 [158], which is an extension of ID3 algorithm with its open source Java

implementation named as J48.

However, the major drawbacks of the decision tree approach are as follows:

1) It is less sufficient in dealing with complex problems;

2) Its performance relies heavily on the stopping criterion, which requires prior

knowledge of the problems;

3) It has very high variance; a very small change in the dataset will lead to an entirely

different tree structure.

40

2.3.2.5. eClass Classifier

As it was mentioned in the previous section that FRB systems were initially designed

for expert-based systems, which seriously restricted the applications. After the effective idea

of learning automation is introduced, evolving FRB systems started to be applied for the

classification purposes with the implementation of automatic fuzzy rules generation [159].

The most successful and widely used evolving fuzzy classifier is the eClass [160].

eClass classifier [160] is a classification approach for streaming data processing. It is

able to self-evolve its structure and update its meta-parameters on a sample-by-sample basis.

There are a lot of evolving classifiers introduced on the basis of the eClass classifier [160]

including: FLEXFIS-Class [161], simpl_eClass [162], autoClass [163], TEDAClass [51], etc.

eClass classifier [160] has two versions, the first one is eClass0, which uses the Zadeh-

Mamdani-type fuzzy rules (equation (2.45)) and the other one is eClass1, which employs the

Takagi-Sugeno type fuzzy rules (equation (2.46)).

The structure update mechanisms of the eClass0 and eClass1 are based on the local and

global potentials (equations (2.61) and (2.62)) introduced within recursive density estimation

(RDE) [62], respectively:

𝑃𝐾,𝑖
𝐿 (𝒙𝐾) =

1

1+
∑ 𝑑(𝒙𝐾,𝒙)𝒙∈ℂ𝑖

𝑆𝑖

; (2.61)

𝑃𝐾(𝒙𝐾) =
1

1+
∑ 𝑑(𝒙𝐾,𝒙𝑖)

𝐾−1
𝑖=1

𝐾−1

. (2.62)

eClass0 uses eClustering algorithm [62] to partition the data into clusters, and adds new

fuzzy rules to the rule base if

𝑃𝐾,𝑖
𝐿 (𝒙𝐾) > 𝑃𝐾,𝑖

𝐿 (𝒙𝑖
∗) ∀𝑖 = 1,2, … , 𝐶, (2.63)

where 𝒙𝑖
∗ is the prototype of the i

th
 cluster.

While in eClass1, a new fuzzy rule is added to the rule base on condition that:

𝑃𝐾(𝒙𝐾) > 𝑃𝐾(𝒙𝑖
∗) ∀𝑖 = 1,2, … , 𝐶. (2.64)

The difference between equations (2.63) and (2.64) is that the global potential is used in

eClass1 and the local potential is used in eClass0.

For eClass0, the output (𝑦(𝒙𝐾), which is the label) for 𝒙𝐾 with unknown data label is

given following the “winner takes all” principle:

41

𝑦(𝒙𝐾) = argmax𝑖=1,2,…,𝐶(𝜆𝐾,𝑖), (2.65)

where 𝜆𝑖(𝒙𝐾) is the firing level of the i
th

 fuzzy rule calculated by:

𝜆𝐾,𝑖 = ∏ 𝑒
−

𝑑2(𝒙𝐾,𝒙𝑖
∗)

2𝑟𝑖,𝑗
2𝑀

𝑗=1 , (2.66)

where 𝑟𝑖,𝑗 is the spread of the j
th

 fuzzy set of the i
th

fuzzy rule, which will be recursively

updated during the learning stage [160].

For eClass1, the overall system output for 𝒙𝐾 with unknown data label is given as the

fuzzily weighted average:

𝑦(𝒙𝐾) = ∑
𝜆𝐾,𝑖𝛽̅𝐾,𝑖

∑ 𝜆𝐾,𝑗
𝐶
𝑗=1

𝐶
𝑖=1 , (2.67)

where 𝑦̅𝐾,𝑖 is the normalised output of the i
th

 fuzzy rule defined as:

𝛽̅𝐾,𝑖 = ∑
𝛽𝐾,𝑖

𝛽𝐾,𝑗

𝐶
𝑗=1 , (2.68)

and there is: 𝛽𝐾,𝑖 = 𝒙̅𝐾
𝑇𝒂𝐾,𝑖 (𝒙𝐾

𝑇 = [1, 𝒙𝐾
𝑇], 𝒂𝐾,𝑖 = [𝑎𝐾,𝑖,0, 𝑎𝐾,𝑖,1, … , 𝑎𝐾,𝑖,𝑀]

𝑇
). The label of 𝒙𝐾 is

chosen as: 𝑦(𝒙𝐾) = argmax𝑖=1,2,…,𝐶(𝛽̅𝐾,𝑖).

The consequent parameter vector , 𝒂𝐾,𝑖 is updated using the fuzzily weighted recursive

least squares (FWRLS) [11]:

𝒂𝐾,𝑖 = 𝒂𝐾−1,𝑖 + 𝚯𝐾,𝑖𝜆𝑖𝒙̅𝐾(𝑦𝐾 − 𝒙̅𝐾
𝑇𝒂𝐾−1,𝑖); 𝒂1,𝑖 = 𝟎(𝑀+1)×1

𝚯𝐾,𝑖 = 𝚯𝐾−1,𝑖 −
𝜆𝑖𝚯𝐾−1,𝑖𝒙̅𝐾𝒙̅𝐾

𝑇𝚯𝐾−1,𝑖

1+𝜆𝑖𝒙̅𝐾
𝑇𝚯𝐾−1,𝑖𝒙̅𝐾

; 𝚯1,𝑖 = Ω𝐈(𝑀+1)×(𝑀+1)

, (2.69)

where 𝚯𝐾,𝑖 is the corresponding covariance matrix of the i
th

 fuzzy rule; 𝐈(𝑀+1)×(𝑀+1) is the

(𝑀 + 1) × (𝑀 + 1) dimensional identical matrix; Ω is a large constant.

2.3.2.6. Semi-Supervised Classifiers

Semi-supervised machine learning approaches [164]–[169] consider both the labelled

and unlabelled data. The goal of the semi-supervised learning is to use the unlabelled data to

improve the generalisation.

Cluster assumption states that the decision boundary should not cross high density

regions, but lie in low density regions [166]. Virtually all the existing successful semi-

supervised approaches rely on the cluster assumption in a direct or indirect way by estimating

or optimising a smooth classification function over labelled and unlabelled data [170], [171].

42

Currently, there are two major branches of semi-supervised approaches, SVM-based and

graph-based approaches [168], [172].

 Semi-supervised SVMs [173]–[175] are extensions of the traditional SVMs [142] to a

semi-supervised scenario. Traditional SVMs maximise the separation between classes based

on the training data via a maximum-margin hyperplane [142], while semi-supervised

classifiers balance the estimated maximum-margin hyperplane with a separation of all the

data through the low-density regions. Well-known SVM-based semi-supervised classifiers

include: transductive support vector machine (TSVM) [173], ∇TSVM [166], Laplacian SVM

classifier [176], [177], local and global consistency based SVM [165] etc.

Graph-based approaches [168], [172], [178] use the labelled and unlabelled data as

vertices in a graph and build pairwise edges between the vertices weighted by similarities.

Well-known graph-based semi-supervised classifiers include: Gaussian fields and harmonic

functions based approaches [164], AnchorGraph-based classifier [179] and greedy gradient

max-cut based classifier [168], etc.

In general, both types of semi-supervised approaches share the same drawbacks [172]:

1) They are computationally expensive and they consume a lot of computer memory;

2) They are not applicable to the out-of-sample data;

3) They require full retraining when more training samples are given.

2.3.3. Regression Algorithms

Regression is a statistical process for estimating the relationships among variables and it

is commonly used for prediction and forecasting in various areas including engineering [180],

[181], biology [4], [182], economy and finance [183], [184]. The most widely used regression

algorithm should be the linear regression [4]. Linear regression is a simple, linear, offline

algorithm which has been studied rigorously, and used extensively in practical applications in

the precomputer area of statistics [185], however, even now, it is still the predominant

empirical tool in economics [4].

Adaptive-network-based fuzzy inference system (ANFIS) was introduced in 1993 [186]

as a kind of artificial neural network that is based on Takagi-Sugeno fuzzy inference system.

Since it integrates both neural networks and fuzzy logic principles, it has potential to capture

the benefits of both in a single framework and has the learning capability to approximate

nonlinear functions, and therefore, it is considered as a universal estimator.

43

Nowadays, due to the fact that we are faced not only with large datasets, but also with

huge data streams, the traditional simple offline algorithms are not sufficient to meet the

need. The more advanced evolving intelligent systems start to be developed and widely

applied for the purpose of prediction [187]. The two most representative algorithms to learn

evolving intelligent systems are the dynamic evolving neural-fuzzy inference system

(DENFIS) [188] and evolving Takagi-Sugeno (ETS) fuzzy model [11], [189].

In this section, the four well-known algorithms, linear regression, ANFIS, DENFIS and

ETS, are reviewed.

2.3.3.1. Linear Regression

A linear regression model assumes that the regression function is linear in the inputs.

The linear model is one of the most important tools in the area of statistics. Linear models are

quite simple, but can provide an adequate and interpretable description of the relationship

between the inputs and outputs [4].

Using 𝒙 = [𝑥1, 𝑥2, … , 𝑥𝑀]𝑻 as the input vector, the linear model to predict the output 𝑦

is expressed as:

𝑦 = 𝑎0 + ∑ 𝑥𝑖𝑎𝑖
𝑀
𝑖=1 = 𝒙̅𝑇𝒂, (2.70)

where 𝒙̅𝑇 = [1, 𝑥1, 𝑥2, … , 𝑥𝑀] and 𝒂 = [𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑀]𝑇.

A number of approaches can be used to decide the parameters 𝒂 and fix the linear

model, but by far, the most popular approach is the least square method [4], which is written

as:

𝒂̂ = (𝒙̅𝑇𝒙̅)−𝟏𝒙̅𝑇𝑦. (2.71)

There are also many different modifications on the linear regression algorithm, one of

the most representative one is the sliding window linear regression, which has been widely

used in the finance and economy [190].

Despite the fact that linear regression model is one of the most popular regression

algorithms due to its simplicity and stability, however, its major drawback is the

oversimplification of the problems, which makes it insufficient in dealing with complex and

large-scale problems.

44

2.3.3.2. ANFIS

ANFIS [186] is a simple data learning technique that uses fuzzy logic to transform given

inputs into a desired output through interconnected neural network processing elements and

information connections [191]. For clarity, the general architecture of ANFIS is presented in

Figure 5, where two fuzzy rules of Takagi-Sugeno type are considered [59], [62]:

𝐼𝐹 (𝑥1 𝑖𝑠 𝐿1,1) 𝐴𝑁𝐷 (𝑥2 𝑖𝑠 𝐿1,2) 𝑇𝐻𝐸𝑁 (𝑦1 = [1, 𝒙𝑇]𝒂1)

𝐼𝐹 (𝑥1 𝑖𝑠 𝐿2,1) 𝐴𝑁𝐷 (𝑥2 𝑖𝑠 𝐿2,2) 𝑇𝐻𝐸𝑁 (𝑦2 = [1, 𝒙𝑇]𝒂2)
 , (2.72)

where 𝒙 = [𝑥1, 𝑥2]
𝑇 , 𝒂1 = [𝑎1,0, 𝑎1,1, 𝑎1,2]

𝑇
 and , 𝒂2 = [𝑎2,0, 𝑎2,1, 𝑎2,2]

𝑇
.

Figure 5. Architecture of the ANFIS.

Layer 1 consists of a number of adaptive nodes. The outputs of Layer 1 are the fuzzy

membership grades of the inputs, and the membership function can be of any type. The

outputs of this layer are denoted by MF𝑖,𝑗(𝑥𝑗), in this case, 𝑖, 𝑗 = 1,2.

Layer 2 involves fuzzy operators; it uses the multiply operator to fuzzify the inputs, and

the outputs of this layer are denoted by 𝜆𝑖 = MF𝑖,1(𝑥1) ∙ MF𝑖,2(𝑥2) (𝑖 = 1,2).

Layer 3 plays a normalisation role to the firing strengths from the previous layer, 𝜆̅𝑖 =

𝜆𝑖 (𝜆1 + 𝜆2)⁄ .

Layer 4 calculates the product of the normalised firing strength and a first order

polynomial (for a first order Takagi-Sugeno model), 𝑦𝑖 = 𝜆̅𝑖[1, 𝒙𝑇]𝒂𝑖 (𝑖 = 1,2).

Layer 5 performs the summation of all incoming signals. The overall output of the

model is given by:

45

𝑦 = ∑ 𝑦𝑖
2
𝑖=1 = ∑ 𝜆̅𝑖[1, 𝒙𝑇]𝒂𝑖

2
𝑖=1 = ∑

𝜆𝑖[1,𝒙𝑇]𝒂𝑖

∑ 𝜆1𝑗
2
𝑗=1

2
𝑖=1 . (2.73)

The training process of the ANFIS is a combination of gradient descent and least

squares methods. In the forward pass, the outputs of the nodes within the network go forward

until Layer 4 and the consequent parameters are determined by the least squares. In the

backward pass, the error signals propagate backward and the premise parameters are updated

using gradient descendent [191].

ANFIS was developed in the era that the datasets are static and not complicated.

However, the ANFIS system is insufficient for the real applications nowadays due to the

following drawbacks:

1) The structure of the fuzzy inference system needs to be predefined, which requires

prior knowledge and a large number of ad hoc decisions;

2) Its structure is not self-evolving and its parameters cannot be updated online.

2.3.3.3. DENFIS

DENFIS is one of the two most widely used approaches for learning an evolving

intelligent system [188]. DENFIS is able to generate a linear neural fuzzy model through an

efficient adaptive online or offline learning process, and conduct accurate dynamic time

series prediction.

Its online learning is achieved by the evolving clustering method (ECM), which,

essentially, can be viewed as an online k-means algorithm with a mechanism of incrementally

gaining new clusters [188]. Its offline learning process is also very similar to the k-means

algorithm, which requires the number of clusters to be predetermined [188].

DENFIS [188], both online and offline models, uses Takagi-Sugeno type inference

engine (equation (2.46)) [59], [62]. At each time moment, the output of DENFIS is calculated

based on 𝑞-most activated fuzzy rules, which are dynamically chosen from a fuzzy rule set.

In both DENFIS online and offline models, all fuzzy membership functions are

triangular type functions, which depend on three parameters as given by the following

equation:

MF(𝑥) = {
(𝑥 − 𝑎) (𝑏 − 𝑎)⁄ 𝑎 < 𝑥 ≤ 𝑏
(𝑐 − 𝑥) (𝑐 − 𝑏)⁄ 𝑏 < 𝑥 ≤ 𝑐

0 𝑥 ≤ 𝑎 ∨ 𝑐 < 𝑥

, (2.74)

The output of the DENFIS system is formulated as:

46

𝑦(𝒙𝐾) = ∑
𝜆𝐾,𝑖𝒙̅𝐾

𝑇𝒂𝐾,𝑖

∑ 𝜆𝐾,𝑗
𝑞
𝑗=1

𝑞
𝑖=1 , (2.75)

where 𝜆𝐾,𝑖 = ∏ MF𝑗(𝑥𝐾,𝑗)
𝑀
𝑗=1 ; and the consequent parameters, 𝒂𝐾,𝑖 , are updated using the

weighted recursive linear least-square estimator (RLSE):

𝒂𝐾,𝑖 = 𝒂𝐾−1,𝑖 + 𝚯𝐾,𝑖𝜆𝑖𝒙̅𝐾(𝑦𝐾 − 𝒙̅𝐾
𝑇𝒂𝐾,𝑖)

𝚯𝐾,𝑖 =
1

𝜀
(𝚯𝐾−1,𝑖 −

𝜆𝑖𝚯𝐾−1,𝑖𝒙̅𝐾𝒙̅𝐾
𝑇𝚯𝐾−1,𝑖

𝜀+𝒙̅𝐾
𝑇𝚯𝐾−1,𝑖𝒙̅𝐾

)
, (2.76)

where 𝒂𝐾,𝑖 and 𝚯𝐾,𝑖 are initialised from the first few data samples; 𝜀 is a forgetting factor

which typical value range is [0.8,1] [188].

Despite of being widely used, the major drawbacks of the DENFIS algorithm are:

1) It requires prior assumptions and predefined parameters, i.e. number of initial rules,

parameters of the membership function;

2) As an online algorithm, it requires offline training and cannot start “from scratch”.

2.3.3.4. ETS

The ETS system was firstly introduced in [192], [193] and ultimately in [11].

Nowadays, it is the other one of the two most widely used approaches for learning an

evolving intelligent system. The learning mechanism of the ETS system [11] is

computationally very efficient because it is fully recursive. The two phases include:

1) Data space partitioning and based on this, form and update the fuzzy rule-base

structure;

2) Learning parameters of the consequent part of the fuzzy rules.

Data space partitioning is achieved by the eClustering algorithm [11] as presented in

section 2.3.1.4. However, the data space partitioning within ETS serves for a different

purpose compared to the eClustering. In ETS, there are outputs and the aim is to find such

(perhaps overlapping) clustering of the input-output joint data space that fragments the input-

output relationship into locally valid simpler (possibly linear) dependences. In eClustering,

the aim is to cluster the input data space into a number of sub-regions. The consequent

parameters of the ETS system are learned by the FWRLS, which has been described in

section 2.4.5.

Due to its genetic nature, the ETS system has been widely applied to different problems

including, but not limited to clustering, time series prediction, control.

47

2.3.4. Anomaly Detection Algorithms

Anomaly detection is an important problem of statistical analysis [194]. Anomaly

detection techniques mainly target at discovering rare events [49]. In many real situations and

applications, i.e. detecting criminal activities, forest fire, human body monitoring, etc., the

rare cases play a key role. Anomaly detection is also closely linked to clustering process since

the members of a cluster are rather routine, normal or typical [49] and, thus, data either

belong to a cluster or are anomalous.

Traditional anomaly detection is based on statistical analysis [3], [195]. It relies on a

number of prior assumptions about the data generation models and requires certain degree of

prior knowledge [3]. However, these prior assumptions are only true in the ideal/theoretical

situations, i.e. Gaussian, independently and identically distributed data, and the prior

knowledge is more often unavailable in reality.

There are some supervised anomaly detection approaches published in the recent

decades [152], [196], [197]. These techniques require the labels of the data samples to be

known in advance, which allows the algorithms to learn in a supervised way and generate the

desired output after training. The supervised approaches are usually more accurate and

effective in detecting outliers compared with the statistical methods. However, in real

applications, the labels of the data are usually unknown. The existing unsupervised anomaly

detection approaches [198]–[200], however, require a number of user inputs to be predefined,

i.e. threshold, error tolerance, number of nearest neighbours, etc. Selection of the proper user

inputs requires good prior knowledge; otherwise, the performance of these approaches is

affected.

2.4. Conclusion

This chapter contains the separate surveys for data analysis, computational intelligence

and machine learning covering the scope of the research work presented in this thesis.

Traditional data analytics approach (the classical probability theory and statistics)

provides the very solid mathematical foundation for the traditional data machine learning

techniques. However, the very strong prior assumptions the probability theory and statistics

rely on also open the door for many failures in real situations.

Traditional machine learning techniques suffer from various problems including 1)

strong prior assumptions, 2) predefined user- and problem- specific parameters, 3) ad hoc

decisions, etc., which undermine their applicability in large-scale, complex real problems.

48

Artificial neural networks (or the so-called deep learning) are the state-of-the-art

approaches in the fields of machine learning and computer vision. However, their structures

lack transparency, and they suffer from the problems of too many ad hoc decisions and very

heavy computational burden, all of which hinder them in wider applications in real world.

On the other hand, traditional fuzzy rule-based classifiers were successfully used for

classification [160], [201] offering transparent, interpretable structure, but could not reach the

levels of performance achieved by deep learning classifiers. Their design also requires

handcrafting membership functions, assumptions to be made and parameters to be selected.

The prototype-based nature of the recently introduced AnYa type fuzzy rules simplifies

the antecedent (IF) part of the traditional fuzzy rule. Meanwhile, the new data analytics

methodology, EDA, gives a strong alternative to the traditional statistics and probability

theory, but is free from their paradoxes and deficiencies. Both of them provide a data-centred

theoretical basis for the new generation of self-organising, transparent, nonparametric

machine learning algorithms and deep learning networks, which will be presented in chapter

3, chapter 4 and chapter 5, respectively.

49

3. Unsupervised Self-Organising Machine Learning Algorithms

As the major unsupervised machine learning technique, clustering, alternatively, data

partitioning plays a very important role in data analysis and pattern recognition. However,

most of the data clustering and partitioning approaches, as described in section 2.2.1, share

the three deficiencies:

1) They rely on strong prior assumptions on the model of data generation;

2) They require prior knowledge for defining free parameters;

3) Their performance and computational efficiency deteriorates very fast on large-scale

and complex problems.

In principle, clustering and data partitioning are closely related and very similar, both of

them aim to partition the data into smaller groups using certain types of algorithmic

procedures. The only difference between clustering and data partitioning is that a data

partitioning algorithm firstly identifies the data distribution peaks/modes and uses them as

focal points [27] to associate other points with them to form data clouds [60] that resemble

Voronoi tessellation [64]. Data clouds [60] can be generalised as a special type of clusters but

with many distinctive differences. They are nonparametric and their shape is not predefined

or predetermined by the type of the distance metric used. Data clouds directly represent the

local ensemble properties of the observed data samples. In contrast, a clustering algorithm

derives from data clusters with pre-determined shapes. The shape of clusters formed using

Euclidean distance is always hyper-spherical; clusters formed using Mahalanobis distance are

always hyper-ellipsoidal, etc.

In this chapter, the newly introduced self-organising data partitioning/clustering

techniques within the EDA framework are presented. In contrast to the traditional clustering

approaches, the techniques included in this chapter have the following features:

1) They employ the nonparametric EDA quantities as the operators to achieve data

processing;

2) They are autonomous, self-organising and entirely data-driven;

3) They are free from user- and problem- specific parameters;

4) They are based on the ensemble properties and mutual distribution of empirically

observed data.

50

This chapter is organised as follows. Section 3.1 introduces the autonomous data-driven

clustering algorithm of three different versions (offline, evolving and parallel computing) as

presented in [28]–[30]. Section 3.2 presents the offline and online versions of the hypercube-

based data partitioning algorithm. The autonomous data partitioning algorithm and self-

organising direction-aware data partitioning algorithm are given in section 3.3 and section

3.4, respectively. Section 3.5 summarises this chapter.

3.1. Autonomous Data-Driven Clustering Algorithm

The autonomous data-driven (ADD) clustering algorithm is a novel method based

entirely on the empirical observations (the discrete data) and their ensemble properties

(standardised eccentricity and unimodal density). It has three different versions, 1) offline

version, 2) evolving version and 3) parallel computing online version.

3.1.1. Offline ADD Algorithm

The offline ADD clustering algorithm was initially introduced in [28]. As the

computational efficiency of the original version is not high enough and is less effective in

handling datasets within which data samples from different classes are not separable, in this

section, the modified offline algorithm is presented. It has three stages: 1) preparation; 2)

prototypes identification and 3) cluster fusion. The main procedure of the offline algorithm is

described as follows.

3.1.1.1. Stage 1: Preparation

In this stage, for every unique data sample 𝒖𝑖 ∈ {𝒖}𝑁, {𝒖}𝑁 ⊆ {𝒙}𝐾, its local unimodal

density 𝐷𝐿 is calculated:

𝐷𝐿(𝒖𝑖) =
∑ 𝑞𝐿(𝒙)

𝑑(𝒙,𝒖𝑖)≤𝑑̅

2𝑁𝑖𝑞𝐿(𝒖𝑖)
, (3.1)

where 𝑞𝐿(𝒙) is the cumulative proximity calculated locally for all the data samples located in

the hypersphere with 𝒖𝑖 as its centre and 𝑑̅ as its radius; 𝑁𝑖 is the number of data samples

located within this hypersphere; 𝑑̅ is the half of the average square distance between the data

samples within {𝒙}𝐾 and is calculated as:

𝑑̅2 =
∑ 𝑞𝐾(𝒙𝑗)

𝐾
𝑗=1

2𝐾2 =
∑ ∑ 𝑑2(𝒙𝑗,𝒙𝑘)𝐾

𝑘=1
𝐾
𝑗=1

2𝐾2 . (3.2)

3.1.1.2. Stage 2: Prototypes Identification

The clusters formation begins with the data sample with the maximum 𝐷𝐿:

51

𝒖𝑚 = argmax𝑖=1,2,…,𝑁(𝐷𝐿(𝒖𝑖)) . (3.3)

Then, all the data samples within the hypersphere with 𝒖𝑚 as the centre and 𝑟 =
𝑑̅

4
 as the

radius are found out as the initial member of the first cluster ℂ1, and they are ranked based

on their distances to 𝒖𝑚 in an ascending order, which means: 𝑑(𝒛1, 𝒖𝑚) = 0 ≤ 𝑑(𝒛2, 𝒖𝑚) ≤

⋯ ≤ 𝑑(𝒛𝑆1
, 𝒖𝑚) (𝒛𝑖 ∈ ℂ1), and the number of members within ℂ1 is denoted by 𝑆1 . The

descending speed of 𝐷𝐿 at ℂ1 is calculated as:

𝐷𝐿
′(𝒛𝑖) = 𝐷𝐿(𝒛1) − 𝐷𝐿(𝒛𝑖); 𝑖 = 2,3… , 𝑆1. (3.4)

The following condition is checked in regards to 𝐷𝐿
′ :

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 1:

𝐼𝐹 (𝐷𝐿
′(𝒛𝒊) ≤ E(𝐷𝐿

′(𝒛)) + 𝑠𝑡𝑑(𝐷𝐿
′(𝒛)), ∀𝑖 = 2,3, . . , 𝑆1)

𝑇𝐻𝐸𝑁 (𝐷𝐿(𝒛) 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒𝑠 𝑠𝑚𝑜𝑜𝑡ℎ𝑙𝑦)

𝐸𝐿𝑆𝐸 𝑇𝐻𝐸𝑁 (𝐷𝐿(𝒛) 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒𝑠 𝑠ℎ𝑎𝑟𝑝𝑙𝑦 𝑎𝑡 𝑎 𝑐𝑒𝑟𝑡𝑎𝑖𝑛 𝑝𝑜𝑖𝑛𝑡)

. (3.5)

If Condition 1 is met, it means that ℂ1 is not fully spread yet and the radius of the

hypersphere around 𝒖𝑚 is enlarged to allow more data samples (𝑟 ← 𝑟 × 1.1) to be included

in ℂ1. Then the process repeats until Condition 1 is unsatisfied.

Once Condition 1 is unsatisfied, it means that 𝐷𝐿(𝒛𝑖) decreases sharply at the knee

point, denoted by 𝒖𝑘 (there may be multiple keen points as well). In such condition, the

hypersphere around 𝒖𝑚 includes data samples from two or more clusters, and 𝑑(𝒖𝑘, 𝒖𝑚) is

the maximum radius of the hypersphere around 𝒖𝑚 which includes data samples from the

same cluster. By finding out all the data samples in {𝒙}𝐾 within the range of 𝑑(𝒖𝑘, 𝒖𝑚)

around 𝒖𝑚 , ℂ1 is fully formed: ℂ1 ← {𝒙|𝑑(𝒙, 𝒖𝑚) ≤ 𝑑(𝒖𝑘, 𝒖𝑚), 𝒙 ∈ {𝒙}𝐾} . After the

formation of ℂ1, all its members are excluded from {𝒖}𝑁 , {𝒙}𝐾 and the formation process

starts again by finding out the next 𝒖𝑚. The formation process will not stop until {𝒖}𝑁 = ∅.

During the formation process, there may be some data samples spatially isolated from

the majority, which means that 𝑑(𝒖,𝒖𝑚) >
𝑑̅

4
 (𝒖 ∈ {𝒖}𝑁 𝑎𝑛𝑑 𝒖 ≠ 𝒖𝑚), for this kind of 𝒖𝑚,

it forms a cluster by itself.

3.1.1.3. Stage 3: Cluster Fusion

As the previous stage may create too many subtle clusters, in this stage, the underlying

overlapping clusters are merged together. The fusion operation starts from the cluster with the

smallest support and ends up with the one with the largest support if no interruption.

52

Starting from the smallest cluster, ℂ1, Condition 2 is checked, which also involves the

Chebyshev inequality in the form of standardised eccentricity (equations (2.41) and (2.42))

[50]:

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 2:
𝐼𝐹 (𝜀𝐿,𝑖(𝝁𝑗) < 𝜀𝑜) 𝑂𝑅 (𝜀𝐿,𝑗(𝝁𝑖) < 𝜀𝑜)

𝑇𝐻𝐸𝑁 (ℂ𝑖 𝑎𝑛𝑑 ℂ𝑗 𝑎𝑟𝑒 𝑚𝑒𝑟𝑔𝑒𝑑 𝑡𝑜𝑔𝑒𝑡ℎ𝑒𝑟)
, (3.6)

where 𝑖 = 1,2, … , 𝐶 − 1 and 𝑗 = 𝑖 + 1, 𝑖 + 2,… , 𝐶; 𝜀𝑜 = 5, which corresponds to the 2𝜎 rule;

𝜀𝐿,𝑖(𝝁𝑗) and 𝜀𝐿,𝑗(𝝁𝑖) are the standardised eccentricities calculated locally within the i
th

 and j
th

clusters, respectively, and are expressed as (𝑖 ≠ 𝑗):

𝜀𝐿,𝑖(𝝁𝑗) =
∑ 𝑞𝐿,𝑖(𝒙)𝒙∈ℂ𝑖

+2∑ 𝑑2(𝒙,𝝁𝑗)𝒙∈ℂ𝑖

2(𝑆𝑖+1)∑ 𝑑2(𝒙,𝝁𝑗)𝒙∈ℂ𝑖

. (3.7)

Once two clusters, for instance, ℂ𝑖 and ℂ𝑗 , are merged together (ℂ𝑖 ← ℂ𝑖 + ℂ𝑗), the

centre and support of the new cluster are calculated. If ℂ𝑖 requires to be merged with

multiple clusters, it is merged with the nearest one. Then, all the existing 𝐶 − 1 clusters are

re-ranked in the descending order in terms of their supports and Condition 2 is checked again

for another round.

After all the potentially overlapping clusters have been merged together, the remaining

clusters are regarded as the main modes of the data pattern and the offline algorithm uses the

clusters as the final output.

3.1.1.4. Complexity Analysis

In the first stage of the offline ADD clustering algorithm, the computational complexity

of calculating 𝑑̅ is 𝑂(𝐾2). The computational complexity for calculating the local unimodal

density, 𝐷𝐿 is decided by the calculation of local cumulative proximity, 𝑞𝐿 , and the

computational complexity of which is: ∑ 𝑂(𝑁𝑖)
𝑁
𝑖=1 . This is because that the distances between

any two data samples have been calculated when 𝑑̅ was calculated.

The second and third stages of the offline ADD algorithm mainly operate on the

calculated local cumulative proximity, 𝑞𝐿 and local unimodal density, 𝐷𝐿 in the first stage,

and, thus, the computational complexity of both stages is decided by the number of unique

data samples, namely, 𝑂(𝑁).

Therefore, the overall computational complexity of the offline ADD algorithm is

𝑂(𝐾2).

53

Since the complexity analysis of the proposed algorithms can be performed in a similar

way as presented in this subsection, the computational complexity analysis for the rest of the

algorithms presented in this thesis is not conducted. Nonetheless, one can use the same

principles to get the conclusion.

3.1.1.5. Algorithm Summary

The main procedure of the offline ADD clustering algorithm is summarised in the form

of a flowchart presented in Figure 6.

54

Figure 6. Main procedure of the offline ADD clustering algorithm.

3.1.2. Evolving ADD Algorithm

In this section, the evolving version of the ADD clustering algorithm is described for the

streaming data processing [29]. During the clustering process, there are only a few meta-

55

parameters that have to be kept in memory and are recursively updated, which ensures the

computation- and memory- efficiency of the evolving algorithm.

Because the recursive expressions of the algorithmic meta-parameters are involved in

the evolving clustering algorithm, the most widely used Euclidean distance is used for

simpler derivation and visual clarity, however, as it has been demonstrated in section 2.1.3,

other types of distance/dissimilarity can also be considered.

The main stages are described as follows.

3.1.2.1. Stage 1: Initialisation

The evolving ADD clustering algorithm is initialised by the first data sample of the

stream, 𝒙1. The global meta-parameters of the algorithm are set as:

𝐾 ← 1; 𝐶 ← 1; 𝝁 ← 𝒙1; 𝑋 ← ‖𝒙1‖
2, (3.8)

where 𝐾 denotes the current time instance; 𝐶 is the number of existing clusters; 𝝁 and 𝑋 are

the global mean and average scalar product of the data stream {𝒙}𝐾.

The meta-parameters of the first cluster, ℂ1, are set as:

ℂ1 ← {𝒙1}; 𝑆1 ← 1; 𝝁1 ← 𝒙1; 𝑋1 ← ‖𝒙1‖
2, (3.9)

3.1.2.2. Stage 2: Clusters Update

For each newly arrived data sample 𝒙𝐾 (𝐾 ← 𝐾 + 1), the global meta-parameters (𝝁 and

𝑋) are firstly updated using equations (2.26) and (2.27).

Then the unimodal density is calculated at the centres of the existing clusters 𝝁𝑖

(𝑖 = 1,2, … , 𝐶) and 𝒙𝐾 using equations (2.18), (2.24) and (2.25). And Condition 3 is checked

[11]:

 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 3:

𝐼𝐹 (𝐷𝐾(𝒙𝐾) < min𝑖=1,2,…,𝐶(𝐷𝐾(𝝁𝑖)))

𝑂𝑅 (𝐷𝐾(𝒙𝐾) > max𝑖=1,2,…,𝐶(𝐷𝐾(𝝁𝑖)))

𝑇𝐻𝐸𝑁 (𝒙𝐾 𝑐𝑟𝑒𝑎𝑡𝑒𝑠 𝑎 𝑛𝑒𝑤 𝑐𝑙𝑢𝑠𝑡𝑒𝑟)

. (3.10)

If Condition 3 is satisfied, a new cluster is created around 𝒙𝐾 (𝐶 ← 𝐶 + 1) because of

the change of data pattern, and there are:

ℂ𝐶 ← {𝒙𝐾} 𝑆𝐶 ← 1; 𝝁𝐶 ← 𝒙𝐾; 𝑋𝐶 ← ‖𝒙𝐾‖2. (3.11)

Otherwise, 𝒙𝐾 is assigned to the nearest cluster using equation (3.12):

𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = argmin𝑖=1,2,…,𝐶(‖𝒙𝐾 − 𝝁𝑖‖). (3.12)

56

Assuming 𝒙𝐾 is supposed to be assigned to the n
th

 cluster, ℂ𝑛. If the support 𝑆𝑛 = 1,

the parameters of ℂ𝑛 are updated as follows.

 ℂ𝑛 ← {ℂ𝑛, 𝒙𝐾}; 𝑆𝑛 ← 𝑆𝑛 + 1; 𝝁𝑛 ←
𝑆𝑛−1

𝑆𝑛
𝝁𝑛 +

1

𝑆𝑛
𝒙𝐾; 𝑋𝑛 ←

𝑆𝑛−1

𝑆𝑛
𝑋𝑛 +

1

𝑆𝑛
‖𝒙𝐾‖2. (3.13)

If 𝑆𝑛 > 1, Condition 4 needs to be checked first:

 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 4:
𝐼𝐹 (‖𝒙𝐾 − 𝝁𝑛‖2 > 𝑟𝑛

2)

𝑇𝐻𝐸𝑁 (𝒙𝐾 𝑐𝑟𝑒𝑎𝑡𝑒𝑠 𝑎 𝑛𝑒𝑤 𝑐𝑙𝑢𝑠𝑡𝑒𝑟)
, (3.14)

where 𝑟𝑛 is the radius of the n
th

cluster and can be derived based on Chebyshev inequality,

and 𝑟𝑛
2 is expressed as:

𝑟𝑛
2 = 2(𝑋𝑛 − ‖𝝁𝑛‖2), (3.15)

which indicates that the areas of influences are within √2 standard deviations around the

centres of the clusters,

If Condition 4 is met, a new cluster is created around 𝒙𝐾 (𝐶 ← 𝐶 + 1) and the meta-

parameters of ℂ𝐶 can be set using equations (3.11).

3.1.2.3. Stage 3: Clusters Adjustment

In this stage, all the existing clusters are ranked in terms of their radii in a descending

order, and are still denoted as ℂ𝑖 (𝑖 = 1,2, … , 𝐶), but there is 𝑟1
2 ≥ 𝑟2

2 ≥ ⋯ ≥ 𝑟𝐶
2. They will

be examined and adjusted to avoid the possible overlap.

Condition 5 is checked first and the operation starts from the cluster with the largest

radius and end with the one with the smallest radius if no interrupt:

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 5:

𝐼𝐹 (‖𝝁𝑖 − 𝝁𝑗1‖
2

< max(𝑟𝑖
2, 𝑟𝑗1

2)) 𝐴𝑁𝐷 …

𝐴𝑁𝐷 (‖𝝁𝑖 − 𝝁𝑗𝐿
‖

2
< max(𝑟𝑖

2, 𝑟𝑗𝐿

2))

𝑇𝐻𝐸𝑁 (ℂ𝑖 𝑖𝑠 𝑠𝑝𝑙𝑖𝑡)

, (3.16)

where 𝑖 < min𝑙=1,2,…,𝐿(𝑗𝑘) and 𝐿 ≥ 2.

If Condition 5 is satisfied for cluster ℂ𝑖 , it means that there are two or more other

clusters sharing the same influence areas with it, thus, ℂ𝑖 needs to be split according to the

following rule (𝐶 ← 𝐶 − 1):

 ℂ𝑗𝑙
← {ℂ𝑖𝑙 , ℂ𝑗𝑙

}; 𝑆𝑗𝑙
← 𝑆𝑗𝑙

+ 𝑠𝑖𝑙;

𝝁𝑗𝑙
←

𝑆𝑗𝑙
−𝑠𝑖𝑙

𝑆𝑗𝑙

𝝁𝑗𝑙
+

𝑠𝑖𝑙

𝑆𝑗𝑙

𝝁𝑖; 𝑋𝑗𝑙
←

𝑆𝑗𝑙
−𝑠𝑖𝑙

𝑆𝑗𝑙

𝑋𝑗𝑙
+

𝑠𝑖𝑙

𝑆𝑗𝑙

𝑋𝑖,
 (3.17)

57

where 𝑙 = 1,2, … , 𝐿 ; ℂ𝑖 = ∑ ℂ𝑖𝑙
𝐿
𝑙=1 ; 𝑠𝑖𝑙 = 𝑟𝑜𝑢𝑛𝑑 (

‖𝝁𝑖−𝝁𝑗𝑙
‖

−1

∑ ‖𝝁𝑖−𝝁𝑗𝑘
‖

−1
𝐿
𝑘=1

𝑆𝑖) , 𝑟𝑜𝑢𝑛𝑑(∙) denotes

round to the nearest integer and there is: 𝑆𝑖 = ∑ 𝑠𝑖𝑙
𝐿
𝑙=1 .

Once a cluster is split to the clusters nearby, the meta-parameters of the existing clusters

are updated, they are re-ranked in terms of their radii again and the cluster split operation

starts again from the largest cluster if no interrupt.

After there is no cluster satisfying Condition 5, Condition 6 is checked to see whether

there are any clusters needed to merged:

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 6:
𝐼𝐹 (‖𝝁𝑖 − 𝝁𝑗‖

2
< max(𝑟𝑖

2, 𝑟𝑗
2))

𝑇𝐻𝐸𝑁 (ℂ𝑖 𝑎𝑛𝑑 ℂ𝑗 𝑎𝑟𝑒 𝑚𝑒𝑟𝑔𝑒𝑑 𝑡𝑜𝑔𝑒𝑡ℎ𝑒𝑟)
. (3.18)

Once clusters ℂ𝑖 and ℂ𝑗 meet Condition 6, they are very close to each other and should

be merged together as :

 ℂ𝑖 ← {ℂ𝑖, ℂ𝑗}; 𝐶 ← 𝐶 − 1; 𝑆𝑖 ← 𝑆𝑖 + 𝑆𝑗;

𝝁𝑖 ←
𝑆𝑖−𝑆𝑗

𝑆𝑖
𝝁𝑖 +

𝑆𝑗

𝑆𝑖
𝝁𝑗; 𝑋𝑖 ←

𝑆𝑖−𝑆𝑗

𝑆𝑖
𝑋𝑖 +

𝑆𝑗

𝑆𝑖
𝑋𝑗 .

 (3.19)

Similarly, the cluster merge operation starts with the largest cluster and every time a

merge operation is performed, the remaining clusters are re-ranked based on their radii and

the merge operation starts again until no cluster satisfying Condition 6.

Then, the algorithm goes back to Stage 2 if there are new data samples available or goes

to Stage 4 to export the clusters.

3.1.2.4. Stage 4: Exporting Main Clusters

In this stage, as there is no new data sample anymore, the evolving algorithm uses

Condition 7 to filter out the clusters with small supports to get the more elegant output:

 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 7: 𝐼𝐹 (𝑆𝑖 >
𝐾

2𝐶
) 𝑇𝐻𝐸𝑁 (ℂ𝑖 𝑖𝑠 𝑜𝑛𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑎𝑖𝑛 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠). (3.20)

3.1.2.5. Algorithm Summary

The main procedure of the evolving ADD clustering algorithm is summarized in the

form of a flowchart presented in Figure 7.

58

Figure 7. Main procedure of the evolving ADD clustering algorithm.

59

3.1.3. Parallel Computing ADD Algorithm

The parallel computing version of the ADD clustering algorithm was introduced for

high frequency streaming data clustering [30]. Within this version, a number of streaming

data processors are involved, which work on the chunks of the data stream and collaborate

with each other efficiently to achieve parallel computation as well as a much higher

processing speed. A fusion centre is involved to gather the key information from the

processors and generate the overall output. The architecture of the parallel computing ADD

clustering algorithm is depicted in Figure 8.

Figure 8. Architecture of the parallel computing ADD clustering algorithm.

The main procedure of the parallel computing ADD clustering algorithm is as follows.

As the recursive expressions of the algorithmic meta-parameters are used, Euclidean distance

is used for illustration, however, other types of distance/dissimilarity can be considered as

well.

3.1.3.1. Stage 1: Separate Processing

Assuming that there are 𝑃 streaming data processors with the input chunk size of 𝑄,

and, at the current time instance, there are 𝑃𝑄 data samples observed, the observed data

samples are firstly separated into 𝑃 different chunks according to the time instances at which

they arrived:

𝒄𝒉𝒖𝒏𝒌 1 = {𝒙1, 𝒙2, … , 𝒙𝑄}

𝒄𝒉𝒖𝒏𝒌 2 = {𝒙𝑄+1, 𝒙𝑄+2, … , 𝒙2𝑄}

⋮
𝒄𝒉𝒖𝒏𝒌 𝑃 = {𝒙(𝑃−1)𝑄+1, 𝒙(𝑃−1)𝑄+2, … , 𝒙𝑃𝑄}

 , (3.21)

60

After the data chunks are separated from the data stream, they are processed separately

in the corresponding processors in the form of a tributary data stream on a sample-by-sample

basis.

The i
th

streaming data processor (𝑖 = 1,2, … , 𝑃) is initialised with the first data sample

𝒙(𝑖−1)𝑄+1 and the meta-parameters of processor are set as:

𝐼𝑖 ← 1; 𝐶𝑖 ← 1, (3.22)

where 𝐼𝑖 denotes the number of data samples the i
th

 processor has processed (time instance).

The meta-parameter of the first cluster initialised by 𝒙(𝑖−1)𝑄+1 are set as:

ℂ1
𝑖 ← {𝒙(𝑖−1)𝑄+1}; 𝑆1

𝑖 ← 1; 𝝁1
𝑖 ← 𝒙(𝑖−1)𝑄+1; 𝑋1

𝑖 ← ‖𝒙(𝑖−1)𝑄+1‖
2
; 𝐴1

𝑖 ← 0, (3.23)

where 𝐴1
𝑖 is the age of the clusters [55], [60]. The age of a particular cluster (the c

th
one) is

defined as follows [55], [60]:

𝐴𝑐
𝑖 = 𝐼𝑖 −

∑ 𝑡𝑐,𝑗
𝑖𝑆𝑐

𝑖

𝑗=1

𝑆𝑐
𝑖 , (3.24)

where 𝑡𝑐,𝑗
𝑖 is time instance at which the j

th
 member of the c

th
 cluster is assigned.

For the next data sample (𝐼𝑖 ← 𝐼𝑖 + 1), 𝒙(𝑖−1)𝑄+𝐼𝑖, Condition 7 is checked:

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 7:
𝐼𝐹 (𝜀𝐿,𝑗

𝑖 (𝒙(𝑖−1)𝑄+𝐼𝑖) ≤ 𝜀𝑜)

𝑇𝐻𝐸𝑁 (𝒙(𝑖−1)𝑄+𝐼𝑖 𝑖𝑠 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ ℂ𝑗
𝑖)

, (3.25)

where 𝜀𝑜 = 5, which is the same as section 3.1.1.3; 𝜀𝐿,𝑗
𝑖 (𝒙(𝑖−1)𝑄+𝐼𝑖) is the local standardised

eccentricity of 𝒙(𝑖−1)𝑄+𝐼𝑖 recursively calculated at the c
th

 cluster as:

 𝜀𝐿,𝑗
𝑖 (𝒙(𝑖−1)𝑄+𝐼𝑖) =

(𝑆𝑗
𝑖)

2
‖𝝁𝑗

𝑖−𝒙
(𝑖−1)𝑄+𝐼𝑖

‖
2
+(𝑆𝑗

𝑖+1)(𝑆𝑗
𝑖𝑋𝑗

𝑖+‖𝒙
(𝑖−1)𝑄+𝐼𝑖

‖
2
)−‖𝑆𝑗

𝑖𝝁𝑗
𝑖+𝒙

(𝑖−1)𝑄+𝐼𝑖
‖

2

(𝑆𝑗
𝑖+1)(𝑆𝑗

𝑖𝑋𝑗
𝑖+‖𝒙

(𝑖−1)𝑄+𝐼𝑖
‖

2
)−‖𝑆𝑗

𝑖𝝁𝑗
𝑖+𝒙

(𝑖−1)𝑄+𝐼𝑖
‖

2 . (3.26)

If 𝒙(𝑖−1)𝑄+𝐼𝑖 is associated with multiple clusters at the same time, it is assigned to the

cluster based on the following rule:

 ℂ𝑛
𝑖 ← {ℂ𝑛

𝑖 , 𝒙(𝑖−1)𝑄+𝐼𝑖}; 𝑛 = argmin𝑗=1,2,…,𝐶𝑖 (𝜀𝐿,𝑗
𝑖 (𝒙(𝑖−1)𝑄+𝐼𝑖)). (3.27)

And the meta-parameters of ℂ𝑛
𝑖 are updated as:

𝑆𝑛
𝑖 ← 𝑆𝑛

𝑖 + 1; 𝝁𝑛
𝑖 ←

𝑆𝑛
𝑖 −1

𝑆𝑛
𝑖 𝝁𝑛

𝑖 +
1

𝑆𝑛
𝑖 𝒙(𝑖−1)𝑄+𝐼𝑖;

𝑋𝑛
𝑖 ←

𝑆𝑛
𝑖 −1

𝑆𝑛
𝑖 𝑋𝑛

𝑖 +
1

𝑆𝑛
𝑖 ‖𝒙𝒙

(𝑖−1)𝑄+𝐼𝑖
‖

2

; 𝐴𝑛
𝑖 ← 𝐼𝑖 −

(𝑆𝑛
𝑖 −1)(𝐼𝑖−1−𝐴𝑛

𝑖)+𝐼𝑖

𝑆𝑛
𝑖 .

 (3.28)

61

If there is no cluster satisfying Condition 7, 𝒙(𝑖−1)𝑄+𝐼𝑖 creates a new cluster (𝐶𝑖 ← 𝐶𝑖 +

1):

 ℂ
𝐶𝑖
𝑖 ← {𝒙(𝑖−1)𝑄+𝐼𝑖}; 𝑆

𝐶𝑖
𝑖 ← 1; 𝝁

𝐶𝑖
𝑖 ← 𝒙(𝑖−1)𝑄+𝐼𝑖; 𝑋

𝐶𝑖
𝑖 ← ‖𝒙(𝑖−1)𝑄+𝐼𝑖‖

2
; 𝐴

𝐶𝑖
𝑖 ← 0.(3.29)

For all the other clusters that do not receive new members, their meta-parameters stay

the same except the ages:

𝐴𝑘
𝑖 ← 𝐴𝑘

𝑖 + 1; 𝑘 ∈ 𝑜𝑡ℎ𝑒𝑟. (3.30)

After the structure and the meta-parameters of the system are updated, before the

processor begins to handle the next data sample (𝐼𝑖 ← 𝐼𝑖 + 1), every cluster is checked to see

whether it is out of date using Condition 8 (𝑘 = 1,2, … , 𝐶𝑖)

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 8:
𝐼𝐹 (𝐴𝑘

𝑖 > 𝜇𝐴
𝑖 + 𝑛𝜎𝐴

𝑖) 𝐴𝑁𝐷 (𝐴𝑘
𝑖 > 𝑄)

𝑇𝐻𝐸𝑁 (ℂ𝑘
𝑖 𝑖𝑠 𝑜𝑢𝑡 𝑜𝑓 𝑑𝑎𝑡𝑒)

, (3.31)

where 𝑛 = 3, which corresponds to the “3sigma” rule; 𝜇𝐴
𝑖 and 𝜎𝐴

𝑖 are the mean and standard

deviation of the ages of all the existing clusters within the i
th

 processor.

Once the streaming data processor selects out a stale cluster, the cluster is removed

automatically because it fails to represent the current data pattern and may have adverse

influence on further clustering process [117]. After the cluster cleaning process, the processor

will process the next data sample (𝐼𝑖 ← 𝐼𝑖 + 1). Once the current chunk is processed, the

processor will begin a new round of processing with the next data chunk on the basis of the

previous clustering results stored in the memory.

3.1.3.2. Stage 2: Clusters Fusion

Although the 𝑃 streaming data processors will continue the data processing process one

chunk by one chunk automatically, based on the needs of the users, the overall clustering

results can be viewed and checked at any time.

Responding to the request of the user, the clustering results of all the processors are

passed to the fusion centre. The existing clusters from all the processors are re-denoted as

ℂ1, ℂ2, … , ℂ𝐶𝑜 , where 𝐶𝑜 = ∑ 𝐶𝑖𝑃
𝑖=1 , and there is 𝑆1 ≤ 𝑆2 ≤ ⋯ ≤ 𝑆𝐶𝑜 . The centres and the

average scalar products of the clusters are re-denoted as 𝝁1, 𝝁2, … , 𝝁𝐶𝑜 and 𝑋1, 𝑋2, … , 𝑋𝐶𝑜

correspondingly.

Each round of the cluster fusion operation starts with the cluster having the smallest

support and end with the one with the largest support if no interrupt. The same process as

62

presented in section 3.1.1.3 is performed to detect the two clusters that are required to be

merged and equation (3.19) is used to fuse the meta-parameters of both clusters together.

After the clusters fusion process is finished, there may be some trivial clusters (with

very small support) left, and they need to be assigned to nearest larger clusters based on

Condition 9 to ensure an elegant output (𝑖 = 1,2, … , 𝐶𝑜):

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 9: 𝐼𝐹 (𝑆𝑖 ≤
∑ 𝑆𝑗

𝐶𝑜

𝑗=1

5𝐶𝑜
) 𝑇𝐻𝐸𝑁 (ℂ𝑖 𝑖𝑠 𝑎 𝑡𝑟𝑖𝑣𝑖𝑎𝑙 𝑐𝑙𝑢𝑠𝑡𝑒𝑟). (3.32)

And the nearest larger cluster is determined as:

ℂ𝑛 ← {ℂ𝑖, ℂ𝑛}; 𝑛 = argmin𝑗=1,2,…,𝐶𝑜(‖𝝁𝑖 − 𝝁𝑗‖). (3.33)

3.1.3.3. Algorithm Summary

The main procedure of the clustering process each streaming data processor performs is

presented in the form of a flowchart presented in Figure 9. The fusion process is presented in

Figure 10.

Figure 9. Main procedure of the clustering process of the i
th

 streaming data processor

63

Figure 10. Main procedure of the fusion process.

3.2. Hypercube-Based Data Partitioning Algorithm

The ADD clustering algorithm extracts all the needed information from the observed

data directly and then continues to filter out the less important information from the main

one, in addition, it has complicated operation mechanism, and thus, it is relatively slow. In

this section, we will introduce an alternative algorithm for data partitioning, namely the

hypercube-based.

This hypercube-based data partition (HCDP) algorithm involves a regular grid in the

data space resulting in a number of hyper-cubes completely filling in the whole space, which

simplifies the calculation and, thus, speed up the whole algorithm. The concept of hypercube

is borrowed from [202] that a group of hyper-cubes perfectly divide the entire data space,

𝐑𝑀 . Within the proposed algorithm, every observed data sample will be projected into a

hyper-cube, and the prototypes representing the local modes of the data pattern will be

identified automatically.

64

The HCDP algorithm partitions the data into nonparametric, shape-free data clouds with

the prototypes as the focal points attracting the data samples around them resembling

Voronoi tessellation [64], which objectively represent the local modes of the data

distribution. The proposed algorithm is deliberately designed to be memory-efficient based

on the fact that the data samples normally will not be distributed everywhere in the data

space.

In the following two subsections, the two versions (offline and evolving) of the

hypercube-based partitioning algorithm are introduced separately.

3.2.1. Offline HCDP Algorithm

The offline HCDP algorithm involves the multimodal density, 𝐷𝐺 , to identify the focal

points of the data clouds in the data space, 𝐑𝑀 . The identification is conducted with the

hyper-cubes and only involves the unique data sample set {𝒖}𝑁 and the corresponding

frequencies of occurrence {𝑓}𝑁.

The main stages of the proposed offline hypercube-based partitioning algorithm are as

follows.

3.2.1.1. Stage 1: Hyper-cubes projection

Firstly, the multimodal densities 𝐷𝐾
𝐺(𝒖𝑖) (𝒖𝑖 ∈ {𝒖}𝑁) at all the data samples are

calculated using equation (2.19). Then, all the unique data samples {𝒖}𝑁 are normalised into

the range between [0,1], re-denoted as {𝒗}𝑁, and the whole data space is converted into a

𝑀 dimensional hypercube with the value range of [0,1] in each dimension.

Then, {𝒗}𝑁 are projected into the 𝛾𝑀 smaller hyper-cubes that separate the data space,

where 𝛾 is the granularity of the segmentation, and 𝛾 is a positive integer. The following

equation is used to find the hypercube for a particular unique data sample 𝒗𝑖 belonging to:

𝒎𝑖 = [𝑚𝑖,1, 𝑚𝑖,2, … ,𝑚𝑖,𝑀]𝑇 , (3.34)

where 𝒎𝑖 indicates the coordinate of the hypercube in the data space;

𝑚𝑖,𝑑 = argmin𝑚=1,2,…,𝛾 (|𝑣𝑖,𝑑 −
𝑚−1

𝛾
| + |𝑣𝑖,𝑑 −

𝑚

𝛾
|) and 𝑑 = 1,2, … , 𝑀 . Based on {𝒎}𝑁 ,

one can find out the corresponding data samples in each hypercube.

Assuming that there are 𝐻 hyper-cubes are actually occupied by at least one data sample

(𝐶 ≤ 𝛾𝑀), denoted by 𝓗𝑖 (𝑖 = 1,2, … ,𝐻), one can count the support of each hypercube (𝑆𝑖) :

𝑆𝑖 = ∑ 𝑓𝑗𝒖𝑗∈𝓗𝑖
, (3.35)

65

and calculate the sum of multimodal densities of data samples within it:

𝐷𝐺(𝓗𝑖) = ∑ 𝐷𝐾
𝐺(𝒖𝑗)𝒖𝑗∈𝓗𝑖

. (3.36)

3.2.1.2. Stage2: Data Clouds Formation

For each hypercube, 𝐷𝐺(𝓗𝑖) (𝑖 = 1,2, … ,𝐻) is compared with the same value for other

cubes directly connected to it, which are sharing the same edge or point. If 𝐷𝐺(𝓗𝑖) is the

local maximum, then 𝓗𝑖 is a hypercube that represents one of the local modes of the data

pattern, and the collection of such hyper-cubes are denoted as {𝓗∗}. If there is no occupied

hypercube around 𝓗𝑖, 𝓗𝑖 can also be viewed as a local mode, and thus, there is {𝓗∗} ←

{𝓗∗,𝓗𝑖}.

However, it is also necessary to filter out the hyper-cubes with smaller supports in {𝓗∗}

using Condition 10 because they may actually stand for anomalies (𝑖 = 1,2, … ,𝐻∗):

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 10:
𝐼𝐹 (𝑆𝑖

∗ < 𝑚𝑒𝑎𝑛(𝑆∗) − 2 × 𝑠𝑡𝑑(𝑆∗))

𝑇𝐻𝐸𝑁 (𝓗𝑖
∗ 𝑖𝑠 𝑟𝑒𝑚𝑜𝑣𝑒𝑑)

 , (3.37)

where 𝐻∗ is the number of hyper-cubes within {𝓗∗}; 𝑆𝑖
∗ is the corresponding support of 𝓗𝑖

∗;

𝑚𝑒𝑎𝑛(𝑆∗) and 𝑠𝑡𝑑(𝑆∗) are the average value and standard deviation of 𝑆𝑖
∗ (𝑖 = 1,2, … ,𝐻∗).

After the filtering operation (equation (3.37)), the focal points of the data clouds can be

selected from the remaining hyper-cubes directly as the unique data samples with the highest

value of 𝐷𝐺 in each hypercube. The focal points are re-denoted as {𝒖∗} and based on them,

the members of all the data clouds can be selected from {𝒙}𝐾 using equation (3.12).

3.2.1.3. Algorithm Summary

The main procedure of the offline HCDP algorithm is summarised in the form of a

flowchart presented in Figure 11.

66

Figure 11. Main procedure of the offline HCDP algorithm.

3.2.2. Evolving HCDP Algorithm

In this subsection, the main procedure of the evolving hypercube-based partitioning

algorithm is described.

3.2.2.1. Stage 1: Online Hypercube Projection

The evolving hypercube-based partitioning algorithm requires to partition the data space

into 𝛾𝑀 hyper-cubes. However, without knowing the exact value ranges of the attributes of

the streaming data, a direct partitioning of the data space is infeasible. Therefore, data online

standardisation is necessary for confining the value ranges of the data. For each newly arrived

data sample, 𝒙𝐾 (𝐾 ← 𝐾 + 1), the standard deviation of each attribute value is updated as

(𝑑 = 1,2, … ,𝑀):

𝜎𝑑
2 ←

𝐾−1

𝐾
(𝜎𝑑

2 + 𝜇𝑑
2) +

1

𝐾
𝑥𝐾,𝑑

2 − (
𝐾−1

𝐾
𝜇𝑑 +

1

𝐾
𝑥𝐾,𝑑)

2

, (3.38)

Then, the global mean 𝝁 = [𝜇1, 𝜇2, … , 𝜇𝑀]𝑇 is also updated using equation (2.26) and

𝒙𝐾 is standardised online as (𝑑 = 1,2, … ,𝑀):

67

𝑣𝐾,𝑑 = (𝑥𝐾,𝑑 − 𝜇𝑑) 𝜎𝑑⁄ . (3.39)

Using the “3𝜎” Chebyshev inequality, the data space is manually converted into a M

dimensional hypercube with the value range of [−3, 3] in each dimension. This covers the

majority of the observed data samples [52]. For the data samples jumping out of the

limitation, they are rolled back to the edges of this huge hypercube.

Then, the same approach as described by section 3.2.1.1 (equation (3.34)) is used to find

the small hyper-cube with the coordinate 𝒎𝐾 that 𝒗𝐾 belongs to, and the only difference is

that (𝑑 = 1,2, … ,𝑀):

𝑚𝐾,𝑑 = argmin𝑚=1,2,…,𝛾 (|𝑣𝑖,𝑑 − 𝑛 − 2𝑛 ×
𝑚−1

𝛾
| + |𝑣𝑖,𝑑 − 𝑛 − 2𝑛 ×

𝑚

𝛾
|) , (3.40)

where 𝑛 = 3, which corresponds to the “3𝜎” rule.

Based on the coordinate 𝒎𝐾, the hypercube, assuming 𝓗𝑛 , that 𝒗𝐾 is associated with is

identified, and its meta-parameters, namely the number 𝑆𝑛 and mean 𝝁𝑛 of the current data

samples within 𝓗𝑖 are updated.

3.2.2.2. Stage 2: Data Clouds Formation

Once there is no new data sample any more, the evolving hypercube-based data

partitioning algorithm will perform the focal points identification operation and then generate

the final data partitioning output. The algorithm is designed to work automatically and will

perform the focal points identification operation anyway unless specifically prompted not to.

Once the focal points identification operation begins, the multimodal densities at the

centres of the activated hyper-cubes (𝑆 > 0) are calculated using equations (2.19), (2.24) and

(2.25) with the corresponding supports used as the frequencies (𝑖 = 1,2, … ,𝐻):

𝐷𝐾
𝐺(𝝁𝑖) = 𝑆𝑖 (1 +

‖𝝁𝑖−𝝁‖2

𝑋−‖𝝁‖2
)⁄ . (3.41)

Then, by using the multimodal densities 𝐷𝐾
𝐺(𝝁𝑖) as 𝐷𝐺(𝓗𝑖) , the same process as

described in section 3.2.1.2 is applied to identify the focal points from the centres 𝝁𝑖(𝑖 =

1,2, … ,𝐻) of the activated hyper-cubes. The selected focal points are re-denoted as {𝝁∗}, and

based on them, the corresponding members of all the data clouds can be obtained from {𝒙}𝐾

using equation (3.12).

68

3.2.2.3. Algorithm Summary

The main procedure of the evolving HCDP algorithm is summarised in the form of a

flowchart presented in Figure 12.

Figure 12. Main procedure of the evolving HCDP algorithm.

69

3.3. Autonomous Data Partitioning Algorithm

The autonomous data partitioning (ADP) algorithm is an advanced data driven approach

for data partitioning [31]. The ADP algorithm has the following advantages:

1) Its operation mechanism is simpler, which makes it more computationally efficient

and easier for implementation compared with other clustering/data partitioning algorithms

presented in this thesis (one can see from section 6.1 and also from [28]–[33]);

2) It is free from user inputs, prior assumptions and predefined problem- and user-

specific parameters;

3) It partitions the data into nonparametric, shape-free data clouds, which objectively

represent the local modes of the data distribution.

ADP algorithm has two versions, offline and evolving.

3.3.1. Offline ADP Algorithm

The offline ADP algorithm works with the multimodal density, 𝐷𝐺 of the observed data

samples and it is based on the ranks of them in terms of multimodal densities and mutual

distribution [31]. Ranks are very important, but other approaches avoid them because they are

nonlinear and discrete operators. And thus, the offline version is more stable and effective in

partitioning static datasets.

The main procedure of the offline ADP algorithm consists of four stages as follows

[31].

3.3.1.1. Stage 1: Ranking Order Data

The ADP algorithm starts by organising the unique data samples {𝒖}𝑁 in an indexing

list, denoted by {𝒛}𝑁 , based on the distance to the global peak of multimodal density.

Firstly, the multimodal densities 𝐷𝐺 of all observed unique data samples {𝒖}𝑁 are

calculated using equation (2.19). The unique data sample with the highest multimodal density

is then selected as the first element of {𝒛}𝑁:

𝒛1 ← 𝒖𝑗, 𝑗 = argmax𝑘=1,2,…,𝑁(𝐷𝐾
𝐺(𝒖𝑘)), (3.42)

where 𝒛1 is the unique data sample with the global maximum multimodal density. After, 𝒛1

is identified, it is set as the reference sample (𝒛𝑟 ← 𝒛1) and 𝒛1 is removed from {𝒖}𝑁.

70

Then, the unique data sample nearest to 𝒛𝑟 (denoted by 𝒛2) is selected from the rest of

{𝒖}𝑁 as the new reference sample: 𝒛𝑟 ← 𝒛2 , and 𝒛2 is removed from {𝒖}𝑁 as well. The

process is repeated until {𝒖}𝑁 = ∅. Then, the ranked unique data samples, denoted as {𝒛}𝑁

and their corresponding ranked multimodal density collection: {𝐷𝐾
𝐺(𝒛)}𝑁 are obtained.

3.3.1.2. Stage 2: Prototypes Identification

In this stage, the local maxima of {𝐷𝐾
𝐺(𝒛)}𝑁 are identified and the corresponding unique

data samples with local maximum 𝐷𝐺 are used as the prototypes to form clusters.

Condition 11 is used to identify the local maxima from {𝐷𝐾
𝐺(𝒛)}𝑁 and all the data

samples satisfying Condition 11 are re-denoted as {𝒖∗}𝑁:

 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 11:
𝐼𝐹 (𝐷𝐾

𝐺(𝒛𝑗−1) < 𝐷𝐾
𝐺(𝒛𝑗)) 𝐴𝑁𝐷 (𝐷𝐿(𝒛𝑗+1) < 𝐷𝐾

𝐺(𝒛𝑗))

𝑇𝐻𝐸𝑁 (𝒛𝑗 𝑖𝑠 𝑎 𝑙𝑜𝑐𝑎𝑙 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑜𝑓 𝐷𝐺)
. (3.43)

3.3.1.3. Stage 3: Creating Voronoi Tessellations

Once the collection, {𝒖∗}𝑁, is identified, its members are used as the focal points of the

data clouds representing the local modes of the data pattern. All the data samples within {𝒙}𝐾

are then assigned to the nearest focal points using equation (3.12).

After all the data samples within {𝒙}𝐾 are assigned to the focal points, they naturally

create Voronoi tessellation [64] and form data clouds. Assuming that there are C data clouds

formed, these data clouds are ranked in terms of their supports (number of members) in an

ascending order, denoted by 𝑆𝑖. The ranked data clouds are denoted as 𝚵𝑖 (𝑖 = 1,2, … , 𝐶),

where there is 𝑆1 ≤ 𝑆2 ≤ ⋯ ≤ 𝑆𝐶 . The corresponding centres are denoted as 𝝁𝑖 (𝑖 =

1,2, … , 𝐶).

3.3.1.4. Stage 4: Filtering Local Modes

The data clouds formed in the previous stage may contain some less representative ones,

therefore, in this stage, the initial Voronoi tessellations are filtered and combined into larger,

more meaningful data clouds.

The multimodal densities of the data clouds centres {𝝁} are firstly calculated using

equation (2.21) with the corresponding supports {𝑆} used as the frequencies, denoted by

𝐷𝐾
𝐺(𝝁𝑖) (𝑖 = 1,2, … , 𝐶). In order to identify the centres with the local maxima of multimodal

density, the three objectively derived quantifiers of the data pattern are introduced:

𝜂𝐾 = ∑ ∑ 𝑑(𝝁𝑖, 𝝁𝑗)
𝐶
𝑗=𝑖+1

𝐶−1
𝑖=1 (𝐶(𝐶 − 1))⁄ ; (3.44)

71

𝛾𝐾 = ∑ 𝑑(𝒙, 𝒛)𝒙,𝒛∈{𝝁},𝑑(𝒙,𝒛)≤𝜂𝐾,𝒙≠𝒛 𝐶𝜂⁄ ; (3.45)

𝜆𝐾 = ∑ 𝑑(𝒙, 𝒛)𝒙,𝒛∈{𝝁},𝑑(𝒙,𝒛)≤𝛾𝐾,𝒙≠𝒛 𝐶𝛾⁄ . (3.46)

𝜂𝐾 is the average distance between any pair of the existing local modes. 𝛾𝐾 is the

average distance between any pair of existing local modes with a distance less than 𝜂𝐾, and

𝐶𝜂 is the number of such pairs. Similarly, 𝜆𝐾 is the average distance between any pair of

existing local modes with a distance less than 𝛾𝐾, and 𝐶𝛾 is the number of such local modes

pairs. Note that, 𝜂𝐾 , 𝛾𝐾 and 𝜆𝐾 are not problem-specific, but are parameter-free. The

quantifier 𝜆𝐾 can be viewed as the estimation of the distances between the strongly connected

data clouds condensing the local information from the whole data set. Moreover, instead of

relying on a fixed threshold, which may frequently fail, 𝜂𝐾 , 𝛾𝐾 and 𝜆𝐾 derived from the

dataset objectively are guaranteed to be meaningful regardless of the distribution of the data.

Each centre 𝝁𝑖 (𝑖 = 1,2, … , 𝐶) is compared with the centres of the neighbouring data

clouds {𝚵}𝑖
𝑛 in terms of the multimodal densities to identify the local maxima following

Condition 12:

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 12:
𝐼𝐹 (𝐷𝐾

𝐺(𝝁𝑖) = max({{𝐷𝐾
𝐺(𝝁)}𝑖

𝑛, 𝐷𝐾
𝐺(𝝁𝑖)}))

𝑇𝐻𝐸𝑁 (𝝁𝑖 𝑖𝑠 𝑜𝑛𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑜𝑐𝑎𝑙 𝑚𝑎𝑥𝑖𝑚𝑎)
, (3.47)

where {𝐷𝐾
𝐺(𝝁)}𝑖

𝑛 is the collection of multimodal densities of the neighbouring data cloud

centres {𝚵}𝑖
𝑛, which satisfy Condition 13 (𝑗 = 1,2, … , 𝐶, 𝑖 ≠ 𝑗):

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 13:
𝐼𝐹 (𝑑(𝝁𝑖, 𝝁𝑗) ≤

𝜆𝐾

2
)

𝑇𝐻𝐸𝑁 (𝚵𝑗 𝑖𝑠 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑖𝑛𝑔 𝚵𝑖)
. (3.48)

The criterion of neighbouring range is defined in this way because two centres with the

distance smaller than 𝛾𝐾 can be considered to be potentially relevant in the sense of spatial

distance; 𝜆𝐾 is the average distance between the centres of any two potentially relevant data

clouds. Therefore, when Condition 13 is satisfied, both 𝝁𝑖 and 𝝁𝑗 are highly influencing each

other and, the data samples within the two corresponding data clouds are strongly connected.

Therefore, the two data clouds are considered as neighbours. This criterion also guarantees

that only small-size (less important) data clouds that significantly overlap with large-size

(more important) ones will be removed during the filtering operation.

After the filtering operation, the data cloud centres with local maximum multimodal

densities denoted by {𝝁∗} are obtained. Then, {𝝁∗} are used as local modes for forming data

clouds in stage 3 ({𝒖∗}𝑁 ← {𝝁∗}) and are filtered in stage 4.

72

Stages 3 and 4 are repeated until all the distances between the existing local modes

exceed
𝜆𝐾

2
. Finally, we obtain the remaining centres with the local maxima of 𝐷𝐺 , re-denoted

by {𝝁∗}, and use them as the local modes to form data clouds using equation (3.12).

After the data clouds are formed, the corresponding centres, standard deviations,

supports, members and other parameters of the formed data clouds can be extracted post

factum.

3.3.1.5. Algorithm Summary

The main procedure of the offline ADP algorithm is summarised in the form of a

flowchart presented in Figure 13.

Figure 13. Main procedure of the offline ADP algorithm.

73

3.3.2. Evolving ADP Algorithm

The evolving ADP algorithm works with the unimodal density 𝐷 of the streaming data.

This algorithm is able to start “from scratch”. In addition, a hybrid between the evolving and

the offline versions is also possible. The main procedure of the evolving algorithm is as

follows [31]. Here the Euclidean distance is used for simpler derivation.

3.3.2.1. Stage 1: Initialisation

The first data sample within the data stream 𝒙1 is selected as the first local mode. The

global parameters of the ADP algorithm are set as 𝐾 ← 1, 𝐶 ← 1, 𝝁 ← 𝒙1 and 𝑋 ← ‖𝒙1‖
2,

and the meta-parameters of the first data cloud are set as 𝚵1 ← {𝒙1}, 𝑆1 ← 1 and 𝝁1 ← 𝒙1,

which are the same as equations (3.8) and (3.9).

The ADP algorithm then starts to self-evolve its structure and update the parameters

based on the arriving data samples.

3.3.2.2. Stage 2: System Structure and Meta-Parameters Update

For each newly arriving data sample (𝐾 ← 𝐾 + 1), denoted as 𝒙𝐾 , the global meta-

parameters 𝝁 and 𝑋 are updated firstly using equations (2.26) and (2.27). The unimodal

density at 𝒙𝐾 and the centres of all the existing data clouds, 𝐷𝐾(𝒙𝐾) and 𝐷𝐾(𝝁𝑖) (𝑖 =

1,2, … , 𝐶) are calculated using equations (2.18), (2.24) and (2.25).

Then, Condition 3 (equation (3.19)) is checked to decide whether 𝒙𝐾 will form a new

data cloud. If Condition 3 is met, a new data cloud is added with 𝒙𝐾 as its local mode as:

𝐶 ← 𝐶 + 1, 𝚵𝐶 ← {𝒙𝐾}, 𝝁𝐶 ← 𝒙𝐾 and 𝑆𝐶 ← 1. Otherwise, the existing local mode closest to

𝒙𝐾 is found, denoted as 𝝁𝑛. Then, Condition 14 is checked before 𝒙𝐾 is assigned to the data

cloud formed around the nearest data cloud centre 𝝁𝑛:

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 14:
𝐼𝐹(‖ 𝝁𝑛 − 𝒙𝐾‖ ≤ 𝜂𝐾 2⁄)

𝑇𝐻𝐸𝑁 (𝒙𝐾 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝝁𝑛)
 . (3.49)

However, it is not computationally efficient to calculate 𝜂𝐾 at each time a new data

sample arrives. Since the average distance between all the data samples 𝜂𝐾
𝑑 is approximately

equal to 𝜂𝐾, 𝜂𝐾 ≈ 𝜂𝐾
𝑑 , 𝜂𝐾 can be replaced as:

𝜂𝐾 ≈ 𝜂𝐾
𝑑 = √∑ ∑ ‖𝒙𝑗−𝒙𝑖‖

2𝐾
𝑗=1

𝐾
𝑖=1

𝐾2
= √2(𝑋𝐾 − ‖𝝁‖2). (3.50)

74

If Condition 14 is satisfied, 𝒙𝐾 is associated with the nearest existing local mode 𝝁𝑛.

The meta-parameters of this data cloud 𝚵𝑛, namely 𝑆𝑛 and 𝝁𝑛 are updated using equation

(3.13).

If Condition 14 is not satisfied, then 𝒙𝐾 starts a new data cloud with the meta-

parameters initialised as: 𝐶 ← 𝐶 + 1, 𝚵𝐶 ← {𝒙𝐾}, 𝝁𝐶 ← 𝒙𝐾 and 𝑆𝐶 ← 1.

The local modes and support of other data clouds that do not get the new data sample

stay the same for the next processing cycle. After the update of the system structure and the

meta-parameters, the algorithm is ready for the next data sample.

3.3.2.3. Stage 3: Data Clouds Formation

When there are no more data samples, the identified local modes (renamed as {𝝁∗}) are

used to rebuild data clouds using equation (3.12). The parameters of these data clouds can be

extracted post factum.

3.3.2.4. Algorithm Summary

The main procedure of the evolving ADP algorithm is summarised in the form of a

flowchart presented in Figure 14.

75

Figure 14. Main procedure of the evolving ADP algorithm.

3.3.3. Handling the Outliers in ADP

After the data clouds are formed by all the identified local modes, one may notice some

data clouds with support equal to 1, which means that there is no sample associated with

these data clouds except for the local modes. This kind of local modes are considered to be

outliers. In the ADP algorithm presented in this thesis, the outliers are assigned to the nearest

normal data clouds using equation (3.12) and the meta-parameters of the data clouds that

receive new members are updated using equation (3.13). Nonetheless, it has to be stressed

that these abnormal local modes are ignored from the partitioning results, but they can still be

kept in memory in case new data samples arrive.

76

3.4. Self-Organising Direction-Aware Data Partitioning Algorithm

In this section, an autonomous algorithm named Self-Organised Direction Aware

(SODA) data partitioning is presented. The SODA partitioning algorithm employs both a

traditional distance metric and a cosine similarity based angular component. The widely used

traditional distance metrics, including Euclidean, Mahalanobis, Minkowski distances, mainly

measure the magnitude difference between vectors. The cosine similarity, instead, focuses on

the directional similarity. The algorithm that takes into consideration both the spatial and the

angular divergences results in a deeper understanding of the ensemble properties of the data.

Using EDA operators [26], [27], the SODA algorithm autonomously identifies the focal

points (local peaks of the typicality, thus, the most representative points locally) from the

observed data based on both, the spatial and angular divergences and, based on the focal

points, it is able to disclose the ensemble properties and mutual distribution of the data. The

possibility to calculate the EDA quantities incrementally enables us to propose

computationally efficient algorithms.

The SODA algorithm consists of two versions, namely, offline and evolving. The

offline version of the SODA algorithm is for static data processing, and an extension is also

given, which enables the offline algorithm to follow the changing data pattern in an agile

manner once primed/initialised with a seed dataset. The evolving SODA algorithm for

streaming data employs the recently introduced direction-aware distance as the distance

measure, and can start “from the scratch”. In this section, Euclidean distance is used to

measure the magnitude difference. The magnitude component is expressed as 𝑑𝑀(𝒙𝑖, 𝒙𝑗) =

‖𝒙𝑖 − 𝒙𝑗‖ and the cosine similarity-based angular component is expressed as 𝑑𝐴(𝒙𝑖, 𝒙𝑗) =

√1 − 𝑐𝑜𝑠 (𝜃𝒙𝑖,𝒙𝑗
) = ‖

𝒙𝑖

‖𝒙𝑖‖
−

𝒙𝑗

‖𝒙𝑗‖
‖ (𝒙𝑖, 𝒙𝑗 ∈ {𝒙}𝐾).

3.4.1. Offline SODA Algorithm

In this section, we will describe the proposed SODA algorithm. The main steps of the

SODA algorithm include: firstly, form a number of direction-aware planes from the observed

data samples using both the magnitude-based and angular-based unimodal densities;

secondly, identify focal points; finally, use the focal points to partition the data space into

data clouds. The detailed procedure of the proposed SODA partitioning algorithm is as

follows.

77

3.4.1.1. Stage 1: Preparation

At this stage, the average square values between every pair of data samples, {𝒙}𝐾 for

both, the Euclidean components, 𝑑𝑀 and square angular components, 𝑑𝐴, are calculated:

𝑑̅𝑀
2 =

∑ ∑ 𝑑𝑀
2 (𝒙𝑖,𝒙𝑗)

𝐾
𝑗=1

𝐾
𝑖=1

𝐾2 =
∑ ∑ ‖𝒙𝑖−𝒙𝑗‖

2𝐾
𝑗=1

𝐾
𝑖=1

𝐾2 = 2(𝑋𝑀 − ‖𝝁𝑀‖2); (3.51)

𝑑̅𝐴
2 =

∑ ∑ 𝑑𝐴
2 (𝒙𝑖,𝒙𝑗)

𝐾
𝑗=1

𝐾
𝑖=1

𝐾2
=

∑ ∑ ‖
𝒙𝑖

‖𝒙𝑖‖
−

𝒙𝑗

‖𝒙𝑗‖
‖

2
𝐾
𝑗=1

𝐾
𝑖=1

2𝐾2
= 1 − ‖𝝁𝐴‖2, (3.52)

where 𝑋𝑀 and 𝝁𝑀 are the means of {‖𝒙‖2}𝐾 and {𝒙}𝐾, respectively; 𝝁𝐴 is the mean of {
𝒙

‖𝒙‖
}
𝐾

.

Then, the multimodal densities 𝐷𝐺 of the unique data samples {𝒖}𝑁 are calculated using

equations (2.19), (2.24), (2.25), (2.32) and (2.33), as 𝐷𝐾
𝐺(𝒖𝑖) = 𝑓𝑖 (

1

1+
‖𝒖𝑖−𝝁𝑀‖

2

𝑋𝑀−‖𝝁𝑀‖
2

+

1

1+
‖𝒖𝑖 ‖𝒖𝑖‖⁄ −𝝁𝐴‖

2

1−‖𝝁𝐴‖
2

). Then, {𝒖}𝑁 are ranked in a descending order in terms of 𝐷𝐺 , which are re-

denoted as {𝒛}𝑁.

3.4.1.2. Stage 2: Direction-Aware Plane Projection

The direction-aware projection operation begins with the unique data sample that has

the highest multimodal density, namely 𝒛1. It is initially set to be the first reference, 𝝁1 ← 𝒛1,

which is also the origin point of the first direction-aware plane, denoted by ℵ1 (𝑃 ← 1, 𝑃 is

the number of existing direction-aware planes in the data space). For the rest of the unique

data samples 𝒛𝑗 (𝑗 = 2,3, … ,𝑁), Condition 15 is checked sequentially:

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 15:
𝐼𝐹 (

𝑑𝑀(𝝁𝑖,𝒛𝑗)

𝑑̅𝑀
≤

1

𝛾
) 𝐴𝑁𝐷 (

𝑑𝐴(𝝁𝑖,𝒛𝑗)

𝑑̅𝐴
≤

1

𝛾
)

𝑇𝐻𝐸𝑁 (ℵ𝑖 ← {ℵ𝑖, 𝒛𝑗})
, (3.53)

where 𝑖 = 1,2, … , 𝑃; 𝛾 is set to decide the granularity of the partitioning results and relates to

the Chebyshev inequality [52]. If two or more direction-aware planes satisfy Condition 15 at

the same time, 𝒛𝑗 will be assigned to the nearest of them:

𝑛 = argmin𝑖=1,2,…,𝑃 (
𝑑𝑀(𝝁𝑖,𝒛𝑗)

𝑑̅𝑀
+

𝑑𝐴(𝝁𝑖,𝒛𝑗)

𝑑̅𝐴
). (3.54)

78

The meta-parameters (mean 𝝁𝑛 , support/number of data samples, 𝑆𝑛 and sum of

multimodal density, denoted by 𝐷𝐺(ℵ𝑛)) of the n
th

direction-aware plane are being updated as

follows:

ℵ𝑛 ← {ℵ𝑛, 𝒛𝑗}; 𝝁𝑛 ←
𝑆𝑛

𝑆𝑛+1
 𝝁𝑛 +

1

𝑆𝑛+1
𝒛𝑗;

𝑆𝑛 ← 𝑆𝑛 + 1; 𝐷𝐺(ℵ𝑛) ← 𝐷𝐺(ℵ𝑛) + 𝐷𝐾
𝐺(𝒛𝑗).

 (3.55)

If Condition 15 is not met, 𝒛𝑗 is set to be a new reference and a new direction-aware

plane is set up as follows:

𝑃 ← 𝑃 + 1; ℵ𝑃 ← {𝒛𝑗}; 𝝁𝑃 ← 𝒛𝑗;

𝑆𝑃 ← 1; 𝐷𝐺(ℵ𝑃) ←𝐷𝐾
𝐺(𝒛𝑗).

 (3.56)

After all the unique data samples are projected onto the direction-aware planes, the next

stage can start.

3.4.1.3. Stage 3: Focal Points Identification

In this stage, for each direction-aware plane, denoted as ℵ𝑖 (𝑖 = 1,2, … , 𝑃), Condition

16 is used to find the neighbouring direction-aware planes, denoted by {ℵ}𝑖
𝑛:

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 16:
𝐼𝐹 (

𝑑𝑀(𝝁𝑖,𝝁𝑗)

𝑑̅𝑀
≤

2

𝛾
) 𝐴𝑁𝐷 (

𝑑𝐴(𝝁𝑖,𝝁𝑗)

𝑑̅𝐴
≤

2

𝛾
)

𝑇𝐻𝐸𝑁 ({ℵ}𝑖
𝑛 ← {{ℵ}𝑖

𝑛, ℵ𝑗})
, (3.57)

where 𝑗 = 1,2, … , 𝑃. Condition 16 can be related to the Chebyshev inequality as well [52].

Then, Condition 17 is used to find the direction-aware planes standing for the local

maxima of the data density (𝑖 = 1,2, … , 𝑃):

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 17:
𝐼𝐹 (𝐷𝐺(ℵ𝑖) > max({𝐷𝐺(ℵ)}𝑖

𝑛))

𝑇𝐻𝐸𝑁 (ℵ𝑖 𝑖𝑠 𝑎 𝑙𝑜𝑐𝑎𝑙 𝑚𝑎𝑥𝑖𝑚𝑢𝑚)
. (3.58)

By using Conditions 16 and 17 to examine each existing direction-aware plane, one can

find all the modes/peaks of the data density, and the origin points of the local maximum

planes are re-denoted as {𝝁∗}.

3.4.1.4. Stage 4: Forming Data Clouds

By using {𝝁∗} as the focal points, data clouds can be formed using equation (3.59) as a

Voronoi tessellation [64] :

𝑛 = argmin𝝁∈{𝝁∗} (
𝑑𝑀(𝝁,𝒙)

𝑑̅𝑀
+

𝑑𝐴(𝝁,𝒙)

𝑑̅𝐴
) ;

𝚵𝑛 ← {𝚵𝑛, 𝒙};
𝒙 ∈ {𝒙}𝑲. (3.59)

79

3.4.1.5. Algorithm Summary

The main procedure of the offline SODA algorithm is summarised in the form of a

flowchart presented in Figure 15.

Figure 15. Main procedure of the offline SODA algorithm.

80

3.4.2. Extension of the Offline SODA Algorithm

In this section, an extension to the offline SODA algorithm will be introduced to allow

the algorithm to continue to process the streaming data on the basis of the partitioning results

initiated by a static dataset. As a result, the main procedure of this extension for streaming

data processing will be built based on a structure initiated by an offline priming (does not

start “from scratch”).

The main procedure of the extension of the offline algorithm for the streaming data

processing is as follows.

3.4.2.1. Stage 1: Meta-parameters Update

After the static dataset has been processed, for each newly arrived data sample (𝐾 ←

𝐾 + 1) from the data stream, denoted by 𝒙𝐾 , 𝝁𝑀 , 𝑋𝑀and 𝝁𝐴 are updated using equations

(2.26), (2.27) and (2.34). The values of the Euclidean components, 𝑑𝑀 and the angular

components, 𝑑𝐴 between 𝒙𝐾 and the centres 𝝁𝑖 (𝑖 = 1,2, … , 𝑃) of the existing direction-

aware planes are calculated, denoted as 𝑑𝑀(𝒙𝐾, 𝝁𝑖) and 𝑑𝐴(𝒙𝐾, 𝝁𝑖) (𝑖 = 1,2, … , 𝑃). 𝑑̅𝑀
2 and

𝑑̅𝐴
2 are updated using equations (3.51) and (3.52) as well.

Then, Condition 15 and equation (3.54) are used to find the direction-aware plane 𝒙𝐾 is

associated with. If Condition 15 is met and 𝒙𝐾 is associated with the existing direction-aware

plane, assuming ℵ𝑛, 𝒙𝐾 is assigned to ℵ𝑛 and the corresponding meta-parameters 𝝁𝑛 and 𝑆𝑛

will be updated using equation (3.55). Otherwise, a new direction-aware plane is set up by 𝒙𝐾

(𝑃 ← 𝑃 + 1, ℵ𝑃 ← {𝒙𝐾}) with the meta-parameters (𝝁𝑃 and 𝑆𝑃) set up by equation (3.56).

3.4.2.2. Stage 2: Merging Overlapping Direction-Aware Planes

After the Stage 1 is finished, Condition 18 is checked to identify the heavily overlapping

direction-aware planes in the data space (𝑖, 𝑗 = 1,2, … , 𝐿; 1 ≤ 𝑖 < 𝑗 ≤ 𝑃):

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 18:
𝐼𝐹 (

𝑑𝑀(𝝁𝑖,𝝁𝑗)

𝑑̅𝑀
≤

1

2𝛾
) 𝐴𝑁𝐷 (

𝑑𝐴(𝝁𝑖,𝝁𝑗)

𝑑̅𝐴
≤

1

2𝛾
)

𝑇𝐻𝐸𝑁 (ℵ𝑖 𝑎𝑛𝑑 ℵ𝑗 𝑎𝑟𝑒 ℎ𝑒𝑎𝑣𝑖𝑙𝑦 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔)
. (3.60)

If ℵ𝑖 and ℵ𝑗 (𝑖, 𝑗 = 1,2, … , 𝑃; 1 ≤ 𝑖 < 𝑗 ≤ 𝑃) meet condition 18, they are merged

together on the basis of ℵ𝑗 (𝑃 ← 𝑃 − 1) with the meta-parameters 𝝁𝑗 and 𝑆𝑗 updated using

equation (3.19). Meanwhile, the meta-parameters of ℵ𝑖 are deleted.

81

The merging process repeats until all the heavily overlapping direction-aware planes

have been merged. Then, the algorithm goes back to Stage 1 and waits for the newly coming

data sample. If there is no new data sample anymore, the algorithm goes to the final stage.

3.4.2.3. Stage 3: Forming Data Clouds

Once there are no new data samples available, the SODA algorithm will quickly identify

the focal points from the centres of the existing direction-aware planes.

Firstly, the multimodal densities of the centres 𝝁𝑗 (𝑗 = 1,2, … , 𝑃) of the direction-aware

planes are calculated as 𝐷𝐾
𝐺(𝝁𝑗) = 𝑆𝑗 (

1

1+
‖ 𝝁𝑗−𝝁𝑀‖

2

𝑋𝑀−‖𝝁𝑀‖
2

+
1

1+
‖ 𝝁𝑗 ‖ 𝝁𝑗‖⁄ −𝝁𝐴‖

2

1−‖𝝁𝐴‖
2

) (𝑗 = 1,2, … , 𝑃) ,

where the support 𝑆𝑗 (𝑗 = 1,2, … , 𝑃) of each direction-aware plane is used as the

corresponding frequency.

Secondly, for each existing direction-aware plane, ℵ𝑖, Condition 16 is used to find the

neighbouring planes around it, denoted as {ℵ}𝑖
𝑛 . Condition 17 is used to check whether

𝐷𝐾
𝐺(𝝁𝑗) (𝑗 = 1,2, … , 𝑃) is one of the local maxima.

Finally, for all the identified local maxima of 𝐷𝐺 , the centres of the corresponding

planes, denoted as {𝝁∗} will serve as the focal points to form the data clouds using equation

(3.59).

3.4.2.4. Algorithm Summary

The main procedure of the offline SODA algorithm extension is summarised in the form

of a flowchart presented in Figure 16.

82

Figure 16. Main procedure of the offline SODA algorithm extension.

3.4.3. Evolving SODA Algorithm

In this section, the evolving SODA algorithm is presented, which employs the recently

introduced direction-aware distance [33] as the distance measure, which is also described in

section 2.1.3.6 as well. This algorithm is able to “start from scratch” and consistently evolve

its system structure and update the meta-parameters based on the newly arrived data samples.

In this evolving version, without a loss of generality, the two scaling coefficients of direction-

aware distance, namely 𝜆𝑀 and 𝜆𝐴 are set to be 𝜆𝑀 =
1

𝑑̅𝑀
2 and 𝜆𝐴 =

1

𝑑̅𝐴
2 , which are derived by

equations (3.51) and (3.52) [33].

83

The main procedure of the proposed algorithm is described as follows.

3.4.3.1. Stage 1: Initialisation

The first data sample 𝒙1 in the data stream is used for initialising the first data cloud and

its meta-parameters. In the evolving SODA algorithm, the system has the following

initialised global meta-parameters: 𝐾 ← 1 , 𝐶 ← 1 , 𝝁𝑀 ← 𝒙1 , 𝑋𝑀 ← ‖𝒙1‖
2 , 𝝁𝐴 ←

𝒙1

‖𝒙1‖
 and

𝑋𝐴 ← 1. And the meta-parameters of the first data cloud are set as (𝚵1 ← {𝒙1}):

𝝁1 ← 𝒙1; 𝝁̅1 ←
𝒙1

‖𝒙1‖
; 𝑋1 ← ‖𝒙1‖

2; 𝑋̅1 ← 1; 𝑆1 ← 1, (3.61)

where 𝝁̅1 is the normalised mean of ℵ1; 𝑋̅1 is the corresponding normalised average scalar

product.

After the initialisation of the system, the evolving SODA algorithm starts to update the

system structure and meta-parameters with the arrival of each new data samples.

3.4.3.2. Stage 2: System Structure and Meta-Parameters Update

With each newly arrived data sample (𝐾 ← 𝐾 + 1), the system’s global meta-

parameters, 𝝁𝑀, 𝑋𝑀 and 𝝁𝐴 are updated with 𝒙𝐾 using the equations (2.26), (2.27) and (2.34)

[26]. The two scaling parameters, 𝜆𝑀 and 𝜆𝐴, are updated accordingly using equations (3.51)

and (3.52).

Then, the nearest data cloud 𝚵𝑛 to 𝒙𝐾 with the centre denoted by 𝝁𝑛 is identified using

equation (3.62):

𝝁𝑛 = argmin𝑖=1,2,…,𝐶(𝑑𝐷𝐴(𝒙𝐾, 𝝁𝑖)). (3.62)

And the direction-aware distance between 𝝁𝑛 and 𝒙𝐾 is obtained as 𝑑𝐷𝐴(𝒙𝐾, 𝝁𝑛).

Condition 19 is checked to see whether 𝒙𝐾 is associated with a new data cloud:

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 19:

𝐼𝐹 (𝑑𝐷𝐴(𝒙𝐾, 𝝁𝑀) > max𝑗=1,2,…,𝐶 (𝑑𝐷𝐴(𝝁𝑗, 𝝁𝑀)))

𝑂𝑅 (𝑑𝐷𝐴(𝒙𝐾, 𝝁𝑀) < min𝑗=1,2,…,𝐶 (𝑑𝐷𝐴(𝝁𝑗, 𝝁𝑀)))

𝑂𝑅 (𝑑𝐷𝐴(𝒙𝐾, 𝝁𝑛) > 𝑑𝑜)

𝑇𝐻𝐸𝑁 (𝒙𝐾 𝑐𝑟𝑒𝑎𝑡𝑒𝑠 𝑎 𝑛𝑒𝑤 𝑑𝑎𝑡𝑎 𝑐𝑙𝑜𝑢𝑑)

, (3.63)

where 𝑑𝑜 = 0.5.

If Condition 19 is satisfied, a new data cloud is added with 𝒙𝐾 as its centre:

84

𝐶 ← 𝐶 + 1; 𝚵𝐶 ← {𝒙𝐾}; 𝝁𝐶 ← 𝒙𝐾;

𝝁̅𝐶 ←
𝒙𝐾

‖𝒙𝐾‖
; 𝑋𝐶 ← ‖𝒙𝐾‖2; 𝑋̅𝐶 ← ‖𝒙𝐾‖2; 𝑆𝐶 ← 1.

 (3.64)

In contrast, if Condition 19 is not met, 𝒙𝐾 is assigned to the nearest data cloud 𝚵𝑛, and

the meta-parameters of 𝚵𝑛 are updated as follows (𝐶 ← 𝐶) [26]:

𝚵𝑛 ← {𝚵𝑛, 𝒙𝐾}; 𝝁𝑛 ←
𝑆𝑛

𝑆𝑛+1
𝝁𝑛 +

1

𝑆𝑛+1
𝒙𝐾; 𝝁̅𝑛 ←

𝑆𝑛

𝑆𝑛+1
𝝁̅𝑛 +

1

𝑆𝑛+1

𝒙𝐾

‖𝒙𝐾‖
;

𝑋𝑛 ←
𝑆𝑛

𝑆𝑛+1
𝑋𝑛 +

1

𝑆𝑛+1
‖𝒙𝐾‖2; 𝑆𝑛 ← 𝑆𝑛 + 1.

 (3.65)

After the update of the global and local meta-parameters, the system is ready for the

arrival of the next data sample and begins a new processing cycle.

3.4.3.3. Stage 3: Filtering Data Clouds

In this stage, all the existing data clouds will be examined and adjusted to avoid the

possible overlap. For each existing cloud 𝚵𝑖 (𝑖 = 1,2, … , 𝐶), firstly, its neighbouring clouds,

denoted by {𝚵}𝑖
𝑛 based on Condition 20:

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 20:
𝐼𝐹 (𝑑𝐷𝐴(𝝁𝑖, 𝝁𝑗) <

∑ 𝑑̅𝑘
𝐶
𝑘=1

𝐶
)

𝑇𝐻𝐸𝑁 ({𝚵}𝑖
𝑛 ← {{𝚵}𝑖

𝑛, 𝚵𝑗})
, (3.66)

where 𝑑̅𝑘
2 = ∑ ∑ 𝑑𝐷𝐴

2 (𝒙, 𝒚)𝒚∈𝚵𝑘𝒙∈𝚵𝑘
𝑆𝑘

2⁄ is the average square direction-aware distance

between all the members within the k
th

 data cloud 𝚵𝑘.

For each cluster centre, 𝝁𝑖 (𝑖 = 1,2, … , 𝐶), its multimodal density is calculated as [26]:

𝐷𝐾
𝐺(𝝁𝑖) = 𝑆𝑖

∑ ∑ 𝑑𝐷𝐴
2 (𝝁𝑙,𝝁𝑗)

𝐶
𝑗=1

𝐶
𝑙=1

2𝐶 ∑ 𝑑𝐷𝐴
2 (𝝁𝑖,𝝁𝑗)

𝐶
𝑗=1

, (3.67)

and it is compared with the 𝐷𝐺 of its neighbouring data clouds denoted by {𝐷𝐺(𝝁)}𝑖
𝑛 , to

identify the local maxima of 𝐷𝐺 using Condition 16.

By identifying all the local maxima, denoted by {𝝁∗} and assigning each data sample to

the data cloud with the nearest centre using equation (3.12), the whole partitioning processing

is finished. The parameters of the data clouds can be extracted post factum.

3.4.3.4. Algorithm Summary

The main procedure of the evolving SODA algorithm extension is summarised in the

form of a flowchart presented in Figure 17.

85

Figure 17. Main procedure of the evolving SODA algorithm.

3.5. Conclusion

As the main stream of unsupervised machine learning techniques, clustering algorithms

play an important role in data analysis, data mining and pattern recognition. However,

traditional approaches suffer from various deficiencies, and they often fail to produce

meaningful results on real problems.

 In this chapter, four different types of self-organising, data-driven, nonparametric

clustering/data partitioning approaches developed within the EDA framework are presented.

86

Compared with traditional approaches, the novel approaches presented in this chapter are free

from the prior assumptions and predefined user- and problem-specific parameters. They are

able to perform high quality clustering/partitioning results without any prior knowledge about

the problem, and therefore, the scope of their applications can be very wide in the era of big

data.

87

4. Supervised Self-Organising Machine Learning Algorithms

As it was discussed in section 2.3.2 – section 2.3.4, traditional supervised machine

learning algorithms suffer from various deficiencies, including:

1) They rely on prior assumptions and predefined parameters for good performance;

2) Their system structures lack the ability of self-evolving.

In this chapter, the newly introduced supervised self-organising machine learning

algorithms within the EDA framework are presented, which are autonomous, entirely data-

driven and free from prior assumptions and user- and problem- specific parameters.

This chapter is organised as follows. Section 4.1 introduces autonomous learning multi-

model system for streaming data processing as presented in [34]. The autonomous learning

multi-model system of 0-order [35] is presented in section 4.2, which is very strong for large-

scale, complex classification problems (see subsection 6.2.2 and also see [35]). A new type of

self-organising fuzzy logic classifier with the ability of performing objective classification

under different level of granularities is given in section 4.3. The autonomous anomaly

detection algorithm is presented in section 4.4 and this chapter is concluded by section 4.5.

4.1. Autonomous Learning Multi-Model Systems

In this section, the autonomous learning multi-model system for streaming data

processing, named ALMMO [34], is presented. The ALMMO system touches the very

foundations of the complex learning systems for streaming data processing, and thus, it can

be applied in areas including online data analytics, classification, regression, etc. In this

section, the general architecture, structure identification and parameter identification of the

ALMMO system will be presented. For simpler derivation, the Euclidean distance is used

below, however, other types of distance metric and dissimilarity can be considered as well.

4.1.1. General Architecture

In the ALMMO system, the structure is composed of constraints-free data clouds

forming Voronoi tessellation [64] in terms of the input and output variables. Its structure

identification concerns the identification of the focal points of the data clouds as well as the

parameters of output local models. Correspondingly, the parameter identification problem of

the proposed approach is to determine the optimal values of the consequent parameters of the

local (linear or singleton) models [55], [60]. The structure of the ALMMO system is given in

Figure 18.

88

The ALMMO system can also be viewed as an autonomously self-developing AnYa

type FRB system designed with the principles and mechanisms of the Empirical Data

Analytics (EDA) computational framework [25]–[27], [33]. Specific characteristics that set

ALMMO apart from the existing methods and schemes include:

1) it employs the nonparametric EDA quantities of density and typicality to disclose the

underlying data pattern of the streaming data;

2) its system structure is composed of data clouds free from external constrains and self-

updating output local models identified in a data-driven way;

3) it further defines and identifies a unimodal density (equation (2.18)) based

membership function [54] designed within the EDA framework for the AnYa type FRB

system [60];

4) it can, in a natural way, deal with heterogeneous data combining categorical with

numerical data [54].

Figure 18. Structure of the ALMMO system.

4.1.2. Structure Identification

In this subsection, the structure identification process of the ALMMO system is

described.

4.1.2.1. System Initialisation

For the first data sample, 𝒙1 , the meta-parameters of the system are initialised as:

𝐾 ← 1; 𝝁1 ← 𝒙1; 𝑋1 ← ‖𝒙1‖
2; 𝑁1 ← 1. And the first data cloud within the system is

initialised as: 𝚵1 ← {𝒙1}; 𝒑1,1 ← 𝒙1; 𝑋1,1 ← ‖𝒙1‖
2; 𝑆1,1 ← 1.

89

4.1.2.2. Structure Update

For each newly arrived data sample, 𝒙𝐾 (𝐾 ← 𝐾 + 1), the global mean and average

scalar products 𝝁𝐾−1 and 𝑋𝐾−1 are updated to 𝝁𝐾 and 𝑋𝐾 using equations (2.26) and (2.27)

first.

The unimodal densities of the data sample 𝒙𝐾 and all the identified focal points, denoted

by 𝒑𝐾−1,𝑗 (𝑗 = 1,2, … ,𝑁𝐾−1) are calculated using equations (2.18), (2.24) and (2.25).

Then, Condition 3 (equation (3.10)) is checked to see whether 𝒙𝐾 will generate a new

data cloud and becomes a new prototype added into the fuzzy rule [55]. If Condition 3

(equation (3.10)) is triggered, a new data cloud is being formed around 𝒙𝐾.

However, it is also necessary to check whether the newly formed data cloud is

overlapping with the existing data clouds, and Condition 21 is used here to avoid possible

overlaps (𝑖 = 1,2, … , 𝑁𝐾−1):

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 21:
𝐼𝐹 (𝐷𝐾,𝑖(𝒙𝐾) ≥

1

1+𝑛2)

𝑇𝐻𝐸𝑁 (
𝚵𝑖 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑓𝑢𝑧𝑧𝑦 𝑟𝑢𝑙𝑒

 𝑤𝑖𝑙𝑙 𝑏𝑒 𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑛𝑒𝑤 𝑜𝑛𝑒
)
, (4.1)

where 𝐷𝐾,𝑖(𝒙𝐾) is the local unimodal density calculated per data cloud:

𝐷𝐾,𝑖(𝒙𝐾) =
1

1+
𝑆𝐾−1,𝑖
2 ‖𝒙𝐾−𝒑𝐾−1,𝑖‖

2

(𝑆𝐾−1,𝑖+1)(𝑆𝐾−1,𝑖𝑋𝐾−1,𝑖+‖𝒙𝐾+1‖
2
)−‖𝒙𝐾+𝑆𝐾−1,𝑖𝒑𝐾−1,𝑖‖

2

 . (4.2)

The rationale to consider 𝐷𝐾,𝑖(𝒙𝐾) ≥
1

1+𝑛2 comes from the well-known Chebyshev

inequality in the form of unimodal density (equation (2.43)). Here 𝑛 = 0.5 is used, which is

equivalent to 𝐷𝐾,𝑖(𝒙𝐾) ≥ 0.8 for 𝒙𝐾 is less than 𝜎 2⁄ away from the focal point of the i
th

data cloud.

If only Condition 3 is satisfied and Condition 21 is not met, a new data cloud with focal

point 𝒙𝐾 is added to the system:

𝑁𝐾 ← 𝑁𝐾−1 + 1; 𝚵𝑁𝐾
← {𝒙𝐾}; 𝒑𝐾,𝑁𝐾

← 𝒙𝐾;

𝑋𝐾,𝑁𝐾
← ‖𝒙𝐾‖2; 𝑆𝐾,𝑁𝐾

← 1.
 (4.3)

In contrast, if Conditions 3 and 21 are both satisfied, then the existing overlapping data

cloud (assuming the i
th

 one) is being replaced by a new one with the focal point 𝒙𝐾 as

follows:

90

𝑁𝐾 ← 𝑁𝐾−1; 𝚵𝑖 ← {𝚵𝑖, 𝒙𝐾}; 𝑆𝐾,𝑖 ← ⌈
𝑆𝐾−1,𝑖+1

2
⌉ ;

𝒑𝐾,𝑖 ←
𝒑𝐾−1,𝑖+𝒙𝐾

2
; 𝑋𝐾,𝑖 ←

𝑋𝐾−1,𝑖+‖𝒙𝐾‖2

2
.

 (4.4)

Equation (4.4) can stop the ALMMO system from discarding the previously collected

information too fast because the new data cloud may be initialised by an abnormal data

sample.

If Condition 3 (equation (3.10)) is not satisfied, then the algorithm continues by finding

the nearest data cloud 𝚵𝑛 to 𝒙𝐾, which is identified by equation (3.12). The corresponding

meta-parameters of the system and 𝚵𝑛 are updated as follows:

𝑁𝐾 ← 𝑁𝐾−1; 𝚵𝑛 ← {𝚵𝑛, 𝒙𝐾}; 𝑆𝐾,𝑛 ← 𝑆𝐾−1,𝑛 + 1;

𝒑𝐾,𝑛 ←
𝑆𝐾−1,𝑛

𝑆𝐾,𝑛
𝒑𝐾−1,𝑛 +

1

𝑆𝐾,𝑛
𝒙𝐾; 𝑋𝑛,𝐾 ←

𝑆𝐾−1,𝑛

𝑆𝐾,𝑛
𝑋𝐾−1,𝑛 +

1

𝑆𝐾,𝑛
‖𝒙𝐾‖2.

 (4.5)

The meta-parameters of other data clouds stay the same for the next processing cycle. In

ALMMO, each data cloud (and the respective focal point) is used as the basis to formulate

the antecedent (IF) part of the AnYa type fuzzy rules.

4.1.2.3. Online Quality Monitoring

Since the ALMMO system is for processing streaming data, monitoring the quality of

the dynamically evolving structure is necessary in order to guarantee the computation- and

memory-efficiency. The quality of the fuzzy rules within the ALMMO system can be

characterised by their utility [55]. In ALMMO, utility, 𝜂𝐾,𝑖 of the i
th

 data cloud accumulates

the weight of the corresponding fuzzy rule contribution to the overall output (activation level)

during the life of the rule (from the time instance at which the data cloud was generated till

the current time instance). It is the measure of importance of the respective fuzzy rule

compared to others (𝑖 = 1,2, … ,𝑁𝐾):

𝜂𝐾,𝑖 =
1

𝐾−𝐼𝑖
∑ 𝜆𝑙,𝑖

𝐾
𝑙=𝐼𝑖

=
1

𝐾−𝐼𝑖
∑

𝐷𝑙,𝑖(𝑥𝑙)

∑ 𝐷𝑙,𝑗(𝑥𝑙)
𝑁𝑙
𝑗=1

𝐾
𝑙=𝐼𝑖

; 𝜂𝐼𝑖,𝑖
= 1, (4.6)

where 𝐼𝑖 is the time instance at which the i
th

data cloud is established; 𝜆𝑙,𝑖 =
𝐷𝑙,𝑖(𝑥𝑙)

∑ 𝐷𝑙,𝑗(𝑥𝑙)
𝑁𝑙
𝑗=1

 is the

activation level of the i
th

data cloud at the l
th

 time instance.

The rule base can be simplified according to Condition 22 by removing the data clouds

and their corresponding fuzzy rules with low utility [55], [60]:

91

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 22:
𝐼𝐹 (𝜂𝐾,𝑖 < 𝜂𝑜)

𝑇𝐻𝐸𝑁 (
𝚵𝑖 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑓𝑢𝑧𝑧𝑦 𝑟𝑢𝑙𝑒

𝑖𝑠 𝑟𝑒𝑚𝑜𝑣𝑒𝑑
)
 , (4.7)

where 𝜂𝑜 is a small tolerance constant (𝜂𝑜 = 0.1 is used).

If 𝚵𝑖 satisfies Condition 22, the respective fuzzy rule will be removed from the rule base

and its consequent parameters 𝒂𝐾,𝑖 and 𝚯𝐾,𝑖 are deleted as well.

4.1.3. Parameter Identification

In this subsection, the parameter identification process of the ALMMO system is

described.

4.1.3.1. Parameter Initialisation

As the first data cloud of the system is initialised by the first data sample, 𝒙1 , the

corresponding consequent parameters of the first fuzzy rule within the rule base are set up

as: 𝚯1,1 ← Ω𝐈(𝑀+1)×(𝑀+1) and 𝒂1,1 ← 𝟎1×(𝑀+1).

4.1.3.2. Parameter Update

If a new fuzzy rule is added by the newly arrived data sample 𝒙𝐾 during the structure

identification stage, the corresponding consequent parameters are added as follows:

𝒂𝐾−1,𝑁𝐾 ←
1

𝑁𝐾−1
∑ 𝒂𝐾−1,𝑗

𝑁𝐾−1
𝑗=1 ; 𝚯𝐾−1,𝑁𝐾 ← Ω𝐈(𝑀+1)×(𝑀+1). (4.8)

If an old fuzzy rule (denoted as the j
th

 rule) is replaced by a new one when Conditions 3

and 21 are both satisfied, the new rule will inherit the consequent parameters of the old one.

After the structure of both the antecedent and consequent parts of the ALMMO system

is revised, the FWRLS [11] approach is used to update the consequent parameters (𝒂𝐾,𝑖 and

𝚯𝐾,𝑖 , 𝑖 = 1,2, … ,𝑁𝐾) of each fuzzy rule locally as equation (2.69).

4.1.3.4. Online Input Selection

In many practical cases, there are a number of inter-correlated attributes within the data.

Therefore, it is of great importance to introduce the online input selection, which can further

eliminates the waste of the computation- and memory-resources and improve the overall

performance.

In this section, Condition 23 is used to deal with this:

92

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 23:
𝐼𝐹 (𝜔𝐾,𝑖,𝑗 <

𝜀

𝑁𝐾
∑ 𝜔𝐾,𝑖,𝑗

𝑁𝐾
𝑖=1)

𝑇𝐻𝐸𝑁 (𝑟𝑒𝑚𝑜𝑣𝑒 𝑡ℎ𝑒 𝑗𝑡ℎ 𝑠𝑒𝑡 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑓𝑢𝑧𝑧𝑦 𝑟𝑢𝑙𝑒)
 , (4.9)

where 𝑗 = 1,2, …𝑀, 𝑖 = 1,2, … , 𝑁𝐾; 𝜔𝐾,𝑖,𝑗 is the normalised accumulated sum of parameter

values at the time instance 𝐾:

𝜔𝐾,𝑖,𝑗 =
𝜌𝐾,𝑖,𝑗

∑ 𝜌𝐾,𝑖,𝑗
𝑀
𝑗=1

=
∑ |𝑎𝑡,𝑖,𝑗|

𝐾
𝑡=𝐼𝑖

∑ ∑ |𝑎𝑡,𝑖,𝑗|
𝐾
𝑡=𝐼𝑖

𝑀
𝑗=1

 , (4.10)

where 𝜌𝐾,𝑖,𝑗 = ∑ |𝑎𝑡,𝑖,𝑗|
𝐾
𝑡=𝐼𝑖

 is the accumulated sum of parameter values; 𝜀 is a constant,

𝜀 ∈ [0.03,0.05].

If the j
th

set of the i
th

 fuzzy rule meets Condition 23, it is removed from the rule and the

corresponding column and row of the covariance matrix 𝚯𝐾,𝑖 .

4.1.4. System Output Generation

Once the ALMMO system has updated its structure and parameters, it is ready for the

next data sample. When the next data sample 𝒙𝐾 (𝐾 ← 𝐾 + 1) comes, the system output is

generated as:

𝑦𝐾 = ∑ 𝜆𝐾,𝑗[1, 𝒙𝐾
𝑇]𝒂𝐾−1,𝑗

𝑁𝐾−1
𝑗=1 . (4.11)

After the system performs the prediction, it will update its structure and parameters

based on 𝒙𝐾 and the prediction error.

The main procedure of the learning process of the ALMMO algorithm is summarised in

the form of a flowchart presented in Figure 19.

93

Figure 19. Main procedure of the learning process of the ALMMO system.

94

4.2. Zero Order Autonomous Learning Multi-Model Classifier

The zero order autonomous learning multi-model (ALMMO-0) classifier [35] is

introduced on the basis of the 0-order AnYa type fuzzy rule-based (FRB) systems [55], [60]

in a multiple-model architecture [161]. This classifier is nonparametric, non-iterative and

fully autonomous. There is no need to train any parameters due to its feedforward structure.

The proposed classifier automatically identifies the focal points from the empirically

observed data and forms data clouds resembling Voronoi tessellation [64] per class. Then,

sub-classifiers corresponding to different classes are built in a form of a set of AnYa type of

fuzzy rules from the non-parametric data clouds. For a new data sample, each AnYa FRB

sub-classifier generates a score of confidence objectively and the label is assigned to the new

data sample based on the “winner takes all” rule. The proposed ALMMO-0 classifier learns

from the data and conducts classification based on very fundamental principles, a variety of

modifications and extensions can further be done, i.e. using the fuzzy rules with 1
st
 order

consequent part.

4.2.1. Multiple-Model Architecture

The multiple-model architecture is based on the 0-order AnYa type fuzzy rules [55],

[60]. An illustrative diagram of the classifier with the multiple-model architecture is depicted

in Figure 20. Figure 20(a) illustrates the multiple-model structure of the classifier, and Figure

20(b) is the zoom-in structure of a 0-order AnYa type fuzzy rule.

It is demonstrated in Figure 20 that, each time a new data sample 𝒙𝐾 is coming, it is sent

to 𝐶 0-order AnYa type fuzzy rules corresponding to 𝐶 different classes in the dataset. Each

fuzzy rule can be viewed as a combination of a large number of singleton fuzzy rules that are

built upon prototypes identified from data samples of the corresponding class connected by

the logic “OR” operator (𝑖 = 1,2, … , 𝐶):

𝐼𝐹 (𝒙~𝒑𝑖,1) 𝐴𝑁𝐷 (𝒙~𝒑𝑖,2) 𝐴𝑁𝐷 … 𝐴𝑁𝐷 (𝒙~𝒑𝑖,𝑃𝑖
)

𝑇𝐻𝐸𝑁 (𝐶𝑙𝑎𝑠𝑠 𝑖)
, (4.12)

where 𝒑𝑖,𝑗 is the j
th

 prototype of the i
th

 fuzzy rule; 𝑃𝑖 is the number of identified prototypes.

The “winner takes all” principle is firstly used to select out the most similar prototype

with 𝒙𝐾 in terms of the degree of confidence from each fuzzy rule. Then, the “winner takes

all” principle is used again to assign 𝒙𝐾 to the class that it is most likely to be associated with.

95

(a) The multiple-model architecture

(b) Zoom-in structure of the i
th

 fuzzy rule

Figure 20. Multiple-model architecture of ALMMO-0.

4.2.2. Learning Process

In this subsection, the learning process of ALMMO-0 classifier is described. Due to the

multiple-model architecture of the classifier, each AnYa fuzzy rule is trained in parallel with

the data samples from the corresponding class (one rule per class). Assuming the i
th

 fuzzy

rule, the detailed learning process is as follows.

For each newly arrived data sample of the i
th

 class, denoted by 𝒙𝑖,𝐾𝑖
, it will be

normalised by its norm, namely:

𝒙𝑖,𝐾𝑖
 ← 𝒙𝑖,𝐾𝑖

‖𝒙𝑖,𝐾𝑖
 ‖⁄ . (4.13)

This type of normalisation can convert the Euclidean distance between different data

samples into cosine dissimilarity, which enhances the classifier’s ability for high-dimensional

data processing [33].

The AnYa fuzzy rule is initialised by the first data sample 𝒙𝑖,1 with its global parameters

set as: 𝑃𝑖 ← 1; 𝝁𝑖 ← 𝒙𝑖,1; 𝑋𝑖 ← 1. And the local meta-parameters of the first data cloud are

set as 𝚵𝑖,1 ← {𝒙𝑖,1}; 𝒑𝑖,1 ← 𝒙𝑖,1; 𝑆𝑖,1 ← 1; 𝑟𝑖,1 ← 𝑟𝑜, where 𝑟𝑖,1 is the radius of the influence

96

area; 𝑟𝑜 is a small value to stabilize the initial status of the new-born data clouds, 𝑟𝑜 =

√2(1 − cos(30𝑜)) is used by default [33]. It has to be stressed that, 𝑟𝑜 is not a problem-

specific parameter and requires no prior knowledge to decide. It is for preventing the new-

born data clouds from attracting data samples that are not close enough. It defines a degree of

closeness that is interesting and distinguishable. The AnYa fuzzy rule is firstly initialised as:

𝐼𝐹 (𝒙~𝒑𝑖,1) 𝑇𝐻𝐸𝑁 (𝐶𝑙𝑎𝑠𝑠 𝑖). (4.14)

For each newly arrived data sample (𝐾𝑖 ← 𝐾𝑖 + 1), firstly, the global mean 𝝁𝑖 of the i
th

class is updated by 𝒙𝑖,𝐾𝑖
 using equation (3.26). There is no need to update the average scalar

product anymore because 𝑋𝑖 = ‖𝒙𝑖,𝐾𝑖
‖ = 1 (𝒙𝑖,𝐾𝑖

 has been normalised at first). The

unimodal densities of the data sample 𝒙𝑖,𝐾 and all the identified focal points of the i
th

 class,

denoted as 𝒑𝑖,𝑗 (𝑗 = 1,2, … , 𝑃𝑖) are calculated using equations (2.18), (2.24) and (2.25).

Then, Condition 3 (equation (3.10)) is checked to see whether 𝒙𝑖,𝐾𝑖
 will generate a new

data cloud and becomes a new prototype added into the fuzzy rule [55]. If Condition 3

(equation (3.10)) is triggered, a new data cloud is being formed around 𝒙𝑖,𝐾𝑖
 and its

parameters are being updated as follows:

 𝑃𝑖 ← 𝑃𝑖 + 1; 𝚵𝑖,𝑃𝑖
← {𝒙𝑖,𝐾𝑖

}; 𝒑𝑖,𝑃𝑖
← 𝒙𝑖,𝐾𝑖

; 𝑆𝑖,𝑃𝑖
← 1; 𝑟𝑖,𝑃𝑖

← 𝑟𝑜, (4.15)

and a new prototype 𝒑𝑖,𝑃𝑖
 is added to the fuzzy rule as initialised in equation (4.15).

If Condition 3 (equation (3.10)) is not satisfied, then the algorithm continues by finding

the nearest data cloud 𝚵𝑖,𝑛 to 𝒙𝑖,𝐾𝑖
, which is achieved with equation (3.12).

Before 𝒙𝑖,𝐾𝑖
 is assigned to the nearest data cloud, Condition 24 is being checked to see

whether 𝒙𝑖,𝐾𝑖
 is close to the data cloud 𝚵𝑖,𝑛 or not:

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 24:
𝐼𝐹 (‖𝒙𝑖,𝐾𝑖

− 𝒑𝑖,𝑛‖ ≤ 𝑟𝑖,𝑛)

𝑇𝐻𝐸𝑁 (𝚵𝑖,𝑛 ← {𝚵𝑖,𝑛, 𝒙𝑖,𝐾𝑖
})

. (4.16)

If Condition 24 is satisfied, the meta-parameters of the nearest data cloud 𝚵𝑖,𝑛 are

updated as follows:

 𝑆𝑖,𝑛 ← 𝑆𝑖,𝑛 + 1; 𝒑𝑖,𝑛 ←
𝑆𝑖,𝑛−1

𝑆𝑖,𝑛
𝒑𝑖,𝑛 +

1

𝑆𝑖,𝑛
𝒙𝑖,𝐾𝑖

; 𝑟𝑖,𝑛 ← √0.5 (𝑟𝑖,𝑛
2 + (1 − ‖𝒑𝑖,𝑛‖

2
)),(4.17)

97

and the fuzzy rule is updated accordingly. On the contrary, if Condition 24 is not met, a new

data cloud is formed around 𝒙𝑖,𝐾𝑖
 using equation (4.15) and a new prototype 𝒑𝑖,𝑃𝑖

 is added to

the fuzzy rule.

For the data clouds that do not receive new members, the parameters of the other data

clouds stay the same for the next processing cycle.

The main procedure of the learning process of ALMMO-0 classifier is depicted in

Figure 21 in the form of a flowchart.

Figure 21. Main procedure of the learning process of ALMMO-0 classifier.

98

4.2.3. Validation Process

The main procedure of the validation process of the ALMMO-0 classifier is as follows.

For each validation data sample, denoted by 𝒙 , it is sent to the 𝐶 fuzzy rules

corresponding to the 𝐶 different classes, and each fuzzy rule will generate a score of

confidence by equation (4.18) following the “winner takes all” principle:

𝜆𝑖(𝒙) = max𝑗=1,2,…,𝑃𝑖
(𝜆𝑖,𝑗(𝒙)) = max𝑗=1,2,…,𝑃𝑖

(𝑒−‖𝒙−𝒑𝑖,𝑗‖
2

). (4.18)

The label of 𝒙, denoted by 𝑦(𝑥), is decided by the “winner takes all” principle again:

 𝑦(𝒙) = argmax𝑖=1,2,…,𝐶(𝜆𝑖(𝒙)). (4.19)

4.3. Self-Organising Fuzzy Logic Classifier

In this section, the self-organising fuzzy logic (SOFL) classifier is presented [36]. The

SOFL approach is grounded at the Empirical Data Analytics (EDA) computational

framework [25]–[27] and the autonomous data-driven clustering techniques [28], [29]. The

SOFL classifier has two training stages, 1) offline and 2) online. During the offline stage, it

learns from the static data to establish a stable 0-order AnYa type fuzzy rule-based (FRB)

system [54], [60] and, during the online training stage, the FRB system identified during the

offline training will be updated subsequently to follow the possible drifts and/or shifts in the

data pattern [117]. The SOFL classifier only keeps the key meta-parameters in memory and is

a one-pass type during its online training stage; therefore, it is very suitable for large-scale

streaming data processing.

Most importantly, the SOFL classifier is nonparametric in the sense that no parameters

or models are imposed for data generation [36]. Employing the EDA quantities as described

in section 2.1.3, the SOFL classifier is able to objectively disclose the ensemble properties

and mutual distributions of the streaming data based on the empirically observed data

samples and all the meta-parameters of the classifier are directly derived from the data

without prior knowledge [25]–[27].

The SOFL classifier keeps the advantage of objectiveness of the data-driven approaches,

and, at the same time, puts the users “in the driving seat” by letting users to decide the level

of granularity and the type of distance/dissimilarity measure for the classifier. However, it

has to be stressed that there is no requirement for prior knowledge to decide the level of

granularity and it can be given merely based on the preferences of users. Higher level of

granularity leads to a classifier with fine details but with a risk of overfitting. A lower level of

99

granularity, instead, gives users a classifier trained coarsely but with higher computational

efficiency, generalisation and less memory requirement. The classifier is always guaranteed

to be meaningful due to its data-driven nature. The choice of the type of distance/dissimilarity

measure further allows more freedom for the users and also makes the SOFL approach highly

adaptive to various applications, e.g. natural language processing. In addition, the SOFL

classifier can also provide default level of granularity and distance measure options for the

less experienced users.

In the following two subsections, the main procedures of the training process (both

offline and online) and validation process of the SOFL classifier are presented separately.

4.3.1. Offline Training

The offline training process of the SOFL classifier is category-wise, the classifier will

identify prototypes from each class separately and form a 0-order AnYa type fuzzy rule based

on the identified prototypes per class (in the form of equation (4.12)). The training processes

of the fuzzy rules of different classes will not influence each other. The diagram of the SOFL

classifier for offline training is depicted in Figure 22 [36].

Figure 22. Diagram of the SOFL classifier for offline training.

4.3.1.1. Main Procedure

In the rest of this subsection, it is assumed that the training process is conducted on the

data samples of the i
th

 class (𝑖 = 1,2, … , 𝐶), denoted as {𝒙}𝑖 = {𝒙𝑖,1, 𝒙𝑖,2, … , 𝒙𝑖,𝐾𝑖
} ({𝒙}𝑖 ⊂

{𝒙}), and the corresponding unique data sample set {𝒖}𝑖 = {𝒖𝑖,1, 𝒖𝑖,2, … , 𝒖𝑖,𝑁𝑖
} and the

frequencies of occurrence {𝑓}𝑖 = {𝑓𝑖,1, 𝑓𝑖,2, … , 𝑓𝑖,𝑁𝑖
} , where 𝐾𝑖 is the number of data samples

with {𝒙}𝑖 , 𝑁𝑖 is the number of unique data samples of the i
th

 class. Considering all the

classes, we have ∑ 𝐾𝑖
𝐶
𝑖=1 = 𝐾 and ∑ 𝑁𝑖

𝐶
𝑖=1 = 𝑁.

100

In the SOFL approach, prototypes are identified based on the densities and the mutual

distributions of the data samples. Firstly, multimodal densities 𝐷𝐾
𝐺(𝒖𝑖,𝑗) (𝑗 = 1,2, … ,𝑁𝑖) at all

the unique data samples within {𝒖}𝑖 are calculated using equation (2.19). After this, the

unique data samples are ranked in a list, denoted by {𝒛}𝑖, in terms of their mutual distances

and values of multimodal density using the same approach as described in section 3.3.1.1.

Then, porotypes of {𝒖}𝑖 are identified using the same approach as described in section

3.3.1.2, denoted by {𝒖∗}𝑖.

After {𝒖∗}𝑖 are identified, the filtering operation starts. The prototypes are firstly used to

attract nearby data samples to form data clouds [60] resembling Voronoi tessellation [64]

using equation (3.12).

With the data clouds formed around the existing prototypes {𝒖∗}𝑖 denoted by 𝚵𝑖,𝑗

(𝑗 = 1,2, … , 𝑃𝑖, 𝑃𝑖 is the number of prototypes of the i
th

 class), one can obtain the centres of

the data clouds denoted by {𝝁}𝑖 and the multimodal densities at the centres are calculated

using equation (2.19) as 𝐷𝐾
𝐺(𝝁𝑖,𝑗) = 𝑆𝑖,𝑗𝐷𝐾(𝝁𝑖,𝑗) , where 𝝁𝑖,𝑗 ∈ {𝝁}𝑖 ; 𝑆𝑖,𝑗 is the support

(number of members) of 𝚵𝑖,𝑗.

Then, for each data cloud, assuming 𝚵𝑖,𝑗 (𝑗 = 1,2, … , 𝑃𝑖), the collection of the centres of

its neighbouring data clouds, denoted by {𝝁}𝑗
𝑛 are identified using the following principle:

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 25:
𝐼𝐹 (𝑑2(𝝁𝑖,𝑗 , 𝝁𝑖,𝑘) ≤ ℒ𝑖

𝐺)

𝑇𝐻𝐸𝑁 (𝝁𝑖,𝑘 ∈ {𝝁}𝑗
𝑛)

, (4.20)

where 𝝁𝑖,𝑗, 𝝁𝑖,𝑘 ∈ {𝝁}𝑖 and there is 𝝁𝑖,𝑗 ≠ 𝝁𝑖,𝑘; ℒ𝑖
𝐺 is defined as the average radius of local

influential area around each data sample, which is corresponding to the 𝐺th
 (𝐺 = 1,2,3, …)

level of granularity and is derived from the data of the i
th

 class based on the users’ choice:

Under the 1
st
 level of granularity (𝐺 = 1), the average radius of local influential area,

denoted by ℒ𝑖
𝐺 around each prototype of the i

th
 class is defined as follows:

ℒ𝑖
1 =

∑ 𝑑2(𝒙,𝒛)
𝒙,𝒛∈{𝒙}𝑖,𝒙≠𝒛,𝑑2(𝒙,𝒛)≤𝑑̅𝑖

2

𝑇𝑖
1 , (4.21)

where 𝑇𝑖
1 is the number of the pairs of data samples between which the distance is smaller

than the average distance, 𝑑̅𝑖.

From level 2 to an arbitrary level of granularity (𝐺 = 2,3, …), one can calculate the

average radius iteratively using the following equation:

101

ℒ𝑖
𝐺 =

∑ 𝑑2(𝒙,𝒚)
𝒙,𝒚∈{𝒙}𝑖,𝒙≠𝒚,𝑑2(𝒙,𝒚)≤ℒ𝑖

𝐺−1

𝑇𝑖
𝐺 , (4.22)

where ℒ𝑖
𝐺−1is the average radius corresponding to (𝐺 − 1)

th
level of granularity; 𝑇𝑖

𝐺 is the

number of the pairs of data samples between which the distance is smaller than ℒ𝑖
𝐺−1.

Compared with the traditional approaches, there are strong advantages in deriving the

local information in this way. Firstly, ℒ𝑖
𝐺 is guaranteed to be valid all the time. Defining the

threshold or hard-coding mathematical principles in advance may suffer from various

problems, i.e. prior knowledge is often unavailable, hard-coded principles are too sensitive to

the nature of the data. The performance of the two approaches is often not guaranteed. In

contrast, ℒ𝑖
𝐺 is derived from the data directly and is always meaningful. There is no need for

prior knowledge of data sets/streams, and the level of granularity used by the SOFL classifier

can be decided merely based on the preferences of the users. Moreover, users are allowed to

have freedom to make choices, but at the same time, are not overloaded. Finally, one can

always adapt the classifier by changing the level of granularity based on the specific needs.

Some problems rely heavily on fine details, while others may need generality only.

In general, the higher level of granularity is chosen, the more fine details (more

prototypes) the SOFL classifier extracts from the data, and the classifier achieves a higher

performance. At the same time, the SOFL classifier may consume more computational and

memory resources, and overfitting may also appear. On the contrary, with low level of

granularity, the SOFL classifier only learns the coarse information from training. Although

the classifier will be more computationally efficient, its performance may be influenced due

to the loss of fine information from the data.

Finally, the most representative prototypes of the i
th

class, denoted by {𝒑}𝑖, are selected

out from the centres of the existing data clouds satisfying Condition 12 (equation (3.47)) and

one can build the AnYa type fuzzy rule in the same form as equation (4.12), where 𝑃𝑖 is the

number of prototypes in {𝒑}𝑖.

4.3.1.2. Algorithm Summary

The main procedure of the offline training process of the SOFL classifier is summarised

in the form of a flowchart in Figure 23.

102

Figure 23. Main procedure of the offline training process of SOFL classifier.

4.3.2. Online Self-Evolving Training

During the online training stage, the SOFL classifier continues to update its system

parameters and structure with the streaming data on a sample-by-sample basis. Furthermore,

because the EDA quantities [25]–[27] employed by the SOFL classifier can be updated

recursively, it can be one-pass type, and its computation- and memory-efficiency is also

guaranteed.

103

4.3.2.1. Main Procedure

In this subsection, we assume that the training process of the SOFL classifier with the

static dataset {𝒙}𝐾 has been finished and new data samples start to arrive in a data stream

form. Similar to the offline training stage, during the online training stage, the fuzzy rules of

different classes are updated separately. During the online stage, recursive calculation

expressions of the EDA quantities with Euclidean distance are used. Nonetheless, other types

of distance/dissimilarity measures can be considered as well.

Assuming at the next time instance, a new data sample of the i
th

class arrives (𝐾 ← 𝐾 +

1, 𝐾𝑖 ← 𝐾𝑖 + 1) and the data sample is denoted as 𝒙𝑖,𝐾𝑖
. The SOFL classifier firstly updates

the global meta-parameters 𝝁𝑖,𝐾𝑖
 and 𝑋𝑖,𝐾𝑖

 using equations (2.26) and (2.27), where 𝝁𝑖,𝐾𝑖
 and

𝑋𝑖,𝐾𝑖
 are the mean and average scalar product of the data samples {𝒙𝑖,1, 𝒙𝑖,2, … , 𝒙𝑖,𝐾𝑖−1, 𝒙𝑖,𝐾𝑖

}.

The average radius of local areas of influence, ℒ𝑖
𝐺 is updated afterwards in a recursive

way based on the ratio between the average distances of the data samples at (𝐾𝑖 − 1)th
 and

𝐾𝑖
th

 instances, respectively as:

ℒ𝑖
𝐺 ←

1

𝐾𝑖
2 ∑ 𝑞𝐾(𝒙𝑖,𝑙)

𝐾𝑖
𝑙=1

1

(𝐾𝑖−1)
2 ∑ 𝑞𝐾−1(𝒙𝑖,𝑙)

𝐾𝑖−1

𝑙=1

∙ ℒ𝑖
𝐺 =

𝑋𝑖,𝐾𝑖
−‖𝝁𝑖,𝐾𝑖

‖
2

𝑋𝑖,𝐾𝑖−1−‖𝝁𝑖,𝐾𝑖−1‖
2 ∙ ℒ𝑖

𝐺 . (4.23)

Instead of deriving ℒ𝑖
𝐺 in an offline way as described in the previous subsection,

equation (4.23) largely reduces the computational complexity and memory requirement, and

further largely improves the efficiency of the SOFL classifier.

Then, 𝒙𝑖,𝐾𝑖
 is checked by Condition 3 (equation (3.10)) to evaluate its potential to be a

new prototype [29], [55], [160]. If 𝒙𝑖,𝐾𝑖
 meets Condition 3, a new prototype is added to the

fuzzy rule of the i
th

class in the same form as equation (4.12), and the meta-parameters of the

SOFL classifier are updated as 𝑃𝑖 ← 𝑃𝑖 + 1; 𝚵𝑖,𝑃𝑖
← {𝒙𝑖,𝐾𝑖

}; 𝒑𝑖,𝑃𝑖
← 𝒙𝑖,𝐾𝑖

; 𝑆𝑖,𝑃𝑖
← 1.

If Condition 3 (equation (3.10)) is unsatisfied, it is necessary to check whether 𝒙𝑖,𝐾𝑖
 is

very close to an existing prototype by using Condition 26.

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 26:
𝐼𝐹 (min𝒑∈{𝒑}𝑖

(𝑑2(𝒙𝑖,𝐾𝑖
, 𝒑)) > ℒ𝑖

𝐺)

𝑇𝐻𝐸𝑁 (𝒙𝑖,𝐾𝑖
∈ {𝒑}𝑖)

. (4.24)

104

If Conditions 3 and 26 are both unsatisfied, 𝒙𝑖,𝐾𝑖
 is assigned to the nearest prototype

𝒑𝑖,𝑛 = argmin𝒑∈{𝒑}𝑖
(𝑑(𝒙𝑖,𝐾𝑖

, 𝒑)) and the meta-parameters of the corresponding data cloud

are updated as 𝚵𝑖,𝑛 ← {𝚵𝑖,𝑛, 𝒙𝑖,𝐾𝑖
}; 𝒑𝑖,𝑛 ←

𝑆𝑖,𝑛

𝑆𝑖,𝑛+1
𝒑𝑖,𝑛 +

1

𝑆𝑖,𝑛𝑒+1
𝒙𝑖,𝐾𝑖

; 𝑆𝑖,𝑛 ← 𝑆𝑖,𝑛 + 1 [55].

After the meta-parameters of the classifier are updated, the AnYa type fuzzy rule

(equation (4.12)), will be updated accordingly and the SOFL classifier is ready for processing

the next data sample or conducting classification.

4.3.2.2. Algorithm Summary

The main procedure of the online training process of the SOFL classifier is summarised

in the form of a flowchart in Figure 24.

Figure 24. Main procedure of the online training process of SOFL classifier.

4.3.3. Validation Process

Due to the fact that both the SOFL classifier presented in this section and the ALMMO-

0 presented in section 4.2 use the same type of fuzzy rules, the procedure of the SOFL

105

classifier for decision-making for the unlabelled samples is the same as the ALMMO-0,

which is described in subsection 4.2.3.

4.4. Autonomous Anomaly Detection

In this section, a new fully autonomous anomaly detection (AAD) method is presented

[37]. In this approach, the nonparametric EDA estimators, cumulative proximity, unimodal

density and multimodal density [25]–[27] are employed to identify the potential anomalies

from the empirically observed data at the first stage of the process. Then, these potential

anomalies are used for forming shape-free data clouds using the autonomous data partitioning

approach as described in section 3.2.1. Finally, the local anomalies are identified in regards to

the data clouds.

The AAD approach can autonomously and objectively detect both individual and

collective anomalies (remote, small clouds) and also global anomalies as well as anomalies

that are centrally located. Its procedure consists of three stages as follows.

4.4.1. Identifying Potential Anomalies

In the first stage, the global mean and average scalar product, 𝝁𝐾 and 𝑋𝐾 of {𝒙}𝐾 are

calculated. Then, the multimodal densities 𝐷𝐺 at {𝒖}𝑁 are obtained using equation (2.19). By

extending 𝐷𝐺 to {𝒙}𝐾 , the multimodal densities at each data sample 𝒙 (𝒙 ∈ {𝒙}𝐾) are

obtained and denoted as {𝐷𝐾
𝐺 (𝒙)}.

Chebyshev inequality (equation (2.39)) [2]–[4] describes the probability data samples to

be more than 𝑛𝜎 distance away from the mean value 𝝁 . As a corollary, if 𝑛 = 3 , the

maximum probability of 𝒙 to be at least 3𝜎 away from 𝝁 is no more than 1 9⁄ . In other

words, on average, out of 9 data samples, one may be anomalous, but no more than 1 (at

most 1). Therefore, in the AAD approach, it is assumed that 1 𝑛2⁄ of the data samples are

potentially abnormal, however, it does not mean that they have to be real anomalies.

By ranking {𝐷𝐾
𝐺 (𝒙)} in an ascending order, the first half of 1 𝑛2⁄ of the data samples

with the smallest 𝐷𝐺 being the first half of the potential anomaly collection, denoted as

{𝒙}𝑃𝐴,1. Here, 𝑛 is a small integer corresponding to the “𝑛” in the Chebyshev inequality. In

this thesis, 𝑛 = 3 is adopted because the “3𝜎” rule has been widely adapted in various

anomaly detection applications [49], [203], [204]. It has to be stressed that in traditional

approaches, 𝑛 = 3 does directly influence detecting each anomaly. In the AAD approach,

106

this is simply the first stage of sub-selection of potential anomalies (an upper limit according

to equation (2.39)).

As the multimodal density is less sensitive to the degree of sparsity of local data

distribution, an additional criterion is necessary for detecting the isolated data samples. We

consider the weighted local unimodal density as the second criterion for identifying potential

anomalies.

The local unimodal density of each unique data sample is calculated using equation

(3.1) and (3.2), denoted by 𝐷𝐿(𝒖𝑖) (𝒖𝑖 ∈ {𝒖}𝑁). However, in the AAD approach, instead of

calculating 𝐷𝐿 locally for all the data samples located in the hypersphere with 𝒖𝑖 as its centre

and 𝑑̅ as its radius, 𝐷𝐿 is calculated within the hypersphere with 𝒖𝑖 as its centre and 𝑑̅ 2⁄ as

its radius (𝐷𝐿(𝒖𝑖) =
∑ 𝑞𝐿(𝒙)

𝑑(𝒙,𝒖𝑖)≤(𝑑̅ 2⁄)

2𝑁𝑖𝑞𝐿(𝒖𝑖)
), which allows the AAD approach more effectively in

detecting data samples away from the majority.

By taking both, the sparsity of unique data samples around 𝒖𝑖 and the data distribution

of the local area into consideration, the local unimodal density at 𝒖𝑖 is weighed by the

amount of its unique neighbours as:

𝐷𝐿
𝑊(𝒖𝑖) =

𝑁𝑖

𝑁
∙ 𝐷𝐿(𝒖𝑖), (4.25)

where the coefficient 𝑁𝑖 𝑁⁄ is for ensuring the value of 𝐷𝐿
𝑊(𝒖𝑖) to be linearly and inversely

correlated to the degree of sparsity of the data distribution, 𝑁𝑖 is the number of unique data

samples around 𝒖𝑖 within the range of 𝑑̅ 2⁄ ; By expanding the weighted local unimodal

densities, 𝐷𝐿
𝑊, at {𝒖}𝑁 to the original dataset {𝒙}𝐾 accordingly, the set {𝐷𝐿

𝑊 (𝒙)} is obtained.

After re-ranking the {𝐷𝐿
𝑊 (𝒙)} in the ascending order, the first half of 1 𝑛2⁄ of the data

samples with smallest 𝐷𝐿
𝑊 are selected as the second half of the potential anomaly collection,

denoted as {𝒙}𝑃𝐴,2.

Finally, by combining {𝒙}𝑃𝐴,1 and {𝒙}𝑃𝐴,2 (together 1 𝑛2⁄ or less of the data), we obtain

the whole set of potential anomalies, {𝒙}𝑃𝐴 , which forms the upper limit of possible

anomalies according to Chebyshev inequality (equation (2.39)).

4.4.2. Forming Data Clouds with Anomalies

In this stage, all the identified potential anomalies are checked to see whether they are

able to form data clouds using the ADP algorithm as described in section 3.3.1. After the data

107

clouds are formed from {𝒙}𝑃𝐴 based on the ADP algorithm, denoted by {𝚵}𝑃𝐴, the AAD

algorithm enters the last stage.

4.4.3. Identifying Local Anomalies from Identified Data Clouds

In the final stage, all the potential anomalies are checked to see if they are isolated or

form minor data cloud(s) between themselves. All the data clouds formed from {𝒙}𝑃𝐴 are

checked using Condition 27:

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 27:
𝐼𝐹 (𝑆𝑖 < 𝑆𝑎𝑣𝑒𝑟𝑎𝑔𝑒)

𝑇𝐻𝐸𝑁 (𝚵𝑖 𝑖𝑠 𝑓𝑜𝑟𝑚𝑒𝑑 𝑏𝑦 𝑎𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠)
, (4.26)

where 𝚵𝑖 ∈ {𝚵}𝑃𝐴 and 𝑆𝑖 is the support of 𝚵𝑖.

After all the data clouds meeting Condition 27 are identified, anomalies are identified

and declared/confirmed.

The main procedure of the AAD algorithm is summarised in the form of a flowchart in

Figure 25.

108

Figure 25. Main procedure of AAD algorithm.

4.5. Conclusion

In this chapter, four different supervised machine learning algorithms for regression,

classification and anomaly detection problems are presented. Compared with the traditional

approaches, the algorithms presented in this chapter have the following distinctive properties:

1) They are nonparametric and free from unrealistic prior assumptions;

2) They are autonomous, self-organising;

3) They are based on the ensemble properties and mutual distribution of empirically

observed data, and thus, are able to fully objective results.

109

5. Transparent Deep Learning Systems

Deep learning is closely associated with the artificial neural networks (ANNs) [66].

Nowadays, deep learning has gained a lot of popularity in both the academic circles and the

general public due to the very quick advance in the computational resources (both hardware

and software) [19], [66]. A number of publications have demonstrated that deep

convolutional neural networks (DCNNs) can produce highly accurate results in various image

processing problems including, but not limited to, handwritten digits recognition [22], [24],

[72]–[74], object recognition [21], [23], [75], [76], human action recognition [77], [78],

remote sensing image classification [79], etc. Some publications suggest that the DCNNs can

match the human performance on the handwritten digits recognition problems [22], [24],

[73], [74]. Indeed, DCNN is a powerful technique that provides high classification rates.

Nonetheless, the celebrated success comes at a price, the DCNNs still have a number of

deficiencies and shortcomings, i.e. the computational burden of training using huge amount

of data, lack of transparency and interpretation, ad hoc decisions about the internal structure,

no proven convergence for the adaptive versions that rely on reinforcement learning, limited

parallelisation and offline training, etc. These deficiencies largely hinder the wider

application of the DCNNs for real problems.

In this chapter, the newly introduced transparent, nonparametric, feedforward and

human interpretable deep learning networks developed on the basis of the recently introduced

AnYa type FRB systems and the EDA framework are presented. The fast feedforward

nonparametric deep learning (FFNDL) network with automatic feature extraction is presented

in section 5.1. The deep rule-based system with the prototype-based nature and transparent

structure is presented in section 5.2. The semi-supervised active learning mechanism of the

deep rule-based system is given in section 5.3. Several successful examples of deep rule-

based ensemble classifiers are presented in section 5.4. This chapter is concluded by section

5.5.

5.1. Fast Feedforward Nonparametric Deep Learning Network

In this section, the fast feedforward nonparametric deep learning (FFNDL) network with

automatic feature extraction is presented [38]. The FFNDL network is based on human-

understandable local aggregations extracted directly from the images. There is no need for

any feature selection and parameter tuning. It involves nonlinear transformation,

segmentation operations to select the most distinctive features from the training images and

builds RBF neurons based on them to perform classification with no weights to train. The

110

design of the FFNDL network is very efficient (computation and time wise) and produces

highly accurate classification results (see subsection 6.3.1 and [38]). Moreover, the training

process is parallelisable, and the time consumption can be further reduced with more

processors involved.

5.1.1. Architecture of FFNDL Network for Feature Extraction

The architecture of the FFNDL network up to the final class prediction stage is depicted

in Figure 26. As it is shown in Figure 26, the FFNDL network has six layers plus the

prediction layer. The first layer is for non-overlapping mean pooling with size 2 × 2 (obtained

empirically). The second layer is for extracting local aggregations as features from the pooled

images. The third layer is nonlinear mapping layer. The forth layer is the segmentation layer.

The fifth layer is for filtering out the overlapping/similar features extracted from images of

different classes. The sixth layer includes the RBF neurons built based on the extracted local

aggregations.

Figure 26. Architecture of the FFNDL network for feature extraction.

In the rest of this section, the novel characteristics of the FFNDL network will be

described. For simplicity, only grayscale images with pixel values scaled into [0, 1] are

considered. The size of the original images is denoted as 2𝑑 × 2𝑑, and, thus, after the mean

pooling, the size of images becomes 𝑑 × 𝑑.

5.1.1.1. Local aggregations extraction layer

In this layer, the local aggregations within images are extracted. These are based on the

gradients between the grey level values of the surrounding/neighbouring pixels to a given

pixel. In the FFNDL network, the local aggregations for the pixel 𝑧𝑖,𝑗 (𝑖, 𝑗 are the coordinates

indicating the position of this pixel within a particular image) is achieved by using a 𝑛 × 𝑛 (𝑛

111

is a small odd number) sliding window with a stride of one pixel, and the pixel 𝑧𝑖,𝑗 is in the

centre of the sliding window. The local aggregation around 𝑧𝑖,𝑗 is expressed as:

𝐀𝑖,𝑗 = [

𝑧𝑖,𝑗 − 𝑧
𝑖−

𝑛−1

2
,𝑗−

𝑛−1

2

⋯ 𝑧𝑖,𝑗 − 𝑧
𝑖−

𝑛−1

2
,𝑗+

𝑛−1

2

⋮ ⋱ ⋮
𝑧𝑖,𝑗 − 𝑧

𝑖+
𝑛−1

2
,𝑗−

𝑛−1

2

⋯ 𝑧𝑖,𝑗 − 𝑧
𝑖+

𝑛−1

2
,𝑗+

𝑛−1

2

]

= [𝜶
𝑖,𝑗−

𝑛−1

2

, … , 𝜶𝑖,𝑗−1, 𝜶𝑖,𝑗−1, 𝜶𝑖,𝑗+1, … , 𝜶
𝑖,𝑗+

𝑛−1

2

]

, (5.1)

where 𝜶𝑖,𝑗−𝑙 = [𝑧𝑖,𝑗 − 𝑧
𝑖−

𝑛−1

2
,𝑗−𝑙

, … , 𝑧𝑖,𝑗 − 𝑧
𝑖+

𝑛−1

2
,𝑗−𝑙

]
𝑇

.

By using the gradients of the grey level values as local aggregations, the local features,

i.e. edges, shapes, are preserved, while the influence of illumination is reduced. In order to

get the most effective local aggregations, only the valid features 𝐀𝑖,𝑗that have more than half

of its elements being non-zero are considered. The 𝐀𝑖,𝑗 that fail to meet this requirement are

being discarded.

After the 𝑛 × 𝑛 local aggregations are extracted, the matrix is converted into a long

vector by concatenating different rows from the local aggregation matrix. Because, the centre

of each aggregation is always equal to zero, the centre in the vector can be omitted, and, thus,

a (𝑛2 − 1) × 1 local aggregation vector is obtain:

𝐁𝑖,𝑗 = [𝜶
𝑖,𝑗−

𝑛−1

2

𝑇 , … , 𝜶𝑖,𝑗−1
𝑇 , 𝜶̅𝑖,𝑗

𝑇 , 𝜶𝑖,𝑗+1
𝑇 , … , 𝜶

𝑖,𝑗+
𝑛−1

2

𝑇]
𝑇

, (5.2)

where 𝜶̅𝑖,𝑗 = [𝑧𝑖,𝑗 − 𝑧
𝑖−

𝑛−1

2
,𝑗
, … , 𝑧𝑖,𝑗 − 𝑧𝑖−1,𝑗, 𝑧𝑖,𝑗 − 𝑧𝑖+1,𝑗, … , 𝑧𝑖,𝑗 − 𝑧

𝑖+
𝑛−1

2
,𝑗
]
𝑇

.

5.1.1.2. Nonlinear Projection Layer

After the extraction of the local aggregations, their values are limited to the range

[−1,1] because the pixel grey level values are normalised into the range [0,1]. This small

value range makes it hard to linearly separate the local aggregations from different classes.

Therefore, the following nonlinear one-to-one mapping function is employed to amplify the

differences between various local aggregations and make them separable:

𝜅(𝑥) = sgn(1 − 𝑥) [exp ((1 + sgn(1 − 𝑥)(1 − 𝑥))
2
) − exp(1)], (5.3)

where sgn(𝑥) = {
1 𝑥 > 0
0 𝑥 = 0

−1 𝑥 < 0
.

112

By using the nonlinear mapping, the FFNDL network amplifies the differences between

local aggregations, and, thus, improves the distinctiveness of the extracted local aggregations.

After the nonlinear mapping, each local aggregation vector 𝐁𝑖,𝑗 is expressed as:

𝓵𝑖,𝑗 = 𝜅(𝐁𝑖,𝑗) = [𝜅 (𝜶
𝑖,𝑗−

𝑛−1

2

𝑇) ,… , 𝜅(𝜶𝑖,𝑗−1
𝑇), 𝜅(𝜶̅𝑖,𝑗

𝑇), 𝜅(𝜶𝑖,𝑗+1
𝑇), … , 𝜅 (𝜶

𝑖,𝑗+
𝑛−1

2

𝑇)]
𝑇

. (5.4)

5.1.1.3. Grid Segmentation Layer

In the FFNDL network, the grid segmentation is achieved using a sliding window with

size of 𝑘 × 𝑘 pixels and a stride of 𝑤 pixel. The grid segmentation layer further divides the

image space into (
𝑑−𝑘−𝑛+1

𝑤
+ 1)

2

 small blocks with the size of 𝑘 × 𝑘 × (𝑛2 − 1) overlapping

with each other. This operation is equal to the over-sampling. By assigning the local

aggregations to the blocks they belong to, the original positions of the local aggregations are

replaced by the positions of their corresponding blocks, which allow the local aggregations a

small space for shifting. In addition, as the blocks are independent from each other, parallel

computation can be achieved to process each block separately and, thus, improve the

computation efficiency of the proposed network.

After the grid segmentation, each block can be viewed as a set of local aggregations

from different images of different classes:

𝐐𝑖 = {{𝓵}𝑖,1, {𝓵}𝑖,2, … , {𝓵}𝑖,𝐶}, (5.5)

where 𝑖 is the index of the blocks, 𝑖 = 1,2, … , (
𝑑−𝑘−𝑛+1

𝑤
+ 1)

2

; {𝓵}𝑖,𝑐 denotes the local

aggregations extracted in the range covered by the i
th

 block from the images from the c
th

class.

5.1.1.4. Overlapping Filtering Layer

The FFNDL network relies on the extracted local features to make the classification

decision. However, in many cases, the same local features can appear in different classes. It

is, therefore, important to select the most distinctive features only.

Considering the dimensionality of the extracted local aggregations in the FFNDL

network, Euclidean distance is not the best choice due to its inherited deficiencies for high

dimensionality problems [205], [206]. Instead, cosine dissimilarity of the local aggregations

from two different classes within the same block is calculated:

113

𝑑(𝓵𝑗 , 𝓵𝑡) = √2 − 2𝑐𝑜𝑠 (𝜃𝓵𝑗,𝓵𝑡
) = ‖

𝓵𝑗

‖𝓵𝑗‖
−

𝓵𝑡

‖𝓵𝑡‖
‖, (5.6)

where 𝓵𝑗 ∈ {𝓵}𝑖,𝑗 , 𝓵𝑡 ∈ {𝓵}𝑖,𝑡 ; {𝓵}𝑖,𝑗, {𝓵}𝑖,𝑡 ⊆ 𝐐𝑖 and 𝑗 ≠ 𝑡 ; 𝑖 = 1,2, … , (
𝑑−𝑘−𝑛+1

𝑤
+ 1)

2

;

𝜃𝓵𝑗,𝓵𝑡
 is the angle between 𝓵𝑗 and 𝓵𝑡.

Then, Condition 28 is checked:

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 28:
𝐼𝐹 (

𝑑2(𝓵𝑗,𝓵𝑡)

2
≥ 1 − 𝑐𝑜𝑠 (

𝜋

6
))

𝑇𝐻𝐸𝑁 (𝐐𝑖,𝑅 ← {𝐐𝑖,𝑅 , 𝓵𝑗 , 𝓵𝑡})

 , (5.7)

where 𝐐𝑖,𝑅 is the collection of similar local aggregations.

If Condition 28 is met, it means that, in the Euclidean data space, the angle between 𝓵𝑗

and 𝓵𝑡 is smaller than 30o , which means that the two local aggregations are quite similar and

keeping them in 𝐐𝑖 will lead to misleading results. By finding out all the 𝓵 satisfying

Condition 28, the collection of similar local aggregations, 𝐐𝑖,𝑅, is obtained, and by excluding

𝐐𝑖,𝑅 from 𝐐𝑖, the distinctive local aggregations are all selected.

5.1.1.5. Cosine Dissimilarity based RBF Neurons Layer

After the distinctive local aggregations are all selected, they are used to build the final

layer of the proposed network. The final layer consists of a number of RBF neurons; each

neuron is directly related to a distinctive local aggregation. The RBF neurons of each block

are viewed as a group. It is important to stress that there is no dependence of different groups

of RBF neurons between each other.

By including equation (5.6), the RBF function based on a particular distinctive local

aggregation 𝓵 is, finally, expressed as equation (5.8) [38]:

𝑓(𝒙) = exp (−
1

8
𝑑4(𝒙, 𝓵)) = exp (−

1

8
‖

𝒙

‖𝒙‖
−

𝓵

‖𝓵‖
‖

4

), (5.8)

where 𝒙 is the input vector and 𝓵 is the distinctive local aggregation corresponding to the

neuron.

After the RBF neurons are built based on the extracted distinctive local aggregations,

the learning stage of the proposed network is finished, and it can be used for evaluation. As

one can see from the above description, there is no parameter optimisation or iteration in the

training of the FFNDL network. It is based on the local features extracted automatically from

114

the training images to build RBF neurons and further classify new images. As a result, the

FFNDL network is able to learn from a large number of images in a high speed.

5.1.2. Architecture of FFNDL Network for Classification

Once the FFNDL network has extracted the local aggregations from the training images

in the learning stage, the network is prepared for classifying new images. The architecture of

the FFNDL network for classification is depicted in Figure 27. In this section, only the

components that have not been descriped prevously will be described in detail.

Figure 27. Architecture of the FFNDL network for classification.

5.1.2.1. RBF Neurons Layer

For each testing image, denoted by 𝐈, the process will sequentially go through the mean

pooling layer, local aggregation, nonlinear mapping, and grid segmentation layers. After the

segmentation operation, the image will be divided into blocks in the same way as described in

section 5.1.1.3 and the local aggregations within each block will serve as the inputs of the

RBF neuron group connected to that block.

When a local aggregation within the i
th

block, denoted as 𝒙, is sent to the connected

neuron group, the likelihoods of x belonging to each class are calculated according to the

following rule:

𝜔𝑐(𝒙) = argmax𝑗=1,2,…,𝑃𝑐
(𝑓𝑐,𝑗(𝒙)) = argmax𝑗=1,2,…,𝑃𝑐

(exp (−
1

8
‖

𝒙

‖𝒙‖
−

𝓵𝑐,𝑗

‖𝓵𝑐,𝑗‖
‖

4

)), (5.9)

where 𝑃𝑐,𝑖 is the number of RBF neurons belonging to the c
th

 class in the group; 𝓵𝑐,𝑗 is the j
th

distinctive local aggregation of the c
th

 class within the group; 𝑐 = 1,2, … , 𝐶.

115

Therefore, after all the local aggregations of the testing image, denoted as {𝒙}, have

been segmented according to their positions in the image and gone through the corresponding

RBF neuron groups, the outputs of the local classifiers in regards to different classes are

obtained and denoted as: {{𝜔(𝒙)}1, {𝜔(𝒙)}2, … , {𝜔(𝒙)}𝐶} . Then, the outputs will be sent to

the “few winners take all” module to decide the label of the testing image.

5.1.2.2. “Few Winners Take All” Operator

Due to the fact that the FFNDL network is operating based on the local features, one

cannot expect that a particular testing image has all the local features at the same time.

However, for any two images within the same class, there is a very large chance that they can

hold some similar local features. Therefore, the “few winners take all” strategy is employed

to decide the label. Considering the fact that the numbers of identified local features from the

training images of different classes are different, only the average value of the top 15%

outputs of the local classifiers of each collection is taken into account:

𝜆𝑐 =
1

⌈0.15∙𝐿𝑐⌉
∑ 𝜔𝑐(𝒙̂)

⌈0.15∙𝐿𝑐⌉
𝑖=1 , (5.10)

where 𝐿𝑐 is the number of local classifiers in the collection {𝜔(𝒙)}𝑐 ; {𝜔(𝒙̂)}𝑐 is the

ranked{𝜔(𝒙)}𝑐 in a descending order.

Based on 𝜆𝑐 (𝑐 = 1,2, … , 𝐶), the label of the image is decided as:

𝑦(𝐈) = argmax𝑗=1,2,…,𝑃𝑐
(𝜆𝑐). (5.11)

5.2. Deep Rule-Based Classifier

Traditional fuzzy rule-based classifiers were successfully used for classification [160],

[201] offering transparent, interpretable structure, but could not reach the levels of

performance achieved by deep learning classifiers. Their design also requires handcrafting

membership functions, assumptions to be made and parameters to be selected.

In this section, a new type of deep rule-based (DRB) system with a multilayer

architecture for image classification is presented. Combining the computer vision techniques,

the DRB approach employs a massively parallel set of 0-order fuzzy rules [35], [160] as the

learning engine, which self-organises a transparent and human understandable IF…THEN…

fuzzy rule-based (FRB) system structure in a highly efficient way and offers extremely high

classification accuracy at the same time [39], [43]. Its training process is fully online, non-

iterative, non-parametric and can start “from scratch”, more importantly, it can start

classification from the very first image of each class in the same way as humans do, which

116

makes the proposed classifier suitable for real-time applications (see subsection 6.3.2 and

also see [39]).

The DRB classifier is also further extended with a semi-supervised learning strategy

(presented in the next section) in a self-organising way and, thus, enhances its ability of

handling unlabelled images. Thanks to the prototype-based nature of the DRB classifier, the

semi-supervised learning process is fully transparent and human-interpretable. It not only can

perform classification on out-of-sample images, but also supports recursive online training on

a sample-by-sample basis or a batch-by-batch basis. Moreover, the semi-supervised DRB

classifier is able to learn new classes actively without human experts’ involvement.

5.2.1. General Architecture

The general architecture of the DRB classifier is depicted in Figure 28. One can see

from the figure that the proposed DRB approach consists of the following layers:

Figure 28. General architecture of DRB classifier.

① Transformation block;

② Feature extraction layer;

③ Massively parallel ensemble of IF…THEN… rules;

④ Decision-maker.

The transformation block of the proposed DRB classifier involves only the most

fundamental image transformation techniques, namely: i) normalization, ii) scaling, iii)

117

rotation and iv) image segmentation and, thus, it is, in fact, composed of a number of

sublayers serving for various purposes. It is well known that normalization is the process of

linear transformation of the original value range of [0, 255] into the range [0, 1] [207].

Scaling is the process of resampling and resizing of a digital image [208], [209]. Rotation is a

technique usually applied to images rotated at a certain angle around a centre point [207].

Scaling and rotation techniques are two types of affine distortion, and they can significantly

improve the generalization and decrease the overfitting [22], [24], [73]. Segmentation is the

process of partitioning an image into smaller pieces to extract local information or discard the

less informative part of the image [21]. The main purposes of the transformation block within

the DRB classifier are i) improving the generalization ability of the classifier and ii)

increasing the efficiency of the feature descriptors in harvesting information from the image.

The sub-structures of the transformation block and the usages of the image transformation

techniques are subjected to different problems and applications. A more detailed description

of the pre-processing techniques we used can also be found in section 5.2.2 [41].

For feature extraction, namely layer ②, the proposed DRB classifier may employ

various different kinds of feature descriptors that are used in the field of computer vision.

Different feature descriptors have different advantages and deficiencies [210]. The details of

feature extraction will be discussed in section 5.2.3.

The layer ③ of the proposed new DRB classifier is the massively parallel ensemble of

IF…THEN… rules which will be described in more detail in section 5.2.4. This is the

“engine” of the new DRB classifier and is based on autonomously self-developing fuzzy rule-

based models of AnYa type [60] with singletons in the consequent part.

The structure of a particular AnYa type fuzzy rule can be found in Figure 28 as well. As

one can see, each fuzzy rule used in the DRB classifier is itself a combination of a large

number of data clouds associated with the fuzzy prototypes identified through the one-pass

type training, which means that the IF…THEN… rule can be massively parallelised if

consider each data cloud/prototype as a separate fuzzy rule. The local decision-maker is a

“winner takes all” operator. Therefore, the fuzzy prototypes can be viewed as being

connected by logical “OR” operators.

The final layer is the decision-maker that decides the winning class label based on the

partial suggestion of the massively parallel IF…THEN… rule per class. This layer is only

used during the validation stage and it applies the “winner takes all” principle as well. As a

118

result, one can see that the proposed DRB classifier actually uses a two-layer decision-

making structure. The validation process will be described in section 5.2.5.

5.2.2. Image Transformation Techniques

In this section, the image transformation techniques including normalisation, affine

distortion and elastic distortion are presented.

The normalisation and affine distortion are the pre-processing transformations generally

applicable to various image processing problems, i.e. remote sensing [211], object

recognition [212], etc. In contrast, the elastic distortion is mostly only applicable to the

handwritten digits and/or letters recognition problems, i.e. Modified National Institute of

Standards and Technology (MNIST) database [213]. In the DRB classifier, only the

normalisation and affine distortions techniques are employed.

5.2.2.1. Image Normalisation

Normalisation is a common process in image processing that changes the value range of

the pixels within the image. The goal is to transform the image such that the values of pixels

are mapped into a more familiar or normal range. This operation can be used to readjust the

degree of illumination of the images as well.

In the DRB classifier, the most commonly used linear normalisation is used to fit the

original pixel value range of [0, 255] into the range of [0,1].

5.2.2.2. Affine Distortions

Affine distortion can be done by applying affine displacement fields to images,

computing for every pixel a new target location with respect to the original one. Affine

distortions including rotations and scaling are very effective to improve the generalization

and decrease the overfitting [22], [24], [73].

A. Image Scaling

Image scaling refers to the resampling and resizing of a digital image [208], [209].

There are two types of image scaling: 1) image contraction and 2) image expansion. Image

scaling is achieved by using an interpolation function. There is a number of different

interpolation methods for image resizing reported in the literature [208], [209], [214], [215],

e.g. nearest neighbour interpolation, bilinear interpolation and bicubic interpolation methods.

In this thesis, the most commonly used bicubic interpolation method [214], [215] is used,

which considers the nearest 16 pixels (4 × 4) in the neighbourhood and calculates the output

119

pixel value as their weighted average. Since the 16 neighbouring pixels are at various

distances from the output pixel, closer pixels are given a higher weighting in the calculation.

B. Image Rotation

Image rotation is another common image pre-processing technique performed by

rotating an image at certain angle around the centre point [207]. Usually, the nearest

neighbour interpolation is used after the rotation and the values of pixels that are outside the

rotated images are set to 0 (black).

C. Image Segmentation

Segmentation is the process of partitioning an image into smaller pieces to extract local

information or discard the less informative part of the image [21]. The main purposes of the

pre-processing layer within the DRB classifier are i) improving the generalization ability of

the classifier and ii) increasing the efficiency of the feature descriptors in harvesting

information from the image.

5.2.2.3. Elastic Distortion

Many approaches on the well-known MNIST database [213] have been proposed and

reported with the best result published to the moment provides a recognition accuracy of

99.77% [22]. The elastic distortion is the key to the success.

Elastic distortion is a more advanced and effective technique to expand the dataset and

improve the generalization [22], [24], [73]. The elastic distortion is done by, firstly,

generating random displacement fields and then convolving the displacement fields with a

Gaussian function of standard deviation σ (in pixels) [73]. This type of image deformation

has been widely used in the state-of-the-art deep convolutional neural networks for

handwriting recognition [22], [24] and largely improved the recognition accuracy.

However, elastic distortion is not only opaque (not clearly reported) but also is random

in nature [4]. This, combined with the other random elements of the architecture, leads to the

results being different each time training is performed on the same data.

This kind of distortion exhibits a significant randomness that puts in question the

achieved results’ repeatability and requires a cross-validation which further obstructs the

online applications and the reliability of the results. In addition, it adds user-specific

parameters that can be chosen differently. For a particular image, each time the elastic

distortion is performed, an entirely new image is being generated.

120

In addition, there is no evidence or experiment supporting that the elastic distortion can

be applied to other types of image recognition problems. In fact, the elastic distortion

destroys the images.

5.2.3. Image Feature Extraction

Feature extraction is very important to solve computer vision problems such as object

recognition, content-based image classification and image retrieval [216]. The extracted

features have to be informative, non-redundant, and, most importantly, to be able to facilitate

the subsequent learning and generalization.

The feature extraction, in fact, can be viewed as a projection from the original images

into a feature space that makes the images from different classes separable. Current feature

descriptors are divided into “low-level”, “medium-level” and “high-level” three categories

based on their descriptive abilities [210]. Different feature descriptors have different

advantages. In general, the low-level feature descriptors work very well in the problems

where low-level visual features, e.g., spectral, texture, and structure, play the dominant role.

In contrast, high-level feature descriptors work better on classifying images with high-

diversity and nonhomogeneous spatial distributions because they can learn more abstract and

discriminative semantic features.

Within the DRB classifier, the low-level feature descriptors, 1) GIST [217], and 2)

Histogram of Oriented Gradients (HOG) [218], are employed, and a combination of both is

also used to improve their descriptive ability. However, as the low-level feature descriptors

are not enough to handling complex, large-scale problems, one of the most widely used high-

level feature descriptors, namely, the pre-trained VGG-VD-16 [23], is also introduced into

the DRB classifier. It has to be stressed that the high-level feature descriptor is directly used

within the DRB classifier without further tuning.

As there is no interdependence within the feature extraction of different images, the

feature extraction process can be parallelised in a very large scale to further reduce the

processing time. Once the global features (either low- or high- level) of the image are

extracted and stored, there is no need to repeat the same process again. It has to be stressed

that this thesis describes a general DRB approach and the feature descriptors do not need to

be limited to GIST or HOG or the pre-trained VGG-VD-16 only. Alterative feature

descriptors can also be used, and selecting the most suitable feature descriptor for a particular

problem requires prior knowledge about this problem, also fine-tuning the high-level feature

121

descriptor to the specific problem can also enhance the performance as well. One may also

consider using data-driven feature selection techniques to select the optimal input feature

vectors through an iterative searching process [219]–[222]. However, these are out of the

scope of this thesis.

5.2.3.1. Employed Low-Level Feature Descriptors

A. GIST Descriptor

GIST feature descriptor gives an impoverished and coarse version of the principal

contours and textures of the image [217]. In the proposed DRB approach, the same GIST

descriptor is used as described in [217] without any modification. It extracts a 1 × 512

dimensional GIST feature vector denoted by 𝐠𝐢𝐬𝐭(𝐈) = [gist1(𝐈), gist2(𝐈), … , gist512(𝐈)]
𝑇 ,

where 𝐈 denotes the image.

B. HOG Descriptor

HOG descriptor [218], [223] has been proven to be very successful in various computer

vision tasks such as object detection, texture analysis and image classification. In the

proposed DRB approach, although the size of the images varies for different problems, w the

default block size of 2 × 2 is used and the cell size is changed to fix the dimensionality of

the HOG features to be 1 × 576, denoted by 𝐡𝐨𝐠(𝐈) = [hog1(𝐈), hog2(𝐈), … , hog576(𝐈)]
𝑇 ,

which is experimentally found to be the most effective.

To improve the distinctiveness of the HOG feature and expand the range of the HOG

features values, the nonlinear nonparametric function (equation (5.3)) is employed [41], [42]

and the resulting nonlinearly mapped HOG features are denoted by 𝜅(𝐡𝐨𝐠(𝐈)).

C. Combined GIST-HOG Features

To improve the descriptive ability and effectiveness of the used features, the GIST and

HOG is further combined to create new, more descriptive integrated feature set as follows:

𝐜𝐠𝐡(𝐈) = [
𝐠𝐢𝐬𝐭(𝐈)𝑇

‖𝐠𝐢𝐬𝐭(𝐈)‖
,

𝜅(𝐡𝐨𝐠(𝐈))
𝑇

‖𝜅(𝐡𝐨𝐠(𝐈))‖
]
𝑇

, (5.12)

where ‖∙‖ denotes the norm.

5.2.3.2. Employed High-Level Feature Descriptor

The VGG-VD-16 [23] is one of the currently best performing pre-trained deep

convolutional neural network (DCNN) models which are widely used in different works as

122

the feature descriptor due to its simpler structure and better performance. The pre-trained

VGG-VD-16 model is used without any tuning as the high-level feature descriptor of the

DRB classifier to enhance its ability in handling complex, large-scale, high-density image

classification problems. Following the common practice, the 1 × 4096 dimensional

activations from the first fully connected layer are extracted as the feature vector of the

image, denoted by 𝐯𝐠𝐠(𝐈) = [vgg1(𝐈), vgg2(𝐈), … , vgg4096(𝐈)]
𝑇.

However, as the pre-trained model requires the input image to be the size of 227 ×

227 pixels [23], it is, in fact, not good in handling problems with simple and small size

images.

5.2.4. Massively Parallel Fuzzy Rule Base

In the DRB classifier, a non-parametric rule base formed of 0-order AnYa type [60]

fuzzy rules is employed. It makes the DRB classifier interpretable and transparent for human

understanding (even to a non-expert) unlike the celebrated deep learning. Because of its

prototype-based nature, the DRB classifier is free from prior assumptions about the type of

the data distribution, their random or deterministic nature, the requirements to set the ad hoc

model structure, membership functions, number of layers, etc. Meanwhile, its nature allows

the DRB classifier a non-parametric, non-iterative, self-organising, self-evolving and highly

parallel underlying structure. The training of the DRB classifier is driven by the ALMMO-0

approach as described in section 4.2, and thus, the training process is fully autonomous,

significantly faster and can start “from scratch”.

As described in more detail in section 4.2 as well as in [35], the system automatically

identifies prototypes from the empirically observed data and forms data clouds resembling

Voronoi tessellation [64] per class. Thus, for a training dataset, which consists of 𝐶 classes, 𝐶

independent 0-order fuzzy rule-based subsystems are trained (one per class) in parallel. After

the training process is finished, each sub-classifier generalizes/learns one 0-order AnYa type

fuzzy rule corresponding to its own class based on the identified prototypes:

𝐼𝐹 (𝐈~𝐩𝑐,1) 𝑂𝑅 (𝐈~𝐩𝑐,2) 𝑂𝑅 …𝑂𝑅 (𝐈~𝐩𝑐,𝑃𝑐
) 𝑇𝐻𝐸𝑁 (𝑐𝑙𝑎𝑠𝑠 𝑐), (5.13)

where 𝑐 = 1,2, … , 𝐶; 𝐩𝑐,𝑗 is the j
th

 visual prototype of the c
th

 class; 𝑗 = 1,2, … , 𝑃𝑐; 𝑃𝑐 is the

number of prototypes of the c
th

class.

Examples of AnYa type fuzzy rules generalized from the popular handwritten digits

recognition problem, MNIST dataset [213] for digits “0” ~ “9” are visualised in Table 2,

123

where one can see that AnYa type fuzzy rules in the table provide a very intuitive

representation of the mechanism. Moreover, each of the AnYa type fuzzy rules can be

interpreted as a number of simpler fuzzy rules with single prototype connected by “OR”

operator. As a result, a massive parallelisation is possible.

Table 2. Illustrative example of AnYa fuzzy rules with MNIST dataset

Fuzzy rule

IF (I~) OR (I~) OR (I~) OR (I~) OR … OR (I~) THEN (digit 0)

IF (I~) OR (I~) OR (I~) OR (I~) OR … OR (I~) THEN (digit 1)

IF (I~) OR (I~) OR (I~) OR (I~) OR … OR (I~) THEN (digit 2)

IF (I~) OR (I~) OR (I~) OR (I~) OR … OR (I~) THEN (digit 3)

IF (I~) OR (I~) OR (I~) OR (I~) OR … OR (I~) THEN (digit 4)

IF (I~) OR (I~) OR (I~) OR (I~) OR … OR (I~) THEN (digit 5)

IF (I~) OR (I~) OR (I~) OR (I~) OR … OR (I~) THEN (digit 6)

IF (I~) OR (I~) OR (I~) OR (I~) OR … OR (I~) THEN (digit 7)

IF (I~) OR (I~) OR (I~) OR (I~) OR … OR (I~) THEN (digit 8)

IF (I~) OR (I~) OR (I~) OR (I~) OR … OR (I~) THEN (digit 9)

5.2.5. Decision-Making Mechanism

5.2.5.1. Local Decision-Making

After the system identification procedure (ALMMO-0 algorithm in section 4.2), the

DRB system generates 𝐶 fuzzy rules in regards to the 𝐶 classes. For each testing image 𝐈,

each one of the 𝐶 fuzzy rules will generate a score of confidence 𝜆𝑐(𝐈) (𝑐 = 1,2, … , 𝐶) by the

local decision-maker within the fuzzy rule based on the global features of the image denoted

by 𝒙:

𝜆𝑐(𝐈) = argmax𝑗=1,2,…,𝑃𝑐
(exp (−‖𝒙 − 𝒑𝑐,𝑗‖

2
)). (5.14)

As a result, one can get 𝐶 scores of confidence 𝝀(𝐈) = [𝜆1(𝐈), 𝜆2(𝐈),… , 𝜆𝐶(𝐈)], which

are the inputs of the decision-maker of the DRB classifier.

124

5.2.5.2. Overall Decision-Making

For a single DRB system, the label of the testing sample, denoted by 𝑦(𝐈), is given by

the decision-maker, namely, the layer ④ in Figure 28, using the “winner takes all” principle:

𝑦(𝐈) = argmax𝑗=1,2,…,𝐶 (𝜆𝑗(𝐈)). (5.15)

In some applications, i.e. face recognition, remote sensing, object recognitions, etc.,

where local information plays a more important role than the global information, one may

consider to segment (both the training and testing) images to capture local information. In

such cases, the 0-order FRB systems are trained with segments of training images instead of

the full images. The overall label of a testing image is given as an integration of all the scores

of confidence that the DRB subsystems give to its segments, denoted by 𝐬𝐠1, 𝐬𝐠2, … , 𝐬𝐠𝑆:

𝑦(𝐈) = argmax𝑗=1,2,…,𝐶 (
1

𝑆
∑ 𝜆𝑗(𝐬𝐠𝑖)

𝑆
𝑖=1). (5.16)

If a DRB ensemble [201] is used, the label of the testing image is consider as the

integration of all the scores of confidence that the DRB systems give to the image [41]:

 𝑦(𝐈) = argmax𝑗=1,2,…,𝐶 (
1

𝐸
∑ 𝜆𝑗,𝑖(𝐈)

𝐸
𝑖=1 + max𝑖=1,2,…,𝐸 𝜆𝑗,𝑖(𝐈)), (5.17)

where 𝐸 is the number of DRB systems in the ensemble.

As one can see, the overall decision-making process of the DRB ensemble (equation

(5.17)) takes both the overall confidence scores and the maximum confidence scores into

consideration. Thus, it integrates the two types of most important information to make the

judgement, which differs from the simple voting mechanism used in many other works [41].

5.3. Semi-Supervised DRB Classifier

In this section, the DRB classifiers [39], [41], [42] is extended with a semi-supervised

learning strategy in a self-organising way and, thus, its ability of handling unlabelled images

is enhanced [40]. Thanks to the prototype-based nature of the DRB classifier, the semi-

supervised learning process is fully transparent and human-interpretable. It not only can

perform classification on out-of-sample images, but also supports recursive online training on

a sample-by-sample basis or a chunk-by-chunk basis. Moreover, unlike other semi-supervised

approaches, the semi-supervised DRB (SSDRB) classifier is able to learn new classes

actively without human experts’ involvement, thus, to self-evolve [55].

125

Compared with the existing semi-supervised approaches [164]–[168], [170]–[175],

[178], the SSDRB classifier has the following distinctive features because of its prototype-

based nature [39]–[42]:

1) Its semi-supervised learning process is fully transparent and human-interpretable;

2) It can be trained online on a sample-by-sample or chunk-by-chunk basis;

3) It can classify out-of-sample images;

4) It is able to learn new classes (self-evolving).

The general architecture and principles of the DRB classifier have been introduced in

the previous sections. In this section, in order to simplify the problem, the DRB classifier

with the architecture depicted in Figure 29 is used. Nonetheless, it has to be stressed that the

semi-supervised learning strategy is a general learning approach, and it is suitable for all

types of DRB classifiers or ensembles [40].

Figure 29. Architecture of the DRB classifier for semi-supervised learning.

One can see from Figure 29 that, the DRB classifier consists of the following four layers

1) Scaling layer;

This layer is for resizing the original size of the images to the desired size needed by the

feature descriptors. In the DRB classifier used in this section, all the images are resized to the

size of 227 × 227 pixels [23] because of the specific feature descriptor used.

2) Feature descriptor;

126

The pre-trained VGG-VD-16 DCNN [23] is used as the feature descriptor, and the

1 × 4096 dimensional activations from the first fully connected layer is used as the feature

vector of the image [210]. This helps avoid handcrafting and automates the whole process. In

the SSDRB classifier presented in this thesis, 𝐶 pre-trained DCNNs are used (one per rule) to

parallelise the feature extraction process. Nonetheless, one may also use only one pre-trained

DCNN, but feature extraction would take more time.

3) Fuzzy rule base (FRB) layer [39], [41], [42];

4) Decision-maker.

The decision-maker makes the overall decision by equation (5.15).

In the following subsections, the semi-supervised learning strategies of the DRB

classifier in both offline and online scenarios are described. A strategy for the DRB classifier

to actively learn new classes from unlabelled training images is also presented.

5.3.1. Semi-supervised Learning Process from Static Datasets

5.3.1.1. Main Procedure of the Strategy

In an offline scenario, all the unlabelled training images are available and the DRB

classifier starts to learn from these images after the training process with labelled images

finishes.

First of all, the unlabelled training images are denoted as the set {𝐔} and the number of

unlabelled training images as 𝐿. The main steps of the semi-supervised learning strategy are

described as follows [40]:

Step 1. Extract the score of confidence vector for each unlabelled training image,

denoted by 𝝀(𝐔𝑖) (𝑖 = 1,2, … , 𝐿) using equation (5.14).

Step 2. Find out all the unlabelled training images satisfying Condition 29:

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 29: 𝐼𝐹 (𝜆1𝑠𝑡𝑚𝑎𝑥(𝐔𝑖) > 𝜑 ∙ 𝜆2𝑛𝑑𝑚𝑎𝑥(𝐔𝑖)) 𝑇𝐻𝐸𝑁 (𝐔𝑖 ∈ {𝐕}0), (5.18)

where 𝜆1𝑠𝑡𝑚𝑎𝑥(𝐔𝑖) denotes the highest score of confidence 𝐔𝑖 obtains, and 𝜆2𝑛𝑑𝑚𝑎𝑥(𝐔𝑖)

denotes the second highest score; 𝜑 (𝜑 > 1) is a free parameter, in this thesis, 𝜑 = 1.2 is

used; {𝐕}0 denotes the collection of feature vectors of the unlabelled training images that

meet Condition 29. After the elements of {𝐕}0 are identified, they are removed from {𝐔}.

127

For the unlabelled training images that meet Condition 29, the DRB classifier is very

confident about the class these images belong to and they can be used for updating the

structure and meta-parameters of the DRB classifier. Otherwise, it means that the DRB

classifier is not confident enough about its judgement and, thus, these images may not be

used for updating the fuzzy rules.

Step 3. Rank the elements within {𝐕}0 in a descending order in terms of the values of

𝜆1𝑠𝑡𝑚𝑎𝑥(𝐕) − 𝜆2𝑛𝑑𝑚𝑎𝑥(𝐕) (𝐕 ∈ {𝐕}0), and denote the ranked set as {𝐕}1.

As one can see from the definition of the score of confidence equation (5.14) that, the

higher 𝜆1𝑠𝑡𝑚𝑎𝑥(𝐕) is, the more similar the image is to a particular prototype of the DRB

classifier. Meanwhile, the higher 𝜆1𝑠𝑡𝑚𝑎𝑥(𝐕) − 𝜆2𝑛𝑑𝑚𝑎𝑥(𝐕) is, the less ambiguous the

decision made by the DRB classifier is. Since the DRB classifier learns sample-by-sample in

the form of a data stream, by ranking {𝐕}0 in advance, the classifier will firstly update itself

with images that are more similar to the previously identified prototypes and have less

ambiguity in the decisions of their labels, and later with the less familiar ones, which avoids

overlapping and guarantees a more efficient learning.

Step 4. Update the DRB classifier using ALMMO-0 learning algorithm (section 4.2.2)

with the set {𝐕}1. Then the SSDRB classifier goes back to Step 1 and repeats the whole

process, until there are no unlabelled training images that can meet Condition 29.

After the offline semi-supervised learning process is finished, if the DRB classifier is

not designed to learn any new classes, the labels of all the unlabelled training images will be

estimated using equation (5.15). Otherwise, the DRB classifier will, firstly, produce the labels

of the images that can meet Condition 29 and then, learn new classes through the remaining

unlabelled images (will self-evolve).

5.3.1.2. Algorithm Summary

The main procedure of the offline semi-supervised learning process is summarised in a

form of a flowchart in Figure 30.

128

Figure 30. Main procedure of the offline semi-supervised learning of SSDRB classifier.

5.3.2. Learning New Classes Actively

Real label:

Freeway

Classified as:

Syringe

Score:

0.083

Real label:

Chaparral

Classified as:

Face powder

Score:

0.072

Real label:

Forest

Classified as:

Cliff, drop, drop-off

Score:

0.021

Real label:

Airplane

Classified as:

Missile

Score:

0.106

Figure 31. Misclassified images by VGG-VD-16 DCNN.

129

In real situations, the labelled training samples may fail to include all the classes due to

various reasons, i.e. an insufficient prior knowledge or change of the data pattern in the

perceived feature. For example, in Figure 31, despite the very low scores of confidence, the

pre-trained VGG-VD-16 DCNN [23] recognises the three remote sensing images (“freeway”,

“chaparral” and “forest”) as “syringe”, “face powder” and “cliff, drop, drop-off”, and for the

image of an airplane which is taken from the top, the network recognises it as a “missile”.

Therefore, it is of paramount importance for a classifier to be able to learn new classes

actively, which not only guarantees the effectiveness of the learning process and reduces the

requirement for prior knowledge, but also enables the human experts to monitor the changes

of the data pattern. In this subsection, a strategy for the classifier to learn actively is

introduced as follows [40].

5.3.2.1. Main Procedure of the Strategy

For an unlabelled training image (with its feature vector denoted by 𝐔𝑖), if the Condition

30 is met, it means that the DRB classifier has not seen any similar images before, and

therefore, a new class is being added.

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 30: 𝐼𝐹 (𝜆1𝑠𝑡𝑚𝑎𝑥(𝐔𝑖) ≤ 𝛾) 𝑇𝐻𝐸𝑁 (𝐔𝑖 ∈ 𝑡ℎ𝑒 (𝐶 + 1)𝑡ℎ 𝑐𝑙𝑎𝑠𝑠), (5.19)

where 𝛾 is a free parameter serving as the threshold. As a result, a new fuzzy rule is also

added to the rule base with this training image as the first prototype. Generally, the lower 𝛾

is, the more conservative the DRB classifier will be when adds new rules to the rule base.

In the offline scenario, there may be a number of unlabelled images remaining in {𝐔}

after the offline semi-supervised learning process, re-denoted by {𝐔}1. Some of these may

satisfy Condition 30, denoted by {𝐕}2, {𝐕}2 ⊆ {𝐔}1. Many of the images within {𝐔}1 may

actually belong to the a few unknown classes. To classify these images, the DRB classifier

needs to add a few new fuzzy rules to the existing rule base in an active way.

The DRB classifier starts with the image that has the lowest 𝜆1𝑠𝑡𝑚𝑎𝑥 (the corresponding

feature vector is denoted by 𝐕𝑚𝑖𝑛 ∈ {𝐕}2) and adds a new fuzzy rule with this image as the

prototype. However, before adding another new fuzzy rule, the DRB classifier repeats the

offline semi-supervised learning algorithm (the previous section) on the remaining unselected

images within {𝐔}1 to find other prototypes that are associated with the newly added fuzzy

rule. This may solve the potential problem of adding too many excessive rules. After the

130

newly formed fuzzy rule is fully updated, the DRB classifier will start to add the next new

rule/class.

With this strategy, the SSDRB classifier is able to actively learn from the unlabelled

training images, gain new knowledge, define new classes and add new rules/classes,

correspondingly. Human experts can also examine the new fuzzy rules and give meaningful

labels for the new classes by simply checking the prototypes afterwards, i.e. “new class 1”

can be renamed as “agricultural” and “new class 2” can be renamed as “harbour”. This is less

laborious than the usual approach as it only concerns the aggregated prototypical data, not the

high volume raw data, and it is more important for the human users. However, it is also

necessary to stress that identifying new classes and labelling them with human-

understandable labels are not essential for the DRB classifier to work since in many

applications, the classes of the images are predictable based on common knowledge. For

example, for handwritten digits recognition problem, there will be images from 10 classes

(from “0” to “9”), for Latin characters recognition problem, there will be images from 52

classes (from “a” to “z” and “A” to Z”), etc.

5.3.2.2. Algorithm Summary

The main procedure of actively learning new classes from unlabelled training data (self-

evolving) of the SSDRB classifier is summarised in the following flowchart.

131

Figure 32. Main procedure of the active learning of SSDRB classifier.

5.3.3. Semi-supervised Learning from Data Streams

It is often the case that, after the algorithms have processed the available static data, new

data continuously arrives in a form of data stream. Prior semi-supervised approaches [164]–

[168], [170]–[175], [178] are limited to offline application due to their operating mechanism.

Thanks to the prototype-based nature and the evolving mechanism [55], [160] of the DRB

classifier [39], [41], [42], online semi-supervised learning can also be conducted .

The online semi-supervised learning of the DRB classifier can be conducted on a

sample-by-sample basis or a chunk-by-chunk basis after the supervised training process with

the labelled training images finishes. In this subsection, the main procedures of the semi-

132

supervised learning processes of both types together with their corresponding flowcharts are

presented.

The online semi-supervised learning strategy is the modification of the offline one as

described in section 5.3.1. However, it has to be stressed that the performance of semi-

supervised learning in an online scenario is influenced by the order of the images and is not

as stable as the semi-supervised learning in an offline scenario.

5.3.3.1. Online Semi-Supervised Learning on a Sample-by-Sample Basis

The main steps of the online semi-supervised learning on a sample-by-sample basis are

as follows [40]:

Step 1. Use Condition 29 and ALMMO-0 learning algorithm (section 4.2.2) to learn

from the available unlabelled image denoted by 𝐔𝐿+1 ;

Step 2 (optional). Check Condition 30 to see whether the DRB classifier needs to add a

new rule (and class).

Step 3. DRB classifier goes back to Step 1 and processes the next image.

5.3.3.2. Online Semi-Supervised Learning on a Chunk-by-Chunk Basis

The main steps of the online semi-supervised learning on a chunk-by-chunk basis are as

follows [40]:

Step 1. Use offline semi-supervised learning algorithm (section 5.3.1) to learn from the

available chunk of unlabelled images denoted by {𝐔}1;

Step 2 (optional). Use active learning algorithm (section 5.3.2) to actively learn new

classes from the remaining images denoted by {𝐔}2;

Step 3. DRB classifier goes back to Step 1 and processes the next chunk.

5.3.3.3. Algorithm Summary

The main procedures of online semi-supervised learning strategies (on a sample-by-

sample basis and on a chunk-by-chunk basis) of the SSDRB classifier are summarised in the

following flowcharts.

133

(a) Semi-supervised learning on a sample-by-sample basis

(b) Semi-supervised learning on a chunk-by-chunk basis

Figure 33. Main procedure of the online semi-supervised learning of SSDRB classifier.

134

5.4. Examples of DRB Ensembles

In some real applications, a single DRB classifier may not be sufficient. For example, a

DRB classifier may take too much time to learn from a large scale image set, or multiple

types of feature descriptors are necessary for achieving a good classification result. Thus, an

ensemble of DRB classifiers is needed.

In this section, three successful examples of DRB ensembles based on the real problems

(handwritten digits recognition and remote sensing scenes classification) are presented

aiming to demonstrate the idea of how to create an ensemble with the DRB classifiers to

improve the performance. Nonetheless, it has to be stressed that the DRB system is a general

system for image classification, there is no fixed principle for creating ensembles, and DRB

ensembles can be formed in different ways subjected to the requirements of the problems and

the goals [39], [41], [42].

5.4.1. DRB Committee for Handwritten Digits Recognition

The DRB committee was designed for recognising the handwritten digit images of the

well-known benchmark dataset MNIST [213], which consist of 60000 training images and

10000 testing images from 10 classes in regards to the digits “0”~“9”. The size of the

images is 28 × 28 pixels.

5.4.1.1. Training Stage

The architecture of the DRB ensemble for handwritten digits recognition in the training

stage is depicted in Figure 34.

135

Figure 34. Architecture of DRB committee for training.

As one can see from Figure 34, the ensemble of DRB classifiers consists of the

following components:

① Normalisation layer, which normalise the original value range of the pixels of the

handwritten images from [0,255] to [0,1] linearly;

② Scaling layer, which resizes the images from the original image size of 28 × 28

pixels into seven different sizes: 1) 28 × 22 ; 2) 28 × 24 ; 3) 28 × 26 ; 4) 28 × 28 ; 5)

28 × 30; 6) 28 × 32 and 7) 28 × 34;

③ Rotation layer, which rotates each image (after the scaling operation) into 11

different angles from −15° to 15° with the interval of 3°;

Therefore, the scaling and rotation layer expands the original training image set into 77

new training sets with different scaling sizes and rotation angles.

④ Feature extraction layer. In this layer, a low-level feature descriptor, namely GIST

[217] or HOG [218] (or both of them), is employed, which extract a 1 × 512 dimensional

GIST feature vector or a 1 × 576 dimensional HOG feature vector or a 1 × 1088

dimensional combined GIST-HOG feature vector from each training image, respectively, as

described in section 5.2.3.1;

136

⑤ FRB layer, which consists of 154 FRB systems, each of them is trained with one of

the two types of feature vectors from one of the 77 expanded training sets. Each FRB system

has 10 FRB subsystems (corresponding to 10 digits “0” to “9”) and each subsystem has one

massively parallel 0-order fuzzy rule of AnYa type as described in section 5.2.4. As a result,

the FRB layer, in total, has 1540 0-order fuzzy rules of AnYa type, and each one of them is

trained separately. The training process of these fuzzy rules is described in section 4.2.2.

5.4.1.2. Classification Stage

The architecture of the DRB ensemble for handwritten digits recognition in the

classification stage is depicted in Figure 35. As one can see from the figure, during the

classification stage, the ensemble of DRB classifiers consists of the following components:

① Normalisation layer;

② Feature extraction layer;

③ FRB layer;

The normalisation layer and feature extraction layer are the same as used during the

training stage. The FRB layer contains all the 1540 0-order fuzzy rules of AnYa type

identified through the training.

④ Decision-making committee, which decides the label of the testing image based on

the 1540 scores of confidences generated by the 1540 fuzzy rules (equation (5.14)) in the

FRB layer following equation (5.17).

137

Figure 35. Architecture of DRB committee for classification.

5.4.2. A Cascade of DRB and SVM for Handwritten Digits Recognition

The cascade of the DRB and SVM was introduced in [42] for the MNIST dataset. The

diagram of the cascade is given in Figure 36.

One can see from Figure 36 that the DRB ensemble is used as the main engine of the

approach and a SVM based conflict resolution classifier is added in a cascade configuration

to support the main engine when there is no clear winner but rather a conflict in the degree of

confidence of the best two class suggestions.

The DRB committee [41] is able to perform highly accurate classification on the

handwriting digits in the majority cases by following the “winner takes all” principle.

However, it fails in the rare cases (less than 2% in the MNIST handwriting digits recognition

problem [213]) in which there are two highly confident labels generated for a single image at

the same time. In these rare cases, the “winner takes all” principle used in the DRB

committee blindly assigns the class to the winner ignoring the fact that the second best is also

likely.

138

Figure 36. Diagram of the cascade of DRB ensemble and SVM.

Therefore, in this approach, a conflict resolution classifier is added as the auxiliary stage

for the main classifier in making decisions when there are two highly confident labels

produced for the same image. This conflict resolution classifier is using an SVM classifier

[224] with polynomial kernel and it improves the overall performance of the DRB ensemble.

The learning process of the SVM is independent from the DRB ensemble, and, thus, can

be trained in parallel and will not influence the evolving nature of the DRB ensemble.

5.4.2.1. The DRB Ensemble

The architecture of the DRB ensemble for the training is depicted in Figure 37, which

has one extra layer compared with the DRB ensemble depicted in Figure 34. The DRB

committee used in the cascade consists of the following components:

① Normalisation layer;

② Scaling layer;

③ Rotation layer;

④ Segmentation layer;

⑤ Feature extraction layer;

⑥ FRB layer.

139

Figure 37. Architecture of the DRB ensemble for training.

Figure 38. Architecture of the DRB ensemble for classification.

140

The ①-③ and ⑤-⑥ layers are the same as used in section 5.4.1.1. The extra

segmentation layer is for extracting the central area (22 × 22) from the training images. It

discards the borders that mostly consist of white pixels with little or no information.

The architecture of the DRB ensemble for the classification is depicted in Figure 38,

from which one can see that, the decision-making committee is replaced by a system output

integrator that integrate the outputs of the 1540 fuzzy rules into 10 scores of confidences by

the following equation:

Λ𝑐(𝐈) =
1

154
∑ (𝜆𝑐,𝑖(𝐈))

154
𝑖=1 =

1

154
∑ (max𝑗=1,2,…,𝑃𝑐,𝑖

(exp (−‖𝒙 − 𝒑𝑐,𝑖,𝑗‖
2
)))154

𝑖=1 , (5.20)

where 𝑐 = 1,2, … ,10; 𝑃𝑐,𝑖 is the number of prototypes within the i
th

 fuzzy rule of the c
th

 class;

𝒑𝑐,𝑖,𝑗 is the corresponding j
th

 prototype.

5.4.2.2. Conflict Detector

The conflict detector will detect the rare cases in which the highest and the second

highest overall scores of confidence given by the decision-making committee are very close.

If such cases happen, it means that there is a conflict, and the decision-maker will involve the

SVM conflict resolution classifier. The principle for detecting a conflict is as follows:

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 31:
𝐼𝐹 (Λ1𝑠𝑡𝑚𝑎𝑥(𝐈) ≤ Λ2𝑛𝑑𝑚𝑎𝑥(𝐈) + 𝜎Λ(𝐈) 4⁄)

𝑇𝐻𝐸𝑁 (𝐴 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡 𝑖𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑)
, (5.21)

where Λ1𝑠𝑡𝑚𝑎𝑥(𝐈) and Λ2𝑛𝑑𝑚𝑎𝑥(𝐈) are the largest and the second largest integrated scores of

confidence; 𝜎Λ is the standard deviation of the 10 integrated scores given by the DRB

committee the testing image.

5.4.2.3. The SVM Conflict Resolution Classifier

In the cascade approach, the SVM conflict resolution classifier is added to assist the

DRB ensemble when it produces two highly confident labels on one image. The architecture

of the SVM conflict resolution classifier is given in Figure 39.

As one can see, the SVM conflict resolution classifier consists of the following layers:

① Normalisation layer;

② Segmentation layer;

③ Feature extraction layer;

④ SVM classifier.

141

The normalization and segmentation layers are the same as used in the DRB ensemble.

The feature extraction layer extracts the combined GIST and HOG features of the images as

described by equation (5.12), which can improve the classification accuracy of the SVM

classifier as the combined feature is relatively more descriptive compared with the original

ones.

Figure 39. Architecture of the SVM conflict resolution classifier.

The SVM classifier during the classification stage conducts a binary classification on

the image for the first and second most likely classes it belongs to. The output of the SVM

conflict resolution classifier is not the label but the scores, which are denoted by Λs1(𝐈) and

Λs2(𝐈), which correspond to Λ1𝑠𝑡𝑚𝑎𝑥(𝐈) and Λ2𝑛𝑑𝑚𝑎𝑥(𝐈), respectively.

5.4.2.4. Decision Maker

During the classification stage, the SVM based conflict resolution classifier will not be

functioning if Condition 31 is not satisfied. In such case, the decision-maker will make

decision directly based on the maximum Λ(𝐈) obtained by the DRB ensemble.

If there is a conflict detected, the decision-maker will do a binary classification on the

image between the first and second most likely classes with the assistance of the SVM based

conflict resolver:

𝑦(𝐈) = argmax({Λ1𝑠𝑡𝑚𝑎𝑥(𝐈) + Λs1(𝐈), Λ2𝑛𝑑𝑚𝑎𝑥(𝐈) + Λs2(𝐈) }). (5.22)

5.4.3. DRB Ensemble for Remote Sensing Scenes

Land use classification is recognized widely as a challenging task because the land use

sub-regions are recognised implicitly through their high-level semantic function, where

multiple low-level features or land cover classes can appear in one land use category, and

identical land cover classes can be shared among different land use categories. These high-

level semantics need to be exploited sufficiently using robust and accurate approaches for

feature representation.

142

In this section, by creating an ensemble of DRB classifiers [43] trained with segments of

remote sensing images partitioned with different granularities, the DRB ensemble [43] is

able to utilize spatial information at multiple scales and exhibit highly accurate classification

performance.

5.4.3.1. General Architecture

The architecture of the DRB ensemble is given in Figure 40, which consists of four

DRB classifiers trained with the segments of remote sensing images at four different levels of

granularity (small, medium and large), which are achieved by using the sliding windows of

three different sizes [43].

Figure 40. Architecture of the DRB ensemble for remote sensing scenes.

Figure 41. Structure of the DRB classifier for remote sensing scenes.

The architecture of a DRB classifier is presented in a modular/layered form in Figure

41. The decision-maker in the final layer of the ensemble decides the winning label of the

validation images based on the suggestions of the individual (per class) IF… THEN… rules

of the three DRB classifiers within the ensemble.

143

5.4.3.2. DRB Classifiers for Remote Sensing Scenes

The DRB classifier as depicted in Figure 42 has the following components [43]:

① Rotation layer, which rotates each remote sensing image at four different angles 1)

0°; 2) 90°; 3) 180° and 4) 270°.

② Segmentation layer, which uses a sliding window to partition the remote sensing

images into smaller pieces for local information extraction. By changing the size of the

sliding window, the level of granularity of the segmentation result can be changed

accordingly. A larger sliding window size allows the DRB to capture coarse scale spatial

information at the cost of losing fine scale detail and vice versa.

Figure 42. Image segmentation with different sliding windows.

In this example, three different sliding windows with sizes of 1) (4 × 4)/(8 × 8) of

image size (very small granularity); 2) (5 × 5)/(8 × 8) of image size (small granularity); 3)

(6 × 6)/(8 × 8) of image size (medium granularity) and 4) (7 × 7)/(8 × 8) of image size

(large granularity) and the step size of 1 8⁄
 width in the horizontal and 1 8⁄

 length in the

vertical direction. The segmentation process is illustrated in Figure 42.

③ Scaling layer, which is involved in the DRB classifier to rescale the segments into

the uniform size of 227×227 pixels required by the VGG-VD-16 model [23].

144

④ Feature extraction layer, which is the high-level feature descriptor, namely the VGG-

VD-16 model [23], as described in section 5.2.3.2.

⑤ FRB layer, which has been described in section 5.2.4.

5.4.3.3. Decision-Maker

During the validation stage, for each testing image, each DRB classifier can produce a

label for the testing image in the way as described by equation (5.16). Since there are four

DRB classifiers used, the simple voting mechanism is insufficient to utilise all the

information. Therefore, the decision-maker uses a modified version of equation (5.16) to as

follows [43]:

𝑦(𝐈) = argmax𝑗=1,2,…,𝐶 (∑
1

𝑆𝑘
∑ 𝜆𝑘,𝑗(𝐬𝐠𝑘,𝑖)

𝑆𝑘
𝑖=1

4
𝑘=1), (5.23)

where 𝑆𝑘 is the number of segments obtained from the testing image under the k
th

 granularity;

𝐬𝐠𝑘,𝑖 is the i
th

 segment of the corresponding granularity; 𝑘 = 1,2,3,4.

5.5. Conclusion

In this chapter, the latest deep learning networks developed within the EDA framework

for image classification are presented. Compared with the state-of-the-art deep learning based

approaches, the presented work has the following distinctive features:

1) Highly efficient, transparent, human interpretable learning process;

2) Self-organising and self-evolving structure;

3) Free from the ad hoc decisions.

145

6. Implementation and Validation of the Developed Algorithms

In this chapter, the performance evaluation for the presented machine learning

algorithms conducted on the benchmark datasets is presented. This chapter is organised as

follows. The numerical experiments with the self-organising unsupervised machine learning

algorithms described in chapter 3 are given in section 6.1. The results of the self-organising

supervised machine learning algorithms are presented in section 6.2. The implementation and

experiment results of the transparent deep learning systems are described in section 6.3. This

chapter is finalised by section 6.4. This chapter is concluded by the final section.

The algorithms presented in this thesis are implemented on Matlab platform, and most

of the numerical examples are conducted with Matlab2017a on a PC with WIN10 OS, dual

core i7 processor with clock frequency 3.4 GHz each and 16GB RAM.

The source codes of the proposed algorithms are downloadable from:

 https://uk.mathworks.com/matlabcentral/fileexchange/?term=authorid%3A1098949

6.1. Evaluation of the Unsupervised Learning Algorithms

The performance of the self-organising unsupervised machine learning algorithms

presented in chapter 3, namely

1) Autonomous data-driven (ADD) clustering algorithm;

2) Hypercube-based data partitioning (HCDP) algorithm;

3) Autonomous data partitioning (ADP) algorithm;

4) Self-organising direction-aware (SODA) data partitioning algorithm;

are evaluated based on benchmark datasets. During the experiments, it is assumed that there

is no any prior knowledge about the datasets. The following state-of-the-art algorithms are

involved in the comparison:

1) Mean-shift clustering (MSC) algorithm [114];

2) Subtractive clustering (SUBC) algorithm [15];

3) Self-organizing map (SOM) algorithm [109];

4) Density peaks clustering (DPC) algorithm [225];

5) Density-based spatial clustering of applications with noise (DBSCAN) algorithm [6];

6) Affinity propagation clustering (APC) algorithm [105];

https://uk.mathworks.com/matlabcentral/fileexchange/?term=authorid%3A1098949

146

7) eClustering algorithm [11];

8) Evolving local means clustering (ELMC) algorithm [12];

9) Nonparametric mixture model based clustering (NMMBC) algorithm [122];

10) Nonparametric mode identification based clustering (NMIBC) algorithm [226];

11) Clustering of evolving data streams (CEDS) algorithm [118].

Due to insufficient prior knowledge, the recommended settings of the free parameters

from the published literature are used throughout the numerical experiments. The

experimental settings of the free parameters of the algorithms are presented in Table 3.

Table 3. Experimental settings of the comparative algorithms

Algorithms Free Parameter(s) Experimental setting

MSC
1) bandwidth, 𝑝

2) kernel function type

1) 𝑝 = 0.15 [12]

2) Gaussian kernel

SUBC initial cluster radius, 𝑟 𝑟 = 0.3 [15]

SOM net size 12 × 12 [110]

DPC
1) minimum distance, 𝑟

2) local density value, 𝛿

1) relatively high, 𝑟

2) high, 𝛿 [225]

DBSCAN

1) cluster radius, 𝑟

2) minimum number of data

samples within the radius, 𝑘

1) the value of the knee point

of the sorted 𝑘-dist graph

2) 𝑘 = 4 [6]

APC

1) maximum number of iterative

refinements

2) termination tolerance

3) dampening factor

predefined as in [105]

eClustering
1) initial radius, 𝑟

2) learning parameter, 𝜌

1) 𝑟 = 0.5

2) 𝜌 = 0.5 [11]

ELMC initial cluster radius, 𝑟 𝑟 = 0.15 [12]

NMMBC
1) prior scaling parameter

2) kappa coefficient
predefined as in [122]

NMIBC grid size predefined as in [226]

CEDS

1) microCluster radius, 𝑟

2) decay factor, 𝜔
3) min microCluster threshold, 𝜑

1) 𝑟 = 0.15

2) 𝜔 = 500

3) 𝜑 = 1 [118]

The clustering algorithms that require the number of clusters to be known in advance,

i.e. k-means [5], online k-means [227], fuzzy c-means [124], random swap [228] algorithms,

etc., or require the problem-specific thresholds, i.e. hierarchical clustering algorithm [99], are

not included in the comparison if no specific declaration.

147

The quality of the clustering/partitioning results is evaluated based on the following five

indicators:

1) Number of clusters/clouds (NC). Ideally, NC should be as close as possible to the

number of actual classes (ground truth) in the dataset. However, this would mean one cluster/

data cloud per class and is only the best solution if each class has a very simple (circular)

hyper-spherical pattern. However, this is not the case in the vast majority of the real

problems. In most of the cases, data samples from different classes are mixed with each other.

The best way to cluster/partition the dataset of this type is to divide the data into smaller parts

(i.e. more than one cluster per class) to achieve a better separation. At the same time, having

too many clusters per class is also reducing the generalization capability (leading to

overfitting) and the interpretability. Therefore, in this thesis, the reasonable value range of NC

is considered as 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑙𝑎𝑠𝑠𝑒𝑠 ≤ NC ≤ 10% ∙ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 . If NC is

smaller than the number of actual classes in the dataset or is more than 10% of all data

samples, the clustering result is considered as an invalid one. The former case indicates that

there are too many clusters generated by the clustering algorithm, which makes the

information too trivial for users, and the latter case indicates that the clustering algorithm

fails to separate the data samples from different classes.

2) Purity (PU) [20], which is calculated based on the result and the ground truth:

PU = ∑ 𝑆𝑖,𝐷
NC
𝑖=1 𝐾⁄ , (6.1)

where 𝑆𝑖,𝐷 is the number of data samples with the dominant class label in the i
th

 cluster.

Purity directly indicates separation ability of the clustering algorithm. The higher purity a

clustering result has, the stronger separation ability the clustering algorithm exhibits.

3) Calinski-Harabasz index (CH) [13], the higher the Calinski-Harabasz index is, the

better the clustering result is;

148

4) Davies-Bouldin index (DB) [17], the lower Davies-Bouldin index is, the better the

clustering result is.

5) Time (texe): the execution time (in seconds) should be as small as possible.

6.1.1. Autonomous Data-Driven Clustering Algorithm

6.1.1.1. Benchmark Problems for Evaluation

The ADD clustering algorithm is more effective in grouping data into clusters with

regular shapes and clear boundaries. Therefore, in this section, the following datasets are used

for evaluation:

1) Iris dataset [229];

2) A1 dataset [230];

3) A2 dataset [230];

4) S1 dataset [231];

5) S2 dataset [231].

The details of the datasets are tabulated in Table 4.

Table 4. Details of benchmark datasets for evaluating ADD algorithm

Dataset Number of Classes Number of Features Number of Samples

Iris 3 4 150

A1 20 2 3000

A2 35 2 5250

S1 15 2 5000

S2 15 2 5000

6.1.1.2. Performance Evaluation and Discussion

In this subsection, the performance of the ADD clustering algorithm is evaluated. For

clarity, only the clustering results of the ADD clustering algorithm on A2 and S2 datasets are

visualised in Figure 43, where the circles “o” in different colours denote data samples of

different clusters, the black asterisks “*” denote the focal points/prototypes. In these

experiments, the parallel computing ADD clustering algorithm uses five processors and each

chunk has the size of 250 samples.

149

(a) A2-Offline ADD (b) S2-Offline ADD

 (c) A2-Evolving ADD (d) S2-Evolving ADD

 (e) A2-Parallel computing ADD (f) S2-Parallel computing ADD

Figure 43. Clustering results of the ADD algorithm on A2 and S2 datasets.

One can see from Figure 43 that, the ADD clustering algorithm (all three versions) can

effectively separate the data from different clusters. Due to the nature of the streaming data

150

clustering on the sample-by-sample basis, the evolving ADD algorithm produces more

clusters than the others.

For the parallel computing ADD algorithm, the influences of the number of processors

and chunk size on the computational efficiency of the algorithm are studied based on the S1

dataset, where the number of processors varies from 2 to 10 and the chunk size varies from

100 to 400. The time consumption of the two stages of the clustering process with different

experimental settings is tabulated in Table 5, where the amount of the time consumption

during stage 1 as tabulated in this table is the average processing time per processor.

Table 5. Computational efficiency study under different experimental setting

Chunk

Size
Stage

Number of Processors

2 3 4 5 6 7 8 9 10

100
1 0.51 0.17 0.11 0.09 0.07 0.06 0.05 0.04 0.03

2 1.04 0.53 0.50 0.44 0.41 0.40 0.37 0.37 0.35

150
1 0.31 0.17 0.12 0.08 0.06 0.05 0.04 0.04 0.03

2 0.61 0.53 0.47 0.42 0.39 0.38 0.35 0.35 0.34

200
1 0.30 0.16 0.11 0.08 0.06 0.05 0.04 0.04 0.03

2 0.61 0.48 0.46 0.41 0.39 0.37 0.37 0.37 0.35

250
1 0.31 0.16 0.11 0.08 0.06 0.05 0.04 0.04 0.03

2 0.66 0.51 0.44 0.39 0.39 0.36 0.35 0.34 0.33

300
1 0.27 0.15 0.10 0.07 0.06 0.05 0.04 0.04 0.03

2 0.65 0.46 0.11 0.38 0.36 0.35 0.34 0.33 0.33

350
1 0.27 0.15 0.10 0.07 0.06 0.05 0.04 0.03 0.03

2 0.60 0.48 0.39 0.36 0.35 0.34 0.34 0.34 0.33

400
1 0.25 0.14 0.09 0.07 0.06 0.05 0.04 0.03 0.03

2 0.53 0.44 0.40 0.39 0.37 0.35 0.35 0.33 0.32

From Table 5 one can see that, in general, the more processors are used in the

experiments, the more efficient the clustering process will be. Meanwhile, a larger chunk size

can accelerate the clustering process.

The quality of the clustering results obtained by the ADD algorithm on the five

benchmark datasets are evaluated in Table 6, Table 7 and Table 8, where for the parallel

computing ADD algorithm, its performance is evaluated on the A1, A2, S1 and S2 datasets

and it uses five processors with the chunk size of 250 samples. The performance comparison

is also conducted in Table 6, Table 7 and Table 8 by using the 11 state-of-the-art approaches

tabulated in Table 3.

151

In Table 6, Table 7 and Table 8, k-means [5], fuzzy c-means (FCM) [124] and random

swap (RS) [228] algorithms are also involved in the comparison for a better evaluation. For

these three algorithms, the number of clusters is set to be the same as the number of classes.

Table 6. Performance evaluation and comparison of the ADD algorithm

Dataset Algorithm NC PU CH DB texe Validity

Iris

OADD
a
 3 0.8933 560.3999 0.6623 0.33 Yes

EADD
 b

 9 0.8933 262.1338 1.0682 0.10 Yes

MSC 24 0.9733 205.448 0.8806 0.04 No

SUBC 9 0.9400 195.4512 1.1244 0.11 Yes

SOM 144 1.0000 260.9743 0.3180 2.37 No

DPC 2 0.6667 501.9249 0.3836 1.91 No

DBSCAN 2 0.6267 613.9620 0.3530 0.01 No

APC 5 0.91333 440.6378 0.9267 0.11 Yes

eClustering 4 0.6733 58.7119 1.4130 0.03 Yes

ELMC 1 0.3333 NaN
c
 NaN 0.13 No

NMMBC 1 0.3333 NaN NaN 4.27 No

NMIBC 3 0.8400 484.8990 0.6338 0.33 Yes

CEDS 16 0.9533 168.2046 1.5277 0.66 No

kmeans 3 0.8867 560.3660 0.6664 0.10 Yes

FCM 3 0.8933 559.0000 0.6696 0.03 Yes

RS 3 0.7200 42.0557 2.2776 0.45 Yes

A1

OADD 20 0.9833 13829.3761 0.5267 30.94 Yes

EADD 27 0.9827 10663.5118 0.7232 1.41 Yes

PCADD
d
 20 0.9833 13751.8751 0.5289 0.41 Yes

MSC 9 0.4453 4009.6177 0.8612 0.04 No

SUBC 9 0.4480 4307.8855 0.6763 1.15 No

SOM 144 0.9703 9597.3680 0.8177 6.65 Yes

DPC 9 0.4497 5361.9764 0.7468 1.83 No

DBSCAN 25 0.8197 8627.927 0.5590 0.73 Yes

APC 1401 0.9107 100.372 1.309 50.05 No

eClustering 3 0.1500 1392.1482 0.7243 0.12 No

ELMC 2 0.1000 2178.4792 0.8370 0.55 No

NMMBC 4 0.1997 2844.1017 21.5226 198.03 No

NMIBC 7 0.3500 4241.8797 0.8011 5.28 No

CEDS 21 0.3846 251.8649 1.2713 8.03 Yes

kmeans 20 0.8763 9070.4058 0.6962 0.12 Yes

FCM 20 0.9837 13826.785 0.52664 0.21 Yes

RS 20 0.4137 50.8635 28.2870 1.82 Yes
 a

 Offline ADD;
b
 Evolving ADD;

c
 Not a number;

d
 Parallel computing ADD.

152

Table 7. Performance evaluation and comparison of the ADD algorithm (continue - part 1)

Dataset Algorithm NC PU CH DB texe Validity

A2

OADD 35 0.9825 18205.8529 0.5241 123.81 Yes

EADD 53 0.9796 12956.6360 0.7440 5.79 Yes

PCADD 35 0.9796 17966.9969 0.5278 0.72 Yes

MSC 11 0.3139 5002.6452 0.8326 0.06 No

SUBC 11 0.3143 6323.3781 0.7386 1.95 No

SOM 144 0.9728 12749.7708 0.8833 11.83 Yes

DPC 19 0.5423 7426.8078 0.6334 3.13 No

DBSCAN 47 0.8187 11319.5382 0.6217 1.90 Yes

APC 2844 0.8711 63.1582 1.0557 147.12 No

eClustering 3 0.0857 2012.3325 0.8095 0.20 No

ELMC 2 0.0571 2051.5427 1.1627 0.89 No

NMMBC 7 0.1716 2193.3707 1.6057 67.89 No

NMIBC 13 0.3714 6051.1654 0.7161 13.17 No

CEDS 17 0.1897 756.4172 0.9958 11.19 No

kmeans 35 0.8977 12963.9614 0.6631 0.13 Yes

FCM 35 0.8697 10912.0552 0.7017 1.46 Yes

RS 35 0.2916 42.5126 30.9873 5.96 Yes

S1

OADD 16 0.9938 21624.5534 0.4199 94.73 Yes

EADD 42 0.9856 11316.8467 0.7428 5.12 Yes

PCADD 15 0.9942 22670.4843 0.3661 0.47 Yes

MSC 13 0.8132 10104.1419 0.5124 0.04 No

SUBC 10 0.6732 8360.6375 0.5729 3.07 No

SOM 144 0.9940 14901.7546 0.8055 9.53 Yes

DPC 3 0.2100 2356.1843 0.8905 4.54 No

DBSCAN 32 0.9146 1256.2090 1.2679 2.84 Yes

APC 2297 0.9584 123.9501 0.8424 194.97 No

eClustering 2 0.1400 1159.7451 1.8898 0.19 No

ELMC 1 0.0700 NaN NaN 1.11 No

NMMBC 6 0.3952 2966.1273 0.6952 345.40 No

NMIBC 6 0.4100 5922.5340 0.7305 10.38 No

CEDS 21 0.6048 1285.7427 1.0851 11.85 Yes

kmeans 15 0.9326 15172.8111 0.4822 0.12 Yes

FCM 15 0.9938 22675.2540 0.3665 0.38 Yes

RS 15 0.3448 85.7921 20.3050 2.26 Yes

153

Table 8. Performance evaluation and comparison of the ADD algorithm (continue - part 2)

Dataset Algorithm NC PU CH DB texe Validity

S2

OADD 16 0.9638 13031.0961 0.5157 99.38 Yes

EADD 36 0.9522 6997.2126 0.8773 3.34 Yes

PCADD 15 0.9694 13411.7340 0.4694 0.64 Yes

MSC 13 0.7164 6443.3562 0.7698 0.04 No

SUBC 10 0.6642 6265.4817 0.6630 2.90 No

SOM 144 0.9692 9452.3645 0.8283 9.62 Yes

DPC 2 0.1400 1764.3864 1.4709 4.55 No

DBSCAN 35 0.7788 686.9831 2.0510 2.76 Yes

APC 1283 0.9168 229.2614 1.4833 205.14 No

eClustering 2 0.1366 1330.5700 1.4359 0.20 No

ELMC 1 0.0700 NaN NaN 1.11 No

NMMBC 10 0.4652 2207.0915 2.3866 407.10 No

NMIBC 4 0.2786 3966.1442 0.8060 12.41 No

CEDS 26 0.6580 1324.1078 0.9463 12.96 Yes

kmeans 15 0.9028 9434.6526 0.5841 0.13 Yes

FCM 15 0.9112 10447.5460 0.5881 0.52 Yes

RS 15 0.3240 34.7955 33.0821 2.27 Yes

It is clearly shown in Table 6, Table 7 and Table 8 that the ADD clustering algorithm

exhibits stronger performance on all the five benchmark datasets compared with the

alternative algorithms. Specifically, the offline ADD clustering algorithm produces the best

results, but its computational efficiency is not high in comparison with the other two versions.

The parallel computing version is the most efficient one and it outperforms all other

algorithms on S1 and S2 datasets. The evolving ADD algorithm is very efficient as well, but

its performance is not as high as the other two versions.

6.1.2. Hypercube-based Data Partitioning Algorithm

6.1.2.1. Benchmark Problems for Evaluation

The HCDP algorithm is more effective in partitioning low-dimensional datasets with

irregular shapes. Therefore, in this section, the following datasets are used for evaluation:

1) Flame dataset [127];

2) Jain dataset [232];

3) Aggregation dataset [233];

4) Pathbased dataset [234];

154

5) Banknote authentication dataset [235].

The details of the datasets are tabulated in Table 9.

Table 9. Details of benchmark datasets for evaluating HCDP algorithm

Dataset Number of Classes Number of Features Number of Samples

Flame 2 2 240

Jain 2 2 373

Aggregation 7 2 788

Pathbased 3 2 300

Banknote 2 4 1372

6.1.2.2. Performance Evaluation and Discussion

In this subsection, the performance of the HCDP algorithm is evaluated.

Firstly, the impact of the granularity, 𝛾 on the partitioning results is evaluated. For

clarity, only the Aggregation dataset is used for this experiment. For offline HCDP algorithm,

𝛾 is set to be varied from 5 to 30, and the partitioning results are depicted in Figure 44.

Similarly, for the evolving HCDP algorithm, 𝛾 is set to be varied from 10 to 35, and the

partitioning results are depicted in Figure 45.

155

(a) 𝛾 = 5 (b) 𝛾 = 10

(c) 𝛾 = 15 (d) 𝛾 = 20

(e) 𝛾 = 25 (f) 𝛾 = 30

Figure 44. Partitioning results of the offline HCDP algorithm with different granularity.

156

(a) 𝛾 = 10 (b) 𝛾 = 15

(c) 𝛾 = 20 (d) 𝛾 = 25

(e) 𝛾 = 30 (f) 𝛾 = 35

Figure 45. Partitioning results of the evolving HCDP algorithm with different granularity.

One can see from Figure 44 and Figure 45 that, the higher granularity is chosen, the

more data clouds are obtained from the dataset, which results in a more detailed partitioning

157

results and vice versa. Therefore, by changing the granularity, one can partition the data with

the HCDP algorithm in a more flexible, straightforward way to meet different purposes.

Table 10. Performance evaluation and comparison of the HCDP algorithm

Dataset Algorithm NC PU CH DB texe Validity

Flame

OHCDP
a
 20 0.9833 183.4588 0.8912 0.21 Yes

EHCDP
b
 7 0.9792 221.5211 0.8467 0.13 Yes

MSC 9 0.9667 144.2422 0.8593 0.02 Yes

SUBC 10 0.9708 215.6852 0.8728 0.13 Yes

DPC 2 0.7875 133.6151 1.1338 1.31 Yes

DBSCAN 1 0.6375 NaN NaN 0.03 No

APC 11 0.9875 244.4211 0.8714 0.08 Yes

eClustering 4 0.7458 64.3348 1.1252 0.04 Yes

ELMC 1 0.6375 NaN NaN 0.10 No

NMMBC 3 0.9583 161.6478 0.9199 11.56 Yes

NMIBC 11 0.9917 126.7075 0.9187 0.85 Yes

CEDS 73 0.9875 153.002 0.8228 1.34 Yes

Jain

OHCDP 22 0.9893 713.0926 0.7170 0.26 Yes

EHCDP 6 0.8928 387.0134 0.9215 0.12 Yes

MSC 9 0.9491 503.9343 0.7229 0.03 Yes

SUBC 6 0.9625 595.4852 0.6817 0.12 Yes

DPC 2 0.8606 468.0620 0.8001 1.99 Yes

DBSCAN 4 0.7775 219.4335 0.6104 0.02 Yes

APC 12 1.0000 927.1470 0.7039 0.29 Yes

eClustering 3 0.7802 27.9497 1.2612 0.04 Yes

ELMC 1 0.7400 NaN NaN 0.10 No

NMMBC 4 0.9652 331.2766 0.7400 15.67 Yes

NMIBC 8 1.0000 636.1075 0.6751 1.18 Yes

CEDS 63 1.0000 880.0854 0.8231 1.69 Yes

Aggregation

OHCDP 24 0.9911 1353.5003 0.8873 0.52 Yes

EHCDP 15 0.9683 1112.8078 0.9829 0.20 Yes

MSC 10 0.9886 1297.9986 0.7401 0.03 Yes

SUBC 8 0.9315 1203.3351 0.6932 0.39 Yes

DPC 4 0.7703 753.8644 0.6519 1.57 No

DBSCAN 6 0.8591 727.9153 0.5780 0.05 No

APC 24 0.9949 1618.8342 0.8158 2.09 Yes

eClustering 4 0.5393 117.1214 0.9280 0.05 No

ELMC 2 0.3465 223.8349 1.1456 0.19 No

NMMBC 4 0.7234 434.3226 0.6965 33.93 No

NMIBC 8 0.9975 1251.0015 0.6767 4.83 Yes

CEDS 81 0.9327 244.2537 0.8979 3.05 Yes
 a

 Offline HCDP;
b
 Evolving HCDP.

158

Table 11. Performance evaluation and comparison of the HCDP algorithm (continue)

Dataset Algorithm NC PU CH DB texe Validity

Pathbased

OHCDP 15 0.9533 320.9985 0.7688 0.20 Yes

EHCDP 14 0.9067 266.0269 0.8399 0.14 Yes

MSC 9 0.8300 191.2394 0.5955 0.03 Yes

SUBC 8 0.9167 311.6385 0.7755 0.11 Yes

DPC 3 0.7333 355.5116 0.6312 1.22 Yes

DBSCAN 2 0.6767 66.4760 1.3332 0.01 No

APC 16 0.9567 394.1452 0.7246 0.13 Yes

eClustering 3 0.5433 88.0246 1.4032 0.03 Yes

ELMC 1 0.3667 NaN NaN 0.09 No

NMMBC 4 0.6933 187.0646 1.6354 15.49 Yes

NMIBC 10 0.8200 150.3195 0.5302 1.04 Yes

CEDS 79 0.9967 529.0332 0.6764 1.68 No

Banknote

OHCDP 79 0.9920 811.5949 0.9144 3.10 Yes

EHCDP 107 0.9927 929.2889 0.9868 4.16 Yes

MSC 24 0.9927 717.8110 0.7831 0.05 Yes

SUBC 14 0.9657 743.6576 1.0000 0.67 Yes

DPC 3 0.7413 1039.7004 0.9687 1.20 Yes

DBSCAN 48 0.9402 352.5907 0.7607 0.17 Yes

APC 30 0.9883 1114.1723 0.9229 4.54 Yes

eClustering 1 0.5554 NaN NaN 0.06 No

ELMC 4 0.6778 408.0301 0.8317 0.33 Yes

NMMBC 4 0.8462 690.5961 1.2327 62.77 Yes

NMIBC 20 0.9913 690.5714 0.7206 5.24 Yes

CEDS 120 0.8848 163.6131 1.4338 5.46 Yes

The quality of the partitioning results obtained by the HCDP algorithm on the five

benchmark datasets are evaluated in Table 10 and Table 11, where 𝛾 = 20 for the offline

version and 𝛾 = 25 for the evolving version. The performance comparison is also conducted

in Table 10 and Table 11 by using the 10 state-of-the-art approaches (SOM algorithm is not

used here) tabulated in Table 3.

From Table 10 and Table 11 one can see that the HCDP algorithm exhibits very good

performance on all the five benchmark datasets comparable with the best performed state-of-

the-art algorithms. Moreover, compared with other approaches, the operating mechanism of

the HCDP algorithm is simpler and more straightforward.

159

6.1.3. Autonomous Data Partitioning Algorithm

6.1.3.1. Benchmark Problems for Evaluation

The ADP algorithm is very effective in partitioning large-scale, high-dimensional,

complex datasets. Therefore, in this section, the following datasets are used for evaluation:

1) Cardiotocography dataset [236];

2) Pen-based handwritten digits recognition dataset [237];

3) Occupancy detection dataset [238];

4) MAGIC gamma telescope dataset [239];

5) Letter recognition dataset [240].

The details of the datasets are tabulated in Table 12.

Table 12. Details of benchmark datasets for evaluating ADP algorithm

Dataset Number of Classes
Number of

Features
Number of Samples

Cardio 3 22 2126

Pen-Based 10 16 10992

Occupancy
a
 2 5

8143 (training set)

2665 (testing set 1)

9752 (testing set 2)

MAGIC 2 10 19020

Letter 26 16 20000
 a

 The time stamps in the original dataset have been removed.

6.1.3.2. Performance Evaluation and Discussion

In this subsection, the performance of the ADP algorithm is evaluated. For clarity, only

the partitioning results of the ADP algorithm on Pen-based handwritten digits recognition

dataset and Letter recognition dataset are visualised in Figure 46.

One can see from Figure 46 that the ADP algorithm identified a number of prototypes

from the observed data samples and partitioned the datasets into shape-free data clouds with

the prototypes naturally by attracting data samples around them resembling Voronoi

tessellation [64]. However, as there is no clear separation between data samples of different

classes in the high-dimensional, large-scale datasets, it is very hard to directly evaluate the

quality of the partitioning results.

160

Therefore, the quality indexes of the partitioning results obtained by the ADP algorithm

as tabulated in Table 13 and Table 14 are used for further evaluation. The performance

comparison is also conducted by using the 11 state-of-the-art approaches tabulated in Table 3.

 (a) Pen-based - Offline ADP (b) Letter -Offline ADP

 (c) Pen-based - Evolving ADP (d) Letter - Evolving ADP

Figure 46. Partitioning results of the ADP algorithm on Pen-based handwritten digits

recognition dataset and Letter recognition dataset.

Table 13 and Table 14 clearly show that the ADP algorithm outperforms all other

comparative algorithms in both the partitioning quality and computational efficiency.

Moreover, the ADP algorithm is nonparametric and free from prior assumptions and user-

and problem-specific parameters.

161

Table 13. Performance evaluation and comparison of the ADP algorithm

Dataset Algorithm NC PU CH DB texe Validity

Cardio

OADP
a
 81 0.8580 262.8859 1.0962 0.35 Yes

EADP
b
 50 0.8561 315.6587 1.2816 0.36 Yes

MSC 1597 0.9958 189.5452 0.4150 2.61 No

SUBC 254 0.9147 140.7584 1.3239 0.65 No

SOM 144 0.8932 225.8973 1.1998 12.63 Yes

DPC 3 0.7813 63.5735 0.5081 2.71 Yes

DBSCAN 13 0.8053 35.8486 1.5204 0.43 Yes

APC 43 0.8627 371.6572 1.3036 6.76 Yes

eClustering 8 0.7949 269.3139 2.3566 0.24 Yes

ELMC 2 0.7992 213.0737 1.4233 1.10 No

NMMBC 4 0.7794 204.2315 1.0717 111.18 Yes

NMIBC 328 0.9008 63.5207 0.6740 31.28 Yes

CEDS 14 0.8015 152.9364 3.3800 23.61 Yes

Pen-Based

OADP 79 0.9326 1057.9771 1.3264 4.45 Yes

EADP 92 0.9342 967.5478 1.4241 1.53 Yes

MSC 8501 0.9999 154.0923 0.3652 169.14 No

SUBC 187 0.8454 382.6055 1.9995 100.09 Yes

SOM 144 0.9725 868.7807 1.4174 42.12 Yes

DPC 7 0.5993 2559.6071 1.3044 17.32 No

DBSCAN 38 0.6209 312.9177 1.4997 16.11 Yes

APC System Crashed No

eClustering 7 0.4394 1850.2452 2.094 1.49 No

ELMC 9 0.3092 634.1555 2.1794 20.67 No

NMMBC 41 0.9325 1010.81 2.2504 3727.38 Yes

NMIBC 4316 0.9968 46.6194 0.4969 2187.06 No

CEDS 1 0.1041 NaN NaN 2466.47 No

Occupancy

OADP 15 0.9783 34653.4935 0.6027 12.79 Yes

EADP 131 0.9869 21530.3617 0.8165 2.65 Yes

MSC 37 0.9772 5710.9905 2.3532 0.39 Yes

SUBC 9 0.9498 19878.6811 1.1872 30.81 Yes

SOM 144 0.9895 52050.4029 0.7450 41.58 Yes

DPC 2 0.7690 5495.9202 0.5548 30.49 Yes

DBSCAN 208 0.8514 134.4039 1.4789 190.85 Yes

APC System Crashed No

eClustering 32 0.9178 3830.0232 1.0221 2.07 Yes

ELMC 1 0.7689 NaN NaN 3.18 No

NMMBC 3 0.7691 4420.7364 0.5037 1062.11 Yes

NMIBC 15 0.9761 10922.5114 0.3310 372.08 Yes

CEDS 13 0.8484 1,555.1093 3.3988 42.22 Yes
 a

 Offline ADP;
b
 Evolving ADP.

162

Table 14. Performance evaluation and comparison of the ADP algorithm (continue)

Dataset Algorithm NC PU CH DB texe Validity

MAGIC

OADP 47 0.7289 1430.4657 1.3074 13.71 Yes

EADP 380 0.7899 643.6832 1.3068 2.65 Yes

MSC 1469 0.7871 14.0702 0.7969 46.61 Yes

SUBC 8 0.7145 5097.7399 1.3833 48.89 Yes

SOM 144 0.7804 1238.2763 1.4087 59.21 Yes

DPC 1 0.6483 NaN NaN 36.98 No

DBSCAN 15 0.6247 17.8876 0.8998 33.44 Yes

APC System Crashed No

eClustering 6 0.6484 2316.0290 2.2985 2.61 Yes

ELMC 25 0.7381 548.5010 1.5284 25.06 Yes

NMMBC 3 0.7345 1990.4386 1.8764 1560.68 Yes

NMIBC 1578 0.7459 19.4133 0.4046 6833.96 Yes

CEDS 54 0.7902 406.1227 4.4493 5999.13 Yes

Letter

OADP 235 0.6000 433.4874 1.4023 15.19 Yes

EADP 242 0.5825 414.5848 1.4839 2.92 Yes

MSC 7619 0.9760 61.9156 0.5979 256.07 No

SUBC 153 0.5820 470.8426 1.5301 175.37 Yes

SOM 144 0.5839 614.3846 1.5347 77.12 Yes

DPC 3 0.0573 515.3193 1.1643 45.69 No

DBSCAN 51 0.1584 94.7283 1.1522 33.85 Yes

APC System Crashed No

eClustering 5 0.1135 1590.4090 2.3557 4.23 No

ELMC 9 0.1091 585.5138 1.6504 15.38 No

NMMBC 46 0.4304 453.1501 2.5435 6316.60 Yes

NMIBC 14526 0.9975 72.2380 0.3169 6279.86 No

CEDS 43 0.2580 569.9774 2.0097 14865.00 Yes

6.1.4. Self-Organising Direction-Aware Data Partitioning Algorithm

6.1.4.1. Benchmark Problems for Evaluation

The SODA algorithm is very effective in partitioning very high-dimensional datasets.

Therefore, in this section, the following datasets are used for evaluation:

1) Wine dataset [241]

2) Steel plates faults dataset [242];

3) Dim1024 dataset [243];

4) Dim15 dataset [243];

5) Multiple features dataset [244].

The details of the datasets are tabulated in Table 15.

163

Table 15. Details of benchmark datasets for evaluating SODA algorithm

Dataset Number of Classes
Number of

Features
Number of Samples

Wine 3 13 178

Steel 7 27 1941

Dim1024 16 1024 1024

Dim15 9 15 10125

Multiple 10 649 2000

6.1.4.2. Performance Evaluation and Discussion

 (a) Wine - Offline SODA (b) Multiple features -Offline SODA

 (c) Wine - Evolving SODA (d) Multiple features - Evolving SODA

Figure 47. Partitioning results of the SODA algorithm on Wine dataset and Multiple features

dataset.

In this subsection, the performance of the SODA algorithm is evaluated. The data

partitioning results of the offline and evolving versions of the SODA algorithm based on the

Wine and Multiple features datasets are depicted in Figure 47, where one can see that, the

164

offline algorithm successfully identified a number of prototypes from the observed data

samples and partitioned the datasets into shape-free data clouds.

 (a) Priming offline result (b) Half of the data stream processed

 (c) Final result (d) The change of the number of the planes

Figure 48. The evaluation of the extension of the offline SODA algorithm for streaming data.

The Dim15 dataset is further used to demonstrate the performance of the streaming data

processing extension of the offline SODA algorithm. In the following example, one third of

the total data samples of the dataset are used as a static priming dataset for the offline SODA

algorithm to generate the initial partitioning results. The rest of the data samples are

transformed into data streams for the algorithm to continue to build upon the priming result.

The overall result is presented in Figure 48, and the change of the number of direction-aware

planes is also given.

165

Table 16. Performance evaluation and comparison of the SODA algorithm

Dataset Algorithm NC PU CH DB texe Validity

Wine

OSODA
a
 9 0.6966 400.2223 1.2734 0.83 Yes

ESODA
b
 16 0.7135 525.4880 1.9610 0.26 Yes

MSC 178 1.0000 NaN 0.0000 0.07 No

SUBC 178 1.0000 NaN 0.0000 1.76 No

SOM 144 0.9382 3058.57 0.3756 3.46 No

DPC 3 0.6461 321.3938 0.4782 2.49 Yes

DBSCAN 4 0.6685 139.8891 1.9340 0.03 Yes

APC 51 0.8090 45.9785 0.5056 0.56 No

eClustering 15 0.9157 31.8471 4.6352 0.06 Yes

ELMC 54 0.9719 7.6683 0.6812 0.70 No

NMMBC 1 0.3988 NaN NaN 9.50 No

NMIBC 4 0.6517 228.9969 0.3712 0.61 Yes

CEDS 178 1.0000 NaN 0.0000 0.08 No

Steel

OSODA 23 0.5095 2219.4197 0.9323 1.21 Yes

ESODA 23 0.5064 2784.0320 1.8149 1.62 Yes

MSC 1555 0.9948 24.7451 9.8535 2.92 No

SUBC 4 0.3988 494.1967 0.9100 4.37 No

SOM 144 0.5538 2016.5369 0.6329 9.83 No

DPC 3 0.3478 1224.2338 0.4226 2.40 No

DBSCAN 18 0.4858 57.8279 1.7112 0.51 Yes

APC 1477 0.8563 6.9878 0.4486 33.37 No

eClustering 16 0.4153 184.5048 1.9151 0.24 Yes

ELMC 7 0.3730 84.1426 1.2951 2.88 Yes

NMMBC 2 0.3472 21.9988 0.1474 96.48 No

NMIBC 9 0.3653 690.3357 0.3034 69.05 Yes

CEDS 2 0.3467 2.0546 18.6821 17.73 No

Dim1024

OSODA 16 1.0000 718469.7967 0.0132 1.15 Yes

ESODA 16 1.0000 718469.7967 0.0132 3.66 Yes

MSC 120 1.0000 126798.4888 0.4496 0.88 No

SUBC 16 1.0000 718469.7967 0.0132 16.32 Yes

SOM 144 1.0000 144252.3793 0.9370 159.77 No

DPC 14 0.8750 529.5497 0.6965 3.26 No

DBSCAN 16 0.8721 381.3919 0.9975 0.56 Yes

APC 1024 1.0000 NaN 0.0000 1.34 No

eClustering 8 0.3389 54.6740 2.7683 1.67 No

ELMC 1 0.0625 NaN NaN 0.49 No

NMMBC 3 0.1875 69.6915 3.1523 11827.25 No

NMIBC 1024 1.0000 NaN 0.0000 2080.58 No

CEDS 8 0.5000 139.4129 1.4281 52.41 No
 a

 Offline SODA;
b
 Evolving SODA;

c
 Infinity.

166

Table 17. Performance evaluation and comparison of the SODA algorithm (continue)

Dataset Algorithm NC PU CH DB texe Validity

Dim15

OSODA 9 1.0000 302436.3684 0.1177 2.99 Yes

ESODA 9 1.0000 302436.3684 0.1177 13.18 Yes

MSC 9 1.0000 302436.3684 0.1177 0.04 Yes

SUBC 9 1.0000 302436.3684 0.1177 25.15 Yes

SOM 144 1.0000 26172.4720 2.2328 39.30 Yes

DPC 4 0.4444 4533.2627 0.6696 13.65 No

DBSCAN 9 0.9586 20602.057 1.2317 15.92 Yes

APC System Crashed No

eClustering 16 0.5680 1528.6342 2.3851 1.26 Yes

ELMC 2 0.2222 3319.7039 0.6205 2.58 No

NMMBC 4 0.4444 2412.1759 1.4420 649.05 No

NMIBC 3 0.3333 4327.2420 0.5837 141.34 No

CEDS 76 0.6126 289.8403 2.2719 874.35 Yes

Multiple

OSODA 13 0.5860 1593.494 1.3216 6.89 Yes

ESODA 44 0.7095 1103.4226 1.4703 7.06 Yes

MSC 1994 1.0000 Inf
c
 0.0000 16.72 No

SUBC 1994 1.0000 Inf 0.0000 77.53 No

SOM 144 0.9230 695.3067 1.4205 197.11 No

DPC 6 0.5830 2307.1654 1.1992 3.85 No

DBSCAN 4 0.1915 15.5707 2.2674 0.89 No

APC 22 0.8025 2098.7458 1.4701 12.63 Yes

eClustering 19 0.5195 200.5162 3.8372 4.25 Yes

ELMC 1988 1.0000 7.0694 0.2836 99.50 No

NMMBC 1 0.1000 NaN NaN 5059.90 No

NMIBC 2000 1.0000 NaN 0.0000 2446.46 No

CEDS 2 0.1735 65.3322 4.0605 381.28 No

The quality indexes of the partitioning results obtained by the SODA algorithm (both

offline and evolving versions) are tabulated in Table 16 and Table 17 for further evaluation.

The performance comparison is also conducted by using the 11 state-of-the-art approaches

tabulated in Table 3.

It is clearly shown in Table 16 and Table 17 that the SODA algorithm outperforms all

other comparative algorithms in terms of partitioning quality on the five benchmark datasets.

Moreover, its computational efficiency is also very high, and does not decrease with the

increase of dimensionality.

6.2. Evaluation of the Supervised Learning Algorithms

The performance of the self-organising supervised machine learning algorithms

presented in chapter 4, namely

167

1) Autonomous learning multi-model (ALMMO) system;

2) Zero order autonomous learning multi-model (ALMMO-0) classifier;

3) Self-organising fuzzy logic (SOFL) classifier;

4) Autonomous anomaly detection (AAD) algorithm;

are evaluated based on benchmark datasets. Similarly, during the experiments, it is assumed

that there is no any prior knowledge about the datasets.

6.2.1. Autonomous Learning Multi-Model System

In this section, the performance of the ALMMO system is evaluated based on two types

of problems, namely 1) regression and 2) classification.

6.2.1.1. Benchmark Problems for Evaluation

A. Regression

The first regression problem for the evaluation is the QuantQuote Second Resolution

Market (QQSRM) database [245], which contains tick-by-tick data on all NASDAQ, NYSE,

and AMEX securities from 1998 to the present moment in time. The frequency of tick data

varies from one second to few minutes. This dataset contains 19144 data samples. In this

thesis, the following five attributes, namely

1) Time, 𝐾;

2) Open price, 𝑥𝐾,1;

3) High price, 𝑥𝐾,2;

4) Low price, 𝑥𝐾,3;

5) Close price, 𝑥𝐾,4;

are used for the prediction of the future values of high price 8, 12, 16, 20 and 24 steps ahead,

namely, 𝑦𝐾 = 𝑓(𝑥𝐾,1, 𝑥𝐾,2, 𝑥𝐾,3, 𝑥𝐾,4) and 𝑦𝐾 = 𝑥𝐾+8,2 , 𝑦𝐾 = 𝑥𝐾+12,2 , 𝑦𝐾 = 𝑥𝐾+16,2 , 𝑦𝐾 =

𝑥𝐾+20,2 and 𝑦𝐾 = 𝑥𝐾+24,2 , respectively. The data samples are standardized online before

prediction.

The second regression problem is based on a more frequently used real dataset, the

Standard and Poor (S&P) index data [246]. This dataset contains 14893 data samples

acquired from January 3, 1950 to March 12, 2009. Other prediction algorithms frequently use

this dataset as a benchmark for performance because of the nonlinear, erratic and time-variant

168

behaviour of the data. The input and output relationship of the system is governed by the

following equation: 𝑦𝐾 = 𝑓(𝑥𝐾−4, 𝑥𝐾−3, 𝑥𝐾−2, 𝑥𝐾−1, 𝑥𝐾) and 𝑦𝐾 = 𝑥𝐾+1.

B. Classification

Two popular benchmark problems for binary classification, namely, PIMA [247] and

occupancy detection [238] datasets, are used for evaluating the performance of the ALMMO

system. PIMA dataset consists of 768 data samples, each of which has eight attributes and

one label. The details of the occupancy detection dataset have been given in Table 11. The

occupancy detection dataset contains one training set (8143 data samples) and two testing

sets (2665 and 9752 data samples in each) [238].

6.2.1.2. Performance Evaluation and Discussion

A. Regression

 (a) Overall (b) Zoom-in period 1

 (c) Zoom-in period 2 (d) Zoom-in period 3

Figure 49. Prediction result for the QQSRM problem.

169

Firstly, the QQSRM dataset is considered. The current data sample,

𝒙𝐾 = [𝑥𝐾,1, 𝑥𝐾,2, 𝑥𝐾,3, 𝑥𝐾,4]
𝑇
 is used to predict the High price 8 steps ahead 𝑥𝐾+8,2, namely,

 𝑥𝐾+8,2 = 𝑓(𝑥𝐾,1, 𝑥𝐾,2, 𝑥𝐾,3, 𝑥𝐾,4). The overall prediction result is presented in Figure 49(a)

and three zoom-in periods (circulated areas in Figure 49(a)) are depicted in Figure 49 (b)-(d).

The evolution of number of data clouds/fuzzy rules is depicted in Figure 50. As one can see

from Figure 49, there are many abnormal data samples and random fluctuations in the data

stream. At the beginning and the end of this data stream, large fluctuations and abnormal data

frequently appear, while in the middle, the data pattern changes relatively smoothly with only

a small number of abnormal data. The corresponding changes of the system structure can also

be seen in Figure 50. Thus, one can see that, the ALMMO system is capable to successfully

follow the non-stationary data pattern and exhibits very accurate prediction results and

demonstrates a strong evolving ability.

Figure 50. The evolution of number of data clouds/fuzzy rules.

The AnYa type fuzzy rules of the ALMMO system in the final time instance are

presented in Table 18 as the illustrative examples.

170

Table 18. Example of fuzzy rules identified from the learning progress

Rule# Detailed Expression

1 𝐼𝐹

[

𝑂𝑝𝑒𝑛 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,1~1409050

𝐻𝑖𝑔ℎ 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,2~1409073

𝐿𝑜𝑤 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,3~1409027

𝐶𝑙𝑜𝑠𝑒 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,4~1409053]

𝑇𝐻𝐸𝑁 (

𝑦𝐾 = 0.0187
+0.0916𝑥𝐾,1 + 0.8096𝑥𝐾,2

+0.2933𝑥𝐾,3 + 0.7554𝑥𝐾,4

)

2 𝐼𝐹

[

𝑂𝑝𝑒𝑛 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,1~1409639

𝐻𝑖𝑔ℎ 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,2~1409659

𝐿𝑜𝑤 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,3~1409617

𝐶𝑙𝑜𝑠𝑒 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,4~1409648]

𝑇𝐻𝐸𝑁 (

𝑦𝐾 = 0.0505
+0.6342𝑥𝐾,1 + 0.6156𝑥𝐾,2

+0.4011𝑥𝐾,3 + 0.1668𝑥𝐾,4

)

3 𝐼𝐹

[

𝑂𝑝𝑒𝑛 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,1~1408586

𝐻𝑖𝑔ℎ 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,2~1408595

𝐿𝑜𝑤 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,3~1408575

𝐶𝑙𝑜𝑠𝑒 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,4~1408582]

𝑇𝐻𝐸𝑁 (

𝑦𝐾 = 0.0426
+0.6934𝑥𝐾,1 + 0.4999𝑥𝐾,2

+0.4721𝑥𝐾,3 + 0.1119𝑥𝐾,4

)

4 𝐼𝐹

[

𝑂𝑝𝑒𝑛 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,1~1404596

𝐻𝑖𝑔ℎ 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,2~1404596

𝐿𝑜𝑤 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,3~1404596

𝐶𝑙𝑜𝑠𝑒 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,4~1404596]

𝑇𝐻𝐸𝑁 (

𝑦𝐾 = 0.3734
+0.1978𝑥𝐾,1 + 0.4681𝑥𝐾,2

+0.0169𝑥𝐾,3 + 0.1065𝑥𝐾,4

)

5 𝐼𝐹

[

𝑂𝑝𝑒𝑛 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,1~1407657

𝐻𝑖𝑔ℎ 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,2~1407656

𝐿𝑜𝑤 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,3~1407657

𝐶𝑙𝑜𝑠𝑒 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,4~1407656]

𝑇𝐻𝐸𝑁 (

𝑦𝐾 = 0.3960
+0.1474𝑥𝐾,1 + 0.4800𝑥𝐾,2

−0.0060𝑥𝐾,3 + 0.1204𝑥𝐾,4

)

6 𝐼𝐹

[

𝑂𝑝𝑒𝑛 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,1~1407442

𝐻𝑖𝑔ℎ 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,2~1407442

𝐿𝑜𝑤 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,3~1407442

𝐶𝑙𝑜𝑠𝑒 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,4~1407442]

𝑇𝐻𝐸𝑁 (

𝑦𝐾 = 0.4063
+0.1198𝑥𝐾,1 + 0.4500𝑥𝐾,2

−0.0018𝑥𝐾,3 + 0.1031𝑥𝐾,4

)

7 𝐼𝐹

[

𝑂𝑝𝑒𝑛 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,1~1408443

𝐻𝑖𝑔ℎ 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,2~1408443

𝐿𝑜𝑤 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,3~1402795

𝐶𝑙𝑜𝑠𝑒 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,4~1402795]

𝑇𝐻𝐸𝑁 (

𝑦𝐾 = 0.4692
+0.1045𝑥𝐾,1 + 0.4195𝑥𝐾,2

−0.0190𝑥𝐾,3 + 0.0837𝑥𝐾,4

)

8 𝐼𝐹

[

𝑂𝑝𝑒𝑛 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,1~1402769

𝐻𝑖𝑔ℎ 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,2~1402768

𝐿𝑜𝑤 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,3~1402769

𝐶𝑙𝑜𝑠𝑒 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,4~1402769]

𝑇𝐻𝐸𝑁 (

𝑦𝐾 = 0.5284
+0.1856𝑥𝐾,1 + 0.4638𝑥𝐾,2

−0.1411𝑥𝐾,3 − 0.0306𝑥𝐾,4

)

9 𝐼𝐹

[

𝑂𝑝𝑒𝑛 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,1~1402744

𝐻𝑖𝑔ℎ 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,2~1402744

𝐿𝑜𝑤 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,3~1402744

𝐶𝑙𝑜𝑠𝑒 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,4~1402744]

𝑇𝐻𝐸𝑁 (

𝑦𝐾 = 0.5753
+0.0985𝑥𝐾,1 + 0.4011𝑥𝐾,2

−0.0503𝑥𝐾,3 + 0.0624𝑥𝐾,4

)

10 𝐼𝐹

[

𝑂𝑝𝑒𝑛 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,1~1402732

𝐻𝑖𝑔ℎ 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,2~1402732

𝐿𝑜𝑤 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,3~1402732

𝐶𝑙𝑜𝑠𝑒 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,4~1402732]

𝑇𝐻𝐸𝑁 (

𝑦𝐾 = 0.5302
+0.1419𝑥𝐾,1 + 0.4569𝑥𝐾,2

−0.0128𝑥𝐾,3 + 0.1007𝑥𝐾,4

)

171

 To study the performance of the ALMMO system for regression, more experiments

have been done and tabulated in Table 19. Here, the following state-of-the-art algorithms are

used for comparison:

1) AnYa FRB system [60];

2) Fuzzily connected multi-model systems (FCMMS) [248];

3) Least square linear regression (LSLR) algorithm [249], which is widely used in the

fields of finance and economy [183];

4) Sliding window least square linear regression (SWLSLR) algorithm [250], which is

also widely used in the fields of finance and economy [183];

5) Evolving Takagi-Sugeno (ETS) algorithm [11];

6) Dynamic evolving neural-fuzzy inference system (DENFIS) [188];

7) Sequential adaptive fuzzy inference system (SAFIS) [251].

The width of the sliding window for LSLR algorithm is 200. The following three

measures: the non-dimensional error index (NDEI) [252], the number of rules (NR) and

execution time (texe , in seconds) are considered to evaluate the performance. In this

numerical example, the data samples are standardized online. The detailed expression of

NDEI is given in equation (6.2):

NDEI = √
∑ (𝑡𝑖−𝑦𝑖)

2𝐾
𝑖=1

𝐾𝜎𝑡
2 , (6.2)

where 𝑦𝑖 is estimated value as the output of the system; 𝑡𝑖 is the true value and 𝜎𝑡 is the

standard deviation of the true value.

It is clear from Table 19 that the ALMMO system always exhibits a better performance

than its competitors. In addition, the ALMMO system is also faster than the ETS, OLSLR,

DENFIS and SAFIS predictors and it can also work on a sample by sample (does not need

sliding window) basis like the ETS, AnYa and FCMMS.

For a further evaluation, the S&P dataset is considered. The following algorithms:

1) Evolving fuzzy neural networks (EFUNN) [253],

2) SeroFAM [254];

3) Simpl_eTS [255];

172

are additionally used for comparison. The comparative results are tabulated in Table 20. The

prediction result of the S&P index dataset using ALMMO system is presented in Figure 51.

Table 19. Performance demonstration and comparison on QQSRM problem

Input and output
Performance

Algorithm NDEI NR texe

Input: 𝒙𝐾

Output: 𝑥𝐾+8,2

ALMMO 0.135 10 4.63

FCMMS 0.143 4 7.77

AnYa 0.164 3 3.69

OLSLR 0.169 13.32

SWLSLR 0.146 1.14

ETS 0.183 6 36.52

DENFIS 1.598 12 19.4

SAFIS 0.554 20 23.16

Input: 𝒙𝐾

Output: 𝑥𝐾+12,2

ALMMO 0.152 10 4.40

FCMMS 0.162 4 7.75

AnYa 0.197 3 3.66

OLSLR 0.192 12.86

SWLSLR 0.164 1.10

ETS 0.234 8 45.71

DENFIS 1.606 12 19.40

SAFIS 1.007 17 22.59

Input: 𝒙𝐾

Output: 𝑥𝐾+16,2

ALMMO 0.168 10 4.42

FCMMS 0.175 4 7.60

AnYa 0.185 3 3.69

OLSLR 0.204 12.71

SWLSLR 0.180 1.11

ETS 0.191 8 48.85

DENFIS 1.597 12 19.7

SAFIS 0.964 18 22.54

Input: 𝒙𝐾

Output: 𝑥𝐾+20,2

ALMMO 0.178 10 4.43

FCMMS 0.189 4 7.84

AnYa 0.195 3 3.67

OLSLR 0.219 12.69

SWLSLR 0.199 1.09

ETS 0.200 8 48.60

DENFIS 1.562 12 19.9

SAFIS 1.042 11 16.73

Input: 𝒙𝐾

Output: 𝑥𝐾+24,2

ALMMO 0.192 10 4.68

FCMMS 0.204 4 7.78

AnYa 0.231 3 3.66

OLSLR 0.242 12.80

SWLSLR 0.218 1.10

ETS 0.271 7 45.71

DENFIS 1.582 12 20.20

SAFIS 0.779 14 22.55

173

Table 20. Performance demonstration and comparison on S&P problem

Algorithm NDEI NR

ALMMo 0.013 8

FCMMS 0.014 5

AnYa 0.018 11

OLSLR 0.020

SWLSLR 0.018

ETS 0.015 14

EFUNN 0.154 114.3

DENFIS 0.020 6

SAFIS 0.209 6

SeroFAM 0.027 29

FCMMS 0.045 7

 (a) Prediction results (b) Zoom-in area (circle in (a))

Figure 51. Prediction result for the S&P problem.

As one can see from Table 20, for the S&P index data, the accuracy of the ALMMO

system is 0.013, which ranks the first place from the 11 algorithms studied. It is also worth to

notice that the S&P index dataset is, in fact, more smooth if compared with the QQSRM

database [245]. Thus, one can conclude that the ALMMO system outperforms other

prediction algorithms, especially in a more complicated situation. In addition, it is

autonomously self-developing and does not require any user- or problem- specific parameters

or prior assumptions to be made.

174

B. Classification

For the binary classification problems, the class of an unlabelled data sample, 𝒙 can be

determined by the output of the ALMMO system as:

𝑦̂(𝒙) = Round(𝑦(𝒙)), (6.3)

where Round(𝑦(𝒙)) denotes the operation of rolling 𝑦(𝒙) to the nearest integer.

The performance of the ALMMO system is tested on the PIMA [247] and occupancy

detection [238] datasets as mentioned in the previous subsection. The most popular online

and offline classification approaches are involved for further comparison. The ALMMO

system is compared with the following well-known approaches:

1) Self-organizing map (SOM) with “winner takes all” principle [110] with the net size

9 × 9;

2) Learning vector quantization (LVQ) [109] with a hidden layer of size 32;

3) Back-propagation neural network (BPNN) with three hidden layers of size 16;

4) Naïve Bayes classifier;

5) SVM with Gaussian kernel function (SVM-G) [142];

6) SVM with linear kernel function (SVM-L) [142];

7) FLEXFIS-Class [256];

8) Dynamic evolving neural-fuzzy inference system (DENFIS) [188];

9) Peephole long short-term memory (LSTM) [67], [257] with a hidden layer of size 32;

10) AnYa FRB classifier [60];

11) eClass0 [160];

12) Simpl_eClass0 [162];

13) Fuzzily connected multi-model systems (FCMMS) [248].

Note that among the comparative algorithms listed above, FLEXFIS-Class, DENFIS,

AnYa classifier, eClass0, Simpl_eClass0 and FCMMS are the multi-model approaches. The

ALMMO system as well as AnYa classifier, eClass0, Simpl_eClass0 and FCMS are evolving

approaches which can start classifying “from scratch” from the very first data sample and

self-evolve with the data stream, while the other classifiers require pre-training. In contrast

175

with the original AnYa FRB classifier, the ALMMO system uses an advanced, nonparametric

mechanism for data cloud/fuzzy rule identification as well as the unimodal density-based

membership functions.

For the PIMA dataset, 90% of the data samples are selected randomly for training and

the rest are used for validation. For a fair comparison, all classifiers are pre-trained and the

involved evolving approaches will stop learning after the training process. 30 Monto Carlo

experiments are conducted; the means and standard deviations of the accuracy rates of the

classification results are tabulated in Table 21.

Table 21. Overall classification performance-offline scenario

Algorithm

Multi-

model

(Yes/

no)

On-

line

(Yes

/no)

Can start

from

“scratch”

?

Accuracy

Pima

Occupancy

Detection-

Testing set 1

Occupancy

Detection-

Testing set 2

Mean STD
a
 Mean STD Mean STD

ALMMO Yes Yes Yes 0.777 0.040 0.979 0.001 0.992 0.000

SOM No No 0.728 0.046 0.974 0.007 0.946 0.010

LVQ No No 0.685 0.041 0.945 0.002 0.870 0.001

BPNN No No 0.763 0.043 0.930 0.039 0.906 0.052

Naïve Bayes No No 0.743 0.048 0.978 0.000 0.985 0.000

SVM-G No No 0.737 0.041 0.976 0.001 0.960 0.000

SVM-L No No 0.758 0.042 0.979 0.000 0.990 0.001

FLEXFIS Yes Yes No 0.575 0.144 0.835 0.170 0.789 0.180

DENFIS Yes Yes No 0.725 0.042 0.915 0.042 0.873 0.049

LSTM No No 0.655 0.053 0.862 0.103 0.897 0.048

AnYa Yes Yes Yes 0.684 0.052 0.802 0.115 0.841 0.060

eClass0 Yes Yes Yes 0.602 0.078 0.948 0.020 0.871 0.019

Simpl_eClass0 Yes Yes Yes 0.633 0.085 0.935 0.050 0.939 0.029

FCMMS Yes Yes Yes 0.533 0.111 0.896 0.091 0.833 0.072
a
 Standard deviation.

The confusion matrixes of the classification results obtained by selecting the first 90%

(691 samples) of the dataset for training and using the rest of the data samples (77 samples)

for validation are presented in Table 22.

For the occupancy detection dataset, the classifiers are firstly trained with the training

set, and classification is conducted on the two testing sets separately with the trained

classifiers in an offline scenario. 30 Monto Carlo experiments are conducted by randomly

scrambling the order of the training samples and the overall accuracies of the classification

results are presented in Table 21. The average true positive rates and true negative rates of the

176

classification results on the two testing sets obtained with the classifiers trained by the

original training set are tabulated in Table 23.

Table 22. Confusion matrices and the classification accuracy on PIMA dataset

Algorithm
Actual/

Classification
Negative Positive Accuracy

ALMMO
Negative 43 samples 3 samples

0.792
Positive 13 samples 18 samples

SOM
Negative 37 samples 9 samples

0.714
Positive 13 samples 18 samples

LVQ
Negative 39 samples 7 samples

0.597
Positive 24 samples 7 samples

BPNN
Negative 39 samples 7 samples

0.792
Positive 9 samples 22 samples

Naïve

Bayes

Negative 38 samples 8 samples
0.766

Positive 10 samples 21 samples

SVM-G
Negative 36 samples 10samples

0.779
Positive 7 samples 24 samples

SVM-L
Negative 39 samples 7 samples

0.792
Positive 9 samples 22 samples

FLEXFIS
Negative 46 samples 0 samples

0.571
Positive 31 samples 0 samples

DENFIS
Negative 39 samples 7 samples

0.727
Positive 14 samples 17 samples

LSTM
Negative 44 samples 2 samples

0.584
Positive 30 samples 1 samples

AnYa
Negative 36 samples 10 samples 0.714

 Positive 12 samples 19 samples

eClass0
Negative 24 samples 22 samples 0.597

 Positive 9 samples 22 samples

Simpl_

eClass0

Negative 34 samples 12 samples
0.649

Positive 15 samples 16 samples

FCMMS
Negative 28 samples 18 samples

0.546
Positive 17 samples 14 samples

A comparison in an online scenario is also conducted between the fully evolving

algorithms that can start “from scratch”, namely the ALMMO system, AnYa FRB classifier,

eClass0, Simpl_eClass0 and FCMMS, by considering the PIMA dataset as a data stream. In

this experiment, the order of the data samples in the stream is randomly determined, and the

algorithms start classifying from the first data sample and keep updating the system structure

along with the arrival of new data samples. Similarly, the whole occupancy detection dataset

is considered as a data stream, and 30 Monto Carlo experiments are conducted by randomly

scrambling the order of the data samples to evaluate the performance of the five evolving

177

algorithms in an online scenario. The average results of the two experiments are reported in

Table 24.

Table 23. The average true positive rates and true negative rates of the classification results

on occupancy detection dataset

Algorithm

Occupancy Detection-

Testing set 1

Occupancy Detection-

Testing set 2

True

Negative

Rate

True

Positive

Rate

True

Negative

Rate

True

Positive

Rate

ALMMO 0.968 0.998 0.992 0.994

SOM 0.965 0.991 0.945 0.943

LVQ 0.932 0.965 0.847 0.991

BPNN 0.971 0.883 0.918 0.866

Naïve Bayes 0.968 0.995 0.982 0.993

SVM-G 0.965 0.996 0.950 0.993

SVM-L 0.967 0.998 0.990 0.992

FLEXFIS 0.810 0.826 0.870 0.745

DENFIS 0.969 0.790 0.936 0.699

LSTM 0.967 0.770 0.947 0.750

AnYa 0.985 0.482 0.967 0.348

eClass0 0.931 0.972 0.845 0.973

Simpl_eClass0 0.960 0.911 0.966 0.862

FCMMS 0.919 0.895 0.828 0.909

Table 24. Overall classification performance-online scenario

Algorithm

Accuracy

Pima
 Occupancy

Detection

ALMMO 0.751 0.986

AnYa 0.666 0.949

eClass0 0.570 0.931

Simpl_eClass0 0.584 0.968

FCMMS 0.545 0.924

From Table 21 and Table 24 one can see that, the ALMMO system provides highly

accurate classification results in the numerical examples in both offline and online scenarios

compared with its competitors. It is worth to be noticed that, the ALMMO system is an online

classifier and can work “from scratch”. The most important point is that the ALMMO system

is entirely data driven and is free from unrealistic assumptions, restrictions or problem- or

user- specific prior knowledge.

178

6.2.2. Zero Order Autonomous Learning Multi-Model Classifier

6.2.2.1. Benchmark Problems for Evaluation

In this section, the performance of the ALMMO-0 classifier is evaluated based on the

following popular benchmark datasets:

1) Banknote authentication dataset [235];

2) Monk’s problem dataset [258];

3) Tic-Tac-Toe endgame dataset [259];

4) CNAE-9 dataset [260].

The details of the banknote authentication dataset have been given in Table 9, the details

of the other three benchmark datasets are given in Table 25.

Table 25. Details of benchmark datasets for evaluating ALMMO-0 classifier

Dataset Number of Classes Number of Features Number of Samples

Monk’s 2 6
169 (training set)

432 (testing set)

Tic-Tac-Toe 2 9 958

CNAE-9 2 856 1080

During the numerical experiments, for the banknote authentication, Tic-Tac-Toe

endgame and CNAE-9 datasets, 80% of the data samples of each class are randomly selected

out for training and the rest is used for validation.

6.2.2.2. Performance Evaluation and Discussion

Firstly, the confusion matrix of the classification result of the ALMMO-0 classifier on

the Monk’s problem is given in Table 25. In this section, the performance of the classifier is

compared with the following well-known classification algorithms:

1) SVM classifier with Gaussian kernel [142];

2) Naïve Bayes classifier [3];

3) KNN classifier [261];

4) Decision tree (DT) classifier [262];

179

and the confusion matrices of the classification results obtained by the four algorithms are

also tabulated in the same table.

Table 26. Confusion matrices of classification results on Monk’s problem

Algorithm Actual
Classification

0 1

ALMMO-0

0
82.07%

238 samples

17.93%

52 samples

1
15.49%

22 samples

84.51%

120 samples

SVM

0
85.17%

247 samples

14.83%

43 samples

1
47.89%

68 samples

52.11%

74 samples

Naïve Bayes

0
90.34%

262 samples

9.66%

28 samples

1
88.73%

126 samples

11.27%

16 samples

KNN

0
82.07%

238 samples

17.93%

52 samples

1
26.06%

37 samples

73.94%

105 samples

DT

0
71.03%

206 samples

28.97%

84 samples

1
35.21%

50 samples

64.79%

92 samples

For a further evaluation and comparison between the five classifiers, the overall

accuracies of the classification results on the four benchmark datasets and the time

consumptions for training are depicted in Figure 52 and Figure 53, respectively. Due to the

very high dimensionality of the CNAE-9 dataset, the Naïve Bayes classifier failed to give any

valid result on this one.

From the four numerical examples above one can see that the SVM classifier with

Gaussian kernel [142] requires more time for training and it is less effective in handling high

dimensional problems. The naïve Bayes classifier [3] is the fastest one due to its simplicity

and its performance is quite stable, though not high. The KNN classifier [261] is also very

efficient and its classification accuracies in some problems are comparable to the ALMMO-0

classifier, but it is not effective in handling high-dimensional datasets with complex structure.

In addition, its interpretability is not high because it does not reveal an internal structure. The

180

classification accuracy of decision tree classifier [262] is relatively low and it is less efficient

in handling lower dimensional problems.

 (a) Banknote authentication (b) Monk’s problem

 (c) Tic-Tac-Toe endgame (d) CNAE-9

Figure 52. Overall classification accuracy on the four benchmark datasets.

In contrast, the ALMMO-0 classifier can exhibit excellent performance in all the four

real benchmark problems and, at the same time, still keeps its high computational efficiency.

It is fully autonomous and offers good interpretability. Moreover, it is evolving in nature.

181

 (a) Banknote authentication (b) Monk’s problem

 (c) Tic-Tac-Toe endgame (d) CNAE-9

Figure 53. Overall time consumption for training on the four benchmark datasets.

6.2.3. Self-Organising Fuzzy Logic Classifier

6.2.3.1. Benchmark Problems for Evaluation

In this section, the performance of the SOFL classifier is evaluated based on the

following challenging benchmark datasets:

1) Occupancy detection dataset[238];

2) Optical recognition of handwritten digits dataset [263];

3) Multiple features dataset [244];

4) Letter recognition dataset [240].

The details of the occupancy detection and letter recognition datasets have been given in

Table 11 and the details of the multiple features dataset can be found in Table 14. The optical

182

recognition dataset consists of one training set with 3823 data samples and one testing set

with 1797 data samples [263]. There are 10 classes within the dataset, and each data sample

has 64 attributes.

6.2.3.2. Performance Evaluation and Discussion

Firstly, the influence of different levels of granularity on the classification results of the

SOFL approach is studied, and the occupancy detection and optical recognition datasets are

used in this experiment. In this example, the offline scenario is considered only and the level

of granularity, 𝐺 is varied from 1 to 12. The classification results are tabulated in Table 27

and the performance is measured in terms of classification accuracy (Acc), the number of

identified prototypes, denoted by P (P = ∑ 𝑃𝑖
𝐶
𝑖=1) and the training time consumption in

seconds, denoted by texe . Here, the Mahalanobis distance, Euclidean distance and cosine

dissimilarity are used.

In general, Euclidean distance is the most widely used distance metric, and its

effectiveness and validity as the distance measure, in most cases, are guaranteed [36]. If the

data generation model follows a Gaussian distribution or some similar distributions,

Mahalanobis distance would be a good choice. While in high dimensional problems, cosine

dissimilarity is free from the “curse of dimensionality” [264], [265] and thus, is more

effective and more frequently used.

However, for the optical recognition dataset, as the co-variance matrix of the data is not

always positive definite, as a result, only the results obtained using the Euclidean distance

and cosine dissimilarity are considered. The results tabulated are the average of 10 Monte

Carlo experiments by randomly descrambling the order of the training samples.

From Table 27 one can see that, in general, the higher level of granularity is chosen, the

higher accuracy the SOFL classifier can exhibit during classification, but the more prototypes

the classifier identifies, which can lower down the computation- and memory-efficiency. It is

worth to notice that the proposed approach produced the same result in 10 Monte Carlo

experiments, which demonstrates that the SOFL classifier is invariant to the changes in the

order of data samples during the offline training.

One may also notice from Table 27 that the type of distance/dissimilarity measure used

also influences the performance of the proposed approach. As the SOFL classifier

accommodates various types of distance/dissimilarity measures, one can use the current

knowledge of the problem domain to choose the appropriate distance measure.

183

Table 27. Influence of granularity on classification performance

Dataset Distance
Meas

ures
𝐺

1 2 3 4 5 6

Occupan

cy

Mahalanobis

Acc 0.8942 0.8920 0.9038 0.9426 0.9494 0.9532

P 14 31 55 116 217 339

texe 2.80 2.97 3.08 3.11 3.16 3.14

Euclidean

Acc 0.8107 0.8403 0.8618 0.9112 0.9382 0.9513

P 16 46 77 137 201 281

texe 2.15 2.31 2.47 2.55 2.59 2.65

Cosine

Acc 0.8109 0.8161 0.8877 0.9261 0.9481 0.9519

P 12 43 72 108 167 217

texe 2.13 2.31 2.55 2.56 2.63 2.72

Optical

Euclidean

Acc 0.9160 0.9421 0.9499 0.9716 0.9766 0.9761

P 25 48 105 214 409 643

texe 0.09 0.10 0.10 0.09 0.10 0.10

Cosine

Acc 0.9087 0.9421 0.9588 0.9649 0.9699 0.9733

P 25 50 116 238 417 655

texe 0.09 0.10 0.09 0.09 0.10 0.10

Dataset Distance
Meas

ures

L

7 8 9 10 11 12

Occupan

cy

Mahalanobis

Acc 0.9539 0.9543 0.9543 0.9543 0.9543 0.9543

P 549 786 1029 1279 1433 1512

texe 3.33 3.16 3.26 3.29 3.36 3.32

Euclidean

Acc 0.9564 0.9579 0.9584 0.9588 0.9588 0.9588

P 395 525 663 783 939 1094

texe 2.72 2.68 2.69 2.68 2.74 2.70

Cosine

Acc 0.9558 0.9557 0.9559 0.9559 0.9559 0.9559

P 288 388 507 650 825 1007

texe 2.78 2.68 2.75 2.70 2.79 2.77

Optical

Euclidean

Acc 0.9811 0.9833 0.9833 0.9833 0.9839 0.9839

P 840 950 1012 1034 1046 1048

texe 0.10 0.10 0.10 0.11 0.11 0.11

Cosine

Acc 0.9755 0.9761 0.9761 0.9761 0.9761 0.9761

P 843 960 1013 1039 1039 1046

texe 0.11 0.11 0.11 0.11 0.11 0.11

Secondly, the classification performance of the SOFL classifier with different amounts

of offline training samples is investigated. In this example, the letter recognition and multiple

features datasets are used. As the two datasets are both highly complex, the 12
th

 level of

granularity is chosen (𝐺 = 12) to ensure the SOFL classifier can learn sufficient details. The

percentage of offline training samples is changed from 5% to 50% and the classification is

conducted on the rest 50% of the data in an offline scenario. The results are tabulated in

Table 28, which are the averages of 10 Monte Carlo experiments by randomly selecting the

184

training set and testing set. The corresponding average training time consumption (in

seconds) is depicted in Figure 54.

 (a) Letter recognition (b) Multiple features

Figure 54. The average training time consumption with different amounts of training samples.

Table 28. Classification performance (in accuracy) with different amount of data for offline

training

Dataset Distance
Percentage for Offline Training

10% 15% 20% 25% 30% 35% 40% 45% 50%

Letter

Mahanobis
0.83

75

0.86

89

0.88

78

0.89

83

0.90

79

0.91

62

0.92

17

0.92

41

0.92

65

Euclidean
0.79

24

0.84

15

0.87

03

0.88

63

0.90

13

0.90

82

0.91

85

0.92

44

0.92

98

Cosine
0.80

13

0.84

80

0.87

31

0.89

04

0.90

26

0.91

09

0.91

97

0.92

53

0.92

96

Multiple

Euclidean
0.84

15

0.86

64

0.88

54

0.89

24

0.90

26

0.90

76

0.91

44

0.92

03

0.92

67

Cosine
0.87

03

0.88

95

0.90

25

0.91

25

0.91

94

0.92

63

0.92

69

0.92

76

0.93

66

In order to investigate the performance of the SOFL classifier in an online scenario, an

extra experiment is conducted on the two datasets. The SOFL classifier is firstly trained with

15% of the data samples in an offline scenario, and then, is trained in an online scenario by

using different amounts (from 5% to 35%) of data samples on a sample-by-sample basis. The

classification accuracy of SOFL classifier is evaluated on the rest 50% of data samples. The

average performance is tabulated in Table 29 after 10 Monte Carlo experiments by randomly

selecting the offline training set, online training set and testing set. The corresponding

average time consumption per data sample (in millisecond) during the online training process

185

is given in Figure 55. In both Table 28 and Table 29, the classification results on the multiple

feature dataset using the Mahalanobis distance is not given for the same reason mentioned at

the beginning of this subsection.

 (a) Letter recognition (b) Multiple features

Figure 55. The average training time consumption per sample during the online training.

Table 29. Classification performance (in accuracy) with different amount of data for online

training following the offline training with 15% of the data

Dataset Distance
Percentage for Online Training

5% 10% 15% 20% 25% 30% 35%

Letter

Mahanobis
0.85

94

0.88

36

0.90

12

0.91

25

0.91

99

0.92

79

0.93

27

Euclidean
0.87

38

0.89

10

0.90

62

0.91

62

0.92

31

0.93

03

0.93

52

Cosine
0.87

58

0.89

31

0.90

70

0.91

58

0.92

33

0.92

93

0.93

50

Multiple

Euclidean
0.88

27

0.90

97

0.91

66

0.92

05

0.92

72

0.93

40

0.93

52

Cosine
0.90

62

0.92

58

0.93

35

0.93

16

0.93

18

0.93

99

0.94

09

From Table 28 one can conclude that the more data samples the SOFL classifier is

provided with during the offline training stage, the better performance it can exhibit in the

classification stage. Table 29 shows that the performance of the SOFL classifier can be

further improved through the online update with more training data samples after the offline

training, which is one of the very strong advantages of the proposed approach. In real

applications, new data is more often coming in the form of data streams, which may exhibit

shifts and/or drifts in the data pattern [117]. With the ability of self-evolving online learning,

186

the SOFL classifier is able to continuously follow the changing data pattern without full

retraining, which largely enhances the efficiency and saves the computational resources.

Figure 56 demonstrates the very high computational efficiency (less than 0.3 millisecond per

data sample) for the SOFL classifier to self-evolve recursively on a sample-by-sample basis.

To further evaluate the performance of the SOFL classifier with 𝐺 = 12, a number of

state-of-the-art approaches are involved for comparison in an offline scenario based on the

four benchmark datasets listed in subsection 6.2.3.1:

1) SVM classifier [142];

2) KNN classifier [132];

3) DT classifier [262];

4) SOM classifier [110];

6) DENFIS classifier [188];

7) eClass-0 classifier [160];

8) TEDAClass classifier [51].

During the comparison, the SVM classifier uses a linear kernel; for the KNN classifier,

𝑘 is equal to 10; SOM classifier applies “winner takes all” principle with a net size of 9 × 9.

As one may obtain the covariance matrices that are not positive definite from the optical

recognition and multiple feature datasets, only the Euclidean distance and cosine dissimilarity

are used for these two datasets during the comparison. For letter recognition and multiple

features datasets, 50% of the data for training are used and the rest for testing. The

performance comparison is tabulated in Table 30. The reported results are the averages of 10

Monte Carlo experiments. In the experiments, the DENFIS classifier failed in both, the

optical recognition and multiple feature datasets because of the high dimensionality. From

Table 30 one can see that, the SOFL classifier can exhibit very high performance on the four

benchmark problems with a very short training process.

187

Table 30. Performance evaluation and comparison for the SOFL classifier

Dataset Algorithm ACC texe (s)

Occupancy

SOFL-Mahalanobis 0.9543 3.32

SOFL-Euclidean 0.9588 2.70

SOFL-Cosine 0.9559 2.77

SVM 0.9577 103.62

KNN 0.9664 0.11

DT 0.9314 0.10

SOM 0.9512 9.40

DENFIS 0.8909 14.28

eClass-0 0.8863 0.72

Simpl_eClass0 0.9096 0.49

TEDAClass 0.9634 416.50

Optical

SOFL-Euclidean 0.9839 0.11

SOFL-Cosine 0.9761 0.11

SVM 0.9627 1.49

KNN 0.9766 0.08

DT 0.8525 0.11

SOM 0.9577 12.19

DENFIS No valid result

eClass-0 0.8681 0.69

Simpl_eClass0 0.8883 1.51

TEDAClass 0.9120 1649.17

Letter

SOFL-Mahalanobis 0.9265 0.52

SOFL-Euclidean 0.9298 0.20

SOFL-Cosine 0.9296 0.21

SVM 0.8533 16.16

KNN 0.9180 0.05

DT 0.8243 0.10

SOM 0.5363 12.85

DENFIS 0.3256 95.36

eClass-0 0.5125 0.74

Simpl_eClass0 0.5853 1.09

TEDAClass 0.5154 2335.71

Multiple

SOFL-Euclidean 0.9267 0.05

SOFL-Cosine 0.9366 0.05

SVM 0.9671 15.97

KNN 0.9151 0.02

DT 0.9244 0.16

SOM 0.8746 29.19

DENFIS No valid result

eClass-0 0.8264 1.59

Simpl_eClass0 0.8201 3.30

TEDAClass 0.8637 14011.87

188

6.2.4. Autonomous Anomaly Detection Algorithm

6.2.4.1. Benchmark Problems for Evaluation

In this section, the following datasets are considered for evaluating the performance of

the AAD algorithm on anomaly detection:

1) Synthetic Gaussian dataset [37];

2) User knowledge modelling dataset [266];

3) Wine quality dataset [267];

4) Wilt dataset [268].

The synthetic Gaussian dataset [37] contains 720 samples with 2 attributes. There is 1

larger cluster and 2 smaller ones grouping 700 data samples between them. In addition, 4

collective anomalous sets formed by 18 samples as well as 2 single anomalies were

identified. The models of the three major clusters extracted from the data (𝝁, 𝝈, 𝑆) are as

follows (in the form of model, 𝒙~𝑁(𝝁, 𝝈) and support, 𝑆):

Major cluster 1: 𝒙~𝑁 ([0 3], [
0.09 0
0 0.09

]), 400 samples;

Major cluster 2: 𝒙~𝑁 ([2.5 3], [
0.16 0
0 0.16

]), 150 samples;

Major cluster 3: 𝒙~𝑁 ([2.5 0], [
0.16 0
0 0.16

]), 150 samples.

The models of the 4 collectives anomalous sets are:

Anomalous set 1: 𝒙~𝑁 ([0 1], [
0.09 0
0 0.09

]), 5 samples;

Anomalous set 2: 𝒙~𝑁 ([4.5 0], [
0.09 0
0 0.09

]), 4 samples;

Anomalous set 3: 𝒙~𝑁 ([4.5 4], [
0.01 0
0 0.01

]), 5 samples;

Anomalous set 4: 𝒙~𝑁 ([1 −1], [
0.01 0
0 0.01

]), 4 samples;

and the two single anomalies are [2 5] and [1.5 5].

This dataset is visualized in Figure 56, where the anomalies are circled in by red

ellipses. It is important to stress that, collective anomalies and single anomaly close to the

global mean of the dataset are very difficult to detect using traditional approaches.

189

Figure 56. Visualization of the synthetic Gaussian dataset.

The user knowledge modelling dataset contains 403 samples, and each data sample has

five attributes and one label, which represents the level of the user knowledge [266]. There

are four levels of the user knowledge, 1) high (130 samples), 2) middle (122 samples), 3) low

(129 samples) and 4) very low (50 samples). The existing anomalies in four classes are listed

by their IDs as follows [37]:

1) High: 2, 10, 14, 34, 182, 187, 190, 210, 230, 246, 258, 313, 317, 318, 378, 379, 384,

391, 399 and 400;

2) Middle: 4, 13, 50, 57, 62, 65, 124, 130, 162, 207, 208, 211, 212, 214, 222, 223, 245,

250, 257, 272, 286, 362, 372, 373 and 403;

3) Low: 3, 5, 18, 53, 61, 128, 129, 131, 198, 204, 244, 319, 374, 395 and 401;

4) Very low: 1, 17, 117, 197, 209, 288, 310, 312, and 314.

Wine quality dataset is related to the quality of red Portuguese “Vinho Verde” wine.

This dataset has 1599 data samples with 11 attributes and one label, which corresponds to the

score of quality of the wine from 3 to 8 [267]. This dataset is not balanced as there are much

more normal wines than excellent or poor ones. There are 10 samples with score 3, 53

samples with score 4, 681 samples with score 5, 638 samples with score 6, 199 samples with

score 7 and 18 samples with score 8. The number of existing anomalies in each class are

listed as follows: 1) Score 3: 1; 2) Score 4: 3; 3) Score 5: 50; 4) Score 6: 42; 5) Score 7: 9; 6)

Score 8: 3. In total, there are 108 anomalies [37].

Wilt dataset comes from a remote sensing study involving detecting diseased trees in

Quickbird imagery. There are two classes in the dataset: 1) “diseased trees” class (74

samples) and 2) “other land cover” class (4265 samples). Each sample has 5 attributes and 1

190

label (“other land cover” or diseased trees”). There are 120 anomalies with the label “other

land cover” and no anomaly in the “diseased trees” class [37].

6.2.4.2. Performance Evaluation and Discussion

Using the proposed approach, 61 potential anomalies identified from the synthetic

dataset in the first stage are depicted in Figure 57 (a) (the green circles). In stage 2, 10 data

clouds are formed from the potential anomalies as presented in Figure 57(b), where the

circles with the different colours are the data samples from different data clouds. There are 31

anomalies identified in the final stage of the proposed approach as shown in Figure 58 (red

circles).

 (a) The potential anomalies (b) The data clouds

Figure 57. The identified potential anomalies and the data clouds formed by them.

Figure 58. The identified anomalies by the AAD algorithm.

191

Figure 56, Figure 57 and Figure 58 show that, the AAD algorithm successfully

identified all the anomalies in this dataset, because both the mutual distribution and the

ensemble properties of the data samples have been considered.

For a further evaluation of the ADD algorithm, two well-known traditional approaches

are used for comparison:

1) The well-known “3𝜎” approach [49], [203], [204];

2) Outlier detection using random walks (ODRW) approach [199].

It has to be stressed that the “3𝜎” approach is based on the global mean and global

standard deviation. The outlier detection using random walks approach requires three

parameters to be predefined: 1) error tolerance, 𝜀; 2) similarity threshold, 𝑇 and 3) number of

anomalies, Na . In this subsection, 𝜀 = 10−6 and 𝑇 = 0.9 [199]. To make the results

comparable, Na is set to be the same number of the anomalies identified by the AAD

algorithm.

The global mean and the standard deviation of the dataset are 𝝁 = [1.1077 2.3263]

and 𝝈 = [1.3401 1.3228], and the “3𝜎” approach failed to detect any anomalies. The

result using the ODRW approach is shown in Figure 59, where the red circles are the

identified anomalies. As one can see, this approach ignored the majority of the anomalies

(circled within the yellow ellipsoids).

Figure 59. The identified anomalies by the ODRW algorithm.

For the user knowledge modelling dataset, the AAD algorithm identified 10 anomalies

as tabulated in Table 30. It has to be stressed that the labels (Table 31) of the data are not

used in the anomaly detection and they are just used for posterior comparison. From the table

one can see that the detected anomalies have significantly lower or higher values compared

192

with other members of the classes to which they may belong. Nine out of the identified 10

anomalies are in the anomaly lists in the previous subsection.

Table 31. Identified anomalies from the user knowledge modelling dataset

ID Values Label

1 [0.0000 0.0000 0.0000 0.0000 0.0000] Very low

2 [0.0800 0.0800 0.1000 0.2400 0.9000] High

5 [0.0800 0.0800 0.0800 0.9800 0.2400] Low

17 [0.0500 0.0700 0.7000 0.0100 0.0500] Very low

187 [0.4950 0.8200 0.6700 0.0100 0.9300] High

210 [0.8500 0.0500 0.9100 0.8000 0.6800] High

222 [0.7700 0.2670 0.5900 0.7800 0.2800] Middle

242 [0.7100 0.4600 0.9500 0.7800 0.8600] High

399 [0.9000 0.7800 0.6200 0.3200 0.8900] High

403 [0.6800 0.6400 0.7900 0.9700 0.2400] Middle

For a better comparison, the following five measures [199] are used for performance

evaluation:

1) Number of identified anomalies (Na): Na = True Positive + False Positive;

2) Precision (Pr): the rate of true anomalies in the detected anomalies, Pr =

True Positive

True Positive+False Positive
;

3) False alarm rate (Fa): the rate of the true negatives in the identified anomalies,

Fa =
False Positive

True Negative+False Positive
;

4) Recall rate (Re): the rate of true anomalies the algorithms missed, Re =

False Nagetaive

True Positive+False Nagetaive
;

5) Execution time (texe): in seconds.

The detection results obtained by the three algorithms on the user knowledge modelling,

wine quality and wilt datasets in terms of the five measures are tabulated in Table 32.

From Table 32 one can see that the proposed approach is able to detect the anomalies

with higher precision and lower false alarm rate compared with the “3𝜎” approach and the

ODRW approach.

The “3𝜎” approach is the fastest due to its simplicity. However, the performance of the

“3𝜎” approach is decided by the structure of the data as it focuses only on the samples

193

exceeding the global 3𝜎 range around the mean. However, when the dataset is very complex

i.e. contains a large number of clusters, or the anomalies are close to the global mean, “3𝜎”

approach fails to detect all outliers.

In contrast, the AAD algorithm can identify the anomalies based on the ensemble

properties of the data in a fully unsupervised and autonomous way. It takes not only the

mutual distribution of the data within the data space, but also the frequencies of occurrences

into consideration. It provides a more objective way for anomaly detection. More

importantly, its performance is not influenced by the structure of the dataset and is equally

effective in detecting collective as well as individual anomalies.

Table 32. Performance comparison of the anomaly detection algorithms

Dataset Algorithm Na Pr Fa Re texe (s)

User

knowledge

ADD 10 90.00% 0.30% 86.96% 0.09

3𝜎 1 100.00% 0.00% 98.55% 0.00

ODRW 10 50.00% 1.50% 92.75% 0.27

Wine

quality

ADD 36 63.89% 0.87% 78.70% 0.24

3𝜎 141 30.05% 6.57 % 60.19% 0.01

ODRW 36 0.00% 2.41% 100.00% 31.14

Wilt

ADD 84 71.43% 0.57% 50.00% 1.08

3𝜎 176 34.66% 2.73% 49.17% 0.01

ODRW 84 58.33% 0.83% 59.17% 863.76

6.3. Evaluation of the Transparent Deep Learning Systems

In this section, the performance of the transparent deep learning systems presented in

chapter 5, namely

1) Fast feedforward nonparametric deep learning (FFNDL) network;

2) Deep rule-based (DRB) system;

3) Semi-supervised deep rule-based (SSDRB) classifier;

are evaluated based on benchmark image sets. Their performance is also compared with a

number of state-of-the-art approaches.

6.3.1. Fast Feedforward Nonparametric Deep Learning Network

6.3.1.1. Benchmark Problems for Evaluation

A. Handwritten digits recognition

194

The MNIST database [213] is used as the benchmark dataset for evaluating the

performance of the FFNDL network on handwritten digits recognition problem. The details

of the MNIST datasets have been given in section 5.4.1.

B. Image classification

The first numerical experiment is to evaluate the performance of the FFNDL network on

human action recognition. This numerical example is conducted based on a subset of the

well-known human action dataset [269]. The dataset contains six classes (walking, jogging,

running, boxing, hand waving and hang clapping) with 100 images per class randomly

extracted from 18 videos with the same background (three videos per class). The visual

examples of the images are presented in Figure 60. In the experiments, the original images

are converted to 64 × 64 pixels size because some of the actors are not large enough within

the images.

Figure 60. Example images on human action recognition problem.

The second numerical experiment is for object classification, which is based on a subset

of the well-known Wang dataset [270]. The subset consists of eight classes with 40 images in

each class. The eight classes are: airplanes, cars, dinosaur, dolls, doors, motorbikes, roses and

sailing ships. Example images of the eight classes are given in Figure 61. The original images

are converted to 64 × 64 pixels size.

The image rescaling setting used in these two experiments is decided through numerical

experiments empirically. Determining the most suitable image rescaling operation for a

specific problem may require some prior knowledge. Nonetheless, in general, one need to

make sure that the dimensionality of the extracted feature vector is smaller than the

dimensionality of the image itself to avoid over-sampling, which makes the feature vector

noisier.

195

Figure 61. Example images on object classification problem.

6.3.1.2. Performance Evaluation and Discussion

In the numerical experiments in this subsection, the size of the sliding window for local

aggregations extraction is 7 × 7 (𝑛 = 7); the size and stride of the sliding window for the

grid segmentation is 2 × 2 (𝑘 = 2); and 1 (𝑤 = 1).

A. Handwritten digits recognition

In this experiment, the original handwritten digit images are used, and therefore, there is

𝑑 = 14. The classification result is tabulated in Table 33. The corresponding amount of time

consumed by the FFNDL network is presented in Table 34.

The performance of the FFNDL network is also compared with several well-known

algorithms:

1) Neocognitron neural network [271];

2) eClass1 using GIST and Haar global features [160];

3)TEDAClass classifier using GIST and Haar global features [272].

The classification results are tabulated in Table 33 compared with the results of the

previously published methods [160], [271], [272]. The results are visualized in Figure 62.

196

Table 33. Recognition results and comparison on MNIST dataset

Training set Neocognitron eClass1 TEDAClass FFNDL

1000 94.42% 86.54% 95.92% 92.70%

2000 96.04% 96.42% 96.70% 93.89%

3000 96.34% 96.55% 96.67% 94.93%

4000 96.62% 96.62% 96.88% 95.31%

5000 96.94% 96.85% 97.16% 95.54%

10000 - 97.19% 97.38% 96.31%

20000 - 97.32% 97.53% 96.67%

30000 - 97.46% 97.68% 96.86%

40000 - 97.45% 97.66% 96.97%

50000 - 97.46% 97.65% 97.03%

60000 - 97.46% 97.63% 97.11%

Table 34. Time consumption for training process of the FFNDL network

Train set 1000 2000 3000 4000 5000 10000

Time 21.4 41.0 72.3 113.4 164.5 527.9

Train set 10000(4)
1
 20000 30000 40000 50000 60000

Time 390.2 1906.8 3975.3 7214.9 10672.2 15681.7
 1

 4 local workers.

 Figure 62. Curves of classification accuracy of the four methods on MNIST dataset.

As it is shown in Table 33 and Figure 62, the classification accuracy of the FFNDL

network reaches 97.11% after all 60000 training images are used, which is slightly worse

than the eClass1 and TEDAClass but outperforms Neocognitron (and other approaches, i.e.

neural networks, k-nearest neighbours classifiers [38]). One can also see that the performance

of the FFNDL network keeps increasing if more training images are provided. In contrast, the

197

eClass1 reaches its maximum accuracy after 40000 training images being processed.

TEDAClass reaches its maximum accuracy after 30000 images being processed, with more

training images, the accuracy of the TEDAClass decreases. For the FFNDL network, with

more training samples and time consumptions, one can always obtain a higher accuracy.

Table 34 shows that the training time consumption grows with the amount of training

dataset. Combining Table 33 and Table 34 one can see that it only takes 113.4 seconds (using

WIN10 OS and MATLAB and no parallelisation) to train the network using 4000 images and

the classification accuracy has already achieved over 95%. In addition, moving to Linux and

C or Python can further speed up to an order of magnitude. For the published algorithms

based on the global features (i.e. GIST and Haar), it already takes a larger amount of time

(220.7 seconds) to only extract the GIST features from 4000 images. The Neocognitron

neural network failed to give the consistent result as the network has a large number of

parameters and the training process for 5000 training images takes more than 5 hours [271],

[272].

In addition, the FFNDL network supports parallel processing. The computation can be

distributed to a number of processers, which largely reduces the amount of time consumed by

the training process. As it is presented in Table 34, by distributing the computation to local

workers, the training process becomes much faster. It has to be stressed that, this

parallelisation experiments are not real parallel computation as all the training is still

conducted within a single dual core PC. With more processers, or using GPUs, the training

process will be even faster, and, critically, this algorithm allows parallelisation at many

levels.

B. Image classification

Table 35. Experimental results of the FFNDL network on image classification

Dataset
Training images

per class

Testing images

per class

Classification

errors

Error

rate

Time

consumption

Human action

recognition

60 40 5 2.1% 39.2s

80 20 2 1.7% 48.7s

Object

recognition

25 15 6 5% 30.6s

30 10 1 1.3% 34.5s

In the following two numerical experiments for image classification, namely, human

action recognition and object classification, 𝑑 is set to be 32. The experimental results of the

FFNDL network obtained from the two problems are presented in Table 35, which

198

demonstrates that the FFNDL network can be applied in different areas and is able to perform

highly accurate classification results even if using a small amount of training images.

6.3.2. Deep Rule-Based System

6.3.2.1. Benchmark Problems for Evaluation

To illustrate the performance of the proposed DRB classifier, the following four

different challenging problems are considered:

A. Handwritten digits recognition

MNIST dataset [213] is used for evaluating the performance of the DRB systems on

handwritten digits recognition. The details of this dataset have been given in section 5.4.1.

B. Face recognition

The one of the most widely used benchmark dataset for face recognition, database of

faces [273] is used for evaluation. This dataset contains 40 subjects with 10 different images

taken with different illumination, angle, face expression and face details (glasses/no glasses,

mustaches, etc.). The size of each image is 92 × 112 pixels, with 256 grey levels per pixel.

The examples of the database of faces are given in Figure 63.

Figure 63. Examples of images from the database of faces.

C. Remote sensing

The first dataset from the remote sensing area is the Singapore dataset [274]. This

dataset was constructed from a large satellite image of Singapore. This dataset consists of

1086 images with 256 × 256 pixels size with nine scene categories: 1) airplane, 2) forest, 3)

harbor, 4) industry, 5) meadow, 6) overpass, 7) residential, 8) river, and 9) runway. Examples

of the images of the nine classes are shown in Figure 64.

199

Figure 64. Examples of images from Singapore dataset.

The second dataset is the UCMerced dataset [211], which consists of fine spatial

resolution remote sensing images of 21 challenging scene categories (including airplane,

beach, building, etc.). Each category contains 100 images of the same image size (256 × 256

pixels). The example images of the 21 classes are shown in Figure 65.

Figure 65. Example Images from UCMerced dataset.

D. Object recognition

The well-known Caltech 101 dataset [212] is used for evaluating the performance of the

DRB system on object recognition. This dataset contains 9144 pictures of objects belonging

to 101 categories and one background categories. The number of images in each class varies

from 33 to 800 images per category. The size of each image is roughly 300 × 200 pixels.

This data set contains both classes corresponding to rigid object (like bikes and cars) and

classes corresponding to non-rigid object (like animals and flowers). Therefore, the shape

variance is significant. The examples of this dataset are presented in Figure 66.

200

Figure 66. Example images of Caltech 101 dataset.

As the five benchmark datasets are very different from each other, five different, but

same as in the publications [76], [213], [274], [275], experimental protocols will be used for

the five datasets correspondingly.

6.3.2.2. Performance Evaluation and Discussion

A. Handwritten digits recognition

For the MNIST dataset, the DRB ensemble as presented in section 5.4.1 is used. During

the experiment, the feature descriptor used by the DRB ensemble is GIST, HOG or the

combined GIST and HOG (CGH) features. However, due to the different descriptive abilities

of these features, the performance of the DRB ensemble is somewhat different. The

recognition accuracy of the proposed DRB classifier using different feature descriptors is

tabulated in Table 36. The corresponding average training times for the 10 fuzzy rules are

tabulated in Table 37. By further combining the DRB ensemble trained with GIST features

and the DRB ensemble trained with HOG features, it achieve a better recognition

performance, which is tabulated in Table 36 as well. The DRB cascade [42] as described in

section 5.4.2 is able to achieved the best performance, which is also presented in Table 36.

The SVM conflict resolution classifier only applies to a small number (about 5%) of the

validation data for which the decision-maker was not certain (there were two possible winners

with close overall scores). By using the SVM conflict resolution classifier, the accuracy of the

DRB cascade increases 0.11% [42], which is small but critical because it allows the DRB

approach to outperform the current best alternative approach [72] (without using elastic

distortion).

201

One of the most distinctive advantages of the DRB system is its evolving ability, which

means that there is no need for complete re-training the classifier when new data samples are

coming. To illustrate this advantage, the DRB classifier is trained with images in the form of

an image stream, meanwhile, the execution time and the recognition accuracy are recorded

during the process. In this example, the original training set without rescaling or rotation is

used, which speeds up the process significantly. The relationship curves of the training time

(the average for each of the 10 fuzzy rules) and recognition accuracy with the growing

amount of the training samples are depicted in Figure 67.

Table 36. Comparison between the DRB ensembles and the state-of-the-art approaches

Algorithm
DRB-

GIST

DRB-

HOG

DRB-

CGH

DRB-GIST +

DRB-HOG
DRB Cascade

Accuracy 99.30% 98.86% 99.32% 99.44% 99.55%

Training Time Less than 2 minute for each part

PC-Parameters Core i7-4790 (3.60GHz), 16 GB DDR3

GPU Used None

Elastic

Distortion
No

Tuned

Parameters
No

Iteration No

Randomness No

Parallelisation Yes

Evolving

Ability
Yes

Algorithm

Large

Convolutional

Networks

[276]

Large

Convolutional

Networks [72]

Committee of 7

Convolutional

Neural Networks

[24]

Committee of 35

Convolutional

Neural Networks

[22]

Accuracy 99.40% 99.47% 99.73%  2% 99.77%

Training Time

No

Information
No Information

Almost 14 hours for each one of the

DNNs.

PC-Parameters Core i7-920 (2.66GHz), 12 GB DDR3

GPU Used
2  GTX 480 &

2  GTX 580

Elastic

Distortion
No No Yes

Tuned

Parameters
Yes Yes Yes

Iteration Yes Yes Yes

Randomness Yes Yes Yes

Parallelisation No No No

Evolving

Ability
No No No

202

Table 37. Computation time for the learning process per sub-system (in seconds)

Fuzzy Rule # 1 2 3 4 5

Digital “0” “1” “2” “3” “4”

Feature

GIST 39.26 32.39 41.95 45.72 37.17

HOG 72.03 70.99 82.47 92.73 73.46

CGH 96.54 88.93 99.21 113.52 91.53

Fuzzy Rule # 6 7 8 9 10

Digital “5” “6” “7” “8” “9”

Feature

GIST 34.90 37.36 35.89 42.99 36.90

HOG 67.53 68.48 77.93 75.83 69.90

CGH 85.19 91.92 89.12 104.08 92.26

(a) Accuracy (b) Training time

Figure 67. The relationship curve of training time and recognition accuracy with different

amount of training samples.

In order to evaluate the performance of the DRB system, the state-of-the-art approaches

reporting the current best and the second best results (with and without elastic distortion)

[24], [72] are also reported in Table 36.

As one can see, the approaches reported in [22], [24] using elastic distortion can achieve

slightly better results than the approaches in [72], [276] as well as the DRB systems.

However, this comes at a price of using elastic distortion. This kind of distortion exhibits a

significant randomness that may turn an unrecognizable digit into a recognizable one and

vice versa, which also casts doubt on the effectiveness of the approaches in real applications.

In addition, elastic distortion puts in question the achieved results’ repeatability and requires

a cross-validation that further obstructs the online applications and the reliability of the

results as discussed in [41].

203

Without using elastic distortion, the current published best result is 99.47% [72], which

is comparable with the DRB ensemble, but worse than the DRB cascade [42]. However, one

needs to notice that the convolution networks require a large number of parameters to be

tuned, and cannot start “from scratch” nor evolve with the data stream and are not

interpretable.

B. Face recognition

The architecture of the DRB classifier for face recognition does not include scaling and

rotation, which is shown in Figure 68. In this test, the DRB classifier consists of the

following layers:

1) Normalization layer;

2) Segmentation layer that splits each image into smaller pieces by a 22 × 32 size

sliding window with the step size of 5 pixels in both horizontal and vertical directions (this

setting is obtained empirically through experiments). The segmentation layer cuts one image

into 255 pieces;

3) Feature descriptor, which extracts the combined GIST and HOG features from each

segment;

4) FRB system, which consists of 40 fuzzy rules trained based on the segments of the 40

subjects’ images (one rule per subject);

5) Decision-maker, which generates the labels using equation (5.16).

Figure 68. Architecture of the DRB classifier for face recognition.

Following the commonly used experimental protocol [275], for each subject, 𝑘 images

are randomly selected for training and 1 image for testing. The experiment was repeated 50

times and the average recognition accuracy of the DRB classifier with different k (𝑘 = 1 to 5)

204

is tabulated in Table 38, and the DRB classifier is compared with the state-of-the-art

approaches [275], [277]–[279] as follows:

1) Regularized Shearlet Network (RSN) [277];

2) Sparse Fingerprint Classification (SFC) [275];

3) Adaptive Sparse Representation (ASR) [278];

4) Sparse Discriminant Analysis via Joint L2,1-norm Minimization (SDAL21M) [279].

Table 38. Comparison between the DRB classifier and the-state-of-the-art approaches

k Method Accuracy (%)

1

RSN 88

SFC 89

DRB 90

2

ASR 82

SFC 96

DRB 97

3

ASR 89

SDAL21M 82

SFC 98

DRB 99

4

ASR 93

SFC 99

DRB 99

5

ASR 96

SDAL21M 93

SFC 100

DRB 100

One can see from Table 38 that the DRB classifier can achieve higher recognition

accuracy with a smaller amount of training samples. For a better illustration, examples of the

AnYa type fuzzy rules extracted during experiments are given in Table 39, where the

segments are enlarged for visual clarity. These segments in Table 39 are the visual prototypes

of the fuzzy rules, and thanks to them, one can always check the learning results obtained by

the DRB classifier intuitionistically and make necessary modification for a better

performance by adding, removing or exchaning prototypes. This is much simplier than tuning

DCNNs, which contain hundreds of millions of parameters that are not interpretable to

human.

The recognition accuracy of the DRB classifier and the average corresponding time

consumption for each fuzzy rule in the training process with different amount of training

samples is tabulated in Table 40. One can see that, the training process is very efficient. The

205

proposed classifier can be trained for less than 3 seconds and achieve 100% accuracy in face

recognition of individuals.

Table 39. Visual examples of the AnYa type fuzzy rules

Fuzzy Rules

IF (Sg ~) OR (Sg ~) OR … OR (Sg ~) OR (Sg ~) THEN ()

IF (Sg ~) OR (Sg ~) OR … OR (Sg ~) OR (Sg ~) THEN ()

IF (Sg ~) OR (Sg ~) OR … OR (Sg ~) OR (Sg ~) THEN ()

IF (Sg ~) OR (Sg ~) OR … OR (Sg ~) OR (Sg ~) THEN ()

Table 40. Results with different amount of training samples

k 1 2 3 4 5 6 7 8 9

Accuracy (%) 90 97 99 99 100 100 100 100 100

texe (in seconds) 0.11 0.48 1.03 1.81 2.84 4.14 5.69 8.32 10.65

C. Remote sensing

The architecture of the DRB classifier for the remote sensing problems has been given

in Figure 41. More specifically, in the numerical examples based on Singapore dataset, the

sliding window with the window size of (6 × 6)/(8 × 8) of image size and step size of 2 8⁄

width in the horizontal and 2 8⁄
 length in the vertical direction is used (this setting is obtained

empirically through experiments).

Following the commonly used experimental protocol [274], the DRB classifier is trained

with randomly selected 20% of the images of each class and use the remainder as a testing

set. The experiment is repeated 5 times and the average accuracy is reported in Table 41.

The performance of the DRB is compared with the state-of-the-art approaches as

follows:

1) Transfer learning with deep representations (TLDP) [280];

2) Two-level feature representation (TLFP) [274];

206

3) Bag of visual words (BOVW) [145];

4) Scale-invariant feature transform with sparse coding (SIFTSC) [281];

5) Spatial pyramid matching kernel (SPMK) [282];

and the recognition accuracies of the comparative approaches are reported in Table 41 as

well. One can see that, the DRB classifier is able to produce a significantly better recognition

result than the best current methods.

Table 41. Comparison between the DRB classifier and the state-of-the-art approaches on

Singapore dataset

Algorithm Accuracy (%)

DRB-VGG 97.70

TLDP 82.13

TLFP 90.94

BOVW 87.41

SIFTSC 87.58

SPMK 82.85

To show the evolving ability of the DRB classifier, 20% of the images of each class are

randomly selected for validation and the DRB is trained with 10%, 20%, 30%, 40%, 50%,

60%, 70% and 80% of the dataset. The experiment is repeated five times and the average

accuracy is tabulated in Table 42. The average time for training is also reported, however,

due to the unbalanced classes, the training time as tabulated in Table 42 is the overall training

time of the 9 fuzzy rules.

Table 42. Results with different amount of training samples on the Singapore dataset

Ratio 10% 20% 30% 40%

Accuracy (%) 96.02 97.56 98.55 98.91

texe (in seconds) 5.1730 20.78 49.33 87.17

Ratio 50% 60% 70% 80%

Accuracy (%) 99.10 99.36 99.55 99.62

texe (in seconds) 135.00 195.57 270.89 346.14

For the UCMerced dataset, the DRB classifier with the same architecture as used in the

previous example (Figure 42) is employed. Following the commonly used experimental

protocol [274], 80% of the images of each class are randomly selected for training and the

remainder is used as a testing set. The experiment is repeated five times, and the average

207

accuracy is reported in Table 43. The performance of the DRB classifier is also compared

with the state-of-the-art approaches as follows:

1) Two-level feature representation (TLFP) [274];

2) Bag of visual words (BoVW) [145];

3) Scale-invariant feature transform with sparse coding (SIFTSC) [281];

4) Spatial pyramid matching kernel (SPMK) [282], [283];

5) Multipath unsupervised feature learning (MUFL) [284];

6) Random convolutional network (RCNET) [79];

7) Linear SVM with pre-trained CaffeNet (SVM+Caffe) [140];

8) LIBLINEAR classifier with the VGG-VD-16 features (LIBL+VGG) [210];

9) Linear SVM with the VGG-VD-16 features (SVM+VGG).

Table 43. Comparison between the DRB classifier and the state-of-the-art approaches on

UCMerced dataset

Algorithm Accuracy Algorithm Accuracy

DRB 96.14% MUFL 88.08%

TLFR 91.12% RCNET 94.53%

BOVW 76.80% SVM+ Caffe 93.42%

SIFTSC 81.67% SVM+VGG 94.48%

SPMK 74.00% LIBL+VGG 95.21%

Through the comparison in Table 43 one can see that, the DRB classifier, again,

produced the best classification performance. Similarly, 20% of the images of each class are

selected for validation and the DRB classifier is trained with 10%, 20%, 30%, 40%, 50%,

60% and 70% of the dataset. The experiment is repeated 5 times, and the average accuracy

and time consumption for training (per rule) are tabulated in Table 44, where one can see

that, the DRB classifier can achieve 95%+ classification accuracy with only less than 20

seconds’ training for each fuzzy rule.

Furthermore, by creating an ensemble of the DRB classifier as described in section

5.4.3, the classification performance can be further improved to 97.10% [43].

208

Table 44. Results with different amount of training samples on the UCMerced dataset

Ratio 10% 20% 30% 40%

Accuracy (%) 83.48 88.57 90.80 92.19

texe (in seconds) 0.27 1.36 3.96 5.83

Ratio 50% 60% 70% 80%

Accuracy (%) 93.48 94.19 95.14 96.10

texe (in seconds) 10.29 11.52 15.49 18.15

D. Object recognition

The architecture of the DRB classifier for the object recognition is depicted in Figure 69

which is the same as the latter part of the DRB classifier for remote sensing problems as

presented in Figure 41. The images of the Caltech 101 dataset [285] are very uniform in

presentation, aligned from left to right, and usually not occluded, therefore, the rotation and

segmentation are not necessary.

Figure 69. Architecture of the DRB classifier for object recognition.

Following the commonly used protocol [76], experiments are conducted by selecting 15

and 30 training images from each class for training and using the rest for validation. The

experiment is repeated 5 times and the average accuracy is reported in Table 45. The DRB

classifier is also compared with the state-of-the-art approaches as follows:

1) Convolutional deep belief network (CBDN) [286];

2) Learning convolutional feature hierarchies (CLFH) [287];

3) Deconvolutional networks (DECN) [288];

4) Linear spatial pyramid matching (LSPM) [289];

5) Local-constraint linear voding (LCLC) [290];

6) DEFEATnet [76];

209

7) Convolutional sparse autoencoders (CSAE) [291];

8) Linear SVM with the VGG-VD-16 features (SVM+VGG).

As one can see from Table 45, the DRB classifier easily outperforms all the comparative

approaches in the object recognition problem. Same as the previous example, 1, 5, 10, 15, 20,

25, and 30 images of each class are selected for training the DRB classifier and use the rest

for validation. The experiment is repeated 5 times, and the average accuracy and time

consumption for training (per rule) are tabulated in Table 46, where one can see that, it only

requires less than 2 seconds to train a single fuzzy rule.

Table 45. Comparison between the DRB classifier and the state-of-the-art approaches on

Caltech 101 dataset

Algorithm
Accuracy (%)

15 Training 30 Training

DRB 81.9 84.5

CBDNET 57.7 65.4

CLFH 57.6 66.3

DECNNET 58.6 66.9

LSPM 67.0 73.2

LCLC 65.4 73.4

DEFEATnet 71.3 77.6

CSAE 64.0 71.4

SVM+VGG 78.9 83.5

Table 46. Results with different amount of training samples on the Caltech 101 dataset

Training Number 1 5 10 15 20 25 30

Accuracy (%) 61.1 76.4 80.4 81.9 83.5 83.6 84.5

texe (in seconds) 0.14 0.39 0.99 1.02 1.25 1.42

As one can see from the numerical examples presented in this subsection, the DRB

classifier is able to offer extremely high classification accuracy comparable with human

abilities on par or surpassing the best published mainstream deep learning alternatives. It is a

general approach for various problems and serves as a strong alternative to the state-of-the-art

approaches by providing a fully human-interpretable structure after a very fast (in orders of

magnitude faster than the mainstream deep learning methods), transparent, nonparametric

training process.

210

6.3.3. Semi-Supervised Deep Rule-Based Classifier

6.3.3.1. Benchmark Problems for Evaluation

In this section, the performance of SSDRB classifier is evaluated based on the following

three challenging benchmark datasets:

1) UCMerced dataset [211];

2) Singapore dataset [274];

3) Caltech 101 dataset [212].

The details of the datasets have been given in the previous section. During the numerical

experiments, the SSDRB classifier will not learn new classes, which means the algorithm for

actively learning new classes (Figure 32) and Condition 30 (equation (5.19)) are not used.

6.3.3.2. Performance Evaluation and Discussion

First of all, the performance of the SSDRB classifier is investigated with the UCMerced

dataset. Firstly, the influence of different values of 𝜑 on the performance of the SSDRB

classifier is studied. Eight images are randomly picked out from each class as the labelled

training set and the rest of the images are used as the unlabelled training set to continue to

train the SSDRB classifier in both offline and online scenarios. In the online scenario, the

semi-supervised learning is conducted on both sample-by-sample basis and chunk-by-chunk

basis. For the former case, the order of the unlabelled images is descrambled randomly; while

in the latter case, the unlabelled training samples are randomly divided into two chunks,

which have exactly the same number of images. During this experiment, the value of 𝜑

varies from 1.05 to 1.30. The average number of classification errors of the SSDRB classifier

on the unlabelled training set (1932 unlabelled images in total) is reported after 50 Monte

Carlo experiments in Table 47. The average numbers of prototypes identified are reported in

the same table. The performance of the DRB classifier is also reported as the baseline. The

corresponding average accuracy of the SSDRB classifier with different values of 𝜑 is

depicted in Figure 70.

211

Table 47. Performance of the SSDRB classifier with different values of φ

 𝜑 1.05 1.10 1.15 1.20 1.25 1.3

DRB
NE

a
469.5

NP
b

161.1

Offline SSDRB

NE 423.8 413.7 417.1 429.1 436.2 450.5

NP 1637 1402.8 1194.9 1015.8 874.7 759.1

Online SSDRB

sample-by-sample

NE 483.3 457 450.9 453.1 459.0 462.9

NP 1432.6 1192.8 1008.2 862.8 746.2 648.9

Online SSDRB

chunk-by-chunk

NE 441.9 430.7 432.1 445.8 451.1 459.1

NP 1581.6 1337.8 1127.7 960.1 825.1 712.6

 a
 Number of errors (NE);

b
 Number of prototypes (NP).

As one can see from Table 47 and Figure 70, the higher the value of 𝜑 is, the less

prototypes the SSDRB classifier identified during the semi-supervised learning process, and,

thus, the system structure is less complex and the computational efficiency is higher.

However, at the same time, it is obvious that the accuracy of the classification results is not

linearly correlated with the value of 𝜑. There is a certain range of 𝜑 values for the SSDRB

classifier to achieve the best accuracy. Trading off the overall performance and system

complexity, the best range of 𝜑 values for the experiments performed is [1.1,1.2]. For the

consistence, 𝜑 = 1.2 is used in the rest of the numerical examples in this section. However,

one can also set different value for 𝜑.

Figure 70. The average accuracy curve of the SSDRB classifier with different values of φ.

Secondly, 𝐿 = 1, 2, 3, … , 10 images are randomly picked out from each class as the

labelled training images and the rest are used as the unlabelled ones to train the SSDRB

212

classifier in both offline and online scenarios. Similar to the previous experiment, the semi-

supervised learning is conducted on both sample-by-sample basis and chunk-by-chunk basis

in the online scenario. The average numbers of classification errors of the SSDRB classifier

on the unlabelled training set are reported after 50 Monte Carlo experiments in Table 47. The

corresponding average accuracy of the DRB classifier with different number of labelled

images is depicted in Figure 71.

Table 48. Performance of the SSDRB classifier with different values of L

 Number of Errors

𝐿 1 2 3 4 5

DRB 949.6 789.9 700.5 620.8 579.1

Offline SSDRB 887.7 724.8 627.8 566.5 521.0

Online SSDRB

sample-by-sample
1010.5 805.6 683.2 605.2 561.3

Online SSDRB

chunk-by-chunk
914.9 748.9 652.5 583.2 542.3

 Number of Errors

𝐿 6 7 8 9 10

DRB 530.5 502.9 469.5 448.4 425.6

Offline SSDRB 478.6 455.7 429.1 412.2 387.3

Online SSDRB

sample-by-sample
517.5 485.4 453.1 435.1 412.8

Online SSDRB

chunk-by-chunk
497.8 472.2 445.8 421.3 399.7

From Table 48 and Figure 71, one can see that, with 𝜑 = 1.2, the SSDRB classifier

performs best in an offline scenario, which is due to the fact that, the DRB classifier is able to

achieve an comprehensive understanding of the ensemble properties of the static image set. In

the chunk-by-chunk learning mode, the DRB classifier can only study the ensemble

properties of the unlabelled images within each chunk. And its performance deteriorates

further if the semi-supervised learning is conducted on a sample-by-sample basis as each

unlabelled training image is actually isolated from each other.

213

Figure 71. The average accuracy of the SSDRB classifier with different values of L.

In order to evaluate the performance of the SSDRB classifier, it is compared with the

following well-known classification approaches:

1) SVM classifier [142];

2) KNN classifier [132].

The SVM (with linear kernel function) and KNN classifiers are the two main generic

classifiers used in the transfer learning approaches based on per-trained DCNNs and are able

to produce highly accurate classification results [77], [139]–[141]. As the DRB classifier

presented in this thesis also involves the pre-trained DCNN as a feature descriptor, the two

classifiers (SVM and KNN) are the most representative alternative approaches used for

comparison.

The state-of-the-art semi-supervised approaches are also involved for comparison:

3) Laplacian support vector machine (LAPSVM) classifier [176], [177];

4) Local and global consistency (LGC) based semi-supervised classifier [165];

5) AnchorGraph-based semi-supervised classifier with kernel weights (AnchorK) [179];

6) AnchorGraphReg-based semi-supervised classifier with LAE weights (AnchorL)

[179];

7) Greedy gradient Max-Cut (GGMC) based semi-supervised classifier [168].

There are also other well-known SVM- or graph-based semi-supervised approaches, i.e.

Transductive SVM (TSVM) [173], ∇𝑇𝑆𝑉𝑀[166] and Gaussian fields and harmonic functions

based approaches [164]. However, previous work showed that the LAPSVM, LGC, GGMC

and GGMC are, in general, able to produce more accurate classification results [168].

214

Therefore the comparison is only limited to the seven algorithms listed above. For the

LapSVM, the “one versus all” strategy is used for all the benchmark problems.

Table 49. Comparison of the semi-supervised approaches on UCMerced dataset

 Number of Errors

𝐿 1 2 3 4 5

SSDRB

887.7 724.8 627.8 566.5 521.0

SVM 1322.5 1009.8 840.9 739.2 650.1

KNN 1186.7 1160.8 1075.3 979.4 932.6

LAPSVM 1624.6 1339.7 1134.7 920.8 800.3

LGC 1846.5 889.3 694.0 620.0 590.4

AnchorK 948.6 837.1 737.5 700.3 662.9

AnchorL 875.7 748.7 663.8 637.5 595.3

GGMC 1845.5 1032.9 829.6 772.8 701.6

 Number of Errors

𝐿 6 7 8 9 10

SSDRB

478.6 455.7 429.1 412.2 387.3

SVM 571.5 527.5 492.2 452.9 415.5

KNN 889.9 855.6 827.9 813.0 781.0

LAPSVM 701.9 626.5 552.1 499.9 463.7

LGC 556.6 552.6 544.8 537.7 533.9

AnchorK 631.9 609.1 575.9 553.0 534.3

AnchorL 568.0 540.5 515.7 480.0 473.0

GGMC 674.5 648.5 660.6 656.5 642.1

The experiment given in the previous example is repeated to test the performance of the

seven comparative algorithms on the UCMerced dataset with different number of labelled

training samples in an offline scenario. For a fair comparison, only the performance of the

offline SSDRB classifier is considered. For the graph-based approaches, including KNN,

LGC and GGMC, due to the very small number of labelled training samples, the value of 𝑘 is

set to be the same as 𝐿. All the free parameters of the semi-supervised approaches stay the

same as the ones reported in the literature [165], [168], [176], [179]. The comparison results

in terms of number of errors on the (2100 − 21𝐿) unlabelled training images are tabulated in

Table 49. The accuracy curves are presented in Figure 72. All the reported results are the

average after 50 Monte Carlo experiments.

215

Figure 72. Accuracy comparison of the semi-supervised approaches on UCMerced dataset.

For the Singapore dataset, 𝐿 = 1, 2, 3, … , 10 images from each class is randomly

selected out as the labelled training images and the rest are used as unlabelled ones to train

the SSDRB classifier in an offline scenario. Its performance is also compared with the seven

algorithms listed above. The average numbers of classification errors on the (1086 − 9𝐿)

unlabelled training images are tabulated in Table 50. The accuracy curves are presented in

Figure 73. All the reported results are the averages after 50 Monte Carlo experiments.

For the Caltech 101 image dataset, the commonly used experimental protocol is

followed by randomly picking out 30 images from each class as the training set. Then,

similarly, 𝐿 = 1, 2, 3, … , 5 images from each class are randomly picked out as labelled

training images and the rest are used as unlabelled ones to train the SSDRB classifier in an

offline scenario. Then, its performance is compared with the seven algorithms listed above.

50 Monte Carlo experiments are conducted and the average numbers of classification errors

on the (3030 − 101𝐿) unlabelled training images are reported in Table 51. The accuracy

curves are presented in Figure 74.

From Table 49, Table 50, Table 51, Figure 72, Figure 73 and Figure 74 one can see that,

the SSDRB classifier is able to provide highly accurate classification results with only a very

small number of labelled training images. It consistently outperforms all the seven

comparative classification algorithms (both the most widely used ones and the “state-of-the-

art” semi-supervised ones) in all the three popular benchmarks in the field of computer vison.

Moreover, compared with the existing semi-supervised approaches, the unique

advantages of the SSDRB classifier thanks to its prototype-based nature include: 1)

supporting online training and 2) classifying out-of-sample images. These are also noticeable

216

from the numerical examples in this section. Therefore, one can conclude that the SSDRB

classifier is a strong alternative to the existing approaches.

Table 50. Comparison of the semi-supervised approaches on Singapore dataset

 Number of Errors

𝐿 1 2 3 4 5

SSDRB

887.7 724.8 627.8 566.5 521.0

SVM 1322.5 1009.8 840.9 739.2 650.1

KNN 1186.7 1160.8 1075.3 979.4 932.6

LAPSVM 1624.6 1339.7 1134.7 920.8 800.3

LGC 1846.5 889.3 694.0 620.0 590.4

AnchorK 948.6 837.1 737.5 700.3 662.9

AnchorL 875.7 748.7 663.8 637.5 595.3

GGMC 1845.5 1032.9 829.6 772.8 701.6

 Number of Errors

𝐿 6 7 8 9 10

SSDRB

62.0 56.1 48.0 49.0 46.3

SVM 138 120.6 108.1 113.2 93.2

KNN 288.6 259.9 260.3 248.2 231.9

LAPSVM 391.6 335 280.6 247.7 209.4

LGC 84.0 84.2 86.0 84.4 91.8

AnchorK 141.8 130.9 135.4 130.4 122.0

AnchorL 110.7 116.2 110.6 99.6 97.0

GGMC 187.0 196.8 217.7 204.3 172.7

Figure 73. Accuracy comparison of the semi-supervised approaches on Singapore dataset.

217

Table 51. Comparison of the semi-supervised approaches on Caltech 101 dataset

 Number of Errors

𝐿 1 2 3 4 5

SSDRB

1154.4 897.4 758.0 679.5 624.1

SVM 1964.6 1474.9 1225.6 1035.0 909.4

KNN 2663.0 2329.0 2279.3 2120.9 1986.3

LAPSVM 1461.1 1161.3 951.7 796.3 705.1

LGC 2254.9 1008.5 826.8 737.8 683.8

AnchorK 1816.8 1521.9 1249.1 1062.1 940.4

AnchorL 1581.2 1308.2 1093.4 979.4 869.8

GGMC 2259.9 1071.3 854.0 767.1 716.2

Figure 74. Accuracy comparison of the semi-supervised approaches on Caltech 101 dataset.

6.4. Conclusion

In this chapter, the numerous numerical examples based on challenging benchmark

datasets are presented to demonstrate the validity and effectiveness of the self-organising

transparent machine learning algorithms and deep learning systems. A number of state-of-

the-art approaches are also involved for a better evaluation.

The experiment results show the strong performance of the proposed approaches

compared with other approaches and also reveal their ability in the real applications.

218

7. Conclusion and Future Work

7.1. Key Contribution

This research consists of three main topics: 1) unsupervised self-organising machine

learning techniques; 2) supervised self-organising machine learning techniques and 3)

transparent self-organising deep learning networks, all of which are developed on the

theoretical basis of the Empirical Data Analytics framework and AnYa type fuzzy rule-based

system.

The works described in this thesis serve as powerful alternatives to the traditional data

analysis, computational intelligence and machine learning methodologies:

1) Four different novel clustering/data partitioning algorithms are proposed, which are

autonomous, self-organising, nonparametric and free from prior assumptions as well as user-

and problem- specific parameters.

In contrast with the state-of-the-art clustering approaches, the proposed clustering/data

partitioning algorithms do not impose any data generation models on the data as a priori.

They are driven by the empirically observed data and are able to produce the objective results

without the need of prior knowledge of the problems. In addition, they are highly efficient

and suitable for large-scale static/streaming data processing.

2) Four novel approaches for regression, classification and anomaly detection are

proposed, which share the same advantages of the unsupervised machine learning techniques

proposed in this thesis thanks to the merits of the nonparametric EDA operators.

Without relying on the predefined free parameters and assumptions, the presented

supervised self-organising learning algorithms are able to produce strong, objective results on

various problems. With the ability of self-organising and self-evolving, these approaches are

very suitable for real time streaming data processing.

3) Self-organising transparent deep learning networks with human-level performance

and interpretable structure are proposed as the alternative to the popular deep learning models

of the black-box type.

Traditional deep learning approaches are able to achieve very high performance on

many problems; however, the lack of transparency and interpretability is one of the major

drawbacks preventing them to be widely applied. The deep learning networks presented in

this thesis, however, have a prototype-based nature and a self-organising and self-evolving

219

structure. They are able to demonstrate very high performance on the image classification

problems currently with a fully transparent, highly efficient and parallelisable learning

process, which can be very powerful and attractive in real applications. The semi-supervised

learning strategy allows the introduced deep learning networks to learn from very little

training images while exhibit very high accurate classification results and to learn new

knowledge actively without supervision by human experts.

7.2. Future Work Plans

The following directions are to be considered in the future for improvement of the

machine learning algorithms and deep learning systems:

A. Unsupervised self-organising machine learning techniques

1) The optimality of the proposed clustering/data partitioning algorithms needs to be

investigated, which is of great importance for real applications as well as for the research

purposes. The optimality of the solution is the proof of the validity and effectiveness of a

learning algorithm.

2) The performance of the clustering/data partitioning algorithms, including the ones

presented in this thesis, is more or less subjective to the choice of distance

metric/dissimilarity. The question of when to use which type of distance metric/dissimilarity

requires a careful study. One possible approach is to conduct a systematic investigation on

the differences in the behaviours of different distance metrics/dissimilarities in the real data

space.

3) The choice of the most suitable clustering/data partitioning algorithm is always

problem-specific. However, it will be of great interest to carefully study the advantages and

deficiencies of each algorithm, depending on which one can always select the most suitable

algorithm for a given problem.

4) New learning algorithms that are not only free from the prior assumptions and user-

and problem-specific parameters, but also free from the influence of distance

metrics/dissimilarity can be very useful for investigating the data pattern objectively.

5) A new data partitioning algorithm that is free from hard-coded mathematical rules

can be very helpful for different applications.

220

B. Supervised self-organising machine learning techniques

1) The stability of the first order autonomous learning multi-model system needs to be

investigated and proven. Stability analysis of a learning system is of paramount importance

for real-world applications and provides the theoretical guarantees for the convergence.

2) The zero order autonomous learning multi-model system can be further improved by

introducing dynamically changing threshold derived from data directly.

3) The sensitivity of the learning systems to the different experimental setting requires

further study.

4) The computational complexity analysis of the learning systems and statistical

analysis of the numerical results need to be done in the future, which allow a better

understanding of the properties of the proposed learning systems.

5) The online version of autonomous anomaly detection algorithm can be very useful

for the fault detection in data streams. In the real-world applications, new data often

continuously arrives in a form of a stream. Identifying the anomalies from the stream in real-

time is critical for identifying faults in an earlier stage, which may prevent a serious accident

that may happen in the near future.

C. Transparent self-organising deep learning networks

1) The deep rule-based systems presented in this thesis employ the pre-trained deep

convolutional neural network as the feature descriptor without any tuning or modification.

However, the performance of the systems can be further improved if proper tuning is

involved.

2) The deep rule-based systems can be extended to learn from images that contain

multiple sub-regions of different classes, which could be of great importance for

understanding the semantic meaning of the images.

221

References

[1] T. Bayes, “An essay towards solving a problem in the doctrine of chances,” Philos. Trans. R.

Soc., vol. 53, p. 370, 1763.

[2] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern classification, 2nd ed. Chichester, West

Sussex, UK,: Wiley-Interscience, 2000.

[3] C. M. Bishop, Pattern recognition and machine learning. New York: Springer, 2006.

[4] T. Hastie, R. Tibshirani, and J. Friedman, The elements of statistical learning: Data mining,

inference, and prediction. Burlin: Springer, 2009.

[5] J. B. MacQueen, “Some methods for classification and analysis of multivariate observations,”

5th Berkeley Symp. Math. Stat. Probab., vol. 1, no. 233, pp. 281–297, 1967.

[6] M. Ester, H. P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm for discovering

clusters in large spatial databases with noise,” in International Conference on Knowledge

Discovery and Data Mining, 1996, vol. 96, pp. 226–231.

[7] A. Lemos, W. Caminhas, and F. Gomide, “Adaptive fault detection and diagnosis using an

evolving fuzzy classifier,” Inf. Sci. (Ny)., vol. 220, pp. 64–85, 2013.

[8] M. Pratama, S. G. Anavatti, and E. Lughofer, “Evolving fuzzy rule-based classifier based on

GENEFIS,” IEEE Int. Conf. Fuzzy Syst., 2013.

[9] P. Angelov and X. Zhou, “Evolving fuzzy systems from data streams in real-time,” in 2006

International Symposium on Evolving Fuzzy Systems, 2006, pp. 29–35.

[10] R. Hyde and P. Angelov, “A fully autonomous data density based clustering technique,” in

IEEE Symposium on Evolving and Autonomous Learning Systems, 2014, pp. 116–123.

[11] P. P. Angelov and D. P. Filev, “An approach to online identification of Takagi-Sugeno fuzzy

models,” IEEE Trans. Syst. Man, Cybern. - Part B Cybern., vol. 34, no. 1, pp. 484–498, 2004.

[12] R. Dutta Baruah and P. Angelov, “Evolving local means method for clustering of streaming

data,” IEEE Int. Conf. Fuzzy Syst., pp. 10–15, 2012.

[13] R. R. Yager and D. P. Filev, “Generation of fuzzy rules by mountain clustering,” J. Intell.

Fuzzy Syst., vol. 2, no. 3, pp. 209–219, 1994.

[14] S. L. Chiu, “A cluster extension method with extension to fuzzy model\nidentification,” Proc.

1994 IEEE 3rd Int. Fuzzy Syst. Conf., pp. 1240–1245, 1994.

[15] S. L. Chiu, “Fuzzy model identification based on cluster estimation,” J. Intell. Fuzzy Syst., vol.

2, no. 3, pp. 267–278, 1994.

[16] K. Fukunaga and L. Hostetler, “The estimation of the gradient of a density function, with

applications in pattern recognition,” IEEE Trans. Inf. Theory, vol. 21, no. 1, pp. 32–40, 1975.

[17] C. Wang, S. Member, J. Lai, and D. Huang, “SVStream : A Support Vector Based Algorithm

for Clustering Data Streams,” IEEE Trans. Knowl. Data Eng., vol. 25, no. 1, pp. 1410–1424,

2011.

[18] P. Angelov and A. Kordon, “Adaptive inferential sensors based on evolving fuzzy models,”

IEEE Trans. Syst. Man, Cybern. - Part B Cybern., vol. 40, no. 2, pp. 529–539, 2010.

[19] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nat. Methods, vol. 13, no. 1, pp. 35–

222

35, 2015.

[20] J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, and A. Y. Ng, “Multimodal Deep Learning,”

Proc. 28th Int. Conf. Mach. Learn., pp. 689–696, 2011.

[21] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep

convolutional neural networks,” in Advances In Neural Information Processing Systems, 2012,

pp. 1097–1105.

[22] D. Ciresan, U. Meier, and J. Schmidhuber, “Multi-column deep neural networks for image

classification,” in Conference on Computer Vision and Pattern Recognition, 2012, pp. 3642–

3649.

[23] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image

recognition,” in International Conference on Learning Representations, 2015, pp. 1–14.

[24] D. C. Cireşan, U. Meier, L. M. Gambardella, and J. Schmidhuber, “Convolutional neural

network committees for handwritten character classification,” in International Conference on

Document Analysis and Recognition, 2011, vol. 10, pp. 1135–1139.

[25] P. P. Angelov, X. Gu, J. Principe, and D. Kangin, “Empirical data analysis - a new tool for

data analytics,” in IEEE International Conference on Systems, Man, and Cybernetics, 2016,

pp. 53–59.

[26] P. Angelov, X. Gu, and D. Kangin, “Empirical data analytics,” Int. J. Intell. Syst., vol. 32, no.

12, pp. 1261–1284, 2017.

[27] P. P. Angelov, X. Gu, and J. Principe, “A generalized methodology for data analysis,” IEEE

Trans. Cybern., vol. 48, no. 10, pp. 2981–2993, 2018.

[28] P. P. Angelov, X. Gu, G. Gutierrez, J. A. Iglesias, and A. Sanchis, “Autonomous data density

based clustering method,” in IEEE World Congress on Computational Intelligence, 2016, pp.

2405–2413.

[29] X. Gu and P. P. Angelov, “Autonomous data-driven clustering for live data stream,” in IEEE

International Conference on Systems, Man, and Cybernetics, 2016, pp. 1128–1135.

[30] X. Gu, P. P. Angelov, G. Gutierrez, J. A. Iglesias, and A. Sanchis, “Parallel computing TEDA

for high frequency streaming data clustering,” in INNS Conference on Big Data, 2016, pp.

238–253.

[31] X. Gu, P. P. Angelov, and J. C. Principe, “A method for autonomous data partitioning,” Inf.

Sci. (Ny)., vol. 460–461, pp. 65–82, 2018.

[32] X. Gu, P. Angelov, D. Kangin, and J. Principe, “Self-organised direction aware data

partitioning algorithm,” Inf. Sci. (Ny)., vol. 423, pp. 80–95, 2018.

[33] X. Gu, P. P. Angelov, D. Kangin, and J. C. Principe, “A new type of distance metric and its

use for clustering,” Evol. Syst., vol. 8, no. 3, pp. 167–178, 2017.

[34] P. P. Angelov, X. Gu, and J. C. Principe, “Autonomous learning multi-model systems from

data streams,” IEEE Trans. Fuzzy Syst., vol. 26, no. 4, pp. 2213–2224, 2018.

[35] P. P. Angelov and X. Gu, “Autonomous learning multi-model classifier of 0-order (ALMMo-

0),” in IEEE International Conference on Evolving and Autonomous Intelligent Systems, 2017,

pp. 1–7.

[36] X. Gu and P. P. Angelov, “Self-organising fuzzy logic classifier,” Inf. Sci. (Ny)., vol. 447, pp.

223

36–51, 2018.

[37] X. Gu and P. Angelov, “Autonomous anomaly detection,” in IEEE Conference on Evolving

and Adaptive Intelligent Systems, 2017, pp. 1–8.

[38] P. Angelov, X. Gu, and J. Principe, “Fast feedforward non-parametric deep learning network

with automatic feature extraction,” in International Joint Conference on Neural Networks,

2017, pp. 534–541.

[39] P. P. Angelov and X. Gu, “Deep rule-based classifier with human-level performance and

characteristics,” Inf. Sci. (Ny)., vol. 463–464, pp. 196–213, 2018.

[40] X. Gu and P. P. Angelov, “Semi-supervised deep rule-based approach for image

classification,” Appl. Soft Comput., vol. 68, pp. 53–68, 2018.

[41] P. P. Angelov and X. Gu, “MICE: Multi-layer multi-model images classifier ensemble,” in

IEEE International Conference on Cybernetics, 2017, pp. 436–443.

[42] P. Angelov and X. Gu, “A cascade of deep learning fuzzy rule-based image classifier and

SVM,” in International Conference on Systems, Man and Cybernetics, 2017, pp. 1–8.

[43] X. Gu, P. P. Angelov, C. Zhang, and P. M. Atkinson, “A massively parallel deep rule-based

ensemble vlassifier for remote sensing scenes,” IEEE Geosci. Remote Sens. Lett., vol. 15, no.

3, pp. 345–349, 2018.

[44] G. Grimmett and D. Welsh, Probability: an introduction. Oxford University Press, 2014.

[45] R. C. Tolman, The principles of statistical mechanics. Courier Corporation, 1938.

[46] A. N. Kolmogorov, Foundations of the theory of probability. England: Chelsea: Oxford, 1950.

[47] V. Vapnik and R. Izmailov, “Statistical inference problems and their rigorous solutions,” Stat.

Learn. Data Sci., vol. 9047, pp. 33–71, 2015.

[48] P. Angelov, “Outside the box: an alternative data analytics framework,” J. Autom. Mob. Robot.

Intell. Syst., vol. 8, no. 2, pp. 53–59, 2014.

[49] P. P. Angelov, “Anomaly detection based on eccentricity analysis,” in 2014 IEEE Symposium

Series in Computational Intelligence, IEEE Symposium on Evolving and Autonomous

Learning Systems, EALS, SSCI 2014, 2014, pp. 1–8.

[50] P. Angelov, “Typicality distribution function – a new density- based data analytics tool,” in

IEEE International Joint Conference on Neural Networks (IJCNN), 2015, pp. 1–8.

[51] D. Kangin, P. Angelov, and J. A. Iglesias, “Autonomously evolving classifier TEDAClass,”

Inf. Sci. (Ny)., vol. 366, pp. 1–11, 2016.

[52] J. G. Saw, M. C. K. Yang, and T. S. E. C. Mo, “Chebyshev inequality with estimated mean

and variance,” Am. Stat., vol. 38, no. 2, pp. 130–132, 1984.

[53] L. A. Zadeh, “Fuzzy sets,” Inf. Control, vol. 8, no. 3, pp. 338–353, 1965.

[54] P. P. Angelov and X. Gu, “Empirical fuzzy sets,” Int. J. Intell. Syst., vol. 33, no. 2, pp. 362–

395, 2017.

[55] P. Angelov, Autonomous learning systems: from data streams to knowledge in real time. John

Wiley & Sons, Ltd., 2012.

[56] R. De Maesschalck, D. Jouan-Rimbaud, and D. L. L. Massart, “The Mahalanobis distance,”

224

Chemom. Intell. Lab. Syst., vol. 50, no. 1, pp. 1–18, 2000.

[57] B. McCune, J. B. Grace, and D. L. Urban, Analysis of Ecological Communities. 2002.

[58] E. H. Mamdani and S. Assilian, “An experiment in linguistic synthesis with a fuzzy logic

controller,” Int. J. Man. Mach. Stud., vol. 7, no. 1, pp. 1–13, 1975.

[59] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications to modeling

and control,” IEEE Trans. Syst. Man. Cybern., vol. 15, no. 1, pp. 116–132, 1985.

[60] P. Angelov and R. Yager, “A new type of simplified fuzzy rule-based system,” Int. J. Gen.

Syst., vol. 41, no. 2, pp. 163–185, 2011.

[61] W. Pedrycz, “Fuzzy relational equations with generalized connectives and their applications,”

Fuzzy Sets Syst., vol. 10, no. 1–3, pp. 185–201, 1983.

[62] P. Angelov, “An approach for fuzzy rule-base adaptation using on-line clustering,” Int. J.

Approx. Reason., vol. 35, no. 3, pp. 275–289, 2004.

[63] C. C. Lee, “Fuzzy Logic in Control Systems : Fuzzy Logic Controller - Part 1,” IEEE Trans.

Syst. Man Cybern., vol. 20, no. 2, pp. 404–418, 1990.

[64] A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu, Spatial tessellations: concepts and

applications of Voronoi diagrams, 2nd ed. Chichester, England: John Wiley & Sons., 1999.

[65] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous activity,”

Bull. Math. Biophys., vol. 5, no. 4, pp. 115–133, 1943.

[66] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. Crambridge, MA: MIT Press,

2016.

[67] F. Gers, “Long short-term memory in recurrent neural networks,” 2001.

[68] A. Mohamed, G. E. Dahl, and G. Hinton, “Acoustic modeling using deep belief networks,”

IEEE Trans. Audio. Speech. Lang. Processing, vol. 20, no. 1, pp. 14–22, 2012.

[69] N. K. Kasabov, “NeuCube: A spiking neural network architecture for mapping, learning and

understanding of spatio-temporal brain data,” Neural Networks, vol. 52, pp. 62–76, 2014.

[70] K. Fukushima and S. Miyake, “Neocognitron: a self-organizing neural network model for a

mechanism of visual pattern recognition,” in Competition and cooperation in neural nets,

Springer Berlin Heidelberg, 1982, pp. 267–285.

[71] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel,

“Backpropagation applied to handwritten zip code recognition,” Neural Comput., vol. 1, no. 4,

pp. 541–551, 1989.

[72] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun, “What is the best multi-stage

architecture for object recognition?,” in IEEE International Conference on Computer Vision,

2009, pp. 2146–2153.

[73] P. Y. Simard, D. Steinkraus, and J. C. Platt, “Best practices for convolutional neural networks

applied to visual document analysis,” Doc. Anal. Recognition, 2003. Proceedings. Seventh Int.

Conf., pp. 958–963, 2003.

[74] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M.

Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H.

King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through deep

225

reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[75] D. Erhan, C. Szegedy, A. Toshev, and D. Anguelov, “Scalable object detection using deep

neural networks,” in IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp.

2155–2162.

[76] S. Gao, L. Duan, and I. W. Tsang, “DEFEATnet—A deep conventional image representation

for image classification,” IEEE Trans. Circuits Syst. Video Technol., vol. 26, no. 3, pp. 494–

505, 2016.

[77] K. Charalampous and A. Gasteratos, “On-line deep learning method for action recognition,”

Pattern Anal. Appl., vol. 19, no. 2, pp. 337–354, 2016.

[78] T. Guha, S. Member, and R. K. Ward, “Sequential deep learning for human action

recognition,” Hum. Behav. Underst., pp. 29--39, 2011.

[79] L. Zhang, L. Zhang, and V. Kumar, “Deep learning for remote sensing data,” IEEE Geosci.

Remote Sens. Mag., vol. 4, no. 2, pp. 22–40, 2016.

[80] Y. Li, H. Zhang, X. Xue, Y. Jiang, and Q. Shen, “Deep learning for remote sensing image

classification: a survey,” Wiley Interdiscip. Rev. Data Min. Knowl. Discov., vol. e1264, 2018.

[81] H. Zhang, Y. Li, Y. Zhang, and Q. Shen, “Spectral-spatial classification of hyperspectral

imagery using a dual-channel convolutional neural network,” Remote Sens. Lett., vol. 8, no. 5,

pp. 438–447, 2017.

[82] Y. Li, H. Zhang, and Q. Shen, “Spectral-spatial classification of hyperspectral imagery with

3D convolutional neural network,” Remote Sens., vol. 9, no. 1, 2017.

[83] D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction and functional

architecture in the cat’s visual cortex,” J. Physiol., vol. 160, no. 1, pp. 106–154, 1962.

[84] S. K. Pal, S. Bandyopadhyay, and S. S. Ray, “Evolutionary computation in bioinformatics: A

review,” IEEE Trans. Syst. Man Cybern. Part C Appl. Rev., vol. 36, no. 5, pp. 601–615, 2006.

[85] T. Back, U. Hammel, and H. P. Schwefel, “Evolutionary computation: Comments on the

history and current state,” IEEE Trans. Evol. Comput., vol. 1, no. 1, pp. 3–17, 1997.

[86] H. J. Bremermann, “Optimization through evolution and recombination,” Self-organizing

Syst., vol. 93, p. 106, 1962.

[87] G. E. P. Box, “Evolutionary operation: a method for increasing industrial productivity,” Appl.

Stat., vol. 6, no. 2, pp. 81–101, 1957.

[88] R. M. Friedberg, “A learning machine: part I,” IBM J. Res. Dev., vol. 2, no. 1, pp. 2–13, 1958.

[89] I. Rechenberg, “Cybernetic solution path of an experimental problem,” R. Aircr. Establ. Libr.

Transl., vol. 1122, 1965.

[90] L. J. Fogel, “Autonomous automata,” Ind. Res., vol. 4, pp. 14–19, 1962.

[91] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic

algorithm: NSGA-II,” IEEE Trans. Evol. Comput., vol. 6, no. 2, pp. 182–197, 2002.

[92] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A fast elitist non-dominated sorting genetic

algorithm for multi-objective optimization: NSGA-II,” in International Conference on Parallel

Problem Solving From Nature, Springer, Berlin, Heidelberg, 2000, pp. 849–858.

[93] D. Du, D. Simon, and M. Ergezer, “Biogeography-based optimization combined with

226

evolutionary strategy and immigration refusal,” in IEEE International Conference on Systems,

Man and Cybernetics, 2009, pp. 997–1002.

[94] J. R. Koza, “Genetic programming as a means for programming computers by natural

selection,” Stat. Comput., vol. 4, no. 2, pp. 87–112, 1994.

[95] C. Zhang, H. Shao, and Y. Li, “Particle swarm optimisation for evolving artificial neural

network,” in IEEE International Conference on Systems, Man, and Cybernetics, 2000, pp.

2487–2490.

[96] T. Chen, Q. Shen, P. Su, and C. Shang, “Fuzzy rule weight modification with particle swarm

optimisation,” Soft Comput., vol. 20, no. 8, pp. 2923–2937, 2016.

[97] T. Bäck, D. B. Fogel, and Z. Michalewicz, Handbook of evolutionary computation. CRC

Press, 1997.

[98] O. Maimon and L. Rokach, Data mining and knowledge discovery handbook. Springer,

Boston, MA, 2005.

[99] S. C. Johnson, “Hierarchical clustering schemes,” Psychometrika, vol. 32, no. 3, pp. 241–254,

1967.

[100] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: a review,” ACM Comput. Surv.,

vol. 31, no. 3, pp. 264–323, 1999.

[101] G. Karypis, E.-H. Han, and V. Kumar, “Chameleon: hierarchical clustering using dynamic

modeling,” Computer (Long. Beach. Calif)., vol. 32, no. 8, pp. 68–75, 1999.

[102] W. H. E. Day and H. Edelsbrunner, “Efficient algorithms for agglomerative hierarchical

clustering methods,” J. Classif., vol. 1, pp. 7–24, 1984.

[103] A. Gucnoche, P. Hansen, and B. Jaumard, “Efficient algorithms for divisive hierarchical

clustering with the diameter criterion,” Joumal Classif., vol. 8, pp. 5–30, 1991.

[104] T. Xiong, S. Wang, A. Mayers, and E. Monga, “DHCC: Divisive hierarchical clustering of

categorical data,” Data Min. Knowl. Discov., vol. 24, pp. 103–135, 2012.

[105] B. J. Frey and D. Dueck, “Clustering by passing messages between data points,” Science (80-.

)., vol. 315, no. 5814, pp. 972–976, 2007.

[106] S. Zhong, “Efficient online spherical k-means clustering,” in Proceedings of the International

Joint Conference on Neural Networks, 2005, pp. 3180–3185.

[107] L. B. Neuristique and Y. Bengio, “Convergence properties of the K-means algorithms,” Adv.

Neural Inf. Process. Syst., pp. 585--592, 1995.

[108] L. Kaufman and P. Rousseeuw, “Clustering by means of medoids,” in Statistical Data

Analysis Based on the L1 Norm and Related Methods, North-Holland, 1987, pp. 405–416.

[109] T. Kohonen, Self-organizing maps. Berlin: Springer, 1997.

[110] P. Płoński and K. Zaremba, “Self-organising maps for classification with metropolis-hastings

algorithm for supervision,” in International Conference on Neural Information Processing,

2012, pp. 149–156.

[111] D. Birant and A. Kut, “ST-DBSCAN: An algorithm for clustering spatial-temporal data,” Data

Knowl. Eng., vol. 60, no. 1, pp. 208–221, 2007.

[112] P. Viswanath and V. Suresh Babu, “Rough-DBSCAN: A fast hybrid density based clustering

227

method for large data sets,” Pattern Recognit. Lett., vol. 30, no. 16, pp. 1477–1488, 2009.

[113] S. Kisilevich, F. Mansmann, and D. Keim, “P-DBSCAN: A density based clustering algorithm

for exploration and analysis of attractive areas using collections of geo-tagged photos,” in

International Conference and Exhibition on Computing for Geospatial Research and

Application, 2010, pp. 1–4.

[114] D. Comaniciu and P. Meer, “Mean shift: A robust approach toward feature space analysis,”

IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 5, pp. 603–619, 2002.

[115] K. L. Wu and M. S. Yang, “Mean shift-based clustering,” Pattern Recognit., vol. 40, no. 11,

pp. 3035–3052, 2007.

[116] L. Abdallah and I. Shimshoni, “Mean Shift Clustering Algorithm for Data with Missing

Values,” in International Conference on Data Warehousing and Knowledge Discovery, 2014,

pp. 426–438.

[117] E. Lughofer and P. Angelov, “Handling drifts and shifts in on-line data streams with evolving

fuzzy systems,” Appl. Soft Comput., vol. 11, no. 2, pp. 2057–2068, 2011.

[118] R. Hyde, P. Angelov, and A. R. MacKenzie, “Fully online clustering of evolving data streams

into arbitrarily shaped clusters,” Inf. Sci. (Ny)., vol. 382–383, pp. 96–114, 2017.

[119] A. Corduneanu and C. M. Bishop, “Variational Bayesian model selection for mixture

distributions,” Proc. Eighth Int. Conf. Artif. Intell. Stat., pp. 27–34, 2001.

[120] C. A. McGrory and D. M. Titterington, “Variational approximations in Bayesian model

selection for finite mixture distributions,” Comput. Stat. Data Anal., vol. 51, no. 11, pp. 5352–

5367, 2007.

[121] D. M. Blei and M. I. Jordan, “Variational methods for the Dirichlet process,” Proc. twenty-first

Int. Conf. Mach. Learn., p. 12, 2004.

[122] D. M. Blei and M. I. Jordan, “Variational inference for Dirichlet process mixtures,” Bayesian

Anal., vol. 1, no. 1 A, pp. 121–144, 2006.

[123] T. Kimura, T. Tokuda, Y. Nakada, T. Nokajima, T. Matsumoto, and A. Doucet, “Expectation-

maximization algorithms for inference in Dirichlet processes mixture,” Pattern Anal. Appl.,

vol. 16, no. 1, pp. 55–67, 2013.

[124] J. C. Bezdek, R. Ehrlich, and W. Full, “FCM: The fuzzy c-means clustering algorithm,”

Comput. Geosci., vol. 10, no. 2–3, pp. 191–203, 1984.

[125] J. C. Dunn, “A fuzzy relative of the ISODATA process and its use in detecting compact well-

separated clusters,” J. Cybern., vol. 3, no. 3, 1973.

[126] J. C. Dunn, “Well-separated clusters and optimal fuzzy partitions,” J. Cybern., vol. 4, no. 1,

pp. 95–104, 1974.

[127] L. Fu and E. Medico, “FLAME, a novel fuzzy clustering method for the analysis of DNA

microarray data.,” BMC Bioinformatics, vol. 8, no. 1, p. 3, 2007.

[128] S. Krinidis and V. Chatzis, “A robust fuzzy local information c-means clustering algorithm,”

IEEE Trans. Image Process., vol. 19, no. 5, pp. 1328–1337, 2010.

[129] M. N. Murty and V. S. Devi, Introduction to pattern recognition and machine learning. World

Scientific., 2015.

228

[130] S. T. K. Koutroumbas, Pattern Recognition 4th Edition. New York: Elsevier, 2009.

[131] T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE Trans. Inf. Theory, vol.

13, no. 1, pp. 21–27, 1967.

[132] P. Cunningham and S. J. Delany, “K-nearest neighbour classifiers,” Mult. Classif. Syst., vol.

34, pp. 1–17, 2007.

[133] K. Fukunage and P. M. Narendra, “A branch and bound algorithm for computing k-nearest

neighbors,” IEEE Trans. Comput., vol. C-24, no. 7, pp. 750–753, 1975.

[134] P. Horton and K. Nakai, “Better prediction of protein cellular localization sites with the k

nearest neighbors classifier,” in International Conference on Intelligent Systems for Molecular

Biology, 1997, pp. 147–152.

[135] H. Franco-Lopez, A. R. Ek, and M. E. Bauer, “Estimation and mapping of forest stand density,

volume, and cover type using the k-nearest neighbors method,” Remote Sens. Environ., vol.

77, no. 3, pp. 251–274, 2001.

[136] T. Seidl and H.-P. Kriegel, “Optimal multi-step k-nearest neighbor search,” ACM SIGMOD

Rec., vol. 27, no. 2, pp. 154–165, 1998.

[137] J. M. Keller and M. R. Gray, “A fuzzy k-nearest neighbor algorithm,” IEEE Trans. Syst. Man

Cybern., vol. 15, no. 4, pp. 580–585, 1985.

[138] E.-H. (Sam) Han, G. Karypis, and V. Kumar, “Text categorization using weight adjusted k-

nearest neighbor classification,” in Advances in Knowledge Discovery and Data Mining, 2001,

pp. 53–65.

[139] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional networks,” in

European Conference on Computer Vsion, 2014, pp. 818–833.

[140] A. B. Penatti, K. Nogueira, and J. A. Santos, “Do deep features generalize from everyday

objects to remote sensing and aerial scenes domains ?,” in IEEE Conference on Computer

Vision and Pattern Recognition, 2015, pp. 44–51.

[141] A. Avramovi and V. Risojevi, “Block-based semantic classification of high-resolution

multispectral aerial images,” Signal, Image Video Process., vol. 10, pp. 75–84, 2016.

[142] N. Cristianini and J. Shawe-Taylor, An introduction to support vector machines and other

kernel-based learning methods. Cambridge: Cambridge University Press, 2000.

[143] T. S. Furey, N. Cristianini, N. Duffy, D. W. Bednarski, M. Schummer, and D. Haussler,

“Support vector machine classification and validation of cancer tissue samples using

microarray expression data,” Bioinformatics, vol. 16, no. 10, pp. 906–914, 2000.

[144] W. Huang, Y. Nakamori, and S.-Y. Wang, “Forecasting stock market movement direction with

support vector machine,” Comput. Oper. Res., vol. 32, no. 10, pp. 2513–2522, 2005.

[145] T. Joachims, “Text categorization with support vector machines: learning with many relevant

features,” in European Conference on Machine Learning, 1998, pp. 137–142.

[146] W. S. Noble, “What is a support vector machine?,” Nat. Biotechnol., vol. 24, no. 12, pp. 1565–

1567, 2006.

[147] C. J. C. Burges, “A tutorial on support vector machines for pattern recognition,” Data Min.

Knowl. Discov., vol. 2, no. 2, pp. 121–167, 1998.

229

[148] V. Vapnik and A. Lerner, “Pattern recognition using generalized portrait method,” Autom.

Remote Control, vol. 24, no. 6, pp. 774–780, 1963.

[149] D. Kangin and P. Angelov, “Recursive SVM based on TEDA,” in International Symposium on

Statistical Learning and Data Sciences, 2015, pp. 156–168.

[150] K. Polat and S. Güneş, “Classification of epileptiform EEG using a hybrid system based on

decision tree classifier and fast Fourier transform,” Appl. Math. Comput., vol. 187, no. 2, pp.

1017–1026, 2007.

[151] W. Du, W. Du, Z. Zhan, and Z. Zhan, “Building decision tree classifier on private data,” in

The IEEE International Conference on Privacy, Security and Data Mining, 2002, pp. 1–8.

[152] S. S. Sivatha Sindhu, S. Geetha, and A. Kannan, “Decision tree based light weight intrusion

detection using a wrapper approach,” Expert Syst. Appl., vol. 39, no. 1, pp. 129–141, 2012.

[153] L. Lu, L. Di, and Y. Ye, “A decision-tree classifier for extracting transparent plastic-mulched

Landcover from landsat-5 TM images,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol.

7, no. 11, pp. 4548–4558, 2014.

[154] S. R. Safavian and D. Landgrebe, “A survey of decision tree classifier methodology,” IEEE

Trans. Syst. Man Cybern., vol. 21, no. 3, pp. 660–674, 1991.

[155] M. Learning, M. Learning, K. A. Publishers, K. A. Publishers, A. C. Sciences, A. C. Sciences,

R. August, and R. August, “Induction of decision trees,” Expert Syst., pp. 81–106, 2007.

[156] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen., Classification and regression trees.

CRC press, 1984.

[157] J. R. Quinlan, “Induction of decision trees,” Mach. Learn., vol. 1, no. 1, pp. 81–106, 1986.

[158] J. R. Quinlan, C4.5: programs for machine learning. Elsevier, 2014.

[159] P. P. Angelov, “Evolving fuzzy rule-based models,” J. Chinese Inst. Ind. Eng., vol. 17, no. 5,

pp. 459–468, 2000.

[160] P. Angelov and X. Zhou, “Evolving fuzzy-rule based classifiers from data streams,” IEEE

Trans. Fuzzy Syst., vol. 16, no. 6, pp. 1462–1474, 2008.

[161] P. Angelov, E. Lughofer, and X. Zhou, “Evolving fuzzy classifiers using different model

architectures,” Fuzzy Sets Syst., vol. 159, no. 23, pp. 3160–3182, 2008.

[162] R. D. Baruah, P. P. Angelov, and J. Andreu, “Simpl _ eClass : simplified potential-free

evolving fuzzy rule-based classifiers,” in IEEE International Conference on Systems, Man,

and Cybernetics (SMC), 2011, pp. 2249–2254.

[163] P. Angelov, D. Kangin, and D. Kolev, “Symbol recognition with a new autonomously

evolving classifier AutoClass,” in IEEE Conference on Evolving and Adaptive Intelligent

Systems (EAIS), 2014, pp. 1–7.

[164] X. Zhu, Z. Ghahraman, and J. D. Lafferty, “Semi-supervised learning using gaussian fields and

harmonic functions,” in International conference on Machine learning, 2003, pp. 912–919.

[165] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf, “Learning with local and

global consistency,” in Adv. Neural. Inform. Process Syst, 2004, pp. 321–328.

[166] O. Chapelle and A. Zien, “Semi-supervised classification by low density separation,” in

AISTATS, 2005, pp. 57–64.

230

[167] M. Guillaumin, J. J. Verbeek, and C. Schmid, “Multimodal semi-supervised learning for image

classification,” in IEEE Conference on Computer Vision & Pattern Recognition, 2010, pp.

902–909.

[168] J. Wang, T. Jebara, and S. F. Chang, “Semi-supervised learning using greedy Max-Cut,” J.

Mach. Learn. Res., vol. 14, pp. 771–800, 2013.

[169] A. Iwayemi and C. Zhou, “SARAA: Semi-Supervised Learning for Automated Residential

Appliance Annotation,” IEEE Trans. Smart Grid, vol. 8, no. 2, p. 779, 2017.

[170] F. Wang, C. Zhang, H. C. Shen, and J. Wang, “Semi-supervised classification using linear

neighborhood propagation,” in IEEE Conference on Computer Vision & Pattern Recognition,

2006, pp. 160–167.

[171] S. Xiang, F. Nie, and C. Zhang, “Semi-supervised classification via local spline regression,”

IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 11, pp. 2039–2053, 2010.

[172] B. Jiang, H. Chen, B. Yuan, and X. Yao, “Scalable graph-based semi-supervised learning

through sparse bayesian model,” IEEE Trans. Knowl. Data Eng., vol. 29, no. 12, pp. 2758–

2771, 2017.

[173] J. Thorsten, “Transductive inference for text classification using support vector machines,” Int.

Conf. Mach. Learn., vol. 9, pp. 200–209, 1999.

[174] O. Chapelle, V. Sindhwani, and S. Keerthi, “Optimization techniques for semi-supervised

support vector machines,” J. Mach. Learn. Res., vol. 9, pp. 203–233, 2008.

[175] V. Sindhwani, P. Niyogi, and M. Belkin, “Beyond the point cloud: from transductive to semi-

supervised learning,” in International Conference on Machine Learning, 2005, vol. 1, pp. 824–

831.

[176] M. Belkin, P. Niyogi, and V. Sindhwani, “Manifold regularization: a geometric framework for

learning from labeled and unlabeled examples,” J. Mach. Learn. Res., vol. 7, no. 2006, pp.

2399–2434, 2006.

[177] L. Gómez-Chova, G. Camps-Valls, J. Munoz-Mari, and J. Calpe, “Semisupervised image

classification with Laplacian support vector machines,” IEEE Geosci. Remote Sens. Lett., vol.

5, no. 3, pp. 336–340, 2008.

[178] F. Noorbehbahani, A. Fanian, R. Mousavi, and H. Hasannejad, “An incremental intrusion

detection system using a new semi-supervised stream classification method,” Int. J. Commun.

Syst., vol. 30, no. 4, pp. 1–26, 2017.

[179] W. Liu, J. He, and S.-F. Chang, “Large graph construction for scalable semi-supervised

learning,” in International Conference on Machine Learning, 2010, pp. 679–689.

[180] T. Isobe, E. D. Feigelson, M. G. Akritas, and G. J. Babu, “Linear regression in astronomy,”

Astrophys. J., vol. 364, pp. 104–113, 1990.

[181] R. E. Precup, H. I. Filip, M. B. Rədac, E. M. Petriu, S. Preitl, and C. A. Dragoş, “Online

identification of evolving Takagi-Sugeno-Kang fuzzy models for crane systems,” Appl. Soft

Comput. J., vol. 24, pp. 1155–1163, 2014.

[182] S. Heddam and N. Dechemi, “A new approach based on the dynamic evolving neural-fuzzy

inference system (DENFIS) for modelling coagulant dosage (Dos): case study of water

treatment plant of Algeria,” Desalin. water Treat., vol. 53, no. 4, pp. 1045–1053, 2015.

[183] V. Bianco, O. Manca, and S. Nardini, “Electricity consumption forecasting in Italy using linear

231

regression models,” Energy, vol. 34, no. 9, pp. 1413–1421, 2009.

[184] X. Gu, P. P. Angelov, A. M. Ali, W. A. Gruver, and G. Gaydadjiev, “Online evolving fuzzy

rule-based prediction model for high frequency trading financial data stream,” in IEEE

Conference on Evolving and Adaptive Intelligent Systems (EAIS), 2016, pp. 169–175.

[185] X. Yan and X. Su, Linear regression analysis: theory and computing. World Scientific, 2009.

[186] J. S. R. Jang, “ANFIS: adaptive-network-based fuzzy inference system,” IEEE Trans. Syst.

Man Cybern., vol. 23, no. 3, pp. 665–685, 1993.

[187] P. P. Angelov, D. P. Filev, and N. K. Kasabov, Evolving intelligent systems: methodology and

applications. 2010.

[188] N. K. Kasabov and Q. Song, “DENFIS : Dynamic Evolving Neural-Fuzzy Inference System

and Its Application for Time-Series Prediction,” IEEE Trans. Fuzzy Syst., vol. 10, no. 2, pp.

144–154, 2002.

[189] P. Angelov and R. Buswell, “Identification of evolving fuzzy rule-based models,” IEEE Trans.

Fuzzy Syst., vol. 10, no. 5, pp. 667–677, 2002.

[190] W. Leigh, R. Hightower, and N. Modani, “Forecasting the New York stock exchange

composite index with past price and interest rate on condition of volume spike,” Expert Syst.

Appl., vol. 28, no. 1, pp. 1–8, 2005.

[191] A. Al-Hmouz, Jun Shen, R. Al-Hmouz, and Jun Yan, “Modeling and simulation of an adaptive

neuro-fuzzy inference system (ANFIS) for mobile learning,” IEEE Trans. Learn. Technol.,

vol. 5, no. 3, pp. 226–237, 2012.

[192] P. Angelov and R. Buswell, “Evolving rule-based models: a tool for intelligent adaption,” in

IFSA world congress and 20th NAFIPS international conference, 2001, pp. 1062–1067.

[193] P. P. Angelov, Evolving rule-based models: a tool for design of flexible adaptive systems.

Springer Berlin Heidelberg, 2002.

[194] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: a survey,” ACM Comput.

Surv., vol. 41, no. 3, p. Article 15, 2009.

[195] A. Bernieri, G. Betta, and C. Liguori, “On-line fault detection and diagnosis obtained by

implementing neural algorithms on a digital signal processor,” IEEE Trans. Instrum. Meas.,

vol. 45, no. 5, pp. 894–899, 1996.

[196] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “LOF: Identifying Density-Based

Local Outliers,” in Proceedings of the 2000 Acm Sigmod International Conference on

Management of Data, 2000, pp. 1–12.

[197] N. Abe, B. Zadrozny, and J. Langford, “Outlier detection by active learning,” in ACM

International Conference on Knowledge Discovery and Data Mining, 2006, pp. 504–509.

[198] V. Hautam and K. Ismo, “Outlier Detection Using k-Nearest Neighbour Graph,” in

International Conference on Pattern Recognition, 2004, pp. 430–433.

[199] H. Moonesinghe and P. Tan, “Outlier detection using random walks,” in Proceedings of the

18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI’06), 2006, pp.

532–539.

[200] M. Salehi, C. Leckie, J. C. Bezdek, T. Vaithianathan, and X. Zhang, “Fast Memory Efficient

Local Outlier Detection in Data Streams,” IEEE Trans. Knowl. Data Eng., vol. 28, no. 12, pp.

232

3246–3260, 2016.

[201] L. Kuncheva, Combining pattern classifiers: methods and algorithms. Hoboken, New Jersey:

John Wiley & Sons, 2004.

[202] R. R. Yager and D. P. Filev, “Approximate clustering Via the mountain method,” IEEE Trans.

Syst. Man. Cybern., vol. 24, no. 8, pp. 1279–1284, 1994.

[203] D. E. Denning, “An Intrusion-Detection Model,” IEEE Trans. Softw. Eng., vol. SE-13, no. 2,

pp. 222–232, 1987.

[204] C. Thomas and N. Balakrishnan, “Improvement in intrusion detection with advances in sensor

fusion,” IEEE Trans. Inf. Forensics Secur., vol. 4, no. 3, pp. 542–551, 2009.

[205] F. A. Allah, W. I. Grosky, and D. Aboutajdine, “Document clustering based on diffusion maps

and a comparison of the k-means performances in various spaces,” in IEEE Symposium on

Computers and Communications, 2008, pp. 579–584.

[206] N. Dehak, R. Dehak, J. Glass, D. Reynolds, and P. Kenny, “Cosine Similarity Scoring without

Score Normalization Techniques,” in Proceedings of Odyssey 2010 - The Speaker and

Language Recognition Workshop (Odyssey 2010), 2010, pp. 71–75.

[207] R. G. Casey, “Moment Normalization of Handprinted Characters,” IBM J. Res. Dev., vol. 14,

no. 5, pp. 548–557, 1970.

[208] T. M. Lehmann, C. Gönner, and K. Spitzer, “Survey: interpolation methods in medical image

processing.,” IEEE Trans. Med. Imaging, vol. 18, no. 11, pp. 1049–1075, 1999.

[209] P. Thevenaz, T. Blu, and M. Unser, “Interpolation revisited,” IEEE Trans. Med. Imaging, vol.

19, no. 7, pp. 739–758, 2000.

[210] G.-S. Xia, J. Hu, F. Hu, B. Shi, X. Bai, Y. Zhong, and L. Zhang, “AID: a benchmark dataset

for performance evaluation of aerial scene classification,” IEEE Trans. Geosci. Remote Sens.,

vol. 55, no. 7, pp. 3965–3981, 2017.

[211] Y. Yang and S. Newsam, “Bag-of-visual-words and spatial extensions for land-use

classification,” in International Conference on Advances in Geographic Information Systems,

2010, pp. 270–279.

[212] L. Fei-Fei, R. Fergus, and P. Perona, “One-shot learning of object categories,” IEEE Trans.

Pattern Anal. Mach. Intell., vol. 28, no. 4, pp. 594–611, 2006.

[213] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to

document recognition,” Proc. IEEE, vol. 86, no. 11, pp. 2278–2323, 1998.

[214] R. Keys, “Cubic convolution interpolation for digital image processing,” IEEE Trans. Acoust.,

vol. 29, no. 6, pp. 1153–1160, 1981.

[215] J. W. Hwang and H. S. Lee, “Adaptive image interpolation based on local gradient features,”

IEEE Signal Process. Lett., vol. 11, no. 3, pp. 359–362, 2004.

[216] S. B. Park, J. W. Lee, and S. K. Kim, “Content-based image classification using a neural

network,” Pattern Recognit. Lett., vol. 25, no. 3, pp. 287–300, 2004.

[217] A. Oliva and A. Torralba, “Modeling the shape of the scene: A holistic representation of the

spatial envelope,” Int. J. Comput. Vis., vol. 42, no. 3, pp. 145–175, 2001.

[218] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in IEEE

233

Computer Society Conference on Computer Vision and Pattern Recognition, 2005, pp. 886–

893.

[219] R. Jensen and Q. Shen, “Semantics-preserving dimensionality reduction: rough and fuzzy-

rough-based approaches,” IEEE Trans. Knowl. Data Eng., vol. 16, no. 12, pp. 1457–1471,

2004.

[220] R. Jensen and Q. Shen, “Fuzzy-rough sets assisted attribute selection,” IEEE Trans. Fuzzy

Syst., vol. 15, no. 1, pp. 73–89, 2007.

[221] R. Diao and Q. Shen, “Feature selection with harmony search,” IEEE Trans. Syst. Man.

Cybern. B. Cybern., vol. 42, no. 6, pp. 1509–23, 2012.

[222] R. Diao and Q. Shen, “Nature inspired feature selection meta-heuristics,” Artif. Intell. Rev.,

vol. 44, no. 3, pp. 311–340, 2015.

[223] Y. Lin, F. Lv, S. Zhu, M. Yang, T. Cour, K. Yu, L. Cao, and T. Huang, “Large-scale image

classification: Fast feature extraction and SVM training,” in IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, 2011, pp. 1689–1696.

[224] V. N. Vapnik., The Nature of Statistical Learning Theory. New York: Springer, 1995.

[225] A. Rodriguez and A. Laio, “Clustering by fast search and find of density peaks,” Science (80-.

)., vol. 344, no. 6191, pp. 1493–1496, 2014.

[226] J. Li, S. Ray, and B. G. Lindsay, “A nonparametric statistical approach to clustering via mode

identification,” J. Mach. Learn. Res., vol. 8, no. 8, pp. 1687–1723, 2007.

[227] W. Barbakh and C. Fyfe, “Online clustering algorithms.,” Int. J. Neural Syst., vol. 18, no. 3,

pp. 185–194, 2008.

[228] P. Franti, O. Virmajoki, and V. Hautamaki, “Probabilistic clustering by random swap

algorithm,” in IEEE International Conference on Pattern Recognition, 2008, pp. 1–4.

[229] R. A. Fisher, “The use of multiple measurements in taxonomic problems,” Ann. Eugen., vol. 7,

no. 2, pp. 179–188, 1936.

[230] I. Kärkkäinen and P. Fränti, “Dynamic local search algorithm for the clustering problem,”

2002.

[231] P. Fränti and O. Virmajoki, “Iterative shrinking method for clustering problems,” Pattern

Recognit., vol. 39, no. 5, pp. 761–775, 2006.

[232] A. K. Jain and M. H. C. Law, “Data clustering : a user ’ s dilemma,” Lect. Notes Comput. Sci.,

vol. 3776, pp. 1–10, 2005.

[233] A. Gionis, H. Mannila, and P. Tsaparas, “Clustering aggregation,” ACM Trans. Knowl. Discov.

Data, vol. 1, no. 1, pp. 1–30, 2007.

[234] H. Chang and D. Y. Yeung, “Robust path-based spectral clustering,” Pattern Recognit., vol.

41, no. 1, pp. 191–203, 2008.

[235] V. Lohweg, J. L. Hoffmann, H. Dörksen, R. Hildebrand, E. Gillich, J. Hofmann, and J.

Schaede, “Banknote authentication with mobile devices,” in Media Watermarking, Security,

and Forensics, 2013, p. 866507.

[236] D. Ayres-de-Campos, J. Bernardes, A. Garrido, J. Marques-de-Sa, and L. Pereira-Leite,

“SisPorto 2.0: A program for automated analysis of cardiotocograms,” J. Matern. Fetal. Med.,

234

vol. 9, no. 5, pp. 311–318, 2000.

[237] F. Alimoglu and E. Alpaydin, “Methods of combining multiple classifiers based on different

representations for pen-based handwritten digit recognition,” in Proceedings of the Fifth

Turkish Artificial Intelligence and Artificial Neural Networks Symposium, 1996, pp. 1–8.

[238] L. M. Candanedo and V. Feldheim, “Accurate occupancy detection of an office room from

light, temperature, humidity and CO2 measurements using statistical learning models,” Energy

Build., vol. 112, pp. 28–39, 2016.

[239] R. K. Bock, A. Chilingarian, M. Gaug, F. Hakl, T. Hengstebeck, M. Jiřina, J. Klaschka, E.

Kotrč, P. Savický, S. Towers, A. Vaiciulis, and W. Wittek, “Methods for multidimensional

event classification: A case study using images from a Cherenkov gamma-ray telescope,”

Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., vol.

516, no. 2–3, pp. 511–528, 2004.

[240] P. W. Frey and D. J. Slate, “Letter recognition using Holland-style adaptive classifiers,” Mach.

Learn., vol. 6, no. 2, pp. 161–182, 1991.

[241] S. Aeberhard, D. Coomans, and O. de Vel, “Comparison of classifiers in high dimensional

settings,” 1992.

[242] M. Buscema, “Metanet*: The theory of independent judges.,” Subst. Use Misuse, vol. 33, no.

2, pp. 439–461, 1998.

[243] P. Fränti, O. Virmajoki, and V. Hautamäki, “Fast agglomerative clustering using a k-nearest

neighbor graph,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 11, pp. 1875–1881,

2006.

[244] A. K. Jain, R. P. W. Duin, and J. Mao, “Statistical pattern recognition: a review,” IEEE Trans.

Pattern Anal. Mach. Intell., vol. 22, no. 1, pp. 4–37, 2000.

[245] QuantQuote Second Resolution Market Database, https://quantquote.com/historical-stock-

data.

[246] Standard and poor (S&P) index data,

https://finance.yahoo.com/quote/%5EGSPC/history?p=%5EGSPC.

[247] J. W. Smith, J. E. Everhart, W. C. Dickson, W. C. Knowler, and R. S. Johannes, “Using the

ADAP learning algorithm to forecast the onset of diabetes mellitus,” in Annual Symposium on

Computer Application in Medical Care, 1988, pp. 261–265.

[248] P. Angelov, “Fuzzily connected multimodel systems evolving autonomously from data

streams,” IEEE Trans. Syst. Man, Cybern. Part B Cybern., vol. 41, no. 4, pp. 898–910, 2011.

[249] C. Nadungodage, Y. Xia, F. Li, J. Lee, and J. Ge, “StreamFitter: A real time linear regression

analysis system for continuous data streams,” in International Conference on Database

Systems for Advanced Applications, 2011, vol. 6588 LNCS, no. PART 2, pp. 458–461.

[250] K. Tschumitschew and F. Klawonn, “Effects of drift and noise on the optimal sliding window

size for data stream regression models,” Commun. Stat. - Theory Methods, p.

10.1080/03610926.2015.1096388, 2016.

[251] H. J. Rong, N. Sundararajan, G. Bin Huang, and P. Saratchandran, “Sequential adaptive fuzzy

inference system (SAFIS) for nonlinear system identification and prediction,” Fuzzy Sets Syst.,

vol. 157, no. 9, pp. 1260–1275, 2006.

[252] M. Pratama, S. G. Anavatti, P. P. Angelov, and E. Lughofer, “PANFIS : a novel incremental

235

learning machine,” IEEE Trans. Neural Networks Learn. Syst., vol. 25, no. 1, pp. 55–68, 2014.

[253] N. Kasabov, “Evolving fuzzy neural networks for supervised/unsupervised online knowledge-

based learning,” IEEE Trans. Syst. Man, Cybern. Part B, vol. 31, no. 6, pp. 902–918, 2001.

[254] J. Tan and C. Quek, “A BCM theory of meta-plasticity for online self-reorganizing fuzzy-

associative learning,” IEEE Trans. Neural Networks, vol. 21, no. 6, pp. 985–1003, 2010.

[255] P. Angelov and D. Filev, “Simpl _ eTS : A simplified method for learning evolving Takagi-

Sugeno fuzzy models,” in IEEE International Conference on Fuzzy Systems, 2005, pp. 1068–

1073.

[256] E. Lughofer, P. Angelov, and X. Zhou, “Evolving single- and multi-model fuzzy classifiers

with FLEXEIS-Class,” in IEEE International Conference on Fuzzy Systems, 2007, pp. 1–6.

[257] A. Graves, Supervised sequence labelling with recurrent neural networks. Heidelberg:

Springer, 2012.

[258] J. Wnek and R. S. Michalski, “Hypothesis-driven constructive induction in AQ17-HCI: a

method and experiments,” Mach. Learn., vol. 14, no. 2, pp. 139–168, 1994.

[259] C. J. Matheus and L. a Rendell, “Constructive induction on decision trees,” in International

Joint Conference on Arti cial Intelligence, 1989, pp. 645–650.

[260] P. M. Ciarelli and E. Oliveira, “Agglomeration and elimination of terms for dimensionality

reduction,” in International Conference on Intelligent Systems Design and Applications, 2009,

pp. 547–552.

[261] S. Ramaswamy, R. Rastogi, and K. Shim, “Efficient algorithms for mining outliers from large

data sets,” ACM SIGMOD Rec., pp. 427–438, 2000.

[262] S. R. Safavian and D. Landgrebe, “A survey of decsion tree clasifier methodology,” IEEE

Trans. Syst. Man. Cybern., vol. 21, no. 3, pp. 660–674, 1990.

[263] E. Alpaydin and C. Kaynak, “Cascading classifiers,” Kybernetika, vol. 34, no. 4, pp. 369–374,

1998.

[264] C. C. Aggarwal, A. Hinneburg, and D. A. Keim, “On the surprising behavior of distance

metrics in high dimensional space,” in International Conference on Database Theory, 2001,

pp. 420–434.

[265] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft, “When is ‘nearest neighbors’

meaningful?,” in International Conference on Database Theoryheory, 1999, pp. 217–235.

[266] H. T. Kahraman, S. Sagiroglu, and I. Colak, “The development of intuitive knowledge

classifier and the modeling of domain dependent data,” Knowledge-Based Syst., vol. 37, pp.

283–295, 2013.

[267] P. Cortez, A. Cerdeira, F. Almeida, T. Matos, and J. Reis, “Modeling wine preferences by data

mining from physicochemical properties,” Decis. Support Syst., vol. 47, pp. 547–553, 2009.

[268] B. A. Johnson, R. Tateishi, and N. T. Hoan, “A hybrid pansharpening approach and multiscale

object-based image analysis for mapping diseased pine and oak trees,” Int. J. Remote Sens.,

vol. 34, no. 20, pp. 6969–6982, 2013.

[269] C. Schuldt, L. Barbara, and S.- Stockholm, “Recognizing human actions : a local SVM

approach,” in IEEE International Conference on Pattern Recognition, 2004, pp. 32–36.

236

[270] J. Li and J. Z. Wang, “Automatic linguistic indexing of pictures by a statistical modeling

approach,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, no. 9, pp. 1075–1088, 2003.

[271] K. Fukushima, “Neocognitron for handwritten digit recognition,” Neurocomputing, vol. 51,

pp. 161–180, 2003.

[272] D. Kangin and P. Angelov, “Evolving clustering, classification and regression with TEDA,” in

Proceedings of the International Joint Conference on Neural Networks, 2015, pp. 1–8.

[273] F. S. Samaria and A. C. Harter, “Parameterisation of a stochastic model for human face

identification,” in IEEE Workshop on Applications of Computer Vision, 1994, pp. 138–142.

[274] J. Gan, Q. Li, Z. Zhang, and J. Wang, “Two-level feature representation for aerial scene

classification,” IEEE Geosci. Remote Sens. Lett., vol. 13, no. 11, pp. 1626–1630, 2016.

[275] T. Larrain, J. S. J. Bernhard, D. Mery, and K. W. Bowyer, “Face recognition using sparse

fingerprint classification algorithm,” IEEE Trans. Inf. Forensics Secur., vol. 12, no. 7, pp.

1646–1657, 2017.

[276] M. Ranzato, F. J. Huang, Y. L. Boureau, and Y. LeCun, “Unsupervised learning of invariant

feature hierarchies with applications to object recognition,” in Proceedings of the IEEE

Computer Society Conference on Computer Vision and Pattern Recognition, 2007, pp. 1–8.

[277] M. A. Borgi, D. Labate, M. El Arbi, and C. Ben Amar, “Regularized shearlet network for face

recognition using single sample per person,” in IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), 2014, pp. 514–518.

[278] J. Wang, C. Lu, M. Wang, P. Li, S. Yan, and X. Hu, “Robust face recognition via adaptive

sparse representation,” IEEE Trans. Cybern., vol. 44, no. 12, pp. 2368–2378, 2014.

[279] X. Shi, Y. Yang, Z. Guo, and Z. Lai, “Face recognition by sparse discriminant analysis via

joint L2,1-norm minimization,” Pattern Recognit., vol. 47, no. 7, pp. 2447–2453, 2014.

[280] A. B. Sargano, X. Wang, P. Angelov, and Z. Habib, “Human Action Recognition using

Transfer Learning with Deep Representations,” in IEEE International Joint Conference on

Neural Networks (IJCNN), 2017, pp. 463–469.

[281] A. M. Cheriyadat, “Unsupervised feature learning for aerial scene classification,” IEEE Trans.

Geosci. Remote Sens., vol. 52, no. 1, pp. 439–451, 2014.

[282] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features : spatial pyramid matching for

recognizing natural scene categories,” in IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, 2006, pp. 2169–2178.

[283] Y. Yang and S. Newsam, “Spatial pyramid co-occurrence for image classification,” in

Proceedings of the IEEE International Conference on Computer Vision, 2011, pp. 1465–1472.

[284] J. Fan, T. Chen, and S. Lu, “Unsupervised feature learning for land-use scene recognition,”

IEEE Trans. Geosci. Remote Sens., vol. 55, no. 4, pp. 2250–2261, 2017.

[285] L. Fei-Fei, R. Fergus, and P. Perona, “Learning generative visual models from few training

examples: an incremental Bayesian approach tested on 101 object categories,” Comput. Vis.

Image Underst., vol. 106, no. 1, pp. 59–70, 2007.

[286] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, “Convolutional deep belief networks for

scalable unsupervised learning of hierarchical representations,” in Annual International

Conference on Machine Learning, 2009, pp. 1–8.

237

[287] K. Kavukcuoglu, P. Sermanet, Y.-L. Boureau, K. Gregor, M. Mathieu, and Y. LeCun,

“Learning convolutional feature hierarchies for visual recognition,” in Advances in neural

information processing systems, 2010, pp. 1090–1098.

[288] M. Zeiler, D. Krishnan, G. Taylor, and R. Fergus, “Deconvolutional networks,” in IEEE

Conference on Computer Vision and Pattern Recognition, 2010, pp. 2528–2535.

[289] J. Yang, K. Yu, Y. Gong, and T. Huang, “Linear spatial pyramid matching using sparse coding

for image classification,” in IEEE Conference on Computer Vision and Pattern Recognition,

2009, pp. 1794–1801.

[290] J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong, “Locality-constrained linear coding

for image classification,” in IEEE Conference on Computer Vision and Pattern Recognition,

2010, pp. 3360–3367.

[291] W. Luo, J. Li, J. Yang, W. Xu, and J. Zhang, “Convolutional sparse autoencoders for image

classification,” IEEE Trans. Neural Networks Learn. Syst., pp. 1–6, 2017.

