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Abstract 

Machine learning, as a subarea of artificial intelligence, is widely believed to reshape 

the human world in the coming decades. This thesis is focused on both the unsupervised and 

supervised self-organising transparent machine learning techniques. One particularly 

interesting aspect is the transparent self-organising deep learning systems. 

Traditional data analysis approaches and most of the machine learning algorithms are 

built upon the basis of probability theory and statistics. The solid mathematical foundation of 

the probability theory and statistics guarantees the good properties of these learning 

algorithms when the amount of data tends to infinity and all the data comes from the same 

distribution. However, the prior assumptions of the random nature and same distribution 

imposed on the data generation model are often too strong and impractical in real 

applications. Moreover, traditional machine learning algorithms also require a number of free 

parameters to be predefined. However, without any prior knowledge of the problem, which is 

often the case in real situations, the performance of the algorithms can be largely influenced 

by the improper choice.   

Deep learning-based approaches are currently the state-of-the-art techniques in the fields 

of machine learning and computer vision. However, they are also suffering from a number of 

deficiencies including the computational burden of training using huge amount of data, lack 

of transparency and interpretation, ad hoc decisions about the internal structure, no proven 

convergence for the adaptive versions that rely on reinforcement learning, limited 

parallelisation and offline training, etc. These shortcomings largely all hinder the wider 

applications of the deep learning in real situations. 

The novel approaches presented in this thesis are developed within the Empirical Data 

Analytics framework, which is an alternative, but more advanced computational methodology 

to the traditional approaches based on the ensemble properties and mutual distribution of the 

empirical discrete observations.  

The novel self-organising transparent machine learning algorithms presented in this 

work for clustering, regression, classification and anomaly detection are autonomous, self-

organising, data-driven and free from user- and problem- specific parameters. They do not 

impose any data generation models on the data a priori, but are driven by the empirically 

observed data and are able to produce the objective results without prior knowledge of the 
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problems. In addition, they are highly efficient and suitable for large-scale static/streaming 

data processing. 

The newly proposed self-organising transparent deep learning systems are able to 

achieve human-level performance comparable to or even better than the deep convolutional 

neural networks on image classification problems with the merits of being fully transparent, 

self-evolving, highly efficient, parallelisable and human-interpretable. More importantly, the 

proposed deep learning systems have the ability of starting classification from the very first 

image of each class in the same way as humans do. 

Numerical examples based on numerous challenging benchmark problems and 

comparisons conducted with the state-of-the-art approaches presented in this thesis 

demonstrated the validity and effectiveness of the proposed new machine learning algorithms 

and deep learning systems and show their potential for real applications. 
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1. Research Overview 

This chapter presents the research motivation and summary of the research 

contributions, publications and the research methodology. The chapter is organised as 

follows. Section 1.1 gives the research motivation. The research contributions are described 

in section 1.2. The methodology and publication summary are given in section 1.3 and 

section 1.4, respectively. This chapter is finished by the thesis outline. 

1.1. Motivation 

Nowadays, due to the more matured electronic manufacturing and information 

technologies as well as the widely distributed sensors networks, astronomical amount of 

streaming data is generated from every area of daily activities. As the world has already 

entered the Era of Big Data, data-intensive technologies are now being extensively used by 

the developed economies and numerous international organisations. Having realised the 

underlying economic benefits in these data, an increasing number of companies, corporations 

and research institutions are involved in developing more advanced data analytic and 

processing technologies. 

Traditional data analytic methodologies [1]–[4] heavily rely on the classical probability 

theory and statistics. The appeals of the traditional data analytic methodologies come from 

their solid mathematical foundations and their ability that is always guaranteed when the 

amount of the data tends to infinity and all the data comes from the same distribution, as 

stated by the classical probability theory. Indeed, the traditional probability theory and 

statistics [1]–[4] assume the actual data to be realisations of imaginary random variables and 

further assume the prior distributions of these variables. However, these appeals also clearly 

demonstrate the problems/deficiencies of the traditional methodologies: 

1) It is impossible to collect or process the infinity amount of observations; 

2) The very strong prior assumptions are often impractical in the real cases; 

3) The distribution of the data, or the generation model, is not clear in advance.  

These problems/deficiencies more often lead the traditional data analytic approaches to 

generate the subjective results, which undermine the effectiveness and correctness of the 

traditional data analytic approaches 
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Heavily relying on the probability theory and statistics, traditional machine learning 

technologies, i.e. clustering, classification, prediction, fault detection, etc., often need users to 

predefine various kinds of parameters and prior assumptions in order to guarantee an 

effective result [5]–[18]. These predefined parameters and assumptions usually require users 

to have a certain extent of prior knowledge and expertise. However, the prior knowledge is 

more often unavailable in real cases as the purpose of data analytics is to analyse and 

understand the unknown data, not to study the well-understood ones. It is also practically 

impossible to empirically predefine parameters for complex problems.  

Moreover, most of the existing data processing technologies [5]–[18] were mainly built 

upon the basis of the traditional data analytic methodologies [1]–[4]. One cannot expect that 

these approaches can get rid of the deficiencies that the traditional probability theory and 

statistics suffer from. These data processing technologies often simplify the real data 

representation and assume the data following a specific distribution, i.e. the most widely used 

Gaussian. The actual data considered in the machine learning literature is usually discrete (or 

discretized), which in traditional probability theory and statistics are modelled as a realisation 

of the random variable, but one does not know a priori their distribution. If the prior data 

generation hypothesis is verified, good results can be expected; otherwise, this opens the door 

for many failures. 

Besides, many well-known algorithms [5], [6], [13]–[16] as well as some recently 

published ones [10] are restricted to offline data processing. Many algorithms also lack the 

ability of following the ever-changing data pattern in streaming data. They require a full 

retraining when new data patterns emerge. 

As the one of so-called latest developments in the fields of machine learning and 

artificial intelligence, deep learning [19] is a hot research area attracting the attention of 

machine learning researchers as well as the public. Relying on extracting high-level 

abstractions in data by using a multiple layer structure composed of linear and non-linear 

transformations, the published methods have presented very promising results in image 

processing [20]–[24]. Nonetheless, there are three major deficiencies in the current deep 

learning methods: 

1) The features extracted and the steps to get them by the encoder-decoder methods 

have low-level of human interpretability (are opaque)  [19]–[22]; 
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2) The training process is off-line and requires a large amount of time as well as 

complex computational resources [22]–[24]; 

3) There are too many ad hoc decisions in terms of structures and parameters [20]–[24]. 

These deficiencies largely hinder the applications of the deep learning networks in real 

problems. 

Aiming at overcoming the deficiencies deeply rooted in the traditional probability 

theory and statistics, Empirical Data Analytics (EDA) framework is a systematic 

methodology of nonparametric quantities recently introduced in [25]–[27] based on the 

ensemble properties and mutual distribution of the empirical discrete observations. It touches 

the very foundation of data analytics and serves as a strong alternative to the traditional 

statistics and probability theory, but is free from the paradoxes and problems that the 

traditional approaches are suffering from [26], [27].  

The focus of this thesis is the novel machine learning algorithms and deep learning 

systems developed within the EDA framework. Compared with traditional ones, these new 

approaches presented in this thesis have the following distinctive features: 

1) They are self-organising and self-evolving; 

2) They are free from prior assumptions and user- and problem- specific parameters; 

3) Their structure and operating mechanism are transparent and human interpretable. 

These properties of the new approaches presented in this thesis make them appealing 

alternatives to both traditional and state-of-the-art methods.  

1.2. Research Contribution 

This research work focuses on the novel self-organising transparent learning systems. 

During the research, the following main contributions have been achieved: 

1) Four novel unsupervised machine learning approaches have been developed for 

clustering and data partitioning, and they are evaluated on benchmark datasets;  

2) Four novel supervised machine learning approaches have been developed for 

classification, regressions and anomaly detection problems, and they are evaluated on 

benchmark datasets and real-world high frequency trading problems; 
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3) Two new types of deep learning networks have been proposed for image 

classification problems, and they have been applied to various challenging benchmark 

datasets from different areas. 

1.3. Methodology 

This research work is focused on new machine learning algorithms and systems, which 

consists of the following parts: 

1) Theoretical concepts research; 

2) Algorithm implementation; 

3) Application and validation. 

Based on the theoretical concepts research, the mathematical and analytical description 

of the proposed approaches are formulated and investigated, which directly gives an evidence 

of the validity and effectiveness of the approaches as well as a basic understanding of their 

boundaries and limitations. 

Then, the algorithm implementation is to show the practical feasibility of the theoretical 

concepts as well as to augment the theoretical analysis. 

For the last part, the implemented theoretical concept is tested on benchmark problems 

for evaluating its applicability and validity, and it also gives an evidence of the effectiveness 

of the algorithms in real situations. 

1.4. Publication Summary 

The research work presented in this thesis was described in the following publications in 

the chronological order by the submission dates: 

A. Journal Papers 

P. Angelov, X. Gu, D. Kangin, Empirical data analytics, International Journal of 

Intelligent Systems, vol. 32(12), pp. 1261-1284, 2017. 

P. Angelov, X. Gu, J. Principe, A generalized methodology for data analysis, IEEE 

Transactions on Cybernetics, vol. 48(10), pp. 2981 - 2993, 2018. 

P. Angelov, X. Gu, J. Principe, Autonomous learning multi-model systems from data 

streams, IEEE Transactions on Fuzzy Systems, vol. 26(4), pp. 2213-2224, 2018. 
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X. Gu, P. Angelov, D. Kangin, J. Principe, A new type of distance metric and its use for 

clustering, Evolving Systems, vol. 8 (3), pp.167-177, 2017. 

X. Gu, P. Angelov, D. Kangin, J. Principe, Self-organised direction aware data 

partitioning algorithm, Information Sciences, vol. 423, pp. 80-95, 2017. 

P. Angelov, X. Gu, Empirical Fuzzy Sets, International Journal of Intelligent Systems, 

vol.33(2), pp. 362-395, 2018. 

X. Gu, P. Angelov, C. Zhang, P. Atkinson, A massively parallel deep rule-based 

ensemble classifier for remote sensing scenes, IEEE Geoscience and Remote Sensing 

Letters, vol.15(3), pp. 345-349, 2018. 

X. Gu, P. Angelov, J. Principe, A method for Autonomous data partitioning, 

Information Sciences, vol. 460–461, pp. 65-82, 2018.   

P. Angelov, X. Gu, Deep rule-based classifier with human-level performance and 

characteristics, Information Sciences, vol. 463-464, pp. 196-213, 2018. 

X. Gu, P. Angelov, Semi-supervised deep rule-based approach for image classification, 

Applied Soft Computing, vol. 68, pp. 53-68, 2018. 

X. Gu, P. Angelov, Self-organising fuzzy logic classifier, Information Sciences, vol. 

447, pp. 36-51, 2018 

B. Conference Papers 

X. Gu, P. Angelov, A. Ali, W. Gruver, G. Gaydadjiev, Online evolving fuzzy rule-based 

prediction model for high frequency trading financial data stream, in IEEE Conference 

on Evolving and Adaptive Intelligent Systems (EAIS), Natal, Brazil, 2016, pp.169 - 175. 

P. Angelov, X. Gu, G. Gutierrez, J. Iglesias, A. Sanchis, Autonomous data density based 

clustering method, in International Joint Conference on Neural Networks (IJCNN) , 

Vancouver Canada, 2016, pp.2405-2413.  

P. Angelov, X. Gu, D. Kangin, J. Principe, Empirical data analysis: a new tool for data 

analytics, in IEEE International Conference on Systems, Man, and Cybernetics (SMC), 

Budapest, Hungary 2016, pp. 000052 - 000059.  

X Gu, P. Angelov, Autonomous data-driven clustering for live data stream, in IEEE 

International Conference on Systems, Man, and Cybernetics (SMC), Budapest, 

Hungary, 2016, pp. 001128 - 001135.  
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X. Gu, P. Angelov, G. Gutierrez, J. Iglesias, A. Sanchis, Parallel computing TEDA for 

high frequency streaming data clustering, in INNS Conference on Big Data, 

Thessaloniki, Greece, 2016, pp.238-253. 

P. Angelov, X. Gu, Local modes-based free-shape data partitioning, in IEEE Symposium 

Series on Computational Intelligence (SSCI), Athens, Greece, 2016 pp.1-8. 

P. Angelov, X. Gu, J. Principe, Fast feedforward non-parametric deep learning network 

with automatic feature extraction, in International Joint Conference on Neural Networks 

(IJCNN), Anchorage, Alaska, USA, 2017, pp. 534-541. 

Angelov, X. Gu, Autonomous learning multi-model classifier of 0-order (ALMMo-0), 

in IEEE International Conference on Evolving and Adaptive Intelligent Systems (EAIS), 

Ljubljana, Slovenia, 2017, pp. 1-7. 

X. Gu, P. Angelov, Autonomous anomaly detection, in IEEE International Conference 

on Evolving and Adaptive Intelligent Systems (EAIS), Ljubljana, Slovenia, 2017, pp. 1-

8.  

P. Angelov, X. Gu, MICE: Multi-layer multi-model images classifier ensemble, in IEEE 

International Conference on Cybernetics (CYBCONF), Exeter, UK, 2017, pp. 1-8. 

P. Angelov, X. Gu, A Cascade of deep learning fuzzy rule-based image classifier and 

SVM, in IEEE International Conference on Systems, Man, and Cybernetics (SMC2017), 

Banff, Canada, 2017, pp. 746-751. 

1.5. Thesis Outline 

The remainder of the thesis is organised as follows. 

Chapter 2 - Research Background and Theoretical Basis: contains three parts, the data 

analysis methodologies survey, computational intelligence methodologies survey and 

machine learning techniques survey. The review serves as the research background and the 

theoretical basis of the research works presented in the thesis. 

Chapter 3 - Self-Organising Unsupervised Machine Learning Algorithms: proposes 

four different unsupervised machine learning algorithms for clustering and data partitioning, 

1) autonomous data-driven clustering algorithm [28]–[30]; 2) hypercube-based data 

partitioning algorithm; 3) autonomous data partitioning algorithm [31] and 4) self-organising 

direction-aware data partitioning algorithm [32], [33]. These approaches are developed within 
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the EDA computational framework, and thus, are nonparametric, self-organising and entirely 

data-driven. 

Chapter 4 - Self-Organising Supervised Machine Learning Algorithms: proposes a 

first-order autonomous learning multi-model system for regression and classification [34], a 

zero-order autonomous learning multi-model classifier [35], a self-organising fuzzy logic 

classifier [36] and an autonomous anomaly detection algorithm [37]. These approaches are 

also developed within the EDA framework, therefore, they are free from problem- and user- 

specific parameters and prior assumptions. 

Chapter 5 - Transparent Deep Learning Systems: proposes a fast feedforward 

nonparametric deep learning network [38] and deep rule-based systems [39] for image 

classification. The semi-supervised, active learning mechanism of the deep rule-based system 

is presented [40]. Some successful examples of deep rule-based ensemble classifiers are also 

given [41]–[43]. Compared with other deep learning approaches, the deep learning systems 

developed within the EDA framework are transparent, nonparametric, feedforward, human 

interpretable and free from ad hoc decisions.   

Chapter 6 - Implementation and Validation of the Developed Algorithms: presents 

numerical examples based on benchmark problems for validating the algorithms presented in 

this thesis. A number of state-of-the-art approaches are involved for comparison for a better 

evaluation [28]–[43]. 

Chapter 7 - Conclusion and Future Work: summarises this thesis and gives the 

directions for further work. 
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2. Research Background and Theoretical Basis 

In this chapter, a review of data analysis methodologies, computational intelligence 

methodologies and machine learning techniques is presented serving as the research 

background and the theoretical basis of this thesis.  

2.1. Data Analysis Methodologies Survey 

Data analysis can be described as a process of describing, illustrating and evaluating 

data with the goal of discovering useful information, suggesting conclusions, and supporting 

decision-making. Besides the engineering, natural sciences and economics, nowadays, other 

scientific areas, i.e. biomedical, social science, etc., are also becoming data-centred.  

In this section, the traditional data analytics approach (probability theory and statistics) 

and the more recently introduced data-centred ones are reviewed. 

2.1.1. Probability Theory and Statistics  

A key concept in the field of pattern recognition is “uncertainty” [2], [3]. Uncertainty 

exists in our daily lives as well as in every discipline in science, engineering, and technology. 

Many actions have consequences that are unpredictable in advance just like tossing a coin or 

throwing a dice, both of which are simple daily examples. Some of the more complex 

examples can be, for example, stock prices changes, foreign currency exchange rates. 

Probability theory is about such actions and their consequences. It starts with the idea of an 

experiment, being a course of action whose consequence is not predetermined and this 

experiment is reformulated as a mathematical object called a probability space [44]. Given 

any experiment involving chance, there is a corresponding probability space, and the study of 

such spaces is called probability theory [44]. 

Probability theory provides a consistent framework for the quantification and 

manipulation of uncertainties and forms one of the central foundations for pattern recognition 

and data analysis [2], [3]. Probability theory serves as the mathematical foundation for 

statistics [3] and is essential to many human activities that involve quantitative analysis of 

data. The core of the statistical approaches is the definition of a random variable, i.e. a 

functional measure from the space of events to the real line, which defines the probability 

theory [1]–[4]. Methods of probability theory also apply to study the average behaviour of a 

mechanical system, where the state of the system is uncertain, as in the field of statistical 

mechanics [45].   
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2.1.1.1. Discrete Probability Distribution 

Initially, the probability theory considers only the discrete random variables, where the 

concept of “discrete” means that the random variables take only finite or countably finite 

values in the data space. A probability mass function (PMF) is a function that describes the 

probability that a discrete random variable is exactly equal to some value. The PMF is the 

primary means of defining a discrete probability distribution, and PMFs exist for random 

variables including the multivariate ones in the discrete domains. The formal definition of a 

PMF is as [44]: 

For a random variable 𝑥 with the value range {𝑥} = {𝑥1, 𝑥2, 𝑥3, … } (finite or countable 

infinite), the function, 

𝑃𝑥(𝑥𝑘) = P(𝑥 = 𝑥𝑘) for 𝑘 = 1,2,3, …,                                                     (2.1) 

is called the PMF of 𝑥, where the subscript 𝑥 indicates that this is the PMF of the random 

variable, 𝑥 . As one can see from equation (2.1), PMF is a function that describes the 

probabilities of the possible values for a random variable and the PMF is defined within a 

certain range. In general, there is: 

𝑃𝑥(𝑥) = {
P(𝑥) 𝑥 ∈ {𝑥} 

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
,                                                                   (2.2) 

and PMFs have the following properties [44]: 

0 ≤ 𝑃𝑥(𝑥) ≤ 1;                                                                                         (2.3) 

∑ 𝑃𝑥(𝑥)𝑥∈{𝑥} = ∑ P(𝑥)𝑥∈{𝑥} = 1;                                                             (2.4) 

For {𝑥}𝑜 ⊆ {𝑥}, 𝑃𝑥(𝑥 ∈ {𝑥}𝑜) = ∑ P(𝑥)𝑥∈{𝑥}𝑜 .                                        (2.5) 

The cumulative distribution function (CDF) of the random variable 𝑥, evaluated at 𝑥𝑜, is 

defined as: 

𝐹𝑥(𝑥𝑜) = ∑ P(𝑦)𝑦∈{𝑥}∧𝑦≤𝑥𝑜
.                                                                     (2.6) 

From equation (2.6) one can see that for the discrete random variable 𝑥 , the 

corresponding CDF increases only at the points where it “jumps” to a higher value, and is 

constant between these jumps. The points where jumps occur are precisely the values that the 

random variable 𝑥  may take. Therefore, the CDF of a discrete random variable is a 

discontinuous function. 
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2.1.1.2. Continuous Probability Distribution 

 Modern probability theory also considers the continuous random variables. A 

probability density function (PDF) of a continuous random variable, is a function, whose 

value at any given point in its value range can be interpreted as providing a relative likelihood 

that the value of the random variable would be equal to that sample, meanwhile, the absolute 

likelihood for a continuous random variable to take on any particular value is 0 [44]. 

In fact, the PDF is used to specify the probability of the random variable falling within a 

particular range of values, as opposed to taking on any single value. This probability is given 

by the integral of this variable’s PDF over that range. 

For a continuous random variable, the probability for it to fall in to the value range of 

[𝑥1, 𝑥2] is calculated as [44]: 

𝑃𝑥(𝑥1 < 𝑥 < 𝑥2) = ∫ 𝑓𝑥(𝑥)𝑑𝑥
𝑥2

𝑥=𝑥1
,                                                          (2.7) 

where 𝑓𝑥(𝑥) stands for the PDF of  𝑥. And the CDF of x calculated at 𝑥𝑜 is defined as [44]: 

𝐹𝑥(𝑥𝑜) = ∫ 𝑓𝑥(𝑥)𝑑𝑥
𝑥𝑜

𝑥=−∞
,                                                                         (2.8) 

from which one can see that, the CDF of a continuous random variable is a continuous 

function. 

PDFs have the following similar properties as the PMFs have: 

0 ≤ 𝑓𝑥(𝑥),                                                                                                 (2.9) 

∫ 𝑓𝑥(𝑥)𝑑𝑥
+∞

𝑥=−∞
= 1.                                                                               (2.10) 

One of the commonly used PDFs is the Gaussian function. 

2.1.1.3. Problems in Probability Theory and Statistics 

Kolmogorov defined the general problem of probability theory as follows [46]: 

“Given a CDF, describe outcomes of random experiments for a given theoretical 

model.”  

Vapnik and Izmailov defined the general problem of statistics as follows [47]:  

“Given independent and identically distributed (IID) observations of outcomes of the 

same random experiments, estimate the statistical model that defines these observations.” 
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Traditional probability theory and statistics have strong and often impractical 

requirements and assumptions. They also assume the random nature for the variables [26]. 

Indeed, the appeal of the traditional statistical approach is its solid mathematical foundation 

and the ability to provide guaranteed performance when data is plenty and created from the 

same distribution that is hypothesized in the probability law [27]. However, in the field of 

machine learning, the actual data considered is usually discrete (or discretised), which in 

probability theory and statistics are modelled as the realisations of the random variables. 

Moreover, one does not know a priori their distribution. Good results can only be expected on 

condition that the prior data generation hypothesis is verified. Otherwise, this opens the door 

for failures, namely, meaningless results [27]. 

Even in the case that the hypothesised measure meets the realisations, one has to address 

the difference of working with realisations and random variables, which brings the issue of 

choosing estimators of the statistical quantities necessary for data analysis [27]. Moreover, 

different estimators may provide different results. The reason is very likely that the functional 

properties of the estimators do not preserve all the properties embodied in the statistical 

quantities. Therefore, they behave differently in the finite (and even in the infinite) sample 

cases [27]. 

One can conclude that, the major problem of the traditional data analytic approaches is 

lying in the strong prior assumptions, which often fail in the reality. As a result, there is a 

growing demand for alternative new concepts for data analysis that are centred at the actual 

data collected from the real world rather than at theoretical prior assumptions that need to be 

confronted for verification with the experimental data as is the case within the traditional 

statistical approaches. 

2.1.2. Typicality and Eccentricity-based Data Analytics 

With this need identified (as stated in the end of the previous section), the so-called 

Typicality- and Eccentricity-based Data Analytics (TEDA) approach was introduced in [48]–

[50] as a new concept to address these problems. The core idea of the TEDA approach [48] is 

to use the data typicality and eccentricity scores calculated from the data for analysing its 

ensemble properties. As it is concluded in [51], TEDA is a data analytics approach to a “per 

point” online data analysis without making unrealistic assumptions.  

TEDA framework includes the following three operators: 

1) Cumulative proximity; 
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2) Eccentricity; 

3) Typicality. 

However, TEDA only considers discrete and unimodal operators with the condition that the 

operators sum up to 1, not integrate to 1. Development of this concept into a systematic 

framework under the name of Empirical Data Analytics (EDA) framework was done in [25]–

[27], and this PhD work was instrumental to this development. In the remainder of this 

subsection, the three TEDA operators are summarised. The details of EDA framework will be 

presented in the next subsection. 

First of all, a real metric space 𝐑𝑀  and a particular data set/stream 

{𝒙}𝐾 = {𝒙1, 𝒙2, … , 𝒙𝐾}  (𝒙𝑖 = [𝑥𝑖,1, 𝑥𝑖,2, … , 𝑥𝑖,𝑀]
𝑇

∈ 𝐑𝑀 ) are considered, where 𝐾 > 2 ; the 

subscripts denote data samples (for a set) or the time instances when they arrive (for a 

stream). In the remainder of this thesis, all the mathematical derivations are conducted in the 

𝐾𝑡ℎ time instance by default except when specially declared. The most obvious choice of  𝐑𝑀 

is the Euclidean space, but TEDA definitions can be extended to Hilbert space as well. 

2.1.2.1. Cumulative Proximity 

Cumulative proximity, 𝑞, was firstly introduced in [48]–[50], which can be seen as a 

square form of farness. It plays an important role in the TEDA framework and is derived 

empirically from the observations without making any prior assumptions on the generation 

model of the data. The cumulative proximity at 𝒙𝑖 , denoted by 𝑞𝐾(𝒙𝑖) , is expressed as 

(𝑖 = 1,2,3, … , 𝐾): 

𝑞𝐾(𝒙𝑖) = ∑ 𝑑2(𝒙𝑖, 𝒙𝑗)
𝐾
𝑗=1 ,                                                                     (2.11) 

where 𝑑(𝒙𝑖, 𝒙𝑗) denotes the distance/dissimilarity between 𝒙𝑖  and 𝒙𝑗 , which can be of any 

type. 

2.1.2.2. Eccentricity 

Eccentricity, 𝜉, is defined as the normalised cumulative proximity [48], [49]. It is an 

important measure of the ensemble property qualifying data samples away from the mode, 

and it is useful to disclose distribution tails and anomalies/outliers. The eccentricity at 𝒙𝑖, 

denoted by 𝜉𝐾(𝒙𝑖), is expressed as (𝑖 = 1,2,3, … , 𝐾): 

𝜉𝐾(𝒙𝑖) =
2𝑞𝐾(𝒙𝑖)

∑ 𝑞𝐾(𝒙𝑗)
𝐾
𝑗=1

=
2∑ 𝑑2(𝒙𝑖,𝒙𝑗)

𝐾
𝑗=1

∑ ∑ 𝑑2(𝒙𝑗,𝒙𝑘)𝐾
𝑘=1

𝐾
𝑗=1

,                                               (2.12) 
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where the coefficient 2 is used because the distance between 𝒙𝑖 and 𝒙𝑗 is counted twice in the 

denominator. From equation (2.12) one can see that 0 ≤ 𝜉𝐾(𝒙𝑖) ≤ 1 , and there is 

∑ 𝜉𝐾(𝒙𝑗)
𝐾
𝑗=1 = 2.   

Eccentricity can also be normalised as [49]: 

𝜁𝐾(𝒙𝑖) =
𝜉𝐾(𝒙𝑖)

2
 .                                                                                     (2.13) 

Therefore, for the normalised eccentricity, there is ∑ 𝜁𝐾(𝒙𝑗)
𝐾
𝑗=1 = 1 

2.1.2.3. Typicality 

Typicality, 𝜏, is defined as a complement of eccentricity (𝑖 = 1,2,3, … , 𝐾): 

𝜏𝐾(𝒙𝑖) = 1 − 𝜉𝐾(𝒙𝑖).                                                                             (2.14) 

One can tell from the above that the typicality also can be summed up to a constant: 

∑ 𝜏𝐾(𝒙𝑖)
𝐾
𝑗=1 = 𝐾 − 2,                                                                            (2.15) 

and it can be normalised as: 

𝑡𝐾(𝒙𝑖) =
𝜏𝐾(𝒙𝑖)

𝐾−2
.                                                                                       (2.16) 

Similar to the normalised eccentricity, the sum of the normalised typicality is sum up to 

1,  ∑ 𝑡𝐾(𝒙𝑖)
𝐾
𝑗=1 = 1. 

The three TEDA operators can be updated recursively online on a sample-by-sample 

basis, and the recursive calculation expressions are of paramount in streaming data 

processing, the details of which can be found in [48]–[51]. 

2.1.3. Empirical Data Analytics 

The latest development in the field of data analysis, Empirical Data Analytics (EDA) 

computational methodology takes the TEDA framework one level further.  

As a systematic methodology of nonparametric quantities introduced in [25]–[27] based 

on the ensemble properties and mutual distribution of the empirical discrete observations, the 

EDA framework is a strong alternative to the traditional statistics and probability theory, but 

is free from the paradoxes and problems that the traditional approaches are suffering from 

[26], [27]. This is because that all the non-parametric EDA quantities are derived from the 

empirically observed data without making any prior assumptions or using predefined 

parameters. Thus, it can be viewed as a powerful extension of the traditional probability 

theory and statistical learning. 
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EDA framework touches the very foundation of data analytics, and thus, there are a 

wide range of applications including, but not limited to, data analysis, clustering, data 

partitioning, classification, prediction, anomaly detection, fuzzy rule-based (FRB) system, 

deep rule-based (DRB) system, etc. 

EDA also serves as the main theoretical basis of the self-organising transparent machine 

learning techniques presented in this thesis. In this subsection, the nonparametric discrete 

quantities within EDA framework and their corresponding recursive expressions are 

summarised. The relationship between EDA quantities and the well-known Chebyshev 

inequality [52] is presented as well.  

The nonparametric discrete EDA quantities include: 

1) Cumulative proximity; 

2) Eccentricity and standardised eccentricity; 

3) Unimodal and multimodal density; 

4) Unimodal and multimodal typicality. 

EDA framework shares the same expressions for cumulative proximity and eccentricity 

with TEDA, but redefines the typicality in two different versions (unimodal and multimodal), 

and further introduces standardised eccentricity, unimodal and multimodal density.  

However, it has to be stressed that the EDA framework is not limited to the concepts 

presented in this thesis, but to a much wider range in both discrete and continuous domains 

[25]–[27].  

Firstly, in addition to the TEDA framework presented in section 2.1.2, within the data 

set/stream {𝒙}𝐾, it is further taken into consideration that some data samples may repeat more 

than once, namely ∃𝒙𝑖 = 𝒙𝑗 , 𝑖 ≠ 𝑗. The set of the sorted unique data samples, denoted by 

{𝒖}𝑁 = {𝒖1, 𝒖2, … , 𝒖𝑁}, and the corresponding number of occurrence, denoted by {𝑓}𝑁 =

{𝑓1, 𝑓2, … , 𝑓𝑁} (∑ 𝑓𝑗
𝑁
𝑗=1 = 𝐾), can be obtained automatically from the data, where 𝑁 denotes 

the number of unique data samples. With {𝒖}𝑁 and  {𝑓}𝑁, the primary data set/stream can be 

constructed. 
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2.1.3.1. Standardised Eccentricity 

As the value of eccentricity decreases very fast with the increase of the amount of data, 

K (see equation (2.12)), the standardised eccentricity, 𝜀, is introduced as (𝑖 = 1,2,3, … , 𝐾) 

[48], [49]: 

 𝜀𝐾(𝒙𝑖) = 𝐾𝜉𝐾(𝒙𝑖) =
2𝑞𝐾(𝒙𝑖)

1

𝐾
∑ 𝑞𝐾(𝒙𝑗)

𝐾
𝑗=1

=
2∑ 𝑑2(𝒙𝑖,𝒙𝑗)

𝐾
𝑗=1

1

𝐾
∑ ∑ 𝑑2(𝒙𝑗,𝒙𝑘)𝐾

𝑘=1
𝐾
𝑗=1

.                      (2.17) 

There is  ∑ 𝜀𝐾(𝒙𝑗)
𝐾
𝑗=1 = 2𝐾. 

2.1.3.2. Unimodal density 

Unimodal density, D, was firstly introduced in [48] and is redefined as the inverse of 

standardised eccentricity in [25], [26]. It plays as the indictor of the main mode within EDA 

framework. The unimodal density at 𝒙𝑖, denoted by 𝐷𝐾(𝒙𝑖), is given as (𝑖 = 1,2,3, … , 𝐾):  

𝐷𝐾(𝒙𝑖) = 𝜀𝐾
−1(𝒙𝑖) =

∑ 𝑞𝐾(𝒙𝑗) 
𝐾
𝑗=1

2𝐾𝑞𝐾(𝒙𝑖)
=

∑ ∑ 𝑑2(𝒙𝑗,𝒙𝑘)𝐾
𝑘=1

𝐾
𝑗=1

2𝐾 ∑ 𝑑2(𝒙𝑖,𝒙𝑗)
𝐾
𝑗=1

,                            (2.18) 

where 0 ≤ 𝐷𝐾(𝒙𝑖) ≤ 1. Unimodal density, in both the discrete and continuous forms, is very 

fundamental and resembles the membership functions of fuzzy sets, which represents the 

degree of truth in fuzzy logic and can take any value from the interval [0,1] [53]. More 

details of fuzzy sets and systems are given in section 2.2.1. The link between the unimodal 

density and membership function is explained in detail in [54].  

2.1.3.3. Multimodal density 

Multimodal density,  𝐷𝐺  [25]–[27] is valid at the unique data samples only. The 

multimodal density at the unique data sample 𝒖𝑖  (𝑖 = 1,2,3, … ,𝑁), denoted by 𝐷𝐾
𝐺(𝒖𝑖), is 

defined as the combination of the unimodal density weighted by the corresponding frequency 

of occurrence of this unique data sample 𝑓𝑖 as: 

𝐷𝐾
𝐺(𝒖𝑖) = 𝑓𝑖𝐷𝐾(𝒖𝑖) = 𝑓𝑖

∑ ∑ 𝑑2(𝒙𝑗,𝒙𝑘)𝐾
𝑘=1

𝐾
𝑗=1

2𝐾 ∑ 𝑑2(𝒙𝑖,𝒙𝑗)
𝐾
𝑗=1

.                                           (2.19) 

The expression of  𝐷𝐺  is fundamental because it combines information about the 

frequencies of occurrence of data samples and their locations in the data space. 

2.1.3.4. Unimodal Typicality 

In EDA framework, the typicality in the TEDA is redefined and renamed as the 

unimodal typicality, which is the normalised data density [25]–[27]. The unimodal typicality 

at 𝒙𝑖, denoted by 𝜏𝐾(𝒙𝑖), is given as (𝑖 = 1,2,3, … , 𝐾):  
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𝜏𝐾(𝒙𝑖) =
𝐷𝐾(𝒙𝑖)

∑ 𝐷𝐾(𝒙𝑘)𝐾
𝑘=1

=
∑ 𝑑−2(𝒙𝑖,𝒙𝑗)

𝐾
𝑗=1

∑ ∑ 𝑑−2(𝒙𝑗,𝒙𝑘)𝐾
𝑘=1

𝐾
𝑗=1

.                                            (2.20) 

The unimodal typicality resembles the traditional unimodal PMF, but is automatically 

defined in the data support unlike the PMF which may have nonzero values for infeasible 

values of the random variable unless being specifically constrained [27].  

2.1.3.5. Multimodal typicality 

The multimodal typicality is newly introduced in EDA [25]–[27], which is directly 

derived from the experimental data with the ability of providing multimodal distributions 

automatically without the need of user decisions or any processing techniques [27]. The 

multimodal typicality at a unique data sample 𝒖𝑖  (𝑖 = 1,2,3, … ,𝑁), denoted by 𝜏𝐾
𝐺(𝒖𝑖), is 

expressed as a combination of the normalised unimodal density weighted by the 

corresponding frequency of occurrence, 𝑓𝑖: 

𝜏𝐾
𝐺(𝒖𝑖) =

𝑓𝑖𝐷𝐾(𝒖𝑖)

∑  𝑓𝑘𝐷𝐾(𝒖𝑘)𝐾
𝑘=1

=
∑ 𝑓𝑖𝑑

−2(𝒖𝑖,𝒖𝑗)
𝐾
𝑗=1

∑ ∑ 𝑓𝑘𝑑−2(𝒖𝑗,𝒖𝑘)𝐾
𝑘=1

𝐾
𝑗=1

.                                    (2.21) 

The multimodal typicality has the following properties [27]: 

1) Sums up to 1; 

2) The value is within [0, 1]; 

3) Provides a closed analytic form; 

4) No requirement for prior assumptions as well as any user- or problem- specific 

thresholds and parameters; 

5) Its value calculated on infeasible data is always zero. 

2.1.3.6. Recursive Expressions 

The recursive calculation expressions of the nonparametric EDA quantities play a 

significant role in streaming data processing. They ensure the processing techniques to be of 

one-pass type, and thus, minimise both the memory- and computation- loads. 

A. General case 

The general recursive expressions of the EDA quantities are given as follows [55]: 

𝑞𝐾(𝒙𝑖) = 𝑞𝐾−1(𝒙𝑖) + 𝑑2(𝒙𝑖 , 𝒙𝐾);                                                         (2.22) 

∑ 𝑞𝐾(𝒙𝑗)
𝐾
𝑗=1 = ∑ 𝑞𝐾−1(𝒙𝑗)

𝐾−1
𝑗=1 + 2𝑞𝐾(𝒙𝐾).                                          (2.23) 
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With equations (2.22) and (2.23), all the EDA quantities given in the previous section 

can be recursively calculated for all types of distance metric/dissimilarity. If the Euclidean 

distance, Mahalanobis distance, cosine dissimilarity or some other types of 

distances/dissimilarity are used, one can have more elegant recursive expressions. 

B. Euclidean distance case 

Using Euclidean distance, defined as 𝑑(𝒙𝑖, 𝒙𝑗) = ‖𝒙𝑖 − 𝒙𝑗‖ = √(𝒙𝑖 − 𝒙𝑗)
𝑇
(𝒙𝑖 − 𝒙𝑗), 

the recursive expression of  𝑞𝐾(𝒙𝑖) and ∑ 𝑞𝐾(𝒙𝑗) 
𝐾
𝑗=1  are given as: 

𝑞𝐾(𝒙𝑖) = 𝐾(‖𝒙𝑖 − 𝝁𝐾‖2 + 𝑋𝐾 − ‖𝝁𝐾‖2);                                            (2.24) 

∑ 𝑞𝐾(𝒙𝑗)
𝐾
𝑗=1 = 2𝐾2(𝑋𝐾 − ‖𝝁𝐾‖2),                                                       (2.25) 

where  𝝁𝐾 and 𝑋𝐾 are the means of  {𝒙}𝐾 and {‖𝒙‖2}𝐾 , respectively, and both of them can 

be updated recursively as: 

𝝁𝐾 =
𝐾−1

𝐾
𝝁𝐾−1 +

1

𝐾
𝒙𝐾;                                                                          (2.26) 

𝑋𝐾 =
𝐾−1

𝐾
𝑋𝐾−1 +

1

𝐾
‖𝒙𝐾‖2.                                                                    (2.27) 

C. Mahalanobis distance case 

Using Mahalanobis distance [56], defined as 𝑑(𝒙𝑖, 𝒙𝑗) = √(𝒙𝑖 − 𝒙𝑗)
𝑇
𝚺𝐾

−1(𝒙𝑖 − 𝒙𝑗), the 

recursive calculation expressions of  𝑞𝐾(𝒙𝑖) and ∑ 𝑞𝐾(𝒙𝑗) 
𝐾
𝑗=1  are given as: 

𝑞𝐾(𝒙𝑖) = 𝐾((𝒙𝑖 − 𝝁𝐾)𝑇𝚺𝐾
−1(𝒙𝑖 − 𝝁𝐾) + 𝑋𝐾 − 𝝁𝐾

𝑇𝚺𝐾
−1𝝁𝐾) 

              = 𝐾((𝒙𝑖 − 𝝁𝐾)𝑇𝚺𝐾
−1(𝒙𝑖 − 𝝁𝐾) + 𝑀) ;                                      (2.28) 

∑ 𝑞𝐾(𝒙𝑗)
𝐾
𝑗=1 = 2𝐾2(𝑋𝐾 − 𝝁𝐾

𝑇𝚺𝐾
−1𝝁𝐾) = 2𝐾2𝑀 ;                                 (2.29) 

where 𝝁𝐾  is the mean of  {𝒙}𝐾 ; 𝚺𝐾  is the covariance matrix, 𝚺𝐾 =
1

𝐾−1
∑ (𝒙𝑘 −𝐾

𝑘=1

𝝁𝐾)(𝒙𝑘 − 𝝁𝐾)𝑇; 𝑋𝐾 =
1

𝐾
∑ 𝒙𝑘

𝑇𝚺𝐾
−1𝒙𝑘

𝐾
𝑘=1  ; 𝑋𝐾 − 𝝁𝐾

𝑇𝚺𝐾
−1𝝁𝐾 = 𝑀[51]. 

 𝚺𝐾 can be updated recursively as: 

𝐗𝐾 =
𝐾−1

𝐾
𝐗𝐾−1 +

1

𝐾
𝒙𝐾𝒙𝐾

𝑇 ;                                                                     (2.30) 

𝚺𝐾 =
𝐾

𝐾−1
(𝐗𝐾 − 𝝁𝐾𝝁𝐾

𝑇 ).                                                                        (2.31) 

D. Cosine dissimilarity case 
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Using cosine dissimilarity, defined as 𝑑(𝒙𝑖, 𝒙𝑗) = √2 − 2𝑐𝑜𝑠 (𝜃𝒙𝑖,𝒙𝑗
) = ‖

𝒙𝑖

‖𝒙𝑖‖
−

𝒙𝑗

‖𝒙𝑗‖
‖ 

[32], [33], the recursive calculation expressions of 𝑞𝐾(𝒙𝑖) and ∑ 𝑞𝐾(𝒙𝑗) 
𝐾
𝑗=1  are given as: 

𝑞𝐾(𝒙𝑖) = 𝐾 (‖
𝒙𝑖

‖𝒙𝑖‖
− 𝝁̅𝐾‖

2

+ 𝑋̅𝐾 − ‖𝝁̅𝐾‖2);                                        (2.32) 

∑ 𝑞𝐾(𝒙𝑗)
𝐾
𝑗=1 = 2𝐾2(𝑋̅𝐾 − ‖𝝁̅𝐾‖2),                                                       (2.33) 

where  𝝁̅𝐾 and 𝑋̅𝐾 are the means of  {
𝒙

‖𝒙‖
}
𝐾

 and {‖
𝒙

‖𝒙‖
‖

2

}
𝐾

 , respectively, and both of them 

can be updated recursively as: 

𝝁̅𝐾 =
𝐾−1

𝐾
𝝁̅𝐾−1 +

1

𝐾

𝒙𝐾

‖𝒙𝐾‖
;                                                                        (2.34) 

 𝑋̅𝐾 =
𝐾−1

𝐾
 𝑋̅𝐾−1 +

1

𝐾
‖

𝒙𝐾

‖𝒙𝐾‖
‖

2

= 1.                                                        (2.35) 

E. Direction-Aware distance case [33] 

The direction-aware distance is a recently introduced distance metric combining the 

advantages of Euclidean distance and cosine similarity in the Euclidean space domain. The 

direction-aware distance consists of a magnitude component and an angular component and 

has the following expression [33]: 

𝑑(𝒙𝑖, 𝒙𝑗) = √𝜆𝑀𝑑𝑀
2 (𝒙𝑖, 𝒙𝑗) + 𝜆𝐴𝑑𝐴

2(𝒙𝑖, 𝒙𝑗),                                         (2.36) 

where 𝑑𝑀(𝒙𝑖, 𝒙𝑗) = ‖𝒙𝑖 − 𝒙𝑗‖  and 𝑑𝐴(𝒙𝑖, 𝒙𝑗) = √1 − 𝑐𝑜𝑠 (𝜃𝒙𝑖,𝒙𝑗
) =

1

√2
‖

𝒙𝑖

‖𝒙𝑖‖
−

𝒙𝑗

‖𝒙𝑗‖
‖  ; 𝜆𝑀 

and 𝜆𝐴 are a pair of scaling coefficients, and there are  𝜆𝑀 > 0 and 𝜆𝐴 > 0. 

In [33], the direction-aware distance is proven to be a full metric which satisfies the 

following properties for ∀𝒙𝑖, 𝒙𝑗 [57]: 

1) Non-negativity: 𝑑(𝒙𝑖, 𝒙𝑗) ≥ 0; 

2) Identity of indiscernibles: 𝑑(𝒙𝑖, 𝒙𝑗) = 0 𝑖𝑓𝑓 𝒙𝑖 = 𝒙𝑗; 

3) Symmetry: 𝑑(𝒙𝑖, 𝒙𝑗) = 𝑑(𝒙𝑗, 𝒙𝑖); 

4) Triangle inequality: 𝑑(𝒙𝑖, 𝒙𝑗) + 𝑑(𝒙𝑖, 𝒙𝑘) ≥ 𝑑(𝒙𝑗 , 𝒙𝑘). 

With the direction-aware distance, the recursive calculation expressions of  𝑞𝐾(𝒙𝑖) and 

∑ 𝑞𝐾(𝒙𝑗) 
𝐾
𝑗=1  are given as: 
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𝑞𝐾(𝒙𝑖) = 𝐾 ((‖𝒙𝑖 − 𝝁𝐾‖2 + 𝑋𝐾 − ‖𝝁𝐾‖2) +
1

2
(‖

𝒙𝑖

‖𝒙𝑖‖
− 𝝁̅𝐾‖

2

+ 1 − ‖𝝁̅𝐾‖2));   (2.37) 

∑ 𝑞𝐾(𝒙𝑗)
𝐾
𝑗=1 = 𝐾2(2(𝑋𝐾 − ‖𝝁𝐾‖2) + 1 − ‖𝝁̅𝐾‖2),                             (2.38) 

where  𝝁𝐾, 𝑋𝐾 and 𝝁̅𝐾 can be updated recursively using equations (2.26), (2.27) and (2.34). 

2.1.3.7. Chebyshev Inequality 

The well-known Chebyshev inequality in the traditional probability theory and statistics 

[52] describes the probability that a certain data sample 𝒙, is more than 𝑛𝜎 distance away 

from the mean, 𝝁, where 𝜎 denotes the standard deviation. With the Euclidean distance used, 

the Chebyshev inequality can be reformulated as [2]–[4]: 

𝑃(‖𝒙 − 𝝁‖2 < 𝑛2𝜎2) > 1 −
1

𝑛2
,                                                            (2.39) 

and the possibility of the point 𝒙 to be an outlier is given by: 

𝑃(‖𝒙 − 𝝁‖2 ≥ 𝑛2𝜎2) ≤
1

𝑛2.                                                                   (2.40) 

It can be proven that exactly the same result can be provided within EDA through the 

standardised eccentricity for the Euclidean distance [49]: 

𝑃(𝜀𝐾(𝒙𝑖) < 1 + 𝑛2) > 1 −
1

𝑛2;                                                              (2.41) 

𝑃(𝜀𝐾(𝒙𝑖) ≥ 1 + 𝑛2) ≤
1

𝑛2.                                                                     (2.42) 

Similarly, the Chebyshev inequality in the form of density is expressed as [26]: 

𝑃 (𝐷𝐾(𝒙𝑖) >
1

1+𝑛2
) > 1 −

1

𝑛2
 ;                                                               (2.43) 

𝑃 (𝐷𝐾(𝒙𝑖) ≤
1

1+𝑛2
) ≤

1

𝑛2
.                                                                       (2.44) 

One can see that the attractiveness of equations (2.41)-(2.44) in comparison with 

equations (2.39)-(2.40) is that no prior assumptions are required within EDA on the nature of 

the data (random or deterministic), the generation model, the amount of data and their 

independence. In addition, the results are more elegant and similar expressions can be derived 

for Mahalanobis distance, cosine dissimilarity as well as other types of distance and 

dissimilarity [26], [49].  
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2.1.3.8. Properties of the EDA quantities 

The EDA framework is entirely based on the ensemble properties and mutual 

distribution of the empirically observed data. Compared with the existing statistical 

approaches, there are a few outstanding unique properties within EDA quantities [25]–[27]: 

1) They are entirely based on the empirically observed experimental data and their 

mutual distribution in the data space; 

2) They do not require any user- or problem-specific thresholds and parameters to be 

predefined;  

3) They do not require any model of data generation to be assumed (random or 

deterministic);  

4) Individual data samples (observations) do not need to be independent or identically 

distributed; on the contrary, their mutual dependence is taken into account directly 

through the mutual distance between the data points/samples;  

5) They also do not require infinite number of observations and can work with as little as 

2 data samples; 

6) They can be calculated recursively for many types of distance metrics. 

2.2. Computational Intelligence Methodologies Survey 

Computational intelligence is a set of nature-inspired computational methodologies and 

approaches to address complex real-world problems to which mathematical or traditional 

modelling struggles. The main approaches of computational intelligence include fuzzy 

systems, artificial neural networks (ANNs), evolutionary computation (EC), etc. 

This section gives a review focusing on fuzzy systems and ANNs. Deep learning, as the 

later development of ANNs, will be also covered. A brief review on EC will be also 

presented.  

2.2.1 Fuzzy Sets and Systems 

Fuzzy sets theory and fuzzy rule-based (FRB) systems were firstly introduced in the 

seminal paper by Professor Lotfi Zadeh [53] over 50 years ago. The FRB systems are a set of 

fuzzy rules. The antecedent parts of the fuzzy rules are determined by fuzzy sets, which are 

defined by parameterised scalar membership functions. In this section, three types of fuzzy 

rules (Zadeh-Mamdani type [58], Takagi-Sugeno type [59] and AnYa type [60]) are 

reviewed. However, it has to be stressed that there are other types of fuzzy systems (relational 
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[61], etc.), only the most widely used and representative ones are considered in this thesis. 

The FRB system identification process is reviewed briefly in this section as well. 

2.2.1.1. Zadeh-Mamdani Type, Takagi-Sugeno Type and AnYa Type Fuzzy Rules 

A fuzzy rule of Zadeh-Mamdani type has the following expression [58]: 

𝐼𝐹 (𝑥1 𝑖𝑠 𝐿𝑖,1) 𝐴𝑁𝐷(𝑥2 𝑖𝑠 𝐿𝑖,2) 𝐴𝑁𝐷 …𝐴𝑁𝐷 (𝑥𝑀 𝑖𝑠 𝐿𝑖,𝑀)

𝑇𝐻𝐸𝑁 (𝑦𝑖 𝑖𝑠 𝐿𝑖,𝑜𝑢𝑡)  
 ,                 (2.45) 

where 𝒙 = [𝑥1, 𝑥2, … , 𝑥𝑀]𝑇 ; 𝐿𝑖,𝑗  is the j
th

 reference value of the i
th

 fuzzy rule;  𝑦𝑖   is the 

outcome of the i
th

 fuzzy rule. 

 A fuzzy rule of Takagi-Sugeno type has the following expression [11], [59], [62]: 

𝐼𝐹 (𝑥1 𝑖𝑠 𝐿𝑖,1) 𝐴𝑁𝐷(𝑥2 𝑖𝑠 𝐿𝑖,2) 𝐴𝑁𝐷 …𝐴𝑁𝐷 (𝑥𝑀 𝑖𝑠 𝐿𝑖,𝑀)

𝑇𝐻𝐸𝑁 (𝑦𝑖 = [1, 𝒙𝑇]𝒂𝑖)
 ,                 (2.46) 

where 𝒂𝑖 is the (𝑀 + 1) × 1 dimensional parameterised vector of the i
th

 fuzzy rule for linear 

regression. 

One can see that, the Zadeh-Mamdani type and Takagi-Sugeno type fuzzy rules share 

the same type of antecedent (IF) part, but differ in the consequent (THEN) part. Usually, to 

build the antecedent (IF) parts of the two types of fuzzy rules, a number of ad hoc choices 

have to be made [63], which include: 

1) The types of membership functions, i.e. triangular type, Gaussian type, bell type, etc.; 

2) Linguistic terms for each rule; 

3) The area of influence of each rule, i.e. hyper-rectangle, -sphere, -ellipsoid; 

4) The prototypes for the fuzzy sets; 

5) The parameters for the membership functions. 

In contrast, as a recently introduced type of fuzzy rules, the AnYa type has a different, 

simplified antecedent (IF) part, which can be viewed as a generalisation of the two 

predecessors. A 0-order AnYa type fuzzy rule is expressed as [60]: 

𝐼𝐹 (𝒙 ~ 𝒑𝑖)   𝑇𝐻𝐸𝑁 (𝑦𝑖 𝑖𝑠 𝐿𝑖,𝑜𝑢𝑡),                                                         (2.47) 

and a 1
st
 order AnYa type fuzzy rule is expressed as [60]: 

𝐼𝐹 (𝒙 ~ 𝒑𝑖)   𝑇𝐻𝐸𝑁 (𝑦𝑖 = [1, 𝒙𝑇]𝒂𝑖),                                                   (2.48) 



22 

 

where “~” denotes similarity, which can also be seen as a fuzzy degree of 

satisfaction/membership [54], [60] or typicality [26]; 𝒑𝑖 is the prototype of the i
th

 fuzzy rule, 

which is also the only decision required to be made by human experts, but it is still optional 

as the prototype can also be identified via the data-driven approaches [54]. 

The AnYa type fuzzy rule simplifies the antecedent (IF) part of the traditional fuzzy rule 

into a prototype [54], [60], which is a vector representing the focal point of the 

nonparametric, shape-free data cloud consisting of data samples associated with this focal 

point resembling Voronoi tessellation [64]. Compared with the antecedent (IF) part of the 

traditional (Zadeh-Mamdani type and Takagi-Sugeno type) fuzzy rules, which (although the 

structure and some of the parameters can be learnt from the data) requires heavy 

involvements of human experts and prior knowledge of the problems to formulate the whole 

rule, this simplification of the AnYa type significantly reduces the efforts of human experts 

and, at the same time, largely enhances the objectiveness of the FRB system [60]. The 

comparison between the three types of fuzzy rules is tabulated in Table 1 for clarity [55], 

[60]. 

Table 1. A comparison between three types of fuzzy rules 

Type Antecedent (IF) part 
Consequent (THEN) 

Part 
De-fuzzification 

Zadeh-Mamdani 
Scalar, parameterised 

fuzzy sets 

Scalar, parameterised 

fuzzy sets 
Central of gravity 

Takagi-Sugeno 
Functional (usually 

linear) 

Fuzzily weighted 

sum (average) 

AnYa 

0-order 
Prototypes, data 

clouds 

Scalar, parameterised 

fuzzy sets 
Winner takes all 

1
st
 order 

Functional (usually 

linear) 

Fuzzily weighted 

sum (average) 

2.2.2.2. FRB System Identification 

Initially, the fuzzy sets theory was introduced to approximate the data distribution by the 

subjectivist definition of uncertainty, which completely departed from objective observation 

and, instead, relies on the human experts’ knowledge [27]. The main issue in the design of 

the fuzzy sets and FRB systems is how to define the membership functions by which they are 

defined in first place [54].  

The main procedure of the traditional way of designing FRB systems, namely, the 

subjective approach, is summarised in Figure 1 [54]. 
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Figure 1. Main procedure of the subjective approach for FRB system identification. 

The subjective approach has its own very strong rationale in the two-way process of:  

1) Formalising expert knowledge and representing it in a mathematical form through the 

membership functions;  

2) Extracting and representing from data human-intelligible and understandable, 

transparent linguistic information in the form of IF …THEN… rules [55].  

However, the following issues appear during the process: 

1) Defining a membership function requires many ad hoc decisions; 

2) Membership functions often differ significantly from the real data distribution. 

Moreover, the so-called “curse of dimensionality” may result from handcrafting 

traditional FRB systems for high dimensional problems because of the exponential growth of 

the number of fuzzy sets required. 

In 1990s, the so-called data-driven design approach (the objective one) started to be 

popular and was developed [55]. The main procedure of the objective approach for FRB 

system identification is depicted in Figure 2 [54]. 

 

Figure 2. Main procedure of the objective approach for FRB system identification. 

Nonetheless, it is practically very difficult and controversial to define membership 

functions both from experts and from data. This is also related to the more general issue of 

assumptions made and handcrafting that machine learning (including statistical methods) are 
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facing. Therefore, in [54], an alternative membership function based on the Cauchy type data 

density (equation (2.18)) [26], [27] is introduced to the AnYa type FRB system, which frees 

the FRB system from ad hoc decisions and prior assumptions. In this thesis, the AnYa type 

FRB system with the Cauchy type membership function is employed. 

2.2.2. Artificial Neural Networks  

Artificial neural networks (ANNs) are the computing systems inspired by the biological 

neural networks of the animal brains aiming to resolve perception and recognition problems. 

They are capable of approximating nonlinear relationships between inputs and outputs.  

The basic elements of the ANNs are neurons, which receive input, change their internal 

state (activation) correspondingly, and produce output depending on the input and activation. 

ANNs are formed by connecting the output of certain neurons to the input of other neurons 

forming a directed, weighted graph. The adaptive weights along paths between neurons and 

the functions that compute the activation can be modified (adapted) by learning algorithms. 

However, unlike the biological neural networks, once an ANN is formed, the connections 

between artificial neurons are not usually added or removed. 

One of the earliest and best known computational models for neural networks based on 

mathematics and algorithms was introduced by Warren McCulloch and Walter Pitts in 1943 

[65] called threshold logic, however, the technology available at that time were insufficient 

for them to work on practical problems. In 1970s and 1980s, with the development of the 

computational resources, a number of new, more complex ANNs started to emerge.  

Nowadays, deep learning neural networks (DLNNs) have gained a lot of popularity in 

both the academic circles and the general public [19], [66]. In fact, deep learning is the latest 

name of ANNs [66]. However, DLNNs have also gone beyond the original neuroscientific 

perspective, but appear to be a more general principle of learning multiple levels of 

composition, which can be applied in machine learning frameworks that are not necessarily 

naturally inspired  [66]. Currently, the popular variants of the ANNs include, but not limited 

to 1) feedforward neural networks [4]; 2) deep convolutional neural networks (DCNNs) [21], 

[24]; 3) recurrent neural networks (long short-term memory) [67]; 4) deep belief networks 

[68] and 5) spiking neural networks [69], etc. 

As the feedforward neural networks (NNs) and DCNNs are directly related to the main 

topic of this thesis, this section will focus on reviewing these two particular types. 
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2.2.2.1. Feedforward Neural Network 

Feedforward NNs are a class of ANNs whose neurons form an acyclic graph where 

information moves only in one direction from input to output. They are extensively used in 

pattern recognition. The general architecture of a multilayer feedforward NN is depicted in 

Figure 3.  

 

Figure 3. General architecture of a multilayer feedforward NN. 

A typical multilayer feedforward neural network consists of three types of layers: input 

layer, one or more hidden layers and output layer. Each layer is a group of neurons receiving 

connections from the neurons of the previous layer. Neurons inside a layer are not connected 

to each other. 

Input layer is the first layer of the network and it receives no connections from other 

layers, but instead, uses input vector as its activation. Input layer is fully connected to the first 

hidden layer. Each hidden layer is fully connected to the next hidden layer, and the last 

hidden layer is fully connected to output layer. The activation of output units is considered to 

be the output of the feedforward neural network. The output of the network is the result of the 

transformations of input data through neurons and layers in a form of distributed 

representation consisting of a huge number of weighted local representations across the entire 

networks. 

Backpropagation procedure (backward propagation of errors) is the most widely used 

supervised learning algorithm for adapting connection weights of feedforward NNs [19]. 

Weights of the network are tuned to minimise square error between the system output and the 

target value: 

𝜀 = ∑ (𝑦𝑖 − 𝑡𝑖)
2

𝑖  ,                                                                                   (2.49) 
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where 𝜀 stands for overall square error; 𝑦𝑖 is the system output corresponding to the i
th 

input 

and 𝑡𝑖 is the respective target value. 

Backpropagation is nothing more than a practical application of the chain rule for 

derivatives. The key insight is that the derivative of the objective function with respect to the 

input of a layer can be computed by working backwards from the gradient with respect to the 

output of that layer. The backpropagation equation can be applied repeatedly to propagate 

gradients through all modules, starting from the output layer all the way to the input layer. 

Once these gradients have been computed, it is straightforward to compute the gradients with 

respect to the weights of each module [19].  

Although feedforward NNs are very powerful, they suffer from the following 

drawbacks: 

1) The structure is complex and considered as a black box; 

2) The structure identification requires a number of ad hoc decisions, i.e. number of 

neurons, number of layers; 

3) The training process is computationally expensive and once it is finished, the 

parameters of the NNs cannot be updated and requires a full retraining if new data samples 

are given. 

2.2.2.2. Deep Convolutional Neural Network 

Convolutional neural network (CNN) was firstly introduced by Kunihiko Fukushima 

[70] almost 50 years ago and was significantly improved later [71]. 

Currently, DCNNs are the state-of-the-art approaches in the field of computer vision. A 

number of publications have demonstrated that DCNNs can produce highly accurate results 

in various image processing problems including, but not limited to, handwritten digits 

recognition [22], [24], [72]–[74], object recognition [21], [23], [75], [76], human action 

recognition [77], [78], remote sensing image classification [79]–[82], etc. Some publications 

suggest that the DCNNs can match the human performance on the handwritten digits 

recognition problems [22], [24], [73], [74]. 

Except the input and output layers, a typical CNN consists of a number of hidden layers, 

which can be a combination of the following four types: 

1) Convolution layer; 

2) Pooling layer; 



27 

 

3) Normalisation layer; 

4) Fully connected layer. 

The convolutional and pooling layers in DCNNs are directly inspired by the classic 

notions of simple cells and complex cells in visual neuroscience [83].  

Convolutional layers apply a convolution operation to the input, passing the result to the 

next layer. The role of the convolutional layer is to detect local conjunctions of features from 

the previous layer.  

Pooling layer is for merging semantically similar features into one. A typical max 

pooling unit (which is the most commonly used one) calculates the maximum of a local patch 

of units in each sub-region of the image. Neighbouring pooling units take input from patches 

that are shifted by more than one row or column resulting in the reduction of the 

dimensionality of the representation and the increase of robustness to small shifts and 

distortions.  

Normalisation layer is useful when using neurons with unbounded activations (e.g. 

rectified linear neurons), because it permits the detection of high-frequency features with a 

big neuron response, while damping responses that are uniformly large in a local 

neighbourhood.  

Fully connected layer connects every neuron in the previous layer to every neuron in it, 

which is in principle the same as the feedforward NN as described in subsection 2.2.2.1.  

However, one major difference between the fully connected layer in the DCNN and the one 

in the feedforward NN is that the fully connected layer of the DCNN only connects to a small 

region of the input volume, while the fully connected layer of feedforward NN connected to 

all the neurons of the previous layer. 

Recent DCNN architectures have 10 to 20 layers of rectified linear neurons, hundreds of 

millions of weights, and billions of connections between units. Thanks to the very large 

progress in hardware, software and algorithm parallelisation, the training times can be only a 

few hours if enough computational resources are provided, which could be extremely 

expensive. The performance of DCNN-based vision systems has caused most major 

technology companies, including Google, Facebook, Microsoft, Baidu to initiate research and 

development projects and to deploy DCNN-based image understanding products and services 

[19].  
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Nonetheless, ANNs/DCNNs still have a number of deficiencies and shortcomings:  

1) The computational burden of training using huge amount of data is still very heavy; 

2) The training process is opaque, and the classifier has low or no human interpretability 

(black box type); 

3) The training process is limited to offline and requires re-training for samples with 

feature properties different than the observed samples, as well as for samples from unseen 

classes; 

4) Its internal structure identification involves a number of ad hoc decisions, i.e. number 

of layers, the order of the layers, the types of convolutional kernel, the type of pooling. 

2.2.3. Evolutionary Computation 

Evolutionary computation (EC) is a class of randomised search and optimisation 

algorithms inspired by the principles of evolutional and natural genetics [84], [85]. The 

origins of EC can be dated back to the late 1950’s [86]–[88], but the works from John 

Holland [86],  Ingo Rechenberg [89] and Lawrence Fogel [90] laid the foundation for its 

popularity today. 

Currently, the main components of EC include genetic algorithms [91], [92], 

evolutionary strategies [93],  genetic programming [94] and particle swarm optimisation [95], 

[96]. However, this thesis focuses on the fuzzy systems and ANNs, and, thus, a detailed 

review on the EC is not conducted. Nonetheless, one can find the more detailed, systematic 

introductions to EC in [84], [85], [97].  

2.3. Machine Learning Techniques Survey  

In this section, the machine learning techniques including clustering, classification, 

regression and anomaly detection will be reviewed.  

2.3.1. Cluster Algorithms  

Clustering, alternatively, data partitioning, has a variety of goals, all related to grouping 

or segmenting a collection of data into subsets or “clusters” such that data samples within the 

same cluster are more closely related to each other than other data samples assigned to 

different clusters [4].  

Clustering algorithms have long been considered as unsupervised machine learning 

techniques for finding out the underlying groups and pattern within the data. Based on their 
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operating mechanism, clustering algorithms can be divided into the following main types 

[98]: 

1) Hierarchical clustering; 

2) Centroid-based clustering; 

3) Model-based clustering; 

4) Density-based clustering; 

5) Distribution-based clustering; 

6) Soft-computing clustering. 

Since there are a huge number of clustering algorithms published, it is impossible to 

cover all the published algorithms within this thesis. In this section, only the most typical and 

representative clustering algorithms of the six types are reviewed, and their later variants are 

also given. 

2.3.1.1. Hierarchical Clustering 

A hierarchical clustering algorithm [99] produces a dendrogram representing nested 

groupings of patterns and similarity levels at different granularities, which offers more 

flexibility for exploratory analysis. The clustering result is achieved by cutting the 

dendrogram at the desired similarity level [98]. Some studies suggest that hierarchical 

algorithms can produce better-quality clusters [100]. There are two major types based on their 

bottom-up or top-down fashion: 

1) Agglomerative hierarchical clustering [101], [102] 

The methods treat each data sample as a cluster of its own initially, and merge them 

successively until obtain the desired cluster structure [98]. 

2) Divisive hierarchical clustering [103], [104] 

The methods achieve the clustering result via a contrary direction. They treat all the data 

samples as a single cluster and successively divide the cluster into sub-clusters until the 

desired clustering structure is obtained [98]. 

More recently, a new type of hierarchical clustering approaches named affinity 

propagation was introduced in [105], which can achieve the desired cluster structure without 

cutting the dendrogram. This algorithm takes as input measures of similarity between pairs of 

data points and simultaneously considers all data samples as potential exemplars. Real-valued 
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messages, whose magnitude represents the affinity of one data sample for choosing another 

data sample as its cluster centre, are exchanged between data samples until a high-quality set 

of exemplars and corresponding clusters gradually emerge. Nonetheless, this new approach, 

in fact, optimises the dendrogram cutting by hardcoding the mathematical rules for achieving 

the optimal partitions and predefining parameters. 

In general, the hierarchical clustering approaches tend to maintain good performance on 

datasets with non-isotropic clusters, including well-separated, chain-like and concentric ones. 

The main drawbacks of the hierarchical approaches are: 

1) The computation- and memory- efficiency of the approaches deteriorates fast with the 

increase of the scale of the data; 

2) They do not have back-tracking capability; 

3) They require prior knowledge of the problem, which means the performance of the 

hierarchical approaches is not guaranteed in real cases where the prior knowledge is not 

available. 

2.3.1.2. Centroid-based Clustering 

Centroid-based clustering methods start from an initial partitioning and relocate 

instances by moving them from one cluster to another. The methods require an exhaustive 

enumeration process of all possible partitions and use certain greedy heuristics for iterative 

optimisation.  

The basic idea of the centroid-based clustering algorithms is to find a clustering 

structure that minimises a certain error criterion that measures the distance of each data 

sample to its representative value, and the process is called error minimisation. The most 

well-known criterion is the sum of squared error. 

The simplest and most commonly used algorithm is the k-means algorithm [5]. The k-

means algorithm starts by randomly initialise 𝑘  cluster centres, and then, the algorithm 

iteratively assigns data samples to the closest centres and updates the centres until some 

predefined termination condition is satisfied [98]. There are also other versions of k-means 

algorithms including online k-means [106], batch k-means [107], etc. 

Another method that attempts to minimise the sum of squared errors is the k-medoids 

[108]. The k-medoids algorithm differs from the k-means in its representation of the different 
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clusters. Each cluster is represented by the most centric data sample in the cluster instead of 

using the mathematical mean that may not belong to the cluster [108]. 

The centroid-based clustering approaches tend to work well with isolated and compact 

clusters, and are the most intuitive and frequently used methods. However, they also have the 

following drawbacks: 

1) The number of clusters, which is 𝑘, needs to be defined in advance, which requires 

prior knowledge of the problem; 

2) The optimisation process is very time-consuming and exhaustive, and the 

computation- and memory- efficiency of the approaches further deteriorates with the increase 

of the scale of the data. 

2.3.1.3. Model-based Clustering 

The model-based approaches attempt to optimise the fit between the given data and 

some mathematical models. Approaches of this kind not only identify the groups of data 

samples but also find characteristic descriptions for each group [98].  

The most frequently used method is the self-organising map (SOM) [109], [110], which 

represents each cluster by a neuron. This algorithm constructs a single-layered network 

through a learning process with the “winner takes all” strategy.  

SOM algorithm is a useful approach for clustering analysis and it can visualise the 

clustering results of high-dimensional data in 2D or 3D space. However, its performance is 

sensitive to the initial selection of weight vectors and the free parameters including learning 

rate, neighbourhood radius as well as the net size. 

2.3.1.4. Density-based Clustering 

Density-based clustering approaches assume that clusters exist in areas of higher density 

of the data space. Each cluster is characterised by a local mode or maximum of the density 

function [98]. 

One of the most popular density based clustering method is density-based spatial 

clustering of applications with noise (DBSCAN) [6]. The main idea of the DBSCAN 

algorithm is to group data samples that are very close together in the data space, and mark 

data samples that lie alone in low-density as outliers.  
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DBSCAN requires two parameters: the maximum radius of the neighbourhood and the 

minimum number of points required to form a dense region [6]. The algorithm starts with an 

arbitrary sample that has not been visited before. The neighbourhood of this starting sample 

is extracted and checked to see if this area contains a sufficient number of data samples. If so, 

a cluster is started, otherwise, it is labelled as noise. If a data sample is found to be a dense 

part of a cluster, its neighbouring area is also a part of this cluster, and, thus, all the data 

samples located in that area are added to the cluster. The process continues until the density-

connected cluster is completely built. Then, an unvisited data sample is retrieved and 

processed to form a further cluster or be identified as noise. 

There are a number of modified DBSCAN algorithms published including: ST-

DBSCAN [111], ST-DBSCAN [112], P-DBSCAN [113], etc. 

Mean shift algorithm [114]–[116] is also a popular density-based clustering approach 

built upon the concept of kernel density estimation (KDE). In statistics, KDE is a non-

parametric way to estimate the PDF of a random variable. Mean shift algorithm implements 

the KDE idea by iteratively shifting each data sample to the densest area in its vicinity until 

all the data samples converge to local maxima of density. 

eClustering algorithm [11] is the most popular online density-based clustering approach 

for streaming data processing, which can self-evolve its structure and update its parameters in 

a dynamic way. It is able to successfully handle the drifts and shifts of the data pattern in the 

data streams [117]. eClustering algorithm opens the door for the evolving clustering 

approaches and a number of modifications have been introduced later, i.e., evolving local 

mean clustering (ELMC) algorithm [12], data density-based clustering with automated radii 

(DDCAR) algorithm [10], clustering of evolving data streams (CEDS) algorithm [118]. The 

eClustering algorithm is also one of the theoretical bases of the self-organising transparent 

machine learning techniques described in this thesis in the later chapters. 

The density-based clustering approaches can efficiently detect arbitrary-shaped clusters 

and do not require the number of clusters to be predefined. However, the main drawbacks of 

the density-based clustering approaches are as follows: 

1) They require free parameters to be predefined, i.e. radius, window size, and if the free 

parameters are not set properly, the performance and efficiency of the algorithms are not 

guaranteed; 
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2) They usually assume the distribution model of the data, i.e. mixtures of Gaussians, 

which is often not the case in real problems. 

2.3.1.5. Distribution-based Clustering 

Distribution-based methods assume that the points that belong to each cluster are 

generated from a specific probability distribution, and the overall distribution of the data is 

assumed to be a mixture of several distributions. Thus, these approaches are closely related to 

statistics [98]. 

One prominent method is known as mixture models [119]–[123]. These approaches 

assume the generalisation model of data to be a mixture of Gaussian distributions. They 

randomly initialise a number of Gaussian distributions and iteratively optimise the parameters 

to fit the data model.  

The distribution-based clustering is able to produce complex clustering results that can 

capture correlation and dependence between different features. However, there are clear 

drawbacks of these approaches: 

1) The prior assumptions made by the distribution-based clustering approaches are too 

strong for real cases; 

2) They require parameters to be set by users; 

3) The computation- and memory- efficiency of these approaches are very low. 

2.3.1.6. Fuzzy Clustering 

Traditional clustering approaches generate partitioning, in which each data sample 

belongs to one and only one cluster. Thus, the clusters are disjointed. Fuzzy clustering 

extends this notion and suggests a soft clustering schema [98], which means a data sample 

can belong to different clusters at the same time. 

The most representative fuzzy clustering approach is the well-known fuzzy c-means 

(FCM) algorithm [124]–[126]. FCM algorithm is based on the minimisation of the following 

equation: 

𝐹 = ∑ ∑ 𝜐𝑖,𝑗
𝑚‖𝒙𝑖 − 𝝁𝑗‖

2𝐶
𝑗=1

𝐾
𝑖=1 ,                                                              (2.50) 

where 𝐶 is the number of clusters; 𝝁𝑗  is the j
th

 cluster centre (j=1,2,…, C); 𝜐𝑖,𝑗 is the degree of 

membership of 𝒙𝑖 in the j
th

 cluster; 𝑚 is fuzzy partition matrix exponent for controlling the 
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degree of fuzzy overlap. The general procedure of the fuzzy c-means algorithm is quite 

similar to the k-means approach. 

In the FCM algorithm [124]–[126] and its later modifications [124], [127], [128], each 

cluster is a fuzzy set of all the patterns. Larger membership degrees suggest higher 

confidence in the assignment and, vice versa. A non-fuzzy clustering result can also be 

achieved by applying a threshold of the membership degrees. 

The fuzzy clustering approaches are, generally, better than non-fuzzy centroid-based 

approaches in avoiding local maxima. However, the major drawbacks of the fuzzy clustering 

approaches are: 

1) The number of clusters, which is “𝑐”, needs to be defined in advance, which requires 

prior knowledge of the problem; 

2) The design of membership functions requires ad hoc decisions and prior knowledge 

of the problem as well. 

2.3.2. Classification Algorithms 

Classification is the task of assigning a class label to an input data sample. The class 

label indicates one of a given set of classes. In contrast with clustering, classification is 

usually considered as a supervised or semi-supervised learning technique [129]. In this 

section, the most widely used and representative fully supervised classification approaches 

are reviewed, which includes: 

1) Naïve Bayes classifier;  

2) K-nearest neighbour (KNN) classifier; 

3) Support vector machine (SVM) classifier; 

4) Decision tree (DT) classifier; 

5) eClass classifier; 

The popular semi-supervised classification approaches are also briefly reviewed. 

2.3.2.1. Naïve Bayes Classifier 

Naive Bayes classifier is one of the most widely studied and used classification 

approaches deeply rooted in the traditional probability theory and statistics [130]. The naïve 

Bayes classifier is based on the PDFs derived from training samples on the prior assumption 

that different features of the data are statistically independent. 
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Under this assumption, the conditional PDF for a data sample  𝒙  belonging to the class 

ℂ𝑖 (𝑖 = 1,2, … , 𝐶) is written as [130]: 

𝑃(𝒙|ℂ𝑖) = ∏ 𝑃(𝑥𝑗|ℂ𝑖)
𝑀
𝑗=1 ,                                                                     (2.51) 

and the class label of 𝒙 , denoted by 𝑦(𝒙), is given as: 

y(𝒙) = argmax
𝑖=1,2,…𝐶

(𝑃(𝒙|ℂ𝑖)).                                                                    (2.52) 

With certain types of PDFs, the naïve Bayes classifier can be trained very efficiently 

and it only requires a small number of training data for the training. However, the drawbacks 

of the naïve Bayes classifier are also obvious: 

1) Its prior assumption, although simple, is often not held in real cases; 

2) The choice of the PDFs requires prior knowledge and can influence the efficiency 

and accuracy of the classifier if it is not properly set; 

3) Its model is over simple, which makes it insufficient in dealing with complex 

problems. 

2.3.2.2. KNN Classifier 

Nearest neighbour rule [131] is the simplest nonparametric decision procedure for 

deciding the label of an unlabelled data sample, 𝒙𝑜 . The mathematical expression of the 

nearest neighbour rule is as follows: 

y(𝒙𝑜) = argmin
𝒙∈{𝒙}𝐾

(𝑑(𝒙𝑜, 𝒙)) ,                                                                 (2.53) 

where 𝑦(𝒙𝑜) is the estimated label of 𝒙𝑜, which comes from the label of the data sample 

𝒙𝑛 ∈ {𝒙}𝐾  that is closest to 𝒙𝑜, 𝑑(𝒙𝑜 , 𝒙𝑛) = min
𝒙∈{𝒙}𝐾

(𝑑(𝒙𝑜, 𝒙)). 

KNN algorithm [131]–[133] is the most representative algorithm employing the nearest 

neighbour rule directly. The algorithm is also among the simplest of all machine learning 

algorithms. The label of a particular data sample is decided by the labels of its 𝑘 nearest 

neighbours based on the voting mechanism. The KNN algorithm mainly conducts 

computation during the classification stage.  

KNN classifier has been widely used in different areas, i.e. biology [134], remote 

sensing [135], etc., and has a number of modifications being published [136]–[138]. KNN is 

also one of the two most widely used classifiers (the other one is the SVM classifier, which 
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will be described in the next subsection) in the transfer learning approaches based on pre-

trained DCNNs and is able to produce highly accurate classification results [77], [139]–[141]. 

However, the main drawbacks of the KNN classifier are: 

1) The best choice of 𝑘 is data dependent, which means that it requires prior knowledge 

to decide, otherwise, the performance of the KNN approach is not guaranteed; 

2) KNN classifier is also sensitive to the structure of the data. Its performance severely 

deteriorates by the noisy, irrelevant features or unbalanced feature scales. 

2.3.2.3. SVM Classifier 

SVM [142] is one of the most popular classification approaches and has been widely 

used in various areas including biology [143], economy [144] and natural language 

processing [145]. SVM is also the other most widely used classifier in the transfer learning 

approaches based on pre-trained DCNNs and is able to produce highly accurate classification 

results [77], [139]–[141]. 

In essence, SVM is an algorithm for maximising a particular mathematical function with 

respect to a given collection of data [146]. There are four very important basic concepts 

within the SVM classifier [146]. 

1) Separating hyperplane; 

Given a training set for a binary classification problem, denoted by {𝒙}𝐾 =

{𝒙1, 𝒙2, … , 𝒙𝐾} (𝒙𝑖 ∈ 𝐑𝑀) and the corresponding label, {𝑦}𝐾 = {𝑦1, 𝑦2, … , 𝑦𝐾} (𝑦𝑖 ∈ {−1, 1}). 

If the two classes are linearly separable, one can find some dimensional  hyperplanes that 

separates the two classes [130], [146]. The points lie on the hyperplanes satisfying [147]: 

𝒙𝑇𝒘 + 𝑏 = 0,                                                                                         (2.54) 

where 𝒘 is a vector that is perpendicular to the separating hyperplane, namely, the normal. 

2) Maximum-margin hyperplane; 

As there exist many hyperplanes in the data space that can separate the data from two 

classes, the SVM selects the hyperplane with the maximum distance from it to the nearest 

data point on each side, which is also known as the maximum-margin hyperplane [130], 

[146], [148]. This is formulated as [147]: 

𝒙𝑖
𝑇𝒘 + 𝑏 ≥ 1 𝑖𝑓 𝑦𝑖 = 1

𝒙𝑖
𝑇𝒘 + 𝑏 ≤ −1 𝑖𝑓 𝑦𝑖 = −1

 .                                                              (2.55) 
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One can find the maximum margin by minimising ‖𝒘‖ . The constrains (equation 

(2.55)) can be reformulated in Lagrangian expressions [147], which will be much easier to 

handle by constrains on the Lagrange multiples:   

𝐿𝑃 =
1

2
‖𝒘‖2 − ∑ 𝛼𝑖𝑦𝑖(𝒙𝑖

𝑇𝒘 + 𝑏)𝐾
𝑖=1 + ∑ 𝛼𝑖

𝐾
𝑖=1 ;                                   (2.56) 

𝐿𝐷 = ∑ 𝛼𝑖
𝐾
𝑖=1 −

1

2
∑ ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝒙𝑖

𝑇𝒙𝑗
𝐾
𝑗=1

𝐾
𝑖=1 ,                                           (2.57) 

where the subscript 𝑃 stands for primal and 𝐷 for dual; 𝛼𝑖  (𝑖 = 1,2, … , 𝐾) are the positive 

Lagrange multiples, one for each of the constrains (2.55).  Equations (2.56) and (2.57) are 

raised from the same objective function but with different constrains, and the solution is 

found by minimising 𝐿𝑃 or maximising 𝐿𝐷. 

It has proven that selecting the maximum-margin hyperplane is the key to the success of 

the SVM as it maximises the SVM’s ability to predict the correct classification of previously 

unseen examples [148]. 

3) Soft margin; 

Although the data from two classes were assumed to be linearly separable in the 

previous derivation, data cannot be separated as cleanly in many cases in reality. In order to 

handle such cases, the SVM is modified by adding a soft margin, which can be done by 

introducing slack variables, denoted by ϑ𝑖 (𝑖 = 1,2, … , 𝐾), to the constrains (2.55) [147]: 

 

𝒙𝑖
𝑇𝒘 + 𝑏 ≥ 1 − ϑ𝑖 𝑖𝑓 𝑦𝑖 = 1

𝒙𝑖
𝑇𝒘 + 𝑏 ≤ −1 + ϑ𝑖 𝑖𝑓 𝑦𝑖 = −1

ϑ𝑖 ≥ 0 ∀𝑖

 .                                                      (2.58) 

With this modification, the SVM is able to deal with errors in the data by allowing a few 

anomalies to fall on the wrong side of the separating hyperplane. Essentially, this allows 

some data samples to push their way through the margin of the separating hyperplane without 

affecting the final result [146]. Meanwhile, it is necessary to limit the number of 

misclassifications of the SVM to prevent the deterioration of the performance, therefore, a 

user-specified parameter, denoted by 𝜚, is introduced for controlling the training errors. A 

lager 𝜚 corresponds to a higher penalty to errors, and vice versa. 

As a result, extra conditions are imposed on the solution for maximising dual 

Lagrangian 𝐿𝐷 (equation (2.57)) [147]: 

0 ≤ 𝛼𝑖 ≤ 𝜚

∑ 𝛼𝑖𝑦𝑖
𝐾
𝑖=1 = 0

.                                                                                        (2.59) 
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For primal Lagrangian 𝐿𝑃 (equation (2.56)), the formulation becomes [147]: 

𝐿𝑃 =
1

2
‖𝒘‖2 + 𝜚 ∑ ϑ𝑖

𝐾
𝑖=1 − ∑ 𝛼𝑖𝑦𝑖(𝒙𝑖

𝑇𝒘 + 𝑏)𝐾
𝑖=1 − ∑ ι𝑖ϑ𝑖

𝐾
𝑖=1 ,              (2.60) 

where ι𝑖 (𝑖 = 1,2, … , 𝐾) are the positive Lagrange multiples introduced to enforce the positive 

of ϑ𝑖(𝑖 = 1,2, … , 𝐾).  

4) Kernel function.  

For a nonlinear separable case, it is impossible to find the maximum margin separating 

hyperplane, and the soft margin is not going to help as well. To solve this problem, the kernel 

function, which itself is a mathematical trick, is applied to the maximum margin hyperplanes. 

The kernel function provides a solution to the nonlinear separable problems by adding an 

additional dimension to the data and it projects the data from a low dimensional space to a 

higher dimensional space [146]. 

Some common kernels include [147]: 

Polynomial: 𝛫(𝒙𝑖, 𝒙𝑗) = (𝒙𝑖
𝑇𝒙𝑗 + 𝟏)

𝑝
; 

Gaussian radical basis function: 𝛫(𝒙𝑖, 𝒙𝑗) = 𝑒
−

‖𝒙𝑖−𝒙𝑗‖
2

2𝜎2  and 

Hyperbolic tangent: 𝛫(𝒙𝑖, 𝒙𝑗) = tanh (𝜅𝒙𝑖
𝑇𝒙𝑗 − 𝛿). 

There is also a TEDA kernel recently introduced into the SVM [149]. 

Although the SVM classifier is one of the most widely used classifiers and is able to 

exhibit very good performance in various classification problems, there are still a few major 

drawbacks [130]: 

1) It requires prior knowledge for choosing the kernel function. If the kernel function is 

not correctly chosen, it performance is not guaranteed; 

2) Its computational efficiency drops quickly in large-scale problems; 

3) It requires a full retraining if more training samples are provided later; 

4) It is less efficient in handling multi-class classification problems. 

2.3.2.4. Decision Tree Classifier 

Decision tree classifier is a commonly used nonlinear classification approach [150]–

[153] by mapping the input vectors in the data space to the output labels. The system is 

organised into a tree structure that each node represents an elementary classification 
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algorithms and the leaves represent the output class labels. The system splits the entire data 

space into unique regions corresponding to the classes in a sequential manner [130], [154], 

[155]. An illustrative example of the decision tree is given in Figure 4[130]. 

 

Figure 4. Example of a decision tree. 

Initially, the decision tree approach is an expert-based approach [130], later, the 

recursive partitioning from the statistics makes it a data-driven approach [156]. Recursive 

partitioning creates a decision tree by splitting the training data into subsets based on several 

dichotomous independent variables. The process is termed recursive because each subset may 

be split for an indefinite number of times until a particular stopping criterion is reached.  

The most popular approaches for learning a decision tree include:  

1) Iterative Dichotomiser 3 (ID3) [157], which calculates the information entropy of the 

attributes to select the most appropriate one as the nodes of the tree; 

2) C4.5 [158], which is an extension of ID3 algorithm with its open source Java 

implementation named as J48.  

However, the major drawbacks of the decision tree approach are as follows: 

1) It is less sufficient in dealing with complex problems; 

2) Its performance relies heavily on the stopping criterion, which requires prior 

knowledge of the problems; 

3) It has very high variance; a very small change in the dataset will lead to an entirely 

different tree structure. 
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2.3.2.5. eClass Classifier 

As it was mentioned in the previous section that FRB systems were initially designed 

for expert-based systems, which seriously restricted the applications. After the effective idea 

of learning automation is introduced, evolving FRB systems started to be applied for the 

classification purposes with the implementation of automatic fuzzy rules generation [159]. 

The most successful and widely used evolving fuzzy classifier is the eClass [160].  

eClass classifier [160] is a classification approach for streaming data processing. It is 

able to self-evolve its structure and update its meta-parameters on a sample-by-sample basis. 

There are a lot of evolving classifiers introduced on the basis of the eClass classifier [160] 

including: FLEXFIS-Class [161], simpl_eClass [162], autoClass [163], TEDAClass [51], etc. 

eClass classifier [160] has two versions, the first one is eClass0, which uses the Zadeh-

Mamdani-type fuzzy rules (equation (2.45)) and the other one is eClass1, which employs the 

Takagi-Sugeno type fuzzy rules (equation (2.46)).  

The structure update mechanisms of the eClass0 and eClass1 are based on the local and 

global potentials (equations (2.61) and (2.62)) introduced within recursive density estimation 

(RDE) [62], respectively: 

𝑃𝐾,𝑖
𝐿 (𝒙𝐾) =

1

1+
∑ 𝑑(𝒙𝐾,𝒙)𝒙∈ℂ𝑖

𝑆𝑖

;                                                                        (2.61) 

𝑃𝐾(𝒙𝐾) =
1

1+
∑ 𝑑(𝒙𝐾,𝒙𝑖)

𝐾−1
𝑖=1

𝐾−1

.                                                                         (2.62) 

eClass0 uses eClustering algorithm [62] to partition the data into clusters, and adds new 

fuzzy rules to the rule base if 

𝑃𝐾,𝑖
𝐿 (𝒙𝐾) > 𝑃𝐾,𝑖

𝐿 (𝒙𝑖
∗)  ∀𝑖 = 1,2, … , 𝐶,                                                     (2.63) 

where 𝒙𝑖
∗ is the prototype of the i

th
 cluster.  

While in eClass1, a new fuzzy rule is added to the rule base on condition that: 

𝑃𝐾(𝒙𝐾) > 𝑃𝐾(𝒙𝑖
∗)  ∀𝑖 = 1,2, … , 𝐶.                                                         (2.64) 

The difference between equations (2.63) and (2.64) is that the global potential is used in 

eClass1 and the local potential is used in eClass0. 

For eClass0, the output (𝑦(𝒙𝐾), which is the label) for 𝒙𝐾 with unknown data label is 

given following the “winner takes all” principle: 
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𝑦(𝒙𝐾) = argmax𝑖=1,2,…,𝐶(𝜆𝐾,𝑖),                                                             (2.65) 

where 𝜆𝑖(𝒙𝐾) is the firing level of the i
th

 fuzzy rule calculated by: 

𝜆𝐾,𝑖 = ∏ 𝑒
−

𝑑2(𝒙𝐾,𝒙𝑖
∗)

2𝑟𝑖,𝑗
2𝑀

𝑗=1 ,                                                                           (2.66) 

where 𝑟𝑖,𝑗 is the spread of the j
th

 fuzzy set of the i
th 

fuzzy rule, which will be recursively 

updated during the learning stage [160].  

For eClass1, the overall system output for 𝒙𝐾 with unknown data label is given as the 

fuzzily weighted average: 

𝑦(𝒙𝐾) = ∑
𝜆𝐾,𝑖𝛽̅𝐾,𝑖

∑ 𝜆𝐾,𝑗
𝐶
𝑗=1

𝐶
𝑖=1 ,                                                                           (2.67) 

where 𝑦̅𝐾,𝑖 is the normalised output of the i
th

 fuzzy rule defined as: 

𝛽̅𝐾,𝑖 = ∑
𝛽𝐾,𝑖

𝛽𝐾,𝑗

𝐶
𝑗=1 ,                                                                                      (2.68) 

and there is: 𝛽𝐾,𝑖 = 𝒙̅𝐾
𝑇𝒂𝐾,𝑖 (𝒙𝐾

𝑇 = [1, 𝒙𝐾
𝑇 ], 𝒂𝐾,𝑖 = [𝑎𝐾,𝑖,0, 𝑎𝐾,𝑖,1, … , 𝑎𝐾,𝑖,𝑀]

𝑇
). The label of 𝒙𝐾 is 

chosen as: 𝑦(𝒙𝐾) = argmax𝑖=1,2,…,𝐶(𝛽̅𝐾,𝑖).  

The consequent parameter vector , 𝒂𝐾,𝑖 is updated using the fuzzily weighted recursive 

least squares (FWRLS) [11]: 

𝒂𝐾,𝑖 = 𝒂𝐾−1,𝑖 + 𝚯𝐾,𝑖𝜆𝑖𝒙̅𝐾(𝑦𝐾 − 𝒙̅𝐾
𝑇𝒂𝐾−1,𝑖); 𝒂1,𝑖 = 𝟎(𝑀+1)×1

𝚯𝐾,𝑖 = 𝚯𝐾−1,𝑖 −
𝜆𝑖𝚯𝐾−1,𝑖𝒙̅𝐾𝒙̅𝐾

𝑇𝚯𝐾−1,𝑖

1+𝜆𝑖𝒙̅𝐾
𝑇𝚯𝐾−1,𝑖𝒙̅𝐾

; 𝚯1,𝑖 = Ω𝐈(𝑀+1)×(𝑀+1)

,  (2.69) 

where 𝚯𝐾,𝑖 is the corresponding covariance matrix of the i
th

 fuzzy rule; 𝐈(𝑀+1)×(𝑀+1) is the 

(𝑀 + 1) × (𝑀 + 1) dimensional identical matrix; Ω is a large constant. 

2.3.2.6. Semi-Supervised Classifiers 

Semi-supervised machine learning approaches [164]–[169] consider both the labelled 

and unlabelled data. The goal of the semi-supervised learning is to use the unlabelled data to 

improve the generalisation.  

Cluster assumption states that the decision boundary should not cross high density 

regions, but lie in low density regions [166]. Virtually all the existing successful semi-

supervised approaches rely on the cluster assumption in a direct or indirect way by estimating 

or optimising a smooth classification function over labelled and unlabelled data [170], [171].  
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Currently, there are two major branches of semi-supervised approaches, SVM-based and 

graph-based approaches [168], [172]. 

 Semi-supervised SVMs [173]–[175] are extensions of the traditional SVMs [142] to a 

semi-supervised scenario. Traditional SVMs maximise the separation between classes based 

on the training data via a maximum-margin hyperplane [142], while semi-supervised 

classifiers balance the estimated maximum-margin hyperplane with a separation of all the 

data through the low-density regions. Well-known SVM-based semi-supervised classifiers 

include: transductive support vector machine (TSVM) [173], ∇TSVM [166], Laplacian SVM 

classifier [176], [177], local and global consistency based SVM [165] etc. 

Graph-based approaches [168], [172], [178] use the labelled and unlabelled data as 

vertices in a graph and build pairwise edges between the vertices weighted by similarities. 

Well-known graph-based semi-supervised classifiers include: Gaussian fields and harmonic 

functions based approaches [164], AnchorGraph-based classifier [179] and greedy gradient 

max-cut based classifier [168], etc. 

In general, both types of semi-supervised approaches share the same drawbacks [172]: 

1) They are computationally expensive and they consume a lot of computer memory; 

2) They are not applicable to the out-of-sample data; 

3) They require full retraining when more training samples are given.  

2.3.3. Regression Algorithms  

Regression is a statistical process for estimating the relationships among variables and it 

is commonly used for prediction and forecasting in various areas including engineering [180], 

[181], biology [4], [182], economy and finance [183], [184]. The most widely used regression 

algorithm should be the linear regression [4]. Linear regression is a simple, linear, offline 

algorithm which has been studied rigorously, and used extensively in practical applications in 

the precomputer area of statistics [185], however, even now, it is still the predominant 

empirical tool in economics [4].  

Adaptive-network-based fuzzy inference system (ANFIS) was introduced in 1993 [186] 

as a kind of artificial neural network that is based on Takagi-Sugeno fuzzy inference system. 

Since it integrates both neural networks and fuzzy logic principles, it has potential to capture 

the benefits of both in a single framework and has the learning capability to approximate 

nonlinear functions, and therefore, it is considered as a universal estimator.  
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Nowadays, due to the fact that we are faced not only with large datasets, but also with 

huge data streams, the traditional simple offline algorithms are not sufficient to meet the 

need. The more advanced evolving intelligent systems start to be developed and widely 

applied for the purpose of prediction [187]. The two most representative algorithms to learn 

evolving intelligent systems are the dynamic evolving neural-fuzzy inference system 

(DENFIS) [188] and evolving Takagi-Sugeno (ETS) fuzzy model [11], [189]. 

In this section, the four well-known algorithms, linear regression, ANFIS, DENFIS and 

ETS, are reviewed.  

2.3.3.1. Linear Regression 

A linear regression model assumes that the regression function is linear in the inputs. 

The linear model is one of the most important tools in the area of statistics. Linear models are 

quite simple, but can provide an adequate and interpretable description of the relationship 

between the inputs and outputs [4].  

Using 𝒙 = [𝑥1, 𝑥2, … , 𝑥𝑀]𝑻 as the input vector, the linear model to predict the output 𝑦 

is expressed as: 

𝑦 = 𝑎0 + ∑ 𝑥𝑖𝑎𝑖
𝑀
𝑖=1 = 𝒙̅𝑇𝒂,                                                                   (2.70) 

where 𝒙̅𝑇 = [1, 𝑥1, 𝑥2, … , 𝑥𝑀] and 𝒂 = [𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑀]𝑇.   

A number of approaches can be used to decide the parameters 𝒂 and fix the linear 

model, but by far, the most popular approach is the least square method [4], which is written 

as: 

𝒂̂ = (𝒙̅𝑇𝒙̅)−𝟏𝒙̅𝑇𝑦.                                                                                   (2.71) 

There are also many different modifications on the linear regression algorithm, one of 

the most representative one is the sliding window linear regression, which has been widely 

used in the finance and economy [190].  

Despite the fact that linear regression model is one of the most popular regression 

algorithms due to its simplicity and stability, however, its major drawback is the 

oversimplification of the problems, which makes it insufficient in dealing with complex and 

large-scale problems. 
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2.3.3.2. ANFIS 

ANFIS [186] is a simple data learning technique that uses fuzzy logic to transform given 

inputs into a desired output through interconnected neural network processing elements and 

information connections [191]. For clarity, the general architecture of ANFIS is presented in 

Figure 5, where two fuzzy rules of Takagi-Sugeno type are considered [59], [62]: 

𝐼𝐹 (𝑥1 𝑖𝑠 𝐿1,1) 𝐴𝑁𝐷 (𝑥2 𝑖𝑠 𝐿1,2) 𝑇𝐻𝐸𝑁 (𝑦1 = [1, 𝒙𝑇]𝒂1)

𝐼𝐹 (𝑥1 𝑖𝑠 𝐿2,1) 𝐴𝑁𝐷 (𝑥2 𝑖𝑠 𝐿2,2) 𝑇𝐻𝐸𝑁 (𝑦2 = [1, 𝒙𝑇]𝒂2)
 ,              (2.72) 

where 𝒙 = [𝑥1, 𝑥2]
𝑇 , 𝒂1 = [𝑎1,0, 𝑎1,1, 𝑎1,2]

𝑇
 and , 𝒂2 = [𝑎2,0, 𝑎2,1, 𝑎2,2]

𝑇
. 

 

Figure 5. Architecture of the ANFIS. 

Layer 1 consists of a number of adaptive nodes. The outputs of Layer 1 are the fuzzy 

membership grades of the inputs, and the membership function can be of any type. The 

outputs of this layer are denoted by MF𝑖,𝑗(𝑥𝑗), in this case, 𝑖, 𝑗 = 1,2. 

Layer 2 involves fuzzy operators; it uses the multiply operator to fuzzify the inputs, and 

the outputs of this layer are denoted by 𝜆𝑖 = MF𝑖,1(𝑥1) ∙ MF𝑖,2(𝑥2) (𝑖 = 1,2). 

Layer 3 plays a normalisation role to the firing strengths from the previous layer, 𝜆̅𝑖 =

𝜆𝑖 (𝜆1 + 𝜆2)⁄ . 

Layer 4 calculates the product of the normalised firing strength and a first order 

polynomial (for a first order Takagi-Sugeno model), 𝑦𝑖 = 𝜆̅𝑖[1, 𝒙𝑇]𝒂𝑖 (𝑖 = 1,2). 

Layer 5 performs the summation of all incoming signals. The overall output of the 

model is given by: 
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𝑦 = ∑ 𝑦𝑖
2
𝑖=1 = ∑ 𝜆̅𝑖[1, 𝒙𝑇]𝒂𝑖

2
𝑖=1 = ∑

𝜆𝑖[1,𝒙𝑇]𝒂𝑖

∑ 𝜆1𝑗
2
𝑗=1

2
𝑖=1 .                                  (2.73) 

The training process of the ANFIS is a combination of gradient descent and least 

squares methods. In the forward pass, the outputs of the nodes within the network go forward 

until Layer 4 and the consequent parameters are determined by the least squares. In the 

backward pass, the error signals propagate backward and the premise parameters are updated 

using gradient descendent [191]. 

ANFIS was developed in the era that the datasets are static and not complicated. 

However, the ANFIS system is insufficient for the real applications nowadays due to the 

following drawbacks: 

1) The structure of the fuzzy inference system needs to be predefined, which requires 

prior knowledge and a large number of ad hoc decisions; 

2) Its structure is not self-evolving and its parameters cannot be updated online. 

2.3.3.3. DENFIS 

DENFIS is one of the two most widely used approaches for learning an evolving 

intelligent system [188]. DENFIS is able to generate a linear neural fuzzy model through an 

efficient adaptive online or offline learning process, and conduct accurate dynamic time 

series prediction.  

Its online learning is achieved by the evolving clustering method (ECM), which, 

essentially, can be viewed as an online k-means algorithm with a mechanism of incrementally 

gaining new clusters [188]. Its offline learning process is also very similar to the k-means 

algorithm, which requires the number of clusters to be predetermined [188]. 

DENFIS [188], both online and offline models, uses Takagi-Sugeno type inference 

engine (equation (2.46)) [59], [62]. At each time moment, the output of DENFIS is calculated 

based on 𝑞-most activated fuzzy rules, which are dynamically chosen from a fuzzy rule set.  

In both DENFIS online and offline models, all fuzzy membership functions are 

triangular type functions, which depend on three parameters as given by the following 

equation: 

MF(𝑥) = {
(𝑥 − 𝑎) (𝑏 − 𝑎)⁄ 𝑎 < 𝑥 ≤ 𝑏
(𝑐 − 𝑥) (𝑐 − 𝑏)⁄ 𝑏 < 𝑥 ≤ 𝑐

0 𝑥 ≤ 𝑎 ∨ 𝑐 < 𝑥

,                                      (2.74) 

The output of the DENFIS system is formulated as: 
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𝑦(𝒙𝐾) = ∑
𝜆𝐾,𝑖𝒙̅𝐾

𝑇𝒂𝐾,𝑖

∑ 𝜆𝐾,𝑗
𝑞
𝑗=1

𝑞
𝑖=1  ,                                                                        (2.75) 

where 𝜆𝐾,𝑖 = ∏ MF𝑗(𝑥𝐾,𝑗)
𝑀
𝑗=1 ; and the consequent parameters, 𝒂𝐾,𝑖 , are updated using the 

weighted recursive linear least-square estimator (RLSE): 

𝒂𝐾,𝑖 = 𝒂𝐾−1,𝑖 + 𝚯𝐾,𝑖𝜆𝑖𝒙̅𝐾(𝑦𝐾 − 𝒙̅𝐾
𝑇𝒂𝐾,𝑖)

𝚯𝐾,𝑖 =
1

𝜀
(𝚯𝐾−1,𝑖 −

𝜆𝑖𝚯𝐾−1,𝑖𝒙̅𝐾𝒙̅𝐾
𝑇𝚯𝐾−1,𝑖

𝜀+𝒙̅𝐾
𝑇𝚯𝐾−1,𝑖𝒙̅𝐾

)
,                                              (2.76) 

where 𝒂𝐾,𝑖 and 𝚯𝐾,𝑖  are initialised from the first few data samples;  𝜀 is a forgetting factor 

which typical value range is [0.8,1] [188]. 

Despite of being widely used, the major drawbacks of the DENFIS algorithm are: 

1) It requires prior assumptions and predefined parameters, i.e. number of initial rules, 

parameters of the membership function; 

2) As an online algorithm, it requires offline training and cannot start “from scratch”. 

2.3.3.4. ETS 

The ETS system was firstly introduced in [192], [193] and ultimately in [11]. 

Nowadays, it is the other one of the two most widely used approaches for learning an 

evolving intelligent system. The learning mechanism of the ETS system [11] is 

computationally very efficient because it is fully recursive. The two phases include: 

1) Data space partitioning and based on this, form and update the fuzzy rule-base 

structure; 

2) Learning parameters of the consequent part of the fuzzy rules. 

Data space partitioning is achieved by the eClustering algorithm [11] as presented in 

section 2.3.1.4. However, the data space partitioning within ETS serves for a different 

purpose compared to the eClustering. In ETS, there are outputs and the aim is to find such 

(perhaps overlapping) clustering of the input-output joint data space that fragments the input-

output relationship into locally valid simpler (possibly linear) dependences. In eClustering, 

the aim is to cluster the input data space into a number of sub-regions. The consequent 

parameters of the ETS system are learned by the FWRLS, which has been described in 

section 2.4.5.  

Due to its genetic nature, the ETS system has been widely applied to different problems 

including, but not limited to clustering, time series prediction, control. 
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2.3.4. Anomaly Detection Algorithms 

Anomaly detection is an important problem of statistical analysis [194]. Anomaly 

detection techniques mainly target at discovering rare events [49]. In many real situations and 

applications, i.e. detecting criminal activities, forest fire, human body monitoring, etc., the 

rare cases play a key role. Anomaly detection is also closely linked to clustering process since 

the members of a cluster are rather routine, normal or typical [49] and, thus, data either 

belong to a cluster or are anomalous. 

Traditional anomaly detection is based on statistical analysis [3], [195]. It relies on a 

number of  prior assumptions about the data generation models and requires certain degree of 

prior knowledge [3]. However, these prior assumptions are only true in the ideal/theoretical 

situations, i.e. Gaussian, independently and identically distributed data, and the prior 

knowledge is more often unavailable in reality. 

There are some supervised anomaly detection approaches published in the recent 

decades [152], [196], [197]. These techniques require the labels of the data samples to be 

known in advance, which allows the algorithms to learn in a supervised way and generate the 

desired output after training. The supervised approaches are usually more accurate and 

effective in detecting outliers compared with the statistical methods. However, in real 

applications, the labels of the data are usually unknown. The existing unsupervised anomaly 

detection approaches [198]–[200], however, require a number of user inputs to be predefined, 

i.e. threshold, error tolerance, number of nearest neighbours, etc. Selection of the proper user 

inputs requires good prior knowledge; otherwise, the performance of these approaches is 

affected. 

2.4. Conclusion 

This chapter contains the separate surveys for data analysis, computational intelligence 

and machine learning covering the scope of the research work presented in this thesis. 

Traditional data analytics approach (the classical probability theory and statistics) 

provides the very solid mathematical foundation for the traditional data machine learning 

techniques. However, the very strong prior assumptions the probability theory and statistics 

rely on also open the door for many failures in real situations.  

Traditional machine learning techniques suffer from various problems including 1) 

strong prior assumptions, 2) predefined user- and problem- specific parameters, 3) ad hoc 

decisions, etc., which undermine their applicability in large-scale, complex real problems. 
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Artificial neural networks (or the so-called deep learning) are the state-of-the-art 

approaches in the fields of machine learning and computer vision. However, their structures 

lack transparency, and they suffer from the problems of too many ad hoc decisions and very 

heavy computational burden, all of which hinder them in wider applications in real world. 

On the other hand, traditional fuzzy rule-based classifiers were successfully used for 

classification [160], [201] offering transparent, interpretable structure, but could not reach the 

levels of performance achieved by deep learning classifiers. Their design also requires 

handcrafting membership functions, assumptions to be made and parameters to be selected. 

The prototype-based nature of the recently introduced AnYa type fuzzy rules simplifies 

the antecedent (IF) part of the traditional fuzzy rule. Meanwhile, the new data analytics 

methodology, EDA, gives a strong alternative to the traditional statistics and probability 

theory, but is free from their paradoxes and deficiencies. Both of them provide a data-centred 

theoretical basis for the new generation of self-organising, transparent, nonparametric 

machine learning algorithms and deep learning networks, which will be presented in chapter 

3, chapter 4 and chapter 5, respectively.  
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3. Unsupervised Self-Organising Machine Learning Algorithms 

As the major unsupervised machine learning technique, clustering, alternatively, data 

partitioning plays a very important role in data analysis and pattern recognition. However, 

most of the data clustering and partitioning approaches, as described in section 2.2.1, share 

the three deficiencies: 

1) They rely on strong prior assumptions on the model of data generation; 

2) They require prior knowledge for defining free parameters; 

3) Their performance and computational efficiency deteriorates very fast on large-scale 

and complex problems. 

In principle, clustering and data partitioning are closely related and very similar, both of 

them aim to partition the data into smaller groups using certain types of algorithmic 

procedures. The only difference between clustering and data partitioning is that a data 

partitioning algorithm firstly identifies the data distribution peaks/modes and uses them as 

focal points [27] to associate other points with them to form data clouds [60] that resemble 

Voronoi tessellation [64]. Data clouds [60] can be generalised as a special type of clusters but 

with many distinctive differences. They are nonparametric and their shape is not predefined 

or predetermined by the type of the distance metric used. Data clouds directly represent the 

local ensemble properties of the observed data samples. In contrast, a clustering algorithm 

derives from data clusters with pre-determined shapes. The shape of clusters formed using 

Euclidean distance is always hyper-spherical; clusters formed using Mahalanobis distance are 

always hyper-ellipsoidal, etc.  

In this chapter, the newly introduced self-organising data partitioning/clustering 

techniques within the EDA framework are presented. In contrast to the traditional clustering 

approaches, the techniques included in this chapter have the following features: 

1) They employ the nonparametric EDA quantities as the operators to achieve data 

processing; 

2) They are autonomous, self-organising and entirely data-driven; 

3) They are free from user- and problem- specific parameters; 

4) They are based on the ensemble properties and mutual distribution of empirically 

observed data. 
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This chapter is organised as follows. Section 3.1 introduces the autonomous data-driven 

clustering algorithm of three different versions (offline, evolving and parallel computing) as 

presented in [28]–[30]. Section 3.2 presents the offline and online versions of the hypercube-

based data partitioning algorithm. The autonomous data partitioning algorithm and self-

organising direction-aware data partitioning algorithm are given in section 3.3 and section 

3.4, respectively. Section 3.5 summarises this chapter. 

3.1. Autonomous Data-Driven Clustering Algorithm 

The autonomous data-driven (ADD) clustering algorithm is a novel method based 

entirely on the empirical observations (the discrete data) and their ensemble properties 

(standardised eccentricity and unimodal density). It has three different versions, 1) offline 

version, 2) evolving version and 3) parallel computing online version.  

3.1.1. Offline ADD Algorithm 

The offline ADD clustering algorithm was initially introduced in [28]. As the 

computational efficiency of the original version is not high enough and is less effective in 

handling datasets within which data samples from different classes are not separable, in this 

section, the modified offline algorithm is presented. It has three stages: 1) preparation; 2) 

prototypes identification and 3) cluster fusion. The main procedure of the offline algorithm is 

described as follows. 

3.1.1.1. Stage 1: Preparation 

In this stage, for every unique data sample 𝒖𝑖 ∈ {𝒖}𝑁, {𝒖}𝑁 ⊆ {𝒙}𝐾, its local unimodal 

density 𝐷𝐿 is calculated: 

𝐷𝐿(𝒖𝑖) =
∑ 𝑞𝐿(𝒙)

𝑑(𝒙,𝒖𝑖)≤𝑑̅

2𝑁𝑖𝑞𝐿(𝒖𝑖)
,                                                                           (3.1) 

where 𝑞𝐿(𝒙) is the cumulative proximity calculated locally for all the data samples located in 

the hypersphere with 𝒖𝑖 as its centre and 𝑑̅ as its radius; 𝑁𝑖 is the number of data samples 

located within this hypersphere; 𝑑̅ is the half of the average square distance between the data 

samples within {𝒙}𝐾 and is calculated as: 

𝑑̅2 =
∑ 𝑞𝐾(𝒙𝑗) 

𝐾
𝑗=1

2𝐾2 =
∑ ∑ 𝑑2(𝒙𝑗,𝒙𝑘)𝐾

𝑘=1
𝐾
𝑗=1

2𝐾2 .                                                       (3.2) 

3.1.1.2. Stage 2: Prototypes Identification 

The clusters formation begins with the data sample with the maximum 𝐷𝐿: 
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𝒖𝑚 = argmax𝑖=1,2,…,𝑁(𝐷𝐿(𝒖𝑖)) .                                                             (3.3) 

Then, all the data samples within the hypersphere with 𝒖𝑚 as the centre and 𝑟 =
𝑑̅

4
 as the 

radius are found out as the initial member of the first cluster  ℂ1, and they are ranked based 

on their distances to 𝒖𝑚 in an ascending order, which means: 𝑑(𝒛1, 𝒖𝑚) = 0 ≤ 𝑑(𝒛2, 𝒖𝑚) ≤

⋯ ≤ 𝑑(𝒛𝑆1
, 𝒖𝑚) (𝒛𝑖 ∈ ℂ1 ), and the number of members within ℂ1 is denoted by 𝑆1 . The 

descending speed of  𝐷𝐿 at ℂ1 is calculated as: 

𝐷𝐿
′(𝒛𝑖) = 𝐷𝐿(𝒛1) − 𝐷𝐿(𝒛𝑖);   𝑖 = 2,3… , 𝑆1.                                             (3.4) 

The following condition is checked in regards to 𝐷𝐿
′ : 

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 1:

𝐼𝐹 (𝐷𝐿
′(𝒛𝒊) ≤ E(𝐷𝐿

′(𝒛)) + 𝑠𝑡𝑑(𝐷𝐿
′(𝒛)), ∀𝑖 = 2,3, . . , 𝑆1)

𝑇𝐻𝐸𝑁 (𝐷𝐿(𝒛) 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒𝑠 𝑠𝑚𝑜𝑜𝑡ℎ𝑙𝑦)

𝐸𝐿𝑆𝐸 𝑇𝐻𝐸𝑁 (𝐷𝐿(𝒛) 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒𝑠 𝑠ℎ𝑎𝑟𝑝𝑙𝑦 𝑎𝑡 𝑎 𝑐𝑒𝑟𝑡𝑎𝑖𝑛 𝑝𝑜𝑖𝑛𝑡)

.      (3.5) 

If Condition 1 is met, it means that ℂ1 is not fully spread yet and the radius of the 

hypersphere around 𝒖𝑚 is enlarged to allow more data samples (𝑟 ← 𝑟 × 1.1) to be included 

in ℂ1. Then the process repeats until Condition 1 is unsatisfied. 

Once Condition 1 is unsatisfied, it means that 𝐷𝐿(𝒛𝑖) decreases sharply at the knee 

point, denoted by 𝒖𝑘  (there may be multiple keen points as well). In such condition, the 

hypersphere around 𝒖𝑚 includes data samples from two or more clusters, and 𝑑(𝒖𝑘, 𝒖𝑚) is 

the maximum radius of the hypersphere around 𝒖𝑚 which includes data samples from the 

same cluster. By finding out all the data samples in {𝒙}𝐾  within the range of 𝑑(𝒖𝑘, 𝒖𝑚) 

around 𝒖𝑚 , ℂ1  is fully formed: ℂ1 ← {𝒙|𝑑(𝒙, 𝒖𝑚) ≤ 𝑑(𝒖𝑘, 𝒖𝑚), 𝒙 ∈ {𝒙}𝐾} . After the 

formation of  ℂ1, all its members are excluded from {𝒖}𝑁 , {𝒙}𝐾 and the formation process 

starts again by finding out the next 𝒖𝑚. The formation process will not stop until {𝒖}𝑁 = ∅. 

During the formation process, there may be some data samples spatially isolated from 

the majority, which means that 𝑑(𝒖,𝒖𝑚) >
𝑑̅

4
 (𝒖 ∈ {𝒖}𝑁 𝑎𝑛𝑑 𝒖 ≠ 𝒖𝑚),  for this kind of 𝒖𝑚, 

it forms a cluster by itself. 

3.1.1.3. Stage 3: Cluster Fusion 

As the previous stage may create too many subtle clusters, in this stage, the underlying 

overlapping clusters are merged together. The fusion operation starts from the cluster with the 

smallest support and ends up with the one with the largest support if no interruption. 



52 

 

Starting from the smallest cluster, ℂ1, Condition 2 is checked, which also involves the 

Chebyshev inequality in the form of standardised eccentricity (equations (2.41) and (2.42)) 

[50]: 

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 2:
𝐼𝐹 (𝜀𝐿,𝑖(𝝁𝑗) < 𝜀𝑜) 𝑂𝑅 (𝜀𝐿,𝑗(𝝁𝑖) < 𝜀𝑜)

𝑇𝐻𝐸𝑁 (ℂ𝑖  𝑎𝑛𝑑 ℂ𝑗  𝑎𝑟𝑒 𝑚𝑒𝑟𝑔𝑒𝑑 𝑡𝑜𝑔𝑒𝑡ℎ𝑒𝑟)
,                 (3.6) 

where 𝑖 = 1,2, … , 𝐶 − 1 and 𝑗 = 𝑖 + 1, 𝑖 + 2,… , 𝐶; 𝜀𝑜 = 5, which corresponds to the 2𝜎 rule; 

𝜀𝐿,𝑖(𝝁𝑗) and 𝜀𝐿,𝑗(𝝁𝑖) are the standardised eccentricities calculated locally within the i
th

 and j
th

 

clusters, respectively, and are expressed as (𝑖 ≠ 𝑗): 

𝜀𝐿,𝑖(𝝁𝑗) =
∑ 𝑞𝐿,𝑖(𝒙)𝒙∈ℂ𝑖

+2∑ 𝑑2(𝒙,𝝁𝑗)𝒙∈ℂ𝑖

2(𝑆𝑖+1)∑ 𝑑2(𝒙,𝝁𝑗)𝒙∈ℂ𝑖

.                                                       (3.7) 

Once two clusters, for instance, ℂ𝑖   and ℂ𝑗 , are merged together (ℂ𝑖 ← ℂ𝑖 + ℂ𝑗 ), the 

centre and support of the new cluster are calculated. If ℂ𝑖   requires to be merged with 

multiple clusters, it is merged with the nearest one. Then, all the existing 𝐶 − 1 clusters are 

re-ranked in the descending order in terms of their supports and Condition 2 is checked again 

for another round.  

After all the potentially overlapping clusters have been merged together, the remaining 

clusters are regarded as the main modes of the data pattern and the offline algorithm uses the 

clusters as the final output. 

3.1.1.4. Complexity Analysis 

In the first stage of the offline ADD clustering algorithm, the computational complexity 

of calculating 𝑑̅ is 𝑂(𝐾2). The computational complexity for calculating the local unimodal 

density, 𝐷𝐿  is decided by the calculation of local cumulative proximity,  𝑞𝐿 , and the 

computational complexity of which is: ∑ 𝑂(𝑁𝑖)
𝑁
𝑖=1 . This is because that the distances between 

any two data samples have been calculated when 𝑑̅ was calculated.  

The second and third stages of the offline ADD algorithm mainly operate on the 

calculated local cumulative proximity, 𝑞𝐿 and local unimodal density, 𝐷𝐿 in the first stage, 

and, thus, the computational complexity of both stages is decided by the number of unique 

data samples, namely, 𝑂(𝑁).  

Therefore, the overall computational complexity of the offline ADD algorithm is 

𝑂(𝐾2).   
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Since the complexity analysis of the proposed algorithms can be performed in a similar 

way as presented in this subsection, the computational complexity analysis for the rest of the 

algorithms presented in this thesis is not conducted. Nonetheless, one can use the same 

principles to get the conclusion. 

3.1.1.5. Algorithm Summary 

The main procedure of the offline ADD clustering algorithm is summarised in the form 

of a flowchart presented in Figure 6. 
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Figure 6. Main procedure of the offline ADD clustering algorithm. 

3.1.2. Evolving ADD Algorithm 

In this section, the evolving version of the ADD clustering algorithm is described for the 

streaming data processing [29]. During the clustering process, there are only a few meta-
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parameters that have to be kept in memory and are recursively updated, which ensures the 

computation- and memory- efficiency of the evolving algorithm.  

Because the recursive expressions of the algorithmic meta-parameters are involved in 

the evolving clustering algorithm, the most widely used Euclidean distance is used for 

simpler derivation and visual clarity, however, as it has been demonstrated in section 2.1.3, 

other types of distance/dissimilarity can also be considered. 

The main stages are described as follows. 

3.1.2.1. Stage 1: Initialisation 

The evolving ADD clustering algorithm is initialised by the first data sample of the 

stream, 𝒙1. The global meta-parameters of the algorithm are set as: 

𝐾 ← 1; 𝐶 ← 1; 𝝁 ← 𝒙1; 𝑋 ← ‖𝒙1‖
2,                                              (3.8) 

where 𝐾 denotes the current time instance; 𝐶 is the number of existing clusters;  𝝁  and  𝑋 are 

the global mean and average scalar product of the data stream {𝒙}𝐾. 

The meta-parameters of the first cluster, ℂ1, are set as: 

ℂ1 ← {𝒙1}; 𝑆1 ← 1; 𝝁1 ← 𝒙1; 𝑋1 ← ‖𝒙1‖
2,                                    (3.9) 

3.1.2.2. Stage 2: Clusters Update 

For each newly arrived data sample 𝒙𝐾 (𝐾 ← 𝐾 + 1), the global meta-parameters (𝝁 and 

𝑋) are firstly updated using equations (2.26) and (2.27). 

Then the unimodal density is calculated at the centres of the existing clusters 𝝁𝑖 

(𝑖 = 1,2, … , 𝐶) and 𝒙𝐾 using equations (2.18), (2.24) and (2.25). And Condition 3 is checked 

[11]: 

   𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 3:

𝐼𝐹 (𝐷𝐾(𝒙𝐾) < min𝑖=1,2,…,𝐶(𝐷𝐾( 𝝁𝑖))) 

𝑂𝑅 (𝐷𝐾(𝒙𝐾) > max𝑖=1,2,…,𝐶(𝐷𝐾( 𝝁𝑖)))

𝑇𝐻𝐸𝑁 (𝒙𝐾 𝑐𝑟𝑒𝑎𝑡𝑒𝑠 𝑎 𝑛𝑒𝑤 𝑐𝑙𝑢𝑠𝑡𝑒𝑟)

.                                      (3.10) 

If Condition 3 is satisfied, a new cluster is created around 𝒙𝐾 (𝐶 ← 𝐶 + 1) because of 

the change of data pattern, and there are:  

ℂ𝐶 ← {𝒙𝐾} 𝑆𝐶 ← 1; 𝝁𝐶 ← 𝒙𝐾; 𝑋𝐶 ← ‖𝒙𝐾‖2.                                (3.11) 

Otherwise, 𝒙𝐾 is assigned to the nearest cluster using equation (3.12): 

𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = argmin𝑖=1,2,…,𝐶(‖𝒙𝐾 − 𝝁𝑖‖).                                (3.12) 
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Assuming 𝒙𝐾 is supposed to be assigned to the n
th

 cluster, ℂ𝑛.  If the support 𝑆𝑛 = 1, 

the parameters of ℂ𝑛 are updated as follows. 

  ℂ𝑛 ← {ℂ𝑛, 𝒙𝐾}; 𝑆𝑛 ← 𝑆𝑛 + 1; 𝝁𝑛 ←
𝑆𝑛−1

𝑆𝑛
𝝁𝑛 +

1

𝑆𝑛
𝒙𝐾; 𝑋𝑛 ←

𝑆𝑛−1

𝑆𝑛
𝑋𝑛 +

1

𝑆𝑛
‖𝒙𝐾‖2. (3.13) 

If 𝑆𝑛 > 1, Condition 4 needs to be checked first: 

                     𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 4:
𝐼𝐹 (‖𝒙𝐾 − 𝝁𝑛‖2 > 𝑟𝑛

2)

𝑇𝐻𝐸𝑁 (𝒙𝐾 𝑐𝑟𝑒𝑎𝑡𝑒𝑠 𝑎 𝑛𝑒𝑤 𝑐𝑙𝑢𝑠𝑡𝑒𝑟)
,                         (3.14) 

where 𝑟𝑛 is the radius of the n
th 

cluster and can be derived based on Chebyshev inequality, 

and 𝑟𝑛
2 is expressed as: 

𝑟𝑛
2 = 2(𝑋𝑛 − ‖𝝁𝑛‖2),                                                                            (3.15) 

which indicates that the areas of influences are within √2 standard deviations around the 

centres of the clusters,  

If Condition 4 is met, a new cluster is created around 𝒙𝐾 (𝐶 ← 𝐶 + 1) and the meta-

parameters of ℂ𝐶  can be set using equations (3.11). 

3.1.2.3. Stage 3: Clusters Adjustment 

In this stage, all the existing clusters are ranked in terms of their radii in a descending 

order, and are still denoted as ℂ𝑖 (𝑖 = 1,2, … , 𝐶), but there is  𝑟1
2 ≥ 𝑟2

2 ≥ ⋯ ≥ 𝑟𝐶
2. They will 

be examined and adjusted to avoid the possible overlap.  

Condition 5 is checked first and the operation starts from the cluster with the largest 

radius and end with the one with the smallest radius if no interrupt: 

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 5:

𝐼𝐹 (‖𝝁𝑖 − 𝝁𝑗1‖
2

< max(𝑟𝑖
2, 𝑟𝑗1

2))  𝐴𝑁𝐷 … 

𝐴𝑁𝐷  (‖𝝁𝑖 − 𝝁𝑗𝐿
‖

2
< max(𝑟𝑖

2, 𝑟𝑗𝐿

2))

𝑇𝐻𝐸𝑁 (ℂ𝑖 𝑖𝑠 𝑠𝑝𝑙𝑖𝑡)

,                (3.16) 

where 𝑖 < min𝑙=1,2,…,𝐿(𝑗𝑘) and 𝐿 ≥ 2.  

If Condition 5 is satisfied for cluster  ℂ𝑖 , it means that there are two or more other 

clusters sharing the same influence areas with it, thus,  ℂ𝑖 needs to be split according to the 

following rule (𝐶 ← 𝐶 − 1): 

 

 ℂ𝑗𝑙
←  {ℂ𝑖𝑙 , ℂ𝑗𝑙

}; 𝑆𝑗𝑙
← 𝑆𝑗𝑙

+ 𝑠𝑖𝑙;

𝝁𝑗𝑙
←

𝑆𝑗𝑙
−𝑠𝑖𝑙

𝑆𝑗𝑙

𝝁𝑗𝑙
+

𝑠𝑖𝑙

𝑆𝑗𝑙

𝝁𝑖; 𝑋𝑗𝑙
←

𝑆𝑗𝑙
−𝑠𝑖𝑙

𝑆𝑗𝑙

𝑋𝑗𝑙
+

𝑠𝑖𝑙

𝑆𝑗𝑙

𝑋𝑖,
                             (3.17) 
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where 𝑙 = 1,2, … , 𝐿 ;  ℂ𝑖 = ∑ ℂ𝑖𝑙
𝐿
𝑙=1 ; 𝑠𝑖𝑙 = 𝑟𝑜𝑢𝑛𝑑 (

‖𝝁𝑖−𝝁𝑗𝑙
‖

−1

∑ ‖𝝁𝑖−𝝁𝑗𝑘
‖

−1
𝐿
𝑘=1

𝑆𝑖) , 𝑟𝑜𝑢𝑛𝑑(∙)  denotes 

round to the nearest integer and there is: 𝑆𝑖 = ∑ 𝑠𝑖𝑙
𝐿
𝑙=1 . 

Once a cluster is split to the clusters nearby, the meta-parameters of the existing clusters 

are updated, they are re-ranked in terms of their radii again and the cluster split operation 

starts again from the largest cluster if no interrupt. 

After there is no cluster satisfying Condition 5, Condition 6 is checked to see whether 

there are any clusters needed to merged: 

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 6:
𝐼𝐹 (‖𝝁𝑖 − 𝝁𝑗‖

2
< max(𝑟𝑖

2, 𝑟𝑗
2))

𝑇𝐻𝐸𝑁 (ℂ𝑖  𝑎𝑛𝑑 ℂ𝑗  𝑎𝑟𝑒 𝑚𝑒𝑟𝑔𝑒𝑑 𝑡𝑜𝑔𝑒𝑡ℎ𝑒𝑟)
.                (3.18) 

Once clusters ℂ𝑖 and  ℂ𝑗  meet Condition 6, they are very close to each other and should 

be merged together as : 

 ℂ𝑖 ←  {ℂ𝑖, ℂ𝑗}; 𝐶 ← 𝐶 − 1; 𝑆𝑖 ← 𝑆𝑖 + 𝑆𝑗;

𝝁𝑖 ←
𝑆𝑖−𝑆𝑗

𝑆𝑖
𝝁𝑖 +

𝑆𝑗

𝑆𝑖
𝝁𝑗; 𝑋𝑖 ←

𝑆𝑖−𝑆𝑗

𝑆𝑖
𝑋𝑖 +

𝑆𝑗

𝑆𝑖
𝑋𝑗 .

                           (3.19) 

Similarly, the cluster merge operation starts with the largest cluster and every time a 

merge operation is performed, the remaining clusters are re-ranked based on their radii and 

the merge operation starts again until no cluster satisfying Condition 6.  

Then, the algorithm goes back to Stage 2 if there are new data samples available or goes 

to Stage 4 to export the clusters. 

3.1.2.4. Stage 4: Exporting Main Clusters 

In this stage, as there is no new data sample anymore, the evolving algorithm uses 

Condition 7 to filter out the clusters with small supports to get the more elegant output: 

                   𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 7: 𝐼𝐹 (𝑆𝑖 >
𝐾

2𝐶
) 𝑇𝐻𝐸𝑁 ( ℂ𝑖 𝑖𝑠 𝑜𝑛𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑎𝑖𝑛 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠). (3.20) 

3.1.2.5. Algorithm Summary 

The main procedure of the evolving ADD clustering algorithm is summarized in the 

form of a flowchart presented in Figure 7. 
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Figure 7. Main procedure of the evolving ADD clustering algorithm. 
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3.1.3. Parallel Computing ADD Algorithm 

The parallel computing version of the ADD clustering algorithm was introduced for 

high frequency streaming data clustering [30]. Within this version, a number of streaming 

data processors are involved, which work on the chunks of the data stream and collaborate 

with each other efficiently to achieve parallel computation as well as a much higher 

processing speed. A fusion centre is involved to gather the key information from the 

processors and generate the overall output. The architecture of the parallel computing ADD 

clustering algorithm is depicted in Figure 8. 

 

Figure 8. Architecture of the parallel computing ADD clustering algorithm. 

The main procedure of the parallel computing ADD clustering algorithm is as follows. 

As the recursive expressions of the algorithmic meta-parameters are used, Euclidean distance 

is used for illustration, however, other types of distance/dissimilarity can be considered as 

well. 

3.1.3.1. Stage 1: Separate Processing 

Assuming that there are 𝑃 streaming data processors with the input chunk size of 𝑄, 

and, at the current time instance, there are 𝑃𝑄  data samples observed, the observed data 

samples are firstly separated into 𝑃 different chunks according to the time instances at which 

they arrived: 

𝒄𝒉𝒖𝒏𝒌 1 = {𝒙1, 𝒙2, … , 𝒙𝑄}

𝒄𝒉𝒖𝒏𝒌 2 = {𝒙𝑄+1, 𝒙𝑄+2, … , 𝒙2𝑄}

⋮
𝒄𝒉𝒖𝒏𝒌 𝑃 = {𝒙(𝑃−1)𝑄+1, 𝒙(𝑃−1)𝑄+2, … , 𝒙𝑃𝑄}

 ,                                       (3.21) 
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After the data chunks are separated from the data stream, they are processed separately 

in the corresponding processors in the form of a tributary data stream on a sample-by-sample 

basis. 

The i
th 

streaming data processor (𝑖 = 1,2, … , 𝑃) is initialised with the first data sample 

𝒙(𝑖−1)𝑄+1 and the meta-parameters of processor are set as: 

𝐼𝑖 ← 1; 𝐶𝑖 ← 1,                                                                                    (3.22) 

where 𝐼𝑖 denotes the number of data samples the i
th

 processor has processed (time instance). 

The meta-parameter of the first cluster initialised by 𝒙(𝑖−1)𝑄+1 are set as: 

ℂ1
𝑖 ← {𝒙(𝑖−1)𝑄+1}; 𝑆1

𝑖 ← 1; 𝝁1
𝑖 ← 𝒙(𝑖−1)𝑄+1; 𝑋1

𝑖 ← ‖𝒙(𝑖−1)𝑄+1‖
2
; 𝐴1

𝑖 ← 0,           (3.23) 

where 𝐴1
𝑖  is the age of the clusters [55], [60]. The age of a particular cluster (the c

th 
one) is 

defined as follows [55], [60]: 

𝐴𝑐
𝑖 = 𝐼𝑖 −

∑ 𝑡𝑐,𝑗
𝑖𝑆𝑐

𝑖

𝑗=1

𝑆𝑐
𝑖  ,                                                                                  (3.24) 

where 𝑡𝑐,𝑗
𝑖  is time instance at which the j

th
 member of the c

th
 cluster is assigned. 

For the next data sample (𝐼𝑖 ← 𝐼𝑖 + 1), 𝒙(𝑖−1)𝑄+𝐼𝑖, Condition 7 is checked: 

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 7:
𝐼𝐹 (𝜀𝐿,𝑗

𝑖 (𝒙(𝑖−1)𝑄+𝐼𝑖) ≤ 𝜀𝑜)

𝑇𝐻𝐸𝑁 (𝒙(𝑖−1)𝑄+𝐼𝑖  𝑖𝑠 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ ℂ𝑗
𝑖)

,                (3.25) 

where 𝜀𝑜 = 5, which is the same as section 3.1.1.3;  𝜀𝐿,𝑗
𝑖 (𝒙(𝑖−1)𝑄+𝐼𝑖) is the local standardised 

eccentricity of 𝒙(𝑖−1)𝑄+𝐼𝑖  recursively calculated at the c
th

 cluster as: 

      𝜀𝐿,𝑗
𝑖 (𝒙(𝑖−1)𝑄+𝐼𝑖) =

(𝑆𝑗
𝑖)

2
‖𝝁𝑗

𝑖−𝒙
(𝑖−1)𝑄+𝐼𝑖

‖
2
+(𝑆𝑗

𝑖+1)(𝑆𝑗
𝑖𝑋𝑗

𝑖+‖𝒙
(𝑖−1)𝑄+𝐼𝑖

‖
2
)−‖𝑆𝑗

𝑖𝝁𝑗
𝑖+𝒙

(𝑖−1)𝑄+𝐼𝑖
‖

2

(𝑆𝑗
𝑖+1)(𝑆𝑗

𝑖𝑋𝑗
𝑖+‖𝒙

(𝑖−1)𝑄+𝐼𝑖
‖

2
)−‖𝑆𝑗

𝑖𝝁𝑗
𝑖+𝒙

(𝑖−1)𝑄+𝐼𝑖
‖

2 .    (3.26) 

If 𝒙(𝑖−1)𝑄+𝐼𝑖 is associated with multiple clusters at the same time, it is assigned to the 

cluster based on the following rule: 

 ℂ𝑛
𝑖 ← {ℂ𝑛

𝑖 , 𝒙(𝑖−1)𝑄+𝐼𝑖}; 𝑛 = argmin𝑗=1,2,…,𝐶𝑖 (𝜀𝐿,𝑗
𝑖 (𝒙(𝑖−1)𝑄+𝐼𝑖)).       (3.27) 

And the meta-parameters of ℂ𝑛
𝑖  are updated as: 

  

𝑆𝑛
𝑖 ← 𝑆𝑛

𝑖 + 1; 𝝁𝑛
𝑖 ←

𝑆𝑛
𝑖 −1

𝑆𝑛
𝑖 𝝁𝑛

𝑖 +
1

𝑆𝑛
𝑖 𝒙(𝑖−1)𝑄+𝐼𝑖;

𝑋𝑛
𝑖 ←

𝑆𝑛
𝑖 −1

𝑆𝑛
𝑖 𝑋𝑛

𝑖 +
1

𝑆𝑛
𝑖 ‖𝒙𝒙

(𝑖−1)𝑄+𝐼𝑖
‖

2

; 𝐴𝑛
𝑖 ← 𝐼𝑖 −

(𝑆𝑛
𝑖 −1)(𝐼𝑖−1−𝐴𝑛

𝑖 )+𝐼𝑖

𝑆𝑛
𝑖 .

   (3.28) 
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If there is no cluster satisfying Condition 7, 𝒙(𝑖−1)𝑄+𝐼𝑖 creates a new cluster (𝐶𝑖 ← 𝐶𝑖 +

1): 

   ℂ
𝐶𝑖
𝑖 ← {𝒙(𝑖−1)𝑄+𝐼𝑖}; 𝑆

𝐶𝑖
𝑖 ← 1; 𝝁

𝐶𝑖
𝑖 ← 𝒙(𝑖−1)𝑄+𝐼𝑖; 𝑋

𝐶𝑖
𝑖 ← ‖𝒙(𝑖−1)𝑄+𝐼𝑖‖

2
; 𝐴

𝐶𝑖
𝑖 ← 0.(3.29) 

For all the other clusters that do not receive new members, their meta-parameters stay 

the same except the ages: 

𝐴𝑘
𝑖 ← 𝐴𝑘

𝑖 + 1; 𝑘 ∈ 𝑜𝑡ℎ𝑒𝑟.                                                                   (3.30) 

After the structure and the meta-parameters of the system are updated, before the 

processor begins to handle the next data sample (𝐼𝑖 ← 𝐼𝑖 + 1), every cluster is checked to see 

whether it is out of date using Condition 8 (𝑘 = 1,2, … , 𝐶𝑖) 

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 8:
𝐼𝐹 (𝐴𝑘

𝑖 > 𝜇𝐴
𝑖 + 𝑛𝜎𝐴

𝑖) 𝐴𝑁𝐷 (𝐴𝑘
𝑖 > 𝑄)

𝑇𝐻𝐸𝑁 (ℂ𝑘
𝑖  𝑖𝑠 𝑜𝑢𝑡 𝑜𝑓 𝑑𝑎𝑡𝑒)

,                         (3.31) 

where 𝑛 = 3, which corresponds to the “3sigma” rule;  𝜇𝐴
𝑖  and 𝜎𝐴

𝑖  are the mean and standard 

deviation of the ages of all the existing clusters within the i
th

 processor. 

Once the streaming data processor selects out a stale cluster, the cluster is removed 

automatically because it fails to represent the current data pattern and may have adverse 

influence on further clustering process [117]. After the cluster cleaning process, the processor 

will process the next data sample (𝐼𝑖 ← 𝐼𝑖 + 1). Once the current chunk is processed, the 

processor will begin a new round of processing with the next data chunk on the basis of the 

previous clustering results stored in the memory. 

3.1.3.2. Stage 2: Clusters Fusion 

Although the 𝑃 streaming data processors will continue the data processing process one 

chunk by one chunk automatically, based on the needs of the users, the overall clustering 

results can be viewed and checked at any time.  

Responding to the request of the user, the clustering results of all the processors are 

passed to the fusion centre. The existing clusters from all the processors are re-denoted as 

ℂ1, ℂ2, … , ℂ𝐶𝑜 , where 𝐶𝑜 = ∑ 𝐶𝑖𝑃
𝑖=1 , and there is 𝑆1 ≤ 𝑆2 ≤ ⋯ ≤ 𝑆𝐶𝑜 . The centres and the 

average scalar products of the clusters are re-denoted as 𝝁1, 𝝁2, … , 𝝁𝐶𝑜  and 𝑋1, 𝑋2, … , 𝑋𝐶𝑜 

correspondingly.  

Each round of the cluster fusion operation starts with the cluster having the smallest 

support and end with the one with the largest support if no interrupt. The same process as 
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presented in section 3.1.1.3 is performed to detect the two clusters that are required to be 

merged and equation (3.19) is used to fuse the meta-parameters of both clusters together.  

After the clusters fusion process is finished, there may be some trivial clusters (with 

very small support) left, and they need to be assigned to nearest larger clusters based on 

Condition 9 to ensure an elegant output (𝑖 = 1,2, … , 𝐶𝑜): 

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 9: 𝐼𝐹 (𝑆𝑖 ≤
∑ 𝑆𝑗

𝐶𝑜

𝑗=1

5𝐶𝑜
) 𝑇𝐻𝐸𝑁 ( ℂ𝑖  𝑖𝑠 𝑎 𝑡𝑟𝑖𝑣𝑖𝑎𝑙 𝑐𝑙𝑢𝑠𝑡𝑒𝑟).                   (3.32) 

And the nearest larger cluster is determined as: 

ℂ𝑛 ← {ℂ𝑖, ℂ𝑛}; 𝑛 = argmin𝑗=1,2,…,𝐶𝑜(‖𝝁𝑖 − 𝝁𝑗‖).                            (3.33) 

3.1.3.3. Algorithm Summary 

The main procedure of the clustering process each streaming data processor performs is 

presented in the form of a flowchart presented in Figure 9. The fusion process is presented in 

Figure 10. 

 

Figure 9. Main procedure of the clustering process of the i
th

 streaming data processor 
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Figure 10. Main procedure of the fusion process. 

3.2. Hypercube-Based Data Partitioning Algorithm 

The ADD clustering algorithm extracts all the needed information from the observed 

data directly and then continues to filter out the less important information from the main 

one, in addition, it has complicated operation mechanism, and thus, it is relatively slow. In 

this section, we will introduce an alternative algorithm for data partitioning, namely the 

hypercube-based.  

This hypercube-based data partition (HCDP) algorithm involves a regular grid in the 

data space resulting in a number of hyper-cubes completely filling in the whole space, which 

simplifies the calculation and, thus, speed up the whole algorithm. The concept of hypercube 

is borrowed from [202] that a group of hyper-cubes perfectly divide the entire data space, 

𝐑𝑀 . Within the proposed algorithm, every observed data sample will be projected into a 

hyper-cube, and the prototypes representing the local modes of the data pattern will be 

identified automatically.  



64 

 

The HCDP algorithm partitions the data into nonparametric, shape-free data clouds with 

the prototypes as the focal points attracting the data samples around them resembling 

Voronoi tessellation [64], which objectively represent the local modes of the data 

distribution. The proposed algorithm is deliberately designed to be memory-efficient based 

on the fact that the data samples normally will not be distributed everywhere in the data 

space.  

In the following two subsections, the two versions (offline and evolving) of the 

hypercube-based partitioning algorithm are introduced separately. 

3.2.1. Offline HCDP Algorithm 

The offline HCDP algorithm involves the multimodal density, 𝐷𝐺 , to identify the focal 

points of the data clouds in the data space, 𝐑𝑀 . The identification is conducted with the 

hyper-cubes and only involves the unique data sample set  {𝒖}𝑁  and the corresponding 

frequencies of occurrence {𝑓}𝑁.  

The main stages of the proposed offline hypercube-based partitioning algorithm are as 

follows.  

3.2.1.1. Stage 1: Hyper-cubes projection 

Firstly, the multimodal densities 𝐷𝐾
𝐺(𝒖𝑖) (𝒖𝑖 ∈ {𝒖}𝑁)  at all the data samples are 

calculated using equation (2.19). Then, all the unique data samples {𝒖}𝑁 are normalised into 

the range between [0,1], re-denoted as {𝒗}𝑁, and the whole data space is converted into a 

𝑀 dimensional hypercube with the value range of [0,1] in each dimension. 

Then, {𝒗}𝑁 are projected into the 𝛾𝑀 smaller hyper-cubes that separate the data space, 

where 𝛾 is the granularity of the segmentation, and 𝛾 is a positive integer. The following 

equation is used to find the hypercube for a particular unique data sample 𝒗𝑖 belonging to: 

𝒎𝑖 = [𝑚𝑖,1, 𝑚𝑖,2, … ,𝑚𝑖,𝑀]𝑇 ,                                                                 (3.34) 

where 𝒎𝑖  indicates the coordinate of the hypercube in the data space; 

𝑚𝑖,𝑑 = argmin𝑚=1,2,…,𝛾 (|𝑣𝑖,𝑑 −
𝑚−1

𝛾
| + |𝑣𝑖,𝑑 −

𝑚

𝛾
|)  and 𝑑 = 1,2, … , 𝑀 .  Based on  {𝒎}𝑁 , 

one can find out the corresponding data samples in each hypercube.  

Assuming that there are 𝐻 hyper-cubes are actually occupied by at least one data sample 

(𝐶 ≤ 𝛾𝑀), denoted by 𝓗𝑖 (𝑖 = 1,2, … ,𝐻), one can count the support of each hypercube (𝑆𝑖) : 

𝑆𝑖 = ∑ 𝑓𝑗𝒖𝑗∈𝓗𝑖
,                                                                                       (3.35) 
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and calculate the sum of multimodal densities of data samples within it: 

𝐷𝐺(𝓗𝑖) = ∑ 𝐷𝐾
𝐺(𝒖𝑗)𝒖𝑗∈𝓗𝑖

.                                                                   (3.36) 

3.2.1.2. Stage2: Data Clouds Formation 

For each hypercube, 𝐷𝐺(𝓗𝑖) (𝑖 = 1,2, … ,𝐻) is compared with the same value for other 

cubes directly connected to it, which are sharing the same edge or point. If 𝐷𝐺(𝓗𝑖) is the 

local maximum, then 𝓗𝑖 is a hypercube that represents one of the local modes of the data 

pattern, and the collection of such hyper-cubes are denoted as {𝓗∗}. If there is no occupied 

hypercube around 𝓗𝑖, 𝓗𝑖 can also be viewed as a local mode, and thus, there is {𝓗∗} ←

{𝓗∗,𝓗𝑖}. 

However, it is also necessary to filter out the hyper-cubes with smaller supports in {𝓗∗} 

using Condition 10 because they may actually stand for anomalies (𝑖 = 1,2, … ,𝐻∗): 

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 10:
𝐼𝐹 (𝑆𝑖

∗ < 𝑚𝑒𝑎𝑛(𝑆∗) − 2 × 𝑠𝑡𝑑(𝑆∗))

𝑇𝐻𝐸𝑁 (𝓗𝑖
∗ 𝑖𝑠 𝑟𝑒𝑚𝑜𝑣𝑒𝑑)

 ,                       (3.37) 

where 𝐻∗ is the number of hyper-cubes within {𝓗∗}; 𝑆𝑖
∗ is the corresponding support of 𝓗𝑖

∗; 

𝑚𝑒𝑎𝑛(𝑆∗) and 𝑠𝑡𝑑(𝑆∗) are the average value and standard deviation of 𝑆𝑖
∗ (𝑖 = 1,2, … ,𝐻∗).  

After the filtering operation (equation (3.37)), the focal points of the data clouds can be 

selected from the remaining hyper-cubes directly as the unique data samples with the highest 

value of 𝐷𝐺  in each hypercube. The focal points are re-denoted as {𝒖∗} and based on them, 

the members of all the data clouds can be selected from {𝒙}𝐾 using equation (3.12).  

3.2.1.3. Algorithm Summary 

The main procedure of the offline HCDP algorithm is summarised in the form of a 

flowchart presented in Figure 11. 
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Figure 11. Main procedure of the offline HCDP algorithm. 

3.2.2. Evolving HCDP Algorithm 

In this subsection, the main procedure of the evolving hypercube-based partitioning 

algorithm is described. 

3.2.2.1. Stage 1: Online Hypercube Projection 

The evolving hypercube-based partitioning algorithm requires to partition the data space 

into 𝛾𝑀  hyper-cubes. However, without knowing the exact value ranges of the attributes of 

the streaming data, a direct partitioning of the data space is infeasible. Therefore, data online 

standardisation is necessary for confining the value ranges of the data. For each newly arrived 

data sample, 𝒙𝐾 (𝐾 ← 𝐾 + 1), the standard deviation of each attribute value is updated as 

(𝑑 = 1,2, … ,𝑀): 

𝜎𝑑
2 ←

𝐾−1

𝐾
(𝜎𝑑

2 + 𝜇𝑑
2) +

1

𝐾
𝑥𝐾,𝑑

2 − (
𝐾−1

𝐾
𝜇𝑑 +

1

𝐾
𝑥𝐾,𝑑)

2

,                            (3.38) 

Then, the global mean 𝝁 = [𝜇1, 𝜇2, … , 𝜇𝑀]𝑇 is also updated using equation (2.26) and 

𝒙𝐾 is standardised online as (𝑑 = 1,2, … ,𝑀): 
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𝑣𝐾,𝑑 = (𝑥𝐾,𝑑 − 𝜇𝑑) 𝜎𝑑⁄  .                                                                        (3.39) 

Using the “3𝜎” Chebyshev inequality, the data space is manually converted into a M 

dimensional hypercube with the value range of [−3, 3] in each dimension. This covers the 

majority of the observed data samples [52]. For the data samples jumping out of the 

limitation, they are rolled back to the edges of this huge hypercube.  

Then, the same approach as described by section 3.2.1.1 (equation (3.34)) is used to find 

the small hyper-cube with the coordinate 𝒎𝐾 that 𝒗𝐾 belongs to, and the only difference is 

that (𝑑 = 1,2, … ,𝑀): 

𝑚𝐾,𝑑 = argmin𝑚=1,2,…,𝛾 (|𝑣𝑖,𝑑 − 𝑛 − 2𝑛 ×
𝑚−1

𝛾
| + |𝑣𝑖,𝑑 − 𝑛 − 2𝑛 ×

𝑚

𝛾
|) ,             (3.40) 

where 𝑛 = 3, which corresponds to the “3𝜎” rule. 

Based on the coordinate 𝒎𝐾, the hypercube, assuming 𝓗𝑛 , that 𝒗𝐾 is associated with is 

identified, and its meta-parameters, namely the number 𝑆𝑛 and mean 𝝁𝑛 of the current data 

samples within 𝓗𝑖 are updated. 

3.2.2.2. Stage 2: Data Clouds Formation 

Once there is no new data sample any more, the evolving hypercube-based data 

partitioning algorithm will perform the focal points identification operation and then generate 

the final data partitioning output. The algorithm is designed to work automatically and will 

perform the focal points identification operation anyway unless specifically prompted not to.  

Once the focal points identification operation begins, the multimodal densities at the 

centres of the activated hyper-cubes (𝑆 > 0) are calculated using equations (2.19), (2.24) and 

(2.25) with the corresponding supports used as the frequencies (𝑖 = 1,2, … ,𝐻): 

𝐷𝐾
𝐺(𝝁𝑖) = 𝑆𝑖 (1 +

‖𝝁𝑖−𝝁‖2

𝑋−‖𝝁‖2
)⁄ .                                                                   (3.41) 

Then, by using the multimodal densities 𝐷𝐾
𝐺(𝝁𝑖)  as 𝐷𝐺(𝓗𝑖) , the same process as 

described in section 3.2.1.2 is applied to identify the focal points from the centres 𝝁𝑖(𝑖 =

1,2, … ,𝐻) of the activated hyper-cubes. The selected focal points are re-denoted as {𝝁∗}, and 

based on them, the corresponding members of all the data clouds can be obtained from {𝒙}𝐾 

using equation (3.12). 
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3.2.2.3. Algorithm Summary 

The main procedure of the evolving HCDP algorithm is summarised in the form of a 

flowchart presented in Figure 12. 

 

Figure 12. Main procedure of the evolving HCDP algorithm. 
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3.3. Autonomous Data Partitioning Algorithm 

The autonomous data partitioning (ADP) algorithm is an advanced data driven approach 

for data partitioning [31].  The ADP algorithm has the following advantages: 

1) Its operation mechanism is simpler, which makes it more computationally efficient 

and easier for implementation compared with other clustering/data partitioning algorithms 

presented in this thesis (one can see from section 6.1 and also from [28]–[33]); 

2) It is free from user inputs, prior assumptions and predefined problem- and user- 

specific parameters; 

3) It partitions the data into nonparametric, shape-free data clouds, which objectively 

represent the local modes of the data distribution. 

ADP algorithm has two versions, offline and evolving. 

3.3.1. Offline ADP Algorithm 

The offline ADP algorithm works with the multimodal density, 𝐷𝐺  of the observed data 

samples and it is based on the ranks of them in terms of multimodal densities and mutual 

distribution [31]. Ranks are very important, but other approaches avoid them because they are 

nonlinear and discrete operators.  And thus, the offline version is more stable and effective in 

partitioning static datasets. 

The main procedure of the offline ADP algorithm consists of four stages as follows 

[31]. 

3.3.1.1. Stage 1: Ranking Order Data 

The ADP algorithm starts by organising the unique data samples {𝒖}𝑁 in an indexing 

list, denoted by {𝒛}𝑁 , based on the distance to the global peak of multimodal density. 

Firstly, the multimodal densities 𝐷𝐺  of all observed unique data samples {𝒖}𝑁  are 

calculated using equation (2.19). The unique data sample with the highest multimodal density 

is then selected as the first element of {𝒛}𝑁: 

𝒛1 ← 𝒖𝑗, 𝑗 = argmax𝑘=1,2,…,𝑁(𝐷𝐾
𝐺(𝒖𝑘)),                                              (3.42) 

where 𝒛1 is the unique data sample with the global maximum multimodal density.  After, 𝒛1 

is identified, it is set as the reference sample  (𝒛𝑟 ← 𝒛1)  and 𝒛1 is removed from {𝒖}𝑁. 
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Then, the unique data sample nearest to 𝒛𝑟 (denoted by 𝒛2) is selected from the rest of 

{𝒖}𝑁  as the new reference sample: 𝒛𝑟 ← 𝒛2 , and 𝒛2  is removed from {𝒖}𝑁  as well. The 

process is repeated until {𝒖}𝑁 = ∅. Then, the ranked unique data samples, denoted as {𝒛}𝑁 

and their corresponding ranked multimodal density collection: {𝐷𝐾
𝐺(𝒛)}𝑁 are obtained. 

3.3.1.2. Stage 2: Prototypes Identification 

In this stage, the local maxima of {𝐷𝐾
𝐺(𝒛)}𝑁 are identified and the corresponding unique 

data samples with local maximum 𝐷𝐺  are used as the prototypes to form clusters. 

Condition 11 is used to identify the local maxima from  {𝐷𝐾
𝐺(𝒛)}𝑁  and all the data 

samples satisfying Condition 11 are re-denoted as {𝒖∗}𝑁: 

                 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 11:
𝐼𝐹 (𝐷𝐾

𝐺(𝒛𝑗−1) < 𝐷𝐾
𝐺(𝒛𝑗))  𝐴𝑁𝐷 (𝐷𝐿(𝒛𝑗+1) < 𝐷𝐾

𝐺(𝒛𝑗))

𝑇𝐻𝐸𝑁 (𝒛𝑗 𝑖𝑠 𝑎 𝑙𝑜𝑐𝑎𝑙 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑜𝑓 𝐷𝐺)
.    (3.43) 

3.3.1.3. Stage 3: Creating Voronoi Tessellations 

Once the collection, {𝒖∗}𝑁, is identified, its members are used as the focal points of the 

data clouds representing the local modes of the data pattern. All the data samples within {𝒙}𝐾  

are then assigned to the nearest focal points using equation (3.12). 

After all the data samples within {𝒙}𝐾 are assigned to the focal points, they naturally 

create Voronoi tessellation [64] and form data clouds. Assuming that there are C data clouds 

formed, these data clouds are ranked in terms of their supports (number of members) in an 

ascending order, denoted by 𝑆𝑖. The ranked data clouds are denoted as  𝚵𝑖  (𝑖 = 1,2, … , 𝐶), 

where there is 𝑆1 ≤ 𝑆2 ≤ ⋯ ≤ 𝑆𝐶 . The corresponding centres are denoted as 𝝁𝑖  ( 𝑖 =

1,2, … , 𝐶). 

3.3.1.4. Stage 4: Filtering Local Modes 

The data clouds formed in the previous stage may contain some less representative ones, 

therefore, in this stage, the initial Voronoi tessellations are filtered and combined into larger, 

more meaningful data clouds. 

The multimodal densities of the data clouds centres {𝝁} are firstly calculated using 

equation (2.21) with the corresponding supports {𝑆} used as the frequencies, denoted by 

𝐷𝐾
𝐺(𝝁𝑖) (𝑖 = 1,2, … , 𝐶). In order to identify the centres with the local maxima of multimodal 

density, the three objectively derived quantifiers of the data pattern are introduced: 

𝜂𝐾 = ∑ ∑ 𝑑(𝝁𝑖, 𝝁𝑗)
𝐶
𝑗=𝑖+1

𝐶−1
𝑖=1 (𝐶(𝐶 − 1))⁄ ;                                             (3.44) 
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𝛾𝐾 = ∑ 𝑑(𝒙, 𝒛)𝒙,𝒛∈{𝝁},𝑑(𝒙,𝒛)≤𝜂𝐾,𝒙≠𝒛 𝐶𝜂⁄ ;                                                   (3.45) 

𝜆𝐾 = ∑ 𝑑(𝒙, 𝒛)𝒙,𝒛∈{𝝁},𝑑(𝒙,𝒛)≤𝛾𝐾,𝒙≠𝒛 𝐶𝛾⁄ .                                                    (3.46) 

𝜂𝐾  is the average distance between any pair of the existing local modes. 𝛾𝐾  is the 

average distance between any pair of existing local modes with a distance less than 𝜂𝐾, and 

𝐶𝜂  is the number of such pairs. Similarly, 𝜆𝐾  is the average distance between any pair of 

existing local modes with a distance less than 𝛾𝐾, and 𝐶𝛾 is the number of such local modes 

pairs. Note that, 𝜂𝐾 , 𝛾𝐾  and 𝜆𝐾  are not problem-specific, but are parameter-free. The 

quantifier 𝜆𝐾 can be viewed as the estimation of the distances between the strongly connected 

data clouds condensing the local information from the whole data set. Moreover, instead of 

relying on a fixed threshold, which may frequently fail, 𝜂𝐾 , 𝛾𝐾  and 𝜆𝐾  derived from the 

dataset objectively are guaranteed to be meaningful regardless of the distribution of the data. 

Each centre 𝝁𝑖 (𝑖 = 1,2, … , 𝐶) is compared with the centres of the neighbouring data 

clouds {𝚵}𝑖
𝑛  in terms of the multimodal densities to identify the local maxima following 

Condition 12: 

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 12:
𝐼𝐹 (𝐷𝐾

𝐺(𝝁𝑖) = max({{𝐷𝐾
𝐺(𝝁)}𝑖

𝑛, 𝐷𝐾
𝐺(𝝁𝑖)}))

𝑇𝐻𝐸𝑁 (𝝁𝑖 𝑖𝑠 𝑜𝑛𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑜𝑐𝑎𝑙 𝑚𝑎𝑥𝑖𝑚𝑎)
,               (3.47) 

where {𝐷𝐾
𝐺(𝝁)}𝑖

𝑛  is the collection of multimodal densities of the neighbouring data cloud 

centres {𝚵}𝑖
𝑛, which satisfy Condition 13 (𝑗 = 1,2, … , 𝐶, 𝑖 ≠ 𝑗): 

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 13:
𝐼𝐹 (𝑑(𝝁𝑖, 𝝁𝑗) ≤

𝜆𝐾

2
)

𝑇𝐻𝐸𝑁 (𝚵𝑗 𝑖𝑠 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑖𝑛𝑔 𝚵𝑖)
.                               (3.48) 

The criterion of neighbouring range is defined in this way because two centres with the 

distance smaller than  𝛾𝐾  can be considered to be potentially relevant in the sense of spatial 

distance; 𝜆𝐾 is the average distance between the centres of any two potentially relevant data 

clouds. Therefore, when Condition 13 is satisfied, both 𝝁𝑖 and 𝝁𝑗 are highly influencing each 

other and, the data samples within the two corresponding data clouds are strongly connected. 

Therefore, the two data clouds are considered as neighbours. This criterion also guarantees 

that only small-size (less important) data clouds that significantly overlap with large-size 

(more important) ones will be removed during the filtering operation.  

After the filtering operation, the data cloud centres with local maximum multimodal 

densities denoted by {𝝁∗} are obtained. Then,  {𝝁∗}  are used as local modes for forming data 

clouds in stage 3 ({𝒖∗}𝑁 ← {𝝁∗}  ) and are filtered in stage 4. 
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Stages 3 and 4 are repeated until all the distances between the existing local modes 

exceed 
𝜆𝐾

2
. Finally, we obtain the remaining centres with the local maxima of 𝐷𝐺 , re-denoted 

by {𝝁∗}, and use them as the local modes to form data clouds using equation (3.12).  

After the data clouds are formed, the corresponding centres, standard deviations, 

supports, members and other parameters of the formed data clouds can be extracted post 

factum. 

3.3.1.5. Algorithm Summary 

The main procedure of the offline ADP algorithm is summarised in the form of a 

flowchart presented in Figure 13. 

 

Figure 13. Main procedure of the offline ADP algorithm. 
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3.3.2. Evolving ADP Algorithm 

The evolving ADP algorithm works with the unimodal density 𝐷 of the streaming data. 

This algorithm is able to start “from scratch”. In addition, a hybrid between the evolving and 

the offline versions is also possible. The main procedure of the evolving algorithm is as 

follows [31]. Here the Euclidean distance is used for simpler derivation. 

3.3.2.1. Stage 1: Initialisation 

The first data sample within the data stream 𝒙1  is selected as the first local mode. The 

global parameters of the ADP algorithm are set as 𝐾 ← 1, 𝐶 ← 1, 𝝁 ← 𝒙1 and  𝑋 ← ‖𝒙1‖
2, 

and the meta-parameters of the first data cloud are set as  𝚵1 ← {𝒙1}, 𝑆1 ← 1 and 𝝁1 ← 𝒙1, 

which are the same as equations (3.8) and (3.9).  

The ADP algorithm then starts to self-evolve its structure and update the parameters 

based on the arriving data samples.  

3.3.2.2. Stage 2: System Structure and Meta-Parameters Update 

For each newly arriving data sample (𝐾 ← 𝐾 + 1), denoted as 𝒙𝐾 , the global meta-

parameters 𝝁  and 𝑋  are updated firstly using equations (2.26) and (2.27). The unimodal 

density at 𝒙𝐾  and the centres of all the existing data clouds, 𝐷𝐾(𝒙𝐾)  and 𝐷𝐾(𝝁𝑖)  ( 𝑖 =

1,2, … , 𝐶) are calculated using equations (2.18), (2.24) and (2.25).  

Then, Condition 3 (equation (3.19)) is checked to decide whether 𝒙𝐾 will form a new 

data cloud. If Condition 3 is met, a new data cloud is added with 𝒙𝐾 as its local mode as: 

𝐶 ← 𝐶 + 1, 𝚵𝐶 ← {𝒙𝐾},  𝝁𝐶 ← 𝒙𝐾 and 𝑆𝐶 ← 1. Otherwise, the existing local mode closest to 

𝒙𝐾 is found, denoted as  𝝁𝑛. Then, Condition 14 is checked before 𝒙𝐾 is assigned to the data 

cloud formed around the nearest data cloud centre  𝝁𝑛: 

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 14:
𝐼𝐹(‖ 𝝁𝑛 − 𝒙𝐾‖ ≤ 𝜂𝐾 2⁄ )

𝑇𝐻𝐸𝑁 (𝒙𝐾 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜  𝝁𝑛)
 .                              (3.49) 

However, it is not computationally efficient to calculate 𝜂𝐾  at each time a new data 

sample arrives. Since the average distance between all the data samples 𝜂𝐾
𝑑  is approximately 

equal to 𝜂𝐾, 𝜂𝐾 ≈ 𝜂𝐾
𝑑 , 𝜂𝐾 can be replaced as: 

𝜂𝐾 ≈ 𝜂𝐾
𝑑 = √∑ ∑ ‖𝒙𝑗−𝒙𝑖‖

2𝐾
𝑗=1

𝐾
𝑖=1

𝐾2
= √2(𝑋𝐾 − ‖𝝁‖2).                                 (3.50) 
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If Condition 14 is satisfied, 𝒙𝐾  is associated with the nearest existing local mode  𝝁𝑛. 

The meta-parameters of this data cloud 𝚵𝑛, namely 𝑆𝑛 and  𝝁𝑛 are updated using equation 

(3.13). 

If Condition 14 is not satisfied, then  𝒙𝐾  starts a new data cloud with the meta-

parameters initialised as: 𝐶 ← 𝐶 + 1, 𝚵𝐶 ← {𝒙𝐾},  𝝁𝐶 ← 𝒙𝐾 and 𝑆𝐶 ← 1. 

The local modes and support of other data clouds that do not get the new data sample 

stay the same for the next processing cycle. After the update of the system structure and the 

meta-parameters, the algorithm is ready for the next data sample. 

3.3.2.3. Stage 3: Data Clouds Formation 

When there are no more data samples, the identified local modes (renamed as {𝝁∗}) are 

used to rebuild data clouds using equation (3.12). The parameters of these data clouds can be 

extracted post factum. 

3.3.2.4. Algorithm Summary 

The main procedure of the evolving ADP algorithm is summarised in the form of a 

flowchart presented in Figure 14. 
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Figure 14. Main procedure of the evolving ADP algorithm. 

3.3.3. Handling the Outliers in ADP 

After the data clouds are formed by all the identified local modes, one may notice some 

data clouds with support equal to 1, which means that there is no sample associated with 

these data clouds except for the local modes. This kind of local modes are considered to be 

outliers. In the ADP algorithm presented in this thesis, the outliers are assigned to the nearest 

normal data clouds using equation (3.12) and the meta-parameters of the data clouds that 

receive new members are updated using equation (3.13). Nonetheless, it has to be stressed 

that these abnormal local modes are ignored from the partitioning results, but they can still be 

kept in memory in case new data samples arrive. 
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3.4. Self-Organising Direction-Aware Data Partitioning Algorithm 

In this section, an autonomous algorithm named Self-Organised Direction Aware 

(SODA) data partitioning is presented. The SODA partitioning algorithm employs both a 

traditional distance metric and a cosine similarity based angular component. The widely used 

traditional distance metrics, including Euclidean, Mahalanobis, Minkowski distances, mainly 

measure the magnitude difference between vectors. The cosine similarity, instead, focuses on 

the directional similarity. The algorithm that takes into consideration both the spatial and the 

angular divergences results in a deeper understanding of the ensemble properties of the data. 

Using EDA operators [26], [27], the SODA algorithm autonomously identifies the focal 

points (local peaks of the typicality, thus, the most representative points locally) from the 

observed data based on both, the spatial and angular divergences and, based on the focal 

points, it is able to disclose the ensemble properties and mutual distribution of the data. The 

possibility to calculate the EDA quantities incrementally enables us to propose 

computationally efficient algorithms. 

The SODA algorithm consists of two versions, namely, offline and evolving. The 

offline version of the SODA algorithm is for static data processing, and an extension is also 

given, which enables the offline algorithm to follow the changing data pattern in an agile 

manner once primed/initialised with a seed dataset. The evolving SODA algorithm for 

streaming data employs the recently introduced direction-aware distance as the distance 

measure, and can start “from the scratch”. In this section, Euclidean distance is used to 

measure the magnitude difference. The magnitude component is expressed as 𝑑𝑀(𝒙𝑖, 𝒙𝑗) =

‖𝒙𝑖 − 𝒙𝑗‖ and the cosine similarity-based angular component is expressed as 𝑑𝐴(𝒙𝑖, 𝒙𝑗) =

√1 − 𝑐𝑜𝑠 (𝜃𝒙𝑖,𝒙𝑗
) = ‖

𝒙𝑖

‖𝒙𝑖‖
−

𝒙𝑗

‖𝒙𝑗‖
‖ (𝒙𝑖, 𝒙𝑗 ∈ {𝒙}𝐾). 

3.4.1. Offline SODA Algorithm 

In this section, we will describe the proposed SODA algorithm. The main steps of the 

SODA algorithm include: firstly, form a number of direction-aware planes from the observed 

data samples using both the magnitude-based and angular-based unimodal densities; 

secondly, identify focal points; finally, use the focal points to partition the data space into 

data clouds. The detailed procedure of the proposed SODA partitioning algorithm is as 

follows.  
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3.4.1.1. Stage 1: Preparation  

At this stage, the average square values between every pair of data samples, {𝒙}𝐾 for 

both, the Euclidean components, 𝑑𝑀 and square angular components, 𝑑𝐴, are calculated: 

𝑑̅𝑀
2 =

∑ ∑ 𝑑𝑀
2 (𝒙𝑖,𝒙𝑗)

𝐾
𝑗=1

𝐾
𝑖=1

𝐾2 =
∑ ∑ ‖𝒙𝑖−𝒙𝑗‖

2𝐾
𝑗=1

𝐾
𝑖=1

𝐾2 = 2(𝑋𝑀 − ‖𝝁𝑀‖2);            (3.51) 

𝑑̅𝐴
2 =

∑ ∑ 𝑑𝐴
2 (𝒙𝑖,𝒙𝑗)

𝐾
𝑗=1

𝐾
𝑖=1

𝐾2
=

∑ ∑ ‖
𝒙𝑖

‖𝒙𝑖‖
−

𝒙𝑗

‖𝒙𝑗‖
‖

2
𝐾
𝑗=1

𝐾
𝑖=1

2𝐾2
= 1 − ‖𝝁𝐴‖2,                  (3.52) 

where 𝑋𝑀 and 𝝁𝑀 are the means of {‖𝒙‖2}𝐾 and {𝒙}𝐾, respectively; 𝝁𝐴 is the mean of {
𝒙

‖𝒙‖
}
𝐾

. 

Then, the multimodal densities 𝐷𝐺  of the unique data samples {𝒖}𝑁 are calculated using 

equations (2.19), (2.24), (2.25), (2.32) and (2.33), as 𝐷𝐾
𝐺(𝒖𝑖) = 𝑓𝑖 (

1

1+
‖𝒖𝑖−𝝁𝑀‖

2

𝑋𝑀−‖𝝁𝑀‖
2

+

1

1+
‖𝒖𝑖 ‖𝒖𝑖‖⁄ −𝝁𝐴‖

2

1−‖𝝁𝐴‖
2

). Then, {𝒖}𝑁 are ranked in a descending order in terms of 𝐷𝐺 , which are re-

denoted as {𝒛}𝑁. 

3.4.1.2. Stage 2: Direction-Aware Plane Projection  

The direction-aware projection operation begins with the unique data sample that has 

the highest multimodal density, namely 𝒛1. It is initially set to be the first reference, 𝝁1 ← 𝒛1, 

which is also the origin point of the first direction-aware plane, denoted by ℵ1 ( 𝑃 ← 1, 𝑃 is 

the number of existing direction-aware planes in the data space). For the rest of the unique 

data samples 𝒛𝑗 (𝑗 = 2,3, … ,𝑁), Condition 15 is checked sequentially: 

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 15:
𝐼𝐹 (

𝑑𝑀( 𝝁𝑖,𝒛𝑗)

𝑑̅𝑀
≤

1

𝛾
)  𝐴𝑁𝐷 (

𝑑𝐴( 𝝁𝑖,𝒛𝑗)

𝑑̅𝐴
≤

1

𝛾
)

𝑇𝐻𝐸𝑁 (ℵ𝑖 ← {ℵ𝑖, 𝒛𝑗})
,                  (3.53) 

where 𝑖 = 1,2, … , 𝑃; 𝛾  is set to decide the granularity of the partitioning results and relates to 

the Chebyshev inequality [52]. If two or more direction-aware planes satisfy Condition 15 at 

the same time, 𝒛𝑗 will be assigned to the nearest of them: 

𝑛 = argmin𝑖=1,2,…,𝑃 (
𝑑𝑀( 𝝁𝑖,𝒛𝑗)

𝑑̅𝑀
+

𝑑𝐴( 𝝁𝑖,𝒛𝑗)

𝑑̅𝐴
).                                           (3.54) 
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The meta-parameters (mean  𝝁𝑛 , support/number of data samples, 𝑆𝑛  and sum of 

multimodal density, denoted by 𝐷𝐺(ℵ𝑛)) of the n
th 

direction-aware plane are being updated as 

follows: 

ℵ𝑛 ← {ℵ𝑛, 𝒛𝑗};  𝝁𝑛 ←
𝑆𝑛

𝑆𝑛+1
 𝝁𝑛 +

1

𝑆𝑛+1
𝒛𝑗;

𝑆𝑛 ← 𝑆𝑛 + 1; 𝐷𝐺(ℵ𝑛) ← 𝐷𝐺(ℵ𝑛) + 𝐷𝐾
𝐺(𝒛𝑗).

                                    (3.55) 

If Condition 15 is not met, 𝒛𝑗 is set to be a new reference and a new direction-aware 

plane is set up as follows:  

𝑃 ← 𝑃 + 1; ℵ𝑃 ← {𝒛𝑗};  𝝁𝑃 ← 𝒛𝑗;

𝑆𝑃 ← 1; 𝐷𝐺(ℵ𝑃) ←𝐷𝐾
𝐺(𝒛𝑗).

                                                    (3.56) 

After all the unique data samples are projected onto the direction-aware planes, the next 

stage can start.  

3.4.1.3. Stage 3: Focal Points Identification 

In this stage, for each direction-aware plane, denoted as ℵ𝑖 (𝑖 = 1,2, … , 𝑃), Condition  

16 is used to find the neighbouring direction-aware planes, denoted by {ℵ}𝑖
𝑛: 

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 16:
𝐼𝐹 (

𝑑𝑀( 𝝁𝑖,𝝁𝑗)

𝑑̅𝑀
≤

2

𝛾
)  𝐴𝑁𝐷 (

𝑑𝐴( 𝝁𝑖,𝝁𝑗)

𝑑̅𝐴
≤

2

𝛾
)

𝑇𝐻𝐸𝑁 ( {ℵ}𝑖
𝑛 ← {{ℵ}𝑖

𝑛, ℵ𝑗})
,                  (3.57) 

where 𝑗 = 1,2, … , 𝑃. Condition 16 can be related to the Chebyshev inequality as well [52].  

Then, Condition 17 is used to find the direction-aware planes standing for the local 

maxima of the data density (𝑖 = 1,2, … , 𝑃): 

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 17:
𝐼𝐹 (𝐷𝐺(ℵ𝑖) > max({𝐷𝐺(ℵ)}𝑖

𝑛))

𝑇𝐻𝐸𝑁 (ℵ𝑖 𝑖𝑠 𝑎 𝑙𝑜𝑐𝑎𝑙 𝑚𝑎𝑥𝑖𝑚𝑢𝑚)
.                            (3.58) 

By using Conditions 16 and 17 to examine each existing direction-aware plane, one can 

find all the modes/peaks of the data density, and the origin points of the local maximum 

planes are re-denoted as {𝝁∗}. 

3.4.1.4. Stage 4: Forming Data Clouds 

By using {𝝁∗} as the focal points, data clouds can be formed using equation (3.59) as a 

Voronoi tessellation [64] : 

𝑛 = argmin𝝁∈{𝝁∗} (
𝑑𝑀(𝝁,𝒙)

𝑑̅𝑀
+

𝑑𝐴(𝝁,𝒙)

𝑑̅𝐴
) ;

𝚵𝑛 ← {𝚵𝑛, 𝒙};
𝒙 ∈ {𝒙}𝑲.                              (3.59) 
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3.4.1.5. Algorithm Summary 

The main procedure of the offline SODA algorithm is summarised in the form of a 

flowchart presented in Figure 15. 

 

Figure 15. Main procedure of the offline SODA algorithm. 
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3.4.2. Extension of the Offline SODA Algorithm  

In this section, an extension to the offline SODA algorithm will be introduced to allow 

the algorithm to continue to process the streaming data on the basis of the partitioning results 

initiated by a static dataset. As a result, the main procedure of this extension for streaming 

data processing will be built based on a structure initiated by an offline priming (does not 

start “from scratch”).  

The main procedure of the extension of the offline algorithm for the streaming data 

processing is as follows. 

3.4.2.1. Stage 1: Meta-parameters Update 

After the static dataset has been processed, for each newly arrived data sample (𝐾 ←

𝐾 + 1) from the data stream, denoted by 𝒙𝐾 , 𝝁𝑀 , 𝑋𝑀and 𝝁𝐴  are updated using equations 

(2.26), (2.27) and (2.34). The values of the Euclidean components, 𝑑𝑀  and the angular 

components, 𝑑𝐴  between 𝒙𝐾  and the centres  𝝁𝑖  ( 𝑖 = 1,2, … , 𝑃 ) of the existing direction-

aware planes are calculated, denoted as 𝑑𝑀(𝒙𝐾,  𝝁𝑖) and 𝑑𝐴(𝒙𝐾,  𝝁𝑖) (𝑖 = 1,2, … , 𝑃). 𝑑̅𝑀
2  and 

𝑑̅𝐴
2 are updated using equations (3.51) and (3.52) as well. 

Then, Condition 15 and equation (3.54) are used to find the direction-aware plane 𝒙𝐾  is 

associated with. If Condition 15 is met and 𝒙𝐾 is associated with the existing direction-aware 

plane, assuming ℵ𝑛, 𝒙𝐾 is assigned to ℵ𝑛 and the corresponding meta-parameters  𝝁𝑛 and  𝑆𝑛 

will be updated using equation (3.55). Otherwise, a new direction-aware plane is set up by 𝒙𝐾 

(𝑃 ← 𝑃 + 1, ℵ𝑃 ← {𝒙𝐾}) with the meta-parameters ( 𝝁𝑃 and 𝑆𝑃) set up by equation (3.56).  

3.4.2.2. Stage 2: Merging Overlapping Direction-Aware Planes 

After the Stage 1 is finished, Condition 18 is checked to identify the heavily overlapping 

direction-aware planes in the data space ( 𝑖, 𝑗 = 1,2, … , 𝐿;  1 ≤ 𝑖 < 𝑗 ≤ 𝑃): 

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 18:
𝐼𝐹 (

𝑑𝑀( 𝝁𝑖,𝝁𝑗)

𝑑̅𝑀
≤

1

2𝛾
)  𝐴𝑁𝐷 (

𝑑𝐴( 𝝁𝑖,𝝁𝑗)

𝑑̅𝐴
≤

1

2𝛾
)

𝑇𝐻𝐸𝑁 (ℵ𝑖 𝑎𝑛𝑑 ℵ𝑗  𝑎𝑟𝑒 ℎ𝑒𝑎𝑣𝑖𝑙𝑦 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔)
.       (3.60) 

If ℵ𝑖 and ℵ𝑗  ( 𝑖, 𝑗 = 1,2, … , 𝑃;  1 ≤ 𝑖 < 𝑗 ≤ 𝑃 ) meet condition 18, they are merged 

together on the basis of ℵ𝑗 (𝑃 ← 𝑃 − 1) with the meta-parameters  𝝁𝑗 and  𝑆𝑗 updated using 

equation (3.19). Meanwhile, the meta-parameters of ℵ𝑖 are deleted.  
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The merging process repeats until all the heavily overlapping direction-aware planes 

have been merged. Then, the algorithm goes back to Stage 1 and waits for the newly coming 

data sample. If there is no new data sample anymore, the algorithm goes to the final stage. 

3.4.2.3. Stage 3: Forming Data Clouds 

Once there are no new data samples available, the SODA algorithm will quickly identify 

the focal points from the centres of the existing direction-aware planes.  

Firstly, the multimodal densities of the centres  𝝁𝑗 (𝑗 = 1,2, … , 𝑃) of the direction-aware 

planes are calculated as 𝐷𝐾
𝐺( 𝝁𝑗) = 𝑆𝑗 (

1

1+
‖ 𝝁𝑗−𝝁𝑀‖

2

𝑋𝑀−‖𝝁𝑀‖
2

+
1

1+
‖ 𝝁𝑗 ‖ 𝝁𝑗‖⁄ −𝝁𝐴‖

2

1−‖𝝁𝐴‖
2

)   ( 𝑗 = 1,2, … , 𝑃) , 

where the support 𝑆𝑗  ( 𝑗 = 1,2, … , 𝑃 ) of each direction-aware plane is used as the 

corresponding frequency. 

Secondly, for each existing direction-aware plane, ℵ𝑖, Condition 16 is used to find the 

neighbouring planes around it, denoted as {ℵ}𝑖
𝑛 . Condition 17 is used to check whether 

𝐷𝐾
𝐺( 𝝁𝑗) (𝑗 = 1,2, … , 𝑃) is one of the local maxima. 

Finally, for all the identified local maxima of 𝐷𝐺 , the centres of the corresponding 

planes, denoted as {𝝁∗} will serve as the focal points to form the data clouds using equation 

(3.59). 

3.4.2.4. Algorithm Summary 

The main procedure of the offline SODA algorithm extension is summarised in the form 

of a flowchart presented in Figure 16. 
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Figure 16. Main procedure of the offline SODA algorithm extension. 

3.4.3. Evolving SODA Algorithm 

In this section, the evolving SODA algorithm is presented, which employs the recently 

introduced direction-aware distance [33] as the distance measure, which is also described in 

section 2.1.3.6 as well. This algorithm is able to “start from scratch” and consistently evolve 

its system structure and update the meta-parameters based on the newly arrived data samples. 

In this evolving version, without a loss of generality, the two scaling coefficients of direction-

aware distance, namely 𝜆𝑀 and 𝜆𝐴 are set to be 𝜆𝑀 =
1

𝑑̅𝑀
2  and 𝜆𝐴 =

1

𝑑̅𝐴
2 , which are derived by 

equations (3.51) and (3.52) [33]. 
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The main procedure of the proposed algorithm is described as follows.  

3.4.3.1. Stage 1: Initialisation 

The first data sample 𝒙1 in the data stream is used for initialising the first data cloud and 

its meta-parameters. In the evolving SODA algorithm, the system has the following 

initialised global meta-parameters: 𝐾 ← 1 , 𝐶 ← 1 , 𝝁𝑀 ← 𝒙1  , 𝑋𝑀 ← ‖𝒙1‖
2 , 𝝁𝐴 ←

𝒙1

‖𝒙1‖
 and 

𝑋𝐴 ← 1. And the meta-parameters of the first data cloud are set as (𝚵1 ← {𝒙1}): 

𝝁1 ← 𝒙1; 𝝁̅1 ←
𝒙1

‖𝒙1‖
; 𝑋1 ← ‖𝒙1‖

2; 𝑋̅1 ← 1; 𝑆1 ← 1,                 (3.61) 

where 𝝁̅1 is the normalised mean of ℵ1; 𝑋̅1 is the corresponding normalised average scalar 

product. 

After the initialisation of the system, the evolving SODA algorithm starts to update the 

system structure and meta-parameters with the arrival of each new data samples. 

3.4.3.2. Stage 2: System Structure and Meta-Parameters Update 

With each newly arrived data sample ( 𝐾 ← 𝐾 + 1 ), the system’s global meta-

parameters, 𝝁𝑀, 𝑋𝑀 and 𝝁𝐴 are updated with 𝒙𝐾 using the equations (2.26), (2.27) and (2.34) 

[26]. The two scaling parameters, 𝜆𝑀 and 𝜆𝐴, are updated accordingly using equations (3.51) 

and (3.52). 

Then, the nearest data cloud 𝚵𝑛 to 𝒙𝐾 with the centre denoted by 𝝁𝑛 is identified using 

equation (3.62): 

𝝁𝑛 = argmin𝑖=1,2,…,𝐶(𝑑𝐷𝐴(𝒙𝐾, 𝝁𝑖)).                                                     (3.62) 

And the direction-aware distance between 𝝁𝑛 and 𝒙𝐾 is obtained as 𝑑𝐷𝐴(𝒙𝐾, 𝝁𝑛). 

Condition 19 is checked to see whether 𝒙𝐾 is associated with a new data cloud: 

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 19:

𝐼𝐹 (𝑑𝐷𝐴(𝒙𝐾, 𝝁𝑀) > max𝑗=1,2,…,𝐶 (𝑑𝐷𝐴(𝝁𝑗, 𝝁𝑀)))

𝑂𝑅 (𝑑𝐷𝐴(𝒙𝐾, 𝝁𝑀) < min𝑗=1,2,…,𝐶 (𝑑𝐷𝐴(𝝁𝑗, 𝝁𝑀)))

𝑂𝑅 (𝑑𝐷𝐴(𝒙𝐾, 𝝁𝑛) > 𝑑𝑜)

𝑇𝐻𝐸𝑁 (𝒙𝐾 𝑐𝑟𝑒𝑎𝑡𝑒𝑠 𝑎 𝑛𝑒𝑤 𝑑𝑎𝑡𝑎 𝑐𝑙𝑜𝑢𝑑)

, (3.63) 

where 𝑑𝑜 = 0.5. 

If Condition 19 is satisfied, a new data cloud is added with 𝒙𝐾 as its centre: 
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𝐶 ← 𝐶 + 1; 𝚵𝐶 ← {𝒙𝐾}; 𝝁𝐶 ← 𝒙𝐾;

𝝁̅𝐶 ←
𝒙𝐾

‖𝒙𝐾‖
; 𝑋𝐶 ← ‖𝒙𝐾‖2; 𝑋̅𝐶 ← ‖𝒙𝐾‖2; 𝑆𝐶 ← 1.

                         (3.64) 

In contrast, if Condition 19 is not met, 𝒙𝐾 is assigned to the nearest data cloud 𝚵𝑛, and 

the meta-parameters of 𝚵𝑛 are updated as follows (𝐶 ← 𝐶) [26]: 

𝚵𝑛 ← {𝚵𝑛, 𝒙𝐾}; 𝝁𝑛 ←
𝑆𝑛

𝑆𝑛+1
𝝁𝑛 +

1

𝑆𝑛+1
𝒙𝐾; 𝝁̅𝑛 ←

𝑆𝑛

𝑆𝑛+1
𝝁̅𝑛 +

1

𝑆𝑛+1

𝒙𝐾

‖𝒙𝐾‖
;

𝑋𝑛 ←
𝑆𝑛

𝑆𝑛+1
𝑋𝑛 +

1

𝑆𝑛+1
‖𝒙𝐾‖2; 𝑆𝑛 ← 𝑆𝑛 + 1.

                (3.65) 

After the update of the global and local meta-parameters, the system is ready for the 

arrival of the next data sample and begins a new processing cycle. 

3.4.3.3. Stage 3: Filtering Data Clouds 

In this stage, all the existing data clouds will be examined and adjusted to avoid the 

possible overlap. For each existing cloud 𝚵𝑖 (𝑖 = 1,2, … , 𝐶), firstly, its neighbouring clouds, 

denoted by {𝚵}𝑖
𝑛 based on Condition 20:  

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 20:
𝐼𝐹 (𝑑𝐷𝐴(𝝁𝑖, 𝝁𝑗) <

∑ 𝑑̅𝑘
𝐶
𝑘=1

𝐶
)

𝑇𝐻𝐸𝑁 ({𝚵}𝑖
𝑛 ← {{𝚵}𝑖

𝑛, 𝚵𝑗})
,                                      (3.66) 

where 𝑑̅𝑘
2 = ∑ ∑ 𝑑𝐷𝐴

2 (𝒙, 𝒚)𝒚∈𝚵𝑘𝒙∈𝚵𝑘
𝑆𝑘

2⁄  is the average square direction-aware distance 

between all the members within the k
th

 data cloud 𝚵𝑘. 

For each cluster centre, 𝝁𝑖 (𝑖 = 1,2, … , 𝐶), its multimodal density is calculated as [26]: 

𝐷𝐾
𝐺(𝝁𝑖) = 𝑆𝑖

∑ ∑ 𝑑𝐷𝐴
2 (𝝁𝑙,𝝁𝑗)

𝐶
𝑗=1

𝐶
𝑙=1

2𝐶 ∑ 𝑑𝐷𝐴
2 (𝝁𝑖,𝝁𝑗)

𝐶
𝑗=1

,                                                              (3.67) 

and it is compared with the 𝐷𝐺 of its neighbouring data clouds denoted by {𝐷𝐺(𝝁)}𝑖
𝑛 , to 

identify the local maxima of 𝐷𝐺  using Condition 16. 

By identifying all the local maxima, denoted by {𝝁∗}  and assigning each data sample to 

the data cloud with the nearest centre using equation (3.12), the whole partitioning processing 

is finished. The parameters of the data clouds can be extracted post factum. 

3.4.3.4. Algorithm Summary 

The main procedure of the evolving SODA algorithm extension is summarised in the 

form of a flowchart presented in Figure 17. 
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Figure 17. Main procedure of the evolving SODA algorithm. 

3.5. Conclusion 

As the main stream of unsupervised machine learning techniques, clustering algorithms 

play an important role in data analysis, data mining and pattern recognition. However, 

traditional approaches suffer from various deficiencies, and they often fail to produce 

meaningful results on real problems.  

 In this chapter, four different types of self-organising, data-driven, nonparametric 

clustering/data partitioning approaches developed within the EDA framework are presented. 
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Compared with traditional approaches, the novel approaches presented in this chapter are free 

from the prior assumptions and predefined user- and problem-specific parameters. They are 

able to perform high quality clustering/partitioning results without any prior knowledge about 

the problem, and therefore, the scope of their applications can be very wide in the era of big 

data.  

  



87 

 

4. Supervised Self-Organising Machine Learning Algorithms 

As it was discussed in section 2.3.2 – section 2.3.4, traditional supervised machine 

learning algorithms suffer from various deficiencies, including: 

1) They rely on prior assumptions and predefined parameters for good performance; 

2) Their system structures lack the ability of self-evolving. 

In this chapter, the newly introduced supervised self-organising machine learning 

algorithms within the EDA framework are presented, which are autonomous, entirely data-

driven and free from prior assumptions and user- and problem- specific parameters. 

This chapter is organised as follows. Section 4.1 introduces autonomous learning multi-

model system for streaming data processing as presented in [34]. The autonomous learning 

multi-model system of 0-order [35] is presented in section 4.2, which is very strong for large-

scale, complex classification problems (see subsection 6.2.2 and also see [35]). A new type of 

self-organising fuzzy logic classifier with the ability of performing objective classification 

under different level of granularities is given in section 4.3. The autonomous anomaly 

detection algorithm is presented in section 4.4 and this chapter is concluded by section 4.5. 

4.1. Autonomous Learning Multi-Model Systems 

In this section, the autonomous learning multi-model system for streaming data 

processing, named ALMMO [34], is presented. The ALMMO system touches the very 

foundations of the complex learning systems for streaming data processing, and thus, it can 

be applied in areas including online data analytics, classification, regression, etc. In this 

section, the general architecture, structure identification and parameter identification of the 

ALMMO system will be presented. For simpler derivation, the Euclidean distance is used 

below, however, other types of distance metric and dissimilarity can be considered as well. 

4.1.1. General Architecture  

In the ALMMO system, the structure is composed of constraints-free data clouds 

forming Voronoi tessellation [64] in terms of the input and output variables. Its structure 

identification concerns the identification of the focal points of the data clouds as well as the 

parameters of output local models. Correspondingly, the parameter identification problem of 

the proposed approach is to determine the optimal values of the consequent parameters of the 

local (linear or singleton) models [55], [60]. The structure of the ALMMO system is given in 

Figure 18. 
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The ALMMO system can also be viewed as an autonomously self-developing AnYa 

type FRB system designed with the principles and mechanisms of the Empirical Data 

Analytics (EDA) computational framework [25]–[27], [33]. Specific characteristics that set 

ALMMO apart from the existing methods and schemes include: 

1) it employs the nonparametric EDA quantities of density and typicality to disclose the 

underlying data pattern of the streaming data; 

2) its system structure is composed of data clouds free from external constrains and self-

updating output local models identified in a data-driven way; 

3) it further defines and identifies a unimodal density (equation (2.18)) based 

membership function [54] designed within the EDA framework for the AnYa type FRB 

system [60]; 

4) it can, in a natural way, deal with heterogeneous data combining categorical with 

numerical data [54]. 

 

Figure 18. Structure of the ALMMO system. 

4.1.2. Structure Identification 

In this subsection, the structure identification process of the ALMMO system is 

described. 

4.1.2.1. System Initialisation 

For the first data sample, 𝒙1 , the meta-parameters of the system are initialised as: 

𝐾 ← 1; 𝝁1 ← 𝒙1; 𝑋1 ← ‖𝒙1‖
2; 𝑁1 ← 1. And the first data cloud within the system is 

initialised as: 𝚵1 ← {𝒙1}; 𝒑1,1 ← 𝒙1; 𝑋1,1 ← ‖𝒙1‖
2; 𝑆1,1 ← 1.  
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4.1.2.2. Structure Update 

For each newly arrived data sample, 𝒙𝐾  (𝐾 ← 𝐾 + 1), the global mean and average 

scalar products 𝝁𝐾−1 and 𝑋𝐾−1 are updated to 𝝁𝐾 and 𝑋𝐾   using equations (2.26) and (2.27) 

first. 

The unimodal densities of the data sample 𝒙𝐾 and all the identified focal points, denoted 

by  𝒑𝐾−1,𝑗 (𝑗 = 1,2, … ,𝑁𝐾−1 ) are calculated using equations (2.18), (2.24) and (2.25). 

Then, Condition 3 (equation (3.10)) is checked to see whether 𝒙𝐾 will generate a new 

data cloud and becomes a new prototype added into the fuzzy rule [55]. If Condition 3 

(equation (3.10)) is triggered, a new data cloud is being formed around 𝒙𝐾. 

However, it is also necessary to check whether the newly formed data cloud is 

overlapping with the existing data clouds, and Condition 21 is used here to avoid possible 

overlaps (𝑖 = 1,2, … , 𝑁𝐾−1 ): 

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 21:
𝐼𝐹 (𝐷𝐾,𝑖(𝒙𝐾) ≥

1

1+𝑛2)

𝑇𝐻𝐸𝑁 (
𝚵𝑖 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑓𝑢𝑧𝑧𝑦 𝑟𝑢𝑙𝑒

 𝑤𝑖𝑙𝑙 𝑏𝑒 𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑛𝑒𝑤 𝑜𝑛𝑒
)
,   (4.1) 

where 𝐷𝐾,𝑖(𝒙𝐾) is the local unimodal density calculated per data cloud: 

𝐷𝐾,𝑖(𝒙𝐾) =
1

1+
𝑆𝐾−1,𝑖
2 ‖𝒙𝐾−𝒑𝐾−1,𝑖‖

2

(𝑆𝐾−1,𝑖+1)(𝑆𝐾−1,𝑖𝑋𝐾−1,𝑖+‖𝒙𝐾+1‖
2
)−‖𝒙𝐾+𝑆𝐾−1,𝑖𝒑𝐾−1,𝑖‖

2

 .                  (4.2) 

The rationale to consider 𝐷𝐾,𝑖(𝒙𝐾)  ≥
1

1+𝑛2  comes from the well-known Chebyshev 

inequality in the form of unimodal density (equation (2.43)). Here 𝑛 = 0.5 is used, which is 

equivalent to  𝐷𝐾,𝑖(𝒙𝐾)  ≥ 0.8 for 𝒙𝐾 is less than 𝜎 2⁄   away from the focal point of the i
th 

data cloud. 

If only Condition 3 is satisfied and Condition 21 is not met, a new data cloud with focal 

point 𝒙𝐾 is added to the system: 

𝑁𝐾  ← 𝑁𝐾−1 + 1; 𝚵𝑁𝐾
← {𝒙𝐾}; 𝒑𝐾,𝑁𝐾

← 𝒙𝐾;

𝑋𝐾,𝑁𝐾
← ‖𝒙𝐾‖2; 𝑆𝐾,𝑁𝐾

← 1.
                                    (4.3) 

In contrast, if Conditions 3 and 21 are both satisfied, then the existing overlapping data 

cloud (assuming the i
th

 one) is being replaced by a new one with the focal point 𝒙𝐾  as 

follows: 
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𝑁𝐾  ← 𝑁𝐾−1; 𝚵𝑖 ← {𝚵𝑖, 𝒙𝐾}; 𝑆𝐾,𝑖 ← ⌈
𝑆𝐾−1,𝑖+1

2
⌉ ;

𝒑𝐾,𝑖 ←
𝒑𝐾−1,𝑖+𝒙𝐾

2
; 𝑋𝐾,𝑖 ←

𝑋𝐾−1,𝑖+‖𝒙𝐾‖2

2
.

                                  (4.4) 

Equation (4.4) can stop the ALMMO system from discarding the previously collected 

information too fast because the new data cloud may be initialised by an abnormal data 

sample. 

If Condition 3 (equation (3.10)) is not satisfied, then the algorithm continues by finding 

the nearest data cloud 𝚵𝑛 to 𝒙𝐾, which is identified by equation (3.12). The corresponding 

meta-parameters of the system and 𝚵𝑛 are updated as follows: 

           
𝑁𝐾  ← 𝑁𝐾−1; 𝚵𝑛 ← {𝚵𝑛, 𝒙𝐾}; 𝑆𝐾,𝑛 ← 𝑆𝐾−1,𝑛 + 1;

𝒑𝐾,𝑛 ←
𝑆𝐾−1,𝑛

𝑆𝐾,𝑛
𝒑𝐾−1,𝑛 +

1

𝑆𝐾,𝑛
𝒙𝐾; 𝑋𝑛,𝐾 ←

𝑆𝐾−1,𝑛

𝑆𝐾,𝑛
𝑋𝐾−1,𝑛 +

1

𝑆𝐾,𝑛
‖𝒙𝐾‖2.

                      (4.5) 

The meta-parameters of other data clouds stay the same for the next processing cycle. In 

ALMMO, each data cloud (and the respective focal point) is used as the basis to formulate 

the antecedent (IF) part of the AnYa type fuzzy rules. 

4.1.2.3. Online Quality Monitoring 

Since the ALMMO system is for processing streaming data, monitoring the quality of 

the dynamically evolving structure is necessary in order to guarantee the computation- and 

memory-efficiency. The quality of the fuzzy rules within the ALMMO system can be 

characterised by their utility [55]. In ALMMO, utility, 𝜂𝐾,𝑖 of the i
th

 data cloud accumulates 

the weight of the corresponding fuzzy rule contribution to the overall output (activation level) 

during the life of the rule (from the time instance at which the data cloud was generated till 

the current time instance). It is the measure of importance of the respective fuzzy rule 

compared to others (𝑖 = 1,2, … ,𝑁𝐾): 

𝜂𝐾,𝑖 =
1

𝐾−𝐼𝑖
∑ 𝜆𝑙,𝑖

𝐾
𝑙=𝐼𝑖

=
1

𝐾−𝐼𝑖
∑

𝐷𝑙,𝑖(𝑥𝑙)

∑ 𝐷𝑙,𝑗(𝑥𝑙)
𝑁𝑙
𝑗=1

𝐾
𝑙=𝐼𝑖

; 𝜂𝐼𝑖,𝑖
= 1,                        (4.6) 

where 𝐼𝑖 is the time instance at which the i
th 

data cloud is established; 𝜆𝑙,𝑖 =
𝐷𝑙,𝑖(𝑥𝑙)

∑ 𝐷𝑙,𝑗(𝑥𝑙)
𝑁𝑙
𝑗=1

 is the 

activation level of the i
th 

data cloud at the l
th

 time instance.  

The rule base can be simplified according to Condition 22 by removing the data clouds 

and their corresponding fuzzy rules with low utility [55], [60]: 
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𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 22:
𝐼𝐹 (𝜂𝐾,𝑖 < 𝜂𝑜)

𝑇𝐻𝐸𝑁 (
𝚵𝑖 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑓𝑢𝑧𝑧𝑦 𝑟𝑢𝑙𝑒

𝑖𝑠 𝑟𝑒𝑚𝑜𝑣𝑒𝑑
)
 ,  (4.7) 

where 𝜂𝑜 is a small tolerance constant (𝜂𝑜 = 0.1 is used).  

If 𝚵𝑖 satisfies Condition 22, the respective fuzzy rule will be removed from the rule base 

and its consequent parameters 𝒂𝐾,𝑖 and 𝚯𝐾,𝑖 are deleted as well. 

4.1.3. Parameter Identification 

In this subsection, the parameter identification process of the ALMMO system is 

described. 

4.1.3.1. Parameter Initialisation 

As the first data cloud of the system is initialised by the first data sample, 𝒙1 , the 

corresponding consequent parameters of the first fuzzy rule within the rule base are set up 

as: 𝚯1,1 ← Ω𝐈(𝑀+1)×(𝑀+1) and 𝒂1,1 ← 𝟎1×(𝑀+1). 

4.1.3.2. Parameter Update 

If a new fuzzy rule is added by the newly arrived data sample 𝒙𝐾 during the structure 

identification stage, the corresponding consequent parameters are added as follows: 

𝒂𝐾−1,𝑁𝐾 ←
1

𝑁𝐾−1 
∑ 𝒂𝐾−1,𝑗 

𝑁𝐾−1
𝑗=1 ; 𝚯𝐾−1,𝑁𝐾 ← Ω𝐈(𝑀+1)×(𝑀+1).              (4.8) 

If an old fuzzy rule (denoted as the j
th

 rule) is replaced by a new one when Conditions 3 

and 21 are both satisfied, the new rule will inherit the consequent parameters of the old one.  

After the structure of both the antecedent and consequent parts of the ALMMO system 

is revised, the FWRLS [11] approach is used to update the consequent parameters (𝒂𝐾,𝑖 and 

𝚯𝐾,𝑖 , 𝑖 = 1,2, … ,𝑁𝐾) of each fuzzy rule locally as equation (2.69). 

4.1.3.4. Online Input Selection 

In many practical cases, there are a number of inter-correlated attributes within the data. 

Therefore, it is of great importance to introduce the online input selection, which can further 

eliminates the waste of the computation- and memory-resources and improve the overall 

performance. 

In this section, Condition 23 is used to deal with this: 
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𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 23:
𝐼𝐹 (𝜔𝐾,𝑖,𝑗 <

𝜀

𝑁𝐾
∑ 𝜔𝐾,𝑖,𝑗

𝑁𝐾
𝑖=1 )

𝑇𝐻𝐸𝑁 (𝑟𝑒𝑚𝑜𝑣𝑒 𝑡ℎ𝑒 𝑗𝑡ℎ 𝑠𝑒𝑡 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑓𝑢𝑧𝑧𝑦 𝑟𝑢𝑙𝑒)
 ,              (4.9) 

where 𝑗 = 1,2, …𝑀, 𝑖 = 1,2, … , 𝑁𝐾; 𝜔𝐾,𝑖,𝑗  is the normalised accumulated sum of parameter 

values at the time instance 𝐾: 

𝜔𝐾,𝑖,𝑗 =
𝜌𝐾,𝑖,𝑗

∑ 𝜌𝐾,𝑖,𝑗
𝑀
𝑗=1

=
∑ |𝑎𝑡,𝑖,𝑗|

𝐾
𝑡=𝐼𝑖

∑ ∑ |𝑎𝑡,𝑖,𝑗|
𝐾
𝑡=𝐼𝑖

𝑀
𝑗=1

 ,                                                        (4.10) 

where 𝜌𝐾,𝑖,𝑗 = ∑ |𝑎𝑡,𝑖,𝑗|
𝐾
𝑡=𝐼𝑖

 is the accumulated sum of parameter values; 𝜀  is a constant, 

𝜀 ∈ [0.03,0.05]. 

If the j
th 

set of the i
th

 fuzzy rule meets Condition 23, it is removed from the rule and the 

corresponding column and row of the covariance matrix 𝚯𝐾,𝑖 . 

4.1.4. System Output Generation 

Once the ALMMO system has updated its structure and parameters, it is ready for the 

next data sample. When the next data sample 𝒙𝐾 (𝐾 ← 𝐾 + 1) comes, the system output is 

generated as: 

𝑦𝐾 = ∑ 𝜆𝐾,𝑗[1, 𝒙𝐾
𝑇 ]𝒂𝐾−1,𝑗

𝑁𝐾−1
𝑗=1 .                                                               (4.11) 

After the system performs the prediction, it will update its structure and parameters 

based on 𝒙𝐾 and the prediction error.  

The main procedure of the learning process of the ALMMO algorithm is summarised in 

the form of a flowchart presented in Figure 19. 
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Figure 19. Main procedure of the learning process of the ALMMO system. 
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4.2. Zero Order Autonomous Learning Multi-Model Classifier 

The zero order autonomous learning multi-model (ALMMO-0) classifier [35] is 

introduced on the basis of the 0-order AnYa type fuzzy rule-based (FRB) systems [55], [60] 

in a multiple-model architecture [161]. This classifier is nonparametric, non-iterative and 

fully autonomous. There is no need to train any parameters due to its feedforward structure. 

The proposed classifier automatically identifies the focal points from the empirically 

observed data and forms data clouds resembling Voronoi tessellation [64] per class. Then, 

sub-classifiers corresponding to different classes are built in a form of a set of AnYa type of 

fuzzy rules from the non-parametric data clouds. For a new data sample, each AnYa FRB 

sub-classifier generates a score of confidence objectively and the label is assigned to the new 

data sample based on the “winner takes all” rule. The proposed ALMMO-0 classifier learns 

from the data and conducts classification based on very fundamental principles, a variety of 

modifications and extensions can further be done, i.e. using the fuzzy rules with 1
st
 order 

consequent part.  

4.2.1. Multiple-Model Architecture 

The multiple-model architecture is based on the 0-order AnYa type fuzzy rules [55], 

[60]. An illustrative diagram of the classifier with the multiple-model architecture is depicted 

in Figure 20. Figure 20(a) illustrates the multiple-model structure of the classifier, and Figure 

20(b) is the zoom-in structure of a 0-order AnYa type fuzzy rule.  

It is demonstrated in Figure 20 that, each time a new data sample 𝒙𝐾 is coming, it is sent 

to 𝐶 0-order AnYa type fuzzy rules corresponding to 𝐶 different classes in the dataset. Each 

fuzzy rule can be viewed as a combination of a large number of singleton fuzzy rules that are 

built upon prototypes identified from data samples of the corresponding class connected by 

the logic “OR” operator (𝑖 = 1,2, … , 𝐶): 

𝐼𝐹 (𝒙~𝒑𝑖,1) 𝐴𝑁𝐷 (𝒙~𝒑𝑖,2) 𝐴𝑁𝐷 …  𝐴𝑁𝐷 (𝒙~𝒑𝑖,𝑃𝑖
)

𝑇𝐻𝐸𝑁 (𝐶𝑙𝑎𝑠𝑠 𝑖)
,                           (4.12) 

where 𝒑𝑖,𝑗 is the j
th

 prototype of the i
th

 fuzzy rule; 𝑃𝑖 is the number of identified prototypes. 

The “winner takes all” principle is firstly used to select out the most similar prototype 

with 𝒙𝐾 in terms of the degree of confidence from each fuzzy rule.  Then, the “winner takes 

all” principle is used again to assign 𝒙𝐾 to the class that it is most likely to be associated with. 
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(a) The multiple-model architecture 

 

(b) Zoom-in structure of the i
th

 fuzzy rule 

Figure 20. Multiple-model architecture of ALMMO-0. 

4.2.2. Learning Process 

In this subsection, the learning process of ALMMO-0 classifier is described. Due to the 

multiple-model architecture of the classifier, each AnYa fuzzy rule is trained in parallel with 

the data samples from the corresponding class (one rule per class). Assuming the i
th

 fuzzy 

rule, the detailed learning process is as follows. 

For each newly arrived data sample of the i
th

 class, denoted by 𝒙𝑖,𝐾𝑖
, it will be 

normalised by its norm, namely: 

𝒙𝑖,𝐾𝑖
 ← 𝒙𝑖,𝐾𝑖

‖𝒙𝑖,𝐾𝑖
 ‖⁄ .                                                                             (4.13) 

This type of normalisation can convert the Euclidean distance between different data 

samples into cosine dissimilarity, which enhances the classifier’s ability for high-dimensional 

data processing [33]. 

The AnYa fuzzy rule is initialised by the first data sample 𝒙𝑖,1 with its global parameters 

set as: 𝑃𝑖  ← 1; 𝝁𝑖 ← 𝒙𝑖,1;  𝑋𝑖 ← 1. And the local meta-parameters of the first data cloud are 

set as 𝚵𝑖,1 ← {𝒙𝑖,1}; 𝒑𝑖,1 ← 𝒙𝑖,1;  𝑆𝑖,1 ← 1; 𝑟𝑖,1 ← 𝑟𝑜, where 𝑟𝑖,1 is the radius of the influence 
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area; 𝑟𝑜  is a small value to stabilize the initial status of the new-born data clouds, 𝑟𝑜 =

√2(1 − cos(30𝑜)) is used by default [33]. It has to be stressed that, 𝑟𝑜 is not a problem-

specific parameter and requires no prior knowledge to decide. It is for preventing the new-

born data clouds from attracting data samples that are not close enough. It defines a degree of 

closeness that is interesting and distinguishable. The AnYa fuzzy rule is firstly initialised as: 

𝐼𝐹 (𝒙~𝒑𝑖,1) 𝑇𝐻𝐸𝑁 (𝐶𝑙𝑎𝑠𝑠 𝑖).                                                            (4.14) 

For each newly arrived data sample (𝐾𝑖 ← 𝐾𝑖 + 1), firstly, the global mean 𝝁𝑖 of the i
th

 

class is updated by 𝒙𝑖,𝐾𝑖
 using equation (3.26). There is no need to update the average scalar 

product anymore because  𝑋𝑖 = ‖𝒙𝑖,𝐾𝑖
‖ = 1  ( 𝒙𝑖,𝐾𝑖

  has been normalised at first). The 

unimodal densities of the data sample  𝒙𝑖,𝐾 and all the identified focal points of the i
th

 class, 

denoted as  𝒑𝑖,𝑗 (𝑗 = 1,2, … , 𝑃𝑖 ) are calculated using equations (2.18), (2.24) and (2.25). 

Then, Condition 3 (equation (3.10)) is checked to see whether 𝒙𝑖,𝐾𝑖
 will generate a new 

data cloud and becomes a new prototype added into the fuzzy rule [55]. If Condition 3 

(equation (3.10)) is triggered, a new data cloud is being formed around 𝒙𝑖,𝐾𝑖
 and its 

parameters are being updated as follows: 

         𝑃𝑖  ← 𝑃𝑖 + 1; 𝚵𝑖,𝑃𝑖
← {𝒙𝑖,𝐾𝑖

}; 𝒑𝑖,𝑃𝑖
← 𝒙𝑖,𝐾𝑖

; 𝑆𝑖,𝑃𝑖
← 1; 𝑟𝑖,𝑃𝑖

← 𝑟𝑜,          (4.15) 

and a new prototype 𝒑𝑖,𝑃𝑖
 is added to the fuzzy rule as initialised in equation (4.15). 

If Condition 3 (equation (3.10)) is not satisfied, then the algorithm continues by finding 

the nearest data cloud 𝚵𝑖,𝑛 to 𝒙𝑖,𝐾𝑖
, which is achieved with equation (3.12). 

Before 𝒙𝑖,𝐾𝑖
 is assigned to the nearest data cloud, Condition 24 is being checked to see 

whether 𝒙𝑖,𝐾𝑖
 is close to the data cloud 𝚵𝑖,𝑛 or not: 

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 24:
𝐼𝐹 (‖𝒙𝑖,𝐾𝑖

− 𝒑𝑖,𝑛‖ ≤ 𝑟𝑖,𝑛)

𝑇𝐻𝐸𝑁 (𝚵𝑖,𝑛 ← {𝚵𝑖,𝑛, 𝒙𝑖,𝐾𝑖
})

.                                      (4.16) 

If Condition 24 is satisfied, the meta-parameters of the nearest data cloud 𝚵𝑖,𝑛 are 

updated as follows: 

    𝑆𝑖,𝑛 ← 𝑆𝑖,𝑛 + 1; 𝒑𝑖,𝑛 ←
𝑆𝑖,𝑛−1

𝑆𝑖,𝑛
𝒑𝑖,𝑛 +

1

𝑆𝑖,𝑛
𝒙𝑖,𝐾𝑖

; 𝑟𝑖,𝑛 ← √0.5 (𝑟𝑖,𝑛
2 + (1 − ‖𝒑𝑖,𝑛‖

2
)),(4.17) 
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and the fuzzy rule is updated accordingly. On the contrary, if Condition 24 is not met, a new 

data cloud is formed around 𝒙𝑖,𝐾𝑖
 using equation (4.15) and a new prototype 𝒑𝑖,𝑃𝑖

 is added to 

the fuzzy rule. 

For the data clouds that do not receive new members, the parameters of the other data 

clouds stay the same for the next processing cycle.  

The main procedure of the learning process of ALMMO-0 classifier is depicted in 

Figure 21 in the form of a flowchart. 

 

Figure 21. Main procedure of the learning process of ALMMO-0 classifier. 
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4.2.3. Validation Process 

The main procedure of the validation process of the ALMMO-0 classifier is as follows. 

For each validation data sample, denoted by 𝒙 , it is sent to the  𝐶  fuzzy rules 

corresponding to the 𝐶  different classes, and each fuzzy rule will generate a score of 

confidence by equation (4.18) following the “winner takes all” principle: 

𝜆𝑖(𝒙) = max𝑗=1,2,…,𝑃𝑖
(𝜆𝑖,𝑗(𝒙)) = max𝑗=1,2,…,𝑃𝑖

(𝑒−‖𝒙−𝒑𝑖,𝑗‖
2

).             (4.18) 

The label of 𝒙, denoted by 𝑦(𝑥), is decided by the “winner takes all” principle again: 

 𝑦(𝒙) = argmax𝑖=1,2,…,𝐶(𝜆𝑖(𝒙)).                                                           (4.19) 

4.3. Self-Organising Fuzzy Logic Classifier 

In this section, the self-organising fuzzy logic (SOFL) classifier is presented [36]. The 

SOFL approach is grounded at the Empirical Data Analytics (EDA) computational 

framework [25]–[27] and the autonomous data-driven clustering techniques [28], [29]. The 

SOFL classifier has two training stages, 1) offline and 2) online. During the offline stage, it 

learns from the static data to establish a stable 0-order AnYa type fuzzy rule-based (FRB) 

system [54], [60] and, during the online training stage, the FRB system identified during the 

offline training will be updated subsequently to follow the possible drifts and/or shifts in the 

data pattern [117]. The SOFL classifier only keeps the key meta-parameters in memory and is 

a one-pass type during its online training stage; therefore, it is very suitable for large-scale 

streaming data processing. 

Most importantly, the SOFL classifier is nonparametric in the sense that no parameters 

or models are imposed for data generation [36]. Employing the EDA quantities as described 

in section 2.1.3, the SOFL classifier is able to objectively disclose the ensemble properties 

and mutual distributions of the streaming data based on the empirically observed data 

samples and all the meta-parameters of the classifier are directly derived from the data 

without prior knowledge [25]–[27].  

The SOFL classifier keeps the advantage of objectiveness of the data-driven approaches, 

and, at the same time, puts the users “in the driving seat” by letting users to decide the level 

of granularity and the type of distance/dissimilarity measure for the classifier. However, it 

has to be stressed that there is no requirement for prior knowledge to decide the level of 

granularity and it can be given merely based on the preferences of users. Higher level of 

granularity leads to a classifier with fine details but with a risk of overfitting. A lower level of 
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granularity, instead, gives users a classifier trained coarsely but with higher computational 

efficiency, generalisation and less memory requirement. The classifier is always guaranteed 

to be meaningful due to its data-driven nature. The choice of the type of distance/dissimilarity 

measure further allows more freedom for the users and also makes the SOFL approach highly 

adaptive to various applications, e.g. natural language processing. In addition, the SOFL 

classifier can also provide default level of granularity and distance measure options for the 

less experienced users. 

In the following two subsections, the main procedures of the training process (both 

offline and online) and validation process of the SOFL classifier are presented separately. 

4.3.1. Offline Training 

The offline training process of the SOFL classifier is category-wise, the classifier will 

identify prototypes from each class separately and form a 0-order AnYa type fuzzy rule based 

on the identified prototypes per class (in the form of equation (4.12)). The training processes 

of the fuzzy rules of different classes will not influence each other. The diagram of the SOFL 

classifier for offline training is depicted in Figure 22 [36]. 

 

Figure 22. Diagram of the SOFL classifier for offline training. 

4.3.1.1. Main Procedure 

In the rest of this subsection, it is assumed that the training process is conducted on the 

data samples of the i
th

 class (𝑖 = 1,2, … , 𝐶), denoted as {𝒙}𝑖 = {𝒙𝑖,1, 𝒙𝑖,2, … , 𝒙𝑖,𝐾𝑖
} ({𝒙}𝑖 ⊂

{𝒙} ), and the corresponding unique data sample set {𝒖}𝑖 = {𝒖𝑖,1, 𝒖𝑖,2, … , 𝒖𝑖,𝑁𝑖
}  and the 

frequencies of occurrence {𝑓}𝑖 = {𝑓𝑖,1, 𝑓𝑖,2, … , 𝑓𝑖,𝑁𝑖
} , where 𝐾𝑖 is the number of data samples 

with {𝒙}𝑖 ,  𝑁𝑖  is the number of unique data samples of the i
th

 class. Considering all the 

classes, we have ∑ 𝐾𝑖
𝐶
𝑖=1 = 𝐾 and ∑ 𝑁𝑖

𝐶
𝑖=1 = 𝑁. 
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In the SOFL approach, prototypes are identified based on the densities and the mutual 

distributions of the data samples. Firstly, multimodal densities 𝐷𝐾
𝐺(𝒖𝑖,𝑗) (𝑗 = 1,2, … ,𝑁𝑖) at all 

the unique data samples within {𝒖}𝑖  are calculated using equation (2.19). After this, the 

unique data samples are ranked in a list, denoted by {𝒛}𝑖, in terms of their mutual distances 

and values of multimodal density using the same approach as described in section 3.3.1.1. 

Then, porotypes of {𝒖}𝑖  are identified using the same approach as described in section 

3.3.1.2, denoted by {𝒖∗}𝑖. 

After {𝒖∗}𝑖 are identified, the filtering operation starts. The prototypes are firstly used to 

attract nearby data samples to form data clouds [60] resembling Voronoi tessellation [64] 

using equation (3.12). 

With the data clouds formed around the existing prototypes {𝒖∗}𝑖  denoted by 𝚵𝑖,𝑗 

(𝑗 = 1,2, … , 𝑃𝑖, 𝑃𝑖 is the number of prototypes of the i
th

 class), one can obtain the centres of 

the data clouds denoted by {𝝁}𝑖 and the multimodal densities at the centres are calculated 

using equation (2.19) as 𝐷𝐾
𝐺(𝝁𝑖,𝑗) = 𝑆𝑖,𝑗𝐷𝐾(𝝁𝑖,𝑗) , where 𝝁𝑖,𝑗 ∈ {𝝁}𝑖 ; 𝑆𝑖,𝑗  is the support 

(number of members) of 𝚵𝑖,𝑗. 

Then, for each data cloud, assuming 𝚵𝑖,𝑗 (𝑗 = 1,2, … , 𝑃𝑖 ), the collection of the centres of 

its neighbouring data clouds, denoted by {𝝁}𝑗
𝑛  are identified using the following principle: 

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 25:
𝐼𝐹 (𝑑2(𝝁𝑖,𝑗 , 𝝁𝑖,𝑘) ≤ ℒ𝑖

𝐺)

𝑇𝐻𝐸𝑁 (𝝁𝑖,𝑘 ∈ {𝝁}𝑗
𝑛)

,                                            (4.20) 

where 𝝁𝑖,𝑗, 𝝁𝑖,𝑘 ∈ {𝝁}𝑖 and there is 𝝁𝑖,𝑗 ≠ 𝝁𝑖,𝑘; ℒ𝑖
𝐺  is defined as the average radius of local 

influential area around each data sample, which is corresponding to the 𝐺th
 (𝐺 = 1,2,3, …) 

level of granularity and is derived from the data of the i
th

 class based on the users’ choice: 

Under the 1
st
 level of granularity (𝐺 = 1), the average radius of local influential area, 

denoted by ℒ𝑖
𝐺  around each prototype of the i

th
 class is defined as follows: 

ℒ𝑖
1 =

∑ 𝑑2(𝒙,𝒛)
𝒙,𝒛∈{𝒙}𝑖,𝒙≠𝒛,𝑑2(𝒙,𝒛)≤𝑑̅𝑖

2

𝑇𝑖
1 ,                                                               (4.21) 

where 𝑇𝑖
1 is the number of the pairs of data samples between which the distance is smaller 

than the average distance, 𝑑̅𝑖. 

From level 2 to an arbitrary level of granularity (𝐺 = 2,3, … ), one can calculate the 

average radius iteratively using the following equation: 
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ℒ𝑖
𝐺 =

∑ 𝑑2(𝒙,𝒚)
𝒙,𝒚∈{𝒙}𝑖,𝒙≠𝒚,𝑑2(𝒙,𝒚)≤ℒ𝑖

𝐺−1

𝑇𝑖
𝐺 ,                                                            (4.22) 

where ℒ𝑖
𝐺−1is the average radius corresponding to (𝐺 − 1)

th 
level of granularity; 𝑇𝑖

𝐺  is the 

number of the pairs of data samples between which the distance is smaller than ℒ𝑖
𝐺−1. 

Compared with the traditional approaches, there are strong advantages in deriving the 

local information in this way. Firstly, ℒ𝑖
𝐺  is guaranteed to be valid all the time. Defining the 

threshold or hard-coding mathematical principles in advance may suffer from various 

problems, i.e. prior knowledge is often unavailable, hard-coded principles are too sensitive to 

the nature of the data. The performance of the two approaches is often not guaranteed.  In 

contrast, ℒ𝑖
𝐺  is derived from the data directly and is always meaningful. There is no need for 

prior knowledge of data sets/streams, and the level of granularity used by the SOFL classifier 

can be decided merely based on the preferences of the users. Moreover, users are allowed to 

have freedom to make choices, but at the same time, are not overloaded. Finally, one can 

always adapt the classifier by changing the level of granularity based on the specific needs. 

Some problems rely heavily on fine details, while others may need generality only. 

In general, the higher level of granularity is chosen, the more fine details (more 

prototypes) the SOFL classifier extracts from the data, and the classifier achieves a higher 

performance. At the same time, the SOFL classifier may consume more computational and 

memory resources, and overfitting may also appear. On the contrary, with low level of 

granularity, the SOFL classifier only learns the coarse information from training. Although 

the classifier will be more computationally efficient, its performance may be influenced due 

to the loss of fine information from the data.  

Finally, the most representative prototypes of the i
th 

class, denoted by {𝒑}𝑖, are selected 

out from the centres of the existing data clouds satisfying Condition 12 (equation (3.47)) and  

one can build the AnYa type fuzzy rule in the same form as equation (4.12), where 𝑃𝑖 is the 

number of prototypes in {𝒑}𝑖. 

4.3.1.2. Algorithm Summary 

The main procedure of the offline training process of the SOFL classifier is summarised 

in the form of a flowchart in Figure 23. 
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Figure 23. Main procedure of the offline training process of SOFL classifier. 

4.3.2. Online Self-Evolving Training 

During the online training stage, the SOFL classifier continues to update its system 

parameters and structure with the streaming data on a sample-by-sample basis. Furthermore, 

because the EDA quantities [25]–[27] employed by the SOFL classifier can be updated 

recursively, it can be one-pass type, and its computation- and memory-efficiency is also 

guaranteed. 
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4.3.2.1. Main Procedure 

In this subsection, we assume that the training process of the SOFL classifier with the 

static dataset {𝒙}𝐾 has been finished and new data samples start to arrive in a data stream 

form. Similar to the offline training stage, during the online training stage, the fuzzy rules of 

different classes are updated separately. During the online stage, recursive calculation 

expressions of the EDA quantities with Euclidean distance are used. Nonetheless, other types 

of distance/dissimilarity measures can be considered as well. 

Assuming at the next time instance, a new data sample of the i
th 

class arrives (𝐾 ← 𝐾 +

1, 𝐾𝑖 ← 𝐾𝑖 + 1) and the data sample is denoted as 𝒙𝑖,𝐾𝑖
. The SOFL classifier firstly updates 

the global meta-parameters 𝝁𝑖,𝐾𝑖
 and 𝑋𝑖,𝐾𝑖

 using equations (2.26) and (2.27), where 𝝁𝑖,𝐾𝑖
 and 

𝑋𝑖,𝐾𝑖
 are the mean and average scalar product of the data samples {𝒙𝑖,1, 𝒙𝑖,2, … , 𝒙𝑖,𝐾𝑖−1, 𝒙𝑖,𝐾𝑖

}.   

The average radius of local areas of influence, ℒ𝑖
𝐺  is updated afterwards in a recursive 

way based on the ratio between the average distances of the data samples at (𝐾𝑖 − 1)th
 and 

𝐾𝑖
th

 instances, respectively as: 

ℒ𝑖
𝐺 ←

1

𝐾𝑖
2 ∑ 𝑞𝐾(𝒙𝑖,𝑙)

𝐾𝑖
𝑙=1

1

(𝐾𝑖−1)
2 ∑ 𝑞𝐾−1(𝒙𝑖,𝑙)

𝐾𝑖−1

𝑙=1

∙ ℒ𝑖
𝐺 =

𝑋𝑖,𝐾𝑖
−‖𝝁𝑖,𝐾𝑖

‖
2

𝑋𝑖,𝐾𝑖−1−‖𝝁𝑖,𝐾𝑖−1‖
2 ∙ ℒ𝑖

𝐺 .                        (4.23) 

Instead of deriving ℒ𝑖
𝐺  in an offline way as described in the previous subsection, 

equation (4.23) largely reduces the computational complexity and memory requirement, and 

further largely improves the efficiency of the SOFL classifier. 

Then, 𝒙𝑖,𝐾𝑖
 is checked by Condition 3 (equation (3.10)) to evaluate its potential to be a 

new prototype [29], [55], [160].  If 𝒙𝑖,𝐾𝑖
 meets Condition 3, a new prototype is added to the 

fuzzy rule of the i
th 

class in the same form as equation (4.12), and the meta-parameters of the 

SOFL classifier are updated as 𝑃𝑖 ← 𝑃𝑖 + 1; 𝚵𝑖,𝑃𝑖
← {𝒙𝑖,𝐾𝑖

}; 𝒑𝑖,𝑃𝑖
← 𝒙𝑖,𝐾𝑖

; 𝑆𝑖,𝑃𝑖
← 1.  

If Condition 3 (equation (3.10)) is unsatisfied, it is necessary to check whether 𝒙𝑖,𝐾𝑖
 is 

very close to an existing prototype by using Condition 26.  

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 26:
𝐼𝐹 (min𝒑∈{𝒑}𝑖

(𝑑2(𝒙𝑖,𝐾𝑖
, 𝒑)) > ℒ𝑖

𝐺)

𝑇𝐻𝐸𝑁 (𝒙𝑖,𝐾𝑖
∈ {𝒑}𝑖)

.                          (4.24) 
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If Conditions 3 and 26 are both unsatisfied, 𝒙𝑖,𝐾𝑖
 is assigned to the nearest prototype 

𝒑𝑖,𝑛 = argmin𝒑∈{𝒑}𝑖
(𝑑(𝒙𝑖,𝐾𝑖

, 𝒑)) and the meta-parameters of the corresponding data cloud 

are updated as 𝚵𝑖,𝑛 ← {𝚵𝑖,𝑛, 𝒙𝑖,𝐾𝑖
}; 𝒑𝑖,𝑛 ←

𝑆𝑖,𝑛

𝑆𝑖,𝑛+1
𝒑𝑖,𝑛 +

1

𝑆𝑖,𝑛𝑒+1
𝒙𝑖,𝐾𝑖

;  𝑆𝑖,𝑛 ← 𝑆𝑖,𝑛 + 1 [55]. 

After the meta-parameters of the classifier are updated, the AnYa type fuzzy rule 

(equation (4.12)), will be updated accordingly and the SOFL classifier is ready for processing 

the next data sample or conducting classification. 

4.3.2.2. Algorithm Summary 

The main procedure of the online training process of the SOFL classifier is summarised 

in the form of a flowchart in Figure 24. 

 

Figure 24. Main procedure of the online training process of SOFL classifier. 

4.3.3. Validation Process 

Due to the fact that both the SOFL classifier presented in this section and the ALMMO-

0 presented in section 4.2 use the same type of fuzzy rules, the procedure of the SOFL 
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classifier for decision-making for the unlabelled samples is the same as the ALMMO-0, 

which is described in subsection 4.2.3.  

4.4. Autonomous Anomaly Detection 

In this section, a new fully autonomous anomaly detection (AAD) method is presented 

[37]. In this approach, the nonparametric EDA estimators, cumulative proximity, unimodal 

density and multimodal density [25]–[27] are employed to identify the potential anomalies 

from the empirically observed data at the first stage of the process. Then, these potential 

anomalies are used for forming shape-free data clouds using the autonomous data partitioning 

approach as described in section 3.2.1. Finally, the local anomalies are identified in regards to 

the data clouds.  

The AAD approach can autonomously and objectively detect both individual and 

collective anomalies (remote, small clouds) and also global anomalies as well as anomalies 

that are centrally located. Its procedure consists of three stages as follows. 

4.4.1. Identifying Potential Anomalies 

In the first stage, the global mean and average scalar product, 𝝁𝐾 and 𝑋𝐾 of {𝒙}𝐾 are 

calculated. Then, the multimodal densities 𝐷𝐺  at {𝒖}𝑁 are obtained using equation (2.19).  By 

extending 𝐷𝐺  to {𝒙}𝐾 , the multimodal densities at each data sample 𝒙  ( 𝒙 ∈ {𝒙}𝐾 ) are 

obtained and denoted as {𝐷𝐾
𝐺 (𝒙)}.  

Chebyshev inequality (equation (2.39)) [2]–[4] describes the probability data samples to 

be more than 𝑛𝜎  distance away from the mean value 𝝁 . As a corollary, if 𝑛 = 3 , the 

maximum probability of 𝒙  to be at least 3𝜎 away from 𝝁 is no more than 1 9⁄ . In other 

words, on average, out of  9 data samples, one may be anomalous, but no more than 1 (at 

most 1). Therefore, in the AAD approach, it is assumed that 1 𝑛2⁄  of the data samples are 

potentially abnormal, however, it does not mean that they have to be real anomalies. 

By ranking {𝐷𝐾
𝐺 (𝒙)} in an ascending order, the first half of 1 𝑛2⁄  of the data samples 

with the smallest 𝐷𝐺  being the first half of the potential anomaly collection, denoted as 

{𝒙}𝑃𝐴,1. Here, 𝑛 is a small integer corresponding to the “𝑛” in the Chebyshev inequality. In 

this thesis, 𝑛 = 3  is adopted because the “3𝜎” rule has been widely adapted in various 

anomaly detection applications [49], [203], [204]. It has to be stressed that in traditional 

approaches, 𝑛 = 3  does directly influence detecting each anomaly. In the AAD approach, 
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this is simply the first stage of sub-selection of potential anomalies (an upper limit according 

to equation (2.39)). 

As the multimodal density is less sensitive to the degree of sparsity of local data 

distribution, an additional criterion is necessary for detecting the isolated data samples. We 

consider the weighted local unimodal density as the second criterion for identifying potential 

anomalies. 

The local unimodal density of each unique data sample is calculated using equation 

(3.1) and (3.2), denoted by 𝐷𝐿(𝒖𝑖) (𝒖𝑖 ∈ {𝒖}𝑁).  However, in the AAD approach, instead of 

calculating 𝐷𝐿 locally for all the data samples located in the hypersphere with 𝒖𝑖  as its centre 

and 𝑑̅ as its radius, 𝐷𝐿 is calculated within the hypersphere with 𝒖𝑖 as its centre and 𝑑̅ 2⁄  as 

its radius (𝐷𝐿(𝒖𝑖) =
∑ 𝑞𝐿(𝒙)

𝑑(𝒙,𝒖𝑖)≤(𝑑̅ 2⁄ )

2𝑁𝑖𝑞𝐿(𝒖𝑖)
), which allows the AAD approach more effectively in 

detecting data samples away from the majority. 

By taking both, the sparsity of unique data samples around 𝒖𝑖 and the data distribution 

of the local area into consideration, the local unimodal density at 𝒖𝑖  is weighed by the 

amount of its unique neighbours as: 

𝐷𝐿
𝑊(𝒖𝑖) =

𝑁𝑖

𝑁
∙ 𝐷𝐿(𝒖𝑖),                                                                           (4.25) 

where the coefficient 𝑁𝑖 𝑁⁄  is for ensuring the value of 𝐷𝐿
𝑊(𝒖𝑖) to be linearly and inversely 

correlated to the degree of sparsity of the data distribution, 𝑁𝑖 is the number of unique data 

samples around 𝒖𝑖  within the range of 𝑑̅ 2⁄ ; By expanding the weighted local unimodal 

densities, 𝐷𝐿
𝑊, at {𝒖}𝑁 to the original dataset {𝒙}𝐾 accordingly, the set {𝐷𝐿

𝑊 (𝒙)} is obtained. 

After re-ranking the {𝐷𝐿
𝑊 (𝒙)}  in the ascending order, the first half of 1 𝑛2⁄  of the data 

samples with smallest 𝐷𝐿
𝑊 are selected as the second half of the potential anomaly collection, 

denoted as {𝒙}𝑃𝐴,2.  

Finally, by combining  {𝒙}𝑃𝐴,1 and {𝒙}𝑃𝐴,2 (together 1 𝑛2⁄  or less of the data), we obtain 

the whole set of potential anomalies, {𝒙}𝑃𝐴 , which forms the upper limit of possible 

anomalies according to Chebyshev inequality (equation (2.39)). 

4.4.2. Forming Data Clouds with Anomalies 

In this stage, all the identified potential anomalies are checked to see whether they are 

able to form data clouds using the ADP algorithm as described in section 3.3.1. After the data 
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clouds are formed from {𝒙}𝑃𝐴  based on the ADP algorithm, denoted by {𝚵}𝑃𝐴, the AAD 

algorithm enters the last stage. 

4.4.3. Identifying Local Anomalies from Identified Data Clouds 

In the final stage, all the potential anomalies are checked to see if they are isolated or 

form minor data cloud(s) between themselves. All the data clouds formed from {𝒙}𝑃𝐴 are 

checked using Condition 27: 

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 27:
𝐼𝐹 (𝑆𝑖 < 𝑆𝑎𝑣𝑒𝑟𝑎𝑔𝑒)

𝑇𝐻𝐸𝑁 (𝚵𝑖 𝑖𝑠 𝑓𝑜𝑟𝑚𝑒𝑑 𝑏𝑦 𝑎𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠)
,                      (4.26) 

where  𝚵𝑖 ∈ {𝚵}𝑃𝐴 and 𝑆𝑖 is the support of 𝚵𝑖. 

After all the data clouds meeting Condition 27 are identified, anomalies are identified 

and declared/confirmed.  

The main procedure of the AAD algorithm is summarised in the form of a flowchart in 

Figure 25. 
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Figure 25. Main procedure of AAD algorithm. 

4.5. Conclusion 

In this chapter, four different supervised machine learning algorithms for regression, 

classification and anomaly detection problems are presented. Compared with the traditional 

approaches, the algorithms presented in this chapter have the following distinctive properties: 

1) They are nonparametric and free from unrealistic prior assumptions; 

2) They are autonomous, self-organising; 

3) They are based on the ensemble properties and mutual distribution of empirically 

observed data, and thus, are able to fully objective results. 
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5. Transparent Deep Learning Systems 

Deep learning is closely associated with the artificial neural networks (ANNs) [66]. 

Nowadays, deep learning has gained a lot of popularity in both the academic circles and the 

general public due to the very quick advance in the computational resources (both hardware 

and software) [19], [66]. A number of publications have demonstrated that deep 

convolutional neural networks (DCNNs) can produce highly accurate results in various image 

processing problems including, but not limited to, handwritten digits recognition [22], [24], 

[72]–[74], object recognition [21], [23], [75], [76], human action recognition [77], [78], 

remote sensing image classification [79], etc. Some publications suggest that the DCNNs can 

match the human performance on the handwritten digits recognition problems [22], [24], 

[73], [74]. Indeed, DCNN is a powerful technique that provides high classification rates. 

Nonetheless, the celebrated success comes at a price, the DCNNs still have a number of 

deficiencies and shortcomings, i.e. the computational burden of training using huge amount 

of data, lack of transparency and interpretation, ad hoc decisions about the internal structure, 

no proven convergence for the adaptive versions that rely on reinforcement learning, limited 

parallelisation and offline training, etc. These deficiencies largely hinder the wider 

application of the DCNNs for real problems.  

In this chapter, the newly introduced transparent, nonparametric, feedforward and 

human interpretable deep learning networks developed on the basis of the recently introduced 

AnYa type FRB systems and the EDA framework are presented. The fast feedforward 

nonparametric deep learning (FFNDL) network with automatic feature extraction is presented 

in section 5.1. The deep rule-based system with the prototype-based nature and transparent 

structure is presented in section 5.2. The semi-supervised active learning mechanism of the 

deep rule-based system is given in section 5.3. Several successful examples of deep rule-

based ensemble classifiers are presented in section 5.4. This chapter is concluded by section 

5.5. 

5.1. Fast Feedforward Nonparametric Deep Learning Network 

In this section, the fast feedforward nonparametric deep learning (FFNDL) network with 

automatic feature extraction is presented [38]. The FFNDL network is based on human-

understandable local aggregations extracted directly from the images. There is no need for 

any feature selection and parameter tuning. It involves nonlinear transformation, 

segmentation operations to select the most distinctive features from the training images and 

builds RBF neurons based on them to perform classification with no weights to train. The 
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design of the FFNDL network is very efficient (computation and time wise) and produces 

highly accurate classification results (see subsection 6.3.1 and [38]). Moreover, the training 

process is parallelisable, and the time consumption can be further reduced with more 

processors involved. 

5.1.1. Architecture of FFNDL Network for Feature Extraction 

The architecture of the FFNDL network up to the final class prediction stage is depicted 

in Figure 26. As it is shown in Figure 26, the FFNDL network has six layers plus the 

prediction layer. The first layer is for non-overlapping mean pooling with size 2 × 2 (obtained 

empirically). The second layer is for extracting local aggregations as features from the pooled 

images. The third layer is nonlinear mapping layer. The forth layer is the segmentation layer. 

The fifth layer is for filtering out the overlapping/similar features extracted from images of 

different classes. The sixth layer includes the RBF neurons built based on the extracted local 

aggregations.  

 

Figure 26. Architecture of the FFNDL network for feature extraction. 

In the rest of this section, the novel characteristics of the FFNDL network will be 

described. For simplicity, only grayscale images with pixel values scaled into [0, 1]  are 

considered. The size of the original images is denoted as 2𝑑 × 2𝑑, and, thus, after the mean 

pooling, the size of images becomes 𝑑 × 𝑑.  

5.1.1.1. Local aggregations extraction layer 

In this layer, the local aggregations within images are extracted. These are based on the 

gradients between the grey level values of the surrounding/neighbouring pixels to a given 

pixel. In the FFNDL network, the local aggregations for the pixel 𝑧𝑖,𝑗 (𝑖, 𝑗 are the coordinates 

indicating the position of this pixel within a particular image) is achieved by using a 𝑛 × 𝑛 (𝑛 
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is a small odd number) sliding window with a stride of one pixel, and the pixel 𝑧𝑖,𝑗 is in the 

centre of the sliding window. The local aggregation around 𝑧𝑖,𝑗 is expressed as: 

𝐀𝑖,𝑗 = [

𝑧𝑖,𝑗 − 𝑧
𝑖−

𝑛−1

2
,𝑗−

𝑛−1

2

⋯ 𝑧𝑖,𝑗 − 𝑧
𝑖−

𝑛−1

2
,𝑗+

𝑛−1

2

⋮ ⋱ ⋮
𝑧𝑖,𝑗 − 𝑧

𝑖+
𝑛−1

2
,𝑗−

𝑛−1

2

⋯ 𝑧𝑖,𝑗 − 𝑧
𝑖+

𝑛−1

2
,𝑗+

𝑛−1

2

]

= [𝜶
𝑖,𝑗−

𝑛−1

2

, … , 𝜶𝑖,𝑗−1, 𝜶𝑖,𝑗−1, 𝜶𝑖,𝑗+1, … , 𝜶
𝑖,𝑗+

𝑛−1

2

]

,                            (5.1) 

where 𝜶𝑖,𝑗−𝑙 = [𝑧𝑖,𝑗 − 𝑧
𝑖−

𝑛−1

2
,𝑗−𝑙

, … , 𝑧𝑖,𝑗 − 𝑧
𝑖+

𝑛−1

2
,𝑗−𝑙

]
𝑇

. 

By using the gradients of the grey level values as local aggregations, the local features, 

i.e. edges, shapes, are preserved, while the influence of illumination is reduced. In order to 

get the most effective local aggregations, only the valid features 𝐀𝑖,𝑗that have more than half 

of its elements being non-zero are considered. The  𝐀𝑖,𝑗 that fail to meet this requirement are 

being discarded. 

After the 𝑛 × 𝑛 local aggregations are extracted, the matrix is converted into a long 

vector by concatenating different rows from the local aggregation matrix. Because, the centre 

of each aggregation is always equal to zero, the centre in the vector can be omitted, and, thus, 

a (𝑛2 − 1) × 1 local aggregation vector is obtain: 

𝐁𝑖,𝑗 = [𝜶
𝑖,𝑗−

𝑛−1

2

𝑇 , … , 𝜶𝑖,𝑗−1
𝑇 , 𝜶̅𝑖,𝑗

𝑇 , 𝜶𝑖,𝑗+1
𝑇 , … , 𝜶

𝑖,𝑗+
𝑛−1

2

𝑇 ]
𝑇

,                              (5.2) 

where 𝜶̅𝑖,𝑗 = [𝑧𝑖,𝑗 − 𝑧
𝑖−

𝑛−1

2
,𝑗
, … , 𝑧𝑖,𝑗 − 𝑧𝑖−1,𝑗, 𝑧𝑖,𝑗 − 𝑧𝑖+1,𝑗, … , 𝑧𝑖,𝑗 − 𝑧

𝑖+
𝑛−1

2
,𝑗
]
𝑇

. 

5.1.1.2. Nonlinear Projection Layer 

After the extraction of the local aggregations, their values are limited to the range 

[−1,1] because the pixel grey level values are normalised into the range [0,1]. This small 

value range makes it hard to linearly separate the local aggregations from different classes. 

Therefore, the following nonlinear one-to-one mapping function is employed to amplify the 

differences between various local aggregations and make them separable: 

𝜅(𝑥) = sgn(1 − 𝑥) [exp ((1 + sgn(1 − 𝑥)(1 − 𝑥))
2
) − exp(1)],       (5.3) 

where sgn(𝑥) = {
1 𝑥 > 0
0 𝑥 = 0

−1 𝑥 < 0
.   
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By using the nonlinear mapping, the FFNDL network amplifies the differences between 

local aggregations, and, thus, improves the distinctiveness of the extracted local aggregations. 

After the nonlinear mapping, each local aggregation vector  𝐁𝑖,𝑗 is expressed as: 

𝓵𝑖,𝑗 = 𝜅(𝐁𝑖,𝑗) = [𝜅 (𝜶
𝑖,𝑗−

𝑛−1

2

𝑇 ) ,… , 𝜅(𝜶𝑖,𝑗−1
𝑇 ), 𝜅(𝜶̅𝑖,𝑗

𝑇 ), 𝜅(𝜶𝑖,𝑗+1
𝑇 ), … , 𝜅 (𝜶

𝑖,𝑗+
𝑛−1

2

𝑇 )]
𝑇

. (5.4) 

5.1.1.3. Grid Segmentation Layer 

In the FFNDL network, the grid segmentation is achieved using a sliding window with 

size of 𝑘 × 𝑘 pixels and a stride of 𝑤 pixel. The grid segmentation layer further divides the 

image space into (
𝑑−𝑘−𝑛+1

𝑤
+ 1)

2

 small blocks with the size of 𝑘 × 𝑘 × (𝑛2 − 1) overlapping 

with each other. This operation is equal to the over-sampling. By assigning the local 

aggregations to the blocks they belong to, the original positions of the local aggregations are 

replaced by the positions of their corresponding blocks, which allow the local aggregations a 

small space for shifting. In addition, as the blocks are independent from each other, parallel 

computation can be achieved to process each block separately and, thus, improve the 

computation efficiency of the proposed network.  

After the grid segmentation, each block can be viewed as a set of local aggregations 

from different images of different classes: 

𝐐𝑖 = {{𝓵}𝑖,1, {𝓵}𝑖,2, … , {𝓵}𝑖,𝐶},                                                                  (5.5) 

where 𝑖  is the index of the blocks, 𝑖 = 1,2, … , (
𝑑−𝑘−𝑛+1

𝑤
+ 1)

2

; {𝓵}𝑖,𝑐 denotes the local 

aggregations extracted in the range covered by the i
th

 block from the images from the c
th

 

class. 

5.1.1.4. Overlapping Filtering Layer 

The FFNDL network relies on the extracted local features to make the classification 

decision. However, in many cases, the same local features can appear in different classes. It 

is, therefore, important to select the most distinctive features only. 

Considering the dimensionality of the extracted local aggregations in the FFNDL 

network, Euclidean distance is not the best choice due to its inherited deficiencies for high 

dimensionality problems [205], [206]. Instead, cosine dissimilarity of the local aggregations 

from two different classes within the same block is calculated: 
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𝑑(𝓵𝑗 , 𝓵𝑡) = √2 − 2𝑐𝑜𝑠 (𝜃𝓵𝑗,𝓵𝑡
) = ‖

𝓵𝑗

‖𝓵𝑗‖
−

𝓵𝑡

‖𝓵𝑡‖
‖,                                    (5.6) 

where 𝓵𝑗 ∈ {𝓵}𝑖,𝑗 ,  𝓵𝑡 ∈ {𝓵}𝑖,𝑡 ; {𝓵}𝑖,𝑗, {𝓵}𝑖,𝑡 ⊆ 𝐐𝑖  and 𝑗 ≠ 𝑡  ; 𝑖 = 1,2, … , (
𝑑−𝑘−𝑛+1

𝑤
+ 1)

2

; 

𝜃𝓵𝑗,𝓵𝑡
 is the angle between 𝓵𝑗 and 𝓵𝑡.  

Then, Condition 28 is checked: 

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 28:
𝐼𝐹 (

𝑑2(𝓵𝑗,𝓵𝑡)

2
≥ 1 − 𝑐𝑜𝑠 (

𝜋

6
))

𝑇𝐻𝐸𝑁 (𝐐𝑖,𝑅 ← {𝐐𝑖,𝑅 , 𝓵𝑗 , 𝓵𝑡})

 ,                                    (5.7) 

where 𝐐𝑖,𝑅 is the collection of similar local aggregations. 

If Condition 28 is met, it means that, in the Euclidean data space, the angle between 𝓵𝑗 

and 𝓵𝑡 is smaller than 30o , which means that the two local aggregations are quite similar and 

keeping them in 𝐐𝑖  will lead to misleading results. By finding out all the 𝓵  satisfying 

Condition 28, the collection of similar local aggregations, 𝐐𝑖,𝑅, is obtained, and by excluding 

𝐐𝑖,𝑅 from  𝐐𝑖, the distinctive local aggregations are all selected. 

5.1.1.5. Cosine Dissimilarity based RBF Neurons Layer 

After the distinctive local aggregations are all selected, they are used to build the final 

layer of the proposed network. The final layer consists of a number of RBF neurons; each 

neuron is directly related to a distinctive local aggregation. The RBF neurons of each block 

are viewed as a group. It is important to stress that there is no dependence of different groups 

of RBF neurons between each other. 

By including equation (5.6), the RBF function based on a particular distinctive local 

aggregation 𝓵 is, finally, expressed as equation (5.8) [38]: 

𝑓(𝒙) = exp (−
1

8
𝑑4(𝒙, 𝓵)) = exp (−

1

8
‖

𝒙

‖𝒙‖
−

𝓵

‖𝓵‖
‖

4

),                           (5.8) 

where 𝒙 is the input vector and 𝓵 is the distinctive local aggregation corresponding to the 

neuron.    

After the RBF neurons are built based on the extracted distinctive local aggregations, 

the learning stage of the proposed network is finished, and it can be used for evaluation. As 

one can see from the above description, there is no parameter optimisation or iteration in the 

training of the FFNDL network. It is based on the local features extracted automatically from 
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the training images to build RBF neurons and further classify new images. As a result, the 

FFNDL network is able to learn from a large number of images in a high speed. 

5.1.2. Architecture of FFNDL Network for Classification 

Once the FFNDL network has extracted the local aggregations from the training images 

in the learning stage, the network is prepared for classifying new images. The architecture of 

the FFNDL network for classification is depicted in Figure 27. In this section, only the 

components that have not been descriped prevously will be described in detail. 

 

Figure 27. Architecture of the FFNDL network for classification. 

5.1.2.1. RBF Neurons Layer 

For each testing image, denoted by 𝐈, the process will sequentially go through the mean 

pooling layer, local aggregation, nonlinear mapping, and grid segmentation layers. After the 

segmentation operation, the image will be divided into blocks in the same way as described in 

section 5.1.1.3 and the local aggregations within each block will serve as the inputs of the 

RBF neuron group connected to that block.  

When a local aggregation within the i
th 

block, denoted as 𝒙, is sent to the connected 

neuron group, the likelihoods of x  belonging to each class are calculated according to the 

following rule: 

𝜔𝑐(𝒙) = argmax𝑗=1,2,…,𝑃𝑐
(𝑓𝑐,𝑗(𝒙)) = argmax𝑗=1,2,…,𝑃𝑐

(exp (−
1

8
‖

𝒙

‖𝒙‖
−

𝓵𝑐,𝑗

‖𝓵𝑐,𝑗‖
‖

4

)),      (5.9) 

where 𝑃𝑐,𝑖 is the number of RBF neurons belonging to the c
th

 class in the group; 𝓵𝑐,𝑗 is the j
th 

distinctive local aggregation of the c
th

 class within the group; 𝑐 = 1,2, … , 𝐶. 
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Therefore, after all the local aggregations of the testing image, denoted as {𝒙}, have 

been segmented according to their positions in the image and gone through the corresponding 

RBF neuron groups, the outputs of the local classifiers in regards to different classes are 

obtained and denoted as: {{𝜔(𝒙)}1, {𝜔(𝒙)}2, … , {𝜔(𝒙)}𝐶} . Then, the outputs will be sent to 

the “few winners take all” module to decide the label of the testing image. 

5.1.2.2. “Few Winners Take All” Operator 

Due to the fact that the FFNDL network is operating based on the local features, one 

cannot expect that a particular testing image has all the local features at the same time. 

However, for any two images within the same class, there is a very large chance that they can 

hold some similar local features. Therefore, the “few winners take all” strategy is employed 

to decide the label. Considering the fact that the numbers of identified local features from the 

training images of different classes are different, only the average value of the top 15% 

outputs of the local classifiers of each collection is taken into account: 

𝜆𝑐 =
1

⌈0.15∙𝐿𝑐⌉
∑ 𝜔𝑐(𝒙̂)

⌈0.15∙𝐿𝑐⌉
𝑖=1 ,                                                                  (5.10) 

where 𝐿𝑐  is the number of local classifiers in the collection {𝜔(𝒙)}𝑐 ; {𝜔(𝒙̂)}𝑐 is the 

ranked{𝜔(𝒙)}𝑐 in a descending order. 

Based on 𝜆𝑐 (𝑐 = 1,2, … , 𝐶), the label of the image is decided as: 

𝑦(𝐈) = argmax𝑗=1,2,…,𝑃𝑐
(𝜆𝑐).                                                                 (5.11) 

5.2. Deep Rule-Based Classifier 

Traditional fuzzy rule-based classifiers were successfully used for classification [160], 

[201] offering transparent, interpretable structure, but could not reach the levels of 

performance achieved by deep learning classifiers. Their design also requires handcrafting 

membership functions, assumptions to be made and parameters to be selected. 

In this section, a new type of deep rule-based (DRB) system with a multilayer 

architecture for image classification is presented. Combining the computer vision techniques, 

the DRB approach employs a massively parallel set of 0-order fuzzy rules [35], [160] as the 

learning engine, which self-organises a transparent and human understandable IF…THEN… 

fuzzy rule-based (FRB) system structure in a highly efficient way and offers extremely high 

classification accuracy at the same time [39], [43]. Its training process is fully online, non-

iterative, non-parametric and can start “from scratch”, more importantly, it can start 

classification from the very first image of each class in the same way as humans do, which 
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makes the proposed classifier suitable for real-time applications (see subsection 6.3.2 and 

also see [39]). 

The DRB classifier is also further extended with a semi-supervised learning strategy 

(presented in the next section) in a self-organising way and, thus, enhances its ability of 

handling unlabelled images. Thanks to the prototype-based nature of the DRB classifier, the 

semi-supervised learning process is fully transparent and human-interpretable. It not only can 

perform classification on out-of-sample images, but also supports recursive online training on 

a sample-by-sample basis or a batch-by-batch basis. Moreover, the semi-supervised DRB 

classifier is able to learn new classes actively without human experts’ involvement.  

5.2.1. General Architecture 

The general architecture of the DRB classifier is depicted in Figure 28. One can see 

from the figure that the proposed DRB approach consists of the following layers: 

 

Figure 28. General architecture of DRB classifier. 

① Transformation block; 

② Feature extraction layer; 

③ Massively parallel ensemble of IF…THEN… rules; 

④ Decision-maker. 

The transformation block of the proposed DRB classifier involves only the most 

fundamental image transformation techniques, namely: i) normalization, ii) scaling, iii) 
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rotation and iv) image segmentation and, thus, it is, in fact, composed of a number of 

sublayers serving for various purposes. It is well known that normalization is the process of 

linear transformation of the original value range of [0, 255]  into the range [0, 1]  [207]. 

Scaling is the process of resampling and resizing of a digital image [208], [209]. Rotation is a 

technique usually applied to images rotated at a certain angle around a centre point [207]. 

Scaling and rotation techniques are two types of affine distortion, and they can significantly 

improve the generalization and decrease the overfitting [22], [24], [73]. Segmentation is the 

process of partitioning an image into smaller pieces to extract local information or discard the 

less informative part of the image [21]. The main purposes of the transformation block within 

the DRB classifier are i) improving the generalization ability of the classifier and ii) 

increasing the efficiency of the feature descriptors in harvesting information from the image. 

The sub-structures of the transformation block and the usages of the image transformation 

techniques are subjected to different problems and applications. A more detailed description 

of the pre-processing techniques we used can also be found in section 5.2.2 [41].  

For feature extraction, namely layer ②, the proposed DRB classifier may employ 

various different kinds of feature descriptors that are used in the field of computer vision. 

Different feature descriptors have different advantages and deficiencies [210]. The details of 

feature extraction will be discussed in section 5.2.3.  

The layer ③ of the proposed new DRB classifier is the massively parallel ensemble of 

IF…THEN… rules which will be described in more detail in section 5.2.4. This is the 

“engine” of the new DRB classifier and is based on autonomously self-developing fuzzy rule-

based models of AnYa type [60] with singletons in the consequent part.  

The structure of a particular AnYa type fuzzy rule can be found in Figure 28 as well. As 

one can see, each fuzzy rule used in the DRB classifier is itself a combination of a large 

number of data clouds associated with the fuzzy prototypes identified through the one-pass 

type training, which means that the IF…THEN… rule can be massively parallelised if 

consider each data cloud/prototype as a separate fuzzy rule. The local decision-maker is a 

“winner takes all” operator. Therefore, the fuzzy prototypes can be viewed as being 

connected by logical “OR” operators. 

The final layer is the decision-maker that decides the winning class label based on the 

partial suggestion of the massively parallel IF…THEN… rule per class. This layer is only 

used during the validation stage and it applies the “winner takes all” principle as well. As a 
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result, one can see that the proposed DRB classifier actually uses a two-layer decision-

making structure. The validation process will be described in section 5.2.5. 

5.2.2. Image Transformation Techniques 

In this section, the image transformation techniques including normalisation, affine 

distortion and elastic distortion are presented.  

The normalisation and affine distortion are the pre-processing transformations generally 

applicable to various image processing problems, i.e. remote sensing [211], object 

recognition [212], etc. In contrast, the elastic distortion is mostly only applicable to the 

handwritten digits and/or letters recognition problems, i.e. Modified National Institute of 

Standards and Technology (MNIST) database [213]. In the DRB classifier, only the 

normalisation and affine distortions techniques are employed. 

5.2.2.1. Image Normalisation 

Normalisation is a common process in image processing that changes the value range of 

the pixels within the image. The goal is to transform the image such that the values of pixels 

are mapped into a more familiar or normal range. This operation can be used to readjust the 

degree of illumination of the images as well.  

In the DRB classifier, the most commonly used linear normalisation is used to fit the 

original pixel value range of [0, 255] into the range of [0,1]. 

5.2.2.2. Affine Distortions 

Affine distortion can be done by applying affine displacement fields to images, 

computing for every pixel a new target location with respect to the original one.  Affine 

distortions including rotations and scaling are very effective to improve the generalization 

and decrease the overfitting [22], [24], [73].  

A.  Image Scaling 

Image scaling refers to the resampling and resizing of a digital image [208], [209]. 

There are two types of image scaling: 1) image contraction and 2) image expansion. Image 

scaling is achieved by using an interpolation function. There is a number of different 

interpolation methods for image resizing reported in the literature [208], [209], [214], [215], 

e.g. nearest neighbour interpolation, bilinear interpolation and bicubic interpolation methods. 

In this thesis, the most commonly used bicubic interpolation method [214], [215] is used, 

which considers the nearest 16 pixels (4 × 4) in the neighbourhood and calculates the output 
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pixel value as their weighted average. Since the 16 neighbouring pixels are at various 

distances from the output pixel, closer pixels are given a higher weighting in the calculation. 

B.  Image Rotation 

Image rotation is another common image pre-processing technique performed by 

rotating an image at certain angle around the centre point [207]. Usually, the nearest 

neighbour interpolation is used after the rotation and the values of pixels that are outside the 

rotated images are set to 0 (black). 

C. Image Segmentation 

Segmentation is the process of partitioning an image into smaller pieces to extract local 

information or discard the less informative part of the image [21]. The main purposes of the 

pre-processing layer within the DRB classifier are i) improving the generalization ability of 

the classifier and ii) increasing the efficiency of the feature descriptors in harvesting 

information from the image. 

5.2.2.3. Elastic Distortion 

Many approaches on the well-known MNIST database [213] have been proposed and 

reported with the best result published to the moment provides a recognition accuracy of 

99.77% [22]. The elastic distortion is the key to the success. 

Elastic distortion is a more advanced and effective technique to expand the dataset and 

improve the generalization [22], [24], [73]. The elastic distortion is done by, firstly, 

generating random displacement fields and then convolving the displacement fields with a 

Gaussian function of standard deviation σ (in pixels) [73]. This type of image deformation 

has been widely used in the state-of-the-art deep convolutional neural networks for 

handwriting recognition [22], [24] and largely improved the recognition accuracy.  

However, elastic distortion is not only opaque (not clearly reported) but also is random 

in nature [4]. This, combined with the other random elements of the architecture, leads to the 

results being different each time training is performed on the same data. 

This kind of distortion exhibits a significant randomness that puts in question the 

achieved results’ repeatability and requires a cross-validation which further obstructs the 

online applications and the reliability of the results. In addition, it adds user-specific 

parameters that can be chosen differently. For a particular image, each time the elastic 

distortion is performed, an entirely new image is being generated.  
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In addition, there is no evidence or experiment supporting that the elastic distortion can 

be applied to other types of image recognition problems. In fact, the elastic distortion 

destroys the images.  

5.2.3. Image Feature Extraction 

Feature extraction is very important to solve computer vision problems such as object 

recognition, content-based image classification and image retrieval [216]. The extracted 

features have to be informative, non-redundant, and, most importantly, to be able to facilitate 

the subsequent learning and generalization. 

The feature extraction, in fact, can be viewed as a projection from the original images 

into a feature space that makes the images from different classes separable. Current feature 

descriptors are divided into “low-level”, “medium-level” and “high-level” three categories 

based on their descriptive abilities [210]. Different feature descriptors have different 

advantages. In general, the low-level feature descriptors work very well in the problems 

where low-level visual features, e.g., spectral, texture, and structure, play the dominant role. 

In contrast, high-level feature descriptors work better on classifying images with high-

diversity and nonhomogeneous spatial distributions because they can learn more abstract and 

discriminative semantic features. 

Within the DRB classifier, the low-level feature descriptors, 1) GIST [217], and 2) 

Histogram of Oriented Gradients (HOG) [218], are employed, and a combination of both is 

also used to improve their descriptive ability. However, as the low-level feature descriptors 

are not enough to handling complex, large-scale problems, one of the most widely used high-

level feature descriptors, namely, the pre-trained VGG-VD-16 [23], is also introduced into 

the DRB classifier. It has to be stressed that the high-level feature descriptor is directly used 

within the DRB classifier without further tuning.  

As there is no interdependence within the feature extraction of different images, the 

feature extraction process can be parallelised in a very large scale to further reduce the 

processing time. Once the global features (either low- or high- level) of the image are 

extracted and stored, there is no need to repeat the same process again. It has to be stressed 

that this thesis describes a general DRB approach and the feature descriptors do not need to 

be limited to GIST or HOG or the pre-trained VGG-VD-16 only. Alterative feature 

descriptors can also be used, and selecting the most suitable feature descriptor for a particular 

problem requires prior knowledge about this problem, also fine-tuning the high-level feature 
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descriptor to the specific problem can also enhance the performance as well. One may also 

consider using data-driven feature selection techniques to select the optimal input feature 

vectors through an iterative searching process [219]–[222]. However, these are out of the 

scope of this thesis. 

5.2.3.1. Employed Low-Level Feature Descriptors 

A. GIST Descriptor 

GIST feature descriptor gives an impoverished and coarse version of the principal 

contours and textures of the image [217]. In the proposed DRB approach, the same GIST 

descriptor is used as described in [217] without any modification. It extracts a 1 × 512 

dimensional GIST feature vector denoted by 𝐠𝐢𝐬𝐭(𝐈) = [gist1(𝐈), gist2(𝐈), … , gist512(𝐈)]
𝑇 , 

where 𝐈 denotes the image. 

B. HOG Descriptor 

HOG descriptor [218], [223] has been proven to be very successful in various computer 

vision tasks such as object detection, texture analysis and image classification. In the 

proposed DRB approach, although the size of the images varies for different problems, w the 

default block size of  2 × 2 is used and the cell size is changed to fix the dimensionality of 

the HOG features to be 1 × 576, denoted by 𝐡𝐨𝐠(𝐈) = [hog1(𝐈), hog2(𝐈), … , hog576(𝐈)]
𝑇 , 

which is experimentally found to be the most effective. 

To improve the distinctiveness of the HOG feature and expand the range of the HOG 

features values, the nonlinear nonparametric function (equation (5.3)) is employed [41], [42] 

and the resulting nonlinearly mapped HOG features are denoted by 𝜅(𝐡𝐨𝐠(𝐈)). 

C. Combined GIST-HOG Features 

To improve the descriptive ability and effectiveness of the used features, the GIST and 

HOG is further combined to create new, more descriptive integrated feature set as follows: 

𝐜𝐠𝐡(𝐈) = [
𝐠𝐢𝐬𝐭(𝐈)𝑇

‖𝐠𝐢𝐬𝐭(𝐈)‖
,

𝜅(𝐡𝐨𝐠(𝐈))
𝑇

‖𝜅(𝐡𝐨𝐠(𝐈))‖
]
𝑇

,                                                            (5.12) 

where ‖∙‖ denotes the norm. 

5.2.3.2. Employed High-Level Feature Descriptor 

The VGG-VD-16 [23] is one of the currently best performing pre-trained deep 

convolutional neural network (DCNN) models which are widely used in different works as 
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the feature descriptor due to its simpler structure and better performance. The pre-trained 

VGG-VD-16 model is used without any tuning as the high-level feature descriptor of the 

DRB classifier to enhance its ability in handling complex, large-scale, high-density image 

classification problems. Following the common practice, the 1 × 4096 dimensional 

activations from the first fully connected layer are extracted as the feature vector of the 

image, denoted by 𝐯𝐠𝐠(𝐈) = [vgg1(𝐈), vgg2(𝐈), … , vgg4096(𝐈)]
𝑇.  

However, as the pre-trained model requires the input image to be the size of 227 ×

227 pixels [23], it is, in fact, not good in handling problems with simple and small size 

images.  

5.2.4. Massively Parallel Fuzzy Rule Base 

In the DRB classifier, a non-parametric rule base formed of 0-order AnYa type [60] 

fuzzy rules is employed. It makes the DRB classifier interpretable and transparent for human 

understanding (even to a non-expert) unlike the celebrated deep learning. Because of its 

prototype-based nature, the DRB classifier is free from prior assumptions about the type of 

the data distribution, their random or deterministic nature, the requirements to set the ad hoc 

model structure, membership functions, number of layers, etc. Meanwhile, its nature allows 

the DRB classifier a non-parametric, non-iterative, self-organising, self-evolving and highly 

parallel underlying structure. The training of the DRB classifier is driven by the ALMMO-0 

approach as described in section 4.2, and thus, the training process is fully autonomous, 

significantly faster and can start “from scratch”.  

As described in more detail in section 4.2 as well as in [35],  the system automatically 

identifies prototypes from the empirically observed data and forms data clouds resembling 

Voronoi tessellation [64] per class. Thus, for a training dataset, which consists of 𝐶 classes, 𝐶 

independent 0-order fuzzy rule-based subsystems are trained (one per class) in parallel. After 

the training process is finished, each sub-classifier generalizes/learns one 0-order AnYa type 

fuzzy rule corresponding to its own class based on the identified prototypes: 

𝐼𝐹 (𝐈~𝐩𝑐,1) 𝑂𝑅 (𝐈~𝐩𝑐,2) 𝑂𝑅 …𝑂𝑅 (𝐈~𝐩𝑐,𝑃𝑐
) 𝑇𝐻𝐸𝑁 (𝑐𝑙𝑎𝑠𝑠 𝑐),       (5.13) 

where 𝑐 = 1,2, … , 𝐶; 𝐩𝑐,𝑗  is the j
th

 visual prototype of the c
th

 class; 𝑗 = 1,2, … , 𝑃𝑐; 𝑃𝑐  is the 

number of prototypes of the c
th 

class.  

Examples of AnYa type fuzzy rules generalized from the popular handwritten digits 

recognition problem, MNIST dataset [213] for digits “0” ~ “9” are visualised in Table 2, 
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where one can see that AnYa type fuzzy rules in the table provide a very intuitive 

representation of the mechanism. Moreover, each of the AnYa type fuzzy rules can be 

interpreted as a number of simpler fuzzy rules with single prototype connected by “OR” 

operator. As a result, a massive parallelisation is possible. 

Table 2. Illustrative example of AnYa fuzzy rules with MNIST dataset 

Fuzzy rule 

IF (I~ ) OR (I~ ) OR (I~ ) OR (I~ ) OR … OR (I~ ) THEN (digit 0) 

IF (I~ ) OR (I~ ) OR (I~ ) OR (I~ ) OR … OR (I~ ) THEN (digit 1) 

IF (I~ ) OR (I~ ) OR (I~ ) OR (I~ ) OR … OR (I~ ) THEN (digit 2) 

IF (I~ ) OR (I~ ) OR (I~ ) OR (I~ ) OR … OR (I~ ) THEN (digit 3) 

IF (I~ ) OR (I~ ) OR (I~ ) OR (I~ ) OR … OR (I~ ) THEN (digit 4) 

IF (I~ ) OR (I~ ) OR (I~ ) OR (I~ ) OR … OR (I~ ) THEN (digit 5) 

IF (I~ ) OR (I~ ) OR (I~ ) OR (I~ ) OR … OR (I~ ) THEN (digit 6) 

IF (I~ ) OR (I~ ) OR (I~ ) OR (I~ ) OR … OR (I~ ) THEN (digit 7) 

IF (I~ ) OR (I~ ) OR (I~ ) OR (I~ ) OR … OR (I~ ) THEN (digit 8) 

IF (I~ ) OR (I~ ) OR (I~ ) OR (I~ ) OR … OR (I~ ) THEN (digit 9) 

 

5.2.5. Decision-Making Mechanism 

5.2.5.1. Local Decision-Making 

After the system identification procedure (ALMMO-0 algorithm in section 4.2), the 

DRB system generates 𝐶 fuzzy rules in regards to the 𝐶 classes. For each testing image 𝐈, 

each one of the 𝐶 fuzzy rules will generate a score of confidence 𝜆𝑐(𝐈) (𝑐 = 1,2, … , 𝐶) by the 

local decision-maker within the fuzzy rule based on the global features of the image denoted 

by 𝒙: 

𝜆𝑐(𝐈) = argmax𝑗=1,2,…,𝑃𝑐
(exp (−‖𝒙 − 𝒑𝑐,𝑗‖

2
)).                                  (5.14) 

As a result, one can get 𝐶 scores of confidence 𝝀(𝐈) = [𝜆1(𝐈), 𝜆2(𝐈),… , 𝜆𝐶(𝐈)], which 

are the inputs of the decision-maker of the DRB classifier. 
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5.2.5.2. Overall Decision-Making 

For a single DRB system, the label of the testing sample, denoted by 𝑦(𝐈), is given by 

the decision-maker, namely, the layer ④ in Figure 28, using the “winner takes all” principle: 

𝑦(𝐈) = argmax𝑗=1,2,…,𝐶 (𝜆𝑗(𝐈)).                                                              (5.15) 

In some applications, i.e. face recognition, remote sensing, object recognitions, etc., 

where local information plays a more important role than the global information, one may 

consider to segment (both the training and testing) images to capture local information. In 

such cases, the 0-order FRB systems are trained with segments of training images instead of 

the full images. The overall label of a testing image is given as an integration of all the scores 

of confidence that the DRB subsystems give to its segments, denoted by 𝐬𝐠1, 𝐬𝐠2, … , 𝐬𝐠𝑆: 

𝑦(𝐈) = argmax𝑗=1,2,…,𝐶 (
1

𝑆
∑ 𝜆𝑗(𝐬𝐠𝑖)

𝑆
𝑖=1 ).                                               (5.16) 

If a DRB ensemble [201] is used, the label of the testing image is consider as the 

integration of all the scores of confidence that the DRB systems give to the image [41]: 

 𝑦(𝐈) = argmax𝑗=1,2,…,𝐶 (
1

𝐸
∑ 𝜆𝑗,𝑖(𝐈)

𝐸
𝑖=1 + max𝑖=1,2,…,𝐸 𝜆𝑗,𝑖(𝐈)),             (5.17) 

where 𝐸 is the number of DRB systems in the ensemble.  

As one can see, the overall decision-making process of the DRB ensemble (equation 

(5.17)) takes both the overall confidence scores and the maximum confidence scores into 

consideration. Thus, it integrates the two types of most important information to make the 

judgement, which differs from the simple voting mechanism used in many other works [41]. 

5.3. Semi-Supervised DRB Classifier 

In this section, the DRB classifiers [39], [41], [42] is extended with a semi-supervised 

learning strategy in a self-organising way and, thus, its ability of handling unlabelled images 

is enhanced [40]. Thanks to the prototype-based nature of the DRB classifier, the semi-

supervised learning process is fully transparent and human-interpretable. It not only can 

perform classification on out-of-sample images, but also supports recursive online training on 

a sample-by-sample basis or a chunk-by-chunk basis. Moreover, unlike other semi-supervised 

approaches, the semi-supervised DRB (SSDRB) classifier is able to learn new classes 

actively without human experts’ involvement, thus, to self-evolve [55].  
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Compared with the existing semi-supervised approaches [164]–[168], [170]–[175], 

[178], the SSDRB classifier has the following distinctive features because of its prototype-

based nature [39]–[42]: 

1) Its semi-supervised learning process is fully transparent and human-interpretable; 

2) It can be trained online on a sample-by-sample or chunk-by-chunk basis; 

3) It can classify out-of-sample images; 

4) It is able to learn new classes (self-evolving). 

The general architecture and principles of the DRB classifier have been introduced in 

the previous sections. In this section, in order to simplify the problem, the DRB classifier 

with the architecture depicted in Figure 29 is used. Nonetheless, it has to be stressed that the 

semi-supervised learning strategy is a general learning approach, and it is suitable for all 

types of DRB classifiers or ensembles [40]. 

 

Figure 29. Architecture of the DRB classifier for semi-supervised learning. 

One can see from Figure 29 that, the DRB classifier consists of the following four layers 

1) Scaling layer; 

This layer is for resizing the original size of the images to the desired size needed by the 

feature descriptors. In the DRB classifier used in this section, all the images are resized to the 

size of 227 × 227 pixels [23] because of the specific feature descriptor used. 

2) Feature descriptor; 



126 

 

The pre-trained VGG-VD-16 DCNN [23] is used as the feature descriptor, and the 

1 × 4096 dimensional activations from the first fully connected layer is used as the feature 

vector of the image [210]. This helps avoid handcrafting and automates the whole process. In 

the SSDRB classifier presented in this thesis, 𝐶 pre-trained DCNNs are used (one per rule) to 

parallelise the feature extraction process. Nonetheless, one may also use only one pre-trained 

DCNN, but feature extraction would take more time. 

3) Fuzzy rule base (FRB) layer  [39], [41], [42]; 

4) Decision-maker. 

The decision-maker makes the overall decision by equation (5.15). 

In the following subsections, the semi-supervised learning strategies of the DRB 

classifier in both offline and online scenarios are described. A strategy for the DRB classifier 

to actively learn new classes from unlabelled training images is also presented.  

5.3.1. Semi-supervised Learning Process from Static Datasets 

5.3.1.1. Main Procedure of the Strategy 

In an offline scenario, all the unlabelled training images are available and the DRB 

classifier starts to learn from these images after the training process with labelled images 

finishes.  

First of all, the unlabelled training images are denoted as the set {𝐔} and the number of 

unlabelled training images as 𝐿. The main steps of the semi-supervised learning strategy are 

described as follows [40]: 

Step 1. Extract the score of confidence vector for each unlabelled training image, 

denoted by 𝝀(𝐔𝑖)  (𝑖 = 1,2, … , 𝐿) using equation (5.14). 

Step 2. Find out all the unlabelled training images satisfying Condition 29: 

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 29: 𝐼𝐹 (𝜆1𝑠𝑡𝑚𝑎𝑥(𝐔𝑖) > 𝜑 ∙ 𝜆2𝑛𝑑𝑚𝑎𝑥(𝐔𝑖)) 𝑇𝐻𝐸𝑁 (𝐔𝑖 ∈ {𝐕}0),       (5.18) 

where 𝜆1𝑠𝑡𝑚𝑎𝑥(𝐔𝑖)  denotes the highest score of confidence 𝐔𝑖  obtains, and 𝜆2𝑛𝑑𝑚𝑎𝑥(𝐔𝑖) 

denotes the second highest score; 𝜑 (𝜑 > 1) is a free parameter, in this thesis, 𝜑 = 1.2 is 

used; {𝐕}0 denotes the collection of feature vectors of the unlabelled training images that 

meet Condition 29. After the elements of {𝐕}0 are identified, they are removed from {𝐔}. 
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For the unlabelled training images that meet Condition 29, the DRB classifier is very 

confident about the class these images belong to and they can be used for updating the 

structure and meta-parameters of the DRB classifier. Otherwise, it means that the DRB 

classifier is not confident enough about its judgement and, thus, these images may not be 

used for updating the fuzzy rules. 

Step 3. Rank the elements within {𝐕}0 in a descending order in terms of the values of 

𝜆1𝑠𝑡𝑚𝑎𝑥(𝐕) − 𝜆2𝑛𝑑𝑚𝑎𝑥(𝐕) (𝐕 ∈ {𝐕}0), and denote the ranked set as {𝐕}1.   

As one can see from the definition of the score of confidence equation (5.14) that, the 

higher 𝜆1𝑠𝑡𝑚𝑎𝑥(𝐕) is, the more similar the image is to a particular prototype of the DRB 

classifier. Meanwhile, the higher 𝜆1𝑠𝑡𝑚𝑎𝑥(𝐕) − 𝜆2𝑛𝑑𝑚𝑎𝑥(𝐕)  is, the less ambiguous the 

decision made by the DRB classifier is. Since the DRB classifier learns sample-by-sample in 

the form of a data stream, by ranking {𝐕}0 in advance, the classifier will firstly update itself 

with images that are more similar to the previously identified prototypes and have less 

ambiguity in the decisions of their labels, and later with the less familiar ones, which avoids 

overlapping and guarantees a more efficient learning. 

Step 4. Update the DRB classifier using ALMMO-0 learning algorithm (section 4.2.2) 

with the set {𝐕}1. Then the SSDRB classifier goes back to Step 1 and repeats the whole 

process, until there are no unlabelled training images that can meet Condition 29. 

After the offline semi-supervised learning process is finished, if the DRB classifier is 

not designed to learn any new classes, the labels of all the unlabelled training images will be 

estimated using equation (5.15). Otherwise, the DRB classifier will, firstly, produce the labels 

of the images that can meet Condition 29 and then, learn new classes through the remaining 

unlabelled images (will self-evolve). 

5.3.1.2. Algorithm Summary 

The main procedure of the offline semi-supervised learning process is summarised in a 

form of a flowchart in Figure 30. 
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Figure 30. Main procedure of the offline semi-supervised learning of SSDRB classifier. 

5.3.2. Learning New Classes Actively 

 

Real label:  

Freeway 

Classified as: 

Syringe 

Score:  

0.083 

Real label:  

Chaparral 

Classified as: 

Face powder 

Score:  

0.072 

Real label:  

Forest 

Classified as: 

Cliff, drop, drop-off 

Score:  

0.021 

Real label:  

Airplane 

Classified as: 

Missile 

Score:  

0.106 

Figure 31. Misclassified images by VGG-VD-16 DCNN. 
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In real situations, the labelled training samples may fail to include all the classes due to 

various reasons, i.e. an insufficient prior knowledge or change of the data pattern in the 

perceived feature. For example, in Figure 31, despite the very low scores of confidence, the 

pre-trained VGG-VD-16 DCNN [23] recognises the three remote sensing images (“freeway”, 

“chaparral” and “forest”) as “syringe”, “face powder” and “cliff, drop, drop-off”, and for the 

image of an airplane which is taken from the top, the network recognises it as a “missile”.  

Therefore, it is of paramount importance for a classifier to be able to learn new classes 

actively, which not only guarantees the effectiveness of the learning process and reduces the 

requirement for prior knowledge, but also enables the human experts to monitor the changes 

of the data pattern. In this subsection, a strategy for the classifier to learn actively is 

introduced as follows [40].  

5.3.2.1. Main Procedure of the Strategy 

For an unlabelled training image (with its feature vector denoted by 𝐔𝑖), if the Condition 

30 is met, it means that the DRB classifier has not seen any similar images before, and 

therefore, a new class is being added. 

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 30: 𝐼𝐹 (𝜆1𝑠𝑡𝑚𝑎𝑥(𝐔𝑖) ≤ 𝛾) 𝑇𝐻𝐸𝑁 (𝐔𝑖 ∈ 𝑡ℎ𝑒 (𝐶 + 1)𝑡ℎ 𝑐𝑙𝑎𝑠𝑠),       (5.19) 

where 𝛾 is a free parameter serving as the threshold. As a result, a new fuzzy rule is also 

added to the rule base with this training image as the first prototype. Generally, the lower 𝛾 

is, the more conservative the DRB classifier will be when adds new rules to the rule base. 

In the offline scenario, there may be a number of unlabelled images remaining in {𝐔}  

after the offline semi-supervised learning process, re-denoted by {𝐔}1. Some of these may 

satisfy Condition 30, denoted by {𝐕}2, {𝐕}2 ⊆ {𝐔}1. Many of the images within  {𝐔}1 may 

actually belong to the a few unknown classes. To classify these images, the DRB classifier 

needs to add a few new fuzzy rules to the existing rule base in an active way.  

The DRB classifier starts with the image that has the lowest 𝜆1𝑠𝑡𝑚𝑎𝑥 (the corresponding 

feature vector is denoted by 𝐕𝑚𝑖𝑛 ∈ {𝐕}2)  and adds a new fuzzy rule with this image as the 

prototype. However, before adding another new fuzzy rule, the DRB classifier repeats the 

offline semi-supervised learning algorithm (the previous section) on the remaining unselected 

images within {𝐔}1 to find other prototypes that are associated with the newly added fuzzy 

rule. This may solve the potential problem of adding too many excessive rules. After the 
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newly formed fuzzy rule is fully updated, the DRB classifier will start to add the next new 

rule/class. 

With this strategy, the SSDRB classifier is able to actively learn from the unlabelled 

training images, gain new knowledge, define new classes and add new rules/classes, 

correspondingly. Human experts can also examine the new fuzzy rules and give meaningful 

labels for the new classes by simply checking the prototypes afterwards, i.e. “new class 1” 

can be renamed as “agricultural” and “new class 2” can be renamed as “harbour”. This is less 

laborious than the usual approach as it only concerns the aggregated prototypical data, not the 

high volume raw data, and it is more important for the human users. However, it is also 

necessary to stress that identifying new classes and labelling them with human-

understandable labels are not essential for the DRB classifier to work since in many 

applications, the classes of the images are predictable based on common knowledge. For 

example, for handwritten digits recognition problem, there will be images from 10 classes 

(from “0” to “9”), for Latin characters recognition problem, there will be images from 52 

classes (from “a” to “z” and “A” to Z”), etc.  

5.3.2.2. Algorithm Summary 

The main procedure of actively learning new classes from unlabelled training data (self-

evolving) of the SSDRB classifier is summarised in the following flowchart. 
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Figure 32. Main procedure of the active learning of SSDRB classifier. 

5.3.3. Semi-supervised Learning from Data Streams 

It is often the case that, after the algorithms have processed the available static data, new 

data continuously arrives in a form of data stream. Prior semi-supervised approaches [164]–

[168], [170]–[175], [178] are limited to offline application due to their operating mechanism. 

Thanks to the prototype-based nature and the evolving mechanism [55], [160] of the DRB 

classifier [39], [41], [42], online semi-supervised learning can also be conducted .  

The online semi-supervised learning of the DRB classifier can be conducted on a 

sample-by-sample basis or a chunk-by-chunk basis after the supervised training process with 

the labelled training images finishes. In this subsection, the main procedures of the semi-
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supervised learning processes of both types together with their corresponding flowcharts are 

presented.  

The online semi-supervised learning strategy is the modification of the offline one as 

described in section 5.3.1. However, it has to be stressed that the performance of semi-

supervised learning in an online scenario is influenced by the order of the images and is not 

as stable as the semi-supervised learning in an offline scenario.  

5.3.3.1. Online Semi-Supervised Learning on a Sample-by-Sample Basis 

The main steps of the online semi-supervised learning on a sample-by-sample basis are 

as follows [40]: 

Step 1. Use Condition 29 and ALMMO-0 learning algorithm (section 4.2.2) to learn 

from the available unlabelled image denoted by 𝐔𝐿+1 ; 

Step 2 (optional). Check Condition 30 to see whether the DRB classifier needs to add a 

new rule (and class). 

Step 3. DRB classifier goes back to Step 1 and processes the next image. 

5.3.3.2. Online Semi-Supervised Learning on a Chunk-by-Chunk Basis 

The main steps of the online semi-supervised learning on a chunk-by-chunk basis are as 

follows [40]: 

Step 1. Use offline semi-supervised learning algorithm (section 5.3.1) to learn from the 

available chunk of unlabelled images denoted by {𝐔}1; 

Step 2 (optional).  Use active learning algorithm (section 5.3.2) to actively learn new 

classes from the remaining images denoted by {𝐔}2;  

Step 3.  DRB classifier goes back to Step 1 and processes the next chunk.  

5.3.3.3. Algorithm Summary 

The main procedures of online semi-supervised learning strategies (on a sample-by-

sample basis and on a chunk-by-chunk basis) of the SSDRB classifier are summarised in the 

following flowcharts. 
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(a) Semi-supervised learning on a sample-by-sample basis  

 

(b) Semi-supervised learning on a chunk-by-chunk basis  

Figure 33. Main procedure of the online semi-supervised learning of SSDRB classifier. 
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5.4. Examples of DRB Ensembles 

In some real applications, a single DRB classifier may not be sufficient. For example, a 

DRB classifier may take too much time to learn from a large scale image set, or multiple 

types of feature descriptors are necessary for achieving a good classification result. Thus, an 

ensemble of DRB classifiers is needed.  

In this section, three successful examples of DRB ensembles based on the real problems 

(handwritten digits recognition and remote sensing scenes classification) are presented 

aiming to demonstrate the idea of how to create an ensemble with the DRB classifiers to 

improve the performance. Nonetheless, it has to be stressed that the DRB system is a general 

system for image classification, there is no fixed principle for creating ensembles, and DRB 

ensembles can be formed in different ways subjected to the requirements of the problems and 

the goals [39], [41], [42]. 

5.4.1. DRB Committee for Handwritten Digits Recognition 

The DRB committee was designed for recognising the handwritten digit images of the 

well-known benchmark dataset MNIST [213], which consist of 60000 training images and 

10000 testing images from 10 classes  in regards to the digits “0”~“9”.  The size of the 

images is 28 × 28 pixels. 

5.4.1.1. Training Stage 

The architecture of the DRB ensemble for handwritten digits recognition in the training 

stage is depicted in Figure 34. 
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Figure 34. Architecture of DRB committee for training. 

As one can see from Figure 34, the ensemble of DRB classifiers consists of the 

following components: 

① Normalisation layer, which normalise the original value range of the pixels of the 

handwritten images from [0,255] to [0,1] linearly; 

② Scaling layer, which resizes the images from the original image size of 28 × 28 

pixels into seven different sizes: 1)  28 × 22  ; 2) 28 × 24 ; 3) 28 × 26 ; 4) 28 × 28 ; 5) 

28 × 30; 6) 28 × 32 and 7) 28 × 34; 

③ Rotation layer, which rotates each image (after the scaling operation) into 11 

different angles from −15° to 15° with the interval of 3°; 

Therefore, the scaling and rotation layer expands the original training image set into 77 

new training sets with different scaling sizes and rotation angles. 

④ Feature extraction layer. In this layer, a low-level feature descriptor, namely GIST 

[217] or HOG [218] (or both of them), is employed, which extract a 1 × 512 dimensional 

GIST feature vector or a 1 × 576  dimensional HOG feature vector or a 1 × 1088 

dimensional combined GIST-HOG feature vector from each training image, respectively, as 

described in section 5.2.3.1; 
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⑤ FRB layer, which consists of 154 FRB systems, each of them is trained with one of 

the two types of feature vectors from one of the 77 expanded training sets. Each FRB system 

has 10 FRB subsystems (corresponding to 10 digits “0” to “9”) and each subsystem has one 

massively parallel 0-order fuzzy rule of AnYa type as described in section 5.2.4. As a result, 

the FRB layer, in total, has 1540 0-order fuzzy rules of AnYa type, and each one of them is 

trained separately. The training process of these fuzzy rules is described in section 4.2.2. 

5.4.1.2. Classification Stage 

The architecture of the DRB ensemble for handwritten digits recognition in the 

classification stage is depicted in Figure 35. As one can see from the figure, during the 

classification stage, the ensemble of DRB classifiers consists of the following components: 

① Normalisation layer; 

② Feature extraction layer; 

③ FRB layer; 

The normalisation layer and feature extraction layer are the same as used during the 

training stage. The FRB layer contains all the 1540 0-order fuzzy rules of AnYa type 

identified through the training.  

④ Decision-making committee, which decides the label of the testing image based on 

the 1540 scores of confidences generated by the 1540 fuzzy rules (equation (5.14)) in the 

FRB layer following equation (5.17). 
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Figure 35. Architecture of DRB committee for classification. 

5.4.2. A Cascade of DRB and SVM for Handwritten Digits Recognition 

The cascade of the DRB and SVM was introduced in [42] for the MNIST dataset. The 

diagram of the cascade is given in Figure 36.  

One can see from Figure 36 that the DRB ensemble is used as the main engine of the 

approach and a SVM based conflict resolution classifier is added in a cascade configuration 

to support the main engine when there is no clear winner but rather a conflict in the degree of 

confidence of the best two class suggestions. 

The DRB committee [41] is able to perform highly accurate classification on the 

handwriting digits in the majority cases by following the “winner takes all” principle. 

However, it fails in the rare cases (less than 2% in the MNIST handwriting digits recognition 

problem [213]) in which there are two highly confident labels generated for a single image at 

the same time. In these rare cases, the “winner takes all” principle used in the DRB 

committee blindly assigns the class to the winner ignoring the fact that the second best is also 

likely.  
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Figure 36. Diagram of the cascade of DRB ensemble and SVM. 

Therefore, in this approach, a conflict resolution classifier is added as the auxiliary stage 

for the main classifier in making decisions when there are two highly confident labels 

produced for the same image. This conflict resolution classifier is using an SVM classifier 

[224] with polynomial kernel and it improves the overall performance of the DRB ensemble.  

The learning process of the SVM is independent from the DRB ensemble, and, thus, can 

be trained in parallel and will not influence the evolving nature of the DRB ensemble. 

5.4.2.1. The DRB Ensemble 

The architecture of the DRB ensemble for the training is depicted in Figure 37, which 

has one extra layer compared with the DRB ensemble depicted in Figure 34. The DRB 

committee used in the cascade consists of the following components: 

① Normalisation layer; 

② Scaling layer; 

③ Rotation layer; 

④ Segmentation layer; 

⑤ Feature extraction layer; 

⑥ FRB layer. 
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Figure 37. Architecture of the DRB ensemble for training. 

 

Figure 38. Architecture of the DRB ensemble for classification. 
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The ①-③ and ⑤-⑥ layers are the same as used in section 5.4.1.1. The extra 

segmentation layer is for extracting the central area (22 × 22) from the training images. It 

discards the borders that mostly consist of white pixels with little or no information.  

The architecture of the DRB ensemble for the classification is depicted in Figure 38, 

from which one can see that, the decision-making committee is replaced by a system output 

integrator that integrate the outputs of the 1540 fuzzy rules into 10 scores of confidences by 

the following equation: 

Λ𝑐(𝐈) =
1

154
∑ (𝜆𝑐,𝑖(𝐈))

154
𝑖=1 =

1

154
∑ (max𝑗=1,2,…,𝑃𝑐,𝑖

(exp (−‖𝒙 − 𝒑𝑐,𝑖,𝑗‖
2
)))154

𝑖=1 ,     (5.20) 

where 𝑐 = 1,2, … ,10;  𝑃𝑐,𝑖 is the number of prototypes within the i
th

 fuzzy rule of the c
th

 class; 

𝒑𝑐,𝑖,𝑗 is the corresponding j
th

 prototype. 

5.4.2.2. Conflict Detector 

The conflict detector will detect the rare cases in which the highest and the second 

highest overall scores of confidence given by the decision-making committee are very close. 

If such cases happen, it means that there is a conflict, and the decision-maker will involve the 

SVM conflict resolution classifier. The principle for detecting a conflict is as follows: 

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 31:
𝐼𝐹 (Λ1𝑠𝑡𝑚𝑎𝑥(𝐈) ≤ Λ2𝑛𝑑𝑚𝑎𝑥(𝐈) + 𝜎Λ(𝐈) 4⁄ )

𝑇𝐻𝐸𝑁 (𝐴 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡 𝑖𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑)
,                (5.21) 

where Λ1𝑠𝑡𝑚𝑎𝑥(𝐈) and Λ2𝑛𝑑𝑚𝑎𝑥(𝐈) are the largest and the second largest integrated scores of 

confidence;  𝜎Λ  is the standard deviation of the 10 integrated scores given by the DRB 

committee the testing image. 

5.4.2.3. The SVM Conflict Resolution Classifier 

In the cascade approach, the SVM conflict resolution classifier is added to assist the 

DRB ensemble when it produces two highly confident labels on one image. The architecture 

of the SVM conflict resolution classifier is given in Figure 39. 

As one can see, the SVM conflict resolution classifier consists of the following layers: 

① Normalisation layer; 

② Segmentation layer; 

③ Feature extraction layer; 

④ SVM classifier. 
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The normalization and segmentation layers are the same as used in the DRB ensemble. 

The feature extraction layer extracts the combined GIST and HOG features of the images as 

described by equation (5.12), which can improve the classification accuracy of the SVM 

classifier as the combined feature is relatively more descriptive compared with the original 

ones. 

 

Figure 39. Architecture of the SVM conflict resolution classifier. 

The SVM classifier during the classification stage conducts a binary classification on 

the image for the first and second most likely classes it belongs to. The output of the SVM 

conflict resolution classifier is not the label but the scores, which are denoted by Λs1(𝐈) and 

Λs2(𝐈), which correspond to Λ1𝑠𝑡𝑚𝑎𝑥(𝐈) and Λ2𝑛𝑑𝑚𝑎𝑥(𝐈), respectively. 

5.4.2.4. Decision Maker 

During the classification stage, the SVM based conflict resolution classifier will not be 

functioning if Condition 31 is not satisfied. In such case, the decision-maker will make 

decision directly based on the maximum Λ(𝐈) obtained by the DRB ensemble. 

If there is a conflict detected, the decision-maker will do a binary classification on the 

image between the first and second most likely classes with the assistance of the SVM based 

conflict resolver: 

𝑦(𝐈) = argmax({Λ1𝑠𝑡𝑚𝑎𝑥(𝐈) + Λs1(𝐈), Λ2𝑛𝑑𝑚𝑎𝑥(𝐈) + Λs2(𝐈) }).          (5.22) 

5.4.3. DRB Ensemble for Remote Sensing Scenes  

Land use classification is recognized widely as a challenging task because the land use 

sub-regions are recognised implicitly through their high-level semantic function, where 

multiple low-level features or land cover classes can appear in one land use category, and 

identical land cover classes can be shared among different land use categories. These high-

level semantics need to be exploited sufficiently using robust and accurate approaches for 

feature representation. 
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In this section, by creating an ensemble of DRB classifiers [43] trained with segments of 

remote sensing images partitioned with different granularities, the DRB ensemble [43]  is 

able to utilize spatial information at multiple scales and exhibit highly accurate classification 

performance. 

5.4.3.1. General Architecture  

The architecture of the DRB ensemble is given in Figure 40, which consists of four 

DRB classifiers trained with the segments of remote sensing images at four different levels of 

granularity (small, medium and large), which are achieved by using the sliding windows of 

three different sizes [43]. 

 

Figure 40. Architecture of the DRB ensemble for remote sensing scenes. 

 

Figure 41. Structure of the DRB classifier for remote sensing scenes. 

The architecture of a DRB classifier is presented in a modular/layered form in Figure 

41. The decision-maker in the final layer of the ensemble decides the winning label of the 

validation images based on the suggestions of the individual (per class) IF… THEN… rules 

of the three DRB classifiers within the ensemble. 
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5.4.3.2. DRB Classifiers for Remote Sensing Scenes 

The DRB classifier as depicted in Figure 42 has the following components [43]: 

① Rotation layer, which rotates each remote sensing image at four different angles 1) 

0°; 2) 90°; 3) 180° and 4) 270°.  

② Segmentation layer, which uses a sliding window to partition the remote sensing 

images into smaller pieces for local information extraction. By changing the size of the 

sliding window, the level of granularity of the segmentation result can be changed 

accordingly. A larger sliding window size allows the DRB to capture coarse scale spatial 

information at the cost of losing fine scale detail and vice versa.  

 

Figure 42. Image segmentation with different sliding windows. 

In this example, three different sliding windows with sizes of 1) (4 × 4)/(8 × 8) of 

image size (very small granularity); 2) (5 × 5)/(8 × 8) of image size (small granularity); 3) 

(6 × 6)/(8 × 8) of image size (medium granularity) and 4) (7 × 7)/(8 × 8) of image size 

(large granularity) and the step size of 1 8⁄
 width in the horizontal and 1 8⁄

 length in the 

vertical direction. The segmentation process is illustrated in Figure 42. 

③ Scaling layer, which is involved in the DRB classifier to rescale the segments into 

the uniform size of 227×227 pixels required by the VGG-VD-16 model [23]. 
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④ Feature extraction layer, which is the high-level feature descriptor, namely the VGG-

VD-16 model [23], as described in section 5.2.3.2. 

⑤ FRB layer, which has been described in section 5.2.4. 

5.4.3.3. Decision-Maker 

During the validation stage, for each testing image, each DRB classifier can produce a 

label for the testing image in the way as described by equation (5.16). Since there are four 

DRB classifiers used, the simple voting mechanism is insufficient to utilise all the 

information. Therefore, the decision-maker uses a modified version of equation (5.16) to as 

follows [43]: 

𝑦(𝐈) = argmax𝑗=1,2,…,𝐶 (∑
1

𝑆𝑘
∑ 𝜆𝑘,𝑗(𝐬𝐠𝑘,𝑖)

𝑆𝑘
𝑖=1

4
𝑘=1 ),                               (5.23) 

where 𝑆𝑘 is the number of segments obtained from the testing image under the k
th

 granularity; 

𝐬𝐠𝑘,𝑖 is the i
th

 segment of the corresponding granularity; 𝑘 = 1,2,3,4. 

5.5. Conclusion 

In this chapter, the latest deep learning networks developed within the EDA framework 

for image classification are presented. Compared with the state-of-the-art deep learning based 

approaches, the presented work has the following distinctive features: 

1) Highly efficient, transparent, human interpretable learning process; 

2) Self-organising and self-evolving structure; 

3) Free from the ad hoc decisions. 
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6. Implementation and Validation of the Developed Algorithms 

In this chapter, the performance evaluation for the presented machine learning 

algorithms conducted on the benchmark datasets is presented. This chapter is organised as 

follows. The numerical experiments with the self-organising unsupervised machine learning 

algorithms described in chapter 3 are given in section 6.1. The results of the self-organising 

supervised machine learning algorithms are presented in section 6.2. The implementation and 

experiment results of the transparent deep learning systems are described in section 6.3. This 

chapter is finalised by section 6.4. This chapter is concluded by the final section.  

The algorithms presented in this thesis are implemented on Matlab platform, and most 

of the numerical examples are conducted with Matlab2017a on a PC with WIN10 OS, dual 

core i7 processor with clock frequency 3.4 GHz each and 16GB RAM. 

The source codes of the proposed algorithms are downloadable from: 

 https://uk.mathworks.com/matlabcentral/fileexchange/?term=authorid%3A1098949  

6.1. Evaluation of the Unsupervised Learning Algorithms 

The performance of the self-organising unsupervised machine learning algorithms 

presented in chapter 3, namely 

1) Autonomous data-driven (ADD) clustering algorithm; 

2) Hypercube-based data partitioning (HCDP) algorithm; 

3) Autonomous data partitioning (ADP) algorithm; 

4) Self-organising direction-aware (SODA) data partitioning algorithm; 

are evaluated based on benchmark datasets. During the experiments, it is assumed that there 

is no any prior knowledge about the datasets. The following state-of-the-art algorithms are 

involved in the comparison: 

1) Mean-shift clustering (MSC) algorithm  [114]; 

2) Subtractive clustering (SUBC) algorithm [15]; 

3) Self-organizing map (SOM) algorithm [109]; 

4) Density peaks clustering (DPC) algorithm [225]; 

5) Density-based spatial clustering of applications with noise (DBSCAN) algorithm [6]; 

6) Affinity propagation clustering (APC) algorithm [105]; 

https://uk.mathworks.com/matlabcentral/fileexchange/?term=authorid%3A1098949
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7) eClustering algorithm [11]; 

8) Evolving local means clustering (ELMC) algorithm [12]; 

9) Nonparametric mixture model based clustering (NMMBC) algorithm [122]; 

10) Nonparametric mode identification based clustering (NMIBC) algorithm  [226]; 

11) Clustering of evolving data streams (CEDS) algorithm [118]. 

Due to insufficient prior knowledge, the recommended settings of the free parameters 

from the published literature are used throughout the numerical experiments. The 

experimental settings of the free parameters of the algorithms are presented in Table 3. 

Table 3. Experimental settings of the comparative algorithms 

Algorithms Free Parameter(s) Experimental setting 

MSC 
1) bandwidth, 𝑝 

2) kernel function type 

1) 𝑝 =  0.15  [12] 

2) Gaussian kernel 

SUBC initial cluster radius, 𝑟 𝑟 =  0.3 [15] 

SOM net size 12 × 12 [110] 

DPC 
1) minimum distance, 𝑟 

2) local density value, 𝛿 

1) relatively high, 𝑟 

2) high, 𝛿 [225] 

DBSCAN 

1) cluster radius, 𝑟 

2) minimum number of data 

samples within the radius, 𝑘 

1) the value of the knee point 

of the sorted 𝑘-dist graph 

2) 𝑘 = 4 [6] 

APC 

1) maximum number of iterative 

refinements 

2) termination tolerance 

3) dampening factor 

predefined as in [105] 

eClustering 
1) initial radius, 𝑟 

2) learning parameter, 𝜌 

1) 𝑟 = 0.5 

2) 𝜌 = 0.5 [11] 

ELMC initial cluster radius, 𝑟 𝑟 = 0.15 [12] 

NMMBC 
1) prior scaling parameter 

2) kappa coefficient 
predefined as in [122] 

NMIBC grid size predefined as in [226] 

CEDS 

1) microCluster radius, 𝑟 

2) decay factor, 𝜔 
3) min microCluster threshold, 𝜑 

1) 𝑟 =  0.15 

2) 𝜔 = 500 

3) 𝜑 = 1 [118] 

 

The clustering algorithms that require the number of clusters to be known in advance, 

i.e. k-means [5], online k-means [227], fuzzy c-means [124], random swap [228] algorithms, 

etc., or require the problem-specific thresholds, i.e. hierarchical clustering algorithm [99],  are 

not included in the comparison if no specific declaration. 



147 

 

The quality of the clustering/partitioning results is evaluated based on the following five 

indicators: 

1) Number of clusters/clouds (NC). Ideally, NC should be as close as possible to the 

number of actual classes (ground truth) in the dataset. However, this would mean one cluster/ 

data cloud per class and is only the best solution if each class has a very simple (circular) 

hyper-spherical pattern. However, this is not the case in the vast majority of the real 

problems. In most of the cases, data samples from different classes are mixed with each other. 

The best way to cluster/partition the dataset of this type is to divide the data into smaller parts 

(i.e. more than one cluster per class) to achieve a better separation. At the same time, having 

too many clusters per class is also reducing the generalization capability (leading to 

overfitting) and the interpretability. Therefore, in this thesis, the reasonable value range of NC 

is considered as 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑙𝑎𝑠𝑠𝑒𝑠 ≤ NC ≤ 10% ∙ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 . If NC  is 

smaller than the number of actual classes in the dataset or is more than 10% of all data 

samples, the clustering result is considered as an invalid one. The former case indicates that 

there are too many clusters generated by the clustering algorithm, which makes the 

information too trivial for users, and the latter case indicates that the clustering algorithm 

fails to separate the data samples from different classes.  

2) Purity (PU) [20], which is calculated based on the result and the ground truth: 

PU = ∑ 𝑆𝑖,𝐷
NC
𝑖=1 𝐾⁄ ,                                                                                    (6.1) 

where 𝑆𝑖,𝐷  is the number of data samples with the dominant class label in the i
th

 cluster. 

Purity directly indicates separation ability of the clustering algorithm. The higher purity a 

clustering result has, the stronger separation ability the clustering algorithm exhibits.   

3) Calinski-Harabasz index (CH) [13], the higher the Calinski-Harabasz index is, the 

better the clustering result is;  
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4) Davies-Bouldin index (DB) [17], the lower Davies-Bouldin index is, the better the 

clustering result is. 

5) Time (texe ): the execution time (in seconds) should be as small as possible. 

6.1.1. Autonomous Data-Driven Clustering Algorithm 

6.1.1.1. Benchmark Problems for Evaluation 

The ADD clustering algorithm is more effective in grouping data into clusters with 

regular shapes and clear boundaries. Therefore, in this section, the following datasets are used 

for evaluation: 

1) Iris dataset [229]; 

2) A1 dataset [230]; 

3) A2 dataset [230]; 

4) S1 dataset [231]; 

5) S2 dataset [231]. 

The details of the datasets are tabulated in Table 4. 

Table 4. Details of benchmark datasets for evaluating ADD algorithm 

Dataset Number of Classes Number of Features Number of Samples 

Iris 3 4 150 

A1  20 2 3000 

A2  35 2 5250 

S1 15 2 5000 

S2 15 2 5000 

6.1.1.2. Performance Evaluation and Discussion 

In this subsection, the performance of the ADD clustering algorithm is evaluated. For 

clarity, only the clustering results of the ADD clustering algorithm on A2 and S2 datasets are 

visualised in Figure 43, where the circles “o” in different colours denote data samples of 

different clusters, the black asterisks “*” denote the focal points/prototypes. In these 

experiments, the parallel computing ADD clustering algorithm uses five processors and each 

chunk has the size of 250 samples. 
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(a) A2-Offline ADD                                    (b) S2-Offline ADD 

 

             (c) A2-Evolving ADD                                    (d) S2-Evolving ADD 

 

     (e) A2-Parallel computing ADD                      (f) S2-Parallel computing ADD 

Figure 43. Clustering results of the ADD algorithm on A2 and S2 datasets. 

One can see from Figure 43 that, the ADD clustering algorithm (all three versions) can 

effectively separate the data from different clusters. Due to the nature of the streaming data 
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clustering on the sample-by-sample basis, the evolving ADD algorithm produces more 

clusters than the others.  

For the parallel computing ADD algorithm, the influences of the number of processors 

and chunk size on the computational efficiency of the algorithm are studied based on the S1 

dataset, where the number of processors varies from 2 to 10 and the chunk size varies from 

100 to 400. The time consumption of the two stages of the clustering process with different 

experimental settings is tabulated in Table 5, where the amount of the time consumption 

during stage 1 as tabulated in this table is the average processing time per processor. 

Table 5. Computational efficiency study under different experimental setting 

Chunk 

Size 
Stage 

Number of Processors 

2 3 4 5 6 7 8 9 10 

100 
1 0.51 0.17 0.11 0.09 0.07 0.06 0.05 0.04 0.03 

2 1.04 0.53 0.50 0.44 0.41 0.40 0.37 0.37 0.35 

150 
1 0.31 0.17 0.12 0.08 0.06 0.05 0.04 0.04 0.03 

2 0.61 0.53 0.47 0.42 0.39 0.38 0.35 0.35 0.34 

200 
1 0.30 0.16 0.11 0.08 0.06 0.05 0.04 0.04 0.03 

2 0.61 0.48 0.46 0.41 0.39 0.37 0.37 0.37 0.35 

250 
1 0.31 0.16 0.11 0.08 0.06 0.05 0.04 0.04 0.03 

2 0.66 0.51 0.44 0.39 0.39 0.36 0.35 0.34 0.33 

300 
1 0.27 0.15 0.10 0.07 0.06 0.05 0.04 0.04 0.03 

2 0.65 0.46 0.11 0.38 0.36 0.35 0.34 0.33 0.33 

350 
1 0.27 0.15 0.10 0.07 0.06 0.05 0.04 0.03 0.03 

2 0.60 0.48 0.39 0.36 0.35 0.34 0.34 0.34 0.33 

400 
1 0.25 0.14 0.09 0.07 0.06 0.05 0.04 0.03 0.03 

2 0.53 0.44 0.40 0.39 0.37 0.35 0.35 0.33 0.32 

 

From Table 5 one can see that, in general, the more processors are used in the 

experiments, the more efficient the clustering process will be. Meanwhile, a larger chunk size 

can accelerate the clustering process. 

The quality of the clustering results obtained by the ADD algorithm on the five 

benchmark datasets are evaluated in Table 6, Table 7 and Table 8, where for the parallel 

computing ADD algorithm, its performance is evaluated on the A1, A2, S1 and S2 datasets 

and it uses five processors with the chunk size of 250 samples. The performance comparison 

is also conducted in Table 6, Table 7 and Table 8 by using the 11 state-of-the-art approaches 

tabulated in Table 3.  
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In Table 6, Table 7 and Table 8, k-means [5], fuzzy c-means (FCM) [124] and random 

swap (RS) [228] algorithms are also involved in the comparison for a better evaluation. For 

these three algorithms, the number of clusters is set to be the same as the number of classes. 

Table 6. Performance evaluation and comparison of the ADD algorithm  

Dataset Algorithm NC PU CH DB texe  Validity 

Iris 

OADD 
a
 3 0.8933 560.3999 0.6623 0.33 Yes 

EADD
 b

 9 0.8933 262.1338 1.0682 0.10 Yes 

MSC 24 0.9733 205.448 0.8806 0.04 No 

SUBC 9 0.9400 195.4512 1.1244 0.11 Yes 

SOM 144 1.0000 260.9743 0.3180 2.37 No 

DPC 2 0.6667 501.9249 0.3836 1.91 No 

DBSCAN 2 0.6267 613.9620 0.3530 0.01 No 

APC 5 0.91333 440.6378 0.9267 0.11 Yes 

eClustering 4 0.6733 58.7119 1.4130 0.03 Yes 

ELMC 1 0.3333 NaN 
c
 NaN 0.13 No 

NMMBC 1 0.3333 NaN NaN 4.27 No 

NMIBC 3 0.8400 484.8990 0.6338 0.33 Yes 

CEDS 16 0.9533 168.2046 1.5277 0.66 No 

kmeans 3 0.8867 560.3660 0.6664 0.10 Yes 

FCM  3 0.8933 559.0000 0.6696 0.03 Yes 

RS 3 0.7200 42.0557 2.2776 0.45 Yes 

A1 

OADD 20 0.9833 13829.3761 0.5267 30.94 Yes 

EADD 27 0.9827 10663.5118 0.7232 1.41 Yes 

PCADD 
d
 20 0.9833 13751.8751 0.5289 0.41 Yes 

MSC 9 0.4453 4009.6177 0.8612 0.04 No 

SUBC 9 0.4480 4307.8855 0.6763 1.15 No 

SOM 144 0.9703 9597.3680 0.8177 6.65 Yes 

DPC 9 0.4497 5361.9764 0.7468 1.83 No 

DBSCAN 25 0.8197 8627.927 0.5590 0.73 Yes 

APC 1401 0.9107 100.372 1.309 50.05 No 

eClustering 3 0.1500 1392.1482 0.7243 0.12 No 

ELMC 2 0.1000 2178.4792 0.8370 0.55 No 

NMMBC 4 0.1997 2844.1017 21.5226 198.03 No 

NMIBC 7 0.3500 4241.8797 0.8011 5.28 No 

CEDS 21 0.3846 251.8649 1.2713 8.03 Yes 

kmeans 20 0.8763 9070.4058 0.6962 0.12 Yes 

FCM  20 0.9837 13826.785 0.52664 0.21 Yes 

RS 20 0.4137 50.8635 28.2870 1.82 Yes 
                        a

 Offline ADD; 
b
 Evolving ADD; 

c
 Not a number; 

d
 Parallel computing ADD. 
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Table 7. Performance evaluation and comparison of the ADD algorithm (continue - part 1) 

Dataset Algorithm NC PU CH DB texe  Validity 

A2 

OADD 35 0.9825 18205.8529 0.5241 123.81 Yes 

EADD 53 0.9796 12956.6360 0.7440 5.79 Yes 

PCADD 35 0.9796 17966.9969 0.5278 0.72 Yes 

MSC 11 0.3139 5002.6452 0.8326 0.06 No 

SUBC 11 0.3143 6323.3781 0.7386 1.95 No 

SOM 144 0.9728 12749.7708 0.8833 11.83 Yes 

DPC 19 0.5423 7426.8078 0.6334 3.13 No 

DBSCAN 47 0.8187 11319.5382 0.6217 1.90 Yes 

APC 2844 0.8711 63.1582 1.0557 147.12 No 

eClustering 3 0.0857 2012.3325 0.8095 0.20 No 

ELMC 2 0.0571 2051.5427 1.1627 0.89 No 

NMMBC 7 0.1716 2193.3707 1.6057 67.89 No 

NMIBC 13 0.3714 6051.1654 0.7161 13.17 No 

CEDS 17 0.1897 756.4172 0.9958 11.19 No 

kmeans 35 0.8977 12963.9614 0.6631 0.13 Yes 

FCM  35 0.8697 10912.0552 0.7017 1.46 Yes 

RS 35 0.2916 42.5126 30.9873 5.96 Yes 

S1 

OADD 16 0.9938 21624.5534 0.4199 94.73 Yes 

EADD 42 0.9856 11316.8467 0.7428 5.12 Yes 

PCADD 15 0.9942 22670.4843 0.3661 0.47 Yes 

MSC 13 0.8132 10104.1419 0.5124 0.04 No 

SUBC 10 0.6732 8360.6375 0.5729 3.07 No 

SOM 144 0.9940 14901.7546 0.8055 9.53 Yes 

DPC 3 0.2100 2356.1843 0.8905 4.54 No 

DBSCAN 32 0.9146 1256.2090 1.2679 2.84 Yes 

APC 2297 0.9584 123.9501 0.8424 194.97 No 

eClustering 2 0.1400 1159.7451 1.8898 0.19 No 

ELMC 1 0.0700 NaN NaN 1.11 No 

NMMBC 6 0.3952 2966.1273 0.6952 345.40 No 

NMIBC 6 0.4100 5922.5340 0.7305 10.38 No 

CEDS 21 0.6048 1285.7427 1.0851 11.85 Yes 

kmeans 15 0.9326 15172.8111 0.4822 0.12 Yes 

FCM  15 0.9938 22675.2540 0.3665 0.38 Yes 

RS 15 0.3448 85.7921 20.3050 2.26 Yes 
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Table 8. Performance evaluation and comparison of the ADD algorithm (continue - part 2) 

Dataset Algorithm NC PU CH DB texe  Validity 

S2 

OADD 16 0.9638 13031.0961 0.5157 99.38 Yes 

EADD 36 0.9522 6997.2126 0.8773 3.34 Yes 

PCADD 15 0.9694 13411.7340 0.4694 0.64 Yes 

MSC 13 0.7164 6443.3562 0.7698 0.04 No 

SUBC 10 0.6642 6265.4817 0.6630 2.90 No 

SOM 144 0.9692 9452.3645 0.8283 9.62 Yes 

DPC 2 0.1400 1764.3864 1.4709 4.55 No 

DBSCAN 35 0.7788 686.9831 2.0510 2.76 Yes 

APC 1283 0.9168 229.2614 1.4833 205.14 No 

eClustering 2 0.1366 1330.5700 1.4359 0.20 No 

ELMC 1 0.0700 NaN NaN 1.11 No 

NMMBC 10 0.4652 2207.0915 2.3866 407.10 No 

NMIBC 4 0.2786 3966.1442 0.8060 12.41 No 

CEDS 26 0.6580 1324.1078 0.9463 12.96 Yes 

kmeans 15 0.9028 9434.6526 0.5841 0.13 Yes 

FCM  15 0.9112 10447.5460 0.5881 0.52 Yes 

RS 15 0.3240 34.7955 33.0821 2.27 Yes 
 

It is clearly shown in Table 6, Table 7 and Table 8 that the ADD clustering algorithm 

exhibits stronger performance on all the five benchmark datasets compared with the 

alternative algorithms. Specifically, the offline ADD clustering algorithm produces the best 

results, but its computational efficiency is not high in comparison with the other two versions. 

The parallel computing version is the most efficient one and it outperforms all other 

algorithms on S1 and S2 datasets. The evolving ADD algorithm is very efficient as well, but 

its performance is not as high as the other two versions. 

6.1.2. Hypercube-based Data Partitioning Algorithm  

6.1.2.1. Benchmark Problems for Evaluation 

The HCDP algorithm is more effective in partitioning low-dimensional datasets with 

irregular shapes. Therefore, in this section, the following datasets are used for evaluation: 

1) Flame dataset [127]; 

2) Jain dataset [232]; 

3) Aggregation dataset [233]; 

4) Pathbased dataset [234]; 
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5) Banknote authentication dataset [235]. 

The details of the datasets are tabulated in Table 9. 

Table 9. Details of benchmark datasets for evaluating HCDP algorithm 

Dataset Number of Classes Number of Features Number of Samples 

Flame 2 2 240 

Jain 2 2 373 

Aggregation  7 2 788 

Pathbased 3 2 300 

Banknote 2 4 1372 

6.1.2.2. Performance Evaluation and Discussion 

In this subsection, the performance of the HCDP algorithm is evaluated.  

Firstly, the impact of the granularity, 𝛾  on the partitioning results is evaluated. For 

clarity, only the Aggregation dataset is used for this experiment. For offline HCDP algorithm, 

𝛾 is set to be varied from 5 to 30, and the partitioning results are depicted in Figure 44. 

Similarly, for the evolving HCDP algorithm, 𝛾 is set to be varied from 10 to 35, and the 

partitioning results are depicted in Figure 45. 

 

 

 

 

 

 

 

 

 



155 

 

 

(a) 𝛾 = 5                                                         (b) 𝛾 = 10 

 

(c) 𝛾 = 15                                                       (d) 𝛾 = 20 

 

(e) 𝛾 = 25                                                          (f) 𝛾 = 30 

Figure 44. Partitioning results of the offline HCDP algorithm with different granularity. 
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(a) 𝛾 = 10                                                       (b) 𝛾 = 15 

 

(c) 𝛾 = 20                                                          (d) 𝛾 = 25 

 

(e) 𝛾 = 30                                                           (f) 𝛾 = 35 

Figure 45. Partitioning results of the evolving HCDP algorithm with different granularity. 

One can see from Figure 44 and Figure 45 that, the higher granularity is chosen, the 

more data clouds are obtained from the dataset, which results in a more detailed partitioning 
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results and vice versa. Therefore, by changing the granularity, one can partition the data with 

the HCDP algorithm in a more flexible, straightforward way to meet different purposes. 

Table 10. Performance evaluation and comparison of the HCDP algorithm 

Dataset Algorithm NC PU CH DB texe  Validity 

Flame 

OHCDP 
a
 20 0.9833 183.4588 0.8912 0.21 Yes 

EHCDP 
b
 7 0.9792 221.5211 0.8467 0.13 Yes 

MSC 9 0.9667 144.2422 0.8593 0.02 Yes 

SUBC 10 0.9708 215.6852 0.8728 0.13 Yes 

DPC 2 0.7875 133.6151 1.1338 1.31 Yes 

DBSCAN 1 0.6375 NaN NaN 0.03 No 

APC 11 0.9875 244.4211 0.8714 0.08 Yes 

eClustering 4 0.7458 64.3348 1.1252 0.04 Yes 

ELMC 1 0.6375 NaN NaN 0.10 No 

NMMBC 3 0.9583 161.6478 0.9199 11.56 Yes 

NMIBC 11 0.9917 126.7075 0.9187 0.85 Yes 

CEDS 73 0.9875 153.002 0.8228 1.34 Yes 

Jain 

OHCDP 22 0.9893 713.0926 0.7170 0.26 Yes 

EHCDP 6 0.8928 387.0134 0.9215 0.12 Yes 

MSC 9 0.9491 503.9343 0.7229 0.03 Yes 

SUBC 6 0.9625 595.4852 0.6817 0.12 Yes 

DPC 2 0.8606 468.0620 0.8001 1.99 Yes 

DBSCAN 4 0.7775 219.4335 0.6104 0.02 Yes 

APC 12 1.0000 927.1470 0.7039 0.29 Yes 

eClustering 3 0.7802 27.9497 1.2612 0.04 Yes 

ELMC 1 0.7400 NaN NaN 0.10 No 

NMMBC 4 0.9652 331.2766 0.7400 15.67 Yes 

NMIBC 8 1.0000 636.1075 0.6751 1.18 Yes 

CEDS 63 1.0000 880.0854 0.8231 1.69 Yes 

Aggregation 

OHCDP 24 0.9911 1353.5003 0.8873 0.52 Yes 

EHCDP 15 0.9683 1112.8078 0.9829 0.20 Yes 

MSC 10 0.9886 1297.9986 0.7401 0.03 Yes 

SUBC 8 0.9315 1203.3351 0.6932 0.39 Yes 

DPC 4 0.7703 753.8644 0.6519 1.57 No 

DBSCAN 6 0.8591 727.9153 0.5780 0.05 No 

APC 24 0.9949 1618.8342 0.8158 2.09 Yes 

eClustering 4 0.5393 117.1214 0.9280 0.05 No 

ELMC 2 0.3465 223.8349 1.1456 0.19 No 

NMMBC 4 0.7234 434.3226 0.6965 33.93 No 

NMIBC 8 0.9975 1251.0015 0.6767 4.83 Yes 

CEDS 81 0.9327 244.2537 0.8979 3.05 Yes 
  a

 Offline HCDP; 
b
 Evolving HCDP. 
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Table 11. Performance evaluation and comparison of the HCDP algorithm (continue) 

Dataset Algorithm NC PU CH DB texe  Validity 

Pathbased 

OHCDP 15 0.9533 320.9985 0.7688 0.20 Yes 

EHCDP 14 0.9067 266.0269 0.8399 0.14 Yes 

MSC 9 0.8300 191.2394 0.5955 0.03 Yes 

SUBC 8 0.9167 311.6385 0.7755 0.11 Yes 

DPC 3 0.7333 355.5116 0.6312 1.22 Yes 

DBSCAN 2 0.6767 66.4760 1.3332 0.01 No 

APC 16 0.9567 394.1452 0.7246 0.13 Yes 

eClustering 3 0.5433 88.0246 1.4032 0.03 Yes 

ELMC 1 0.3667 NaN NaN 0.09 No 

NMMBC 4 0.6933 187.0646 1.6354 15.49 Yes 

NMIBC 10 0.8200 150.3195 0.5302 1.04 Yes 

CEDS 79 0.9967 529.0332 0.6764 1.68 No 

Banknote 

OHCDP 79 0.9920 811.5949 0.9144 3.10 Yes 

EHCDP 107 0.9927 929.2889 0.9868 4.16 Yes 

MSC 24 0.9927 717.8110 0.7831 0.05 Yes 

SUBC 14 0.9657 743.6576 1.0000 0.67 Yes 

DPC 3 0.7413 1039.7004 0.9687 1.20 Yes 

DBSCAN 48 0.9402 352.5907 0.7607 0.17 Yes 

APC 30 0.9883 1114.1723 0.9229 4.54 Yes 

eClustering 1 0.5554 NaN NaN 0.06 No 

ELMC 4 0.6778 408.0301 0.8317 0.33 Yes 

NMMBC 4 0.8462 690.5961 1.2327 62.77 Yes 

NMIBC 20 0.9913 690.5714 0.7206 5.24 Yes 

CEDS 120 0.8848 163.6131 1.4338 5.46 Yes 

 

The quality of the partitioning results obtained by the HCDP algorithm on the five 

benchmark datasets are evaluated in Table 10 and Table 11, where 𝛾 = 20 for the offline 

version and 𝛾 = 25 for the evolving version. The performance comparison is also conducted 

in Table 10 and Table 11 by using the 10 state-of-the-art approaches (SOM algorithm is not 

used here) tabulated in Table 3.  

From Table 10 and Table 11 one can see that the HCDP algorithm exhibits very good 

performance on all the five benchmark datasets comparable with the best performed state-of-

the-art algorithms. Moreover, compared with other approaches, the operating mechanism of 

the HCDP algorithm is simpler and more straightforward.  
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6.1.3. Autonomous Data Partitioning Algorithm  

6.1.3.1. Benchmark Problems for Evaluation 

The ADP algorithm is very effective in partitioning large-scale, high-dimensional, 

complex datasets. Therefore, in this section, the following datasets are used for evaluation: 

1) Cardiotocography dataset [236]; 

2) Pen-based handwritten digits recognition dataset [237]; 

3) Occupancy detection dataset [238]; 

4) MAGIC gamma telescope dataset [239]; 

5) Letter recognition dataset [240]. 

The details of the datasets are tabulated in Table 12. 

Table 12. Details of benchmark datasets for evaluating ADP algorithm 

Dataset Number of Classes 
Number of 

Features 
Number of Samples 

Cardio 3 22 2126 

Pen-Based  10 16 10992  

Occupancy 
a
 2 5 

8143 (training set) 

2665 (testing set 1) 

9752 (testing set 2) 

MAGIC  2 10 19020 

Letter 26 16 20000 
                                               a

 The time stamps in the original dataset have been removed. 

6.1.3.2. Performance Evaluation and Discussion 

In this subsection, the performance of the ADP algorithm is evaluated. For clarity, only 

the partitioning results of the ADP algorithm on Pen-based handwritten digits recognition 

dataset and Letter recognition dataset are visualised in Figure 46.  

One can see from Figure 46 that the ADP algorithm identified a number of prototypes 

from the observed data samples and partitioned the datasets into shape-free data clouds with 

the prototypes naturally by attracting data samples around them resembling Voronoi 

tessellation [64]. However, as there is no clear separation between data samples of different 

classes in the high-dimensional, large-scale datasets, it is very hard to directly evaluate the 

quality of the partitioning results.  
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Therefore, the quality indexes of the partitioning results obtained by the ADP algorithm 

as tabulated in Table 13 and Table 14 are used for further evaluation. The performance 

comparison is also conducted by using the 11 state-of-the-art approaches tabulated in Table 3.  

  

                 (a) Pen-based - Offline ADP                      (b) Letter -Offline ADP 

  

            (c) Pen-based - Evolving ADP                      (d) Letter - Evolving ADP 

Figure 46. Partitioning results of the ADP algorithm on Pen-based handwritten digits 

recognition dataset and Letter recognition dataset. 

Table 13 and Table 14 clearly show that the ADP algorithm outperforms all other 

comparative algorithms in both the partitioning quality and computational efficiency. 

Moreover, the ADP algorithm is nonparametric and free from prior assumptions and user- 

and problem-specific parameters. 
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Table 13. Performance evaluation and comparison of the ADP algorithm 

Dataset Algorithm NC PU CH DB texe  Validity 

Cardio 

OADP 
a
 81 0.8580 262.8859 1.0962 0.35 Yes 

EADP 
b
 50 0.8561 315.6587 1.2816 0.36 Yes 

MSC 1597 0.9958 189.5452 0.4150 2.61 No 

SUBC 254 0.9147 140.7584 1.3239 0.65 No 

SOM 144 0.8932 225.8973 1.1998 12.63 Yes 

DPC 3 0.7813 63.5735 0.5081 2.71 Yes 

DBSCAN 13 0.8053 35.8486 1.5204 0.43 Yes 

APC 43 0.8627 371.6572 1.3036 6.76 Yes 

eClustering 8 0.7949 269.3139 2.3566 0.24 Yes 

ELMC 2 0.7992 213.0737 1.4233 1.10 No 

NMMBC 4 0.7794 204.2315 1.0717 111.18 Yes 

NMIBC 328 0.9008 63.5207 0.6740 31.28 Yes 

CEDS 14 0.8015 152.9364 3.3800 23.61 Yes 

Pen-Based 

OADP 79 0.9326 1057.9771 1.3264 4.45 Yes 

EADP 92 0.9342 967.5478 1.4241 1.53 Yes 

MSC 8501 0.9999 154.0923 0.3652 169.14 No 

SUBC 187 0.8454 382.6055 1.9995 100.09 Yes 

SOM 144 0.9725 868.7807 1.4174 42.12 Yes 

DPC 7 0.5993 2559.6071 1.3044 17.32 No 

DBSCAN 38 0.6209 312.9177 1.4997 16.11 Yes 

APC System Crashed No 

eClustering 7 0.4394 1850.2452 2.094 1.49 No 

ELMC 9 0.3092 634.1555 2.1794 20.67 No 

NMMBC 41 0.9325 1010.81 2.2504 3727.38 Yes 

NMIBC 4316 0.9968 46.6194 0.4969 2187.06 No 

CEDS 1 0.1041 NaN NaN 2466.47 No 

Occupancy 

OADP 15 0.9783 34653.4935 0.6027 12.79 Yes 

EADP 131 0.9869 21530.3617 0.8165 2.65 Yes 

MSC 37 0.9772 5710.9905 2.3532 0.39 Yes 

SUBC 9 0.9498 19878.6811 1.1872 30.81 Yes 

SOM 144 0.9895 52050.4029 0.7450 41.58 Yes 

DPC 2 0.7690 5495.9202 0.5548 30.49 Yes 

DBSCAN 208 0.8514 134.4039 1.4789 190.85 Yes 

APC System Crashed No 

eClustering 32 0.9178 3830.0232 1.0221 2.07 Yes 

ELMC 1 0.7689 NaN NaN 3.18 No 

NMMBC 3 0.7691 4420.7364 0.5037 1062.11 Yes 

NMIBC 15 0.9761 10922.5114 0.3310 372.08 Yes 

CEDS 13 0.8484 1,555.1093 3.3988 42.22 Yes 
   a

 Offline ADP; 
b
 Evolving ADP. 
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Table 14. Performance evaluation and comparison of the ADP algorithm (continue) 

Dataset Algorithm NC PU CH DB texe  Validity 

MAGIC 

OADP 47 0.7289 1430.4657 1.3074 13.71 Yes 

EADP 380 0.7899 643.6832 1.3068 2.65 Yes 

MSC 1469 0.7871 14.0702 0.7969 46.61 Yes 

SUBC 8 0.7145 5097.7399 1.3833 48.89 Yes 

SOM 144 0.7804 1238.2763 1.4087 59.21 Yes 

DPC 1 0.6483 NaN NaN 36.98 No 

DBSCAN 15 0.6247 17.8876 0.8998 33.44 Yes 

APC System Crashed No 

eClustering 6 0.6484 2316.0290 2.2985 2.61 Yes 

ELMC 25 0.7381 548.5010 1.5284 25.06 Yes 

NMMBC 3 0.7345 1990.4386 1.8764 1560.68 Yes 

NMIBC 1578 0.7459 19.4133 0.4046 6833.96 Yes 

CEDS 54 0.7902 406.1227 4.4493 5999.13 Yes 

Letter 

OADP 235 0.6000 433.4874 1.4023 15.19 Yes 

EADP 242 0.5825 414.5848 1.4839 2.92 Yes 

MSC 7619 0.9760 61.9156 0.5979 256.07 No 

SUBC 153 0.5820 470.8426 1.5301 175.37 Yes 

SOM 144 0.5839 614.3846 1.5347 77.12 Yes 

DPC 3 0.0573 515.3193 1.1643 45.69 No 

DBSCAN 51 0.1584 94.7283 1.1522 33.85 Yes 

APC System Crashed No 

eClustering 5 0.1135 1590.4090 2.3557 4.23 No 

ELMC 9 0.1091 585.5138 1.6504 15.38 No 

NMMBC 46 0.4304 453.1501 2.5435 6316.60 Yes 

NMIBC 14526 0.9975 72.2380 0.3169 6279.86 No 

CEDS 43 0.2580 569.9774 2.0097 14865.00 Yes 

6.1.4. Self-Organising Direction-Aware Data Partitioning Algorithm 

6.1.4.1. Benchmark Problems for Evaluation 

The SODA algorithm is very effective in partitioning very high-dimensional datasets. 

Therefore, in this section, the following datasets are used for evaluation: 

1) Wine dataset [241] 

2) Steel plates faults dataset [242]; 

3) Dim1024 dataset [243]; 

4) Dim15 dataset [243]; 

5) Multiple features dataset [244]. 

The details of the datasets are tabulated in Table 15. 
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Table 15. Details of benchmark datasets for evaluating SODA algorithm 

Dataset Number of Classes 
Number of 

Features 
Number of Samples 

Wine 3 13 178 

Steel 7 27 1941 

Dim1024 16 1024 1024 

Dim15 9 15 10125 

Multiple  10 649 2000 

6.1.4.2. Performance Evaluation and Discussion 

  

            (a) Wine - Offline SODA                (b) Multiple features -Offline SODA   

  

       (c) Wine - Evolving SODA                       (d) Multiple features - Evolving SODA 

Figure 47. Partitioning results of the SODA algorithm on Wine dataset and Multiple features 

dataset. 

In this subsection, the performance of the SODA algorithm is evaluated. The data 

partitioning results of the offline and evolving versions of the SODA algorithm based on the 

Wine and Multiple features datasets are depicted in Figure 47, where one can see that, the 
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offline algorithm successfully identified a number of prototypes from the observed data 

samples and partitioned the datasets into shape-free data clouds. 

   

                   (a) Priming offline result                       (b) Half of the data stream processed 

 

                          (c) Final result                             (d) The change of the number of the planes 

Figure 48. The evaluation of the extension of the offline SODA algorithm for streaming data. 

The Dim15 dataset is further used to demonstrate the performance of the streaming data 

processing extension of the offline SODA algorithm. In the following example, one third of 

the total data samples of the dataset are used as a static priming dataset for the offline SODA 

algorithm to generate the initial partitioning results. The rest of the data samples are 

transformed into data streams for the algorithm to continue to build upon the priming result. 

The overall result is presented in Figure 48, and the change of the number of direction-aware 

planes is also given. 
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Table 16. Performance evaluation and comparison of the SODA algorithm 

Dataset Algorithm NC PU CH DB texe  Validity 

Wine 

OSODA 
a
 9 0.6966 400.2223 1.2734 0.83 Yes 

ESODA 
b
 16 0.7135 525.4880 1.9610 0.26 Yes 

MSC 178 1.0000 NaN 0.0000 0.07 No 

SUBC 178 1.0000 NaN 0.0000 1.76 No 

SOM 144 0.9382 3058.57 0.3756 3.46 No 

DPC 3 0.6461 321.3938 0.4782 2.49 Yes 

DBSCAN 4 0.6685 139.8891 1.9340 0.03 Yes 

APC 51 0.8090 45.9785 0.5056 0.56 No 

eClustering 15 0.9157 31.8471 4.6352 0.06 Yes 

ELMC 54 0.9719 7.6683 0.6812 0.70 No 

NMMBC 1 0.3988 NaN NaN 9.50 No 

NMIBC 4 0.6517 228.9969 0.3712 0.61 Yes 

CEDS 178 1.0000 NaN 0.0000 0.08 No 

Steel 

OSODA 23 0.5095 2219.4197 0.9323 1.21 Yes 

ESODA 23 0.5064 2784.0320 1.8149 1.62 Yes 

MSC 1555 0.9948 24.7451 9.8535 2.92 No 

SUBC 4 0.3988 494.1967 0.9100 4.37 No 

SOM 144 0.5538 2016.5369 0.6329 9.83 No 

DPC 3 0.3478 1224.2338 0.4226 2.40 No 

DBSCAN 18 0.4858 57.8279 1.7112 0.51 Yes 

APC 1477 0.8563 6.9878 0.4486 33.37 No 

eClustering 16 0.4153 184.5048 1.9151 0.24 Yes 

ELMC 7 0.3730 84.1426 1.2951 2.88 Yes 

NMMBC 2 0.3472 21.9988 0.1474 96.48 No 

NMIBC 9 0.3653 690.3357 0.3034 69.05 Yes 

CEDS 2 0.3467 2.0546 18.6821 17.73 No 

Dim1024 

OSODA 16 1.0000 718469.7967 0.0132 1.15 Yes 

ESODA 16 1.0000 718469.7967 0.0132 3.66 Yes 

MSC 120 1.0000 126798.4888 0.4496 0.88 No 

SUBC 16 1.0000 718469.7967 0.0132 16.32 Yes 

SOM 144 1.0000 144252.3793 0.9370 159.77 No 

DPC 14 0.8750 529.5497 0.6965 3.26 No 

DBSCAN 16 0.8721 381.3919 0.9975 0.56 Yes 

APC 1024 1.0000 NaN 0.0000 1.34 No 

eClustering 8 0.3389 54.6740 2.7683 1.67 No 

ELMC 1 0.0625 NaN NaN 0.49 No 

NMMBC 3 0.1875 69.6915 3.1523 11827.25 No 

NMIBC 1024 1.0000 NaN 0.0000 2080.58 No 

CEDS 8 0.5000 139.4129 1.4281 52.41 No 
                                                                                                     a

 Offline SODA; 
b
 Evolving SODA; 

c
 Infinity. 
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Table 17. Performance evaluation and comparison of the SODA algorithm (continue) 

Dataset Algorithm NC PU CH DB texe  Validity 

Dim15 

OSODA 9 1.0000 302436.3684 0.1177 2.99 Yes 

ESODA 9 1.0000 302436.3684 0.1177 13.18 Yes 

MSC 9 1.0000 302436.3684 0.1177 0.04 Yes 

SUBC 9 1.0000 302436.3684 0.1177 25.15 Yes 

SOM 144 1.0000 26172.4720 2.2328 39.30 Yes 

DPC 4 0.4444 4533.2627 0.6696 13.65 No 

DBSCAN 9 0.9586 20602.057 1.2317 15.92 Yes 

APC System Crashed  No 

eClustering 16 0.5680 1528.6342 2.3851 1.26 Yes 

ELMC 2 0.2222 3319.7039 0.6205 2.58 No 

NMMBC 4 0.4444 2412.1759 1.4420 649.05 No 

NMIBC 3 0.3333 4327.2420 0.5837 141.34 No 

CEDS 76 0.6126 289.8403 2.2719 874.35 Yes 

Multiple 

OSODA 13 0.5860 1593.494 1.3216 6.89 Yes 

ESODA 44 0.7095 1103.4226 1.4703 7.06 Yes 

MSC 1994 1.0000 Inf 
c
 0.0000 16.72 No 

SUBC 1994 1.0000 Inf 0.0000 77.53 No 

SOM 144 0.9230 695.3067 1.4205 197.11 No 

DPC 6 0.5830 2307.1654 1.1992 3.85 No 

DBSCAN 4 0.1915 15.5707 2.2674 0.89 No 

APC 22 0.8025 2098.7458 1.4701 12.63 Yes 

eClustering 19 0.5195 200.5162 3.8372 4.25 Yes 

ELMC 1988 1.0000 7.0694 0.2836 99.50 No 

NMMBC 1 0.1000 NaN NaN 5059.90 No 

NMIBC 2000 1.0000 NaN 0.0000 2446.46 No 

CEDS 2 0.1735 65.3322 4.0605 381.28 No 

 

The quality indexes of the partitioning results obtained by the SODA algorithm (both 

offline and evolving versions) are tabulated in Table 16 and Table 17 for further evaluation. 

The performance comparison is also conducted by using the 11 state-of-the-art approaches 

tabulated in Table 3.  

It is clearly shown in Table 16 and Table 17 that the SODA algorithm outperforms all 

other comparative algorithms in terms of partitioning quality on the five benchmark datasets. 

Moreover, its computational efficiency is also very high, and does not decrease with the 

increase of dimensionality. 

6.2. Evaluation of the Supervised Learning Algorithms  

The performance of the self-organising supervised machine learning algorithms 

presented in chapter 4, namely 
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1) Autonomous learning multi-model (ALMMO) system; 

2) Zero order autonomous learning multi-model (ALMMO-0) classifier; 

3) Self-organising fuzzy logic (SOFL) classifier; 

4) Autonomous anomaly detection (AAD) algorithm; 

are evaluated based on benchmark datasets. Similarly, during the experiments, it is assumed 

that there is no any prior knowledge about the datasets. 

6.2.1. Autonomous Learning Multi-Model System 

In this section, the performance of the ALMMO system is evaluated based on two types 

of problems, namely 1) regression and 2) classification.  

6.2.1.1. Benchmark Problems for Evaluation 

A. Regression  

The first regression problem for the evaluation is the QuantQuote Second Resolution 

Market (QQSRM) database [245], which contains tick-by-tick data on all NASDAQ, NYSE, 

and AMEX securities from 1998 to the present moment in time. The frequency of tick data 

varies from one second to few minutes. This dataset contains 19144 data samples. In this 

thesis, the following five attributes, namely 

1) Time, 𝐾; 

2) Open price, 𝑥𝐾,1; 

3) High price, 𝑥𝐾,2; 

4) Low price, 𝑥𝐾,3; 

5) Close price, 𝑥𝐾,4; 

are used for the prediction of the future values of high price 8, 12, 16, 20 and 24 steps ahead, 

namely, 𝑦𝐾 = 𝑓(𝑥𝐾,1, 𝑥𝐾,2, 𝑥𝐾,3, 𝑥𝐾,4)  and 𝑦𝐾 = 𝑥𝐾+8,2 ,  𝑦𝐾 = 𝑥𝐾+12,2 ,  𝑦𝐾 = 𝑥𝐾+16,2 ,  𝑦𝐾 =

𝑥𝐾+20,2  and 𝑦𝐾 = 𝑥𝐾+24,2 , respectively. The data samples are standardized online before 

prediction.  

The second regression problem is based on a more frequently used real dataset, the 

Standard and Poor (S&P) index data [246]. This dataset contains 14893 data samples 

acquired from January 3, 1950 to March 12, 2009. Other prediction algorithms frequently use 

this dataset as a benchmark for performance because of the nonlinear, erratic and time-variant 
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behaviour of the data. The input and output relationship of the system is governed by the 

following equation: 𝑦𝐾 = 𝑓(𝑥𝐾−4, 𝑥𝐾−3, 𝑥𝐾−2, 𝑥𝐾−1, 𝑥𝐾) and 𝑦𝐾 = 𝑥𝐾+1. 

B. Classification 

Two popular benchmark problems for binary classification, namely, PIMA [247] and 

occupancy detection  [238] datasets, are used for evaluating the performance of the ALMMO 

system.  PIMA dataset consists of 768 data samples, each of which has eight attributes and 

one label. The details of the occupancy detection dataset have been given in Table 11. The 

occupancy detection dataset contains one training set (8143 data samples) and two testing 

sets (2665 and 9752 data samples in each) [238]. 

6.2.1.2. Performance Evaluation and Discussion 

A. Regression  

 

                          (a) Overall                                                    (b) Zoom-in period 1 

 

                      (c) Zoom-in period 2                                        (d) Zoom-in period 3 

Figure 49. Prediction result for the QQSRM problem. 
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Firstly, the QQSRM dataset is considered. The current data sample, 

𝒙𝐾 = [𝑥𝐾,1, 𝑥𝐾,2, 𝑥𝐾,3, 𝑥𝐾,4]
𝑇
 is used to predict the High price 8 steps ahead 𝑥𝐾+8,2, namely, 

 𝑥𝐾+8,2 = 𝑓(𝑥𝐾,1, 𝑥𝐾,2, 𝑥𝐾,3, 𝑥𝐾,4). The overall prediction result is presented in Figure 49(a) 

and three zoom-in periods (circulated areas in Figure 49(a)) are depicted in Figure 49 (b)-(d). 

The evolution of number of data clouds/fuzzy rules is depicted in Figure 50. As one can see 

from Figure 49, there are many abnormal data samples and random fluctuations in the data 

stream. At the beginning and the end of this data stream, large fluctuations and abnormal data 

frequently appear, while in the middle, the data pattern changes relatively smoothly with only 

a small number of abnormal data. The corresponding changes of the system structure can also 

be seen in Figure 50. Thus, one can see that, the ALMMO system is capable to successfully 

follow the non-stationary data pattern and exhibits very accurate prediction results and 

demonstrates a strong evolving ability. 

 

Figure 50. The evolution of number of data clouds/fuzzy rules. 

The AnYa type fuzzy rules of the ALMMO system in the final time instance are 

presented in Table 18 as the illustrative examples. 
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Table 18. Example of fuzzy rules identified from the learning progress 

Rule# Detailed Expression 

1 𝐼𝐹 

[
 
 
 
𝑂𝑝𝑒𝑛 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,1~1409050

𝐻𝑖𝑔ℎ 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,2~1409073

𝐿𝑜𝑤 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,3~1409027

𝐶𝑙𝑜𝑠𝑒 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,4~1409053]
 
 
 

𝑇𝐻𝐸𝑁 (

𝑦𝐾 = 0.0187
+0.0916𝑥𝐾,1 + 0.8096𝑥𝐾,2

+0.2933𝑥𝐾,3 + 0.7554𝑥𝐾,4

) 

2 𝐼𝐹 

[
 
 
 
𝑂𝑝𝑒𝑛 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,1~1409639

𝐻𝑖𝑔ℎ 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,2~1409659

𝐿𝑜𝑤 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,3~1409617

𝐶𝑙𝑜𝑠𝑒 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,4~1409648]
 
 
 

𝑇𝐻𝐸𝑁 (

𝑦𝐾 = 0.0505
+0.6342𝑥𝐾,1 + 0.6156𝑥𝐾,2

+0.4011𝑥𝐾,3 + 0.1668𝑥𝐾,4

) 

3 𝐼𝐹 

[
 
 
 
𝑂𝑝𝑒𝑛 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,1~1408586

𝐻𝑖𝑔ℎ 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,2~1408595

𝐿𝑜𝑤 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,3~1408575

𝐶𝑙𝑜𝑠𝑒 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,4~1408582]
 
 
 

𝑇𝐻𝐸𝑁 (

𝑦𝐾 = 0.0426
+0.6934𝑥𝐾,1 + 0.4999𝑥𝐾,2

+0.4721𝑥𝐾,3 + 0.1119𝑥𝐾,4

) 

4 𝐼𝐹 

[
 
 
 
𝑂𝑝𝑒𝑛 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,1~1404596

𝐻𝑖𝑔ℎ 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,2~1404596

𝐿𝑜𝑤 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,3~1404596

𝐶𝑙𝑜𝑠𝑒 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,4~1404596]
 
 
 

𝑇𝐻𝐸𝑁 (

𝑦𝐾 = 0.3734
+0.1978𝑥𝐾,1 + 0.4681𝑥𝐾,2

+0.0169𝑥𝐾,3 + 0.1065𝑥𝐾,4

) 

5 𝐼𝐹 

[
 
 
 
𝑂𝑝𝑒𝑛 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,1~1407657

𝐻𝑖𝑔ℎ 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,2~1407656

𝐿𝑜𝑤 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,3~1407657

𝐶𝑙𝑜𝑠𝑒 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,4~1407656]
 
 
 

𝑇𝐻𝐸𝑁 (

𝑦𝐾 = 0.3960
+0.1474𝑥𝐾,1 + 0.4800𝑥𝐾,2

−0.0060𝑥𝐾,3 + 0.1204𝑥𝐾,4

) 

6 𝐼𝐹 

[
 
 
 
𝑂𝑝𝑒𝑛 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,1~1407442

𝐻𝑖𝑔ℎ 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,2~1407442

𝐿𝑜𝑤 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,3~1407442

𝐶𝑙𝑜𝑠𝑒 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,4~1407442]
 
 
 

𝑇𝐻𝐸𝑁 (

𝑦𝐾 = 0.4063
+0.1198𝑥𝐾,1 + 0.4500𝑥𝐾,2

−0.0018𝑥𝐾,3 + 0.1031𝑥𝐾,4

) 

7 𝐼𝐹 

[
 
 
 
𝑂𝑝𝑒𝑛 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,1~1408443

𝐻𝑖𝑔ℎ 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,2~1408443

𝐿𝑜𝑤 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,3~1402795

𝐶𝑙𝑜𝑠𝑒 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,4~1402795]
 
 
 

𝑇𝐻𝐸𝑁 (

𝑦𝐾 = 0.4692
+0.1045𝑥𝐾,1 + 0.4195𝑥𝐾,2

−0.0190𝑥𝐾,3 + 0.0837𝑥𝐾,4

) 

8 𝐼𝐹 

[
 
 
 
𝑂𝑝𝑒𝑛 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,1~1402769

𝐻𝑖𝑔ℎ 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,2~1402768

𝐿𝑜𝑤 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,3~1402769

𝐶𝑙𝑜𝑠𝑒 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,4~1402769]
 
 
 

𝑇𝐻𝐸𝑁 (

𝑦𝐾 = 0.5284
+0.1856𝑥𝐾,1 + 0.4638𝑥𝐾,2

−0.1411𝑥𝐾,3 − 0.0306𝑥𝐾,4

) 

9 𝐼𝐹 

[
 
 
 
𝑂𝑝𝑒𝑛 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,1~1402744

𝐻𝑖𝑔ℎ 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,2~1402744

𝐿𝑜𝑤 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,3~1402744

𝐶𝑙𝑜𝑠𝑒 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,4~1402744]
 
 
 

𝑇𝐻𝐸𝑁 (

𝑦𝐾 = 0.5753
+0.0985𝑥𝐾,1 + 0.4011𝑥𝐾,2

−0.0503𝑥𝐾,3 + 0.0624𝑥𝐾,4

) 

10 𝐼𝐹 

[
 
 
 
𝑂𝑝𝑒𝑛 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,1~1402732

𝐻𝑖𝑔ℎ 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,2~1402732

𝐿𝑜𝑤 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,3~1402732

𝐶𝑙𝑜𝑠𝑒 𝑃𝑟𝑖𝑐𝑒, 𝑥𝐾,4~1402732]
 
 
 

𝑇𝐻𝐸𝑁 (

𝑦𝐾 = 0.5302
+0.1419𝑥𝐾,1 + 0.4569𝑥𝐾,2

−0.0128𝑥𝐾,3 + 0.1007𝑥𝐾,4

) 
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 To study the performance of the ALMMO system for regression, more experiments 

have been done and tabulated in Table 19. Here, the following state-of-the-art algorithms are 

used for comparison: 

1) AnYa FRB system [60]; 

2) Fuzzily connected multi-model systems (FCMMS) [248]; 

3) Least square linear regression (LSLR) algorithm [249], which is widely used in the 

fields of finance and economy [183]; 

4) Sliding window least square linear regression (SWLSLR) algorithm  [250], which is 

also widely used in the fields of finance and economy [183]; 

5) Evolving Takagi-Sugeno (ETS) algorithm [11]; 

6) Dynamic evolving neural-fuzzy inference system (DENFIS) [188]; 

7) Sequential adaptive fuzzy inference system (SAFIS) [251]. 

The width of the sliding window for LSLR algorithm is 200. The following three 

measures: the non-dimensional error index (NDEI) [252], the number of rules (NR) and 

execution time ( texe , in seconds) are considered to evaluate the performance. In this 

numerical example, the data samples are standardized online. The detailed expression of 

NDEI is given in equation (6.2): 

NDEI = √
∑ (𝑡𝑖−𝑦𝑖)

2𝐾
𝑖=1

𝐾𝜎𝑡
2  ,                                                                              (6.2) 

where 𝑦𝑖  is estimated value as the output of the system; 𝑡𝑖  is the true value and 𝜎𝑡  is the 

standard deviation of the true value. 

It is clear from Table 19 that the ALMMO system always exhibits a better performance 

than its competitors. In addition, the ALMMO system is also faster than the ETS, OLSLR, 

DENFIS and SAFIS predictors and it can also work on a sample by sample (does not need 

sliding window) basis like the ETS, AnYa and FCMMS. 

For a further evaluation, the S&P dataset is considered. The following algorithms: 

1) Evolving fuzzy neural networks (EFUNN) [253], 

2) SeroFAM [254]; 

3) Simpl_eTS [255]; 
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are additionally used for comparison. The comparative results are tabulated in Table 20. The 

prediction result of the S&P index dataset using ALMMO system is presented in Figure 51. 

Table 19. Performance demonstration and comparison on QQSRM problem 

Input and output 
Performance 

Algorithm NDEI NR texe 

Input: 𝒙𝐾 

Output: 𝑥𝐾+8,2 

ALMMO 0.135 10 4.63 

FCMMS 0.143 4 7.77 

AnYa 0.164 3 3.69 

OLSLR 0.169  13.32 

SWLSLR 0.146  1.14 

ETS 0.183 6 36.52 

DENFIS 1.598 12 19.4 

SAFIS 0.554 20 23.16 

Input: 𝒙𝐾 

Output: 𝑥𝐾+12,2 

ALMMO 0.152 10 4.40 

FCMMS 0.162 4 7.75 

AnYa 0.197 3 3.66 

OLSLR 0.192  12.86 

SWLSLR 0.164  1.10 

ETS 0.234 8 45.71 

DENFIS 1.606 12 19.40 

SAFIS 1.007 17 22.59 

Input: 𝒙𝐾 

Output: 𝑥𝐾+16,2 

ALMMO 0.168 10 4.42 

FCMMS 0.175 4 7.60 

AnYa 0.185 3 3.69 

OLSLR 0.204  12.71 

SWLSLR 0.180  1.11 

ETS 0.191 8 48.85 

DENFIS 1.597 12 19.7 

SAFIS 0.964 18 22.54 

Input: 𝒙𝐾 

Output: 𝑥𝐾+20,2 

ALMMO 0.178 10 4.43 

FCMMS 0.189 4 7.84 

AnYa 0.195 3 3.67 

OLSLR 0.219  12.69 

SWLSLR 0.199  1.09 

ETS 0.200 8 48.60 

DENFIS 1.562 12 19.9 

SAFIS 1.042 11 16.73 

Input: 𝒙𝐾 

Output: 𝑥𝐾+24,2 

ALMMO 0.192 10 4.68 

FCMMS 0.204 4 7.78 

AnYa 0.231 3 3.66 

OLSLR 0.242  12.80 

SWLSLR 0.218  1.10 

ETS 0.271 7 45.71 

DENFIS 1.582 12 20.20 

SAFIS 0.779 14 22.55 
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Table 20. Performance demonstration and comparison on S&P problem 

Algorithm NDEI NR 

ALMMo 0.013 8 

FCMMS 0.014 5 

AnYa  0.018 11 

OLSLR  0.020  

SWLSLR  0.018  

ETS  0.015 14 

EFUNN  0.154 114.3 

DENFIS  0.020 6 

SAFIS  0.209 6 

SeroFAM  0.027 29 

FCMMS 0.045 7 

 

 

              (a) Prediction results                                      (b) Zoom-in area (circle in (a))               

Figure 51. Prediction result for the S&P problem. 

As one can see from Table 20, for the S&P index data, the accuracy of the ALMMO 

system is 0.013, which ranks the first place from the 11 algorithms studied. It is also worth to 

notice that the S&P index dataset is, in fact, more smooth if compared with the QQSRM 

database [245]. Thus, one can conclude that the ALMMO system outperforms other 

prediction algorithms, especially in a more complicated situation. In addition, it is 

autonomously self-developing and does not require any user- or problem- specific parameters 

or prior assumptions to be made. 
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B. Classification 

For the binary classification problems, the class of an unlabelled data sample, 𝒙 can be 

determined by the output of the ALMMO system as: 

𝑦̂(𝒙) = Round(𝑦(𝒙)),                                                                             (6.3) 

where Round(𝑦(𝒙)) denotes the operation of rolling 𝑦(𝒙) to the nearest integer.  

The performance of the ALMMO system is tested on the PIMA [247] and occupancy 

detection  [238] datasets as mentioned in the previous subsection. The most popular online 

and offline classification approaches are involved for further comparison. The ALMMO 

system is compared with the following well-known approaches: 

1) Self-organizing map (SOM) with “winner takes all” principle [110] with the net size 

9 × 9; 

2) Learning vector quantization (LVQ) [109] with a hidden layer of size 32; 

3) Back-propagation neural network (BPNN) with three hidden layers of size 16; 

4) Naïve Bayes classifier; 

5) SVM with Gaussian kernel function (SVM-G) [142]; 

6) SVM with linear kernel function (SVM-L) [142]; 

7) FLEXFIS-Class [256]; 

8) Dynamic evolving neural-fuzzy inference system (DENFIS) [188];  

9) Peephole long short-term memory (LSTM) [67], [257] with a hidden layer of size 32; 

10) AnYa FRB classifier [60]; 

11) eClass0 [160]; 

12) Simpl_eClass0 [162];  

13) Fuzzily connected multi-model systems (FCMMS) [248]. 

Note that among the comparative algorithms listed above, FLEXFIS-Class, DENFIS, 

AnYa classifier, eClass0, Simpl_eClass0 and FCMMS are the multi-model approaches. The 

ALMMO system as well as AnYa classifier, eClass0, Simpl_eClass0 and FCMS are evolving 

approaches which can start classifying “from scratch” from the very first data sample and 

self-evolve with the data stream, while the other classifiers require pre-training. In contrast 
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with the original AnYa FRB classifier, the ALMMO system uses an advanced, nonparametric 

mechanism for data cloud/fuzzy rule identification as well as the unimodal density-based 

membership functions. 

For the PIMA dataset, 90% of the data samples are selected randomly for training and 

the rest are used for validation. For a fair comparison, all classifiers are pre-trained and the 

involved evolving approaches will stop learning after the training process. 30 Monto Carlo 

experiments are conducted; the means and standard deviations of the accuracy rates of the 

classification results are tabulated in Table 21. 

Table 21. Overall classification performance-offline scenario 

Algorithm 

Multi-

model 

(Yes/ 

no) 

On-

line 

(Yes

/no) 

Can start 

from 

“scratch”

? 

Accuracy 

Pima
 

Occupancy 

Detection- 

Testing set 1 

Occupancy 

Detection- 

Testing set 2 

Mean STD 
a
 Mean STD Mean STD 

ALMMO Yes Yes Yes 0.777 0.040 0.979 0.001 0.992 0.000 

SOM No No  0.728 0.046 0.974 0.007 0.946 0.010 

LVQ No No  0.685 0.041 0.945 0.002 0.870 0.001 

BPNN No No  0.763 0.043 0.930 0.039 0.906 0.052 

Naïve Bayes No No  0.743 0.048 0.978 0.000 0.985 0.000 

SVM-G No No  0.737 0.041 0.976 0.001 0.960 0.000 

SVM-L No No  0.758 0.042 0.979 0.000 0.990 0.001 

FLEXFIS Yes Yes No 0.575 0.144 0.835 0.170 0.789 0.180 

DENFIS Yes Yes No 0.725 0.042 0.915 0.042 0.873 0.049 

LSTM No No  0.655 0.053 0.862 0.103 0.897 0.048 

AnYa Yes Yes Yes 0.684 0.052 0.802 0.115 0.841 0.060 

eClass0 Yes Yes Yes 0.602 0.078 0.948 0.020 0.871 0.019 

Simpl_eClass0 Yes Yes Yes 0.633 0.085 0.935 0.050 0.939 0.029 

FCMMS Yes Yes Yes 0.533 0.111 0.896 0.091 0.833 0.072 
a
 Standard deviation. 

The confusion matrixes of the classification results obtained by selecting the first 90% 

(691 samples) of the dataset for training and using the rest of the data samples (77 samples) 

for validation are presented in Table 22.  

For the occupancy detection dataset, the classifiers are firstly trained with the training 

set, and classification is conducted on the two testing sets separately with the trained 

classifiers in an offline scenario. 30 Monto Carlo experiments are conducted by randomly 

scrambling the order of the training samples and the overall accuracies of the classification 

results are presented in Table 21. The average true positive rates and true negative rates of the 
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classification results on the two testing sets obtained with the classifiers trained by the 

original training set are tabulated in Table 23. 

Table 22. Confusion matrices and the classification accuracy on PIMA dataset 

Algorithm 
Actual/ 

Classification 
Negative Positive Accuracy 

ALMMO 
Negative 43 samples 3 samples 

0.792 
Positive 13 samples 18 samples 

SOM 
Negative 37 samples 9 samples 

0.714 
Positive 13 samples 18 samples 

LVQ 
Negative 39 samples 7 samples 

0.597 
Positive 24 samples 7 samples 

BPNN 
Negative 39 samples 7 samples 

0.792 
Positive 9 samples 22 samples 

Naïve 

Bayes 

Negative 38 samples 8 samples 
0.766 

Positive 10 samples 21 samples 

SVM-G 
Negative 36 samples 10samples 

0.779 
Positive 7 samples 24 samples 

SVM-L 
Negative 39 samples 7 samples 

0.792 
Positive 9 samples 22 samples 

FLEXFIS 
Negative 46 samples 0 samples 

0.571 
Positive 31 samples 0 samples 

DENFIS 
Negative 39 samples 7 samples 

0.727 
Positive 14 samples 17 samples 

LSTM 
Negative 44 samples 2 samples 

0.584 
Positive 30 samples 1 samples 

AnYa 
Negative 36 samples 10 samples 0.714 

 Positive 12 samples 19 samples 

eClass0 
Negative 24 samples 22 samples 0.597 

 Positive 9 samples 22 samples 

Simpl_ 

eClass0 

Negative 34 samples 12 samples 
0.649 

Positive 15 samples 16 samples 

FCMMS 
Negative 28 samples 18 samples 

0.546 
Positive 17 samples 14 samples 

 

A comparison in an online scenario is also conducted between the fully evolving 

algorithms that can start “from scratch”, namely the ALMMO system, AnYa FRB classifier, 

eClass0, Simpl_eClass0 and FCMMS, by considering the PIMA dataset as a data stream. In 

this experiment, the order of the data samples in the stream is randomly determined, and the 

algorithms start classifying from the first data sample and keep updating the system structure 

along with the arrival of new data samples. Similarly, the whole occupancy detection dataset 

is considered as a data stream, and 30 Monto Carlo experiments are conducted by randomly 

scrambling the order of the data samples to evaluate the performance of the five evolving 
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algorithms in an online scenario. The average results of the two experiments are reported in 

Table 24. 

Table 23. The average true positive rates and true negative rates of the classification results 

on occupancy detection dataset 

Algorithm 

Occupancy Detection- 

Testing set 1 

Occupancy Detection- 

Testing set 2 

True 

Negative 

Rate 

True 

Positive 

Rate 

True 

Negative 

Rate 

True 

Positive 

Rate 

ALMMO 0.968 0.998 0.992 0.994 

SOM 0.965 0.991 0.945 0.943 

LVQ 0.932 0.965 0.847 0.991 

BPNN 0.971 0.883 0.918 0.866 

Naïve Bayes 0.968 0.995 0.982 0.993 

SVM-G 0.965 0.996 0.950 0.993 

SVM-L 0.967 0.998 0.990 0.992 

FLEXFIS 0.810 0.826 0.870 0.745 

DENFIS 0.969 0.790 0.936 0.699 

LSTM 0.967 0.770 0.947 0.750 

AnYa 0.985 0.482 0.967 0.348 

eClass0 0.931 0.972 0.845 0.973 

Simpl_eClass0 0.960 0.911 0.966 0.862 

FCMMS 0.919 0.895 0.828 0.909 

 

Table 24. Overall classification performance-online scenario 

Algorithm 

Accuracy 

Pima
 Occupancy 

Detection 

ALMMO 0.751 0.986 

AnYa 0.666 0.949 

eClass0 0.570 0.931 

Simpl_eClass0 0.584 0.968 

FCMMS 0.545 0.924 

 

From Table 21 and Table 24 one can see that, the ALMMO system provides highly 

accurate classification results in the numerical examples in both offline and online scenarios 

compared with its competitors. It is worth to be noticed that, the ALMMO system is an online 

classifier and can work “from scratch”.  The most important point is that the ALMMO system 

is entirely data driven and is free from unrealistic assumptions, restrictions or problem- or 

user- specific prior knowledge.  
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6.2.2. Zero Order Autonomous Learning Multi-Model Classifier 

6.2.2.1. Benchmark Problems for Evaluation 

In this section, the performance of the ALMMO-0 classifier is evaluated based on the 

following popular benchmark datasets: 

1) Banknote authentication dataset [235]; 

2) Monk’s problem dataset [258]; 

3) Tic-Tac-Toe endgame dataset [259]; 

4) CNAE-9 dataset [260]. 

The details of the banknote authentication dataset have been given in Table 9, the details 

of the other three benchmark datasets are given in Table 25. 

Table 25. Details of benchmark datasets for evaluating ALMMO-0 classifier 

Dataset Number of Classes Number of Features Number of Samples 

Monk’s 2 6 
169 (training set) 

432 (testing set) 

Tic-Tac-Toe 2 9 958 

CNAE-9 2 856 1080 

 

During the numerical experiments, for the banknote authentication, Tic-Tac-Toe 

endgame and CNAE-9 datasets, 80% of the data samples of each class are randomly selected 

out for training and the rest is used for validation. 

6.2.2.2. Performance Evaluation and Discussion 

Firstly, the confusion matrix of the classification result of the ALMMO-0 classifier on 

the Monk’s problem is given in Table 25. In this section, the performance of the classifier is 

compared with the following well-known classification algorithms: 

1) SVM classifier with Gaussian kernel [142]; 

2) Naïve Bayes classifier [3]; 

3) KNN classifier [261]; 

4) Decision tree (DT) classifier [262]; 
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and the confusion matrices of the classification results obtained by the four algorithms are 

also tabulated in the same table. 

Table 26. Confusion matrices of classification results on Monk’s problem 

Algorithm Actual 
Classification 

0 1 

ALMMO-0
 

0 
82.07% 

238 samples 

17.93% 

52 samples 

1 
15.49% 

22 samples 

84.51% 

120 samples 

SVM 

0 
85.17% 

247 samples 

14.83% 

43 samples 

1 
47.89% 

68 samples 

52.11% 

74 samples 

Naïve Bayes 

0 
90.34% 

262 samples 

9.66% 

28 samples 

1 
88.73% 

126 samples 

11.27% 

16 samples 

KNN 

0 
82.07% 

238 samples 

17.93% 

52 samples 

1 
26.06% 

37 samples 

73.94% 

105 samples 

DT 

0 
71.03% 

206 samples 

28.97% 

84 samples 

1 
35.21% 

50 samples 

64.79% 

92 samples 

 

For a further evaluation and comparison between the five classifiers, the overall 

accuracies of the classification results on the four benchmark datasets and the time 

consumptions for training are depicted in Figure 52 and Figure 53, respectively. Due to the 

very high dimensionality of the CNAE-9 dataset, the Naïve Bayes classifier failed to give any 

valid result on this one. 

From the four numerical examples above one can see that the SVM classifier with 

Gaussian kernel [142] requires more time for training and it is less effective in handling high 

dimensional problems. The naïve Bayes classifier [3] is the fastest one due to its simplicity 

and its performance is quite stable, though not high. The KNN classifier [261] is also very 

efficient and its classification accuracies in some problems are comparable to the ALMMO-0 

classifier, but it is not effective in handling high-dimensional datasets with complex structure. 

In addition, its interpretability is not high because it does not reveal an internal structure. The 
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classification accuracy of decision tree classifier [262] is relatively low and it is less efficient 

in handling lower dimensional problems. 

 

                   (a) Banknote authentication                                  (b) Monk’s problem 

 

                    (c) Tic-Tac-Toe endgame                                         (d) CNAE-9 

Figure 52. Overall classification accuracy on the four benchmark datasets. 

In contrast, the ALMMO-0 classifier can exhibit excellent performance in all the four 

real benchmark problems and, at the same time, still keeps its high computational efficiency. 

It is fully autonomous and offers good interpretability. Moreover, it is evolving in nature.  
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                   (a) Banknote authentication                                  (b) Monk’s problem 

 

                    (c) Tic-Tac-Toe endgame                                          (d) CNAE-9 

Figure 53. Overall time consumption for training on the four benchmark datasets. 

6.2.3. Self-Organising Fuzzy Logic Classifier 

6.2.3.1. Benchmark Problems for Evaluation 

In this section, the performance of the SOFL classifier is evaluated based on the 

following challenging benchmark datasets: 

1) Occupancy detection dataset[238]; 

2) Optical recognition of handwritten digits dataset [263]; 

3) Multiple features dataset [244]; 

4) Letter recognition dataset [240]. 

The details of the occupancy detection and letter recognition datasets have been given in 

Table 11 and the details of the multiple features dataset can be found in Table 14. The optical 
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recognition dataset consists of one training set with 3823 data samples and one testing set 

with 1797 data samples [263]. There are 10 classes within the dataset, and each data sample 

has 64 attributes. 

6.2.3.2. Performance Evaluation and Discussion 

Firstly, the influence of different levels of granularity on the classification results of the 

SOFL approach is studied, and the occupancy detection and optical recognition datasets are 

used in this experiment. In this example, the offline scenario is considered only and the level 

of granularity, 𝐺 is varied from 1 to 12. The classification results are tabulated in Table 27 

and the performance is measured in terms of classification accuracy (Acc), the number of 

identified prototypes, denoted by P  (P = ∑ 𝑃𝑖
𝐶
𝑖=1 ) and the training time consumption in 

seconds, denoted by texe . Here, the Mahalanobis distance, Euclidean distance and cosine 

dissimilarity are used.  

In general, Euclidean distance is the most widely used distance metric, and its 

effectiveness and validity as the distance measure, in most cases, are guaranteed [36]. If the 

data generation model follows a Gaussian distribution or some similar distributions, 

Mahalanobis distance would be a good choice. While in high dimensional problems, cosine 

dissimilarity is free from the “curse of dimensionality” [264], [265] and thus, is more 

effective and more frequently used. 

However, for the optical recognition dataset, as the co-variance matrix of the data is not 

always positive definite, as a result, only the results obtained using the Euclidean distance 

and cosine dissimilarity are considered. The results tabulated are the average of 10 Monte 

Carlo experiments by randomly descrambling the order of the training samples. 

From Table 27 one can see that, in general, the higher level of granularity is chosen, the 

higher accuracy the SOFL classifier can exhibit during classification, but the more prototypes 

the classifier identifies, which can lower down the computation- and memory-efficiency. It is 

worth to notice that the proposed approach produced the same result in 10 Monte Carlo 

experiments, which demonstrates that the SOFL classifier is invariant to the changes in the 

order of data samples during the offline training. 

One may also notice from Table 27 that the type of distance/dissimilarity measure used 

also influences the performance of the proposed approach. As the SOFL classifier 

accommodates various types of distance/dissimilarity measures, one can use the current 

knowledge of the problem domain to choose the appropriate distance measure.  
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Table 27. Influence of granularity on classification performance 

Dataset Distance 
Meas

ures 
𝐺 

1 2 3 4 5 6 

Occupan

cy  

Mahalanobis 

Acc 0.8942 0.8920 0.9038 0.9426 0.9494 0.9532 

P 14 31 55 116 217 339 

texe 2.80 2.97 3.08 3.11 3.16 3.14 

Euclidean 

Acc 0.8107 0.8403 0.8618 0.9112 0.9382 0.9513 

P 16 46 77 137 201 281 

texe 2.15 2.31 2.47 2.55 2.59 2.65 

Cosine 

Acc 0.8109 0.8161 0.8877 0.9261 0.9481 0.9519 

P 12 43 72 108 167 217 

texe 2.13 2.31 2.55 2.56 2.63 2.72 

Optical  

Euclidean 

Acc 0.9160 0.9421 0.9499 0.9716 0.9766 0.9761 

P 25 48 105 214 409 643 

texe 0.09 0.10 0.10 0.09 0.10 0.10 

Cosine 

Acc 0.9087 0.9421 0.9588 0.9649 0.9699 0.9733 

P 25 50 116 238 417 655 

texe 0.09 0.10 0.09 0.09 0.10 0.10 

Dataset Distance 
Meas

ures 

L 

7 8 9 10 11 12 

Occupan

cy  

Mahalanobis 

Acc 0.9539 0.9543 0.9543 0.9543 0.9543 0.9543 

P 549 786 1029 1279 1433 1512 

texe 3.33 3.16 3.26 3.29 3.36 3.32 

Euclidean 

Acc 0.9564 0.9579 0.9584 0.9588 0.9588 0.9588 

P 395 525 663 783 939 1094 

texe 2.72 2.68 2.69 2.68 2.74 2.70 

Cosine 

Acc 0.9558 0.9557 0.9559 0.9559 0.9559 0.9559 

P 288 388 507 650 825 1007 

texe 2.78 2.68 2.75 2.70 2.79 2.77 

Optical  

Euclidean 

Acc 0.9811 0.9833 0.9833 0.9833 0.9839 0.9839 

P 840 950 1012 1034 1046 1048 

texe 0.10 0.10 0.10 0.11 0.11 0.11 

Cosine 

Acc 0.9755 0.9761 0.9761 0.9761 0.9761 0.9761 

P 843 960 1013 1039 1039 1046 

texe 0.11 0.11 0.11 0.11 0.11 0.11 

 

Secondly, the classification performance of the SOFL classifier with different amounts 

of offline training samples is investigated. In this example, the letter recognition and multiple 

features datasets are used. As the two datasets are both highly complex, the 12
th

 level of 

granularity is chosen (𝐺 = 12) to ensure the SOFL classifier can learn sufficient details. The 

percentage of offline training samples is changed from 5% to 50% and the classification is 

conducted on the rest 50% of the data in an offline scenario. The results are tabulated in 

Table 28, which are the averages of 10 Monte Carlo experiments by randomly selecting the 
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training set and testing set. The corresponding average training time consumption (in 

seconds) is depicted in Figure 54. 

 

              (a) Letter recognition                                         (b) Multiple features 

Figure 54. The average training time consumption with different amounts of training samples. 

Table 28. Classification performance (in accuracy) with different amount of data for offline 

training 

Dataset Distance 
Percentage for Offline Training 

10% 15% 20% 25% 30% 35% 40% 45% 50% 

Letter  

Mahanobis 
0.83

75 

0.86

89 

0.88

78 

0.89

83 

0.90

79 

0.91

62 

0.92

17 

0.92

41 

0.92

65 

Euclidean 
0.79

24 

0.84

15 

0.87

03 

0.88

63 

0.90

13 

0.90

82 

0.91

85 

0.92

44 

0.92

98 

Cosine 
0.80

13 

0.84

80 

0.87

31 

0.89

04 

0.90

26 

0.91

09 

0.91

97 

0.92

53 

0.92

96 

Multiple  

Euclidean 
0.84

15 

0.86

64 

0.88

54 

0.89

24 

0.90

26 

0.90

76 

0.91

44 

0.92

03 

0.92

67 

Cosine 
0.87

03 

0.88

95 

0.90

25 

0.91

25 

0.91

94 

0.92

63 

0.92

69 

0.92

76 

0.93

66 

 

In order to investigate the performance of the SOFL classifier in an online scenario, an 

extra experiment is conducted on the two datasets. The SOFL classifier is firstly trained with 

15% of the data samples in an offline scenario, and then, is trained in an online scenario by 

using different amounts (from 5% to 35%) of data samples on a sample-by-sample basis. The 

classification accuracy of SOFL classifier is evaluated on the rest 50% of data samples. The 

average performance is tabulated in Table 29 after 10 Monte Carlo experiments by randomly 

selecting the offline training set, online training set and testing set. The corresponding 

average time consumption per data sample (in millisecond) during the online training process 
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is given in Figure 55. In both Table 28 and Table 29, the classification results on the multiple 

feature dataset using the Mahalanobis distance is not given for the same reason mentioned at 

the beginning of this subsection.  

 

         (a) Letter recognition                                              (b) Multiple features 

Figure 55. The average training time consumption per sample during the online training. 

Table 29. Classification performance (in accuracy) with different amount of data for online 

training following the offline training with 15% of the data 

Dataset Distance 
Percentage for Online Training 

5% 10% 15% 20% 25% 30% 35% 

Letter 

Mahanobis 
0.85

94 

0.88

36 

0.90

12 

0.91

25 

0.91

99 

0.92

79 

0.93

27 

Euclidean 
0.87

38 

0.89

10 

0.90

62 

0.91

62 

0.92

31 

0.93

03 

0.93

52 

Cosine 
0.87

58 

0.89

31 

0.90

70 

0.91

58 

0.92

33 

0.92

93 

0.93

50 

Multiple  

Euclidean 
0.88

27 

0.90

97 

0.91

66 

0.92

05 

0.92

72 

0.93

40 

0.93

52 

Cosine 
0.90

62 

0.92

58 

0.93

35 

0.93

16 

0.93

18 

0.93

99 

0.94

09 

 

From Table 28 one can conclude that the more data samples the SOFL classifier is 

provided with during the offline training stage, the better performance it can exhibit in the 

classification stage. Table 29 shows that the performance of the SOFL classifier can be 

further improved through the online update with more training data samples after the offline 

training, which is one of the very strong advantages of the proposed approach. In real 

applications, new data is more often coming in the form of data streams, which may exhibit 

shifts and/or drifts in the data pattern [117]. With the ability of self-evolving online learning, 
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the SOFL classifier is able to continuously follow the changing data pattern without full 

retraining, which largely enhances the efficiency and saves the computational resources. 

Figure 56 demonstrates the very high computational efficiency (less than 0.3 millisecond per 

data sample) for the SOFL classifier to self-evolve recursively on a sample-by-sample basis.  

To further evaluate the performance of the SOFL classifier with  𝐺 = 12, a number of 

state-of-the-art approaches are involved for comparison in an offline scenario based on the 

four benchmark datasets listed in subsection 6.2.3.1: 

1) SVM classifier [142]; 

2) KNN classifier [132]; 

3) DT classifier [262]; 

4) SOM classifier [110]; 

6) DENFIS classifier [188]; 

7) eClass-0 classifier [160]; 

8) TEDAClass classifier [51]. 

During the comparison, the SVM classifier uses a linear kernel; for the KNN classifier, 

𝑘 is equal to 10; SOM classifier applies “winner takes all” principle with a net size of 9 × 9. 

As one may obtain the covariance matrices that are not positive definite from the optical 

recognition and multiple feature datasets, only the Euclidean distance and cosine dissimilarity 

are used for these two datasets during the comparison. For letter recognition and multiple 

features datasets, 50% of the data for training are used and the rest for testing. The 

performance comparison is tabulated in Table 30. The reported results are the averages of 10 

Monte Carlo experiments. In the experiments, the DENFIS classifier failed in both, the 

optical recognition and multiple feature datasets because of the high dimensionality. From 

Table 30 one can see that, the SOFL classifier can exhibit very high performance on the four 

benchmark problems with a very short training process. 
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Table 30. Performance evaluation and comparison for the SOFL classifier 

Dataset Algorithm ACC texe (s) 

Occupancy  

SOFL-Mahalanobis 0.9543 3.32 

SOFL-Euclidean 0.9588 2.70 

SOFL-Cosine 0.9559 2.77 

SVM 0.9577 103.62 

KNN 0.9664 0.11 

DT 0.9314 0.10 

SOM 0.9512 9.40 

DENFIS 0.8909 14.28 

eClass-0 0.8863 0.72 

Simpl_eClass0 0.9096 0.49 

TEDAClass 0.9634 416.50 

Optical  

SOFL-Euclidean 0.9839 0.11 

SOFL-Cosine 0.9761 0.11 

SVM 0.9627 1.49 

KNN 0.9766 0.08 

DT 0.8525 0.11 

SOM 0.9577 12.19 

DENFIS No valid result 

eClass-0 0.8681 0.69 

Simpl_eClass0 0.8883 1.51 

TEDAClass 0.9120 1649.17 

Letter  

SOFL-Mahalanobis 0.9265 0.52 

SOFL-Euclidean 0.9298 0.20 

SOFL-Cosine 0.9296 0.21 

SVM 0.8533 16.16 

KNN 0.9180 0.05 

DT 0.8243 0.10 

SOM 0.5363 12.85 

DENFIS 0.3256 95.36 

eClass-0 0.5125 0.74 

Simpl_eClass0 0.5853 1.09 

TEDAClass 0.5154 2335.71 

Multiple  

SOFL-Euclidean 0.9267 0.05 

SOFL-Cosine 0.9366 0.05 

SVM 0.9671 15.97 

KNN 0.9151 0.02 

DT 0.9244 0.16 

SOM 0.8746 29.19 

DENFIS No valid result 

eClass-0 0.8264 1.59 

Simpl_eClass0 0.8201 3.30 

TEDAClass 0.8637 14011.87 
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6.2.4. Autonomous Anomaly Detection Algorithm 

6.2.4.1. Benchmark Problems for Evaluation 

In this section, the following datasets are considered for evaluating the performance of 

the AAD algorithm on anomaly detection: 

1) Synthetic Gaussian dataset [37]; 

2) User knowledge modelling dataset [266]; 

3) Wine quality dataset [267]; 

4) Wilt dataset [268]. 

The synthetic Gaussian dataset [37] contains 720 samples with 2 attributes. There is 1 

larger cluster and 2 smaller ones grouping 700 data samples between them. In addition, 4 

collective anomalous sets formed by 18 samples as well as 2 single anomalies were 

identified. The models of the three major clusters extracted from the data (𝝁, 𝝈, 𝑆) are as 

follows (in the form of model, 𝒙~𝑁(𝝁, 𝝈) and support, 𝑆): 

Major cluster 1: 𝒙~𝑁 ([0 3], [
0.09 0
0 0.09

]), 400 samples; 

Major cluster 2: 𝒙~𝑁 ([2.5 3], [
0.16 0
0 0.16

]), 150 samples; 

Major cluster 3: 𝒙~𝑁 ([2.5 0], [
0.16 0
0 0.16

]), 150 samples. 

The models of the 4 collectives anomalous sets are: 

Anomalous set 1: 𝒙~𝑁 ([0 1], [
0.09 0
0 0.09

]), 5 samples; 

Anomalous set 2: 𝒙~𝑁 ([4.5 0], [
0.09 0
0 0.09

]), 4 samples; 

Anomalous set 3: 𝒙~𝑁 ([4.5 4], [
0.01 0
0 0.01

]), 5 samples; 

Anomalous set 4: 𝒙~𝑁 ([1 −1], [
0.01 0
0 0.01

]), 4 samples; 

and the two single anomalies are [2 5] and [1.5 5]. 

This dataset is visualized in Figure 56, where the anomalies are circled in by red 

ellipses. It is important to stress that, collective anomalies and single anomaly close to the 

global mean of the dataset are very difficult to detect using traditional approaches.  
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Figure 56. Visualization of the synthetic Gaussian dataset. 

The user knowledge modelling dataset contains 403 samples, and each data sample has 

five attributes and one label, which represents the level of the user knowledge [266]. There 

are four levels of the user knowledge, 1) high (130 samples), 2) middle (122 samples), 3) low 

(129 samples) and 4) very low (50 samples). The existing anomalies in four classes are listed 

by their IDs as follows [37]: 

1) High: 2, 10, 14, 34, 182, 187, 190, 210, 230, 246, 258, 313, 317, 318, 378, 379, 384, 

391, 399 and 400; 

2) Middle: 4, 13, 50, 57, 62, 65, 124, 130, 162, 207, 208, 211, 212, 214, 222, 223, 245, 

250, 257, 272, 286, 362, 372, 373 and 403; 

3) Low:  3, 5, 18, 53, 61, 128, 129, 131, 198, 204, 244, 319, 374, 395 and 401; 

4) Very low: 1, 17, 117, 197, 209, 288, 310, 312, and 314. 

Wine quality dataset is related to the quality of red Portuguese “Vinho Verde” wine. 

This dataset has 1599 data samples with 11 attributes and one label, which corresponds to the 

score of quality of the wine from 3 to 8 [267]. This dataset is not balanced as there are much 

more normal wines than excellent or poor ones. There are 10 samples with score 3, 53 

samples with score 4, 681 samples with score 5, 638 samples with score 6, 199 samples with 

score 7 and 18 samples with score 8. The number of existing anomalies in each class are 

listed as follows: 1) Score 3: 1; 2) Score 4: 3; 3) Score 5: 50; 4) Score 6: 42; 5) Score 7: 9; 6) 

Score 8: 3. In total, there are 108 anomalies [37]. 

Wilt dataset comes from a remote sensing study involving detecting diseased trees in 

Quickbird imagery. There are two classes in the dataset: 1) “diseased trees” class (74 

samples) and 2) “other land cover” class (4265 samples). Each sample has 5 attributes and 1 
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label (“other land cover” or diseased trees”). There are 120 anomalies with the label “other 

land cover” and no anomaly in the “diseased trees” class [37]. 

6.2.4.2. Performance Evaluation and Discussion 

Using the proposed approach, 61 potential anomalies identified from the synthetic 

dataset in the first stage are depicted in Figure 57 (a) (the green circles). In stage 2, 10 data 

clouds are formed from the potential anomalies as presented in Figure 57(b), where the 

circles with the different colours are the data samples from different data clouds. There are 31 

anomalies identified in the final stage of the proposed approach as shown in Figure 58 (red 

circles).   

 

                 (a) The potential anomalies                                   (b) The data clouds 

Figure 57. The identified potential anomalies and the data clouds formed by them. 

 

Figure 58. The identified anomalies by the AAD algorithm. 
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Figure 56, Figure 57 and Figure 58 show that, the AAD algorithm successfully 

identified all the anomalies in this dataset, because both the mutual distribution and the 

ensemble properties of the data samples have been considered. 

For a further evaluation of the ADD algorithm, two well-known traditional approaches 

are used for comparison: 

1) The well-known “3𝜎” approach [49], [203], [204];  

2) Outlier detection using random walks (ODRW) approach [199]. 

It has to be stressed that the “3𝜎” approach is based on the global mean and global 

standard deviation. The outlier detection using random walks approach requires three 

parameters to be predefined: 1) error tolerance, 𝜀; 2) similarity threshold, 𝑇 and 3) number of 

anomalies, Na . In this subsection, 𝜀 = 10−6  and 𝑇 = 0.9  [199]. To make the results 

comparable, Na  is set to be the same number of the anomalies identified by the AAD 

algorithm. 

The global mean and the standard deviation of the dataset are 𝝁 = [1.1077 2.3263] 

and 𝝈 = [1.3401 1.3228], and the “3𝜎” approach failed to detect any anomalies. The 

result using the ODRW approach is shown in Figure 59, where the red circles are the 

identified anomalies. As one can see, this approach ignored the majority of the anomalies 

(circled within the yellow ellipsoids). 

  

Figure 59. The identified anomalies by the ODRW algorithm. 

For the user knowledge modelling dataset, the AAD algorithm identified 10 anomalies 

as tabulated in Table 30. It has to be stressed that the labels (Table 31) of the data are not 

used in the anomaly detection and they are just used for posterior comparison. From the table 

one can see that the detected anomalies have significantly lower or higher values compared 
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with other members of the classes to which they may belong. Nine out of the identified 10 

anomalies are in the anomaly lists in the previous subsection. 

Table 31. Identified anomalies from the user knowledge modelling dataset 

# ID Values Label 

1 [0.0000    0.0000    0.0000    0.0000    0.0000] Very low 

2 [0.0800    0.0800    0.1000    0.2400    0.9000] High 

5 [0.0800    0.0800    0.0800    0.9800    0.2400] Low 

17 [0.0500    0.0700    0.7000    0.0100    0.0500] Very low 

187 [0.4950    0.8200    0.6700    0.0100    0.9300] High 

210 [0.8500    0.0500    0.9100    0.8000    0.6800] High 

222 [0.7700    0.2670    0.5900    0.7800    0.2800] Middle 

242 [0.7100    0.4600    0.9500    0.7800    0.8600] High 

399 [0.9000    0.7800    0.6200    0.3200    0.8900] High 

403 [0.6800    0.6400    0.7900    0.9700    0.2400] Middle 

 

For a better comparison, the following five measures [199] are used for performance 

evaluation: 

1) Number of identified anomalies (Na): Na = True Positive + False Positive; 

2) Precision ( Pr ): the rate of true anomalies in the detected anomalies, Pr =

True Positive

True Positive+False Positive
; 

3) False alarm rate (Fa): the rate of the true negatives in the identified anomalies, 

Fa =
False Positive

True Negative+False Positive
; 

4) Recall rate ( Re ): the rate of true anomalies the algorithms missed, Re =

False Nagetaive

True Positive+False Nagetaive
; 

5) Execution time (texe): in seconds. 

The detection results obtained by the three algorithms on the user knowledge modelling, 

wine quality and wilt datasets in terms of the five measures are tabulated in Table 32. 

From Table 32 one can see that the proposed approach is able to detect the anomalies 

with higher precision and lower false alarm rate compared with the “3𝜎” approach and the 

ODRW approach. 

The “3𝜎” approach is the fastest due to its simplicity. However, the performance of the 

“3𝜎” approach is decided by the structure of the data as it focuses only on the samples 
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exceeding the global 3𝜎 range around the mean. However, when the dataset is very complex 

i.e. contains a large number of clusters, or the anomalies are close to the global mean, “3𝜎” 

approach fails to detect all outliers.  

In contrast, the AAD algorithm can identify the anomalies based on the ensemble 

properties of the data in a fully unsupervised and autonomous way. It takes not only the 

mutual distribution of the data within the data space, but also the frequencies of occurrences 

into consideration. It provides a more objective way for anomaly detection. More 

importantly, its performance is not influenced by the structure of the dataset and is equally 

effective in detecting collective as well as individual anomalies.  

Table 32. Performance comparison of the anomaly detection algorithms 

Dataset Algorithm Na Pr Fa Re texe (s) 

User 

knowledge 

ADD 10 90.00% 0.30% 86.96% 0.09 

3𝜎 1 100.00% 0.00% 98.55% 0.00 

ODRW 10 50.00% 1.50% 92.75% 0.27 

Wine 

quality 

ADD 36 63.89% 0.87% 78.70% 0.24 

3𝜎 141 30.05% 6.57 % 60.19% 0.01 

ODRW 36 0.00% 2.41% 100.00% 31.14 

Wilt 

ADD 84 71.43% 0.57% 50.00% 1.08 

3𝜎 176 34.66% 2.73% 49.17% 0.01 

ODRW 84 58.33% 0.83% 59.17% 863.76 

 

6.3. Evaluation of the Transparent Deep Learning Systems 

In this section, the performance of the transparent deep learning systems presented in 

chapter 5, namely 

1) Fast feedforward nonparametric deep learning (FFNDL) network; 

2) Deep rule-based (DRB) system; 

3) Semi-supervised deep rule-based (SSDRB) classifier; 

are evaluated based on benchmark image sets. Their performance is also compared with a 

number of state-of-the-art approaches. 

6.3.1. Fast Feedforward Nonparametric Deep Learning  Network 

6.3.1.1. Benchmark Problems for Evaluation 

A. Handwritten digits recognition 
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The MNIST database [213] is used as the benchmark dataset for evaluating the 

performance of the FFNDL network on  handwritten digits recognition problem. The details 

of the MNIST datasets have been given in section 5.4.1. 

B. Image classification 

The first numerical experiment is to evaluate the performance of the FFNDL network on 

human action recognition. This numerical example is conducted based on a subset of the 

well-known human action dataset [269]. The dataset contains six classes (walking, jogging, 

running, boxing, hand waving and hang clapping) with 100 images per class randomly 

extracted from 18 videos with the same background (three videos per class). The visual 

examples of the images are presented in Figure 60. In the experiments, the original images 

are converted to 64 × 64 pixels size because some of the actors are not large enough within 

the images.  

 

Figure 60. Example images on human action recognition problem. 

The second numerical experiment is for object classification, which is based on a subset 

of the well-known Wang dataset [270]. The subset consists of eight classes with 40 images in 

each class. The eight classes are: airplanes, cars, dinosaur, dolls, doors, motorbikes, roses and 

sailing ships. Example images of the eight classes are given in Figure 61. The original images 

are converted to 64 × 64 pixels size. 

The image rescaling setting used in these two experiments is decided through numerical 

experiments empirically. Determining the most suitable image rescaling operation for a 

specific problem may require some prior knowledge. Nonetheless, in general, one need to 

make sure that the dimensionality of the extracted feature vector is smaller than the 

dimensionality of the image itself to avoid over-sampling, which makes the feature vector 

noisier. 
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Figure 61. Example images on object classification problem. 

6.3.1.2. Performance Evaluation and Discussion 

In the numerical experiments in this subsection, the size of the sliding window for local 

aggregations extraction is 7 × 7 (𝑛 = 7); the size and stride of the sliding window for the 

grid segmentation is 2 × 2 (𝑘 = 2); and 1 (𝑤 = 1). 

A. Handwritten digits recognition 

In this experiment, the original handwritten digit images are used, and therefore, there is 

𝑑 = 14.  The classification result is tabulated in Table 33. The corresponding amount of time 

consumed by the FFNDL network is presented in Table 34. 

The performance of the FFNDL network is also compared with several well-known 

algorithms: 

1) Neocognitron neural network [271]; 

2) eClass1 using GIST and Haar global features [160]; 

3)TEDAClass classifier using GIST and Haar global features [272]. 

The classification results are tabulated in Table 33 compared with the results of the 

previously published methods [160], [271], [272]. The results are visualized in Figure 62. 
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Table 33. Recognition results and comparison on MNIST dataset 

Training set Neocognitron eClass1 TEDAClass FFNDL 

1000 94.42% 86.54% 95.92% 92.70% 

2000 96.04% 96.42% 96.70% 93.89% 

3000 96.34% 96.55% 96.67% 94.93% 

4000 96.62% 96.62% 96.88% 95.31% 

5000 96.94% 96.85% 97.16% 95.54% 

10000 - 97.19% 97.38% 96.31% 

20000 - 97.32% 97.53% 96.67% 

30000 - 97.46% 97.68% 96.86% 

40000 - 97.45% 97.66% 96.97% 

50000 - 97.46% 97.65% 97.03% 

60000 - 97.46% 97.63% 97.11% 

 

Table 34. Time consumption for training process of the FFNDL network 

Train set 1000 2000 3000 4000 5000 10000 

Time 21.4 41.0 72.3 113.4 164.5 527.9 

Train set 10000(4)
1
 20000 30000 40000 50000 60000 

Time 390.2 1906.8 3975.3 7214.9 10672.2 15681.7 
                                                                                                                             1

 4 local workers. 

 

 Figure 62. Curves of classification accuracy of the four methods on MNIST dataset. 

As it is shown in Table 33 and Figure 62, the classification accuracy of the FFNDL 

network reaches 97.11% after all 60000 training images are used, which is slightly worse 

than the eClass1 and TEDAClass but outperforms Neocognitron (and other approaches, i.e. 

neural networks, k-nearest neighbours classifiers [38]). One can also see that the performance 

of the FFNDL network keeps increasing if more training images are provided. In contrast, the 



197 

 

eClass1 reaches its maximum accuracy after 40000 training images being processed. 

TEDAClass reaches its maximum accuracy after 30000 images being processed, with more 

training images, the accuracy of the TEDAClass decreases. For the FFNDL network, with 

more training samples and time consumptions, one can always obtain a higher accuracy. 

Table 34 shows that the training time consumption grows with the amount of training 

dataset. Combining Table 33 and Table 34 one can see that it only takes 113.4 seconds (using 

WIN10 OS and MATLAB and no parallelisation) to train the network using 4000 images and 

the classification accuracy has already achieved over 95%. In addition, moving to Linux and 

C or Python can further speed up to an order of magnitude. For the published algorithms 

based on the global features (i.e. GIST and Haar), it already takes a larger amount of time 

(220.7 seconds) to only extract the GIST features from 4000 images. The Neocognitron 

neural network failed to give the consistent result as the network has a large number of 

parameters and the training process for 5000 training images takes more than 5 hours [271], 

[272]. 

In addition, the FFNDL network supports parallel processing. The computation can be 

distributed to a number of processers, which largely reduces the amount of time consumed by 

the training process. As it is presented in Table 34, by distributing the computation to local 

workers, the training process becomes much faster. It has to be stressed that, this 

parallelisation experiments are not real parallel computation as all the training is still 

conducted within a single dual core PC. With more processers, or using GPUs, the training 

process will be even faster, and, critically, this algorithm allows parallelisation at many 

levels. 

B. Image classification 

Table 35. Experimental results of the FFNDL network on image classification 

Dataset 
Training images 

per class 

Testing images 

per class 

Classification 

errors 

Error 

rate 

Time 

consumption 

Human action 

recognition 

60 40 5 2.1% 39.2s 

80 20 2 1.7% 48.7s 

Object 

recognition 

25 15 6 5% 30.6s 

30 10 1 1.3% 34.5s 

 

In the following two numerical experiments for image classification, namely, human 

action recognition and object classification, 𝑑 is set to be 32. The experimental results of the 

FFNDL network obtained from the two problems are presented in Table 35, which 
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demonstrates that the FFNDL network can be applied in different areas and is able to perform 

highly accurate classification results even if using a small amount of training images.  

6.3.2. Deep Rule-Based System 

6.3.2.1. Benchmark Problems for Evaluation 

To illustrate the performance of the proposed DRB classifier, the following four 

different challenging problems are considered: 

A. Handwritten digits recognition 

MNIST dataset [213] is used for evaluating the performance of the DRB systems on 

handwritten digits recognition. The details of this dataset have been given in section 5.4.1. 

B. Face recognition 

The one of the most widely used benchmark dataset for face recognition, database of 

faces [273] is used for evaluation. This dataset contains 40 subjects with 10 different images 

taken with different illumination, angle, face expression and face details (glasses/no glasses, 

mustaches, etc.). The size of each image is 92 × 112 pixels, with 256 grey levels per pixel. 

The examples of the database of faces are given in Figure 63.  

 

Figure 63. Examples of images from the database of faces. 

C. Remote sensing  

The first dataset from the remote sensing area is the Singapore dataset [274]. This 

dataset was constructed from a large satellite image of Singapore. This dataset consists of 

1086 images with 256 ×  256 pixels size with nine scene categories: 1) airplane, 2) forest, 3) 

harbor, 4) industry, 5) meadow, 6) overpass, 7) residential, 8) river, and 9) runway. Examples 

of the images of the nine classes are shown in Figure 64. 
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Figure 64. Examples of images from Singapore dataset. 

The second dataset is the UCMerced dataset [211], which consists of fine spatial 

resolution remote sensing images of 21 challenging scene categories (including airplane, 

beach, building, etc.). Each category contains 100 images of the same image size (256 × 256 

pixels). The example images of the 21 classes are shown in Figure 65. 

 

Figure 65. Example Images from UCMerced dataset. 

D. Object recognition 

The well-known Caltech 101 dataset [212] is used for evaluating the performance of the 

DRB system on object recognition. This dataset contains 9144 pictures of objects belonging 

to 101 categories and one background categories. The number of images in each class varies 

from 33 to 800 images per category. The size of each image is roughly 300 × 200 pixels. 

This data set contains both classes corresponding to rigid object (like bikes and cars) and 

classes corresponding to non-rigid object (like animals and flowers). Therefore, the shape 

variance is significant. The examples of this dataset are presented in Figure 66. 
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Figure 66. Example images of Caltech 101 dataset. 

As the five benchmark datasets are very different from each other, five different, but 

same as in the publications [76], [213], [274], [275], experimental protocols will be used for 

the five datasets correspondingly. 

6.3.2.2. Performance Evaluation and Discussion 

A. Handwritten digits recognition 

For the MNIST dataset, the DRB ensemble as presented in section 5.4.1 is used. During 

the experiment, the feature descriptor used by the DRB ensemble is GIST, HOG or the 

combined GIST and HOG (CGH) features. However, due to the different descriptive abilities 

of these features, the performance of the DRB ensemble is somewhat different. The 

recognition accuracy of the proposed DRB classifier using different feature descriptors is 

tabulated in Table 36. The corresponding average training times for the 10 fuzzy rules are 

tabulated in Table 37.  By further combining the DRB ensemble trained with GIST features 

and the DRB ensemble trained with HOG features, it achieve a better recognition 

performance, which is tabulated in Table 36 as well.  The DRB cascade [42] as described in 

section 5.4.2 is able to achieved the best performance, which is also presented in Table 36. 

The SVM conflict resolution classifier only applies to a small number (about 5%) of the 

validation data for which the decision-maker was not certain (there were two possible winners 

with close overall scores).  By using the SVM conflict resolution classifier, the accuracy of the 

DRB cascade increases 0.11% [42], which is small but critical because it allows the DRB 

approach to outperform the current best alternative approach [72] (without using elastic 

distortion). 
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One of the most distinctive advantages of the DRB system is its evolving ability, which 

means that there is no need for complete re-training the classifier when new data samples are 

coming. To illustrate this advantage, the DRB classifier is trained with images in the form of 

an image stream, meanwhile, the execution time and the recognition accuracy are recorded 

during the process. In this example, the original training set without rescaling or rotation is 

used, which speeds up the process significantly. The relationship curves of the training time 

(the average for each of the 10 fuzzy rules) and recognition accuracy with the growing 

amount of the training samples are depicted in Figure 67. 

Table 36. Comparison between the DRB ensembles and the state-of-the-art approaches 

Algorithm 
DRB-

GIST 

DRB-

HOG 

DRB- 

CGH 

DRB-GIST + 

DRB-HOG 
DRB Cascade  

Accuracy 99.30% 98.86% 99.32% 99.44% 99.55% 

Training Time Less than 2 minute for each part 

PC-Parameters Core i7-4790 (3.60GHz), 16 GB DDR3 

GPU Used None 

Elastic 

Distortion 
No 

Tuned 

Parameters 
No 

Iteration No 

Randomness No 

Parallelisation Yes 

Evolving 

Ability 
Yes 

Algorithm 

Large 

Convolutional 

Networks 

[276] 

Large 

Convolutional 

Networks [72] 

Committee of 7 

Convolutional 

Neural Networks 

[24] 

Committee of 35   

Convolutional 

Neural Networks 

[22] 

Accuracy 99.40% 99.47% 99.73%   2% 99.77% 

Training Time 

No 

Information 
No Information 

Almost 14 hours for each one of the 

DNNs. 

PC-Parameters Core i7-920 (2.66GHz), 12 GB DDR3 

GPU Used 
2  GTX 480 & 

2  GTX 580 

Elastic 

Distortion 
No No Yes 

Tuned 

Parameters 
Yes Yes Yes 

Iteration Yes Yes Yes 

Randomness Yes Yes Yes 

Parallelisation No No No 

Evolving 

Ability 
No No No 
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Table 37. Computation time for the learning process per sub-system (in seconds) 

Fuzzy Rule # 1 2 3 4 5 

Digital “0” “1” “2” “3” “4” 

Feature 

GIST 39.26 32.39 41.95 45.72 37.17 

HOG 72.03 70.99 82.47 92.73 73.46 

CGH 96.54 88.93 99.21 113.52 91.53 

Fuzzy Rule # 6 7 8 9 10 

Digital “5” “6” “7” “8” “9” 

Feature 

GIST 34.90 37.36 35.89 42.99 36.90 

HOG 67.53 68.48 77.93 75.83 69.90 

CGH 85.19 91.92 89.12 104.08 92.26 

 

  

(a) Accuracy                                                   (b) Training time 

Figure 67. The relationship curve of training time and recognition accuracy with different 

amount of training samples. 

In order to evaluate the performance of the DRB system, the state-of-the-art approaches 

reporting the current best and the second best results (with and without elastic distortion) 

[24], [72] are also reported in Table 36. 

As one can see, the approaches reported in [22], [24] using elastic distortion can achieve 

slightly better results than the approaches in [72], [276] as well as the DRB systems. 

However, this comes at a price of using elastic distortion. This kind of distortion exhibits a 

significant randomness that may turn an unrecognizable digit into a recognizable one and 

vice versa, which also casts doubt on the effectiveness of the approaches in real applications. 

In addition, elastic distortion puts in question the achieved results’ repeatability and requires 

a cross-validation that further obstructs the online applications and the reliability of the 

results as discussed in [41].  
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Without using elastic distortion, the current published best result is 99.47% [72], which 

is comparable with the DRB ensemble, but worse than the DRB cascade [42]. However, one 

needs to notice that the convolution networks require a large number of parameters to be 

tuned, and cannot start “from scratch” nor evolve with the data stream and are not 

interpretable. 

B. Face recognition 

The architecture of the DRB classifier for face recognition does not include scaling and 

rotation, which is shown in Figure 68. In this test, the DRB classifier consists of the 

following layers: 

1) Normalization layer; 

2) Segmentation layer that splits each image into smaller pieces by a 22 × 32  size 

sliding window with the step size of 5 pixels in both horizontal and vertical directions (this 

setting is obtained empirically through experiments). The segmentation layer cuts one image 

into 255 pieces; 

3) Feature descriptor, which extracts the combined GIST and HOG features from each 

segment; 

4) FRB system, which consists of 40 fuzzy rules trained based on the segments of the 40 

subjects’ images (one rule per subject);  

5) Decision-maker, which generates the labels using equation (5.16). 

 

Figure 68. Architecture of the DRB classifier for face recognition. 

Following the commonly used experimental protocol [275], for each subject, 𝑘 images 

are randomly selected for training and 1 image for testing. The experiment was repeated 50 

times and the average recognition accuracy of the DRB classifier with different k (𝑘 = 1 to 5) 
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is tabulated in Table 38, and the DRB classifier is compared with the state-of-the-art 

approaches [275], [277]–[279] as follows:  

1) Regularized Shearlet Network (RSN) [277]; 

2) Sparse Fingerprint Classification (SFC) [275]; 

3) Adaptive Sparse Representation (ASR) [278];  

4) Sparse Discriminant Analysis via Joint L2,1-norm Minimization (SDAL21M) [279]. 

Table 38. Comparison between the DRB classifier and the-state-of-the-art approaches 

k Method Accuracy (%) 

1 

RSN 88 

SFC 89 

DRB 90 

2 

ASR 82 

SFC  96 

DRB 97 

3 

ASR 89 

SDAL21M 82 

SFC 98 

DRB 99 

4 

ASR 93 

SFC  99 

DRB 99 

5 

ASR 96 

SDAL21M 93 

SFC 100 

DRB 100 
 

One can see from Table 38 that the DRB classifier can achieve higher recognition 

accuracy with a smaller amount of training samples. For a better illustration, examples of the 

AnYa type fuzzy rules extracted during experiments are given in Table 39, where the 

segments are enlarged for visual clarity. These segments in Table 39 are the visual prototypes 

of the fuzzy rules, and thanks to them, one can always check the learning results obtained by 

the DRB classifier intuitionistically and make necessary modification for a better 

performance by adding, removing or exchaning prototypes. This is much simplier than tuning 

DCNNs, which contain hundreds of millions of parameters that are not interpretable to 

human. 

The recognition accuracy of the DRB classifier and the average corresponding time 

consumption for each fuzzy rule in the training process with different amount of training 

samples is tabulated in Table 40. One can see that, the training process is very efficient. The 
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proposed classifier can be trained for less than 3 seconds and achieve 100% accuracy in face 

recognition of individuals.  

Table 39. Visual examples of the AnYa type fuzzy rules 

Fuzzy Rules 

IF (Sg ~ ) OR (Sg ~ ) OR … OR (Sg ~ ) OR (Sg ~ )     THEN ( ) 

IF (Sg ~ ) OR (Sg ~ ) OR … OR (Sg ~ ) OR (Sg ~ )     THEN ( ) 

IF (Sg ~ ) OR (Sg ~ ) OR … OR (Sg ~ ) OR (Sg ~ )    THEN ( ) 

IF (Sg ~ ) OR (Sg ~ ) OR … OR (Sg ~ ) OR (Sg ~ )    THEN ( ) 

 

Table 40. Results with different amount of training samples 

k 1 2 3 4 5 6 7 8 9 

Accuracy (%) 90 97 99 99 100 100 100 100 100 

texe (in seconds) 0.11 0.48 1.03 1.81 2.84 4.14 5.69 8.32 10.65 

 

C. Remote sensing 

The architecture of the DRB classifier for the remote sensing problems has been given 

in Figure 41. More specifically, in the numerical examples based on Singapore dataset, the 

sliding window with the window size of  (6 × 6)/(8 × 8) of image size and step size of  2 8⁄
 

width in the horizontal and 2 8⁄
 length in the vertical direction is used (this setting is obtained 

empirically through experiments).  

Following the commonly used experimental protocol [274], the DRB classifier is trained 

with randomly selected 20% of the images of each class and use the remainder as a testing 

set. The experiment is repeated 5 times and the average accuracy is reported in Table 41.  

The performance of the DRB is compared with the state-of-the-art approaches as 

follows: 

1) Transfer learning with deep representations (TLDP) [280]; 

2) Two-level feature representation (TLFP) [274]; 
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3) Bag of visual words (BOVW) [145]; 

4) Scale-invariant feature transform with sparse coding (SIFTSC) [281];  

5) Spatial pyramid matching kernel (SPMK) [282]; 

and the recognition accuracies of the comparative approaches are reported in Table 41 as 

well. One can see that, the DRB classifier is able to produce a significantly better recognition 

result than the best current methods. 

Table 41. Comparison between the DRB classifier and the state-of-the-art approaches on 

Singapore dataset 

Algorithm Accuracy (%) 

DRB-VGG 97.70 

TLDP 82.13 

TLFP  90.94 

BOVW 87.41 

SIFTSC 87.58 

SPMK 82.85 

 

To show the evolving ability of the DRB classifier, 20% of the images of each class are 

randomly selected for validation and the DRB is trained with 10%, 20%, 30%, 40%, 50%, 

60%, 70% and 80% of the dataset. The experiment is repeated five times and the average 

accuracy is tabulated in Table 42. The average time for training is also reported, however, 

due to the unbalanced classes, the training time as tabulated in Table 42 is the overall training 

time of the 9 fuzzy rules. 

Table 42. Results with different amount of training samples on the Singapore dataset 

Ratio 10% 20% 30% 40% 

Accuracy (%) 96.02 97.56 98.55 98.91 

texe (in seconds) 5.1730 20.78 49.33 87.17 

Ratio 50% 60% 70% 80% 

Accuracy (%) 99.10 99.36 99.55 99.62 

texe (in seconds) 135.00 195.57 270.89 346.14 

 

For the UCMerced dataset, the DRB classifier with the same architecture as used in the 

previous example (Figure 42) is employed. Following the commonly used experimental 

protocol [274], 80% of the images of each class are randomly selected for training and the 

remainder is used as a testing set. The experiment is repeated five times, and the average 
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accuracy is reported in Table 43. The performance of the DRB classifier is also compared 

with the state-of-the-art approaches as follows: 

1) Two-level feature representation (TLFP) [274]; 

2) Bag of visual words (BoVW) [145]; 

3) Scale-invariant feature transform with sparse coding (SIFTSC) [281];  

4) Spatial pyramid matching kernel (SPMK) [282], [283]; 

5) Multipath unsupervised feature learning (MUFL) [284]; 

6) Random convolutional network (RCNET) [79]; 

7) Linear SVM with pre-trained CaffeNet (SVM+Caffe) [140]; 

8) LIBLINEAR classifier with the VGG-VD-16 features (LIBL+VGG) [210]; 

9) Linear SVM with the VGG-VD-16 features (SVM+VGG). 

Table 43. Comparison between the DRB classifier and the state-of-the-art approaches on 

UCMerced dataset 

Algorithm Accuracy Algorithm Accuracy 

DRB 96.14% MUFL 88.08% 

TLFR 91.12% RCNET 94.53% 

BOVW 76.80% SVM+ Caffe 93.42% 

SIFTSC 81.67% SVM+VGG 94.48% 

SPMK 74.00% LIBL+VGG 95.21% 

 

Through the comparison in Table 43 one can see that, the DRB classifier, again, 

produced the best classification performance. Similarly, 20% of the images of each class are 

selected for validation and the DRB classifier is trained with 10%, 20%, 30%, 40%, 50%, 

60% and 70% of the dataset. The experiment is repeated 5 times, and the average accuracy 

and time consumption for training (per rule) are tabulated in Table 44, where one can see 

that, the DRB classifier can achieve 95%+ classification accuracy with only less than 20 

seconds’ training for each fuzzy rule. 

Furthermore, by creating an ensemble of the DRB classifier as described in section 

5.4.3, the classification performance can be further improved to 97.10% [43]. 
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Table 44. Results with different amount of training samples on the UCMerced dataset 

Ratio 10% 20% 30% 40% 

Accuracy (%) 83.48 88.57 90.80 92.19 

texe (in seconds) 0.27 1.36 3.96 5.83 

Ratio 50% 60% 70% 80% 

Accuracy (%) 93.48 94.19 95.14 96.10 

texe (in seconds) 10.29 11.52 15.49 18.15 

 

D. Object recognition 

The architecture of the DRB classifier for the object recognition is depicted in Figure 69 

which is the same as the latter part of the DRB classifier for remote sensing problems as 

presented in Figure 41. The images of the Caltech 101 dataset [285] are very uniform in 

presentation, aligned from left to right, and usually not occluded, therefore, the rotation and 

segmentation are not necessary.  

 

Figure 69. Architecture of the DRB classifier for object recognition. 

Following the commonly used protocol [76], experiments are conducted by selecting 15 

and 30 training images from each class for training and using the rest for validation. The 

experiment is repeated 5 times and the average accuracy is reported in Table 45. The DRB 

classifier is also compared with the state-of-the-art approaches as follows: 

1) Convolutional deep belief network (CBDN) [286]; 

2) Learning convolutional feature hierarchies (CLFH) [287]; 

3) Deconvolutional networks (DECN) [288]; 

4) Linear spatial pyramid matching (LSPM) [289]; 

5) Local-constraint linear voding (LCLC)  [290]; 

6) DEFEATnet [76]; 
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7) Convolutional sparse autoencoders (CSAE) [291]; 

8) Linear SVM with the VGG-VD-16 features (SVM+VGG). 

As one can see from Table 45, the DRB classifier easily outperforms all the comparative 

approaches in the object recognition problem. Same as the previous example, 1, 5, 10, 15, 20, 

25, and 30 images of each class are selected for training the DRB classifier and use the rest 

for validation. The experiment is repeated 5 times, and the average accuracy and time 

consumption for training (per rule) are tabulated in Table 46, where one can see that, it only 

requires less than 2 seconds to train a single fuzzy rule. 

Table 45. Comparison between the DRB classifier and the state-of-the-art approaches on 

Caltech 101 dataset 

Algorithm 
Accuracy (%) 

15 Training 30 Training 

DRB  81.9 84.5 

CBDNET 57.7 65.4 

CLFH 57.6 66.3 

DECNNET 58.6 66.9 

LSPM 67.0 73.2 

LCLC 65.4 73.4 

DEFEATnet  71.3 77.6 

CSAE 64.0 71.4 

SVM+VGG 78.9 83.5 

 

Table 46. Results with different amount of training samples on the Caltech 101 dataset 

Training Number 1 5 10 15 20 25 30 

Accuracy (%) 61.1 76.4 80.4 81.9 83.5 83.6 84.5 

texe (in seconds)  0.14 0.39 0.99 1.02 1.25 1.42 

 

As one can see from the numerical examples presented in this subsection, the DRB 

classifier is able to offer extremely high classification accuracy comparable with human 

abilities on par or surpassing the best published mainstream deep learning alternatives. It is a 

general approach for various problems and serves as a strong alternative to the state-of-the-art 

approaches by providing a fully human-interpretable structure after a very fast (in orders of 

magnitude faster than the mainstream deep learning methods), transparent, nonparametric 

training process.  
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6.3.3. Semi-Supervised Deep Rule-Based Classifier 

6.3.3.1. Benchmark Problems for Evaluation 

In this section, the performance of SSDRB classifier is evaluated based on the following 

three challenging benchmark datasets: 

1) UCMerced dataset [211]; 

2) Singapore dataset [274]; 

3) Caltech 101 dataset [212]. 

The details of the datasets have been given in the previous section. During the numerical 

experiments, the SSDRB classifier will not learn new classes, which means the algorithm for 

actively learning new classes (Figure 32) and Condition 30 (equation (5.19)) are not used. 

6.3.3.2. Performance Evaluation and Discussion 

First of all, the performance of the SSDRB classifier is investigated with the UCMerced 

dataset. Firstly, the influence of different values of  𝜑 on the performance of the SSDRB 

classifier is studied. Eight images are randomly picked out from each class as the labelled 

training set and the rest of the images are used as the unlabelled training set to continue to 

train the SSDRB classifier in both offline and online scenarios. In the online scenario, the 

semi-supervised learning is conducted on both sample-by-sample basis and chunk-by-chunk 

basis. For the former case, the order of the unlabelled images is descrambled randomly; while 

in the latter case, the unlabelled training samples are randomly divided into two chunks, 

which have exactly the same number of images. During this experiment, the value of  𝜑 

varies from 1.05 to 1.30. The average number of classification errors of the SSDRB classifier 

on the unlabelled training set (1932 unlabelled images in total) is reported after 50 Monte 

Carlo experiments in Table 47. The average numbers of prototypes identified are reported in 

the same table. The performance of the DRB classifier is also reported as the baseline. The 

corresponding average accuracy of the SSDRB classifier with different values of 𝜑  is 

depicted in Figure 70. 

 

 

 

 



211 

 

Table 47. Performance of the SSDRB classifier with different values of φ 

 𝜑 1.05 1.10 1.15 1.20 1.25 1.3 

DRB 
NE

a 
469.5 

NP
b 

161.1 

Offline SSDRB
 

NE 423.8 413.7 417.1 429.1 436.2 450.5 

NP 1637 1402.8 1194.9 1015.8 874.7 759.1 

Online SSDRB 

sample-by-sample 

NE 483.3 457 450.9 453.1 459.0 462.9 

NP 1432.6 1192.8 1008.2 862.8 746.2 648.9 

Online SSDRB 

chunk-by-chunk 

NE 441.9 430.7 432.1 445.8 451.1 459.1 

NP 1581.6 1337.8 1127.7 960.1 825.1 712.6 

                                                   a
 Number of errors (NE); 

b
 Number of prototypes (NP).  

As one can see from Table 47 and Figure 70, the higher the value of 𝜑 is, the less 

prototypes the SSDRB classifier identified during the semi-supervised learning process, and, 

thus, the system structure is less complex and the computational efficiency is higher. 

However, at the same time, it is obvious that the accuracy of the classification results is not 

linearly correlated with the value of 𝜑. There is a certain range of 𝜑 values for the SSDRB 

classifier to achieve the best accuracy. Trading off the overall performance and system 

complexity, the best range of 𝜑 values for the experiments performed is [1.1,1.2]. For the 

consistence, 𝜑 = 1.2  is used in the rest of the numerical examples in this section. However, 

one can also set different value for 𝜑. 

 

Figure 70. The average accuracy curve of the SSDRB classifier with different values of φ. 

Secondly, 𝐿 = 1, 2, 3, … , 10  images are randomly picked out from each class as the 

labelled training images and the rest are used as the unlabelled ones to train the SSDRB 
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classifier in both offline and online scenarios. Similar to the previous experiment, the semi-

supervised learning is conducted on both sample-by-sample basis and chunk-by-chunk basis 

in the online scenario. The average numbers of classification errors of the SSDRB classifier 

on the unlabelled training set are reported after 50 Monte Carlo experiments in Table 47. The 

corresponding average accuracy of the DRB classifier with different number of labelled 

images is depicted in Figure 71.  

Table 48. Performance of the SSDRB classifier with different values of  L 

 Number of Errors 

𝐿 1 2 3 4 5 

DRB 949.6 789.9 700.5 620.8 579.1 

Offline SSDRB 887.7 724.8 627.8 566.5 521.0 

Online SSDRB 

sample-by-sample 
1010.5 805.6 683.2 605.2 561.3 

Online SSDRB 

chunk-by-chunk 
914.9 748.9 652.5 583.2 542.3 

 Number of Errors 

𝐿 6 7 8 9 10 

DRB 530.5 502.9 469.5 448.4 425.6 

Offline SSDRB 478.6 455.7 429.1 412.2 387.3 

Online SSDRB 

sample-by-sample 
517.5 485.4 453.1 435.1 412.8 

Online SSDRB 

chunk-by-chunk 
497.8 472.2 445.8 421.3 399.7 

 

From Table 48 and Figure 71, one can see that, with 𝜑 = 1.2, the SSDRB classifier 

performs best in an offline scenario, which is due to the fact that, the DRB classifier is able to 

achieve an comprehensive understanding of the ensemble properties of the static image set. In 

the chunk-by-chunk learning mode, the DRB classifier can only study the ensemble 

properties of the unlabelled images within each chunk. And its performance deteriorates 

further if the semi-supervised learning is conducted on a sample-by-sample basis as each 

unlabelled training image is actually isolated from each other. 
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Figure 71. The average accuracy of the SSDRB classifier with different values of L. 

In order to evaluate the performance of the SSDRB classifier, it is compared with the 

following well-known classification approaches: 

1) SVM classifier [142]; 

2) KNN classifier [132]. 

The SVM (with linear kernel function) and KNN classifiers are the two main generic 

classifiers used in the transfer learning approaches based on per-trained DCNNs and are able 

to produce highly accurate classification results [77], [139]–[141]. As the DRB classifier 

presented in this thesis also involves the pre-trained DCNN as a feature descriptor, the two 

classifiers (SVM and KNN) are the most representative alternative approaches used for 

comparison. 

The state-of-the-art semi-supervised approaches are also involved for comparison: 

3) Laplacian support vector machine (LAPSVM) classifier [176], [177]; 

4) Local and global consistency (LGC) based semi-supervised classifier [165]; 

5) AnchorGraph-based semi-supervised classifier with kernel weights (AnchorK) [179]; 

6) AnchorGraphReg-based semi-supervised classifier with LAE weights (AnchorL) 

[179]; 

7) Greedy gradient Max-Cut (GGMC) based semi-supervised classifier [168]. 

There are also other well-known SVM- or graph-based semi-supervised approaches, i.e. 

Transductive SVM (TSVM) [173], ∇𝑇𝑆𝑉𝑀[166] and Gaussian fields and harmonic functions 

based approaches [164]. However, previous work showed that the LAPSVM, LGC, GGMC 

and GGMC are, in general, able to produce more accurate classification results [168]. 



214 

 

Therefore the comparison is only limited to the seven algorithms listed above. For the 

LapSVM, the “one versus all” strategy is used for all the benchmark problems. 

Table 49. Comparison of the semi-supervised approaches on UCMerced dataset 

 Number of Errors 

𝐿 1 2 3 4 5 

SSDRB
 

887.7 724.8 627.8 566.5 521.0 

SVM 1322.5 1009.8 840.9 739.2 650.1 

KNN 1186.7 1160.8 1075.3 979.4 932.6 

LAPSVM 1624.6 1339.7 1134.7 920.8 800.3 

LGC 1846.5 889.3 694.0 620.0 590.4 

AnchorK 948.6 837.1 737.5 700.3 662.9 

AnchorL 875.7 748.7 663.8 637.5 595.3 

GGMC 1845.5 1032.9 829.6 772.8 701.6 

 Number of Errors 

𝐿 6 7 8 9 10 

SSDRB
 

478.6 455.7 429.1 412.2 387.3 

SVM 571.5 527.5 492.2 452.9 415.5 

KNN 889.9 855.6 827.9 813.0 781.0 

LAPSVM 701.9 626.5 552.1 499.9 463.7 

LGC 556.6 552.6 544.8 537.7 533.9 

AnchorK 631.9 609.1 575.9 553.0 534.3 

AnchorL 568.0 540.5 515.7 480.0 473.0 

GGMC 674.5 648.5 660.6 656.5 642.1 

 

The experiment given in the previous example is repeated to test the performance of the 

seven comparative algorithms on the UCMerced dataset with different number of labelled 

training samples in an offline scenario. For a fair comparison, only the performance of the 

offline SSDRB classifier is considered.  For the graph-based approaches, including KNN, 

LGC and GGMC, due to the very small number of labelled training samples, the value of 𝑘 is 

set to be the same as  𝐿. All the free parameters of the semi-supervised approaches stay the 

same as the ones reported in the literature [165], [168], [176], [179]. The comparison results 

in terms of number of errors on the (2100 − 21𝐿) unlabelled training images are tabulated in 

Table 49. The accuracy curves are presented in Figure 72. All the reported results are the 

average after 50 Monte Carlo experiments. 
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Figure 72. Accuracy comparison of the semi-supervised approaches on UCMerced dataset. 

For the Singapore dataset,  𝐿 =  1, 2, 3, … , 10  images from each class is randomly 

selected out as the labelled training images and the rest are used as unlabelled ones to train 

the SSDRB classifier in an offline scenario. Its performance is also compared with the seven 

algorithms listed above. The average numbers of classification errors on the (1086 − 9𝐿) 

unlabelled training images are tabulated in Table 50. The accuracy curves are presented in 

Figure 73. All the reported results are the averages after 50 Monte Carlo experiments. 

For the Caltech 101 image dataset, the commonly used experimental protocol is 

followed by randomly picking out 30 images from each class as the training set. Then, 

similarly, 𝐿 = 1, 2, 3, … , 5  images from each class are randomly picked out as labelled 

training images and the rest are used as unlabelled ones to train the SSDRB classifier in an 

offline scenario. Then, its performance is compared with the seven algorithms listed above. 

50 Monte Carlo experiments are conducted and the average numbers of classification errors 

on the (3030 − 101𝐿) unlabelled training images are reported in Table 51. The accuracy 

curves are presented in Figure 74. 

From Table 49, Table 50, Table 51, Figure 72, Figure 73 and Figure 74 one can see that, 

the SSDRB classifier is able to provide highly accurate classification results with only a very 

small number of labelled training images. It consistently outperforms all the seven 

comparative classification algorithms (both the most widely used ones and the “state-of-the-

art” semi-supervised ones) in all the three popular benchmarks in the field of computer vison.  

Moreover, compared with the existing semi-supervised approaches, the unique 

advantages of the SSDRB classifier thanks to its prototype-based nature include: 1) 

supporting online training and 2) classifying out-of-sample images. These are also noticeable 
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from the numerical examples in this section. Therefore, one can conclude that the SSDRB 

classifier is a strong alternative to the existing approaches. 

Table 50. Comparison of the semi-supervised approaches on Singapore dataset 

 Number of Errors 

𝐿 1 2 3 4 5 

SSDRB
 

887.7 724.8 627.8 566.5 521.0 

SVM 1322.5 1009.8 840.9 739.2 650.1 

KNN 1186.7 1160.8 1075.3 979.4 932.6 

LAPSVM 1624.6 1339.7 1134.7 920.8 800.3 

LGC 1846.5 889.3 694.0 620.0 590.4 

AnchorK 948.6 837.1 737.5 700.3 662.9 

AnchorL 875.7 748.7 663.8 637.5 595.3 

GGMC 1845.5 1032.9 829.6 772.8 701.6 

 Number of Errors 

𝐿 6 7 8 9 10 

SSDRB
 

62.0 56.1 48.0 49.0 46.3 

SVM 138 120.6 108.1 113.2 93.2 

KNN 288.6 259.9 260.3 248.2 231.9 

LAPSVM 391.6 335 280.6 247.7 209.4 

LGC 84.0 84.2 86.0 84.4 91.8 

AnchorK 141.8 130.9 135.4 130.4 122.0 

AnchorL 110.7 116.2 110.6 99.6 97.0 

GGMC 187.0 196.8 217.7 204.3 172.7 

 

 

Figure 73. Accuracy comparison of the semi-supervised approaches on Singapore dataset. 
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Table 51. Comparison of the semi-supervised approaches on Caltech 101 dataset 

 Number of Errors 

𝐿 1 2 3 4 5 

SSDRB
 

1154.4 897.4 758.0 679.5 624.1 

SVM 1964.6 1474.9 1225.6 1035.0 909.4 

KNN 2663.0 2329.0 2279.3 2120.9 1986.3 

LAPSVM 1461.1 1161.3 951.7 796.3 705.1 

LGC 2254.9 1008.5 826.8 737.8 683.8 

AnchorK 1816.8 1521.9 1249.1 1062.1 940.4 

AnchorL 1581.2 1308.2 1093.4 979.4 869.8 

GGMC 2259.9 1071.3 854.0 767.1 716.2 

 

 

Figure 74. Accuracy comparison of the semi-supervised approaches on Caltech 101 dataset. 

6.4. Conclusion 

In this chapter, the numerous numerical examples based on challenging benchmark 

datasets are presented to demonstrate the validity and effectiveness of the self-organising 

transparent machine learning algorithms and deep learning systems. A number of state-of-

the-art approaches are also involved for a better evaluation. 

The experiment results show the strong performance of the proposed approaches 

compared with other approaches and also reveal their ability in the real applications. 
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7. Conclusion and Future Work 

7.1. Key Contribution 

This research consists of three main topics: 1) unsupervised self-organising machine 

learning techniques; 2) supervised self-organising machine learning techniques and 3) 

transparent self-organising deep learning networks, all of which are developed on the 

theoretical basis of the Empirical Data Analytics framework and AnYa type fuzzy rule-based 

system. 

The works described in this thesis serve as powerful alternatives to the traditional data 

analysis, computational intelligence and machine learning methodologies: 

1) Four different novel clustering/data partitioning algorithms are proposed, which are 

autonomous, self-organising, nonparametric and free from prior assumptions as well as user- 

and problem- specific parameters. 

In contrast with the state-of-the-art clustering approaches, the proposed clustering/data 

partitioning algorithms do not impose any data generation models on the data as a priori. 

They are driven by the empirically observed data and are able to produce the objective results 

without the need of prior knowledge of the problems. In addition, they are highly efficient 

and suitable for large-scale static/streaming data processing. 

2) Four novel approaches for regression, classification and anomaly detection are 

proposed, which share the same advantages of the unsupervised machine learning techniques 

proposed in this thesis thanks to the merits of the nonparametric EDA operators. 

Without relying on the predefined free parameters and assumptions, the presented 

supervised self-organising learning algorithms are able to produce strong, objective results on 

various problems. With the ability of self-organising and self-evolving, these approaches are 

very suitable for real time streaming data processing. 

3) Self-organising transparent deep learning networks with human-level performance 

and interpretable structure are proposed as the alternative to the popular deep learning models 

of the black-box type. 

Traditional deep learning approaches are able to achieve very high performance on 

many problems; however, the lack of transparency and interpretability is one of the major 

drawbacks preventing them to be widely applied. The deep learning networks presented in 

this thesis, however, have a prototype-based nature and a self-organising and self-evolving 
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structure. They are able to demonstrate very high performance on the image classification 

problems currently with a fully transparent, highly efficient and parallelisable learning 

process, which can be very powerful and attractive in real applications. The semi-supervised 

learning strategy allows the introduced deep learning networks to learn from very little 

training images while exhibit very high accurate classification results and to learn new 

knowledge actively without supervision by human experts. 

7.2. Future Work Plans 

The following directions are to be considered in the future for improvement of the 

machine learning algorithms and deep learning systems: 

A. Unsupervised self-organising machine learning techniques 

1) The optimality of the proposed clustering/data partitioning algorithms needs to be 

investigated, which is of great importance for real applications as well as for the research 

purposes. The optimality of the solution is the proof of the validity and effectiveness of a 

learning algorithm. 

2) The performance of the clustering/data partitioning algorithms, including the ones 

presented in this thesis, is more or less subjective to the choice of distance 

metric/dissimilarity. The question of when to use which type of distance metric/dissimilarity 

requires a careful study. One possible approach is to conduct a systematic investigation on 

the differences in the behaviours of different distance metrics/dissimilarities in the real data 

space. 

3) The choice of the most suitable clustering/data partitioning algorithm is always 

problem-specific. However, it will be of great interest to carefully study the advantages and 

deficiencies of each algorithm, depending on which one can always select the most suitable 

algorithm for a given problem. 

4) New learning algorithms that are not only free from the prior assumptions and user- 

and problem-specific parameters, but also free from the influence of distance 

metrics/dissimilarity can be very useful for investigating the data pattern objectively. 

5) A new data partitioning algorithm that is free from hard-coded mathematical rules 

can be very helpful for different applications.  
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B. Supervised self-organising machine learning techniques 

1) The stability of the first order autonomous learning multi-model system needs to be 

investigated and proven. Stability analysis of a learning system is of paramount importance 

for real-world applications and provides the theoretical guarantees for the convergence. 

2) The zero order autonomous learning multi-model system can be further improved by 

introducing dynamically changing threshold derived from data directly. 

3) The sensitivity of the learning systems to the different experimental setting requires 

further study. 

4) The computational complexity analysis of the learning systems and statistical 

analysis of the numerical results need to be done in the future, which allow a better 

understanding of the properties of the proposed learning systems. 

5) The online version of autonomous anomaly detection algorithm can be very useful 

for the fault detection in data streams. In the real-world applications, new data often 

continuously arrives in a form of a stream. Identifying the anomalies from the stream in real-

time is critical for identifying faults in an earlier stage, which may prevent a serious accident 

that may happen in the near future. 

C. Transparent self-organising deep learning networks 

1) The deep rule-based systems presented in this thesis employ the pre-trained deep 

convolutional neural network as the feature descriptor without any tuning or modification. 

However, the performance of the systems can be further improved if proper tuning is 

involved. 

2) The deep rule-based systems can be extended to learn from images that contain 

multiple sub-regions of different classes, which could be of great importance for 

understanding the semantic meaning of the images. 
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