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Abstract

This thesis is concerned with the development of Bayesian inference approach for

the analysis of infectious disease models. Stochastic SIS household-based epidemic

models were considered with individuals allowed to be contracted locally at a

given rate and there also exists a global force of infection. The study covers

both when the population of interest is assumed to be constant and when the

population is allowed to vary over time. It also covers when the global force

of infection is constant and when it is spatially varying as a function of some

unobserved Gaussian random fields realizations. In addition, we also considered

diseases coinfection models allowing multiple strains transmission and recovery.

For each model, Bayesian inference approach was developed and implemented via

MCMC framework using extensive data augmentation schema. Throughout, we

consider two most prevalent forms of endemic disease data- the individual-based

data and the aggregate-based data. The models and Bayesian approach were

tested with simulated data sets and successfully applied to real-life data sets of

tick-borne diseases among Tanzania cattle.

I



Declaration

I declare that the work in this thesis has been done by myself and has not been

submitted elsewhere for the award of any other degree.

Chibuzor Christopher Nnanatu

II



Acknowledgements

First of all, I would like to show my profound gratitude to my supervisor Prof

Peter Neal for believing in me and giving me the kindest opportunity to learn

independently making sure that this project is successfully accomplished. Hon-

estly, this success story would not have been told without Peter Neal’s thorough

supervision, guidance and patience. Thank you very much Pete!

Let me also thank some wondeful people I was so fortunate to meet during the

course of my PhD studies starting with Clement, Simon, Ross and Thitiya. I am

particularly indebted to Clement for his many helps throughout my PhD stud-

ies. I also would like to thank Laura, Abbie and Callum for your many helps in

proofreading this thesis. Thanks to Becky, Jess, Ben, Val, Ayesha, Anna, Amy,

Chantell, Okezie and the entire B18 crew for creating an amazing learning and

social environment. It was indeed a pleasure having you guys as my colleagues.

To my very good friend Chigozie Utazi, I say thank you very much for your many

supports.

Finally and most importantly, I would like to thank my lovely family: my ever car-

ing mother Mrs Rose C. Nnanatu for her very effective prayers, my very beautiful

III



wife Barr.(Mrs) Cynthia C. Nnanatu for her unalloyed support and encourage-

ments for which I would forever remain grateful for, and my children Emerald,

Fechi and Olaedo for understanding the limitations of a PhD student dad. I love

you all immensely! In closing, I thank Nigerian Government through TETFund

for their financial support.

IV



Contents

Abstract I

Declaration II

1 Introduction 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Bayesian Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Bayes’ Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.3 Prior Distribution . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Markov chain Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.2 Monte Carlo methods . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Overview of MCMC algorithms . . . . . . . . . . . . . . . . . . . . 12

1.4.1 Metropolis-Hastings . . . . . . . . . . . . . . . . . . . . . . . 13

1.4.2 Choice of proposal distribution . . . . . . . . . . . . . . . . 15

1.4.3 Independent Sampler . . . . . . . . . . . . . . . . . . . . . . 15

1.4.4 Gibbs Sampler . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4.5 Hybrid MCMC algorithms . . . . . . . . . . . . . . . . . . . 18

V



1.4.6 Burn-in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4.7 MCMC Convergence diagnostics . . . . . . . . . . . . . . . . 19

1.4.8 Traceplot . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.4.9 MCMC efficiency . . . . . . . . . . . . . . . . . . . . . . . . 23

1.4.10 Data Augmentation . . . . . . . . . . . . . . . . . . . . . . . 26

1.5 Epidemic models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.5.1 Historical Background . . . . . . . . . . . . . . . . . . . . . 28

1.6 The General Stochastic Epidemic Model . . . . . . . . . . . . . . . 29

1.6.1 SIS Stochastic Epidemic Model . . . . . . . . . . . . . . . . 31

1.6.2 Basic Reproduction number . . . . . . . . . . . . . . . . . . 33

1.6.3 Model setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.6.4 Inference on epidemic models . . . . . . . . . . . . . . . . . 36

1.7 Household-based epidemic models . . . . . . . . . . . . . . . . . . . 37

1.7.1 Household-based epidemics with two-levels mixing . . . . . . 38

1.7.2 Need for Household based epidemic models . . . . . . . . . . 39

1.7.3 Inference on household models . . . . . . . . . . . . . . . . . 40

1.8 Contributions of the Thesis . . . . . . . . . . . . . . . . . . . . . . 41

1.9 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 44

2 Closed Population SIS Household Model 46

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.2 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.2.1 Individual-based Data (IBD) . . . . . . . . . . . . . . . . . . 51

2.2.2 Aggregate-based Data (ABD) . . . . . . . . . . . . . . . . . 54

2.3 Model Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

VI



2.3.1 The Infinitesimal Rate Matrix and Transition Probability

Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.4 Bayesian Inference on Household-based SIS Epidemic . . . . . . . . 63

2.4.1 Bayesian Inference on Completely Observed Household SIS

Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.4.2 MCMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.4.3 Bayesian Inference on Partially Observed Household Epi-

demic (Data Augmentation) . . . . . . . . . . . . . . . . . . 67

2.4.4 Bayesian Inference on partially observed Individual-based

SIS data (IBD) . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.4.5 Bayesian Inference on partially observed Aggregate-based

SIS data (ABD) . . . . . . . . . . . . . . . . . . . . . . . . . 72

2.5 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.5.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2.5.2 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . 77

2.5.3 MCMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

2.5.4 Results and Discussions . . . . . . . . . . . . . . . . . . . . 80

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3 Open Population, Spatial SIS Model 92

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.2 Open Population SIS epidemic . . . . . . . . . . . . . . . . . . . . . 93

3.3 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.3.1 Individual-based data (IBD) . . . . . . . . . . . . . . . . . . 96

3.3.2 Aggregate-based data (ABD) . . . . . . . . . . . . . . . . . 97

VII



3.4 Model setup (Open population) . . . . . . . . . . . . . . . . . . . . 98

3.4.1 Infinitesimal Transition rate Matrix (G-matrix) . . . . . . . 99

3.4.2 Infinitesimal Transition probability Matrix (Q-matrix) . . . 100

3.5 Bayesian Inference for Open population SIS epidemic model . . . . 100

3.5.1 Generic setup . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.5.2 Data Augmentation (MCMC) . . . . . . . . . . . . . . . . . 103

3.5.3 Independence Sampler . . . . . . . . . . . . . . . . . . . . . 106

3.6 Spatial SIS Epidemic Model . . . . . . . . . . . . . . . . . . . . . . 110

3.6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

3.7 Model Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

3.8 Bayesian Inference for Spatial SIS epidemic model . . . . . . . . . . 114

3.8.1 MCMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

3.9 Simulated Data Example . . . . . . . . . . . . . . . . . . . . . . . . 123

3.10 Application to the Tanzania Data . . . . . . . . . . . . . . . . . . . 128

3.11 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

4 Multiple Strains Model With Interactions 139

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.2 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

4.2.1 Individual-based Data (IBD) . . . . . . . . . . . . . . . . . . 142

4.2.2 Aggregate-based Interacting Diseases Data (ABD) . . . . . . 144

4.3 Generic Model Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 146

4.3.1 Transition Probability Matrix (Q-matrix) . . . . . . . . . . . 154

4.4 Bayesian Inference on household-based SIS interacting diseases model155

4.4.1 Inference on Completely Observed Household SIS Data . . . 155

VIII



4.4.2 Inference on Partially Observed co-epidemics . . . . . . . . . 157

4.4.3 Bayesian Inference for Partially Observed IBD . . . . . . . . 157

4.4.4 Inference on Partially Observed ABD . . . . . . . . . . . . . 159

4.5 Simulated Data Example . . . . . . . . . . . . . . . . . . . . . . . . 161

4.5.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 162

4.5.2 MCMC Implementation . . . . . . . . . . . . . . . . . . . . 164

4.5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

4.6 Application to the Tanzania Cattle Data . . . . . . . . . . . . . . . 170

4.6.1 Data and Methods . . . . . . . . . . . . . . . . . . . . . . . 170

4.6.2 MCMC Implementation and Results . . . . . . . . . . . . . 172

4.6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

4.7 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

5 Conclusions and Future Works 177

5.1 Closed Population SIS Household Model . . . . . . . . . . . . . . . 177

5.2 Open population, Spatial SIS . . . . . . . . . . . . . . . . . . . . . 179

5.3 Coinfection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

IX



List of Tables

2.5.1 The parameter values used for simulating household-based SIS epi-

demics. Each set of parameter values was used to simulate samples

size N = 500 households. . . . . . . . . . . . . . . . . . . . . . . . . 74

2.5.2 The parameter values used for simulating household-based SIS epi-

demics. Each set of parameter values was used to simulate samples

size N = 500 households. . . . . . . . . . . . . . . . . . . . . . . . . 78

2.5.3 Posterior Means, Standard Deviations and Effective Sample Sizes

for completely observed Household-based SIS epidemic for pa-

rameter sets θ = (λ, β, γ)′= (2, 1.5, 2.5)′ from 1 × 105 iterations

after 2× 104 burn-in. . . . . . . . . . . . . . . . . . . . . . . . . . . 83

2.5.4 Posterior Means, Standard Deviations and Effective Sample Sizes for partially observed Household-based

SIS epidemic for parameter θ = (λ, β, γ)′= (0.20, 0.15, 0.25)′ or c = 0.1 from 1×105 iterations after 2×104

burn-in. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

2.5.5 Posterior Means, Standard Deviations and Effective Sample Sizes

for partially observed individual-based data (IBD) (P% = 10%, 30%, 70%, 90%)

for parameter θ = (λ, β, γ)′= (2.0, 1.5, 2.5)′ or c = 1 from 1 × 105

iterations after 2× 104 burn-in. N = 500. . . . . . . . . . . . . . . . 87

3.3.1 Individual-based data (IBD) for an open population SIS epidemic. . 97

X



3.3.2 Aggregate-based Data (ABD) for open population models. . . . . . 98

3.5.1 Individual-based Data (IBD) with varying population sizes over

time with imputed time points and coded according to (3.5.1). . . . 102

3.9.1 Posterior Means, Standard Deviations (SD) and Effective Sample

Sizes (ESS) for the Simulated data example for both spatial and

non-spatial open population data obtained from the last 1.6 × 104

samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

3.10.1Posterior Means, Standard Deviations (SD) and Effective Sample

Sizes (ESS) for the Tanzania data application for both spatial

and non-spatial open population data based upon the last 1.6× 104

samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.5.1 True parameter value used for the simulation of the 16 data sets. . . 162

4.5.2 Posterior Means, Standard Deviations (SD) and Effective Sample sizes

(ESS) for observed data for parameters SET 2, and for 0% missing . . 166

4.5.3 Posterior Means, Standard Deviations (SD) and Effective Sample sizes

(ESS) for observed data for parameters SET 1, and for 30% missing . 167

4.5.4 Posterior Means, Standard Deviations (SD) and Effective Sample sizes

(ESS) for observed data for parameters SET 1, and for 90% missing . 168

4.5.5 Posterior Means, Standard Deviations (SD) and Effective Sample sizes

(ESS) for observed data for parameters SET 2, and for 60% missing . 169

4.5.6 Posterior Means, Standard Deviations (SD) and Effective Sample sizes

(ESS) for observed data for parameters SET 2, and for 90% missing . 170

XI



4.6.1 Posterior Relative risk (φ) mean (Standard deviation) obtained from

the individual-based data (IBD) of the Tanzania tick-borne diseases for

the 10 ten possible combinations of the disease pairs, and from 5 × 104

iterations after a burn-in period of 1 × 104 iterations. Tp = T.parva;

Tm = T.mutans; Am = A.marginale; Bb = B.bigemina; Bb1 = B.bovis.174

XII



List of Figures

1.4.1 Traceplots and autocorrelation function (ACF) plots of two different

MCMC samples and for two different parameters showing a good

mixing chain (left) and a slow mixing chain (right). The green lines

on the traceplots are the estimates of their respective posterior means. 22

1.6.1 Transition states of an individual in SIR model. At time t the

population size N = S(t) + I(t) + R(t), where S(t), I(t) and R(t)

are the number of susceptibles, infectives and removed individuals

at time t. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.6.2 Transition states of an individual in SIS model. At time t the pop-

ulation size N = S(t) + I(t), where S(t) and I(t) are the number of

susceptibles and infectives at time t. . . . . . . . . . . . . . . . . . 33

2.5.1 Right: trace plots obtained from 1 × 105 iteration after discarding

the first 2×104 iterations as burn in. This plot if for the aggregate-

based data for c = 5 and P = 50%. Left: density plot. The plots

here show that the mixing of the chains are good. The posterior

estimates for the means of the three parameter are 7.90, 12.90 and

9.60 for β, γ and λ, respectively. . . . . . . . . . . . . . . . . . . . . 81

XIII



2.5.2 Autocorrelation function plot (ACF) for the individual-based data

(IBD) for c = 5 or (β, γ, λ) = (7.90, 12.90, 9.60) for 50% missing

data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

2.5.3 Paired plots. The contour plots (blues) show that there is a strong

correlation between β vs γ and a weak correlation exits between γ

vs β . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

2.5.4 Posterior density plots of IBD, c = 5 with Gamma(1, 1) priors (a)

and Gamma(10, 1) priors (b) for N = 200 at 10% missing of data

form A. The vertical lines are the posterior means. . . . . . . . . . . 89

3.5.1 Schematic representation of the open population model. . . . . . . . 104

3.7.1 Schematic representation of the spatial model with incomplete data. 114

3.9.1 Spatial distribution of the N = 100 simulated households with each

represented by a red shape. . . . . . . . . . . . . . . . . . . . . . . 124

3.9.2 Traceplots (left) and ACF plots (right) for the non-spatial sim-

ulated open population model obtained after discarding the first

4 × 103 iterations as burn-in out of 2 × 104 iterations. Each of the

red lines represents the mean of the corresponding parameter. . . . 126

3.9.3 Posterior density plots of the spatial model with true (µ, β, γ, κ, φ) =

(1, 0.4, 0.55, 1, 10). The vertical lines are the means. . . . . . . . . . 127

3.10.1Map of Tanga (top), a town in Tanzania, and spatial distribution of

the 62 observed farms in Tanga (bottom). Each red point represents

an observed farm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

3.10.2Traceplots and density plots for the non-spatial model parameters

of the Tanzania data application. . . . . . . . . . . . . . . . . . 132

XIV



3.10.3(a) Predicted Gaussian random fields realizations (Â) and (b) pre-
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Chapter 1

Introduction

1.1 Overview

Outbreaks of infectious diseases (both new and re-emerging) in both human and

animal hosts are a growing concern due to their attendant high morbidity and

mortality rates, and the severe economic and social effects, for example, UK 2001

Foot and Mouth diseases.

Understanding the dynamics of infectious diseases transmission offers a great in-

sight into the key drivers of the transmission processes. Mathematical models for

infectious disease are normally used to capture the actual disease transmission

mechanisms, gain further insight on the epidemiological, immunological and evo-

lutionary behaviors of the infectious disease of interest. By making appropriate

assumptions about the model parameters, and being able to infer the parameters

of the model, an epidemic model would potentially answer several public health

questions concerning the severity of an infectious disease and the final size of an

epidemic. Epidemic model can also serve as means through which public health
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practitioners could be kept abreast of the most effective control strategies to be im-

plemented in the face of an outbreak, for example vaccination policies, quarantine

measures, movement restrictions or other procedures, see, for example, Keeling

et al. (2003).

It is well known that most infectious disease data are non-standard and are usu-

ally only partially observed, see, for example, Britton and O’Neill (2002). This

partial observation of most infectious disease data, which are largely due to cer-

tain unobserved processes, presents a huge setback in the analysis of infectious

disease data (for most likelihood-based inference methods requiring the evaluation

of the likelihood function.) However, as more fast computing machines become

available, several computer-intensive approaches are being developed. One of such

methods is Markov Chain Monte Carlo (MCMC) algorithms which allows posterior

inference no matter how complicated the likelihood function may be.

In this thesis, we shall be concerned with the development of efficient statisti-

cal inference approach for epidemic models. Specifically, this thesis develops such

inference approach for household-based stochastic epidemic models via a Bayesian

framework, and implemented using Markov Chain Monte Carlo (MCMC) algo-

rithms. Throughout, we shall focus on the endemic SIS (susceptible→ infected→

susceptible) model. However, with appropriate model assumptions adjustments,

the methods developed in the next three chapters can readily be applied to other

class of epidemic models for both humans and animals populations. We shall use,

where appropriate, a simulated data sets and/ a real-life data sets both to illustrate

our approach.

The remainder of this introductory chapter is organized as follows: In Section
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1.2, we give an outline of Bayes’ paradigm. In Section 1.4, we give an overview

of MCMC methods and discuss a few well known MCMC algorithms, especially

those relevant to our purpose. In Section 1.4.10, we describe the implementation of

data augmentation and explain how the idea of data augmentation allows iterative

sampling. In Section 1.5, we give an overview of epidemic models, highlighting the

breakthroughs and setbacks of epidemic models. Finally in Section 1.8, we outline

the contributions of this thesis to literature.

1.2 Bayesian Inference

In this section, we give an overview of Bayesian inference in general and outline the

theoretical framework of the Bayesian paradigm. We also give the development of

Bayesian statistical inference computational methods which form the basis of the

inferential methods developed in this thesis.

1.2.1 Introduction

Given data x = (x1, x2, . . . , xn) which is assumed to arise from a model M with

parameters θ ∈ Θ ⊂ Rd, in classical (or frequentist) statistics, the parameters θ

are fixed constants. Then with the data through the likelihood function, maximum

likelihood estimate (MLE) of the parameters can be calculated. Other quantities

of interest such as standard error and confidence intervals for the maximum like-

lihood estimate can readily be obtained.

Conversely, Bayesian statistics assumes that the model parameters themselves are

random variables to be estimated from the model rather than constant parame-
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ters. Note that both assume parametric model and also involve the use of the

likelihood function. The likelihood function is the conditional distribution of the

data given the model parameters. In addition, Bayesian statistics allows us to

place prior distribution on the parameters. The prior distribution represents any

prior knowledge we or experts have on the parameters. The prior distribution may

possess a great deal of information concerning θ in which case we say that the prior

is informative. On the other hand, the prior distribution may contain too little

or no information about θ in which case we say that the prior is noninformative.

Bayesian inference then combines the likelihood function and the prior distribution

using Bayes’ theorem to obtain the posterior distribution. The posterior distribu-

tion gives the conditional distribution of the unknown parameters given the data.

Therefore, the posterior distribution which depends on the parametric model, the

data and the choice of prior. Once the posterior distribution has been obtained

quantities of interest such as mean, mode and variance of the parameters can be

estimated directly from the posterior distribution. For a more rigorous and de-

tailed discussion of the Bayesian statistical inference framework, see, for example,

Bernardo and Smith (1994).

We shall now present the basic theoretical framework of Bayesian statistical infer-

ence used in this thesis. We adopt the notations introduced above denoting the

data x = (x1, x2, . . . , xn) assumed to arise from a model M with d-dimensional

parameters, θ. Note that throughout this section, we use θ and θ to denote a

vector of parameter values and a single parameter value, respectively. Similarly,

we use x and x to denote a data matrix and a single data point, respectively.
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1.2.2 Bayes’ Theorem

Given the data x and the parameters of the model θ, let π(θ) denote the prior

distribution on the parameters representing our beliefs on the parameters. Let

π(x|θ) denote the likelihood function, i.e., the conditional distribution of the data

given the unknown parameters. Also, let π(x) denote the marginal distribution

of the data x and let π(θ|x) denote the posterior distribution of the parameters

given the data. Then Bayes’ Theorem is as follows:

π(θ,x) = π(x|θ) π(θ)

= π(θ|x) π(x). (1.2.1)

In Bayesian statistics, the primary interest is on the posterior distribution of the

parameters given the data, π(θ|x), which is given by π(x|θ)π(θ)/π(x). That is,

π(θ|x) =
π(x|θ)π(θ)

π(x)
(1.2.2)

π(θ|x) ∝ π(x|θ)π(θ)

π(θ|x) = K × π(x|θ)π(θ)

π(θ|x) = K × likelihood× prior. (1.2.3)

where the marginal distribution π(x) does not depend on the parameters θ and

K is a constant of proportionality or the normalizing constant which should be

computed. In most practical, complex situations, it is not analytically possible to

calculate the constant of proportionality K and this has been a major hitch on the

progress of Bayesian statistical inference. Thankfully, there exist modern computer

intensive Bayesian statistical techniques which only requires the knowledge of the
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posterior distribution up to the constant of proportionality. These techniques

known as Markov chain Monte Carlos (MCMC) algorithms have been successfully

applied to wide range of realistically complex models in Bayesian framework. With

MCMC, the impediment that would have been encountered on with calculation of

the normalizing constant is sidestepped. All that is is required is to construct a

suitable MCMC algorithm whose stationary distribution is our target distribution.

It is straightforward to extend the Bayesian framework to cases involving two or

more independent data samples, such as data obtained sequentially over time.

Suppose we have two independent data samples x1 and x2 which are assumed to

arise from the model M and with d-dimensional parameters θ. Then

π(θ|x1,x2) ∝ π(x1,x2|θ)π(θ)

= π1(x1|θ)π2(x2|θ)π(θ)

∝ π2(x2|θ)π(θ|x1). (1.2.4)

From (1.2.4) we see that we can obtain the joint posterior distribution of the

parameters given the two independent data sets, π(θ|x1,x2) by simply evaluating

the posterior distribution of x1 given the parameters, π(θ|x1) ∝ π1(x1|θ)π(θ), and

then using it as the prior for the likelihood of the second data given the parameters,

π2(x2|θ). This framework is widely adapted for the Bayesian statistical inference

approach we develop in this thesis. In Section 1.4, we give an overview of the

development of MCMC algorithms and their applications in Bayesian statistical

inference contexts.

We now give outline of various forms of prior distribution popular in Bayesian

statistical inference framework.
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1.2.3 Prior Distribution

In this section we briefly present a few commonly used prior distributions in

Bayesian statistical inference. We recall that a prior distribution captures our be-

liefs about the parameters distribution and can be informative or non-informative.

Priors can also be proper or improper. A very popular prior distribution largely

used due to mathematical convenience is one which gives rise to a posterior distri-

bution that is in the same family of parametric distribution as the prior distribu-

tion. In this case, the prior is said to be a conjugate prior.

Conjugate priors

As already stated above, a prior is said to be conjugate if the resulting posterior

distribution belonging to the same family of parametric distribution as the prior.

Suppose that x = (x1, x2, . . . , xn) are independent and identically distributed data

according to an exponentially distributed random variableX. That is, X ∼ exp(θ).

Then

f(x|θ) = θe−θx x ≥ 0, (1.2.5)

then the likelihood function is

L(θ|x) =
n∏
i=1

f(xi|θ),

=
n∏
i=1

θe−θxi ,

= θn exp(−θ
n∑
i=1

xi). (1.2.6)
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Suppose we place gamma-distributed prior on θ, that is, π(θ) ∼ Gamma(α, β),

where α > 0 and β > 0 are the shape and the scale parameters, respectively. Then

the posterior distribution is given as follows:

π(θ|x) ∝ L(θ|x)π(θ)

∝ θn exp(−θ
n∑
i=1

xi)× θα−1 exp(−θβ)

= θn+α−1 exp(−θ(β +
n∑
i=1

xi)), (1.2.7)

⇒ θ|x ∼ Gamma(n+ α, β +
∑n

i=1 xi).

Therefore, the gamma distributed prior π(θ) is a conjugate prior since the the

posterior distribution is also gamma-distributed as the prior distribution.

Proper and Improper prior distributions

A prior distribution π(θ) is said to be proper if it integrates to unity, i.e.,
∫∞
−∞ π(θ)dθ =

1. On the other hand, an improper prior distribution is one which does not inte-

grate to unity. For example, suppose θ is assigned the prior π(θ) ∝ 1. Clearly, this

is an improper prior since
∫∞
−∞ π(θ)dθ = ∞. Nonetheless, placing improper prior

distribution on parameters often gives rise to proper standard posterior distribu-

tions making its use unproblematic.

1.3 Markov chain Monte Carlo

In this section, we present an overview of Bayesian statistical inference via Markov

chain Monte Carlo (MCMC) algorithms. In particular, we give a brief outline on

the development of MCMC with a detailed description of some commonly used
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MCMC algorithms. We first outline the underlying theoretical basis for MCMC

beginning with Markov chains and Monte Carlo methods.

1.3.1 Markov Chains

A Markov chain {Xn : n ≥ 0} is a stochastic (random) process taking values in

the state space S, and which satisfies the following ’memoryless’ property:

P(Xn+1 ∈ S|Xn = xn, Xn−1 = xn−1, . . . , X0 = x0) = P(Xn+1 ∈ S|Xn = xn),

where Xn denotes the state of the chain after n steps. In order words, a Markov

chain is a stochastic process in which the future state (Xn+1) of the process is

independent of the past state ( Xn−1, . . . , X0) given the present state (Xn). When

the Markov chains do not depend upon n they are said to be homogeneous. That

is, for n ≥ 0 and i, j ∈ S

P(Xn+1 = j|Xn = i) = P(X1 = j|X0 = i). (1.3.1)

Then there exists an |S| × |S| transition probability matrix P = (pij) which de-

scribes the evolution of the chain, where

pij = P(Xn+1 = j|Xn = i) (1.3.2)

is the probability of the chain being in state j from state i. The transition matrix

P is stochastic in that its entries are non-negative values, and the row elements

sum to unity. That is, pij ≥ 0 for all i, j, and
∑

j pij = 1 for all i. Note that the

descriptions so far given are for discrete-time Markov chain (DTMC) in which the

9



jump times and state space take values in the discrete set {0, 1, 2, . . .}. We shall

now give basic properties of Markov chains.

Irreducibility

A Markov chain is said to be irreducible if it is possible to get to any state from

any other state. That is, P(Xn = j|X0 = i) > 0 for all i, j.

Aperiodicity

A Markov chain is said to be aperiodic if the greatest common divisor of {n;P(Xn =

j|X0 = i) > 0} = 1, otherwise the Markov chain is said to be periodic.

Recurrent

A Markov chain is said to be recurrent if the probability the chain would return to

state i having started from state i is unity for all i. That is, P(Xn = i|X0 = i) = 1

for all i. A positive recurrent Markov chain is one in which the mean recurrent

time is finite.

Stationary distribution

If a Markov chain is ergodic, i.e., irreducible, aperiodic and recurrent, then re-

gardless of what the value of the initial state (X0) is, the distribution of Xn will

converge to a distribution, π. We call π the stationary distribution of the chain.

That is, for all i

10



lim
n→∞

P(Xn = j|X0 = i) = πj, (1.3.3)

where
∑

i πipij = πj. We shall write this in matrix notation as π = πP and

these are used extensively in the models we analyzed in this thesis. Note that the

descriptions given are largely on discrete-time Markov chains (DTMC) with both

discrete state space and discrete jump times.

1.3.2 Monte Carlo methods

In this section, we briefly describe the usefulness and limitations of Monte Carlo

methods. Monte Carlo methods are primarily employed for the evaluation of in-

tegrals of random variables whose integrals do not have analytical solutions.

Suppose that we have a multidimensional random variable X with probability

density function, π(x), and a function of interest, φ(x) say, interest may be in the

calculation of the expected value of φ(x), Eπ[φ(X)]. This requires the evaluation

of the integral

∫
φ(x)π(x)dx, (1.3.4)

for which the analytical solution is not feasible. We can estimate Eπ[φ(X)] by

drawing a sequence of values of size n, X1, X2, . . . , Xn, such that {Xi} are inde-

pendent and identically distributed according to π(x). Then by the strong law of

large numbers (SLLN), as n→∞, we have that
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1

n

n∑
i=1

φ(Xi)→ Eπ[φ(X)]. (1.3.5)

The Monte Carlo estimate in (1.3.5) is unbiased. Also, suppose there exits a finite

second central moment, σ2
φ(<∞), then by Central Limit Theorem (CLT), we have

that

√
n

(
1

n

n∑
i=1

φ(Xi)− Eπ[φ(X)]

)
D−−−→ N(0, σ2

φ), (1.3.6)

where
D−−−→ means convergence in distribution. The application on the Monte

Carlo methods is possible when we are able to simulate sample from π(x). In

most realistically complex situations obtaining sample from π(x) for Monte Carlo

integration is not possible. Markov chain Monte Carlo algorithms allow us to

obtain samples from such complex models by constructing a Markov chain whose

stationary distribution is our target distribution. In what follows, we now give

details on the development of MCMC and its application in Bayesian statistics

framework.

1.4 Overview of MCMC algorithms

The idea behind MCMC is to construct a Markov chain whose stationary distri-

bution is the posterior distribution, π(θ|x), of interest. Unlike the conventional

Monte Carlo simulation methods where independent samples are obtained, MCMC

algorithm enables us to simulates dependent and auto-correlated samples, {θ(t)},

iteratively from the posterior distribution of interest, π(θ|x) . Asymptotic results

enable us to obtain ergodic average, such as that in (1.3.5), from the dependent
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samples realized from the MCMC. Certain mild conditions, see, for example Robert

and Casella (1999), ensure that the limiting distribution of the Markov chain {θt}

is our target posterior distribution, π(θ|x) , regardless of what the value of the

initial state of the chain, π(θ|x), may be.

The use of MCMC dates back to Metropolis (Metropolis et al., 1953) who used

it in the context of physics, and it was generalized in statistical context by Hastings

(Hastings, 1970). However, the introduction of MCMC into mainstream statistics

was by Gelfand and Smith (1990). Since then, there has been a tremendous

development in the application of MCMC in all aspects of Bayesian modelling,

especially in realistically complex Bayesian models. Gilks et al. (1996), Robert and

Casella (1999), Gamerman and Lopes (2006) and Brooks et al. (2011), provide a

comprehensive account on the advances of MCMC in statistical methodology. We

shall now present MCMC algorithms most relevant to the models considered in

this thesis.

1.4.1 Metropolis-Hastings

Suppose we have a d-dimensional posterior distribution π(θ|x) = f(θ), and interest

is to simulate samples {θ(t)} for inference purposes. A typical Metropolis-Hastings

algorithm is given in Algorithm 1 below.

The algorithm defined above can be modified in several ways to enhance its effi-

ciency. Note that q(., .) denotes the proposal distribution of a given component

which needs scaling for improvement. The choice of the proposal distribution is

crucial to the success of the MCMC algorithm. We shall see various ways through
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Algorithm 1 Metropolis-within-Gibbs algorithm

1. For t ≥ 0, set the current values of the parameters θcurr = θ(t) =

(θ
(t)
1 , θ

(t)
2 , . . . , θ

(t)
d ).

2. For i = 1, 2, . . . , d, propose θprop from the proposal density

qi(θ
prop
i |θ(t)).

3. Set θprop = (θpropi ,θ
(t)
−θ), where θ

(t)
−θ is the vector θ(t) without com-

ponent i.

4. Compute the probability α(θ(t), θprop), where

5. α =


min

{
1, π(θprop)q(θprop,θ(t))

π(θcurr)q(θ(t),θprop)

}
if π(θprop)qi(θ

(t), θprop) > 0,

1 if π(θcurr)q(θ(t), θprop) = 0.

6. Set θcurr = θprop and θ(t+1) = θprop with probability α(θ(t), θprop).

Otherwise set θ(t+1) = θ(t).

7. Store the required value.

8. Repeat the steps until sample of the desired size are obtained.

14



which the proposal density, q(., .) can be specified for optimal performance of the

algorithm.

1.4.2 Choice of proposal distribution

In this section, we shall show how the proposal density q(., .) can be chosen effec-

tively. Being able to choose a suitable proposal density for a Metropolis-Hastings

algorithm enhances the efficiency and the convergence of the algorithm. On the

other hand, a bad choice of the proposal density might lead to reducible Markov

chains. There are many possible choices for the proposal distribution, but we shall

focus on the two most relevant for our purposes.

1.4.3 Independent Sampler

In Independence sampler, the proposal density, q(θcurr, θprop), is chosen such that

it is independent of the current value,say θcurr. That is;

q(θcurr, θprop) = q(θprop).

(1.4.1)

Then the acceptance probability α, is given by;

α(θcurr, θprop) = min

{
1,
π(θprop)q(θprop, θcurr)

π(θcurr)q(θcurr, θprop)

}
= min

{
1,
π(θprop)q(θcurr)

π(θcurr)q(θprop)

}
. (1.4.2)

The implementation of Independence sampler is straightforward. However, one

of the requirements of the Independence sampler to be efficient is that proposal

distribution be a good approximation of the posterior distribution.
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Random Walk Metropolis

Random Walk Metropolis (RWM) is perhaps the most widely used choice of pro-

posal. The popularity of RMW might be because it is easy and straightforward

to implement, it is generally efficient even for high dimensions, it can easily be

improved for efficiency and optimality. Suppose we have the proposal density

q(θcurr, θprop) , RMW ensures that the candidate value θprop is centered on the

current value. That is

θprop = θcurr + ζ, (1.4.3)

where the random variable ζ has mean of zero and is usually symmetric. A popular

case when ζ is Gaussian distributed with zero mean and variance σ2
ζ has attracted

a lot of attention in recent years. This is because the performance of the RWM

algorithm is influenced by the size of σ2
ζ . To achieve optimality, studies have

suggested different ways of scaling and tuning the proposal σ2
ζ for the best result,

see, for example, Roberts et al. (1997) and Sherlock et al. (2010). In particular,

Roberts et al. (1997) suggested that for a muti-parameter density, the σ2
ζ value

which gives rise to an acceptance rate close to 23.4% is optimal. We employ RWM

algorithms extensively in this thesis as it works well for cases where Gibbs sampling

can not be used easily. RWM algorithm is as follows.

q(θcurr, θprop) = q(|θcurr − θprop|)

The acceptance probability is given by;

α(θcurr, θprop) = min

{
1,
π(θprop)q(θprop, θcurr)

π(θcurr)q(θcurr, θprop)

}
= min

{
1,
π(θprop)

π(θcurr)

}
. (1.4.4)
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Observe that the term in q(., .) canceled out due to symmetry.

1.4.4 Gibbs Sampler

Gibbs sampler, example, Geman and Geman (1984) and Gelfand and Smith (1990)

is a special form of Metropolis-Hastings algorithm. It is simple and easy to im-

plement in that it only requires the full conditional distribution of each parameter

of interest. In Gibbs sampler, the acceptance probability of the general M-H

algorithm is equal to 1. Suppose we have a posterior distribution π(θ|.), with

d-dimensional parameters, θ and interest is on carrying drawing samples for pos-

terior inference. For i = 1, 2, . . . , d, suppose the full conditional density of each of

the parameters given everything else, π(θi|.), is available in a closed form. Gibbs

sampler is used to successively and repeatedly simulating from the conditional dis-

tributions of each component of the distribution given the other components as

given in Algorithm 2 below.

Algorithm 2 Gibbs Sampler

1. Initialise the parameters, i.e., set θ(0) = (θ
(0)
1 , . . . , θ

(0)
d )

2. For t = 1, 2, . . . , n

• For i = 1, 2, . . . , d,

• Draw θ
(t)
i from π(θi|θ(t−1)

−i ), where θ
(t−1)
−i is a vector of θ(t−1)

without θ
(t−1)
i .

3. Store θ(t) = (θ
(t)
1 , . . . , θ

(t)
d )

4. Repeat from step 2 down until sample of the desired size are ob-

tained.
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The convergence of the Markov chain to the posterior distribution is guaranteed

under mild regularity conditions. Therefore, the samples θ(1),θ(2), . . . ,θ(n), so

obtained are believed to come from π(θ, .). Then posterior inference can be carried

out to obtain estimates of the quantities of interest.

1.4.5 Hybrid MCMC algorithms

In most practical situations especially in missing data problems, it is most unlikely

that each component of the chain will have a conditional distribution in a closed

form. In this case, Gibbs sampler can not be implemented. However, we can

employ a Metropolis-Hastings algorithm, for example RWM, to obtain sample from

such distribution, while we use Gibbs sampler to sample the components standard

conditional distribution. In some cases however, Gibbs sampler might not be

feasible, then either Independence sampler or RWM could be used in such cases.

For example, Neal and Roberts (2006) considered RWM-within-Gibbs algorithm

with Gaussian proposal density. In this thesis, we used hybrid MCMC algorithms

extensively in for the models analyzed in Chapters 2, 3 and 4.

1.4.6 Burn-in

The samples θ(1),θ(2), . . . ,θ(n) obtained from MCMC runs are usually highly corre-

lated. In most cases, except in perfect simulations the starting value of the Markov

chain θ(0) = (θ
(0)
1 , . . . , θ

(0)
d ) is not from the stationary distribution. However as we

take longer runs, or for large B, the chain increasingly forgets its starting values

θ(0), such that θ(B) is approximately from the stationary distribution. The idea

behind burn-in is to discard the first B iterations and then carry out out poste-
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rior inference based upon the last n − B samples. That is, burn-in discards the

first θ(1),θ(2), . . . ,θ(B) samples and considers the samples, θ(B+1),θ(B+2), . . . ,θ(n)

as approximately drawn from the stationary distribution.

1.4.7 MCMC Convergence diagnostics

A d-dimensional Markov chain {θt} is said to have converged when the stationary

distribution of the chain well approximates the target distribution. As mentioned

earlier, MCMC draws are correlated and it is a good practice to use the part of

the posterior sample obtained after burn-in for convergence examination. Suppose

interest is on estimating Eπ[f(θ)], at stationarity, we have that

f̂n ≈ Eπ[f(θ)], (1.4.5)

where f̂n is the Monte Carlo estimate

1

n

n∑
i=1

f(θi). (1.4.6)

If σ2
f exists, the convergence of the chain is guaranteed by the Central Limit

Theorem (CLT)

√
n

(
f̂n − Eπ[f(θ)]

)
D−−−→ N(0, σ2

f ), (1.4.7)

where
D−−−→ denotes convergence in distribution. Furthermore, a practical way of

assessing the mixing of an MCMC algorithm is by calculating the effective number

of dependent sample that is equivalent to a single independent sample. This is also
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known as the integrated autocorrelation function (IAF), see, for example, Neal

and Roberts (2005). Let (. . . ,θ0,θ1,θ2, . . .) denote sample of θ obtained from the

stationary distribution π(.). Then for t ≥ 0 and for k > 0,

ρk = Corr(θt,θt+k),

= Corr(θ0,θk),

=
Cov(θ0,θk)

V ar(θk)
, (1.4.8)

is the chain’s autocorrelation function at lag k. Then

Cint = 1 + 2
∞∑
k=1

ρk, (1.4.9)

is the integrated autocorrelation function. We can then estimate Cint directly from

the sample (θ1,θ2, . . . ,θn) using

Ĉint = 1 + 2
T∑
k=1

ρ̂k, (1.4.10)

where

ρ̂k =

n−k∑
t=1

(θt − θ̂)(θt+k − θ̂)

n∑
t=1

(θt − θ̂)2

. (1.4.11)

Notice that

θ̂ =
1

n∗

n∗∑
t=1

θt.

A challenge in 1.4.10 is how to choose T optimally. Choosing T too little makes

the estimate obtained with Ĉint unreliable as crucial correlation terms ρk might
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be left out. On the other hand, a too large T makes hard the distinction between

the actual correlation and Monte carlo error.

While monitoring the performance of an MCMC algorithm may be relatively

easy, the construction of an efficient MCMC algorithm can be hard. In the con-

struction of MCMC algorithms, the key point is being able to construct a chain

whose stationary distribution is the posterior distribution π(.) of interest.

1.4.8 Traceplot

Traceplots are the plots of the posterior sample which contain the historical evo-

lution of the chain as it explores the posterior model parameters space. Figure

1.4.1 shows traceplots (up) from the posterior samples of two different MCMC

runs each for 1 × 104 iterations. The information made available by Figure 1.4.1

indicates that the MCMC algorithm for the first sample (left) is by far better in

performance that the second (right). While the traceplot on the left seems to have

converged to the target distribution, the second traceplot is seen to wandering and

will potentially continue this way after 1× 104 iterations for a long time. In some

cases, the chain will never converge. This then necessitates some remedial actions

such as checking the codes for errors, reparameterisation or using certain optimal

approaches.

Autocorrelation function plot

In Bayesian framework, the autocorrelation function (ACF), Cov(θ0,θk), defined

in (1.4.8) measures the lag k (k ≥ 1)autocorrelation in a given MCMC sample.

The ACF plot therefore shows how correlated (or dependent) a given posterior
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Figure 1.4.1: Traceplots and autocorrelation function (ACF) plots of two different

MCMC samples and for two different parameters showing a good mixing chain

(left) and a slow mixing chain (right). The green lines on the traceplots are the

estimates of their respective posterior means.
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samples are. The bottom section of Figure 1.4.1 shows the ACF plots from two

different MCMC chains for two different parameters. The first ACF plot (left)

shows a fairly small autocorrelation among the elements of the posterior sam-

ple. This indicates a good mixing MCMC algorithm. On the other hand, the

second ACF plot (right) indicates very high dependence between the MCMC sam-

ples. Note that in most cases, the lag-1 autocorrelation approximates lag-k, i.e.,

Cov(θ0,θk) ≈ Cov(θ0,θ1). Asymptotically, we expect Cov(θ0,θk)→ 0 as k →∞.

We shall discuss both optimal scaling, shaping and reparameterisation in the sec-

tion that follows in a bid for an increased efficiency of MCMC algorithms.

1.4.9 MCMC efficiency

As stated earlier, the traceplots and the ACF plots inform us about the mixing the

MCMC chains. From both plots, it is easy to see if the MCMC algorithm requires

some sort of adjustments for an improved mixing. In this section, we shall outline

posterior variance scaling and posterior distribution shaping strategies for RWM

algorithm. Later we shall give how to use both strategies adaptively.

Optimal scaling

For optimum performance of the Random Walk Metropolis algorithm, Roberts

et al. (1997) suggested using a posterior standard deviation, σζ say, such that

about a quarter (or 23.4%) of the proposed moves are accepted. This is the

asymptotically optimal acceptance rate for a RWM with Gaussian proposal density.

That is, for a d-dimensional chain, propose
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ζ ∼ N(0, cId), (1.4.12)

where Id is a d× d identity matrix. The key point in 1.4.13 is how to specify the

scaling parameter c for optimality. When we choose a too low σζ , the algorithm

only explores the posterior distribution inefficiently, moves slowly and accepts most

moves. Similarly, if a too large σζ is used, then only a very few proposed jumps

are accepted and the chain appears to be stuck at a point for a long time. There

is therefore need to have a systemic approach of specifying the scaling parameter

c for optimal performance of the chain. For a d-dimensional chain, Roberts and

Rosenthal (2001) suggests setting c = 2.38/d1/2, and this is found to work well by

giving rise to acceptance rate close to the optimal acceptance rate of 0.234, see,

for example, Neal and Roberts (2006).

Optimal shaping

Optimal shaping ensures that the algorithm quickly learns the shape of the target

distribution thereby enhancing the mixing of the algorithm. A good way to en-

hance the RWM algorithm so that the chain can learn the shape of the posterior

is to propose jumps for the nth iteration from

ζ ∼ N(0, cΣn−1), (1.4.13)

where Σn−1 is the posterior variance-covariance matrix from the n−1 MCMC run.

This allows the algorithm to adjust itself to the shape of the posterior. However

starting the chain from points far away from the main posterior mass will force the
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chain to learn the shape of unimportant regions of the posterior. Discarding the

initial K iterations, say, as burn-in would help to adjust for poor starting points.

Adaptive RWM

From the foregoing, we see that while the scaling parameter ensures optimal ac-

ceptance, optimum scaling enables good mixing of the chain. However, we note

that the scaling parameter has to be tuned for a number of times before optimality

is achieved. This might be burdensome and time consuming. On the other we see

that having a wrong start of the chain could lead to inefficient exploration of the

posterior. Adaptive RWM (see, for example, Haario et al. (1999), Haario et al.

(2005), Roberts and Rosenthal (2007) and Roberts and Rosenthal (2010)) steps

ensure that both the optimal scaling and optimal shaping are incorporated into the

algorithm, which also enables automatic tuning of the algorithm. We summarize

this section with the following adaptive RWM steps:

1. Start the chain with a sensible value of σζ which gives an acceptance rate

close to 23.4% and run a fairly small number of iterations, long enough for

a reasonable set of estimates to be obtained.

2. Then run a longer chain. This allows the chain to drop any errors inherited

from the first early iterations. It is expected that changes in the transition

kernel diminishes with the number of iterations, see, Roberts and Rosenthal

(2007).

3. Obtain the posterior variance-covariance matrix, Σ.

4. For the nth run, propose jumps using the proposal variance-covariance matrix

Σn = cΣ, where c = 2.382/d.
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5. When a proposed jump is accepted, increase the size of the move by setting

Σn equal to

(
1 +

0.03√
J

)
Σn , (1.4.14)

6. When a proposed move is rejected, decrease the jump size and set Σn equal

to

(
1− 0.01√

J

)
Σn , (1.4.15)

7. Repeat steps 3 and 4 and use the Σ∗ obtained for the main MCMC runs,

for J = 1, 2, . . . , B, where B is the size of the chain discarded as burn-in, for

example, Xiang and Neal (2014).

1.4.10 Data Augmentation

In this section, we give a brief overview of data augmentation with focus on its

application in Bayesian statistics via Markov Chain Monte Carlo (MCMC) algo-

rithms.

The name data augmentation (DA) originates with Tanner and Wong (1987) who

exploited the underlying techniques to obtain samples in a straightforward manner

from the posterior distribution of a stochastic model. However, this technique was

first applied to deterministic problems by Dempster, Laird and Rubin, (Demp-

ster et al., 1977), for likelihood function maximization using the well known E-M

(Expectation-Maximization) algorithm, and has also been applied in the context

of Physics to improve the speed of iterative samplings, see, for example, Swendsen
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and Wang (1987). Data augmentation offers a natural way of simulating itera-

tively from very complex models and this makes it a powerful tool in the area

of Bayesian Statistics, especially in missing data problems. In a Bayesian frame-

work, data augmentation is usually implemented via Markov Chain Monte Carlo

(MCMC) algorithms. There are several natural and social processes which give

rise to incomplete data. In an infectious disease process, for example, we only ob-

serve times at which symptoms begin to manifest (for symptomatic diseases) and

the time when an individual recovers, the actual times of infection are not usually

observed. A DA scheme allows the unobserved infection times to be imputed as

extra information using appropriate MCMC algorithms, see, for example, Neal

and Roberts (2005). See also, Demiris and O’Neill (2005a) and Cauchemez et al.

(2004) for applications of data augmentation in the analysis of infectious disease

data.

Let y denote the partially observed data and θ the parameters of interest. Note

that only a subset of the data y are observed and in most practical situations, it

is impossible to evaluate the likelihood function of the observed data y given the

parameters θ, π(y|θ). However, given an additional information z, the augmented

likelihood function, π(x = (z,y)|θ,y) becomes tractable, where x = (z,y) are the

full (or the augmented data). Then the probability of observing the augmented

data given the observed data y and the parameters satisfies

π(x = (z,y)|θ,y) ∝ π(y|x)π(x|θ).

We need to construct a Markov Chain whose stationary distribution is our tar-

get distribution, the joint posterior π(θ, x|y), by drawing the following samples

according to the steps described in Algorithm 3
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Algorithm 3 Data Augmentation

1. Initialize the parameter θ(0) ∈ Θ,

2. Initialize the augmented data x(0),

3. Construct the Markov chain
{

(θ(r),x(r)); t ≥ 1
}

as follows,

• draw z(r+1) ∼ π(z|y,θ(r)),

• draw θ(r+1) ∼ π(θ|x(r+1) = (y, z(r+1)).

The sampled values of the parameters θr; r ≥ 1 are normally stored while

zr may be stored for further use or discarded as nuisance parameters not

needed.

Here, the key challenge is how to efficiently choose the auxiliary variable z so as

to be consistent with the observed data y. This thesis utilizes the concept of data

augmentation extensively as we shall see in the next chapter.

1.5 Epidemic models

In this section, we give an overview of epidemic modelling and a brief history of

the development of mathematical models for infectious diseases.

1.5.1 Historical Background

Epidemic models are developed to capture the dynamics of infectious diseases. An

excellent summary of the early history of infectious disease modelling is given in

Bailey (1975) . Good reviews of more recent developments on epidemic models are

provided in Isham (2005) and Greenwood and Gordillo (2009). The first attempt
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on mathematical modelling of infectious diseases is taken to be a paper presented

by Daniel Bernoulli (Bernoulli, 1760) account of which is found in Daley and Gani

(1999). Other works in infectious disease that follow after over 100 years of the

work by Bernoulli are due to Hamer (1906), Ross (e.g, Ross (1911)), McKendrick

(1926), Kermack and McKendrick (1927) amongst others. The paper by (Bernoulli,

1760) discusses the use of inoculation to prevent smallpox. Hamer (1906) proposed

a discrete time model which assumes that the probability of an infection in the next

time period of time was proportional to the product of the number of infectives

(infected and infectious individuals) and susceptibles. Among the early epidemic

models studied are stochastic epidemic models (McKendrick, 1926), deterministic

general epidemic model(Kermack and McKendrick, 1927). Reed-Frost model, a

discrete-time stochastic epidemic model was presented in lectures by Reed and

Frost in 1928 (Daley and Gani, 1999). Continuous-time stochastic epidemic model

of the SIR type was studied by Bartlett (1949) and there has been an increased

volume of literature ever since.

1.6 The General Stochastic Epidemic Model

In this section we present the model which forms the basis of the models stud-

ied in this thesis. The general stochastic epidemic (GSE) model is the most well

studied stochastic epidemic model. We use the SIR (susceptible → infected →

removed) compartmental model (Figure 1.6.1 ) to describe the GSE. The model

assumptions are as follows. A closed population of N individuals, with a initial

infectives and N − a initial susceptibles. The population is said to be closed in
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that no births, deaths, emigration or immigration are allowed during the course of

the epidemic. The closed population assumption makes sense for infectious disease

which spread so fast within a very short period of time, for example chickenpox,

in that the population is not likely to witness major demographic changes during

this time. At every given point in time, an individual is classified as a suscepti-

ble if the individual is susceptible to the disease (can be infected) and therefore

is said to be in the susceptible state (or state S). A non-susceptible individual is

either infected and infectious or has recovered. Infected individual is said to be

in the infected state (or state I), while a recovered individual is said to be in the

removed state (or state R). Recovery from such diseases confers immunity so that

a recovered individual becomes immune and cannot be re-infected with the dis-

ease again. Therefore, once recovered, the individual plays no further role in the

infectious process. We call I the infectious period which is the difference between

the time of the individual has been confirmed to have recovered from the disease

and the time of actual infection. Infectious periods of different individuals are

assumed to be independent and identically distributed according to some random

variable I, where the distribution of I can be arbitrary but specified. Several

distributions of I have been studied. For example, O’Neill and Becker (2001) as-

sumes a gamma distributed infectious period, while Streftaris and Gibson (2004)

assumes a Weibull distributed infectious period. However, the general stochastic

epidemic model assumes an exponentially distributed infectious period (Bailey,

1975). The exponential distribution is not necessarily biologically plausible for

many diseases, but is mathematically attractive in that it makes the epidemic pro-

cess to be Markov with the memoryless property that given the present state, the
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future state is independent of the previous states. This memoryless property is

widely exploited in this thesis.

Individuals in the population are assumed to mix homogeneously so that whilst

infectious, an infective makes infectious contacts with an individual chosen uni-

formly at random from the entire population at the points of independent Poisson

processes at rate β > 0. Only such contacts between an infective and a susceptible

results in an infection. Infected individual immediately becomes infectious and

can pass on the contagion to other susceptibles. At the end of its infectious period

I ∼ exp(γ) with parameter γ > 0. The epidemic goes on until there are no more

infectives in the population. The model described here dates back to (Kermack

and McKendrick, 1927) who studied the deterministic aspect of the model, while

Bartlett (1949) studied continuous time stochastic SIR epidemic model. Through-

out this thesis, the focus is on stochastic epidemic models. In Section 1.7 we

shall describe a class of model in which the homogeneously mixing population

assumption is relaxed to allow some heterogeneity.

S I R

Figure 1.6.1: Transition states of an individual in SIR model. At time t the

population size N = S(t) + I(t) + R(t), where S(t), I(t) and R(t) are the number

of susceptibles, infectives and removed individuals at time t.

1.6.1 SIS Stochastic Epidemic Model

In this section, we describe the advances and features of the SIS (susceptible →

infective susceptible) stochastic epidemic model.
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We consider the SIS stochastic epidemic model based upon the assumptions of the

general stochastic epidemic described above. We note that the SIS model does

not confer immunity after recovery so that the individual immediately returns to

the susceptible state and can be reinfected. Therefore, only two possible state

transitions are allowed: from susceptible state to infective state (or S → I) and

from the infective state to susceptible state (or I → S), see Figure 1.6.2. As the

individual does not become immune after recovery , there is no removed state.

This means that such an SIS disease will establish itself within a finite population

and become endemic for a long period of time before eventually going extinct.

The SIS epidemic model has been described as the simplest epidemic model that

exhibits endemic behavior, see, for example, Ball (1999), Neal (2006) and Neal

(2014). Examples of diseases that follow the SIS model are gonorrhea, pneumo-

coccus and tuberculosis in humans, and most tick-borne diseases in animals, in

that an individual who recovers from such diseases does not become immune and

therefore can be reinfected. Stochastic SIS epidemic model can potentially provide

answers to some important public health questions such as; Will the disease ever

become endemic? If the disease ever becomes endemic, what level of endemicity

will it attain? For how long will the disease remain endemic before going extinct?

There has been a considerable efforts in developing SIS epidemic models. Neal

(2014) studies endemic behaviour of SIS epidemics in a finite population with

general infectious period distribution using branching process with immigration

approximation. SIS epidemics among a community of households have also been

studied, example, Britton and Neal (2010) studies stochastic SIS epidemic, while

Ball (1999) and Neal (2006) studied both deterministic and stochastic household
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SIS epidemics. Economou et al. (2015) studies a stochastic SIS epidemic model

with heterogeneous contacts. Hethcote and van den Driessche (1995) and Green-

halgh et al. (2016) studied SIS epidemic within a population with variable size.

Neal and Huang (2015) studies stochastic SIS epidemic for interacting strains of

Human Papillomavirus (HPV) amongst an MSM (men who have sex with men)

community. Gao et al. (2016) studies SIS epidemic for coinfection and cotransmis-

sion of two diseases spreading through a single host population. In this thesis, our

main focus is on the development of Bayesian inference methods for the stochastic

SIS epidemics. In Section 1.6.4 we discuss the development of inference meth-

ods for epidemic models including those developed for the stochastic SIS epidemic

model.

S I

Figure 1.6.2: Transition states of an individual in SIS model. At time t the

population size N = S(t) + I(t), where S(t) and I(t) are the number of susceptibles

and infectives at time t.

1.6.2 Basic Reproduction number

In epidemic modelling a key epidemiological quantity of interest is the basic repro-

duction number R0 = β/γ, which is defined as the number of new secondary cases

of infection from an initially infectious individual in a completely susceptible pop-

ulation. When R0 > 1 there is high probability that a major outbreak will occur.
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On the other hand, when R0 < 1, major outbreak does not occur. In addition,

the fraction of the population necessary to be vaccinated to be sure that no major

outbreak would occur, also known as the critical vaccination coverage, vc, can be

obtained with the knowledge of the basic reproduction number as follows

vc = 1− 1

R0

, (1.6.1)

for example, Britton (2009).

1.6.3 Model setup

Poisson processes

Given the counting process X = {X(t) : t ≥ 0} taking values from the discrete

state space S = {0, 1, 2, . . .}, then X is a Poisson process with intensity β > 0 if

1. X(0) = 0.

2.

P(X(t+ ∆t) = u+ v|X(t) = u) =


β∆t+ o(∆t) if v = 1,

o(∆t) if v > 1.

1− β∆t+ o(∆t) if v = 0.

3. If s < t, then

• X(s) ≤ X(t)

• X(t)−X(s) is independent of the events that occurred within [0, s].

There is a wide range of applications of the Poisson processes in sciences. Given

an interval (0, t], for t ≥ 0, let X(t) denote the number of events that occurred
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within the interval (0, t] with intensity β > 0. Then the random variable X(t) is

Poisson distributed with parameter βt. That is

P(X(t) = x) =
(βt)x exp(−βt)

x!
. (1.6.2)

Therefore, the probability of no occurrence of an event in (0, t] is given by

P(X(t) = 0) = exp(−βt), (1.6.3)

with the complementary probability

P(X(t) > 0) = 1− exp (−βt). (1.6.4)

Let X(t) denote the number of infectives at time t. Given an |S| × |S| transition

rate or generator matrix G = (gu,v), we describe the epidemic process X = {X(t) :

t ≥ 0} in terms of the continuous -time Markov chain using the following transition

rates:

• u→ u+ 1 if an event is infection.

• u→ u− 1 if an event is recovery.

• u→ u if nothing happens.

where in this case u ∈ S is the number of infectives at a point in time, the row

entries of the generator matrix sum to zero, i.e.,
∑

v guv = 0 for all u or G1′ = 0′

, where 1 and 0 are row vectors of ones and zeros. Then following Grimmett and

Stirzaker (2001), pages 256− 260, for t ≥ 0, we define the infinitesimal transition

probability matrix Qt = (qu,v(t)) according to
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Qt = exp(tG), (1.6.5)

where

qu,v = P
(
X(t+ ∆t) = v|X(t) = u

)
. (1.6.6)

Here, interest is particularly on what happens within the interval [t, t+ ∆t). ∆t is

chosen to be sufficiently small so that only one event is allowed to happen within

the interval [t, t + ∆t), i.e, either infection, recovery or nothing happens. The

Q-matrix is stochastic in that its entries are non-negative and its row entries sum

to unity. In addition, at t = 0, the transition matrix returns an |S| × |S| identity

matrix, i.e., Q0 = I. For more rigorous details on Markov chains, their properties

and applications, see Chapter 6 of Grimmett and Stirzaker (2001). In Chapter 2

of this thesis, we shall discuss in details the construction of the generator (rate)

matrix and the calculation of the corresponding transition probability matrices for

the models considered.

1.6.4 Inference on epidemic models

In this section, we give an overview on inference methods for epidemic models.

First, we present some recent developments on methods of inference for epidemic

models with focus on Bayesian inference methods. We shall also outline the pro-

cedures for inferring model parameters in a Bayesian inference framework.
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A number of approaches has been developed for inferring the parameters of

infectious disease models. In classical statistical inference approach, maximum-

likelihood (ML) estimation via an Expectation-Maximization (EM) algorithm has

been used to analyze infectious disease data by treating the missing data as pa-

rameters to be estimated (Becker, 1993). However, in most realistic situations,

the evaluation of the E-step becomes very difficult. In recent years, following the

availability on fast computing machines and the huge advances of Markov Chain

Monte Carlo (MCMC) methods, Bayesian inference method using MCMC has been

successfully used for Bayesian inference on infectious disease models even for very

complex models, see, for example, Gibson (1997),Gibson and Renshaw (1998) and

O’Neill and Roberts (1999) for some preliminary works on this,Marion et al. (2003),

Streftaris and Gibson (2004), Neal and Roberts (2005) and Neal and Xiang (2017).

1.7 Household-based epidemic models

One of the earliest household models developed was due to Longini and Koop-

man (1982). The model by Longini and Koopman (1982) considers individuals

in a population partitioned into independent households. Individuals in a given

household can be infected by their family members as well as by other members

of the population. The model also assumes that the transmission processes within

a given household does not depend on the transmission dynamics of the entire

community. Addy et al. (1991) studied generalized stochastic models involving a

population partitioned into households which was applied on serologic data from

two influenza epidemics. Becker and Dietz (1995) consider a household model for
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highly infectious diseases, such as smallpox. They assume that once a member of

a given household contracts infection, then every member of the household gets

infected. The models were used to evaluate various vaccination strategies taking

the household structures into account. Findings from Becker and Dietz (1995) sug-

gested the use of different vaccination coverage for different household structures.

For example, it was observed that it is better to immunize randomly selected in-

dividuals when the households are of equal size, while it is better to immunize all

members of large households when the sizes of the households are unequal. Ex-

amples of other works on the development of household epidemic models are due

to House and Keeling (2008) and Goldstein et al. (2009).

Many of the results obtained for household disease models are asymptotic as

n→∞.

1.7.1 Household-based epidemics with two-levels mixing

Ball et al. (1997) introduced two levels mixing in household-based epidemic model

and since then household models for the spread of infectious diseases have re-

ceived a considerable attention, see, for example Ball and Neal (2004), Ball and

Lyne (2001), Neal (2006), Britton and Neal (2010) and Longini et al. (2005).

Suppose we have n mutually exclusive households each of size h so that that the

population size is N = nh. The two levels mixing household-based epidemic model

of Ball et al. (1997) assumes that an infectious individual makes global contact and

local contacts. A global contact is made with an individual chosen uniformly at

random from the N(= nh) population at rate λ > 0. Similarly, a local contact is
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made with an individual chosen uniformly at random from the n individuals in the

infective’s household at a typically larger rate hβ > 0. Therefore, the individual

to individual global and local infection rates are λ/N and β. Contacts are made

at the points of mutually independent Poisson processes. The infectious period of

different infectives are independent and identically distributed according to a ran-

dom variable I with an arbitrary, but specified distribution. This model can also

be generalized for various household structures including when the household sizes

are unequal. Let h = 1, 2, . . . , denote the possible sizes of the households in the

population. Let nh denote the number of households of size h so that n =
∑

n=1 hn

and N =
∑∞

n=1 nhn are the total number of households and the population size

respectively. The models we analyse in this thesis are based on the concept of two

levels mixing epidemics.

1.7.2 Need for Household based epidemic models

There are a number of reasons why models are developed. Developing models

which capture the basic household structures of a population is needed to effec-

tively analyse infectious disease data emanating from household level. According

to Ball et al. (2015), household is the most crucial aspect of human society that

can affect disease transmission. Contacts among individuals of a given household

are longer and more frequent than with members of another household. Individu-

als become ill after being infected by the members of their household or by other

members of the community often stay at home making regular contact with their

household members. Several control strategies are implemented and monitored on
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household levels. A plausible household-based epidemic model will potentially pro-

vide appropriate answers to certain public health questions, such as, ’who infects

whom?’. Household models take into account heterogeneity in population behav-

ior, which is a key determinant among the factors that determine the occurrence

of major epidemic outbreak, how fast it spreads if it does occur and the number

of individuals ultimately infected during the course of the epidemic. Moreover,

household-based infectious disease models can suggest applicable control strate-

gies given the household structures, for example in the administration of vaccines

(Becker and Dietz, 1995). Other measures such as contact tracing and isolation

of infected individuals (if necessary) are readily applicable through households.

Therefore, there is need to develop epidemic model which accurately captures the

key transmission mechanisms of infectious diseases at household levels. In this

thesis, we develop Bayesian inference methods on such models which capture the

inherent structure in both human and animal populations, where in this case a

household could be childcare facilities, workplaces, dwelling places for humans or

animal holdings (farms). Our main focus is the so-called two levels mixing model

of Ball et al. (1997).

1.7.3 Inference on household models

Despite the advances so far recorded by household based endemic models, only a

few works are channeled on inference. Drawing inference from household based

model is usually very complicated due to the high computational complexity in-

volved. Household epidemic data are often very highly dependent especially for
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temporal data where information is obtained from the same group of individuals

over time. Also, as with most epidemic data, some processes are unobserved, for

example, actual infection time, thereby giving rise to outbreak data that are only

partially observed. Although the problem of high dependence among household

outbreak data can be minimized by using simplified assumptions. For example

assuming that the households are independent households (Addy et al., 1991)

makes it possible for the likelihood function π(x|θ) to be expressed as the product

of likelihood function of all the n households. That is, the dependence between

households is broken by independence households assumption then the likelihood

function of the data given the parameters is

π(x|θ) = π(x1,x2, . . . ,xn|θ)

= π(x1|θ)× π(x2|θ)× . . .× π(xn|θ) (independence)

=
n∏
i=1

π(xi|θ)

On the other hand, the problem of incomplete data is minimized by designing

appropriate data imputation strategies, see,for example, O’Neill (2009) and Neal

and Kypraios (2015). Most available literature on household based epidemic use

the Markov chain Monte Carlo (MCMC) algorithms to sample from the target dis-

tribution, example, Britton and O’Neill (2002), Cauchemez et al. (2004), O’Neill

et al. (2000) and O’Neill (2009). In most practical situations, the likelihood func-

tion in (1.7.1) is very complicated that the posterior distribution can never be

available in a closed form no matter what the choice of the prior distribution may
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be. Other likelihood-free methods of inference on household epidemics have been

developed, see, for example, Neal (2012).

In this thesis, we shall focus on developing inference methods on household-based

SIS epidemics with respect to two different data forms which we shall introduce

in Chapter 2.

1.8 Contributions of the Thesis

In this section, we outline the major contributions of this thesis to literature.

Despite the growing popularity of household epidemic models (see, for example,

Longini and Koopman (1982), Ball and Neal (2004) and Neal (2006) ), there still

exist several challenges which need to be overcome to allow widespread use such

models. For example, Ball et al. (2015) outlines the following seven challenges

affecting the progress of household epidemic model:

1. The need to clarify the usefulness and limitations of systems of weakly cou-

pled large sub-populations in infectious disease modelling.

2. Development of theory for household-based endemic models.

3. Generalization of the framework of household models to more complex hu-

man social structures.

4. Incorporation of spatial element into household epidemic models.

5. The need to develop methods of drawing inference for household data on

emerging phase of epidemics.

42



6. Development of computationally efficient methods for calculating principal

epidemiological quantities.

7. The need to integrate within-host and between-host dynamics into household

models.

Consequently, in this thesis we seek to address challenges number 3, 4 and 7 di-

rectly, while challenges 2 and 6 are indirectly addressed. First, the model developed

in Chapter 2 extends the GSE model to cases involving structured populations.

Specifically, we developed Bayesian inference methods for stochastic household-

based models of the SIS type, where the individuals are allowed to mix hetero-

geneously making both local and global contacts. Two major data forms were

separately considered- individual based data (IBD) and the aggregate-based data

(ABD). We successfully developed and applied MCMC algorithms for both IBD-

and ABD- type infectious disease data. This approach was applicable for both

when data are fully observed and when the proportion of the missing data is up

to 90%. This is the first attempt in developing Bayesian inference method using

MCMC for the SIS-type household-based epidemic model using the IBD and ABD

data forms. The methods developed can be extended and applied to a wide range

of problems.

Second, the model considered in Chapter 2 assumes a constant population size.

This assumption makes sense for infections that spread very fast during its course

and it is very unlikely that the population would experience any significant demo-

graphic changes. However, the constant population assumption may be unrealistic

for most endemic models. There is therefore need to develop inference methods
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taking into account the varying population size over time. Consequently, in Chap-

ter 3 of this thesis, we develop Bayesian inference methods using MCMC for the

analysis of SIS-type open-population household-based endemic model. Also, here

the MCMC algorithms were developed based upon the two data forms considered

- IBD and ABD. The models were successfully analysed and applied using the

inference methods developed. Again, this is the first attempt to develop this class

of inference methods for open-population household based models of the SIS-type

in Bayesian framework.

Furthermore, we extend both the closed population model and the open-population

model to allow for the incorporation of the spatial element. The assumption here

is that whilst local contacts are made locally at a constant rate β > 0, the global

contact rate λ > 0 depends on the spatial locations of the individual households.

The incorporation of the spatial introduced more complexity to the model. We

successfully developed Bayesian inference method using MCMC for the analysis of

such household-based models with spatially varying global contact rates. This is

also novel at least for the models we considered.

Finally, this thesis seeks to develop inference approach for household-based en-

demic models with interacting diseases. This model is considered in Chapter 4 of

this thesis. The MCMC algorithms developed considered both the IBD and the

ABD data forms. Model complexity grew with household size. Using appropriate

parameterisations, we develop MCMC algorithms for the analysis of models of this

type. In both cases, we considered when data are fully observed and when a given

44



proportion of the data is missing. However, our main focus is on missing data cases

which is usually the form of most infectious disease data and especially for most

temporal data associated with endemic diseases. The methods developed were

successfully applied to both simulated data set and a real life infectious disease

data on Tanzania cattle. This is the first attempt to model and analyse infectious

disease data in household setting for the class of models we considered.

1.9 Structure of the Thesis

In this section, we give the outline of this thesis. This thesis contains five chapters

with three main chapters- 2, 3 and 4. Chapter 1 is the introductory chapter

where we discussed all relevant historical and theoretical basis of our models. In

Chapter 2, we introduce a two levels mixing stochastic SIS epidemic models among

a community divided into non-overlapping households. Two different data forms

are considered: The aggregate-based data (which holds information only on the

infectiousness of a given household at a point in time), and the individual-based

data, which is more informative. Later we shall see how we discovered the strength

and weakness of each data type using rigorous sensitivity analyses. In Chapter

3, we introduce stochastic SIS household model with individuals making both

within group and between groups contacts. Here the population is open in that

we allow changing population sizes over time. Also, in Chapter 3, we incorporate

the spatial elements into the models taking into their separation distances. In

Chapter 4, we consider the effects of getting infected with multiple diseases. The

models developed are illustrated using simulated and real life data sets. Finally

in Chapter 5, we give a review of what we have done in this thesis, outline the
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limitations of the study and draw conclusions on our findings.
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Chapter 2

Closed Population SIS Household

Model

This chapter is mainly concerned with the development of Bayesian inference meth-

ods for stochastic SIS epidemic models in a closed population partitioned into

households. We consider two major outbreak data for endemic diseases, namely,

the individual-based data and the aggregate-based data. We develop easy-to-

implement MCMC algorithms which are found to work well using an extensive

simulation study. The model and the Bayesian inference methods developed in

this chapter form the basis of the model and Bayesian inference framework devel-

oped in Chapter 3, which allows for changing population size over time as well as

spatially varying risk of infection. In Chapter 4, this would be extended to allow

for interacting infectious diseases.
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2.1 Introduction

Mathematical models for the spread of epidemics in a population divided into

smaller groups have received increased attention in recent years, see, for exam-

ple, Addy et al. (1991), Becker and Dietz (1995), Ball et al. (1997), Ball (1999),

O’Neill et al. (2000), Ball and Lyne (2001), Ball and Neal (2004), and Neal (2006),

Demiris and O’Neill (2005a), Cauchemez et al. (2004), Blake et al. (2009), Demiris

and O’Neill (2005b), O’Neill (2009), Neal (2012). An example of such models is

the famous household model in which the population of interest is partitioned into

households or farmsteads. Ball et al. (1997) developed a two level mixing house-

hold epidemic model which allows individuals to mix both locally and globally

at given rates. We note that the majority of the works on household epidemic

models have focused on the SIR (susceptible → Infected → Removed) epidemic

model in which an infective acquires immunity to further infection upon recovery

and therefore can not be reinfected following recovery. The individual is said to

be removed and therefore no longer takes part in the infectious process. On the

contrary, in this chapter, interest is on endemic models in which a given individ-

ual can be infected and reinfected following recovery, a multiple number of times.

This is the well known SIS (susceptible→ infected→ susceptible) epidemic model

in which an individual is either a susceptible or an infective at any given point

in time. In addition, in order to take into account the randomness which char-

acterizes the dynamics of the transmission of infectious diseases, a stochastic SIS

household epidemic model is considered.

The SIS epidemic model which dates back to Ross (Ross, 1915) has been adjudged

the simplest epidemic model with endemic behavior. Of all the examples given
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above, only Ball (1999), Blake et al. (2009) and Neal (2006) considered SIS epi-

demics within a closed population partitioned into households. Ball (1999) and

Neal (2006) study the asymptotic behavior of both the deterministic and stochastic

SIS household epidemic model as the total number of households tends to infinity,

i.e., as N →∞. Neal (2006) proved a law of large numbers for the convergence to

deterministic limits of the mean number of infectives in a given household and also

derived a Gaussian limit process for the fluctuations of the stochastic process. Ball

(1999) used branching process approximations to show that for an SIS epidemic

model, there is a non-zero probability that the epidemic will take off if and only if

the threshold parameter R∗, is greater than unity, i.e. R∗ > 1.

Other works such as those by O’Neill et al. (2000), Demiris and O’Neill (2005a),

Demiris and O’Neill (2005b), O’Neill (2009) and Neal (2012) focus on the develop-

ment of Bayesian inference methods for structured population models. Neal (2012)

develops an efficient likelihood-free Bayesian computation approach for household

epidemics, namely, coupled Approximate Bayesian computation (ABC). O’Neill

et al. (2000), Demiris and O’Neill (2005a), Demiris and O’Neill (2005b) and O’Neill

(2009) considered the use of Markov chain Monte Carlo (MCMC) algorithms for

the analysis of household epidemic data. Demiris and O’Neill (2005a) develops

Bayesian inference methods for two levels mixing SIR household model, while

Demiris and O’Neill (2005b) focuses on multitype SIR epidemic model (Ball and

Lyne, 2001), in which the individuals of a given household are classified into k

types, say. Also, Blake et al. (2009) used methods of maximum likelihood to esti-

mate the model parameters of household and community transmission of Ocular

Chlamydia trachomatis. Several infectious diseases such as sexually transmitted
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infections (STIs) follow the SIS epidemic model and there is need to accurately de-

fine the transmission processes through which data from such infectious processes

are generated. The ultimate aim is to be able to analyse such a model. Noting

the crucial role played by household structures in the transmission of infectious

diseases, there is also need to develop SIS epidemic model which takes household

structures into account.

As far as we are aware, there has not been any work on the development of Bayesian

inference methods implemented via MCMC framework for stochastic SIS house-

hold epidemic models with respect to the two commonest forms of endemic disease

data we consider. Therefore, we seek to fill this gap in literature by develop-

ing Bayesian inference methods which allows straightforward estimation of the

principal parameters of stochastic SIS household epidemic models primarily using

Markov chain Monte Carlo (MCMC) algorithms.

We consider two most prevalent forms of household endemic data (individual-based

and aggregate-based data) which keep track of the infectious activities going on

in a given household over a set of observation time points. Therefore, the data

are longitudinal, temporal data. We note that Cauchemez et al. (2004) also used

a longitudinal data to study the transmission of influenza among a community

of households implemented via MCMC framework. However, whilst our model is

an endemic SIS model, Cauchemez et al. (2004) studies the SIR type in which

recovery from the disease confers immunity to further infections. The two data

forms provide different amounts of information on the spread of the disease of in-

terest. While one contains only information on the number of infectives in a given

household at a point in time, the second data form is more informative and keeps
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track of the infectious activities of a particular individual over the set of obser-

vation time points. This implies that with the latter we are able to know which

individual infected at a point in time as well as the total number of infectives in

a given household at that point in time. The full description of these data forms

including when they are assumed to be only partially observed is given in Section

2.2.

We follow Demiris and O’Neill (2005a) and assume that the households are inde-

pendent. This assumption makes sense in that we consider household-to-household

infection to be negligible, and also allows simple specification of the likelihood func-

tion. In this chapter, the key focus is on the development of Bayesian inference

methods for the estimation of the two infection rates, namely, β and λ. Given the

observed data x, we develop easy-to-use MCMC algorithms that allow the samples

to be drawn from the posterior distribution of the parameters given data, π(θ|x),

where θ = (λ, β, γ) and γ > 0 is the rate at which an infective recovers and imme-

diately becomes susceptible again and can be reinfected. We also develop flexible

data augmentation schema in MCMC framework which eases the analysis of the

infectious disease data when the data are only partially observed.

The rest of this chapter is structured as follows. In Section 2.2, we describe the

two basic forms of household SIS epidemic data: Individual-based data (IBD)

and Aggregate-based data (ABD). In Section 2.3, we outline the model setup and

describe the construction of the infinitesimal rate matrix (G-matrix), and the cal-

culation of the transition probability matrix (Q-matrix). We start by assuming

that the data are fully observed at a set of discrete time points. We then relax
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this to allow the data to be only partially observed at the observation time points.

In Section 2.4, we develop Bayesian inference approach for household-based SIS

epidemics with respect to ABD and IBD using MCMC algorithms. This is divided

into two parts. The first part develops MCMC algorithms for a fully observed

household SIS epidemic data. In the second part, we develop data augmentation,

see, Tanner and Wong (1987) schema using MCMC algorithms for the analysis of

partially observed epidemics.

In Section 2.5, a comprehensive simulation study is carried out. The aim of the

simulation study is to assess the performances of the MCMC algorithms based

upon IBD and ABD with respect to the run time and accuracy of posterior pa-

rameter estimates. The study covers both the fully observed case (with no missing

data) and the partially observed case (with a missing proportion of the data). For

the partially observed data, the key point is to assess how robust the algorithms

are at various forms of missingness and as the proportion of missing data increases.

In particular, how does a given proportion of missing data affect estimation of pa-

rameters?

Finally, in Section 2.6, we give some concluding remarks with reference to the

results from the simulation study.
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2.2 Data Description

Household-based SIS data may be available in a form such that it is possible to

obtain information on the infectious status of all individuals in a household at

each observation time. We call this Individual-based data (IBD). Sometimes, the

only information that may be available is the number of infected individuals in the

household at each observation time. We call this Aggregate-based data (ABD).

From now on, we will use susceptible to refer to an individual who is prone to

being infected and infective to refer to an infected and infectious individual.

2.2.1 Individual-based Data (IBD)

The Individual-based data (IBD) provides us with information on the infection

statuses of each individual of a given household at a point in time. This implies

that the IBD also tells us the number of infectives in a given household at a point

in time. Therefore, in a household of size h ≥ 1, the IBD contains information on

the infectious status of the h individuals of the household. Given that there are

two possible states of an individual at a point in time, we encode susceptible 0 and

infective 1. Since each individual is in one of the two (2) possible sates, there are

2h possible states which the household can belong to at a given point in time. For

j = 1, 2, . . . , h, let xj(t) ∈ {0, 1} denote the infectious status of the jth individual

of the household at time t. Then the data x(t) =
(
x1(t), x2(t), . . . , xh(t)

)
∈ {0, 1}h

is the state of the household at time t.

For i = 1, 2, . . . , N , where N is the number of susceptible households, let hi (≥ 1)

and ni denote the size and the number of observation time points of household i,

respectively. Also, for k = 1, 2, . . . , ni, let tik denote the kth observation time of
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household i. Then, for j = 1, 2, . . . hi, it follows that

• ti = (ti0, ti1, ti2, . . . , tini) are the observation times for household i, where ti0

is the initial time point of observation,

• xij(tik) ∈ {0, 1} is the infectious status of individual j in household i at time

point tik,

• xi(tik) = (xi1(tik), xi2(tik), . . . , xihi(tik)) ∈ {0, 1}hi is the infection status of

household i at time tik,

• xi(ti) = (xi(ti1),xi(ti2), . . . ,xi(tini) ) is the infectious status of household i

at time points ti .

Therefore, x(t) = (x1(t1),x2(t2), . . . ,xN(tN)) is the full data for the N households

with a population of M =
∑N

i=1 hi individuals, where t = (t1, t2, . . . , tN) are the

observation times.

When we observe every individual of a household at every given observation time

point, we say that the data is completely observed. Often time, the data may only

be partially observed in that only a subset of the household is observed in which

case we define

yij(tik) =


1 if infectious,

0 if susceptible,

2 if status unknown,

(2.2.1)

where yij(tik) is the infectious status of the jth individual of household i at time

point tik. Note that we assume that P
(
yij(tik) = 2|xij(tik) = 0

)
= P

(
yij(tik) =

2|xij(tik) = 1
)
, that is, the probability of the missingness depends neither on the
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observed infectious status nor on the missing values themselves. In other words,

the data are missing completely at random (MCAR), see, Rubin (1987). It follows

that

• yi(tik) = (yi1(tik), yi2(tik), . . . , yihi(tik)) is the partially observed infectious

state of household i at the kth observation time point,

• yi(ti) = (yi(ti1),yi(ti2), . . . ,yi(tini)) are the partially observed infectious

states of household i over the observation time points ti,

Therefore, y(t) = (y1(t1),y2(t2), . . . ,yN(tN)) is the partially observed data for N

households at time points t. Note that yi(tik) = xi(tik) when there are no missing

data.

In Section 2.4.3, we develop extensive data augmentation algorithms for the anal-

ysis of a partially observed IBD, y(t).

2.2.2 Aggregate-based Data (ABD)

SIS household epidemic data may only contain information on the total number of

infectives in a household at a given point in time. As already mentioned, we call

this Aggregate-based data (ABD) which unlike the IBD does not provide us with

any information about a given individual’s infectious status at a point in time.

For a given household of size h ≥ 1, there are h + 1 possible states which the

household can belong to at a point in time. Let

For i = 1, 2, . . . , N , where N is the number of households considered, let hi ≥ 1

and ni denote the size and number of observation time points for household i,

respectively. Then, for k = 1, 2, . . . , ni, we have that

55



• x̃i(tik) ∈ {0, 1, 2, . . . , hi} is the infectious state of household i at the kth time

point,

• x̃i(ti) = (x̃i(ti1), x̃i(ti2), . . . , x̃i(tini)) are the infectious states of household i

at time points ti .

Therefore, x̃(t) = (x̃1(t1), x̃2(t2), . . . , x̃N(tN)) is the full data for the N households

with a total population of M =
∑N

i=1 hi individuals.

The aggregate-based data (ABD) may be completely or partially observed. When

the data are completely observed, we observe x̃i(tik), infectives in household i out of

the hi individuals of the household at time tik. When the ABD are only partially

observed, we only observe a subset of the household out of which we observe

a number of infectives. Let s̃i(tik) denote the number of individuals observed

in household i (of size hi ≥ 1) at the kth time point, where s̃i(tik) ≤ hi. Let

ỹi(tik) denote the number of infectives observed in a sample of s̃i(tik) individuals

in household i of size hi at time tik, where ỹi(tik) ≤ x̃i(tik). Observe that we have

used tilde for the description of ABD in order to make a distinction from IBD.

For i = 1, 2, . . . , N ; j = 1, 2, . . . , hi and k = 1, 2, . . . , ni, we note the following

equations

x̃i(tik) =

hi∑
j=1

xij(tik), (2.2.2)

ỹi(tik) =

hi∑
j=1

1{yij(tik)=1} (2.2.3)

and
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s̃i(tik) =

hi∑
j=1

1{yij(tik)<2}, (2.2.4)

where yij(tik) is as defined in (2.2.1) and where 1A : X → {0, 1} is an indicator

function with

1A(x) :=


1 if x ∈ A,

0 if x 6∈ A.

(2.2.5)

(2.2.6)

2.3 Model Setup

In this section, we describe the formulation of our model by briefly recalling the

main features of our model, and outline the construction of the rate matrices (G-

Matrices) for the two aforementioned data forms (IBD & ABD) as well as the

calculation of the corresponding transition probability matrices (Q-matrices).

Consider a closed population partitioned into non-overlapping households. First,

we consider equal size households so that the population contains N households

each of size h. Then the population size is M = Nh. Given that our model is the

SIS model, at any given point in time, an individual is either in the susceptible

state or in the infected state at any given point in time. Then the only transitions

allowed are from S→ I and from I→ S. Once successfully contacted by an infective,

a susceptible becomes infected and infectious and remains in the infective state for

an exponentially distributed time I with rate parameter γ > 0, i.e., I ∼ exp(γ)

with mean γ−1.
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A susceptible can contract infection from an infectious member of his household

and from outside the household. Infection enters a given household with a global

force of infection λ. While infectious, an infective makes a local infectious contact

at points of a Poisson process with rate β. A successful local contact is made

with a susceptible chosen uniformly at random from its own household. By suc-

cessful contact we mean contacts which ultimately results to the infection of the

susceptible so contacted. Therefore, only contacts made globally or locally with a

susceptible can result to an infection, and nothing happens when contact is with

another infective. We assume that a newly infected individual does not undergo

any latent period and thus immediately becomes infectious. The population is

closed in that there are no births, no deaths and no migrations. All the Poisson

processes, which in this case include those associated with the same individual, are

assumed to be mutually independent. The infectious periods of different individ-

uals are also assumed to be mutually independent. An infective recovers at rate

γ and at the end of its infectious period immediately returns to the susceptible

state and can be reinfected. Therefore there is no removed state and recovery from

the disease does not confer immunity. The model described here can easily be ex-

tended to various household structures. In particular, we can extend the model to

a population made up of unequal sized households with Nh households of size h,

so that N(=
∑hmax

n=1 Nh) is the total number of households with M(=
∑hmax

h=1 hNh)

individuals, where hmax is the maximum household size.
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2.3.1 The Infinitesimal Rate Matrix and Transition Prob-

ability Matrix

In this section we give a full description of the construction of the rate matrix (or

G-matrix) and the calculation of the appropriate transition probability matrix (or

Q-matrix). We shall first recall the construction of the single population stochas-

tic SIS epidemic and then extend this to the household stochastic SIS models we

consider here.

We now consider the model for when the population consists of N households

each of size h, where h ≥ 1. We begin by describing the construction of the rate

matrices for both the individual-based data (IBD) and the aggregate-based data

(ABD).

G-matrix for individual-based data

For a household of size h, label the individuals 1, 2, . . . , h, and let u =
(
u1, u2, . . . , uh

)′ ∈
{0, 1}h denote the state of the household at a given point in time. For 1 ≤ j ≤ h,

we define a standard basis vector
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ej =



0

...

0

1

0

...

0



∈ Rh ,

in which the jth element is equal to 1 and all other elements equal to 0. Then

provided that uj = 0, the infection of individual j corresponds to the transition

u→ (u + ej). Similarly provided that uj = 1, the transition u→ (u− ej) corre-

sponds to the recovery of individual j.

For example, if h = 3 and j = 2, then e2 =


0

1

0

, and for u =


1

0

0

, say, the

transition


1

0

0

→


1

1

0

 (or u→ u+e2 ) is the infection of the second individual.

Given the global force of infection λ and the rate of local infection β, the total

rate of infection of an individual is λ+ β
∑h

i=1 ui. Further, the recovery rate γ, is

constant irrespective of whether infection is contracted locally or globally.

We define the 2h × 2h infinitesimal rate matrix G(h) =
(
g

(h)
uv

)
for the individual

based data (IBD) as

60



g(h)
uv =



λ+ β
∑h

i=1 ui if uj = 0 and v = u + ej,

γ if uj = 1 and v = u− ej

−
∑
w6=u

g
(h)
uw if v = u

0 Otherwise.

(2.3.1)

for λ, β, γ > 0 and u, v, w ∈ S. For h = 3, for example, the G-matrix for IBD is

given as

G(3) =



(0, 0, 0) (0, 0, 1) (0, 1, 0) (0, 1, 1) (1, 0, 0) (1, 0, 1) (1, 1, 0) (1, 1, 1)

−3λ λ λ 0 λ 0 0 0

γ −(γ + 2(λ+ β)) 0 λ+ β 0 λ+ β 0 0

γ 0 −(γ + 2(λ+ β)) λ+ β 0 0 λ+ β 0

0 γ γ −(2γ + λ+ 2β) 0 0 0 λ+ 2β

γ 0 0 0 −(γ + 2(λ+ β)) λ+ β λ+ β 0

0 γ 0 0 γ −(2γ + λ+ 2β) 0 λ+ 2β

0 0 γ 0 γ 0 −(γ + λ+ 2β) λ+ 2β

0 0 0 γ 0 γ γ −3γ



G-matrix for aggregate-based data

We construct the infinitesimal rate matrix, G-matrix, for the aggregate-based data

as follows: Given a household of size h, let m ∈ {0, 1, 2, . . . , h} denote the state

(the total number of infectives) of the household at a given point in time. Also,
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let s = h−m denote the number of susceptibles in the household. We adapt the

methods described above for the construction of the G-matrix for the IBD here.

Given that we consider the infectiousness of the entire household rather than that

of a single individual at a point in time, then in the event of an infection, the total

rate of infection is given by

βm(h−m) + λ(h−m). (2.3.2)

On the other hand, the total rate of recovery is γm. Therefore, for 0 ≤ m,n ≤ h,

we define a (h+ 1)× (h+ 1) infinitesimal rate matrix G(h) = (g
(h)
m,n)for the ABD as

g(h)
m,n =



βm(h−m) + λ(h−m) if n = m+ 1

γm if n = m− 1

0 if |n−m| > 1

−
∑
k 6=m

g
(h)
m,k if n = m

(2.3.3)

for λ, β, γ > 0 and m, n, k ∈ S. For example, the G-matrix for a household of size

(h =) 3 for ABD is given by

62



G(3) =



(0) (1) (2) (3)

−3λ 3λ 0 0

γ −(γ + 2(λ+ β)) 2(λ+ β) 0

0 2γ −(2γ + λ+ 2β) λ+ 2β

0 0 3γ −3γ



.

Given that the G-matrix depends only on the household size, we only need to

compute G(1), G(2), . . . ,G(hmax), where hmax denotes the maximum household

size,. We note that the computational cost for the G-matrix for the IBD grows

exponentially with h. For example, when h = 10, there are 1, 048, 576 entries in

the G-matrix which places a huge burden on computer memory. Therefore, we

seek to calculate the G-matrix in as much efficient manner as obtainable.

Note that for both G-matrices (IBD and ABD) and at least for the Markov chains

used for our purposes,
∑

j gij = 0 or G1′ = 0′ (with gii < 0 and gij ≥ 0), where 1

and 0 are row vectors of ones and zeros.

Transition Probability Matrix (Q-Matrix)

We define the transition probability matrices for the two prevalent household SIS

epidemic data considered here as follows. As before, for t ≥ 0, let Xh(t) denote

the infectious state of a given household of size h at time t. Then for the IBD,

Q
(h)
t = (q

(h)
u,v(t)) is the 2h× 2h transition probability matrix of the continuous time

Markov chain {Xh(t); t ≥ 0}, with
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q(h)
u,v(t) = P

(
Xh(t+ ∆t)) = v|Xh(t) = u

)
, (2.3.4)

and

P
(
Xh(t+ ∆t)) = v|Xh(t) = u

)
=



(λ+ β
∑h

i=1 ui)∆t+ o(∆t) if v = u+
j ,

γ∆t+ o(∆t) if v = u−j

1−
[
λ+ β

∑h
i=1 ui + γ

]
∆t+ o(∆t) if v = u

o(∆t) Otherwise,

(2.3.5)

where u+
j = u + ej and u−j = u− ej.

Similarly, for the ABD, Q
(h)
t = (q

(h)
m,n(t)) is a (h+1)× (h+1) transition probability

matrix, where P
(
Xh(t+ ∆t)) = n|Xh(t) = m

)
is given by

q(h)
m,n(t) =



[
βm(h−m) + λ(h−m)

]
∆t+ o(∆t) if n = m+ 1

γm∆t+ o(∆t) if n = m− 1

o(∆t) if |n−m| > 1

1−
[
βm(h−m) + λ(h−m) + γm

]
∆t+ o(∆t) if n = m.

(2.3.6)

Note that the Q-matrix is a stochastic matrix in that
∑

j q
(h)
i,j (t) = 1 for all i and

q
(h)
i,j (t) ≥ 0. The Q-matrix is calculated by taking the matrix exponential of the

product of the transition rate matrix and t as below:

Q
(h)
t = etG

(h)

=
∞∑
n=0

(tG(h))n

n!

= I +
∞∑
n=1

tn(G(h))n

n!
, (2.3.7)
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where I is a 2h × 2h identity matrix if IBD or (h+ 1)× (h+ 1) identity matrix if

ABD.

The Q-matrix depends upon both t and h and is thus calculated for each house-

hold size at every given time point. We seek to minimize computational cost and

increase computational speed and so in all cases where t is integer ( t ∈ N), we

can compute Q
(h)
1 and then raise it to the tth power to obtain Q

(h)
t .

2.4 Bayesian Inference on Household-based SIS

Epidemic

In this section, we outline the procedures for performing Bayesian inference on both

the two data forms- the IBD and ABD. Specifically, we outline the implementation

of Markov Chain Monte Carlo (MCMC) algorithms for Bayesian posterior infer-

ence with respect to the data.

In Section 2.4.1 we give Bayesian inference procedure for the analysis of a household-

based SIS data when the data are completely observed. We later extend this to

partially observed data in Section 2.4.3 where we give a step by step approach for

the data imputation strategy used via data augmentation strategies for partially

observed epidemics.
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2.4.1 Bayesian Inference on Completely Observed House-

hold SIS Data

Setup

Let x = {x(t)} denote the observed data from the SIS epidemic model with model

parameters θ = (λ, β, γ)′. We assume that there are no missing components of

x, i.e., the data are completely observed. In a Bayesian framework, we seek to

explore the target distribution in order to obtain some vital information such as

E[h(θ)|x] and var(h(θ)|x). As already stated in Chapter 1, Bayesian inference,

requires that we calculate the posterior distribution of the parameters given data,

π(θ|x)
(

= π(x|θ) π(θ)/π(x
)
, where π(x|θ) = L(θ; x) is the likelihood func-

tion of the parameters given the observed data, π(θ) is the prior distribution of

the parameters, and π(x) =
∫
π(x|θ)π(θ)dθ is the marginal likelihood of the data.

The calculation of the marginal likelihood, π(x) is usually problematic, but Markov

Chain Monte Carlo (MCMC) algorithms allow us to draw samples directly from

π(θ|x) ∝ π(x|θ)π(θ), hence no need to calculate π(x).

Priors

Given that our model parameters are positively defined, i.e., λ, β, γ > 0, we con-

strain the state-space of the Markov Chain by assigning appropriate prior distri-

butions. In particular, for our purposes we assign independent Gamma distributed

priors to the parameters, π(θ) = π(λ)π(β)π(γ), such that
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λ ∼ Gamma(Aλ, Bλ)

β ∼ Gamma(Aβ, Bβ)

γ ∼ Gamma(Aγ, Bγ) . (2.4.1)

That is,

π(λ) =
B
Aλ
λ

Γ(Aλ)
λAλ−1exp(−Bλλ) λ > 0 (2.4.2)

π(β) =
B
Aβ
β

Γ(Aβ)
βAβ−1exp(−Bββ) β > 0 (2.4.3)

π(γ) =
B
Aγ
γ

Γ(Aγ)
γAγ−1exp(−Bγγ) γ > 0 , (2.4.4)

where Aλ > 0, Bλ > 0, Aβ > 0, Bβ > 0, Aγ > 0 and Bγ > 0 are hyper-parameters.

Likelihood

Evaluation of the likelihood function is required in order to obtain the posterior

distribution of interest. Let X(tk) denote the state of a given household at time

tk. Also let x(tk) denote the realizations of X(tk) at time tk.

The likelihood function of the household over the n observation time points,

π
(
x(t)|θ

)
satisfies

π
(
x(t)|θ

)
=

n∏
k=2

{
π
(
x(tk)|x(tk−1),θ

)}
. (2.4.5)

It follows that the full likelihood function is given by

L(θ; x) := π
(
x|θ
)

=
N∏
i=1

ni∏
k=2

{
π
(
xi(ti,k)|xi(ti,k−1),θ

)}
. (2.4.6)
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where π(xi(tik)|xi(ti,k−1),θ) is the probability of of household i of being in state

xi(tik) at time point tik from state xi(ti,k−1) at time point ti,k−1.

Posterior Distribution

The posterior distribution of the parameters given the data, π(θ|x), up to propor-

tionality is then given by

π(θ|x) ∝ π(x|θ)π(θ) (2.4.7)

∝

{
N∏
i=1

ni∏
k=2

{
P
(
Xi(tik) = xi(tik)|Xi(ti,k−1) = xi(ti,k−1),θ

)}}
× π(λ)× π(β)× π(γ)

∝

{
N∏
i=1

ni∏
k=2

{
π
(
xi(tik)|xi(ti,k−1),θ

)}}
× λAλ−1e−Bλλ × βAβ−1e−Bββ × γAγ−1e−Bγγ. (2.4.8)

Note that the marginal distribution π(x) and the constantsBAλ
λ /Γ(Aλ), B

Aλ
λ /Γ(Aλ)

and BAλ
λ /Γ(Aλ) are independent of θ{= (λ, β, γ)′} and are not necessary for draw-

ing samples from the posterior distribution π(θ|x) using MCMC.

2.4.2 MCMC

Having obtained the posterior distribution, we are now in position to draw samples

from the posterior distribution of interest for posterior inference. Markov chain

Monte Carlo (MCMC) algorithms allow us to construct a Markov chain {θr; r ≥ 1}

whose stationary distribution is our target density, π(θ|x).

Given that the Q-matrix is a complicated function of the parameters resulting

to a non-standard posterior distribution in (2.4.7), Gibbs sampler is therefore
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not an applicable updating scheme here. Therefore, we update the parameters,

θ = (λ, β, γ)′, using Random Walk Metropolis algorithms with multivariate Gaus-

sian proposal and block updating scheme which has been shown to outperform

univariate variable-at-a-time scheme. Throughout, we use the adaptive MCMC

steps outlined in Section 1.4.9 of Chapter 1 to improve the efficiency of the MCMC

algorithms. For example, we exploit the optimal shaping approach which enables

the algorithm to quickly learn the posterior shape of the model.First we obtain

a posterior variance-covariance matrix, Σ, from a pilot run with an acceptance

rate that is very close to the optimal rate of 23.4%, and at least which yields a

sensible estimates of the parameters. Then, we run the main MCMC using the

Σ so obtained. We give a generic MCMC algorithm used for sampling from the

posterior distribution, π(θ|x) according to Algorithm 4.

2.4.3 Bayesian Inference on Partially Observed Household

Epidemic (Data Augmentation)

Setup

In this section, we detail the procedures for Bayesian inference on partially ob-

served household-based SIS epidemic.

Let y denote the observed data from the model with parameters θ = (λ, β, γ).

As already noted in Section 2.4.1, the likelihood function π(y|θ) is not tractable,

but given some extra information, z, which is consistent with the observed data,

the likelihood π(x = (z,y)|θ) becomes tractable. Then Bayesian inference on the

posterior distribution of the parameters given the complete data π(θ|x = (z,y))

becomes possible. To do this we need to construct an efficient MCMC algorithm
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Algorithm 4 Random Walk Metropolis (RWM) algorithm

1. Start the Chain with initial values of θ0 = (λ0, β0, γ0)′ and set

θcurr = θ0.

2. Set c = 2.382

d
.

3. Set Σ = cΣn, where Σn is the posterior covariance matrix from the

previous n runs.

4. For r = 1, . . . , N (where N is the desired number of iterations),

5. Propose θprop ∼ Nd(θ
curr,Σ)

6. Accept θprop with probability:

7. α =

{
π(θprop|x)
π(θcurr|x)

∧ 1

}
= min

{
1, π(x|θprop)π(θprop)

π(x|θcurr)π(θcurr)

}
8. Draw u ∼ U [0, 1] .

9. If u ≤ α,

• Accept θprop

• Set θ(r+1) = θprop,

else,

• θprop not accepted

• Set θ(r+1) = θr(r ≥ 0).

10. Repeat 5 to 8 until a sample of the desired size is obtained.
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to obtain samples from the joint posterior density π(θ, z|y) by alternating between

updating π(θ|x = (z,y)) and π(z|y,θ). This is called data augmentation.

To exploit the data augmentation scheme, we consider the joint posterior distri-

bution π(θ, z|y) and given that

π(θ, z|y) =
π(z,y|θ)π(θ)

π(y)
(2.4.9)

∝ π(z,y|θ)π(θ), (2.4.10)

then we have that

π(θ|x = (z,y)) ∝ π(z,y|θ)π(θ) (2.4.11)

and

π(z|y,θ) ∝ π(z,y|θ) . (2.4.12)

Therefore, under mild conditions, MCMC samples drawn iteratively from π(z|y,θ)

and π(θ|x = (z,y)) will give us samples from π(θ, z|y). These two steps are

summarized in Algorithm 5.

Algorithm 5 Data Augmentation steps

1. Draw zr ∼ π(z|y,θr−1) using Independence Sampler or Gibbs sam-

pler (as appropriate).

2. Draw θr ∼ π(θ|y, zr) using Random Walk Metropolis algorithm as

outlined in Algorithm 4.

The sampled values of the parameters θr; r ≥ 1 are normally stored while

zr may be stored for further use or discarded as nuisance parameters not

needed.
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2.4.4 Bayesian Inference on partially observed Individual-

based SIS data (IBD)

In this Section, we shall now focus on developing data augmentation schemes with

respect to the individual-based data (IBD). Interest here is on using an efficient

data imputation approach for the updating of π(z|θ,y). As before, both z and

y denote the imputed data and the partially observed data, respectively. Then,

zij(tik) is the imputed infectious status of the jth individual in household i at time

point tik {i = 1, . . . , N ; j = 1, . . . , hi; k = 1, . . . , ni}. To initialize the data, we

assume that an individual with unknown infectious status at the first observation

time point is in the susceptible state. This assumption can be relaxed to allow for

different infectious statuses of individuals at the first observation time point. On

the other hand, if the infectious status of individual (i, j) is unknown at time point

tik, we assume that the infectious status of the individual at time point ti,k−1 did

not change at time point tik.

Therefore, if yij(tik) < 2, set xij(tik) = yij(tik). Otherwise, if yij(ti1) = 2, we set

xij(ti1) = 0, and for 2 ≤ k ≤ ni set xij(tik) = xij(tik−1), if yij(tik) = 2.

Then, from (2.4.12) we have,

π(x|θ) ∝
N∏
i=1

ni∏
k=2

{
π
(
yi(tik)|xi(tik)

)
× π

(
xi(tik)|xi(tik−1),θ

)
π
(
xi(tik+1)|xi(tik),θ

)}
. (2.4.13)

Therefore updating π(z|θ,y) involves drawing zij(tik) from

π(zij(tik)|θ,x−ij(tik)) ∝ π(xi(tik), xij(tik) = zij(tik)|xi(tik−1),θ)

× π(xi(tik+1)|xi(tik), xij(tik) = zij(tik),θ) (2.4.14)
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where x−ij(tik) is the complete data vector for the infectious state of household i

without zij(tik) and zi(tik) is the state of household i at time tik.

Independence Sampler

We propose zpropij (tik) = 1 − zij(tik), if yij(tik) = 2 (switching the states). The

proposed values are accepted using a quick and simple acceptance probability,

α(zij(tik), z
prop
ij (tik)) , which depends on a given household at the three time points

(tik−1, tik, tik+1), and is given by

min

{
1,
π(xi(tik), xij(tik) = zpropij (tik)|xi(tik−1),θ)π(xi(tik+1)|xi(tik), xij(tik) = zpropij (tik),θ)

π(xi(tik), xij(tik) = zij(tik)|xi(tik−1),θ)π(xi(tik+1)|xi(tik), xij(tik) = zij(tik),θ)

}
.(2.4.15)

Algorithm 6 Independence Sampler (IS) algorithm

1. With fixed values of θ = (λ, β, γ)′,

2. Propose to switch states by setting zpropij (tik) = 1 − zij(tik), if

yij(tik) = 2.

3. Calculate the acceptance probability α.

4. Draw u ∼ U [0, 1].

5. If u ≤ α,

• accept zpropij (tik)

• Set zij(tik) = zpropij(tik) else,

•• zpropij (tik) is rejected
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2.4.5 Bayesian Inference on partially observed Aggregate-

based SIS data (ABD)

In this section, we describe a data augmentation schema for the aggregate-based data

(ABD).

Given a household of size h, suppose we are not able to observe every individual in the

household, that is, we only observed a subset of the household. Let ỹ denote the partially

observed data and as before, θ = (λ, β, γ)′ denotes the parameters of the model. Let

s̃(tk) denote the number of individuals observed in the household at time tk out of which

we observe ỹ(tk) infectives when in fact there actually x̃(tk) infectives in the household

at time tk. Therefore, when the observed number of individuals in the household at time

tk is equal to the size of the household, then the observed number of infectives is equal

to the unobserved actual number of infectives in the household at that point in time. In

other words, when s̃(tk) = h, then ỹ(tk) = x̃(tk).

On the other hand, when the observed number of individuals in the household at time tk

is less than the size of the household, then the observed number of infectives is at most

the unobserved actual number of infectives in the household at that point in time. In

other words, when s̃(tk) < h, then ỹ(tk) ≤ x̃(tk). The latter statement implies that when

we do not observe all the individuals of the household, then the number of infectives

observed may be less than or same as the actual number of infectives. Furthermore,

given that only a subset of the household is observed, it is possible that the unobserved

actual number of infectives in the household at time tk is less than or equal to the size

of the household, that is, x̃(tk) ≤ h when s̃(tk) < h. Therefore, when s̃(tk) < h, then

ỹ(tk) ≤ x̃(tk) ≤ h.

Now let z̃ ∈ {0, 1, . . . , h} denote the vector of all possible number of infectives in the
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household at a point in time. The probability of observing ỹ(tk) infectives in the house-

hold at time tk given the number of individuals observed s̃(tk), the household size h and

z̃, π(ỹ|s̃, h, z̃) the hypergeometric distribution

π(ỹ|s̃, h, z̃) =

(
z̃
ỹ

)(
h−z̃
s̃−ỹ
)(

h
s̃

) , (2.4.16)

where ỹ = ỹ(tk) and s̃ = s̃(tk). We compute (up to the constant of proportionality),

P̃x̃ = π(x̃(tk)|.) , the probability of observing x̃(tk) infectives at time tk given the number

of infectives in the household at other time points according to

P̃x ∝
n∏
k=2

{
π(ỹ(tk)|s̃(tk), h, x̃(tk))

× π
(
x̃(tk)|x̃(tk−1),θ

)
π
(
x̃(tk+1)|x̃(tk),θ

)}
. (2.4.17)

Finally, choose x̃(tk) from {0, 1, . . . , h} with probability P̃x and accept x̃(tk) with prob-

ability one. Note that P̃x = π(x̃(tk)|ỹ(tk), s̃(tk), h), the conditional distribution of x̃

given everything else. The steps described above are applied to all the i = 1, 2, . . . , N ,

independent households whilst updating x̃ij(tik) for every unobserved ỹij(tik).

We summarize the MCMC algorithms in Algorithm 7.

Algorithm 7 Data Augmentation

1. Update x̃|ỹ,θ using Gibbs sampling steps.

2. Update θ|x̃, ỹ using Algorithm 4.

2.5 Simulation Study

In this section, we carry out a simulation study on our proposed household-based SIS

epidemic models. There are three overarching aims of this study. First, we want to assess
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Parameters True λ True β True γ

2.00 1.50 2.50

Table 2.5.1: The parameter values used for simulating household-based SIS epi-

demics. Each set of parameter values was used to simulate samples size N = 500

households.

the efficiency of the MCMC algorithms outlined in Section 2.4. Specifically, we want to

see how fast it takes the MCMC algorithms to run in a given computing machine and

how accurate they estimate desired parameters with minimum auto-correlation. Second,

we want to see how using aggregate-based data (ABD) compares with using the more

informative individual-based data (IBD). In particular, we want to know if estimation

with the ABD-based MCMC algorithm leads to a significant loss of information compared

with the IBD-based MCMC. The third aim is to assess the robustness of our algorithms

at different types of missingness and at different proportions (P ) of missing data. That

is, we want to see how random missingness (A), individual missingness (B) and time

point missingness (C) as well as a given proportion of missingness affect the ability of

the MCMC algorithms to estimate the parameters of the model.

2.5.1 Method

To address the first aim of this study, we choose θ = (λ, β, γ)′= (2, 1.5, 2.5)′ and

simulate individual-based SIS epidemic data (IBD) for N = 500 independent households

where the size of a given household, hi (i = 1, 2, . . . , N), is chosen uniformly, at random

from {1, 2, . . . , 5}. Also, the initial state, xi(ti0), of household i is chosen uniformly, at

random, from {0, 1}hi possible states to which household i can belong at a given point

in time.
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We choose the observation time points (t1, t2, . . . , tni) of each household such that there

would be moderate changes between time points. Note that when t, the time difference,

is too small, the transition probability matrix, Q
(h)
t tends to identity matrix, I and

we observe only very little or no changes. On the other hand, when the time points

are far apart (t is large), each row of the transition probability matrix, Q
(h)
t , gets very

close to the stationary distribution π, making the infectious states of a given household

at different timepoints appear independent. Similarly, for any c > 0, the transition

probability matrix, Q
(h)
t tends to I(h)(π) as cθ gets smaller (larger).

Furthermore, the number of time points of observation of a given household, ni, is cho-

sen uniformly from (2, 3, . . . , 5). Next, we compute the two matrices, the rate matrix

(G-matrix) using (2.3.1) and the transition probability matrix (Q-matrix) using (2.3.7).

When t is an integer, we only compute Q
(h)
1 and obtain Q

(h)
t by raising it to the tth

power. This is found to greatly reduce the cpu time involved in the computation of Q
(h)
t

by up to 70% of the time.

Finally, we sample xi(tik), the infectious state of household i, from row xi(tik−1) of Q
(h)
t

and then record the data each time. We repeat the procedure for each sample using the

same time points data for the various data until the desired sample size if observed.

To address the second aim which compares the performance of ABD-based and IBD-

based MCMC algorithms, we obtain the aggregate-based data from the individual-based

data by simply using (2.2.2). Note that the IBD and ABD simulated in this instance are

assumed to be completely observed. The MCMC algorithms used including the choice

of prior distributions for both ABD and IBD are outlined in Section 2.5.3.

The third aim of this simulation study seeks to assess how a given proportion of missing

data affects the ability of the MCMC algorithms to accurately estimate the parameter
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values. To address this, using same set of parameter values or by simply using the

completely observed IBD, x, already simulated in the first instance, we further simulate

partially observed household-based SIS epidemic data y for various proportions, P , of

missing data. First, we sample a uniform random variable u from U(0, 1) and set y =

x. Three different forms of missing data are considered:

(A) Where the missingness is due to the infection status of an individual of a given

household missing at random at a particular time point with a given probability,

P . Here, we assume that yij(tik), the infectious status of individual j of household

i at time tik, is missing whenever u < P . That is, yij(tik) = 2 if u < P and

yij(tik) = xij(tik) if u ≥ P .

(B) Where the missingness is due to the infectious status of a randomly selected indi-

vidual of a given household missing completely in all time points. In other words,

a randomly selected individual with probability, P , is not observed at every time

point. Here, each element of yij(ti) =
(
yij(ti1), yij(ti2), . . . , yij(tini)

)
is unknown

or equal to 2 when u < P and yij(ti) = xij(ti) if otherwise, where yij(ti) is the

vector of infection status of individual j of household i across the ni time points.

(C) Where the missingness is due to a randomly selected observation time point of a

given household missing with probability, P , for all individuals in the household.

That is to say that a given state of household i at a particular time point, yi(tik)

=
(
yi1(tik), yi2(tik), . . . , yihi(tik)

)′
, is completely missing or each element is equal

to 2 when u < P , otherwise yi(tik) = xi(tik) . For the purpose of analysis, we

further classify this into

• C(1) in which each unobserved column is deleted and the data treated as

completely observed.
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• C(2) in which case we employ the data augmentation algorithms outlined in

Section 2.4.3 to analyse the incomplete data.

In all cases, the procedure is repeated for P = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} (

up to 0.9 or 90% missingness). As before, it is straightforward to obtain the correspond-

ing partially observed aggregate-based data (ABD) using (2.2.3) and (2.2.4). Also, note

that in all cases the data are missing at random: individuals’ infectious status missing at

random (A), rows missing at random (B) and time points or columns missing at random

(C) from an array of data X.

The main reason for considering the three afore-mentioned missing data forms is to

assess how each data form affects parameters estimation and identify the most stable

missing pattern.

In all cases, to assess the effects of sample sizes on the accuracy of the algorithms, we

further obtain randomly selected sub-samples of sizes N = 100, 200 from the original

sample (N = 500).

2.5.2 Sensitivity Analysis

We carry out a sensitivity analysis on the models to see how the MCMC algorithms are

sensitive to changes in parameter values. We scale the initial parameters of interest θ by

the constant c taking values in {1/10, 1/5, 1/2, 2, 5, 10} and obtain six more parameter

sets, see, Table 2.5.2. Observe that the first row of Table 2.5.2 contains the original

parameters, θ, used for the initial analysis.

In every case we simulate SIS household epidemic data for N = 500 and then randomly

choose subsets of the households of sizes 100 and 200, respectively. We shall also consider

the performance of the MCMC algorithms with respect to IBD and ABD. For each
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Parameters c True λ True β True γ

I 1.00 2.00 1.50 2.50

II 0.10 0.20 0.15 0.25

III 0.20 0.40 0.30 0.50

IV 0.50 1.00 0.75 1.25

VI 2.00 4.00 3.00 5.00

VII 5.00 10.0 7.50 12.5

VIII 10.0 20.0 15.0 25.0

Table 2.5.2: The parameter values used for simulating household-based SIS epi-

demics. Each set of parameter values was used to simulate samples size N = 500

households.

sample, we analyze both the complete data case. We use the data augmentation approach

described in Section 2.4.3 for the analysis of incomplete data with various proportion of

missing data.

2.5.3 MCMC

Complete Data case

For every c = {1, 2, 5, 10, 1/2, 1/5, 1/10}, we used (1/c) prior with mean equal to c. In

Sections 2.4.1 and 2.4.3 to obtain the required samples for Bayesian posterior inferences.

As already stated, the choice of the gamma-distributed priors is to ensure that our pa-

rameter values remain positive. Using Random Walk Metropolis (RWM) algorithms, we

use block updating and propose θ′ ∼ N3

(
θ,Σ

)
(multivariate Random Walk proposal).

From a pilot study, we found that a good initial value of the proposal variance-covariance
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matrix, Σ, is


0.01 0 0

0 0.01 0

0 0 0.01

 ,

and by exploiting the posterior variance tuning strategy outlined in Section 2.4.1, we

ensured acceptance rates for the main MCMC runs are close to the suggested 23.4% for

optimality according to

α = min

{
L(θ′)× π(θ′)

L(θ)× π(θ)
, 1

}
.

Incomplete Data Case

As outlined in Section 2.4.3 we alternate between updating π(z̃|ỹ,θ) and π
(
θ|x̃ = (z̃, ỹ)

)
.

To update π(z̃|ỹ,θ), we employed the methods outlined in Section 2.4.3 for the three

forms of missing data considered. The only difference is in choosing the initial guess

for the infection status, xij(tik), whenever yij(tik) = 2 (unknown) (i = 1, . . . , N ; j =

1, . . . , hi; k = 1, . . . , ni). For the missing data form A, whenever yij(tik) = 2, we set the

initial guess to be xij(tik) = xij(tik−1) (the infection status at the immediate preceding

time point) and when yij(ti1) = 2, we set xij(ti1) = 0 (assuming initially susceptible).

For missing data form B, we sample xij(tik) from (0, 1) whenever yij(tik) = 2. The initial

guess for xij(tik) for missing data form C(2) is handled in the same way as in missing

data form A in which case each affected column (time point) takes the values in the

preceding column when yij(ti1) = 2 or are all 0’s (susceptibles) whenever there were no

observations at the initial time point. Alternatively, we can also initialize C(2) by setting

xij(ti1) = xij(tiκ), where κ is the next observed time point. As already mentioned, the

method we used in handling missing data form C(1) is to delete the entire unobserved

columns (or time points) and analyse the data as though were completely observed.
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In all cases with IBD and for P = (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 0.9), we propose x′ij(tik)→

1− xij(tik) (switching state) using an Independence Sampler step. The proposed value

x′ij(tik) is accepted (or rejected) according to (4.4.5). For the corresponding aggregate-

based data, we update z̃|ỹ,θ using the Gibbs sampling steps also introduced in Section

2.4.3.

2.5.4 Results and Discussions

We have carried out a simulation study on our proposed models addressing three ma-

jor aims- the accuracy of parameter estimates, comparison between the IBD-based and

ABD-based algorithms in terms of speed of runs as well as the ability of the algorithms

to yield posterior estimates (means) with low auto-correlations, and the stability of the

algorithms as the percentage of missing data increases. We note that the second aim is

addressed simultaneously with the first and the third aims since the IBD and ABD can

always be compared for both complete data case and incomplete (partially observed)

data case.

In all cases, we discuss the results obtained from 1 × 105 iterations after discarding

2 × 104 iterations as burn-in for c = (0.1, 0.2, 0.5, 1, 2, 5, 10) and the corresponding pa-

rameter values (see, Table 2.5.2). Convergence diagnostic tools employed include trace

plots, ACF plots, and paired density plots. These diagnostics were used throughout.

Figure 2.5.1 shows the trace and density plots for the individual-based data (IBD) when

up to 50% of the data are missing. The traceplot (left) which contains the history of

the sojourn of the Markov Chain for the last 80, 000 iterations show that the MCMC

algorithms are mixing well and convergence is deemed to have been achieved.
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Figure 2.5.1: Right: trace plots obtained from 1 × 105 iteration after discarding

the first 2× 104 iterations as burn in. This plot if for the aggregate-based data for

c = 5 and P = 50%. Left: density plot. The plots here show that the mixing of

the chains are good. The posterior estimates for the means of the three parameter

are 7.90, 12.90 and 9.60 for β, γ and λ, respectively.

To check for autocorrelation, we used the autocorrelation function (ACF) plot to have a

quick glance and ascertain the degree of the dependence between the sampled parameter

values. Figure 2.5.2 shows that the serial autocorrelation between the parameter values

is minimal.
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Figure 2.5.2: Autocorrelation function plot (ACF) for the individual-based data

(IBD) for c = 5 or (β, γ, λ) = (7.90, 12.90, 9.60) for 50% missing data.

We shall now proceed and report the results of the analysis. In Table 2.5.4, we com-

pare the results obtained from the MCMC outputs when the data are completely ob-

served (or no missing data) for both the individual-based data and the aggregate-based

data. This comparison is done across the three sample sizes of N = 100, 200, 500 for

(λ, β, γ) = (2, 1.5, 2.5) or c = 1. It happened that the performance of both the IBD-based

and ABD-based MCMC algorithms are similar in terms of posterior means, standard

deviation (SD) and effective sample size (ESS).
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Data Size (N) Parameter Mean SD ESS

λ = 2.0

ABD 100 1.17 0.41 4768

IBD 1.15 0.40 5234

ABD 200 1.85 0.54 4489

IBD 1.89 0.53 5014

ABD 500 1.75 0.48 4039

IBD 1.76 0.48 4296

β = 1.5

ABD 100 1.68 0.60 5098

IBD 1.66 0.59 5322

ABD 200 1.34 0.42 4802

IBD 1.37 0.41 5596

ABD 500 1.21 0.35 4615

IBD 1.22 0.35 4314

γ = 2.5

ABD 100 1.90 0.65 4673

IBD 1.88 0.63 4932

ABD 200 2.30 0.68 4558

IBD 2.35 0.65 4966

ABD 500 2.05 0.57 4228

IBD 2.07 0.57 4258

Table 2.5.3: Posterior Means, Standard Deviations and Effective Sample Sizes for

completely observed Household-based SIS epidemic for parameter sets θ = (λ,

β, γ)′= (2, 1.5, 2.5)′ from 1× 105 iterations after 2× 104 burn-in.
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Though we observe that the algorithms performed better for when the sample sizes

are 200 and 500 than when the sample size was 100, though only slightly. The effect

of sample size is not well established. We note that the ABD-based algorithms were

about 1.5 times faster that the IBD-based MCMC algorithms. Next we consider when

the data are only partially observed. Four different forms of missingnesses were con-

sidered according to Section 2.5.1: individual’s infectious status missing completely at

random at random observation time points or A; randomly selected individual missing

at random across or the time points or B; randomly selected observation time point

missing completely or C(1) (for this, we simply deleted the entire unobserved column

and carried on with the available data as if it were completely observed ab initio) or C(2)

(for this, we imputed the missing time points and data via data augmentation). Table

2.5.4 compares the posterior estimates of mean, standard deviation (SD) and effective

sample size (ESS) obtained from the MCMC outputs of the last 80, 000 iterations for (λ,

β, γ)′= (0.20, 0.15, 0.25)′ or c = 0.1, and for 50% and 90% missingness across the various

types of missingnesses and across the various sample sizes (N = 100, 200, 500) of the IBD.
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Missingness Size (N) % Missing Mean SD ESS

λ(β)γ λ(β)γ λ(β)γ

P = 50%

A 100 0.21 (0.19) 0.23 0.03 (0.04) 0.04 7445 (7270) 6054

B 0.23 (0.09) 0.22 0.04 (0.03) 0.03 575 (622) 1462

C(1) 0.35 (0.31) 0.45 0.05 (0.10) 0.13 4754 (6295) 6155

C(2) 0.24 (0.23) 0.29 0.04 (0.07) 0.09 2411 (1691) 1586

A 200 0.20 (0.21) 0.31 0.02 (0.03) 0.04 6883 (6946) 6578

B 0.21 (0.08) 0.21 0.03 (0.02) 0.03 1913 (2305) 2357

C(1) 0.36 (0.32) 0.47 0.04 (0.07) 0.08 3384 (4555) 6028

C(2) 0.20 (0.20) 0.30 0.02 (0.04) 0.05 2215 (1153) 1777

A 500 0.20 (0.17) 0.26 0.01 (0.02) 0.02 7310 (6420) 6777

B 0.21 (0.08) 0.21 0.02 (0.02) 0.02 423 (297) 600

C(1) 0.35 (0.28) 0.46 0.03 (0.04) 0.05 4919 (3571) 4728

C(2) 0.21 (0.18) 0.29 0.02 (0.03) 0.03 1783 (1191) 1015

P = 90%

A 100 0.22 (0.25) 0.30 0.03 (0.07) 0.08 4721 (2645) 3004

B 0.32 (0.29) 0.51 0.13 (0.33) 0.40 187 (230) 150

C(1) 0.39 (0.40) 0.43 0.08 (0.15) 0.21 6220 (7665) 6286

C(2) 0.24 (0.20) 0.24 0.14 (0.18) 0.23 179 (280) 187

A 200 0.18 (0.20) 0.27 0.02 (0.04) 0.04 5059 (3576) 3729

B 0.22 (0.09) 0.36 0.05 (0.09) 0.17 335 (190) 135

C(1) 0.45 (0.50) 0.66 0.08 (0.14) 0.20 7594 (4407) 5900

C(2) 0.21 (0.16) 0.28 0.04 (0.05) 0.08 820 (977) 756

A 500 0.18 (0.17) 0.25 0.01 (0.02) 0.03 4673 (3326) 3152

B 0.21 (0.10) 0.31 0.04 (0.05) 0.07 149 (313) 165

C(1) 0.48 (0.41) 0.62 0.06 (0.08) 0.13 7646 (6619) 7011

C(2) 0.19 (0.17) 0.25 0.02 (0.03) 0.04 318 (551) 401

Table 2.5.4: Posterior Means, Standard Deviations and Effective Sample Sizes for partially observed Household-based

SIS epidemic for parameter θ = (λ, β, γ)′= (0.20, 0.15, 0.25)′ or c = 0.1 from 1× 105 iterations after 2× 104 burn-in.
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It happened that when 50% data are missing, the missingness of type A appeared to

yield more accurate estimates across the three sample sizes as well as having the highest

amount of ESS across the samples. Immediately behind A in terms of performance is

C(1), while the missingness of type B showed the worst performance. On the other hand,

when the data are up to 90% missing, the missingness of forms A and C(2) appear to

perform better than the rest in terms of parameters estimates (mean). However, the

missingness of type C(1) has the highest ESS, albeit with the least accurate estimate.

However, the standard deviation of A is the least throughout. The results show that

the missingness of form A may be said to have the overall best performance. A further

assessment of the effects of missing data on the performance of our algorithms is pre-

sented on Table 2.5.5, which compares the posterior estimates for across the four types

of missingness considered for c = 1 and for N = 500 using the individual-based data

with (P% = 10%, 30%, 70%, 90%). The results on Table 2.5.5 show that when only up

to 30% of the data are missing, the algorithms show fairly similar performance across

the various types of missingness. However as the proportion of missing data increases

to 90%, C(2) rapidly deteriorates, while C(1) appeared to outperform the rest followed

by A indicating that the effect of sample size might be significant in this case.
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Missingness % missing Mean SD ESS

λ(β)γ λ(β)γ λ(β)γ

A 10% 1.828 (1.181) 2.045 0.506 (0.350) 0.575 4701 (4977) 4763

B 1.700 (1.109) 1.918 0.488 (0.345) 0.558 3528 (4128) 3432

C(1) 1.828 (1.449) 2.277 0.484 (0.404) 0.610 5011 (5214) 4998

C(2) 1.646 (1.120) 1.905 0.472 (0.348) 0.558 3540 (3789) 3576

A 30% 1.586 (1.257) 1.976 0.446 (0.381) 0.568 3604 (3782) 3780

B 1.863 (0.929) 1.940 0.594 (0.332) 0.609 2791 (2735) 2976

C(1) 1.369 (1.162) 1.744 0.353 (0.318) 0.467 5258 (5176) 5131

C(2) 1.536 (0.933) 1.692 0.533 (0.350) 0.595 2529 (2599) 2602

A 70% 1.455 (1.137) 1.784 0.442 (0.369) 0.549 2546 (2596) 2469

B 1.964 (0.512) 1.234 1.207 (0.500) 0.615 408 (1089) 752

C(1) 2.026 (1.261) 2.210 0.630 (0.480) 0.688 5280 (5620) 5762

C(2) 1.059 (0.848) 1.275 0.460 (0.393) 0.567 717 (538) 541

A 90% 1.207 (0.916) 1.450 0.465 (0.370) 0.561 1307 (1379) 1224

B 1.237 (0.968) 1.586 0.789 (0.570) 0.663 315 (192) 423

C(1) 1.910 (1.338) 2.144 0.546 (0.443) 0.637 5645 (5423) 5530

C(2) 0.922 (0.797) 1.159 0.450 (0.416) 0.582 520 (529) 491

Table 2.5.5: Posterior Means, Standard Deviations and Effective Sample Sizes for

partially observed individual-based data (IBD) (P% = 10%, 30%, 70%, 90%) for

parameter θ = (λ, β, γ)′= (2.0, 1.5, 2.5)′ or c = 1 from 1 × 105 iterations after

2× 104 burn-in. N = 500.

Furthermore, we explored the relationships between different parameter values. Fig-

ure 2.5.4 shows the paired contour plots, density and correlation plots for (λ, β, γ) =
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(10, 7.5, 12.5) or c = 5 for the IBD at 30% missing. The paired plot show that there is

high correlation between the infection and recovery rates, while the correlation between

the two rates of infection is low at 0.467.

Figure 2.5.3: Paired plots. The contour plots (blues) show that there is a strong

correlation between β vs γ and a weak correlation exits between γ vs β

.

As the values of c further increases (c > 1) or as the parameter , θ values get larger

(e.g., Figure 2.5.4), we see that only a few changes can be observed as the transition

probability matrix, Qt, quickly approaches the stationary distribution, π, in that each

row of Qt contains the same set of elements. In other words, if t, s are quite big, then

Qt ≈ Qs.
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Finally, the findings from the simulation study show that the proposed models are robust

and especially with the data form A (partially observed data) even when data are up

to 90% missing. We note that in all cases, the MCMC algorithms based upon the

IBD and ABD peformed nearly equally well, although the IBD-based algorithms only

slightly outperformed the ABD-based algorithms. However, the ABD-based algorithms

are somewhat faster to run and is about 1.5 times faster than the more informative

IBD. For example, the cpu time required to run a 1 × 105 iterations of ABD on a Dell

computer Intel (R) Core (TM) with 64-bit Operating System is approximately 2 hours,

while same number of iterations requires nearly 3 hours cpu time to run the MCMC for

IBD on the same computer.

2.6 Conclusions

In this chapter, we introduced stochastic household-based SIS epidemic models in a

closed population. Two main data forms were considered- the individual-based data

(IBD) and the aggregate-based data (ABD). We outlined the procedures for the analysis

of the models in Bayesian framework and developed robust and easy-to-use MCMC

algorithms for the analysis of such infectious diseases data. Two main scenarios were

considered- the completely observed data case and the partially observed data case.

Analysis involving the completely observed data is straightforward as outlined in Section

2.4.1 in that only π(θ|x) is updated. For the partially observed household-based SIS

data case, we developed robust and flexible data augmentation algorithms as outline in

Section 2.4.3. The simulation study carried out in Section 2.5 shows that our models

are robust for both the completely observed data case and the partially observed data

case even when the 100P% is up to 90% (especially for data form A and for moderate t
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Figure 2.5.4: Posterior density plots of IBD, c = 5 with Gamma(1, 1) priors (a)

and Gamma(10, 1) priors (b) for N = 200 at 10% missing of data form A. The

vertical lines are the posterior means.
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and parameter values).

We will extend the models introduced here to allow for changing population sizes over

time as well as the incorporation of spatial element in Chapter 3 and later allow for

interacting infectious diseases (or co-infection) in Chapter 4.
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Chapter 3

Open Population, Spatial SIS

Model

3.1 Introduction

This chapter is divided into two parts. The first part of this chapter seeks to develop

Bayesian inference methods for the analysis of endemic diseases within a population

partitioned into households, such that the household sizes are allowed to vary over time.

The main focus is on the estimation of the major parameters which are the main drivers

of the epidemic, for example, the global and local rates of infection (or λ and β). To do

this, we develop efficient MCMC algorithms for sampling from the posterior distribution

of the parameters given the data, π(θ|x), say. The second part of this chapter is con-

cerned with the development of a spatial epidemic model which allows the global force

of infection λ to depend on the spatial locations of the households. This is modelled

using Gaussian process, such that the global force of infection is a function of Gaussian

random field (GRF) realizations. We used a distance dependent correlation function to

account for spatial variations in the data. As in the first part, the main focus is also on
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the development of Bayesian inference framework for the estimation of the varying risks

of infection as well as other major parameters of the model including the parameters of

the correlation function. The models and the implementation of the MCMC algorithms

developed in both the first and second parts of this chapter are illustrated using simu-

lated data sets as well as real life data set on the spread of tick-borne diseases among

Tanzania cattle.

The rest of this chapter is organized as follows: In Section 3.2 we give an overview

of the open population models and in Section 3.3 we describe the two most prevalent

forms of endemic disease data from the open population model. In Section 3.4, we

briefly describe the model setup which is very similar to that described in Section 2.3.

MCMC algorithms developed for the analysis of an open population SIS epidemic data,

with details on the development of the data augmentation schema employed are given

in Section 3.5. In Section 3.6, we give an overview of the development of the spatial

disease model. MCMC algorithms for the estimation of the parameters of the spatial

epidemic model are developed in Section 3.8. Furthermore, in Section 3.9, we illustrate

the implementation of the MCMC algorithms developed using simulated data sets. An

application of the MCMC algorithms to the analyses of a real life data set on tick-borne

diseases among Tanzania cattle is shown in Section 3.10. Finally, in Section 3.11, we

give concluding remarks with focus on the findings from analyses of the simulated data

set and the real life data.

3.2 Open Population SIS epidemic

In Chapter 2 we studied SIS epidemics within households in which the population is

assumed to be closed, i.e., no births, no deaths, no immigration and no emigration.

The size of a given household h is independent of time. Closed population assumption
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are reasonable if there is no significant change in the population over the study period.

Closed population SIS epidemic model provides a first order approximation and might

be used in modelling the spread of pneumococcus amongst school children and in mod-

elling diseases such as meningitis, streptococcal sore throat and tuberculosis (Hethcote,

1976). Closed population assumption can also be suitable in modelling epidemics that

last longer, but in which disease-related deaths are so insignificant and natural deaths

are immediately balanced by births (Hethcote and van den Driessche, 1995). For most

endemic diseases such as measles, it is highly unlikely that the epidemic would not make

a major impact on the population demography. In some kind of endemic diseases, the

number of deaths (both natural and disease related) might be lower than births into the

population. In such situations, where there are significant demographic changes in the

population, the closed population assumption becomes unrealistic. Therefore, there is

need to develop epidemic models which incorporate the more realistic assumption that

the population sizes vary over time.

So far, only a few studies have explored open or varying population epidemic model,

see, for example, Hethcote and van den Driessche (1995), O’Neill (1996), Clancy et al.

(2001) and Greenhalgh et al. (2016). O’Neill (1996) considers an open population SIR

epidemic model and incorporates immigration (µ1 > 0) and emigration (µ2 > 0) parame-

ters into the susceptible class of the model and then used coupling argument to illustrate

the strong convergence of sequence of infectives to the birth-and-death process. Clancy

et al. (2001) studies long term behavior of an open population stochastic epidemic model

of the SIR type incorporating birth parameter (µ) into the susceptible class of the model,

and using diffusion approximations to describe the temporal behavior of the epidemic.

Hethcote and van den Driessche (1995) studies the asymptotic behavior of varying pop-

ulation SIS epidemic model incorporating births (b > 0) and deaths (d > 0) into the

modelling. Greenhalgh et al. (2016) studies a two-dimensional stochastic differential
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equation (SDE) SIS epidemic model incorporating births and deaths as stochastic pro-

cesses. In this chapter, interest is on the development of Bayesian inference methods for

such SIS epidemic models whose population sizes vary over time rather than modelling

the infectious process itself. We note that none of the studies mentioned above focuses

on developing inference methods for estimation of the parameters of an open population

stochastic SIS epidemic model.

Given the foregoing, in this chapter, we develop inference methods for open population

stochastic SIS epidemic models in Bayesian framework primarily using Markov chain

Monte Carlo (MCMC) algorithms. We shall focus on household based stochastic SIS

epidemic models with a setup similar to the closed population model studied in Chapter

2. The major differences between the model studied in Chapter 2 and the model we

consider here is that here we allow individuals to enter and leave a given household at a

point in time. This makes the household size to vary at different observation time points

with the possibility of having new individuals not previously present in the household at

time t being present at time t+1 or individuals present at time t leaving the household at

t+1. For as far as we are aware of, there has never been any work on the development of

Bayesian inference methods using MCMC for open population stochastic SIS household

epidemic models. Therefore, we seek to fill this gap in literature by developing novel

MCMC algorithms via data augmentation for the analysis of open population stochastic

SIS household epidemic model. In what follows, we shall give a detailed description of

the two most prevalent endemic disease data we consider here.

3.3 Data Description

In this section, we describe the endemic disease data we consider as follows. For a given

household, let h(t) denote the size of the household at time t, then the household size
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is said to vary whenever h(t + 1) 6= h(t), i.e., we can have that h(t + 1) < h(t) or that

h(t+ 1) > h(t). For ease of exposition we shall use arrival(departure) to mean an indi-

vidual or individuals joining (leaving) a given household at a point in time. Therefore,

an event of arrival is assumed to occur approximately halfway between time t and time

t + 1 whenever h(t + 1) > h(t). Similarly, the event of departure is assumed to have

occur approximately halfway between t and t+ 1, whenever h(t+ 1) < h(t). Individuals

(animals) join a given household (farm) through birth or immigration (birth or acqui-

sition), while individuals (animals) leave a given household (farm) following deaths or

emigration (deaths or animals being sold).

We shall now describe the open population epidemic data for the two most prevalent

endemic disease data forms, namely, individual-based data (IBD) and aggregate-based

data (ABD).

3.3.1 Individual-based data (IBD)

For k = 1, 2, . . . , n, let h(tk) denote the size of a given household at the kth observation

time point. Let H denote the number of distinct individuals ever in the household

across the n observation time points. For j = 1, 2, . . . ,H, let x∗j (tk) denote the infection

status of individual j at time tk. We encode x∗j (tk) = 5 if individual j is not in the

household at time tk, otherwise x∗j (tk) = xj(tk) ∈ {0, 1}, where 0 denotes susceptible

and 1 denotes infective. Then, x(tk) =
(
x∗1(tk), x

∗
2(tk), . . . , x

∗
H(tk)

)
is the state of the

household at the kth observation time point. Therefore, x(t) =
(
x(t1),x(t2), . . . ,x(tn)

)
is the open population individual-based endemic disease data for a given household

over n observation time points. Table 3.3.1 shows an example of an open population

household SIS individual-based epidemic data with H(= 5) distinct individuals across

the n(= 9) observation time points. Note that we encode x∗j (tk) = 2, when we are not
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able to ascertain the jth individual’s infectious status even though he is a member of the

household at time tk. Reasons why the infectious status of an individual might not be

known include refusal or unavailability to submit to a clinical tests. Note also that we

assume that the interval [t, t + ∆t) is small enough to allow only the occurence of one

event at a time, that is, event of arrival or departure.

t1 t2 t3 t4 t5 t6 t7 t8 t9

I1 0 2 0 0 1 0 0 0 1

I2 0 0 0 0 1 0 0 5 5

I3 5 0 0 0 0 0 1 0 0

I4 5 5 5 5 5 0 0 2 0

I5 5 5 5 5 5 5 5 5 0

Table 3.3.1: Individual-based data (IBD) for an open population SIS epidemic.

From Table 3.3.1, we see that individuals 3, 4 and 5 or (I3, I4 and I5) were observed in

the household at the 2nd, 6th and 9th observation time points, respectively. Also, observe

that individual 2 departed the household before the 8th observation time point (t8). As

noted above, arrival or departure occurs at an unobserved time point t̃ ≈ 1
2(tk + tk+1),

where t̃ ∈ N, for k = 1, 2, . . . , n. This concept is further illustrated in Section 3.5.1.

3.3.2 Aggregate-based data (ABD)

Let x̃(tk) ∈ {0, 1, . . . , h(tk)} denote the number of infectives in a given household of size

h(tk) at time tk. Therefore, x̃(t) =
(
x̃(t1), x̃(t2), . . . , x̃(tn)

)
denotes the aggregated open

population SIS epidemic data of a given household over n set of observation time points.

Table 3.3.2 shows an example of an open population endemic disease aggregated data.

Observe that Table 3.3.2 is the row sum of Table 3.3.1 for values of 1s and 0s, i.e.,
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x̃(tk) =
∑

x(tk)1{x∗j (tk)∈{0,1}
}.

t1 t2 t3 t4 t5 t6 t7 t8 t9

Number of Infectives 0 0 0 0 2 0 1 0 1

Household size 2 3 3 3 3 4 4 3 4

Table 3.3.2: Aggregate-based Data (ABD) for open population models.

3.4 Model setup (Open population)

In this section, we describe the construction of the open population model. Again, we

note that the model construction is very similar to that described in Section 2.3, except

that here the household size varies over time. First, let us briefly recall that our model

assumes that there is a global force of infection λ > 0 and a local rate of infection

β > 0. Infections occur when an infective makes a successful infectious contact with a

susceptible chosen uniformly at random from a given household. All the contacts are

made at points of mutually independent Poisson processes. At the end of its infectious

period, which is distributed exponentially with mean γ−1, an individual recovers at rate

γ > 0 and immediately returns to the susceptible state and can be reinfected. Therefore,

there is no removed state as recovery from the disease does not confer immunity. Only

infectious contacts with susceptibles confer infection and there is no latent period so that

the infected individual becomes infectious immediately. Therefore, the only transitions

allowed at a point in time are from susceptible to infective (S → I) or from infective to

susceptible (I → S), hence SIS epidemic model.

We shall now give details on how the infinitesimal transition rate matrix (G-matrix)

is constructed and how the corresponding transition probability matrix (Q-matrix) is
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calculated.

3.4.1 Infinitesimal Transition rate Matrix (G-matrix)

First of all, we note that the infinitesimal transition rate matrix is calculated as de-

scribed in Section 2.3.1. Recall that the G-matrix for the individual-based data (IBD)

is calculated according to (2.3.1) as follows

g
(h)
uv =



λ+ β
∑h

i=1 ui if uj = 0 and v = u + ej ,

γ if uj = 1 and v = u− ej

−
∑
w 6=u

g
(h)
uw if v = u

0 Otherwise

for λ, β, γ > 0 and u, v, w ∈ S, where uj ∈ {0, 1} is the infection status of the jth

individual of a household of size h.

Similarly, the G-matrix for the aggregate-based data (ABD) is calculated according to

(2.3.3) as

g(h)
m,n =



βm(h−m) + λ(h−m) if n = m+ 1

γm if n = m− 1

0 if |n−m| > 1

−
∑
k 6=m

g
(h)
m,k if n = m

for λ, β, γ > 0 and m, n, k ∈ S, where m is the number of infectives in a household of

size h at a point in time.

Now, let {h1, h2, . . . , hp} denote an ordered set of p distinct sizes of the household across

the n observation time points. For both the IBD and ABD, we calculate the household

size dependent G-matrix for each of the p distinct sizes, so that for every given household
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observed n times, we obtain the matrices G(1),G(2), . . . ,G(hp) for the p distinct sizes of

the household across the observation time points. This helps to save computer memory

and minimize computational costs that would have been incurred should we calculate

the G-matrix at every time point whenever the household size changes.

3.4.2 Infinitesimal Transition probability Matrix (Q-matrix)

We shall now describe how the transition probability matrix or the Q-matrix is cal-

culated. The Q-matrix is calculated as described in Section 2.3.1. Observe that the

Q-matrix depends on both the household size h and the time difference t. Therefore, for

the open-population model in which household sizes vary at time points, we calculate

the Q-matrix for every given t and for every given distinct h according to (2.3.7) by

taking matrix exponent of the product of t(= tk+1− tk) and the corresponding G-matrix

for the household at time tk, i.e., Q
(h(tk))
t = exp(tG(h(tk))).

In what follows, we shall outline Bayesian inference procedure for an open population

SIS epidemic data.

3.5 Bayesian Inference for Open population SIS

epidemic model

In this section, we outline Bayesian inference framework for the estimation of the key

parameters of the epidemic, namely, the global force of infection λ, the local rate of

infection β and the recovery rate γ. Given that the size of a given household varies over

time, it implies individuals leave and join the household at points in time. We actually

do not observe the actual point in time when an individual leaves or joins the household.

Therefore, the open population endemic disease data is only partially observed and

this makes inference on such data more complicated. Progress can however be made
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using appropriate data imputation strategies. In this section, we develop a class of data

augmentation schema in MCMC framework for efficient analysis of an open population

endemic disease data. We shall begin with the individual-based data (IBD).

3.5.1 Generic setup

Let y denote the partially observed data generated from the open population SIS model

with parameters θ = (λ, β, γ). It is well known that the likelihood function L(θ|y) =

π(y|θ) is rarely tractable. We augment y with z and set x = (z,y) as the complete

data, then the likelihood L(θ|x,y) = π(x = (z,y)|θ) becomes tractable. Here, the extra

information z are the imputed observations and time points at which individuals join or

leave a given household. We proceed as follows.

Individual-based data (IBD)

For k = 1, 2, . . . , n, let h(tk) denote the number of individuals in the household at time

tk. Let y(tk) =
(
y∗1(tk), y

∗
2(tk), . . . , y

∗
H(tk)

)
denote the state of the household at the kth

observation time point, where H is the number of distinct individuals observed in the

household across the n observation time points and y∗j (tk) denotes the observed infection

status of individual j at time tk and is encoded according to (3.5.1) (j = 1, 2, . . . ,H).

When an event of arrival or departure occurs, we assume that the event must have

occurred at a point approximately halfway in between tk and tk+1, and impute the time

point t̃l ≈ 1
2(tk+tk+1), where l = 1, 2, . . . ,m, and m is the number of time points imputed

in the household over n observation time points. Note that when h(tk+1) > h(tk), we

set z(t̃l) = x(tk) with the infectious status of individual j at time t̃l coded 3, i.e.,

z(t̃l) =
(
x∗1(tk), x

∗
2(tk), x

∗
j−1(tk), x

∗
j (tk) = 3, x∗j+1(tk) . . . , x

∗
H(tk)

)
. On the other hand,

when h(tk+1) < h(tk), we set z(t̃l) = x(tk) with the infectious status of individual j at

time t̃l coded 4, i.e., z(t̃l) =
(
x∗1(tk), x

∗
2(tk), x

∗
j−1(tk), x

∗
j (tk) = 4, x∗j+1(tk) . . . , x

∗
H(tk)

)
.
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This data imputation scheme is illustrated in Table 3.5.1 for the open population SIS

data in Table 3.3.1.

y∗j (tk) =



0 if susceptible,

1 if infective,

2 if status unknown,

3 if individual joins the household ,

4 if individual exits household ,

5 if not in the population.

(3.5.1)

t1 t̃1 t2 t3 t4 t5 t̃2 t6 t7 t̃3 t8 t̃4 t9

I1 0 2 2 0 0 1 2 0 0 2 0 2 1

I2 0 2 0 0 0 1 2 0 0 4 5 5 5

I3 5 3 0 0 0 0 2 0 1 2 0 2 0

I4 5 5 5 5 5 5 3 0 0 2 2 2 0

I5 5 5 5 5 5 5 5 5 5 5 5 3 0

Table 3.5.1: Individual-based Data (IBD) with varying population sizes over time

with imputed time points and coded according to (3.5.1).

The illustration on Table 3.5.1 shows that we impute a total of four m(= 4) time points,

namely, t̃1, t̃2, t̃3 and t̃4, which are the unobserved time points at which individuals

exit the household or at which individuals join the household. For example, t̃1 is the

first imputed observation time point at which individual 3 (or I3) joins the household.

Similarly, the third and fourth imputed time points t̃3 and t̃4 are the times at which

the second individual (or I2) leaves the household and at which the fifth individual (or
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I5) joins the household, respectively. Therefore, there are H(= 5) distinct individuals

observed in the household for the n(= 9) observation time points. The data imputation

procedures described above is repeated for each i = 1, 2, . . . , N households which we

assume to be independent throughout this chapter.

In what follows, we shall now outline the implementation of MCMC algorithms for the

open population SIS epidemic data.

3.5.2 Data Augmentation (MCMC)

We now follow the data augmentation steps described in Section 2.4.3 and proceed as

follows. Given the augmented data x = (z,y), obtain samples from the joint posterior

π(θ,x) by iteratively sampling

1. θ from π(θ|x = (z, y)) and

2. z from π(z|y,θ).

To update π(θ|x = (z,y)), we need to choose appropriate prior distributions of the

parameters, π(θ), calculate the likelihood function, L(θ; x = (z,y)), obtain the posterior

distribution, π(θ|x), and then construct an efficient MCMC algorithm whose stationary

distribution is our target density. Figure 3.5.1 shows the schematic representation of

the model. Observe that by Figure 3.5.1 we have assumed that the observed data y is

conditionally independent of θ given the complete data x = (z,y).

Priors

Given that our parameter values are positive and real-valued, we assign independent

Gamma priors to θ = {λ, β, γ} so that
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β γλ

x

y

Figure 3.5.1: Schematic representation of the open population model.

λ ∼ Gamma(Aλ, Bλ)

β ∼ Gamma(Aβ, Bβ)

γ ∼ Gamma(Aγ , Bγ) . (3.5.2)

where Aλ > 0, Bλ > 0, Aβ > 0, Bβ > 0, Aγ > 0 and Bγ > 0 are hyper-parameters.

Note that these priors can be chosen to be informative or uninformative. For example,

we make the Gamma priors uninformative by choosing shape parameters to be small.

Posterior Distribution

The posterior distribution of the parameters given the data, π(θ|x,y) = π(θ|x) (by

conditional independence assumption) is then calculated according to (2.4.7) as

π(θ|x) ∝

{
N∏
i=1

ni∏
k=2

{
π
(
xi(tik)|xi(ti,k−1),θ

)}}
× λAλ−1e−Bλλ × βAβ−1e−Bββ × γAγ−1e−Bγγ ,
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since the marginal distribution of the data π(x) and the constantsBAλ
λ /Γ(Aλ), BAλ

λ /Γ(Aλ)

and BAλ
λ /Γ(Aλ) are independent of θ{= (λ, β, γ)′} and are not necessary for drawing

samples from the posterior distribution π(θ|x) using MCMC.

Next, update π(θ|x) using adaptive Random Walk Metropolis with multivariate Gaus-

sian proposal according to Algorithm 4.

Also, same as in Section 2.4.3, we update π(z|y,θ), for the three time points tik−1,

tik and tik+1. First, obtain the probability of observing the complete data x given the

observed data y and the model parameters θ given by

π(x|θ,y) ∝ π(y|x)π(x|θ), (3.5.3)

since y is conditionally independent of θ given x. Then, by the independent households

assumption we have

π(x = (z,y)|θ,y) ∝
N∏
i=1

ni∏
k=2

{
π
(
yi(tik)|xi(tik)

)
× π

(
xi(tik)|xi(tik−1),θ

)
π
(
xi(tik+1)|xi(tik),θ

)}
. (3.5.4)

Then to update π(z|y,θ), we update one zij(tik) at a time and calculate the following

probabilities. First calculate the probability

π(zij(tik)|θ,x−ij(tik)) ∝ π(xi(tik), xij(tik) = zij(tik)|xi(tik−1),θ)

× π(xi(tik+1)|xi(tik), xij(tik) = zij(tik),θ), (3.5.5)

where x−ij(tik) is the complete data vector for the infectious state of household i, xi(ti),

without zij(tik) at time tik.

Then, when an individual joins the household, we are only interested in the state tran-

sition from time point tik to tik+1. We calculate the probability
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π(zij(tik)|θ,x−ij(tik)) ∝ π(xi(tik+1)|(xi(tik), xij(tik) = zij(tik)),θ).

(3.5.6)

Similarly, when an individual leaves the household, we are interested on the state tran-

sitions form time point tik−1 to tik. We calculate the probability

π(zij(tik)|θ,x−ij(tik)) ∝ π(xi(tik), xij(tik) = zij(tik)|(xi(tik−1)),θ).

(3.5.7)

Finally, update π(z|y,θ) using the Independence Sampler steps described below.

3.5.3 Independence Sampler

We outline the Independence Sampler steps for updating π(z|y,θ) as follows.

Step 0: Initialize the complete data x = (z,y) by using methods similar to those

described in Section 2.4.4. One of the methods suggested is to set xij(tik) = y∗ij(tik),

if y∗ij(tik) < 2, and set xij(tik) = 0 or choose xij(tik) uniformly from {0, 1}, if y∗ij(tik)

is equal to 2 (status unknown), 3 (individual joining the household), or 4 (individual

exiting the household), see (3.5.1). For r ≥ 0, set the current state of the Markov chain

X(r) =
(
xi(tik), xij(tik) = zij(tik)

)
(k = 1, 2, . . . , ni; j = 1, 2, . . . , h(tk)). Then, proceed

as follows:

Step 1: Propose to switch states, i.e., z′ij(tik) = 1−zij(tik), set xprop =
(
xi(tik), xij(tik) =

z′ij(tik)
)
.

(a) If y∗ij(tik) = 2, accept z′ij(tik) with probability ∆(zij(tik), z
′
ij(tik)) given by

min

{
1,
π(xi(tik), xij(tik) = z′ij(tik)|xi(tik−1),θ)π(xi(tik+1)|xi(tik), xij(tik) = z′ij(tik),θ)

π(xi(tik), xij(tik) = zij(tik)|xi(tik−1),θ)π(xi(tik+1)|xi(tik), xij(tik) = zij(tik),θ)

}
.

(3.5.8)
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(b) If y∗ij(tik) = 3, accept z′ij(tik) with probability

∆(zij(tik), z
′
ij(tik)) = min

{
1,
π(xi(tik+1)|xi(tik), xij(tik) = z′ij(tik),θ)

π(xi(tik+1)|xi(tik), xij(tik) = zij(tik),θ)

}
.

(3.5.9)

(c) If y∗ij(tik) = 4, accept z′ij(tik) with probability ∆(zij(tik), z
′
ij(tik))

∆(zij(tik), z
′
ij(tik)) = min

{
1,
π(xi(tik), xij(tik) = z′ij(tik), |xi(tik−1),θ)

π(xi(tik), xij(tik) = zij(tik)|xi(tik−1),θ)

}
.

(3.5.10)

Step 2 : For each acceptance probability, ∆(zij(tik), z
′
ij(tik)), calculated in Step 1 ,

(a) Draw u from U [0, 1].

(b) If u ≤ ∆(zij(tik), z
′
ij(tik)),

(i) accept z′ij(tik),

(ii) set X(r+1) = xprop

(c) If u > ∆(zij(tik), z
′
ij(tik)),

(i) do not accept z′ij(tik),

(ii) set X(r+1) = X(r)

Step 3: Repeat Step 1 and Step 2 for all i = 1, 2, . . . , N.

We summarize the Independence Sampler algorithm below:

Aggregate-based Data (ABD)

Updating π(z̃|y,θ) proceeds in similar way as described in Section 2.4.5.

For a given household with H distinct individuals observed across n observation time
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Algorithm 8 Open population: Independence Sampler

1. Intialize x(0).

2. Propose xprop =
(
xi(tik), xij(tik) = z′ij(tik)

)
3. Accept xprop with probability ∆(zij(tik), z

′
ij(tik))

• min

{
1,

π(xi(tik),xij(tik)=z′ij(tik)|xi(tik−1),θ)π(xi(tik+1)|xi(tik),xij(tik)=z′ij(tik),θ)

π(xi(tik),xij(tik)=zij(tik)|xi(tik−1),θ)π(xi(tik+1)|xi(tik),xij(tik)=zij(tik),θ)

}
• min

{
1,

π(xi(tik+1)|xi(tik),xij(tik)=z′ij(tik),θ)

π(xi(tik+1)|xi(tik),xij(tik)=zij(tik),θ)

}
, if y∗ij(tk) = 3.

• min

{
1,

π(xi(tik),xij(tik)=z′ij(tik),|xi(tik−1),θ)

π(xi(tik),xij(tik)=zij(tik)|xi(tik−1),θ)

}
, if y∗ij(tk) = 4.

4. Draw u from U [0, 1]

• If u ≤ ∆(zij(tik), z
′
ij(tik)), set X(r+1) = xprop

• Otherwise, set X(r+1) = X(r)

5. Repeat 2 and 3 for all i = 1, 2, . . . , N.
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points. Let s̃(tk) denote the number of individuals observed in the household out of

which ỹ(tk) infectives are observed given that in fact, there are actually x̃(tk)(≥ ỹ(tk))

infectives in the household of size h(tk) ≥ 1 at time tk, where s̃(tk) ≤ h(tk). When

we observe every member of the household at time tk, then the number of infectives

observed is the actual number of infectives in the household at that point in time, i.e.,

when s̃(tk) = h(tk), then ỹ(tk) = x̃(tk). However, when s̃(tk) < h(tk), we augment

ỹ(tk) with z(tk) = {0, 1, . . . , h(tk)}, the possible number of infectives in the household

at the kth observation time point. We then calculate π(ỹ|s̃, h(tk), z̃), the probability

of observing the observed number of infectives ỹ(tk) given everything else according to

(2.4.16) as follows

π(ỹ|s̃, h(tk), z̃) =

(
z̃

ỹ(tk)

)( h(tk)−z̃
s̃(tk)−ỹ(tk)

)(h(tk)
s̃(tk)

) . (3.5.11)

We now choose x̃(tk) from {0, 1, . . . , h(tk)} with probability P̃m/
∑h(tk)

j=0 P̃j , where P̃x is

given in (2.4.17) as

P̃x ∝
n∏
k=2

{
π(ỹ(tk)|s̃(tk), h(tk), x̃(tk))

× π
(
x̃(tk)|x̃(tk−1),θ

)
π
(
x̃(tk+1)|x̃(tk),θ

)}
. (3.5.12)

As noted earlier the data augmentation scheme adopted here is essentially same as that

described in Section 2.4.5 except that here we allow the household sizes to vary over

time. In what follows, we shall discuss spatial epidemic model within households and

also develop Bayesian inference approach for the estimation of the model parameters.
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3.6 Spatial SIS Epidemic Model

In this section, we give a brief overview on some recent developments on spatial epidemic

modelling and outline Bayesian inference framework for the parameters of the model.

3.6.1 Overview

Spatial epidemic models play a major role in accounting for spatial dependence in spatial

epidemic data. In general, a spatial dataset contains information on the individual char-

acteristics of interest as well as its location in space. A spatial dataset may be point-level

or geostatistical, areal unit or lattice data, or point process data, see, Cressie (1993).

Accounting for spatial dependence improves the estimates of the variations in estimates

and makes inference and prediction more powerful (Haran, 2011). A popular approach

to modelling spatial dependence is via Gaussian random fields (GRF) models which in-

clude Gaussian Processes (GP) and Gaussian Markov random fields (GMRF), see, for

example, Haran (2011). Typically, the spatial dependence is modelled via GP using

distance dependent parametric covariance function, Σ(Φ) say, when data are point-level.

Spatial proximity is then measured in terms of the distance between two locations, si

and sj , say. For areal data where data are regionally aggregated, spatial dependence

is modelled via GMRF using parameterised precision matrix (or inverse covariance ma-

trix). A distance measure that can be employed for an areal level data is intercentroid

distance between regions, but this may not be appropriate given that it is highly un-

likely that all the regions considered would be regular. The use of Gaussian Markov

random fields for areal data enables dependence to be specified in terms of adjacencies

and neighborhoods, thereby giving rise to computationally efficient sparse covariance

matrix. This is a major advantage of GMRF models. However, in this section we shall

focus on Gaussian processes (GP) in that the data we consider here are point-level.
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There are quite a few studies of spatial disease models which mainly assume that the

correlation between the realizations of a latent process is the function of their separa-

tion distance, see, for example, Diggle et al. (1998), Keeling et al. (2001), Savill et al.

(2006), Kypraios (2007), Jewell et al. (2009) and Deardon et al. (2010). Diggle et al.

(1998) used a stationary Gaussian process with continuous index set, D ⊂ R, to model

spatial variations on the incidence of Campylobacter infections in north Lancashire and

south Cumbria. The majority of the studies mentioned above focus mainly on farm

to farm or individual to individual infection spread on the 2001 UK FMD using var-

ious distant dependent transmission kernels. For example, Keeling et al. (2001) used

exponential-type transmission kernel. Jewell et al. (2009) used exponential-type kernel

for High Pathogenic Avian Influenza H5N1 (HPAI) data. A Geometric change-point

kernel employed by Deardon et al. (2010) satisfies

K(di,j ,Φ) =



k0 0 < dij < δ0

dbij δ0 < dij < δmax

0 otherwise,

(3.6.1)

where k0, δ0 and b are parameters with the maximum distance allowed, δmax, equal to

30km. Also, Diggle et al. (1998) used a powered exponential kernel of type

ρ(u) = exp{−(αu)δ} , (3.6.2)

where the parameter α > 0, δ > 0) are the parameters of the covariance function and u

measures the distance between regions.

All the approaches mentioned above are for SIR (susceptible → infected → recovered)

epidemics. We shall adapt an approach similar to that explored in Diggle et al. (1998)

motivated by a rich data set on the spread of tick-borne diseases among Tanzania cattle.

Modelling at an individual (cow) level gives rise to a household (farm) level.
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3.7 Model Setup

In this section, we outline the model setup with all the relevant assumptions made. First

we note that the model setup here is similar to that given in Section 3.4 except that

here we assume that the background risk of infection λ is a function of a realization A

of a Gaussian random field, G. A Gaussian random field G (or GRF) is a random field

or a stochastic process in an Euclidean space whose finite dimensional distribution has a

multivariate Gaussian distribution completely specified by expectations and covariances.

Let s1, s2, . . . , sN denote the spatial locations of N households (or farms). Let A(si) = Ai

denote the realization of the GRF corresponding to household i at location si (i =

1, 2, . . . , N), where the process {A(s) : s ∈ D ⊂ Rd} is a stationary Gaussian process

with mean zero and covariance matrix Σ(Φ). Note that the index set D is fixed and

continuous. Throughout, We have that

A|Φ ∼MVN (0,Σ(Φ)), (3.7.1)

where A =
(
A1, A− 2, . . . , AN

)T
, Φ = {κ, φ} are the parameters of the covariance func-

tion, 0 is a vector of zeros of length N and Σ(Φ) is an N × N symmetric covariance

matrix. It is well known in the literature that Σ(Φ) needs to be positive definite to avoid

distributional impropriety, see, for example, Cressie (1993) and Haran (2011). Conse-

quently, the covariance function Σ(Φ) is specified with a positive definite parametric

covariance function. We adapt an exponential covariance function similar to that in

Haran (2011) and is given by

(Σ(Φ))ij =


κ exp(−d(i,j)

φ ) if d(i, j) > 0,

κ+ ψ if d(i, j) = 0,

(3.7.2)

where d(i, j)(= ‖si − sj‖) is the Euclidean distance between locations si and sj , κ is
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a scaling parameter, φ is the range of spatial dependence and ψ is the ’nugget’ effect

which measures the variance of non-spatial error. We choose Euclidean distance as the

distance metric here in that there is no strong evidence against it, for example, there

are no natural barriers such as lakes (see, Figure 3.10.1, for the data we consider here).

Also, recent studies have shown that Euclidean distance works best when no major

geographical barriers exist, see, for example, Savill et al. (2006). Note that (3.7.2) is a

special case of the larger Matérn family which satisfies

Cov(d(i, j);ψ, κ, ν) =


κ

2ν−1Γ(ν)
(2ν1/2d(i, j)/φ)νKν(2ν1/2d(i, j)/φ) if d(i, j) > 0,

κ+ ψ if d(i, j) = 0,

(3.7.3)

where Kν(d(i, j)) is a modified Bessel function of order ν and where ν is a smoothness

parameter and the smoothness of the process increases with ν. One advantage of the

Matérn covariance kernel is that it allows for the estimation of the smoothness of the

process, but this can be problematic for spatial realizations emanating from processes

that are unlikely to be smooth. Studies have suggested the use of exponential covariance

functions for spatial data, see, for example, Haran (2011).

Now given the realizations from the zero-mean stationary Gaussian process A(s), we

define

λ(s) = exp{ln |µ|+ A(s)}, (3.7.4)

where λ(s) = (λ(s1), λ(s2), . . . , λ(sN )) are the spatially varying background risks of

infection for locations s = (s1, s2, . . . , sN ), and for some parameter µ.

Therefore, based upon the assumption that the data y are only partially observed and

depends upon the augmented data x, the complete data x depends upon A(s) through

λ(s). Figure 3.7.1 shows the schematic representation of the dependence of our model.
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Observe that we have assumed that local rate of infection β and the recovery rate γ are

not spatially varying, whereas background risk intensity varies.

β γλ

µ

A

κφ

x = (z, y)

y

Figure 3.7.1: Schematic representation of the spatial model with incomplete data.

In Section 3.8, we develop Bayesian inference approach for efficient estimation of the

key model parameters Φ = {κ, φ}, θ = {µ, β, γ} since λ(s) depends upon µ and A(s).

This approach shall be implemented in MCMC framework.

3.8 Bayesian Inference for Spatial SIS epidemic

model

In this section, we utilize the flexibility of MCMC to develop algorithms that sample

efficiently from the posterior distributions of interest and perform Bayesian inference on

the desired model parameters.

Besag and Green (1993) gives a good review of the applicability and flexibility of MCMC
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in spatial statistics. MCMC has been widely explored in disease mapping studies (exam-

ple, Utazi et al. (2018)) and in epidemic modelling ( for example, Gibson (1997), Diggle

et al. (1998) and Jewell et al. (2009)). This popularity of MCMC in spatial statistics is

due to its ability to efficiently sample from very complex models.

3.8.1 MCMC

As already mentioned above, let θ = {µ, β, γ} and Φ = {κ, φ}. Recall that we have a

point-level spatial epidemic data y which are only partially observed and that the im-

putation of an additional information z makes the intractable likelihood function π(y|θ)

to become tractable through π(x = (z,y)|θ). Therefore, we need to construct MCMC

algorithms to generate samples from the posterior distribution π(θ,Φ,A(s), s, z|y) by

sampling iteratively from

1. π(Φ|θ,A(s),x = (z,y)),

2. π(Ai|A−i,θ,Φ,x = (z,y)), where A−i denotes the vector A without its ith ele-

ment, Ai = A(si),

3. π(θ|Φ,A(s),x = (z,y)) and

4. π(z|θ,Φ,A(s),y).

Throughout we assume independent prior distributions.

We shall now exploit the conditional independence and mutual independence that exist

in the model as shown in Figure 3.7.1. Observe that setting A and µ equal to zero

reduces the model to the non-spatial model described in Figure 3.5.1. We now give the

MCMC updating schemes utilized in this section and proceed as follows.
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STEP 0: Initialize the values of θ = {µ, β, γ}, Φ = {κ, φ}, A and x. The starting

values of θ, Φ and A may be arbitrarily, albeit with sensible values, chosen in the range

specified by the prior distributions, π(θ) and π(Φ). The initial values of the augmented

data x are chosen to be consistent with the observed data y using any of the methods

described in the Step 0 of the Independence Sampler algorithm in Section 3.5.3 above.

Set θ(0) = {µ(0), β(0), γ(0)} and Φ(0) = {κ(0), φ(0)} and obtain Σ(0), A(0)(s) and λ(0)(s)

using (3.7.1), (3.7.2) and (3.7.4) respectively.

STEP 1: Updating π(Φ|θ,A(s),x = (z,y),y) is essentially updating π(Φ|A) since Φ

is independent of θ, x and y given A. Therefore, we have

π(Φ|A) ∝ π(A|Φ)π(Φ), (3.8.1)

where the likelihood function π(A|Φ) is a zero mean multivariate Gaussian distribution

with covariance matrix Σ(Φ), and π(Φ) is the joint prior distribution on the covariance

function parameters Φ = {κ, φ}. Then, it follows that

π(Φ|A) = (2π)−
N
2 det(Σ(Φ))−

1
2 exp

{
− 1

2
ATΣ(Φ)−1A

}
× π(Φ),

∝ det(Σ(Φ))−
1
2 exp

{
− 1

2
ATΣ(Φ)−1A

}
× π(Φ), (3.8.2)

where in principle, the prior distribution π(Φ) could be chosen to be any sensible dis-

tribution with respect to the range of the parameter values. Here, we assign Gamma

distributed prior distribution to both Φ. In other words, π(Φ) ∼ Gamma(AΦ, BΦ),

where AΦ and BΦ are hyperparameters.

We then update π(Φ|A) using Random walk Metropolis (RWM) algorithms as follows.

For r ≥ 0, do the following:
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(a) Propose Φ′ = {κ′, φ′} from a bivariate Gaussian proposal distribution centered at

the current value of Φ with a proposal covariance matrix ΣΦ, i.e., Φ′ ∼ N2(Φ,ΣΦ′).

(b) Accept Φ′ = {κ′, φ′} with probability

∆(Φ,Φ′) = min

{
1,
π(Φ′|A)

π(Φ|A)

}
,

= min

{
1,

det(Σ(Φ′))−
1
2 exp

{
− 1

2A
TΣ(Φ′)−1A

}
π(Φ′)

det(Σ(Φ))−
1
2 exp

{
− 1

2A
TΣ(Φ)−1A

}
π(Φ)

}
.

(3.8.3)

(c) Draw u from U [0, 1],

(d) If u ≤ ∆(Φ,Φ′),

(i) accept Φ′,

(ii) set Φ(r+1) = Φ′.

(e) If u > ∆(Φ,Φ′)

(i) do not accept Φ′,

(ii) set Φ(r+1) = Φ(r).

(f) If only samples from π(Φ|A) are desired, repeat steps (a) to (e) until samples of

the desired size are obtained, otherwise proceed to STEP 2:.

STEP 2: Updating π(Ai|A−i,θ,Φ,x,y) essentially means updating π(Ai|A−i,θ,Φ,x)

since A is independent of y given x. Then we have

π(Ai|A−i,θ,Φ,x) ∝ π(x|θ,A)π(Ai|A−i,Φ),

(3.8.4)
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since x is conditionally independent of Φ given A and Ai is independent of θ. Then by

mutually independent households assumption, we have

π(Ai|A−i,θ,Φ,x) ∝ π(xi|θ, Ai)π(Ai|A−i,Φ),

(3.8.5)

where the second term on the right hand side, π(Ai|A−i,Φ), is a univariate Gaussian

distribution which follows from the multivariate Gaussian distribution of π(A|Φ). We

derive the mean and variance of π(Ai|A−i,Φ) as follows. Let Λ = Σ(Φ)−1, then we have

π(A|Φ) ∝
∣∣Λ∣∣ 1

2 exp
(
− 1

2
ATΛA),

∝ exp

{
− 1

2

(
A2

1Λ11 + 2A1

N∑
j 6=1

AjΛij
)}
,

∝ exp

{
− Λ11

2

(
A2

1 +
2A1

∑N
j 6=1AjΛij

Λ11

)}
,

∝ exp

{
− Λ11

2

(
A2

1 + 2A1

N∑
j 6=1

AjΛij +

( N∑
j 6=1

AjΛij

)2)}
,

∝ exp

{
− Λ11

2

(
A1 +

∑N
j 6=1AjΛij

Λ11

)2}
,

⇒ Ai|A,Φ ∼ N
(
−
∑N

j 6=1AjΛij

Λii
,Λ−1

ii

)
. (3.8.6)

Then, (3.8.5) can also be expressed as

π(Ai|A−i,x,Φ,θ) ∝ π(xi|θ, Ai)π(Ai|A−i,Φ),

∝
{ ni∏
k=2

π
(
xi(tik)|xi(tik−1),θ, Ai

)}
,

× exp

{
− Λii

2

(
Ai +

∑N
j 6=1AjΛij

Λii

)2}
, (3.8.7)

where the first term on the right hand side (second line) is the likelihood function for

household i (i = 1, 2, . . . , N). We shall now update π(Ai|A−i,x,Φ,θ). Since the second

term of the second line of right hand side of (3.8.7) is a univariate Gaussian distribution,

it is straightforward to simulate Ais using Independence Sampler steps. On the other
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hand, the likelihood function, π(xi|θ, Ai), is a complicated function of the transition

probability matrix (Q-matrix) with no closed form. Therefore, we use Independence

sampling steps and obtain samples from π(Ai|A−i,Φ) whilst using Metropolis-Hastings

updates.

Independence Sampling steps

(a) Choose a new value A′i from the univariate Gaussian distribution Ai|A−i,Φ ∼

N (U/V, 1/V ), where U = −
∑N

j 6=1AjΛij and V = Λii, see, (3.8.6).

(b) Accept A′i with probability

∆(Ai, A
′
i) = min

{
1,
π(xi|θ, A′i)/π(A′i|A−i,Φ)

π(xi|θ, Ai)/π(Ai|A−i,Φ)

}
,

= min

{
1,
π(xi|θ, A′i)
π(xi|θ, Ai)

}
.

(3.8.8)

(c) Draw u from U [0, 1].

(d) If u ≤ ∆(Ai, A
′
i),

(i) accept A′i,

(ii) set A′ = (A1, A2, . . . , Ai−1, A
′
i, Ai+1, . . . , AN )T ,

(iii) set A(i+1) = A′.

(e) If u > ∆(Ai, A
′
i),

(i) do not accept A′i,

(ii) set A′ = (A1, A2, . . . , Ai−1, Ai, Ai+1, . . . , AN )T ,

(iii) set A(i+1) = A′.
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(f) Repeat steps (a) to (e) for all i = 1, 2, . . . , N .

(g) If only samples from π(Ai|A−i,x,Φ,θ) are desired, repeat steps (a) to (f) until

samples of the desired size are obtained, otherwise proceed to STEP 3 .

STEP 3: To update π(θ|x,y,A,Φ) essentially means updating π(θ|x,A), since θ is

independent of Φ given A, and conditionally independent of y given x. Then, we have

π(θ|x,A) ∝ π(x|A,θ)π(θ), (3.8.9)

since A is independent of θ. Then by independent household assumption, we have

π(θ|x,A) ∝
{ N∏
i=1

π(xi|Ai,θ)

}
π(θ), (3.8.10)

where π(θ) is the joint prior distribution on the parameters θ = (µ, β, γ) and Ai is the

Gaussian random fields realization corresponding to household i. Finally, like before, we

assume independent prior distributions so that Equation (3.8.10) can be written as

π(θ|x,A) ∝
N∏
i=1

{ ni∏
k=2

π(xi(tik)|xi(tik), Ai,θ)

}
× π(µ)π(β)π(γ), (3.8.11)

for N households each observed ni times, where in principle any sensible prior distri-

butions with respect to the valid range of the parameter values could be assigned to

π(µ), π(β) and π(γ). In particular, we assign Gamma distributed priors to the pa-

rameters µ, β and γ, so that π(µ) ∼ Gamma(Aµ, Bµ), π(β) ∼ Gamma(Aβ, Bβ) and

π(γ) ∼ Gamma(Aγ , Bγ), where Aµ, Bµ, Aβ, Bβ, Aγ and Bγ are hyperparameters. It

is now straightforward to update π(θ|x,A) via the Random walk Metropolis (RWM)

algorithms with multivariate Gaussian proposal density given in Algorithm 4. Proceed

to STEP 4 .

STEP 4: Update π(z|y,θ,Φ,A), where z is the additional imputed information which

together with the partially observed data y gives the complete or the augmented data
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x. Here, we essentially update π(x = (z,y)|y,θ,Φ,A) = π(x|y,θ,A) due to conditional

independence of x on Φ. Therefore, we have

π(x|y,θ,A) ∝ π(y|x)π(x|θ,A), (3.8.12)

since y is conditionally independent of θ and A given x. Then by mutually independent

households assumption, the probability of observing the augmented data given θ, y and

A satisfies

π(x = (z,y)|θ,y,A) ∝
N∏
i=1

ni∏
k=2

{
π
(
yi(tik)|xi(tik)

)
× π

(
xi(tik)|xi(tik−1), Ai,θ

)
π
(
xi(tik+1)|xi(tik), Ai,θ

)}
.

(3.8.13)

Now using the Independence Sampler steps outlined in Section 3.5.3 and summarized in

Algorithm 8, update

π(z|y,θ,Φ,A) ∝
N∏
i=1

ni∏
k=2

{
π(xi(tik), xij(tik) = zij(tik)|xi(tik−1), Ai,θ)

× π(xi(tik+1)|xi(tik), xij(tik) = zij(tik), Ai,θ)

}
,

(3.8.14)

and store the sampled z values if desired. Set x = (z′,y), where z′ are the updated

auxiliary data z.

Summary:

From the foregoing, we see that one complete MCMC cycle is to go over the updating

steps listed above from STEP 1 to STEP 4 after choosing the initial values for the

parameters (θ,Φ), the Gaussian random fields realizations (A) and the augmented data

(x = (z,y)). We now summarize the MCMC updating schemes and steps described

above in Algorithm 9.
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Algorithm 9 MCMC algorithms for Spatial epidemic models

1. Intialize Φ, θ, A, x = (z,y).

2. Update Φ|A using RWM, then

(a) propose Φ′ from a multivariate Gaussian proposal distribution,

(b) accept Φ′ with probability ∆(Φ,Φ′) = min
{

1, π(Φ′|A)/π(Φ|A)
}
.

3. Update π(Ai|A−i,θ,Φ,x) using

(a) Independence Sampler,

(b) draw A′i from Ai|A−i,Φ ∼ N (U/V, 1/V ), where U =

−
∑N

j 6=1AjΛij and V = Λii, see, (3.8.6).

(c) Accept A′i with probability min
{

1, π(xi|θ, A′i)/π(xi|θ, Ai)
}
.

(d) Repeat steps (a) to (c) for all i = 1, 2, . . . , N .

4. Update π(θ|x,A) using RWM,

(a) Propose θ′ = (µ′, β′, γ′) from θ′ ∼MVN (θ,Σ′θ).

(b) Accept the proposed value with probability ∆(θ,θ′) =

min
{

1, π(θ′|x,A)/π(θ|x,A)
}
.

5. Update π(z|y,θ,A) ≡ π(x|y,θ,A) using the Independence Sam-

pler steps outlined in Section and summarized in Algorithm 8.

6. Repeat steps (2) to (5) until samples of the desired size are obtained.
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We incorporate steps to ensure that the MCMC algorithms are efficiently implemented.

For all the Random walk Metropolis updates, we use the adaptive RWM strategies out-

lined in Section 2.4.2, which includes a pilot run and then using the posterior variance

from the pilot run (which yields an acceptance rate close to the well known optimal

acceptance rate of 23.4%) as the proposal variance for the main MCMC runs. This is

called optimal shaping as it helps the algorithm to quickly learn the shape of the pos-

terior distribution. Another MCMC efficiency improvement strategy is optimal scaling

which scales the proposal variance by the scalar c, where an optimal value of 2.382/d is

suggested in the literature for c, see, for example, Roberts and Rosenthal (2001), for a

d-dimensional set of parameters.

In what follows, we shall illustrate the implementation of our MCMC algorithms using

simulated data set and later applied to a real life data.

3.9 Simulated Data Example

In this section, we use simulated data sets to demonstrate the applicability of the MCMC

algorithms developed in this chapter for both the non-spatial SIS open population model

and the spatial SIS epidemic model. First, we outline the methodology employed in

the simulation and later discuss the implementation of the MCMC algorithms to the

simulated data sets as well as the results obtained.

Method:

We shall first describe the methodology employed in this example.

In both cases, we used same household structure and same time data. Also we used the

same local rate of infection, β = 0.40, and same recovery rate, γ = 0.55, throughout

as these are independent of the spatial locations of the households. Furthermore, we
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simulate an SIS epidemic individual-based data (IBD) for N = 100 households with

household sizes ranging from 1 to 5 with majority of the households sized 3 and above.

The time data was such that the time difference range is 1 − 2 weeks, with minimum

(maximum) number of observations equal to 2 (8) visits. For the non-spatial model

in which the background risk of infection is assumed to be independent of the spatial

locations of the households, we set λ = 0.65 infections per week on average.

For the spatial SIS epidemic model, we first simulate the coordinates corresponding

to s1, . . . , s100 spatial locations of the households from the position (X,Y ), such that

(X,Y) is bivariate Gaussian distributed with mean µx,y and covariance matrix Σx,y,

where µx,y = (0, 0)T and Σx,y is chosen to be

2 0

0 4

 .

Figure 3.9.1 shows the distribution of the household locations. We set κ = µ = 1 and

induce spatial dependence by setting φ = 10. Recall that φ is the range of spatial de-

pendence, therefore spatial dependence decays as φ gets smaller.
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Figure 3.9.1: Spatial distribution of the N = 100 simulated households with each

represented by a red shape.

Now we calculate the Euclidean distance matrix, D = (‖dij‖), where

‖dij‖ =
√

(xxi − xxj)
2 + (yyi − yyj)

2, (3.9.1)

and obtain Σ(Φ) = (σi,j), where σi,i = σ2
i and

σi,j = exp(−d(i, j)/10). (3.9.2)

Gaussian random fields realizations, A = (A1, A2, . . . , A100)T , for the N = 100 house-

holds are then simulated from A ∼ MVN (0,Σ(Φ)). Finally, the background risks of

infection λ(s) = (λ(s1), . . . , λ(s100)) are obtained from

λ(s) = exp(A(s)). (3.9.3)

MCMC Implementation and Results:

We applied MCMC updating schemes as described in Algorithm 9. We used indepen-
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dent gamma distributed priors throughout. In particular, we used G(1, 1) for each of

λ, β, γ, µ, κ and φ.

For the Random walk Metropolis updates, we used the adaptive RWM strategies for

optimality. In particular, we used the covariance matrix obtained from the posterior dis-

tribution after 3 consecutive pilot runs of 1×103 iterations each, as the proposal variance

for the main MCMC run. The main MCMC was run for 2 × 104 iterations after which

we ignored the first 4 × 103 iterations representing 20% of the entire MCMC samples,

as burn-in. Therefore, for future analysis, we used only used the GwM algorithms for

the updates of π(Ai|A−i,θ,Φ,x). Throughout, the main MCMC diagnostic tool used

is the traceplot of posterior density. Autocorrelation function (ACF) plots were used to

examine the amount of correlation between the MCMC samples. Acceptance rates were

close to the optimal value of 0.234.

For the non-spatial model, posterior mean (standard deviation) for λ, β and γ are

0.62(0.14), 0.38(0.08) and 0.65(0.10), respectively. These values are fairly close to the

true parameter values of (0.65, 0.4, 0.55) for (λ, β, γ) indicating that the MCMC algo-

rithms performing well. Figure 3.9.2 are the traceplots with the ACF plots from the

non-spatial open population model. The traceplots and the ACF plots also show that

the MCMC is mixing well.
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Figure 3.9.2: Traceplots (left) and ACF plots (right) for the non-spatial simulated

open population model obtained after discarding the first 4 × 103 iterations as

burn-in out of 2× 104 iterations. Each of the red lines represents the mean of the

corresponding parameter.
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Figure 3.9.3: Posterior density plots of the spatial model with true (µ, β, γ, κ, φ) =

(1, 0.4, 0.55, 1, 10). The vertical lines are the means.
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Spatial model Non-spatial

Parameter Mean SD ESS Mean SD ESS

λ - - - 0.615 0.142 1146

β 0.303 0.083 68 0.383 0.082 1277

γ 0.341 0.048 191 0.647 0.098 1129

µ 1.821 0.537 32 - - -

κ 1.590 1.104 74 - - -

φ 10.86 3.080 550 - - -

Table 3.9.1: Posterior Means, Standard Deviations (SD) and Effective Sample

Sizes (ESS) for the Simulated data example for both spatial and non-spatial open

population data obtained from the last 1.6× 104 samples.

In what follows, we shall now demonstrate the implementation of our algorithms to a

real life data set.

3.10 Application to the Tanzania Data

The data on the spread of Theileria Parva, a tick-borne disease, among Tanzania cattle

population contains information on five strains of the disease namely, T.parva, T.mutans,

A.marginale, B.bigemina, B.bovis. The data was collected over 11 observation time

points with minimum (maximum) of 1(11) visit(s) with majority of the farms visited 3

times.

A total of 380 animals from 156 farms were observed across the 4 regions visited with

minimum (maximum) farm size equal to 1(8). The majority of farms contained at most
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4 animals. Farm locations were geocoded thus making available the spatial locations

of the farms in terms of their longitude and latitude. The data is such that for every

given farm, animals exit and join the farm at various point in time. The reasons for the

varying population sizes are not clear as there are no information suggesting that in the

data. However, possible causes of the varying population sizes over time include death

of an animal naturally or disease related or an animal being sold, birth or acquisition

of a new animal. The time data are such that the time difference between observations

range from 3to11 weeks. Our purpose here is not to analyze the entire data on the five

strains of Theileria Parva, rather our aim is to illustrate how our MCMC algorithms

could be applied in a real life situation. Figure 3.10.1 (top) displays the map of Tanzania

showing the locations of the sampled farms in the four regions visited namely, Tanga,

Korogwe, Kibaya and Mtindi. It is easy to see that the farms in Tanga (Figure 3.10.1,

bottom) appear to be much closer together than the farms in the other regions. Also,

unlike the other regions, there are no major geographical barriers such as lakes, very

high mountains, etc, between the farms in Tanga region. This suggests that Euclidean

distance is appropriate as the distance metric for the covariance function. Based upon

the above reasons, we choose the farms in Tanga region as the case study farms here.
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Figure 3.10.1: Map of Tanga (top), a town in Tanzania, and spatial distribution of

the 62 observed farms in Tanga (bottom). Each red point represents an observed

farm.
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There are 64 farms with 174 (45.8% of the entire population) animals in total in all

the farms visited in Tanga region with farm sizes range of 1 − 8 animal(s) per farm.

Majority of the farms in Tanga region contained between 1 and 3 animals. After data

cleaning, we dropped data on two farms and proceed with the remaining N = 62 farms

for the MCMC implementation. The two farms dropped were only visited once each and

there is no contribution to the likelihood function by a single time point observation.

We focus our attention on T.parva as the disease of primary interest. Next, we applied

the data imputation strategy outlined in Section 3.5.1 using the appropriate data codes

as specified in (3.5.1). In particular, we used 1 and 0 to denote presence (or true) and

absence (or false) of the disease, respectively. Unknown disease statuses were coded 2.

The number of imputed time points ranges from 2 to 9 with majority of the imputed

time points less than 4. Given that the individual-based data are available, we analyse

the data using the IBD framework.

Results:

Throughout, we used independent gamma distributed priors G(1, 1) for each of the pa-

rameters (λ, β, γ, κ, φ). Thus we use the same priors as for the simulated data. We adopt

the optimal scaling and optimal strategy to optimize our MCMC algorithms. For both

the non-spatial and spatial case, the pilot runs informed us of good starting values for

the main MCMC runs. Also, the pilot runs of 1× 103 iterations each from 3 consecutive

runs, informed us of the shape of the joint posterior distribution. Therefore, the variance

of the posterior distribution from the pilot runs served as the proposal variance for the

main MCMC runs. The algorithms were run for 2×104 further iterations and burn-in of

4×103 was taken. As before, the main diagnoistic tool employed for convergence checks

is the traceplot, while the ACF is employed to check for autocorrelation between the

sampled values. Figure 3.10.2 shows the traceplots and density plots for the non-spatial

Tanzania data where we set both A and µ equal to zero and assume that λ is indepen-
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dent of the households locations in space. The traceplots show evidence of nice mixing

MCMC algorithms. The density plots show that marginal posteriors of both λ and γ are

approximately symmetric, while the marginal posterior of β is asymmetric. The cause

of this behavior in β is not clear at this stage, but the effect of large number of farms

having farm sizes of 3 and below can not be completely ruled out, see, for example, Blake

et al. (2009).

Figure 3.10.2: Traceplots and density plots for the non-spatial model parameters

of the Tanzania data application.

Table 3.10.1 shows the posterior mean, standard deviations and effective sample

sizes of the parameters from both spatial and non-spatial models. The values on the last

columns of the table for the non-spatial model further support the observations from the

trace and density plots. In particular, β has the least effective sample size albeit with

moderate standard deviation.
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Spatial model Non-spatial

Parameter Mean SD ESS Mean SD ESS

λ - - - 0.025 0.007 2283

β 0.033 0.011 318 0.041 0.022 1310

γ 0.074 0.011 563 0.124 0.027 2018

µ 0.015 0.003 242 - - -

κ 0.136 0.122 95 - - -

φ 1.096 0.318 157 - - -

Table 3.10.1: Posterior Means, Standard Deviations (SD) and Effective Sample

Sizes (ESS) for the Tanzania data application for both spatial and non-spatial

open population data based upon the last 1.6× 104 samples.

We give the interpolation plots of the estimated Gaussian random fields realizations (a)

with the corresponding spatially varying global risk of infection, λ. The plots show

spatial variation in the data with high risk areas located near the river (see also, Figure

3.10.1).

Furthermore, Figure 3.10.4 shows paired scatter plots for correlation, density and

contours for the non-spatial data. This shows a low negative correlation between the

local and global rates of infection. This suggests that high global force of infection does

not imply high within farm disease transmission. As noted earlier, we would expect the

reverse to be the case if there are more farms with higher number of animals. However,

the correlation between the recovery rate γ and the global rate of infection γ is somewhat

high suggesting that most recoveries are made when disease is contacted globally.
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Figure 3.10.3: (a) Predicted Gaussian random fields realizations (Â) and (b) pre-

dicted background risks of infection (λ̂ = µ̂ exp(Â)) for the 62 farms observed in

Tanga,Tanzania.
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Figure 3.10.4: Paired scatter plots for the non-spatial model of the Tanzania

data application.

Figure 3.10.5 shows paired scatter plots for correlation, density and contours for the

spatial data. The density plots show that except κ, the other parameters have symmetric

posterior distributions. Also, there is widespread evidence of very low or no correlation

between the infection rate parameters and the covariance function parameters.
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Figure 3.10.5: Paired scatter plots for the spatial model of the Tanzania data

application.

3.11 Discussions

In this chapter, we have studied open population stochastic SIS epidemic model and

spatial SIS epidemic model among a community of households.

We began with the non-spatial open population model which assumes that the infection

rates, λ > 0 and β > 0, as well as the recovery rate, γ > 0, are independent of the

spatial locations of the individual’s household. This assumption simplifies the model

and enables more straightforward implementation of the MCMC. Another assumption

of the model is that the population size varies over time as individuals are allowed to join

and exit the households at points in time. This later assumption adds to the complexity
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of the model as it requires the computation of the infinitesimal transition rate matrix

(G-matrix) each time the household size changes as a result of an individual joining or

exiting a given household. A key computational burden is having to impute the state of

the population when animals arrive and depart.

In Section 3.6 we studied a spatial SIS epidemic model which allows the background

risk of infection λ to depend on the spatial locations of the individual’s household whilst

the local infection rate β and the recovery rate γ are space independent. In both the

non-spatial and spatial stochastic SIS epidemic models, the overarching aim was to infer

the model parameters using a Bayesian inference approach implemented in an MCMC

framework. We developed easy-to-implement and efficient MCMC algorithms for estima-

tion of the model parameters and these were successfully implemented using a simulated

data set and effectively applied to a real life data set of a tick-borne diseases among

Tanzania cattle.

Results from the non-spatial open population model show that our algorithms work well

in terms of closeness of posterior parameter estimates (means) to the true parameter

values.

On the other hand, results from the spatial model, e.g., Figure 3.9.3, show that the

spatial model performed comparatively poorly especially in the estimation of µ and κ,

probably due to the problem of indentifiability. Further investigation is therefore re-

quired with the aim of fine-tuning the algorithms for optimal performance. However,

the results obtained from the real life data example shows that our algorithms work well.

There are two key contributions of this chapter: first, MCMC algorithms which exploit

extensive data augmentation schema for the estimation of the parameters of an open

population household SIS epidemics were developed and successfully applied to both

simulated data sets and real life data. Second, easy-to-implement MCMC algorithms
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were developed for the estimation of spatial SIS epidemic model parameters. The flexi-

bility of MCMC is fully utilized in this context given the complexity of spatial models,

in general. The algorithms are found to work well upon application to both simulated

data and real life data sets. We note that the MCMC algorithms developed here can

easily be applied to a wide range of problems.

141



Chapter 4

Multiple Strains Model With

Interactions

4.1 Motivation

In this Chapter, we introduce stochastic household-based SIS epidemic models for coin-

fecting diseases. These are an extension of the infectious disease model introduced in

Chapter 2 for a single disease (d = 1). The models we develop here are generic and

suitable for any number of diseases, d, but we will focus on the case d = 2 diseases. We

begin by describing the two most prevalent forms of household-based SIS epidemic data

for interacting diseases namely, the individual-based data (IBD) and the aggregate-based

data (ABD). The ultimate aim is to develop Bayesian inferential tools in order to analyse

such data and infer parameters. Markov Chain Monte Carlo (MCMC) algorithms are

developed, tested with a simulated data and applied to a real life data set on tick-borne

diseases among Tanzania cattle.

Coinfection occurs when a susceptible host becomes infected with two or more strains

of a given pathogen (or with two or more pathogens each carrying different diseases.)
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An individual host may acquire coinfection by being infected sequentially or simulta-

neously with different strains (or diseases). A major concern with disease coinfection

is that coinfecting pathogens or strains usually interact with one another (Balmer and

Tanner, 2011). Interactions within coinfection may lead to an increased susceptibility

of the host to other infections due to waning immunity or decreased susceptibility of

the host to similar strains due to cross-immunity. For example, infection with a strain

of dengue fever has been found to enhance the transmission of another strain (see, for

example, Ferguson et al. (1999)) and infection with HIV suppresses the immune system

of the host making it more vulnerable for Tuberculosis transmission (see, for example,

Newman and Ferrario (2013)). On the other hand, studies have observed the existence

of cross-immunity between different subtypes of Influenza (see, for example, Epstein

(2006)), with strong cross-protection existing among variants of antigenic drifts evolved

from the same influenza subtype, see, for example, Barry et al. (2008). Understanding

the transmission dynamics of disease coinfection is key to finding effective prophylactic

and/or treatment measures to combat the diseases in an event of coepidemics, see, for

example, Hoti et al. (2009) and Lipsitch (1997), for the use of vaccination in the pre-

vention of Streptococcus pneumoniae and coinfection of Streptococcus pneumoniae and

Haemophilus influnzae, respectively. Lipsitch (1997) observes that vaccination could of-

fer full, partial or cross immunity to certain serotypes (strains) of the diseases. However,

a serotype-targeted vaccine could give rise to an increased carriage of other out-competed

non-target serotypes. This raises the question of how well diseases coinfection dynamics

is understood.

There have been a few studies in the area of disease coinfection, see, for example, Slater

et al. (2013) for coinfection of Malaria and Lymphatic Filariasis, Gao et al. (2016) for the

coinfection of Chlamydia trachomatis and pneumococcus, Getahun et al. (2010) for coin-

fection of HIV and Tuberculosis, Sharp et al. (1997) for co-infection of multiple strains
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of Influenza A viruses, and Neal and Huang (2015) for coinfection of four strains (HPV6,

HPV11, HPV16, HPV18) of Human Papillomavirus (HPV) among a community of men

who have sex with men (MSM), in addition to those already mentioned above. How-

ever, of all the studies mentioned above only Gao et al. (2016), Lipsitch (1997) and Neal

and Huang (2015) studied disease coinfection within the SIS (susceptible → infective →

susceptible) epidemics contexts, with only Neal and Huang (2015) employing Bayesian

inference approach to estimate the parameters of the SIS model.

The model considered in this chapter is similar to those in Gao et al. (2016), Lipsitch

(1997) and Neal and Huang (2015), but a number of differences exist. First whilst the

model studied by Lipsitch (1997) and Neal and Huang (2015) assume that infected indi-

viduals recover at a constant rate which is serotype independent, the model we consider

here assumes that the recovery rates of individuals are serotype dependent. This as-

sumption makes sense in that it is unlikely that the infectivities of coinfecting diseases

would be same. Also, the model by Gao et al. (2016) though assuming serotype de-

pendent recovery rates, assumes that there is no simultaneous recovery of an individual

infected with multiple strains, while the model we consider here allows individuals to

recover simultaneously from multiple strains. Again, this assumption makes sense in

that a successful treatment for a given strain may result to a simultaneous recovery from

an immunologically similar strain.

Motivated by a rich set of tick-borne diseases data among Tanzanian cattle, which con-

tains five interacting strains (T.parva, T.mutans, A.marginale, B.bigemina, B.bovis) of

Theileria Parva, we seek to develop robust Bayesian inference approach for the analysis

of the data. Note that we have already applied this data for a single disease case in

Chapter 3. Ticks are known to be the most popular arthropods vector of both human

and animal diseases with high rates of pathogenic coinfection which poses a global public

health concern about the consequences of possible cotransmission to both human and
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animal health (Moutailler et al., 2016). See, for example, Lou et al. (2017), Hersh et al.

(2014), and Moutailler et al. (2016) for more on disease coinfection from tick-borne dis-

eases.

We structure the remainder of this chapter as follows: data description is given in Section

4.2 for the two most prevalent household-based SIS epidemic data- the individual-based

data (IBD) and aggregate-based data (ABD). We give the generic model setup including

the construction of the various infinitesimal transition rate matrices (G-matrices) and

calculation of the corresponding transition probability matrices (Q-matrices) in Section

4.3. We assume that the data are fully observed at a set of discrete time points and then

relax this to allow the data to be only partially observed at the observation time points.

In Section 4.4, we give the procedures for the implementation of the MCMC algorithms

with respect to IBD and ABD. First, we assume that data are fully observed and develop

straightforward MCMC algorithms for the analyses of the fully observed household SIS

data and later extend this to when data are only partially observed. This involves the

development of an extensive data augmentation scheme Tanner and Wong (1987).

Furthermore, in Section 4.5, we demonstrate how our approach is implemented using a

simulated data set. In Section 4.6, the model and the MCMC algorithms developed are

applied to a real-life tick-borne disease data. Finally, we give concluding remarks and

discussions in Section 4.7.

4.2 Data Description

In this section, we describe the two forms of household-based SIS coepidemic data: the

individual-based data (IBD) and the aggregate-based data (ABD).
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4.2.1 Individual-based Data (IBD)

Given a household of size h ≥ 1, the individual-based interacting diseases data holds

information about the infectious status of each individual in the household with respect

to d > 1 diseases. As in Section 2.2, we encode a susceptible 0 and an infective 1 so

that each individual in a given household can belong to any of the 2d possible states at

a given point in time. Therefore, there are 2d×h possible states to which a household of

size h can belong to at a point in time. We shall focus on the two-disease case (d = 2),

so that there are 4 possible states {(0, 0), (0, 1), (1, 0), (1, 1)} and 4h states to which an

individual and a households of size h can belong to at a given point in time, respectively.

For j = 1, . . . , h, and for l = 1, 2, let xjl(t) ∈ {0, 1} denote the infectious status of indi-

vidual j for disease l. Also, let xj(t) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)} denote the infectious

statuses of individual j for the 2 diseases, where

xj(t) =



(0, 0) if susceptible to both diseases at time t,

(0, 1) if susceptible to disease 1 and infected with disease 2 at time t,

(1, 0) if infected with disease 1 and susceptible to disease 2 at time t,

(1, 1) if coinfected with both diseases 1 and 2 at time t.

(4.2.1)

Then, the data x(t) =
(
x1(t),x2(t), . . . ,xh(t)

)
is the infectious state of the household at

time t.

Now for i = 1, 2, . . . , N , let hi ≥ 1 and ni denote the size and number of observation

time points of household i, respectively. Also, for k = 0, 1, 2, . . . , ni, let tik denote the

kth observation time point of household i. Then, for j = 1, 2, . . . , hi, it follows that

• ti =
(
ti0, ti1, ti2, . . . , tini

)
are the observation times of household i, where ti0 =

t0 = 0 (by independent households assumption with no time varying factors).
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• xijl(tik) ∈ {0, 1} is the infectious status of the jth individual in household i for the

lth disease at time point tik.

• xij(tik) ∈ {0, 1}2 is the vector of infectious status of the jth individual in household

i for d = 2 diseases at time point tik.

• xi(tik) ∈ {0, 1}2×h is the infectious state of household i at time point tik.

• xi(ti) =
(
xi(ti1),xi(ti2), . . . ,xi(tini)

)
are the ith infectious statuses of household i

at the set of time points, ti.

Therefore, x(t) =
(
x1(t1),x2(t2), . . . ,xN (tN )

)
is the full IBD for N independent house-

holds. When we observe every individual at every given observation time point, we say

that x(t) is completely observed and there are no missing values.

Usually, we only have partial observations of the data at the observation time points

which leads to incomplete (partially observed) data. Let yij(tik) =
(
yij1(tik), yij2(tik)

)
denote the partially observed infectious status of the jth individual of household i for

diseases 1 and 2 at time point tik. We assume that when an individual is unobserved at

a given time point, their infectious status for all diseases is unknown. Here, we assume

that an individual is missing completely at random (MCAR) (see, Rubin (1987)). Then

yij(tik) =


xij(tik) if observed,

(2, 2) if unobserved.

(4.2.2)

Therefore, we have that

• yi(tik) =
(
yi1(tik),yi2(tik), . . . ,yih(tik)

)
is the infectious state of household i at

time point tik.

• yi(ti) =
(
yi(ti1),yi(ti2), . . . ,yi(tini)

)
are the ith household partially observed

individual-based interacting diseases data over the set of time points, ti.
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Then, y(t) =
(
y1(t1),y2(t2), . . . ,yN (tN )

)
is the full partially observed individual-based

interacting diseases data for N households over the set of observation time points, t.

4.2.2 Aggregate-based Interacting Diseases Data (ABD)

As in Chapter 2, we consider cases where the disease status of individuals are aggregated

at household level. That is, for d = 2, we know how many individuals in each of the

categories {(0, 0), (0, 1), (1, 0), (1, 1)} at a given timepoint. We call this the aggregate-

based data (ABD).

For a household of size h at a given point in time, let

• n0 denote the number of individuals not infected by any of the diseases,

• n1 denote the number of individuals infected with disease 1 only,

• n2 denote the number of individuals infected with disease 2 only,

• n12 denote the number of individuals infected with both diseases 1 and 2,

where n0 + n1 + n2 + n12 = h. Then x̃(t) =
(
x̃1(t), x̃2(t), x̃3(t), x̃4(t)

)
= (n0, n1, n2, n12)

is the state of a given household at time t. In other words, individuals of the household

are divided into four categories (category 1 for no infection, category 2 for infection with

disease 1, category 3 for infection with disease 2, and category 4 for coinfection with

both diseases) at a given point in time. Hence, x̃j(t) is the number of individuals in

category j at time t (j = 1, 2, 3, 4). Then for i = 1, 2, . . . , N and for k = 1, 2, . . . , ni

• x̃ij(tik) are the number of individuals of household i in category j,

• x̃i(tik) =
(
x̃i1(tik), x̃i2(tik), x̃i3(tik), x̃i4(tik)

)
is the state of household i at time tik,

• x̃i(ti) =
(
x̃i(ti1), x̃i(ti2), . . . , x̃i(tini)

)
are the SIS aggregated disease coinfection

data of household i at the sets of time ti.
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Therefore, the data x̃(t) =
(
x̃1(t1), x̃2(t2), . . . , x̃N (tN )

)
are the full aggregate-base SIS

coinfection data for N households at time t. When every individual is observed, x̃ is said

to be complete. However, in practice, this is rarely the case as most infectious disease

data are only partially observed or incomplete. When only a subset of the households is

observed, we let

• ỹij(tik) are the observed number of individuals of household i in category j,

• ỹi(tik) =
(
ỹi1(tik), ỹi2(tik), ỹi3(tik), ỹi4(tik)

)
is the observed state of household i at

time tik,

• ỹi(ti) =
(
ỹi(ti1), ỹi(ti2), . . . , ỹi(tini)

)
are the observed SIS aggregated disease coin-

fection data of household i at the sets of time ti,

• ỹ(t) =
(
ỹ1(t1), ỹ2(t2), . . . , ỹN (tN )

)
is the full partially observed ABD for N

households over the set of time points data t,

where
∑4

j=1 ỹj(t) = ỹ1(t) + ỹ2(t) + ỹ3(t) + ỹ4(t) ≤ h. When
∑4

j=1 ỹj(t) < h, we say that

the data ỹ is incomplete. In Section 4.4.4, we discuss in details the implementation of

data augmentation schema for the analysis of a partially observed aggregated SIS disease

coinfection data.

4.3 Generic Model Setup

In this Section, we provide the details of the model construction including the infinitesi-

mal rate matrices (G-matrices) and the calculation of the corresponding transition prob-

ability matrices (Q-matrices) for both IBD and ABD. First, we give the generic model

setup and later describe separately the construction of the G-matrices for IBD and ABD

beginning with IBD.

Given a population of M individuals endemic with two disease strains (disease 1 and
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disease 2). Let the population be divided into N non-overlapping households with Nh

households of size h ≥ 1 such that
∑H

h=1 hNh = M and
∑H

h=1Nh = N , where H is the

maximum household size. Individuals in each household are further divided into one

of four (4) mutually exclusive epidemiological sub-classes, namely, state S ( susceptible

to both diseases or no infection), state I1 (infection with disease 1), state I2 (infection

with disease 2), and state I12 (coinfection with both diseases). For l = 1, 2, we make the

following assumptions

• the households are mutually independent,

• there exists a disease-specific global force of infection λl > 0,

• events of infection and recovery can happen sequentially or simultaneously,

• within-household infection transmission happens at a disease-specific rate βl > 0,

• recovery from disease happen at disease-specific a rate γl > 0,

• within-household simultaneous infection with both diseases happens at rate β12 >

0,

• simultaneous global infection with both diseases happens at rate λ12 > 0,

• simultaneous recovery from both diseases happens at rate γ12 > 0,

• recovery from disease does not confer immunity so a recovered individual immedi-

ately returns to the susceptible state and may be reinfected. all contacts are made

according to mutually independent Poisson point processes.

In addition, let φ12 = φ21 = φ denote the relative risk of an individual acquiring diseases

1 and 2 sequentially compared to an individual who is susceptible to both diseases. The

parameter φ can take the following values: φ = 0 (no coinfection), φ = 1 (the two
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diseases behave independently), φ > 1 (increased risk), and φ < 1 (reduced risk). Figure

4.3.1 shows a schematic representation of the stochastic SIS disease confection model.

I12 SS

I1

I2

γ12λ12 + β12c12

γ2 (λ2 + β2c2)φ

γ1(λ1 + β1c1)φ

γ1

γ2

λ1 + β1c1

λ2 + β2c2

Figure 4.3.1: Schematic representation of the two diseases SIS epidemic model

with interaction.S = susceptible; I1 = infected with diseases 1; I2 = infected with

disease 2; I12 = infected with both diseases, where cl is the number of individuals

infected with strain l. Note that the transition rates given in this diagram are for

the IBD case with c1 = |I1|+ |I12|, c2 = |I2|+ |I12| and c12 = |I12|.

G-matrix for diseases coinfection IBD

Given a household of size h, let ujl ∈ {0, 1} denote the infectious status of individual

j for disease l, then uj ∈ {0, 1}2 are the infectious statuses of individual j for d = 2

diseases at a point in time (l = 1, 2; j = 1, 2, . . . , h). Therefore, uj =
(
uj1, uj2

)′
and

u(t) =
(
u1,u2, . . . ,uh

)′
, where u(t) is the infectious status of the household at time t.

Let ejl denote a vector of length 2×h in which only the lth element of its jth component

(of length d = 2) is equal to 1 and the rest are zeros. Then, we have the following

transitions
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Infection:

1. For l = 1, 2, if ujl = 0

• the household state transition u → u + ejl corresponds to the infection of

the jth individual with disease l.

2. For l, l′ = 1, 2 (l 6= l′), if ujl = 0 and ujl′ = 1,

• the household transition u→ u + ejl corresponds to the infection of the jth

individual by disease l having been infected with disease l′ at present.

3. For l, l′ = 1, 2 (l 6= l′), if ujl = 0 and ujl′ = 0,

• the household transition u→ u + (ejl + ejl′) corresponds to the infection of

the jth individual with both diseases l and l′ simultaneously.

Recovery:

1. For l = 1, 2, if ujl = 1

• the household state transition u → u − ejl corresponds to the recovery of

the jth individual from disease l.

2. For l, l′ = 1, 2 (l 6= l′), if ujl = 1 and ujl′ = 1,

• the household transition u→ u− ejl corresponds to the recovery of the jth

individual from disease l having been infected with both diseases l and l′ at

present.

3. For l, l′ = 1, 2 (l 6= l′), if ujl = 1 and ujl′ = 1,
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• the household transition u→ u− (ejl + ejl′) corresponds to the recovery of

the jth individual from both diseases l and l′ simultaneously.

Now let

• cl denote the number of individuals presently infected with disease l,

• c12 denote the number of individuals presently co-infected with diseases 1 and 2,

where

cl =

h∑
j=1

ujl, (4.3.1)

and

c12 =
h∑
j=1

uj1uj2. (4.3.2)

Then, provided that ujl = 0, the infinitesimal rate of moving from state u to state u+ejl

is given by

{
λl + βlcl

}
φ
ujl′

ll′ , (4.3.3)

where ujl is the infectious status of individual j for disease l. Therefore, we define the

4h by 4h infinitesimal rate matrix, G(h) =
(
g

(h)
uv

)
for IBD as follows.
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g
(h)
uv =



λ1 + β1c1 if uj1 = 0, uj2 = 0 and v = u + ej1,

λ2 + β2c2 if uj1 = 0, uj2 = 0 and v = u + ej2,

λ12 + β12c12 if uj1 = 0, uj2 = 0 and v = u + (ej1 + ej2),(
λ1 + β1c1

)
φ21 if uj1 = 0, uj2 = 1 and v = u + ej1,(

λ2 + β2c2

)
φ12 if uj1 = 1, uj2 = 0 and v = u + ej2,

γ1 if uj1 = 1,

γ2 if uj2 = 1 and v = u− ej2,

γ12 if uj1 = 1, uj2 = 1 and v = u− (ej1 + ej2),

−
∑
w6=u

g
(h)
uw if v = u,

0 Otherwise,

(4.3.4)

for λ1, λ2, λ12, β1, β2, β12, γ1, γ2, γ12, φ12, φ21 > 0 and u, v, w ∈ S. Observe that setting

λ12 = β12 = γ12 = 0 and φ = 1 makes our model equivalent to the one disease case

(d = 1) model introduced in Chapter 2 and extended in Chapter 3, as the diseases

would behave independently.

G-matrix for diseases coinfection ABD

For a household of size h and for l = 1, 2, let ũl denote the number of individuals

currently infected with disease l. Also, let ũ12 denote the number of individuals currently

coinfected with diseases 1 and 2 and let ũ0 denote the number of individuals currently

not infected (or coinfected) by any of the two diseases (or by both diseases). Then the

vector ũ =
(
ũ12, ũ1, ũ2, ũ0

)
is the infectious state of a given household at time t, where

• ũ12 is the number of individuals currently co-infected with both diseases 1 & 2,

• ũ1 is the number of individuals currently infected with diseases 1 only,
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• ũ2 is the number of individuals currently infected with diseases 2 only,

• ũ0 is the number of individuals currently not infected at all,

such that
∑

ũ = ũ12 + ũ1 + ũ2 + ũ0 = h. Thus, the transitions allowed are as follows.

ũ→



(ũ12, ũ1 − 1, ũ2, ũ0 + 1) : recovery from disease 1,

(ũ12, ũ1, ũ2 − 1, ũ0 + 1) : recovery from disease 2,

(ũ12 − 1, ũ1, ũ2, ũ0 + 1) : simultaneous recovery from diseases 1 & 2,

(ũ12 − 1, ũ1, ũ2 + 1, ũ0) : recovery from disease 1 having been infected with 1 & 2,

(ũ12 − 1, ũ1 + 1, ũ2, ũ0) : recovery from disease 2 having been infected with 1 & 2,

(ũ12, ũ1 + 1, ũ2, ũ0 − 1) : infection with disease 1,

(ũ12, ũ1, ũ2 + 1, ũ0 − 1) : infection with disease 2,

(ũ12 + 1, ũ1, ũ2, ũ0 − 1) : simultaneous infection with diseases 1 & 2,

(ũ12 + 1, ũ1, ũ2 − 1, ũ0) : co-infection by disease 1 having been infected with 2 ,

(ũ0 + 1, ũ1 − 1, ũ2, ũ0) : co-infection by disease 2 having been infected with 1.

(4.3.5)

Then we have the following transition rates:

Infection:

1. The infinitesimal rate of infection with disease 1 is given by

(
λ1 + β1ũ1

)
(ũ0 + ũ2). (4.3.6)

2. The infinitesimal rate of infection with disease 2 is given by

(
λ2 + β2ũ2

)
(ũ0 + ũ1). (4.3.7)

3. The rate of simultaneous coinfection with both diseases is

(
λ12 + β12ũ12

)
ũ0. (4.3.8)
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4. Provided that ũ2 ≥ 1, the rate of infection with disease 1 having been infected

with disease 2 is

(
λ1 + β1ũ1

)
ũ2φ. (4.3.9)

5. Provided that ũ1 ≥ 1, the rate of infection with disease 2 having been infected

with disease 1 is

(
λ2 + β2ũ2

)
ũ1φ. (4.3.10)

Recovery :

1. Provided that ũ1 ≥ 1, the rate of recovery from disease 1 is given by

γ1ũ1, (4.3.11)

2. Provided that ũ2 ≥ 1, the rate of recovery from disease 2 is given by

γ2ũ2, (4.3.12)

3. Provided that ũ12 ≥ 1,

• the rate of simultaneous recovery from both diseases 1 and 2 is

γ12ũ12, (4.3.13)

• the rate of recovery from disease 1 having been infected with both diseases

1 and 2 is

γ1ũ12, (4.3.14)

• the rate of recovery from disease 2 having been infected with both diseases

1 and 2 is

γ2ũ12. (4.3.15)
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Therefore, given that there are
(
h+2d−1

h

)
possible states to which a household of size h

can belong to at any point in time, we define a
(
h+3
h

)
×
(
h+3
h

)
infinitesimal rate matrix

G(h) = (g
(h)
ũṽ ) of an ABD as follows:

g
(h)
ũṽ =



γ1ũ1 if ṽ = (ũ12, ũ1 − 1, ũ2, ũ0 + 1)

γ2ũ2 if ṽ = (ũ12, ũ1, ũ2 − 1, ũ0 + 1)

γ12ũ12 if ṽ = (ũ12 − 1, ũ1, ũ2, ũ0 + 1)

γ1ũ12 if ṽ = (ũ12 − 1, ũ1, ũ2 + 1, ũ0)

γ2ũ12 if ṽ = (ũ12 − 1, ũ1 + 1, ũ2, ũ0)(
λ1 + β1ũ1

)
(ũ0 + ũ2) if ṽ = (ũ12, ũ1 + 1, ũ2, ũ0 − 1)(

λ2 + β2ũ2

)
(ũ0 + ũ1) if ṽ = (ũ12, ũ1, ũ2 + 1, ũ0 − 1)(

λ12 + β1,2ũ1,2

)
ũ0 if ṽ = (ũ1,2 + 1, ũ1, ũ2, ũ0 − 1)(

λ1 + β1ũ1

)
ũ2φ if ṽ = (ũ12 + 1, ũ1, ũ2 − 1, ũ0)(

λ2 + β2ũ2

)
ũ1φ if ṽ = (ũ12 + 1, ũ1 − 1, ũ2, ũ0)

−
∑̃
w 6=ũ

g
(h)
ũw̃ if ṽ = ũ,

0 Otherwise,

(4.3.16)

for λ1, λ2, λ12, β1, β2, β12, γ1, γ2, γ12, φ > 0; ũ, ṽ, w̃ ∈ S.

4.3.1 Transition Probability Matrix (Q-matrix)

As outlined in Section 2.3.1, we calculate the transition probability matricesQ(h) = (q
(h)
ij )

as a matrix exponential given by Q = exp(tG).

Note that the Q-matrix here with its corresponding G-matrix is a 4h × 4h and a
(
h+3
h

)
×
(
h+3
h

)
transition probability matrix for IBD and ABD, respectively.
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4.4 Bayesian Inference on household-based SIS

interacting diseases model

In this section, we develop a Bayesian inference approach to infer the parameters of

an SIS diseases coinfection model. Specifically, we develop MCMC algorithms for the

analysis of a disease coinfection data with respect to the individual-based data (IBD) and

the aggregate-based data (ABD). Throughout, for ease of exposition, we shall focus our

descriptions on closed (constant) population SIS, although it is straightforward to extend

this to allow varying population sizes over time by following the methods described in

Section 3.5. We shall begin with when data are completely observed and later extend

this to when data are only partially observed.

4.4.1 Inference on Completely Observed Household SIS

Data

Setup

As before, let x denote the data generated from the parametric model with parameters

θ = (λ1, λ2, λ1,2, β1, β2, β1,2, γ1, γ2, γ1,2, φ).

For the purpose of inference, we need to draw samples from the posterior distribution of

the parameters given data, π(θ|x), using MCMC algorithms. When data are completely

observed, it is straightforward to employ RWM to draw samples from the joint posterior

distribution, π(θ|x) ∝ π(x|θ)π(θ).

Given that the parameters values are rates except the relative risk φ, and all parameters

are positive, the Gamma distribution is a natural choice of prior distribution. That is,

for j = 1, 2, . . . , 10, the prior distribution on the parameters is
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θj ∼ Gamma(Aθj , Bθj )

. (4.4.1)

where Aθj > 0 and Bθj > 0 are hyper-parameter. Then we calculate the likelihood

function, π(x|θ) as

L(θ; x) := π(x|θ) =
N∏
i=1

ni∏
k=1

{
P
(
Xi(tik) = xi(tik)|Xi(ti,k−1) = xi(ti,k−1),θ

)}

=

N∏
i=1

ni∏
k=1

{
π
(
xi(tik)|xi(ti,k−1),θ

)}
,

(4.4.2)

where π(xi(tik)|xi(ti,k−1),θ) is the probability of being in state xi(tik) at time point tik

from state xi(ti,k−1) at time point ti,k−1.

The posterior distribution of the parameters given the data, π(θ|x) is thus given by

π(θ|x) ∝ π(x|θ)π(θ)

∝

{
N∏
i=1

ni∏
k=1

{
P
(
Xi(tik) = xi(tik)|Xi(ti,k−1) = xi(ti,k−1),θ

)}}

×
10∏
j=1

π(θj)

∝

{
N∏
i=1

ni∏
k=1

{
π
(
xi(tik)|xi(ti,k−1),θ

)}}

×
10∏
j=1

θ
Aθj
−1

j e
−Bθj

θj . (4.4.3)

Finally, using the RWM algorithms described in Algorithm 4 propose θprop from a mul-

tivariate Gaussian distribution with mean θcurr (the current values of the parameters)

and a proposal covariance matrix Σ. Apply the adaptive schemes given in Section 2.4

for the MCMC optimality. Then with probability
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α(θcurr,θprop) = min

{
1,
π(x|θprop)π(θprop)

π(x|θcurr)π(θcurr)

}
, (4.4.4)

accept θprop. Note that the MCMC steps described here are generic and can be applied

to both IBD and ABD since the primary focus at this stage is on updating the model

parameters and not the data given that the data is assumed to be fully observed.

4.4.2 Inference on Partially Observed co-epidemics

In this section, we give a Bayesian inference approach for partially observed household-

based SIS co-epidemics with respect to the data forms considered here, IBD and ABD.

4.4.3 Bayesian Inference for Partially Observed IBD

Let y denote the partially observed data whose likelihood function given the parameters

θ, π(y|θ), is intractable. Let x = (z,y) denote the complete data so that the likelihood

function π
(
x = (y, z)|θ

)
becomes tractable, where z are additional imputed information.

In Sections 2.4 and 3.5.3, we outlined how to obtain samples from the joint posterior

π(θ|z,y) in the case of a single disease and in the case involving varying population sizes,

respectively. In both cases, the data augmentation scheme involves alternating between

updating π(z|y,θ) and π
(
θ|x = (z,y)

)
.

Here, we follow the descriptions in Sections 2.4 and 3.5.3 and proceed as follows. For

i = 1, 2, . . . , N , if an individual is observed, set xij(tk) = yij(tk), otherwise, impute the

missing information zij ∈ {0, 1}2 by either setting xij(tk) = xij(tk−1) or choosing xijl(tk)

uniformly from {0, 1}, where l = 1, 2. Then calculate the probability of observing the
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complete data x given y and the parameters θ, π(x|y,θ) by

π(x = (z,y)|y,θ) ∝
N∏
i=1

ni∏
k=1

{
π
(
yi(tik)|xi(tik)

)
× π

(
xi(tik)|xi(tik−1),θ

)
π
(
xi(tik+1)|xi(tik),θ

)}
. (4.4.5)

Then, assuming that k is neither the first nor the last timepoint, we have

π(zij(tik)|θ,x−ij(tik)) ∝ π(xi(tik),xij(tik) = zij(tik)|xi(tik−1),θ)

× π(xi(tik+1)|xi(tik),xij(tik) = zij(tik),θ) (4.4.6)

where x−ij(tik) is the complete data vector for the infectious state of household i ex-

cluding xij(tik).

Independence Sampler

To update π(z|y,θ), we develop an Independence Sampler algorithms similar to that

described in Algorithm 8 and propose to switch states and set zpropij (tik) = 1 − zij(tik)

(or zpropijl = 1− zijl, l = 1, 2), so that xpropi (tik) =
(
xi(tik),xij(tik) = zpropij (tik)

)
, for every

yij(tk) = (2, 2). In other words, we propose to explore other possibilities in {(0,0), (0,1),

(1,0), (1,1)}. Then, accept zpropij (tik) with the probability which depends on the three

time points tik−1, tik and tik+1 and given by

α ← min

{
1,
π(xpropi (tik)|xi(tik−1),θ)π(xi(tik+1)|xpropi (tik),θ)

π(xi(tik)|xi(tik−1),θ)π(xi(tik+1)|xi(tik)),θ)

}
. (4.4.7)

In what follows, we shall give Bayesian inference approach for an SIS coepidemics data

of the ABD form.
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4.4.4 Inference on Partially Observed ABD

We outline data augmentation scheme for a partially observed coepidemics ABD within

the SIS contexts in household settings.

Let ỹ = ỹ(t) denote the partially observed aggregate-based data at time t from our

parametric model with parameters θ. The likelihood function π(ỹ|θ) is rarely tractable.

However, given the complete data x̃ = (z̃, ỹ), the likelihood π(x̃ = (z̃, ỹ)|θ) becomes

tractable, where z̃ are imputed values. For a household of size h and which is observed

n times, as noted earlier, the observed infectious state of the household at time tk, ỹ(tk)

is said to be only partially observed when ỹs =
∑4

j=1 ỹj(tk) < h. We proceed as follows.

Whenever ỹs < h (or incomplete data), set x̃(tk) = ỹ(tk) + z̃(tk), otherwise set x̃(tk) =

ỹtk (no need for data imputation). Here, the imputed data z̃ = z̃(tk) are a multinomial

random vector taking values from the sample space

S =

{
z̃ ∈ Z4 : 0 ≤ z̃j ≤ ỹr, j = 1, . . . , 4, and

4∑
j=1

z̃j = ỹr

}
, (4.4.8)

where ỹr(= h − ỹs) is the number of unobserved individuals in the household of size h

at a given point in time.

Therefore, the probability of observing the complete data x̃ = (z̃, ỹ) , given the observed

data ỹ and the parameters θ is given by

π(x̃|ỹ,θ) ∝ P (ỹ|x̃,θ)π(x̃|θ)

∝ P (ỹ|x̃)π(x̃|θ) (by conditional independence)

∝
N∏
i=1

ni∏
k=2

{
P
(
ỹi(tik)|x̃i(tik)

)
× π

(
x̃i(tik) = (z̃i(tik) + ỹi(tik))|x̃i(tik−1),θ

)
× π

(
x̃i(tik+1)|x̃i(tik) = (z̃i(tik) + ỹi(tik)),θ

)}
, (4.4.9)

by the independent households assumption, and where the probability of observing the

observed data given the complete data for household i at timepoint tik, P
(
ỹi(tik)|x̃i(tik)

)
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is given by

P
(
ỹi(tik)|x̃i(tik)

)
=

∏4
j=1

(
x̃ij
ỹij

)
(∑4

j=1 xij∑4
j=1 yij

) (4.4.10)

where x̃ij = x̃ij(tik) is the number of individuals in category j in household i at time

point tik.

Independence Sampler

We utilize Independence Sampler algorithms to update π(z̃|ỹ,θ) as follows. Whenever∑4
j=1 ỹj(tk) < h, propose z̃prop from (4.4.8), such that

∑4
j=1 z̃

prop
j = ỹr. Then, set

x̃propi (tik) = z̃propi (tik) + ỹi(tik). Accept the proposed value with probability

α = min

{
1,
P (ỹ|x̃prop)π(x̃prop|θ)

˜P (y|x̃curr)π(x̃curr|θ)

}
.

(4.4.11)

SUMMARY

We shall now give a generic step by step summary of the MCMC updating schemes

developed in this section and proceed as follows.

Step 0: Initialize θ = (λ1, λ2, λ1,2, β1, β2, β1,2, γ1, γ2, γ1,2, φ) and x = (z,y) (for IBD)

or x̃ = (z̃, ỹ) (for ABD). The starting values of θ are chosen to be positive values since

apart from φ, the rest are rates, and φ ≥ 0. For an individual-based data (IBD), initial

values of the partially observed data x are chosen as described under Section 4.4.3, while

the initial values of x̃ are chosen as described under Section 4.4.4. Note that when data

are completely observed, no initialization is required for the data as there is no need for

data augmentation and interest is only on π(θ|x) or π(θ|x) as the case may be.
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STEP 1: Update π(θ|x = (z,y)) using Random walk Metropolis and propose θ′ from

a multivariate Gaussian proposal density centered at the current value of θ and with a

proposal covariance matrix Σ. Accept the proposed value with the probability

α(θcurr,θprop)← min

{
1,
π(x|θprop)π(θprop)

π(x|θcurr)π(θcurr)

}
.

STEP 2: Update π(z|y,θ) for IBD via Independence Sampler steps and propose to

switch states by setting zpropij (tik) = 1 − zij(tik) (or zpropijl = 1 − zijl, l = 1, 2), exploring

all the possibilities in {(0, 0), (0, 1), (1, 0), (1, 1)}, so that xpropi (tik) =
(
xi(tik),xij(tik) =

zpropij (tik)
)
. Accept the proposed values with probability

α ← min

{
1,
π(xpropi (tik)|xi(tik−1),θ)π(xi(tik+1)|xpropi (tik),θ)

π(xi(tik)|xi(tik−1),θ)π(xi(tik+1)|xi(tik)),θ)

}
.

STEP 3: Update π(z̃|ỹ,θ) for ABD via Independence Sampler steps and propose a

new value for z̃prop to be a multinomial random vector from the sample space define

in (4.4.8), such that
∑4

j=1 z̃
prop
j = ỹr, where yr = h −

∑4
j=1 ỹj(tk). Set x̃propi (tik) =

z̃propi (tik) + ỹi(tik) and accept x̃propi (tik) with probability given by (4.4.11).

STEP 4: Repeat steps 1 and 2 (for IBD) or steps 1 and 3 (for ABD), until samples of

the desired size are obtained.

4.5 Simulated Data Example

In this section we use simulated data sets to demonstrate the implementation of the

MCMC algorithms developed in this chapter and compare the accuracy of the posterior

estimates from the IBD-based and ABD-based MCMC algorithms.
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4.5.1 Methodology

Using two different sets of true parameter values (see, Table 4.5.1), first we assume that

data are completely observed and simulate 4 data sets, 2 (IBD and ABD) for each set

of true parameter values,.

Parameter SET 1 SET 2

λ1 0.90 0.03

λ2 0.80 0.05

λ12 0.60 0.20

β1 1.20 0.04

β2 1.10 0.07

β12 0.70 0.30

γ1 0.50 0.03

γ2 0.60 0.02

γ12 0.40 0.10

φ 0.50 1.50

Table 4.5.1: True parameter value used for the simulation of the 16 data sets.

We simulate 4 data sets and allow 4 levels of missingness in the data, namely, 30%,

60% and 90%, for each set of true parameter values and for both IBD and ABD, whilst

assuming data are missing completely at random (MCAR).

Each data set contains the same number of households, N = 100. The parameter values

were chosen such that there is a low relative risk φ = 0.5 for SET I and a high relative

risk φ = 1.5 for SET 2. Our reason for this choice of parameter values is to see how the

performance of the MCMC algorithm is affected by various ranges of the parameter val-
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ues. In all cases, we assumed that there is coinfection between the two diseases. We also

assume that the coinfecting diseases interact and do not behave independently, hence

φ 6= 1. Throughout, we used same household structure and sizes, same time difference

data with same number of observation time points.

Household sizes range from 1 to 4 with the majority of the households having between 2

and 4 individuals. The minimum (maximum) observation time difference is 1 (3), while

the minimum (maximum) number of observation time points is 2 (5).

For i = 1, 2, , N , first we simulate the IBD data and proceed as follows. Choose xi(ti0),

the initial state of household i from the {0, 1}2×hi possible states to which the household

can belong to at any point in time. Then, for each set of parameters, we calculate the

G-matrix and the corresponding Q-matrix according to (4.3.4) and Q
(h)
t = exp(tG(h)),

respectively. Then, sample xi(tik), the infectious status of household i at time tik from

row xi(tik−1) of the transition probability matrix, Q
(h)
t . Record the the data each

time for the ni times the household was observed, where ni ∈ Z+ is chosen uniformly

from {2, 3, 4, 5}. This procedure was repeated for all i = 1, 2, . . . , 100. After success-

ful generation of the IBD data from the methods described above, the corresponding

aggregate-based data (ABD) was obtained by setting

x̃l =
h∑
j=1

ujl, (4.5.1)

where x̃l is the number of individuals in category l and ujl is the infectious status of

individual j for category l, for l = 1, 2, 3, 4. Recall that category 1 is no infection; cat-

egory 2 is infected with disease 1; category 3 is infected with disease 2; and category

4 is infected with both diseases. Then the vector x̃i(tik) = (x̃1, x̃2, x̃3, x̃4) is the ABD

infectious state of household i at time tik.
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4.5.2 MCMC Implementation

We assigned independent Gamma(1, 1) prior distribution to each of the parameters. For

the completely observed data, it is straightforward to implement the Random walk

Metropolis (RWM) algorithms with multivariate Gaussian proposal distribution de-

scribed in Algorithm 4 to sample from π(θ|x) for IBD or from π(θ|x̃) for ABD, where

θ = (λ1, λ2, λ1,2, β1, β2, β1,2, γ1, γ2, γ1,2, φ).

We choose the proposal covariance matrix Σ = Iσ2
ii, where σ2

ii = 0.005 for all i =

1, 2, . . . , 10. This choice of proposal variance was found to yield acceptance rate close to

the optimal value of 23.4% from 3 pilot runs with 1× 103 iterations for each. Then we

used the variance of the posterior distribution from the third pilot run as the proposal

covariance matrix for the main 5× 104 MCMC runs.

4.5.3 Results

The main convergence diagnostic tools used were traceplots and autocorrelation function

(ACF) plots. We present the results obtained after discarding 1×104 iterations as burn-

in as follows. Figure 4.5.1 shows the trace plots of the sojourn history of the chain for

the completely observed IBD. The traceplot indicates that the Markov chain was mixing

well.
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Figure 4.5.1: Traceplots of the completely observed IBD from SET 2 parameters

for the last 4× 104 iterations after a burn-in period of 1× 104 iterations. The red

lines are the corresponding posterior means of the parameters.

Table 4.5.2 compares the posterior means, standard deviations (SD) and the effec-

tive sample sizes (ESS) for the completely observed (or 0% missingness) co-epidemic

data with reference to the individual-based data (IBD) and the aggregate-based (ABD)

obtained from parameters in SET 2.
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Parameters Mean SD ESS

IBD (ABD) IBD (ABD) IBD (ABD)

λ1 = 0.03 0.025 (0.027) 0.011 (0.012) 1320(964)

λ2 = 0.05 0.038 (0.042) 0.014 (0.016) 1110(1386)

β1 = 0.04 0.062 (0.068) 0.023 (0.026) 1233(888)

β2 = 0.07 0.078 (0.099) 0.028(0.034) 1428(988)

γ1 = 0.03 0.036 (0.029) 0.013 (0.014) 942(1610)

γ2 = 0.02 0.036 (0.036) 0.012 (0.014) 1725(930)

λ12 = 0.20 0.196 (0.200) 0.039 (0.042) 1219(1559)

β12 = 0.30 0.536 (0.646) 0.159 (0.191) 1057(1385)

γ12 = 0.10 0.238 (0.279) 0.043 (0.051) 1088(1491)

φ = 1.50 2.555 (2.475) 0.593 (0.576) 1516(486)

Table 4.5.2: Posterior Means, Standard Deviations (SD) and Effective Sample sizes

(ESS) for observed data for parameters SET 2, and for 0% missing

The results on the table show that both ABD- and IBD-based algorithms performed

equally well when there are no missing data. We note that the ABD-based algorithm

was approximately 2 times faster to run than the IBD-based algorithms. This is because

the ABD contains fewer states than the IBD. Also, we explore the performance of the

algorithms when data are only partially observed. Tables 4.5.3 and 4.5.4 compare the

performance of the MCMC algorithms for parameters SET 1 for when missing data are

30% and 90%, respectively.
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Parameters Mean SD ESS

IBD (ABD) IBD (ABD) IBD (ABD)

λ1 = 0.90 1.093 (2.401) 0.381 (1.780) 632(54)

λ2 = 0.80 0.582 (0.798) 0.187 (0.619) 942(440)

β1 = 1.20 0.816 (1.387) 0.321 (0.886) 987(85)

β2 = 1.10 0.631(1.083) 0.218 (0.603) 901(471)

γ1 = 0.50 0.563 (1.635) 0.158 (1.181) 468(28)

γ2 = 0.60 0.451 (0.788) 0.108(0.498) 660(316)

λ12 = 0.60 0.352(1.125) 0.291(0.938) 802(277)

β12 = 0.70 0.718 (0.876) 0.630 (0.860) 297(415)

γ12 = 0.40 0.150 (0.552) 0.139 (0.474) 639(502)

φ = 0.50 0.494 (0.709) 0.084 (0.186) 931(129)

Table 4.5.3: Posterior Means, Standard Deviations (SD) and Effective Sample sizes

(ESS) for observed data for parameters SET 1, and for 30% missing
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Parameters Mean SD ESS

IBD (ABD) IBD (ABD) IBD (ABD)

λ1 = 0.90 1.069 (0.123) 0.308 (0.304) 861(193)

λ2 = 0.80 0.592 (0.118) 0.186 (0.229) 917(148)

β1 = 1.20 0.843 (0.093) 0.314 (0.099) 798(406)

β2 = 1.10 0.647(0.152) 0.226 (0.129) 837(452)

γ1 = 0.50 0.544 (13.57) 0.123 (5.854) 1073(2)

γ2 = 0.60 0.439 (15.72) 0.094(7.055) 1535(2)

λ12 = 0.60 0.307(61.79) 0.251(31.10) 1307(2)

β12 = 0.70 0.617 (0.555) 0.551 (0.734) 784(82)

γ12 = 0.40 0.139(0.518) 0.128 (0.504) 1161(274)

φ = 0.50 0.479 (21.33) 0.081 (11.48) 758(2)

Table 4.5.4: Posterior Means, Standard Deviations (SD) and Effective Sample sizes

(ESS) for observed data for parameters SET 1, and for 90% missing

The results show that IBD-based algorithms performed better in both cases, while

the performance of the ABD-rapidly deteriorates. In both cases, it can be seen that the

IBD-based algorithm is fairly stable.

As in SET 1, a similar result was obtained with SET 2, see, Tables 4.5.5 and 4.5.5.

Throughout, as the percentage of missing data increases, the ABD-based algorithm

performed very poorly
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Parameters Mean SD ESS

IBD (ABD) IBD (ABD) IBD (ABD)

λ1 = 0.03 0.025 (0.030) 0.011 (0.039) 1107(431)

λ2 = 0.05 0.039 (0.046) 0.015 (0.093) 871(107)

β1 = 0.04 0.063 (0.050) 0.023 (0.047) 960(199)

β2 = 0.07 0.079 (0.064) 0.027(0.058) 1874(246)

γ1 = 0.03 0.036 (2.646) 0.013 (0.920) 1364(4)

γ2 = 0.02 0.037 (3.330) 0.013 (1.163) 1558(6)

λ12 = 0.20 0.196 (19.09) 0.039 (10.74) 1506(2)

β12 = 0.30 0.527 (5.219) 0.154 (3.419) 1294(2)

γ12 = 0.10 0.239 (0.137) 0.043 (0.123) 1188(135)

φ = 1.50 2.563 (12.76) 0.626 (2) 801(486)

Table 4.5.5: Posterior Means, Standard Deviations (SD) and Effective Sample sizes

(ESS) for observed data for parameters SET 2, and for 60% missing
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Parameters Mean SD ESS

IBD (ABD) IBD (ABD) IBD (ABD)

λ1 = 0.03 0.026 (1.863) 0.012 (1.456) 779(268)

λ2 = 0.05 0.039 (3.194) 0.015 (4.379) 1954(17)

β1 = 0.04 0.063 (0.248) 0.023 (0.243) 1246(383)

β2 = 0.07 0.082 (1.016) 0.030(1.244) 743(29)

γ1 = 0.03 0.036 (1.611) 0.013 (0.738) 1479(214)

γ2 = 0.02 0.037 (5.975) 0.012 (11.183) 1334(7)

λ12 = 0.20 0.198 (2.203) 0.040 (1.767) 1109(251)

β12 = 0.30 0.538 (0.720) 0.164 (0.633) 1082(510)

γ12 = 0.10 0.240 (0.661) 0.045 (0.652) 1327(524)

φ = 1.50 2.545 (0.962) 0.595 (0.506) 1272(52

Table 4.5.6: Posterior Means, Standard Deviations (SD) and Effective Sample sizes

(ESS) for observed data for parameters SET 2, and for 90% missing

4.6 Application to the Tanzania Cattle Data

In this section we apply the models developed in this chapter in a real life situation

and demonstrate the implementation of our MCMC algorithms to a rich set of data on

tick-borne diseases among Tanzania cattle.

4.6.1 Data and Methods

The data contains information on the spread of 5 coinfecting tick-borne diseases (T.parva,

T.mutans, A.marginale, B.bigemina, B.bovis) among Tanzania cattle. The longitudinal
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Figure 4.6.1: Distribution of the farms in Tanga town according to their sizes.

data was collected over 11 observation timepoints. The data were collected from four(4)

regions of Tanga, Mtindi, Korogwe and Kibaya. For our purposes, we shall focus on the

coinfection among the farms in Tanga.

There are 62 farms in Tanga with farm sizes range of 1 to 8. Figure 4.6.1 shows the

number of farms Nn which have exactly n animals in the farm.
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Figure 4.6.2: Observed Prevalence plot for the five strains of ticks from the Tan-

zanian data.

4.6.2 MCMC Implementation and Results

We assign independent Gamma(1, 1) described in Algorithm 4 to sample from π(θ|x) for

IBD or from π(θ|x̃) for ABD. Convergence diagnostics used are mainly traceplots and

ACF plots. Figure 4.6.3 shows a traceplot from individual-based data for coinfection of

T.mutans vs B.bovis, and is obtained from 1 × 104 iterations after a burn-in period of

2× 103. The traceplot shows that the MCMC algorithms were mixing well.
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Figure 4.6.3: Real life application: Traceplots of posterior distribution of coin-

fection of T.mutans vs B.bovis using individual-based data (IBD), obtained from

1×104 iterations after a burn-in period of 2×103 iterations. The red lines are the

posterior means of the corresponding parameters.
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4.6.3 Results

In this section, we present the results from the real-life application of our approach. Ta-

ble 4.6.3 shows the posterior estimates (means and standard deviations) of the relative

risks for the 10 possible pairwise combination of the diseases.

Serotype Tm Am Bb Bb1

Tp 0.847 (0.051) 1.126 (0.020) 1.301 (0.147) 1.219 (0.0058)

Tm 1.868 (0.273) 1.519 (0.149) 1.208 (0.0432)

Am 1.271 (0.111) 0.873 (0.1300)

Bb 1.051 (0.0100)

Table 4.6.1: Posterior Relative risk (φ) mean (Standard deviation) obtained from the

individual-based data (IBD) of the Tanzania tick-borne diseases for the 10 ten possible

combinations of the disease pairs, and from 5 × 104 iterations after a burn-in period

of 1 × 104 iterations. Tp = T.parva; Tm = T.mutans; Am = A.marginale; Bb =

B.bigemina; Bb1 = B.bovis.

The results show that infection with T.parva, for example, will lead to a reduced risk of

getting infected with T.mutans with φ̂ = 0.847 < 1, while it also leads to an increased

risk of the animal getting infected with B.bigemina or with B.bovis (φ̂ > 1). Observe

that B.bigemina and B.bovis will evolve independently with φ̂ ≈ 1 (see also, Figure

4.6.4).
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Figure 4.6.4: Real life application: Relative Risks estimates plots from the

individual-based data (IBD) for the 10 possible pairwise disease combinations with

95% Credible Interval. Tp = T.parva; Tm = T.mutans ; Am = A.marginale; Bb

= B.bigemina; Bb1 = B.bovis.

4.7 Discussions

In this chapter, we studied the transmission dynamics of SIS epidemics with coinfec-

tion in a households setting. Throughout, we considered d = 2 diseases, but it is fairly

straightforward to extend this to cases involving d > 2 diseases. This will involve making

additional assumptions and estimating more parameters.

To validate our model and the MCMC algorithms developed here, we first used a simu-

lated data set, with d = 2 and then applied it to a real life situation via the Tanzania

data.

With the simulated data set, we were able to demonstrate the implementation of MCMC

algorithms. The posterior estimates obtained with both IBD- and ABD- were close to

the true parameter values, when data are fully observed. The ABD has fewer states
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transitions and this makes it easier to work with. However, as the proportion of missing

values increases, the MCMC algorithms based upon ABD rapidly deteriorates, while the

IBD is robust all through. In addition, our models and MCMC algorithms were suc-

cessfully applied to a real-life data on tick-borne diseases among Tanzania cattle. Given

that the Tanzania tick-borne disease data allows varying population sizes over time, it

was straightforward to extend our model to allow for varying population sizes over time

by following the methods developed in Chapter 3.

A major challenge encountered in this chapter is in the calculation of the transition rate

matrix. For example, for the individual-based data, for a farm size of h = 8 the G-matrix

is a 65536× 65536 (2d×h × 2d×h) matrix of transition rates. This places a huge burden

on the computer memory. However, this problem can be circumvented using computer

clusters which allows easy computation.

A key contribution of this chapter is the development of Bayesian inference approaches

for the analysis of SIS coepidemic model implemented via MCMC framework. The

method developed here can easily be applied to any number of diseases and also work

well when population is constant or varying.
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Chapter 5

Conclusions and Future Works

In this chapter, we present a chapter by chapter summary of the major problems tackled

in this thesis, highlighting some salient points and limitations. We also suggest some

follow up studies in order to surmount some identified challenges.

5.1 Closed Population SIS Household Model

The main work in Chapter 2 of this thesis develops Bayesian inference approach for

the estimation of parameters of stochastic household-based SIS epidemic models imple-

mented in Markov chain Monte Carlo (MCMC) framework. Two most prevalent SIS

household epidemic data were considered throughout, namely, the individual-based data

(IBD) and the aggregate-based data (ABD). The IBD is more informative, but is more

complex to handle unlike the less informative ABD. An extensive simulation study car-

ried out shows that the MCMC algorithms developed with respect to both data types

worked well especially when the data are complete. However, when the data are allowed

to be only partially observed, interesting behaviors of the algorithms were observed. The

overarching aim for allowing incomplete data case is to completely mimic what actually

happens in reality as most infectious disease data are rarely complete. Given that dif-
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ferent methods of data collection would give rise to different forms of missingness, we

considered three different forms of missing SIS household-based epidemic data. Firstly,

we considered a case where data (individuals’ infection statuses) are allowed to miss ran-

domly at various time points. Secondly, we considered a missing data due to a randomly

selected individual missing completely in all the observation time points. Thirdly, we

considered a missing data due to a randomly selected observation time point missing

completely. Following efficient data imputation strategies, robust MCMC algorithms

were developed and data successfully analyzed. Two different approaches were adopted

for the third form of missing data. First, we deleted each unobserved time point and

then treated the rest of the data as completely observed. In this case, there was no need

for data augmentation. The second approach was to impute the missing time point with

its observation. It was found that the former outperformed the latter. The most robust

missing data form was found to be the first type which assumes that individuals miss

randomly at observation time points. On the other hand, the second data form which

assumes that randomly selected individuals miss completely at all time points, has the

worst performance. In general, the IBD-based MCMC shows better performance than

the ABD as the proportion of missing data increases.

One major problem encountered in this chapter is computational. Given that there are

2h possible states for a household of size h, computational burden for the calculation of

the transition probability matrix (Q-matrix) grows as h∞. For example, when h = 10,

the Q-matrix contains contains 1048576 entries and this places a huge demand on the

computer memory. Parallel computing provides a relief for moderate h. In most practi-

cal situations, especially among animals population, it is possible to have a single farm

with much lager farm size, say 20, and the applicability of our methods may suffer a

huge setback. It would be interesting to develop more efficient methods for computing

such high-dimensional matrices. Although the data imputation approaches used in this
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chapter appeared to work really well, there could be several other better ways to do this

and obtain even much better results. It would be interesting to explore this further.

Finally, the model studied in Chapter 2 could be extended to include demography such

as births and deaths.

5.2 Open population, Spatial SIS

Chapter 3 was divided into two main parts. The first part develops inference methods

using Bayesian paradigm for open population stochastic household SIS epidemics. The

second part incorporates spatial element into the modelling. In both cases, we adopted

the framework developed in Chapter 2 where we assume that individuals are contacted

locally and and there also exists a global force of infection. Unlike the closed population

epidemics, household size of the open population model varies over time and this created

computational complexity as the Q-matrix needs to be calculated at each observation

time point whenever the household size changes. On the other hand, the spatial SIS

model assumes that the global force of infection depends on some Gaussian random fields

realizations. Both models were found to work well with real life data, but the spatial

model performed comparatively poorly than the non-spatial open population model with

simulated datasets. However, we note that a further investigation is required to further

optimize the spatial model algorithms, and possibly extend the models to allow for the

inclusion of demographic parameters such as birth and death rates.

5.3 Coinfection

Chapter 4 of this thesis contains a study on the infection of a host with multiple

pathogens or by multiple strains of a given pathogen. Understanding transmission dy-

namics of coinfection is an important factor towards defining a stable control approach to
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its spread. The Bayesian inference methods via MCMC developed in 4 was successfully

applied to both simulated and real life datasets. This could also be extendnd to allow for

demographic elements. Note that we have considered only pairwise interactions. There-

fore, it would be interesting to extend this to cases with multiple coinfection, i.e., where

d ≥ 3 pathogens or strains of pathogen can infect either simultaneously or singly. This

would be a direct extension of the model in Chapter 4, with more parameters included

into the modelling. Again, the problem of computational burden due to the calculation

of the Q-matrix needs to be addressed first before a substantial progress could be made.
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