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Abstract33

Linking pattern to process across spatial and temporal scales has been a key goal of the field of34

biogeography. In January 2017, the 8th biennial conference of the International Biogeography35

Society sponsored a symposium on “Building up biogeography—process to pattern” that aimed36

to review progress towards this goal. Here we present a summary of the symposium, in which37

we identified promising areas of current research and suggested future research directions.38

We focus on (1) emerging types of data such as behavioral observations and ancient DNA,39

(2) how to better incorporate historical data (such as fossils) to move beyond what we term40

‘footprint measures’ of past dynamics, and (3) the role that novel modeling approaches (e.g.,41

maximum entropy theory of ecology and approximate Bayesian computation) and conceptual42

frameworks can play in the unification of disciplines. We suggest that the gaps separating43

pattern and process are shrinking, and that we can better bridge these aspects by considering44

the dimensions of space and time simultaneously.45

Keywords: approximate Bayesian computation (ABC), behavior, fossils, macroecology,46

maximum entropy theory, mechanism, phylogeny, scale, space, time47
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Introduction48

Linking pattern to its underlying process has long been the Holy Grail of macroecology. How-49

ever, mechanistic and process-based models are often formulated at small spatio-temporal50

scales, whereas biogeographic patterns usually emerge at broader scales. Historically, sta-51

tistical models have offered a unifying, predictive framework that can operate across scales,52

but to do so often requires that we sacrifice explicit consideration of ecological and evo-53

lutionary mechanisms (see McGill 2010). For example, while regional variation in species54

richness is often readily predicted by environmental conditions (Currie et al. 1999), the pre-55

cise evolutionary and ecological processes underlying such relationships remain unresolved.56

It is often difficult to understand any kind of pattern in a biogeographical context because57

it is impossible to conduct experiments at the appropriate temporal and spatial scales, such58

that we biogeographers (unlike other biologists) are often limited to correlative and observa-59

tional studies. New approaches offer possibilities to integrate evolutionary and biogeographic60

processes of dispersal, speciation and extinction into dynamic models of community struc-61

ture (such as the ‘DAMOCLES’ approach described by Pigot & Etienne 2015, see figure62

1). Scaling up such models to encompass regional biodiversity gradients is an important63

next step (Cabral et al. 2017). In this and many other cases, we believe that it is possible64

to better link underlying processes to emerging patterns, and our symposium on Building65

up biogeography—process to pattern held at the 8th biennial conference of the International66

Biogeography Society in Tucson, Arizona, described recent progress in this direction. Here,67

we summarize these advances. Three themes emerge throughout this discussion: (1) the68

importance of incorporating data from multiple sources and disciplines (e.g., behavioral69

observations and mini-satellites), (2) the need to move beyond ‘footprint measures’ by incor-70

porating historic processes into models of contemporary data and (3) the power of recently71

developed models to address biogeographical questions across spatial and temporal scales.72

We address each of these themes in the sections below. Our intention is not to provide a73
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thorough review of all the ways in which biogeographic processes act across scales (c.f. Levin74

1992; Cavender-Bares et al. 2009; Chave 2013; Cabral et al. 2017), but within figure 1 we75

show how these concepts fit within the broader biogeography framework linking the drivers76

of biogeographic patterns and processes. We focus on how processes interact across different77

spatial and temporal scales, not on ascribing processes to particular spatio-temporal scales78

(c.f. Weiher & Keddy 2001; Swenson et al. 2007; Cavender-Bares et al. 2009), and we believe79

focusing in this way holds promise in making practical progress fitting mechanistic models80

to data. We conclude that we are moving towards a productive synthesis of pattern- and81

process-based methods that will provide new and more generalizable insights into the spatial82

and temporal distributions of biodiversity.83

Non-traditional data in biogeography84

Targeted collection of observational data. While macroecology has traditionally ad-85

vanced through drawing inference from pre-existing data (i.e., data the researcher did not86

collect themselves), it is increasingly recognized that experiments can also be placed within87

a macroecological context (Paine 2010; Alexander et al. 2016). Such experiments form one88

non-traditional source of data in biogeography, but we (uncontroversially, we hope) suggest89

that macroecologists should not forget the importance of collecting new, carefully consid-90

ered, observational data. Collecting data that directly address a question or mechanism of91

interest is a more efficient way to understand a problem than implementing post-hoc sta-92

tistical corrections. For example, Keith et al. (2016) collected data on the timing of coral93

spawning in 34 reefs throughout the Indian and Pacific Oceans and, through a combination94

of careful site selection and the collection of relevant explanatory data, identified the likely95

cues of coral spawning (namely, seasonal rise in ocean temperature). These data move us96

closer towards an understanding of the ecological and physiological processes behind spawn-97

5



Figure 1: Conceptual overview of the processes involved in the assembly of bio-
geographical patterns. We focus on how data (rounded corners) integrate with biological
concepts (square corners) through modeling approaches (labeled arrows) that we describe
within the text. Whereas numerous previous reviews of spatial scaling biogeography have
focused on mapping processes onto particular spatial and temporal scales (e.g., Levin 1992;
Weiher & Keddy 2001; Cavender-Bares et al. 2009; Chave 2013), here we represent the
mapping between each process. This allows scale-dependent processes to interact across dif-
ferent scales simultaneously, and provides more information than the traditional placement
of processes within a two-dimensional space–time mapping allows. As discussed in the text,
approximate Bayesian computation has the potential to incorporate all these processes, and
that each modeling arrow represents, to some extent, an over-simplification of the processes
captured by that model. The dashed lines represent an approach that, as we discuss in the
text, we believe the field is currently moving beyond. We emphasize that each label is in-
tended to direct the reader towards the relevant section of this essay, and the intention of this
diagram is not to outline all, or even necessarily the most important, patterns, processes and
approaches in biogeography. An example of such a missing link might be the study of fossil
assemblages (e.g., Goldberg et al. 2005; Gill et al. 2009; Williams et al. 2013). There are
many potential missing links that could be placed linking ‘communities’ to ‘biogeography’,
such as environmental filtering (reviewed in Kraft et al. 2015) and character displacement
(reviewed in Dayan & Simberloff 2005). *DAMOCLES is a method developed by Pigot &
Etienne (2015), and is described in the introduction.

6



ing through the explicit collection of small-grain large-extent data, which in turn can shed98

light on the spatio-temporal biogeographic distribution of corals. Moreover, this work uses99

traditional biogeography to set the agenda for future experimental tests (e.g., temperature100

manipulations)—an approach that is potentially fruitful across biogeography more widely.101

Such precise data on the timing of coral spawning could (almost certainly) not have been102

collated from existing sources: testing different mechanisms often requires targeted data103

collection, not simply the collation of ever-larger data that elucidate general patterns.104

Behavioral data. One type of data that has been incorporated only rarely in biogeographic105

studies is behavioral observations. While behavioral data might be measured on very different106

spatial scales to the data usually included in biogeographic models, such data could provide107

invaluable insight into the link between pattern and process. Individuals make cognitive108

decisions to enact particular behaviors given a combination of external stimuli and internal109

motivation. For instance, the presence of food and motivation of hunger could initiate110

foraging behavior. However, these behaviors, and their underlying decision-making processes,111

can become sub-optimal in novel environments because of an inability to accurately process112

novel external information [such as mistaken mate identification as described by Gwynne113

& Rentz (1983); see also Whitehead et al. (2004)]. Sub-optimal behavior at the individual114

level could feasibly scale up to cause population level declines and subsequent shifts in115

biogeographical patterns such as species’ distributions. Using, for example, coupled dynamic116

individual-based and species distribution models it is possible to propagate the outcomes117

of such local-scale behavioral dynamics to produce biogeographic patterns (see ‘behavioral118

dynamics’ in figure 1). For example, individual-based models can be used to generate decision119

rules that can inform about species’ environmental preferences and tolerances, which can be120

propagated through into distribution models to improve predictions, and to test whether121

behavior is constant through space and time (reviewed in Keith & Bull 2017). The kinds122

of behavioral data to best inform such models will depend on the particular question and123

study system, but as we discuss in ‘targeted collection of observation data’ above, these data124
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may be best gathered specifically to shed light on, for example, the dispersal mechanisms125

for the clade of interest. Data on phenology or other physiological responses to changing126

environmental stimuli are already informing the study of biogeography in organisms other127

than animals (Chuine 2010).128

Emerging data sources. There are perhaps three additional kinds of data that, we be-129

lieve, have the potential to fundamentally change the way in which biogeography operates,130

but it is of course too soon to be certain. The first is ancient DNA: DNA extracted and131

sequenced from historic specimens (Gugerli et al. 2005; Pääbo et al. 2004). Such data form132

a natural bridge between phylodynamic models commonly used to infer historic population133

size (Archie et al. 2009; Lemey et al. 2010, which are commonly used in epidemiology;) and134

the fossil data whose use we advocate below. The second is intra-specific trait variation; ad-135

vances in automated image analysis and measurement protocols (Bucksch et al. 2014; Pearse136

et al. 2016) allow researchers to collect more data than previously thought possible. This137

has given biogeographers the data to move beyond the simplifying assumption that varia-138

tion within a species is negligible and random with respect to environment (Bolnick et al.139

2011). It is difficult (but, of course, not impossible) to extend the modeling approaches to140

incorporate variation of species traits in response to environmental conditions; it may be141

more straightforward to do so by collecting data on how species’ traits are non-stationary142

and modeling those data themselves. Finally, drones (Anderson & Gaston 2013; Linchant143

et al. 2015) and small satellites (Baker & Worden 2008; Sandau 2010) are expanding both144

the temporal and spatial grain across which we can measure biogeographical patterns. If145

we are to truly bridge spatial scales and wish to model uncertainty in species’ distributions146

(particularly using quantum approaches—see below), then the increased resolution provided147

by these new tools will be critical.148
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Beyond ‘footprint measures’ of past dynamics149

Integrating phylogenetic information. Biogeographers often try to infer underlying150

processes from stationary present-day patterns, but it is increasingly clear that deep-time151

history is important (Ricklefs 2004; Wiens & Donoghue 2004). Such deep-time history have152

been accounted for in two key ways: by measuring (1) species’ shared evolutionary history153

(Webb et al. 2002), or (2) past environmental change and dispersal lags (e.g., Sandel et al.154

2011; Kissling et al. 2016). Yet in both of these cases, biogeographic history, macroevolution-155

ary processes, or past environmental dynamics are reduced to “footprint measures” that sum156

up accumulated change [see ‘(beyond) footprint measures’ in figure 1]. Thus, for purposes157

here, we consider any metric that sums across an entire time series or phylogeny and reduces158

it to a single datum as a ‘footprint measure’. Historical data have transformed our under-159

standing of recent environmental change (Foley et al. 2005; Parmesan 2006) and species’160

invasions (Duncan et al. 2003; Dehnen-Schmutz et al. 2007), but new data and methods161

mean there is no need to limit ourselves to historical footprints when addressing processes162

operating over longer timescales (Hunt & Slater 2016). For example, Fritz et al. (2016) use163

long-term paleontological datasets to show a consistent diversity-productivity relationship164

within North American and European mammal and plant fossil records between 23 and 2165

million years ago. Present-day data do not match this relationship, likely because Pleis-166

tocene climatic oscillations and human impacts reduced mammalian diversity and terrestrial167

primary production (Barnosky 2008; Faurby & Svenning 2015; Doughty et al. 2016). Simi-168

larly, Pearse et al. (2013) used information from phylogeny to show a tendency for members169

of younger clades to co-occur with one-another more often than older clades, even millions170

of years after the clade originated. This perhaps reflects rapid niche evolution of diversify-171

ing clades, and, by examining the interaction between evolutionary history and community172

structure, exposes an observable link between niche evolution and ecological assembly (see173

‘unifying models’ in figure 1). More work is needed to see whether younger clades that have174
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diversified more rapidly in the recent evolutionary past, in terms of both number of species175

and traits, co-occur more frequently or form more/less stable assemblages in the present day.176

Both these examples show how general ecological rules ought not to be inferred exclusively177

from past or extant data, but rather from the mapping of past onto extant data.178

Modeling processes using fossil data. Another aspect of biogeography that is being179

revolutionized by moving beyond footprints is the evolution of species’ geographic ranges,180

where (unlike the examples given above) process-based models are increasingly being fit to181

data. While methodological development in this field has been tremendous (e.g., Matzke182

2014; Tagliacollo et al. 2015), the ability of purely phylogenetic methods to reliably infer183

rates of dispersal and extirpation remains limited, even when we simulate data under very184

simple models (e.g., constant and symmetric rates). Fossil occurrence data provide an al-185

ternative source of information about the evolution of biogeographic ranges through time,186

and arguably represent the most direct evidence of the processes under study, but fossil data187

are notoriously incomplete. Silvestro et al. (2016) have shown that dispersal and extirpation188

rates can be accurately estimated from fossil lineages if fossil preservation is explicitly mod-189

eled, and that dispersal rates are more variable through time and between geographic areas190

than commonly assumed in purely phylogenetic models. Perhaps most importantly, Silvestro191

et al. also show that fossil-estimated extirpation rates are much higher than the near-zero192

estimates typically obtained from neontological data. Thus fossil data need not only be used193

to improve the dating of phylogenetic trees (as is common; reviewed in Donoghue et al. 1989;194

Rutschmann 2006), but can also be used to augment phylogenetic inferences of historical bio-195

geography and more accurately measure variation in dispersal and extinction through time.196

Fossils provide data that shed light on the processes that affect diversification (of species197

and of traits) and range evolution, providing information on both time and place that can198

inform models fit jointly to phylogenetic and fossil data (Hunt & Slater 2016). Many open199

access databases of fossils that contain data on location, age, and morphology/traits are now200

available (e.g., Goring et al. 2015, and PaleoDB—https://paleobiodb.org/ ), making this a201
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rich seam for biogeographical analysis.202

Unifying models and concepts203

Maximum entropy theory in ecology (METE). The integration of mechanism into204

statistical models has long been a major challenge in macroecology. Rapid progress means205

that we now possess conceptual frameworks that combine the explanatory power of statis-206

tical tools with the biological insight that mechanistic models can provide. Starting only207

with a small number of measured state variables and no parameters, the maximum entropy208

theory in ecology (METE; Harte et al. 2015, ; see also ‘METE’ in figure 1) predicts the func-209

tional form of multiple macroecological patterns, such as the species abundance distribution210

and variation in individual body size. These statistical insights have informed debates that211

have raged for decades within ecology, such as what underlies variation in the species-area212

curve (Harte et al. 2009). From hundreds of empirical tests a generalization has emerged:213

in ecosystems with constant state variables METE performs well, but in ecosystems under-214

going shifts METE fits data poorly. For those ecosystems in which the state variables are215

changing, a hybrid METE–mechanism-based approach (DynaMETE) might be more appro-216

priate, in which dynamic state variables are driven by explicit mechanisms. This promising217

theory of ecosystems undergoing change, either in response to human influence or to natural218

disturbance regimes, has the potential to unify statistical and mechanistic approaches. More219

detail on the expanding range of METE-like models that can incorporate non-equilibrium220

dynamics can be found in (Rominger et al. 2017).221

Quantum biogeography. An alternative framework which, like METE, also draws from222

the physics literature, is to treat species as analogous to quantum particles. As species223

distributions are dynamic, precise locations are only known when they are observed and224

thus provide an incomplete portrait of the entire species’ distribution. Consequently, a225
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species’ distribution may be better represented by a wave-function, or an analogous dis-226

tribution function, that describes the relative likelihood of presence at given locations (see227

‘quantum biogeography’ in figure 1; Real et al. 2017). Acknowledging that species’ like-228

lihood of occurrence is continuous, not discrete, has advanced prediction and inference of229

species’ distributions (Guillera-Arroita et al. 2015) and assembly patterns (Karger et al.230

2016), and quantum-inspired approaches may continue this trend. A fruitful next step may231

be to incorporate behavior into similar waveform functions, unifying uncertainty, behavior,232

and macro-scale distribution data.233

Approximate Bayesian computation. METE and the frameworks developed from it234

have been criticized for their mathematical complexity. For those who prefer to simulate235

rather than to solve, approximate Bayesian computation (ABC) has emerged as a way to236

contrast the influence of different mechanisms [see Beaumont (2010) for a thorough review;237

but also Robert et al. (2011)]. Informally, ABC involves simulating a system (e.g., pop-238

ulations migrating at specified rates) with existing data as starting points under different239

parameters (e.g., migration rates) and defined statistical metrics (e.g., average range size).240

ABC is thus a model-fitting framework, like maximum likelihood, and not a particular model241

formulation. An ABC model is declared a good fit if the metrics of the simulations and data242

are similar, and so ABC does require the careful selection of sensitive and appropriate sum-243

mary statistics. While ABC is computationally intensive, its flexibility allows the testing of244

almost any model we can conceive and implement. Clarke et al. (2017) used ABC to model245

inter-specific competition on phylogenies, addressing theory that has proven difficult to test246

[Nuismer & Harmon (2015); but see Drury et al. (2016)]. There is a pressing need for more247

such work, testing, for example, whether clades whose trait evolution has been shaped by248

competition are still competing in the present, or whether that past evolution has mitigated249

competition in the present.250

Integration through concepts rather than equations. Building cross-scale models251
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that produce broad-scale patterns from process-based models may seem challenging, but it252

can be done. Alongside the approaches outlined above, Albert et al. (2017) provide another253

excellent example of cross-scale modeling. Focusing on a single process—the effects of river254

capture in changing species’ geographic distributions—Albert et al. simulate realistic broad-255

scale diversification dynamics using local-scale dispersal limitation. Such approaches that256

connect disparate ideas and processes (in this case, dispersal limitation and river capture)257

have more potential than approaches that only connect to specific patterns (e.g., changes258

in diversification rate). Scales and disciplines are united by concepts formalized as equa-259

tions, but even if two disciplines use similar terms it does not necessarily follow that the260

processes are the same. For example, Ornstein-Uhlenbeck (OU) models of trait evolution261

have a parameter, α, that describes the tendency of evolution to remain near some optimum.262

This parameter is often referred to as a ‘selection’ parameter, largely because OU models263

are used to represent constant stabilizing selection in quantitative genetics. However, em-264

pirical studies have shown conclusively that the quantitative genetics version of OU models265

differs from the macroevolutionary version [e.g., Harmon et al. (2010), but see also Uyeda266

& Harmon (2014)]. Shared terminology and models alone do not unify the two fields of267

quantitative genetics and macroevolution: unification comes not from models or equations,268

but from concepts. To give another example, incorporating equations from quantum theory269

into species distribution modeling, as proposed by Real et al. (2017), may be a useful way270

to advance one field by borrowing concepts from another, but does not reflect a meaningful271

unification of quantum and biogeographic theory. Biogeography has greatly benefited from272

the sharing of theory across disciplines, and we hope that this continues, but such exchange273

will be more fruitful when we consider whether not just mathematics but also concepts are274

comparable across fields.275
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Conclusion and future directions276

We frequently consider biogeographic processes operating at different temporal and/or spa-277

tial scales, but it is often difficult in practice to ‘scale up’ (or down). By including new data278

into process-based models, especially those with a temporal dimension, we might be able to279

better connect across scales. The paleontological record has always informed our understand-280

ing of species’ biogeographical histories and can greatly enhance inference from phylogeny281

(Lieberman 2002; Jackson & Erwin 2006; Brewer et al. 2012; Fritz et al. 2013), but the inte-282

gration of fossil data within newer macroecological methods has tended to lag behind that of283

phylogenetic data. Data not typically incorporated within biogeographic analyses, such as284

species’ behavioral responses, provide information at a much finer temporal resolution, but285

can similarly be used to construct scale-able process-based models. Despite recent advances286

and exciting prospects for the future, the identification of generalizable models that can287

improve the link from process to pattern remains elusive (Cabral et al. 2017). However, the288

gaps that artificially separate pattern and process in our concepts and analyses are shrinking,289

and by considering the dimensions of space and time simultaneously, we will be able to link290

them with stronger bridges. The development of new methodological frameworks, such as291

METE and ABC, provides the power and flexibility to move us towards a more complete292

understanding of how processes produce patterns across spatio-temporal scales. It is exciting293

to think that many of the conceptual linkages we outlined in figure 1 can now be explicitly294

modeled, as we outline in figure 2. What strikes us most when looking at this figure is the295

linkages across data-types: it is now possible to integrating so many different kinds of data in296

a single model that the range of questions we can now ask has increased substantially.297

We do not wish to suggest that the concepts we discuss here encompass all the exciting new298

advances in the field of biogeography, but throughout this essay we have articulated three299

areas that we have focused upon in our own research and that inspired our symposium at300

the International Biogeography Society meeting in Arizona. (1) The collection or inclusion301
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Figure 2: Questions that can be answered about the nature of spatio-temporal
scaling using the approaches outlined in this essay. As an accompaniment to
figure 1, we present here a figure with the same layout, only now each source of data
has been replaced with a published dataset [Breeding Bird Survey—(Sauer et al. 1966);
PaleoDB—https://paleobiodb.org/ ; global bird phylogeny—(Jetz et al. 2012); global bird
traits—(Wilman et al. 2014)] and each methodological arrow with a question that can be
answered.

of non-traditional data, such as the dispersal behaviors of species on a landscape, which302

has improved our understanding of the mechanisms underlying biogeographical patterns.303

(2) Moving beyond ‘footprint measures’ of deep-time patterns to shed light on how past304

mechanisms have shaped present-day ecological dynamics. (3) Utilizing empirical frameworks305

such as METE and ABC to test specific hypotheses that, even a decade ago, were only306

conceptual frameworks (e.g., figure 1). It is our hope that these three avenues provide a way307

forward for biogeographers to continue to advance our understanding of how processes vary308

across spatial and temporal scales.309
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Cabral, J., Smith, A. B., Svenning, J.-C., et al. (2016). Delineating probabilistic species422

pools in ecology and biogeography. Global Ecology and Biogeography.423

Keith, S. A. & Bull, J. W. (2017). Animal culture impacts species’ capacity to realise climate-424

driven range shifts. Ecography 40.2, 296–304.425

Keith, S. A., Maynard, J. A., Edwards, A. J., Guest, J. R., Bauman, A. G., Van Hooidonk, R.,426

et al. (2016). Coral mass spawning predicted by rapid seasonal rise in ocean temperature.427

283.1830, 20160011.428

20



Kissling, W. D., Blach-Overgaard, A., Zwaan, R. E., & Wagner, P. (2016). Historical colo-429

nization and dispersal limitation supplement climate and topography in shaping species430

richness of African lizards (Reptilia: Agaminae). Scientific Reports 6.431

Kraft, N. J., Adler, P. B., Godoy, O., James, E. C., Fuller, S., & Levine, J. M. (2015).432

Community assembly, coexistence and the environmental filtering metaphor. Functional433

Ecology 29.5, 592–599.434

Lemey, P., Rambaut, A., Welch, J. J., & Suchard, M. A. (2010). Phylogeography takes a435

relaxed random walk in continuous space and time. Molecular biology and evolution 27.8,436

1877–1885.437

Levin, S. A. (1992). The problem of pattern and scale in ecology: the Robert H. MacArthur438

award lecture. Ecology 73.6, 1943–1967.439

Lieberman, B. S. (2002). Phylogenetic biogeography with and without the fossil record: gaug-440

ing the effects of extinction and paleontological incompleteness. Palaeogeography, Palaeo-441

climatology, Palaeoecology 178.1, 39–52.442

Linchant, J., Lisein, J., Semeki, J., Lejeune, P., & Vermeulen, C. (2015). Are unmanned443

aircraft systems (UASs) the future of wildlife monitoring? A review of accomplishments444

and challenges. Mammal Review 45.4, 239–252.445

Matzke, N. J. (2014). Model selection in historical biogeography reveals that founder-event446

speciation is a crucial process in island clades. Systematic Biology 63.6, 951.447

McGill, B. J. (2010). Towards a unification of unified theories of biodiversity. Ecology Letters448

13.5, 627–642.449

Nuismer, S. L. & Harmon, L. J. (2015). Predicting rates of interspecific interaction from450

phylogenetic trees. Ecology Letters 18.1, 17–27.451
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