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Abstract

This paper studies the performance of an indoor optical wireless communication system with

visible light communication (VLC) technology in a cuboid room with a spatially random re-

ceiver. Considering that the receiver is uniformly distributed on the floor of a 4a m × 4b m ×

H m (where a > 0, b > 0 and H > 0) cuboid room, 4 light emitting diode (LED) lamps are

all located at the center of 2a m × 2b m rectangle, which is a quarter of the ceiling area. The

receiver chooses the best channel link to receive the information from the LED lamps, which

depends on the distance between the receiver and each lamp. By using stochastic geometry

theory, we derive the exact/approximated analytical expressions for the outage probability and

the ergodic capacity, respectively. Finally, our derived analytical results are verified by Monte

Carlo simulations.
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1. Introduction

As an age-long technology that can entail the transmission of information-laden optical

radiation through the free-space channel [1], optical wireless communications have attracted

plenty of attentions of the researchers from both academia and industry due to the features such

as good security, free licensed frequency band, immunity to induced electromagnetic interference

(EMI), and so on. Among various kinds of optical wireless communication systems, we have

seen a growing research in visible light communications(VLC), the idea of which is using light

emitting diodes (LEDs) for both illumination and data communications.

LEDs have been demonstrated to have ability to provide a high data rate with considerable

energy consumption [2, 3] and to achieve considerable coverage space via the help of relays [4].

Certainly, it’s true that VLC has an advantage to transmit radio frequency (RF) signal with

less background noise, non-interference, free of health concern and higher security [5, 6, 7].
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Moreover, some of previous literatures, such as, [8, 9] laid foundations for LED lighting com-

munication systems and contributed to the knowledge base that would provide high data rate

and slow growing communication needs, while bringing light to the people or be a decoration.

It is worthwhile to note that one of the features of VLC is the 380 nm-780 nm optical

spectrum VLC occupied [10]. Although the frequency band is unlicensed, an appropriate choice

for VLC system is given to the indoor VLC due to the fact that the bandwidth is a short-range

with limited operating voltage range and coverage. That is to say that, indoor VLCs have an

ability to propagate information to the whole room coverage with multiple distributed light

emitting diodes, while the LEDs illuminate the room [11]. Furthermore, this is certainly true

in the indoor optical wireless system that the channel is typically deterministic.

In addition, intensity modulation (IM)/direct detection (DD) is adopted in indoor VLC

systems, which is the most practical modulation technique for indoor scenarios. The receiver

would generate electrical signal according to the fluctuations in the intensity carrying the in-

formation [12]. Interesting enough, the system also has an ability to obtain a more accurate

position information with photo-detector (PD), which could generate photocurrent by the re-

ceived optical power [13]. Acquiring an accurate indoor localization became more and more

possible by the received signal power, as the power of the received optical signal or the received

signal is greatly affected by the transmission distance and angles [13, 14, 15, 16].

In addition to position research, many studies on other important indoor systems have been

presented. [17] investigated the influence of interference and reflection in VLC indoor system.

[18] investigated non-direct line-of-sight (LOS) indoor VLC system performance, which applied

repetition code and spatial multiplexing. [19] proposed a new realistic indoor VLC channel

model and applied it to multiple-input multiple-output (MIMO) communication system, which

uses non-sequential ray tracing approach for the channel impulse responses. [20] illustrated

an indoor VLC system with MIMO orthogonal frequency division multiplexing and receiver

angular diversity module. [21] proposed centralized or decentralized transmitted power allo-

cation algorithms for multiple input multiple output system considering multiple LEDs and

photodetectors. [22] characterized the performance of MIMO systems considering spatial mod-

ulation and spatial multiplexing with both imaging and non-imaging receivers. [23] concluded

that mobile receivers with adaptive modulation and per antenna rate coding gain higher sys-

tem capacity compared to the fixed and vertically oriented receivers. [24] demonstrated the

superior performance of non-orthogonal multiple access indoor channel. The secrecy outage

performance of the VLC downlink was studied in [25], while considering the randomness of

the positions of both the legitimate receiver and a group of eavesdroppers. In [26], the secrecy

outage performance of the RF uplink was investigated in a VLC-RF hybrid system with light

energy harvesting, while considering the randomness of the locations of the legitimate terminal
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and the eavesdropper. A 3-dimensional indoor VLC-RF model with light energy harvesting

was proposed and analyzed in [27], while independent and correlated Rician fading channels

are considered for the RF uplinks.

1.1. Motivation and Contributions

The aforementioned researches [18, 19, 20, 24] only investigated the cases of fixed room sizes

(5 m × 5 m × 3 m ) or fixed receiver positions, which result in the fixed distances between

the transmitters and the receivers. However, in practice, the viewpoint that the transmission

distance and angle largely determine the received power within a same indoor environment

is strongly believed. In a more realistic case, a small vary in position will result in a large

variation of the received signal, thus we should take the spatial distribution of the receiver

and the uncertainty of the room size into consideration. Though [28] considered the random

location of the person in the environment and body movements, and [29] took a W m × L

m × H m room into account, they have not derived the closed-form expressions for outage

probability (OP).

Motivated by the above observations, in this paper we analyze the performance of an indoor

optical wireless communication system with VLC and a randomly distributed receiver by mak-

ing use of stochastic geometry theory [30]. To investigate the impact of the receiver location,

we suppose the receiver is uniformly distributed on the floor of the room with a general size 2a

m × 2b m × H m (where a > 0, b > 0 and H > 0). In other words, the possibility of falling

at each point on the ground in the considered room is the same. It is also important to note

here that which point in the room is unknown. For indoor wireless communication structure,

considering 4 LED lamps are respectively located at the center of 2a m × 2b m (where a > 0

and b > 0) rectangle which is a quarter of the ceiling area 4a m × 4b m, with the room height,

H m (H > 0). A key concept here is that the receiver only chooses the best channel link among

the 4 LEDs to receive the information with the aim of improving channel gain and energy

utilization. Main contributions of this work are summarized as follows:

1) We characterize the probability density function (PDF) and cumulative distribution func-

tion (CDF) of the signal-to-noise-ratio (SNR) over the VLC channel with two particularities.

First, we consider the location of the receiver randomly distributed in the room; Second, the

room size is not fixed which is more practical for real scenarios.

2) We study the outage performance of the targeted VLC system and derive the exact

closed-form expression for OP.

3) We demonstrate the approximated ergodic capacity for excellent and bad channel envi-

ronments, which has not been well investigated in the previous works.

In this paper, due to the complexity invoked by the randomness of the terminal’s position,
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VLC channel fading and unfixed room size, we employ stochastic geometry and Meijer G-

functions to achieve performance analysis models.

1.2. Organization

The remainder of the paper is organized as follows: The considered indoor VLC system

model is given in Section 2. The exact analytical expression for outage probability (OP) is

derived in Section 3. The approximate analytical expression for ergodic capacity is presented

in Section 4. Numerical results are given in Section 5. Finally, the conclusion will be given in

Section 6.

2. System Model

Figure 1: System model

As shown in Fig. 1, an indoor optical wireless communication system with VLC technology

is considered here, which consists of four LED lamps placed in the centre of each 1/4 rectangle

on the ceiling of the room. All LEDs attempt to deliver information to a receiver equipped with

photodiode, which is uniformly distributed on the floor of a 4a m × 4b m × H m room (where

a > 0, b > 0 and H > 0). In order to improve the channel gains and energy consumption, we

also assume that the receiver would like to receive the strongest information signal emitted by

the optimal VLC transmitter among the four LED lamps 1.

To motivate our discussion about the performance of the system, it is useful to clarify some

channel parameters. Due to the fact that the system adopts IM and DD, assuming PD’s active

area is A, the distance between the ith, (i ∈ {1, 2, 3, 4}) LED lamp and the receiver is di, the

concentrator field of view is Ψc, the gain of the non-imaging concentrator and optical filter

adopted at the receiver denoted as g (ψi) and Ts (ψi) respectively, which are related to the

angle of incidence with respect to the receiver axis ψi and defined by Eq. (8) in [31]. φi is the

1In the considered system, each lamp adopts an unique random sequence to encode the information bits,

and the four random sequences are orthogonal with each other, which are available at the terminal. Then, after

PD, the terminal can respectively decode the four signals from the four lamps by using the random sequences,

and compare the SNR of them. In this way, the terminal can find out the signal with the maximum SNR and

choose it for information decoding.
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LED irradiation angle, while φi,1/2 is the semi-angle of the LED at half power which determines

the light beam Lambertian order mi, denoted as

mi =
− ln 2

ln
(
cos
(
φi,1/2

)) . (1)

Thus, the channel gain between the ith LED lamp and the receiver, hi, (i ∈ {1, 2, 3, 4}), can

be defined as

hi =


(mi+1)A

2πd2i
cosmiφiTs (ψi) g (ψi) cosψi, 0 ≤ ψi ≤ Ψc

0, ψi > Ψc.
(2)

We can obtain the expression for the received optical power PRi at the receiver, which was

transmitted by the ith LED with the same transmit power, Pt, as

PRi = Pt
(mi + 1)A

2πdi
2 cosmiφiTs (ψi) g (ψi) cos (ψi) . (3)

As suggested in [32], the RF power constant CRF
2, including the optical to electrical conver-

sion efficiency, at the receiver follows relationship (PRF )
1
2 ∝ iPD ∝ Pr, where iPD denotes the

current of PD. Thus, the received RF power from the ith LED at the receiver can be written

as

Pi,RF = CRFPRi
2 = CRFPt

2Gr
2 (φi)Gt

2 (ψi) /d
4
i , (4)

where ψi = 0 for maximizing the light receiving, which means the incidence line is perpendicular

to the PD axis at each receiver. For these reason, we can obtain Gr (ψi) = cosmi,r (ψi) = 1,

which is related to light beam Lambertian order mi,r. The receiver half power semi-angles ψi,1/2,

mi,r can be defined by (1). Similarly, Gt (φi) = cosmi,t (φi) is the transmitting gain decided by

the radiation angle φi and mi,t, which are related to φi,1/2 and given by (1). In the following, we

also assume that the order mi,t of Lambertian emission for each LED is the same, and denoted

as mt = mi,t for simplification.

As shown in Fig. 1, it is obvious that cos (φi) = H/di. Then, (4) can be rewritten as

Pi,RF = CRFPt
2cos2mt (φj) /d

4
i

= CRFPt
2H2mtd−2mt−4

i . (5)

In this work, we assume that each LED lamp adopts an unique random sequence to encode

the information bits before delivery. Thus, the interference problem among the four LED lights

can be overcome, while the four signals from the four lamps can be decoded and distinguished by

2The second step of Eq. (4) is obtained by substituting Eq. (3) in the first step and the constants of Eq.

(3) are absorbed in CRF .
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using the random sequences. Thus, we only consider the noise at the receiver, while calculating

the signal-to-ratio (SNR). Therefore, the SNR of the received signal at the receiver, which is

transmitted by the ith transmitter, can be given as

γi,RF =
Pi,RF
N0

= λd−2mt−4
i , (6)

where N0 is the average power of the noise, λ = CRFPt
2H2mt/N0 for simplification.

It is important to note here that only the LED with the maximum instantaneous SNR

among the four LEDs will be selected. Thus, the final SNR γRF can written as

γRF = max
i∈{1,2,3,4}

{γi,RF} . (7)

Figure 2: Four sub-rectangles in the room

Observing from the expression of γi,RF , apparently, the instantaneous SNR mainly depends

on the distance between the receiver and each LED. That is to say, the minimum value of di

will be selected. To better understand this process, let’s recall the system model demonstrated

by Fig.1 and divide the whole room into four sub-cubes, where each LED is placed on the

center of the ceiling, as presented in Fig. 2. Then, we will see that the LEDs selection

problem turns into which sub-rectangle the receiver will be located in. Obviously, the prolixity

that the receiver falling on each sub-rectangle depends on their floor area, which are same,

Pi = 4ab
16ab

= 1
4
, (i ∈ {1, 2, 3, 4}) (The four edges that intersect the two rectangles and the center

of the room is the special case, where the receiver will receive two or four same intensity of

signals and selectively randomly from the transmitters. But the part is only accounting for a

small proportion in the total area which will not have a great impact on Pi ). Thus, the CDF

of the SNR can be re-expressed as

FγRF (γ) =
4∑
i=1

PiFγi (γ)

=
1

4
Fγ1 (γ) +

1

4
Fγ2 (γ) +

1

4
Fγ3 (γ) +

1

4
Fγ4 (γ) , (8)

where Fγi (γ) , (i ∈ {1, 2, 3, 4}) is the CDF of the SNR for the link between the ith transmitter

and the receiver in the ith sub-cube.

To facilitate the following discussion on γRF , we establish a direct coordinate system with

the center of the lamp projection on the floor in the ith sub-cube, as shown in Fig. 3. Denote
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Figure 3: The receiver located in the ith sub-rectangle

the coordinate of the receiver as (x, y). As the receiver is uniformly distributed, the joint

probability distribution function of (x, y) can be given as fxy (x, y) = 1/(4ab). Therefore, the

distance within the ith sub-cube between the receiver and the projection of the ith LED can

be calculated as ri =
√
x2 + y2. Furthermore, we can easily obtain di =

√
H2 + r2

i , and write

γi as

γi = λ
(
H2 + r2

i

)−mt−2
, (9)

where γi,max = λH−2mt−4 and γi,min = λ(H2 + a2 + b2)
−mt−2

.

Figure 4: The distribution area of the receiver

In order to obtain the distribution of ri, we use polar coordinates measure and assume a < b

(For the case of a > b, one only needs to turn the sub-cube 90 degrees and let a = b, b = a) and

dividing the rectangle into three parts, as shown in Fig. 4, which will be respectively discussed

in the following.

First of all, let’s begin with the simplest case that the receiver is within the circular with

radius a. Under this case, let z denote ri as the independent variable, the CDF and PDF of ri

can be easily obtained as

Pi,1 (z) =

2π∫
0

z∫
0

1

4ab
rdrdθ =

2π∫
0

z2

8ab
dθ =

πz2

4ab
; (10)

fi,1 (z) =
dPi,1 (z)

dz
=

πz

2ab
. (11)
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Under the second case that a < ri < b, we can respectively obtain the CDF and PDF of ri

as

Pi,2 (z) = 4

 arccos a
z∫

0

a
cos θ∫
0

1

4ab
rdrdθ +

π
2∫

arccos a
z

z∫
0

1

4ab
rdrdθ


= 4

 arccos a
z∫

0

a2

8abcos2θ
dθ +

π
2∫

arc cos a
z

z2

8ab
dθ


=
z2
[
π − 2 arccos

(
a
z

)]
4ab

+ a
tan

[
arccos

(
a
z

)]
2b

(12)

and

fi,2 (z) =
dPi,2 (z)

dz
=

2z
[
π − 2 arccos

(
a
z

)]
4ab

− −2z2 (−a)

4abz2

√
1−

(
a
z

)2
+

−a2 (−z−2)

2bcos2
[
arccos

(
a
z

)]√
1−

(
a
z

)2

=
z
[
π − 2 arccos

(
a
z

)]
2ab

. (13)

Similarly, the CDF of ri under the third case that b < ri <
√
a2 + b2 can be expressed as

Pi,3 (z) = 4

 arc cos a
z∫

0

a
cos θ∫
0

1

4ab
rdrdθ +

π
2
−arc cos b

z∫
arc cos a

z

z∫
0

1

4ab
rdrdθ +

π
2∫

arc cos b
z

b
cos θ∫
0

1

4ab
rdrdθ



= 4

 arc cos a
z∫

0

a2

8abcos2θ
dθ +

π
2
−arc cos b

z∫
arc cos a

z

z2

8ab
rdrdθ +

π
2∫

arc cos b
z

b2

8abcos2θ
dθ


=
z2
[
π − 2 arccos

(
a
z

)
− 2 arccos

(
b
z

)]
4ab

+ a
tan
[
arccos

(
a
z

)]
2b

+ b
tan
[
arccos

(
b
z

)]
2a

, (14)

while the PDF can be written as

fi,3 (z) =
dPi,3 (z)

dz

=
2z
[
π − 2 arccos

(
a
z

)
− 2 arccos

(
b
z

)]
4ab

− 2z2 (a)

4abz2

√
1−

(
a
z

)2
− 2z2 (b)

4abz2

√
1−

(
b
z

)2

+
a2 (z−2)

2bcos2
[
arccos

(
a
z

)]√
1−

(
a
z

)2
+

b2 (z−2)

2acos2
[
arccos

(
b
z

)]√
1−

(
b
z

)2

=
z
[
π − 2 arccos

(
a
z

)
− 2 arccos

(
b
z

)]
2ab

. (15)

Using [33, Eq. (1.641.1)], fi,2 (z) and fi,3 (z) can be simplified as

fi,2 (z) =
z
[
arcsin

(
a
z

)]
ab

(16)

and

fi,3 (z) =
z
[
2 arcsin

(
a
z

)
+ 2 arcsin

(
b
z

)
− π

]
2ab

, (17)
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respectively.

Using (9), we can easily obtain the CDF of γi by

Fγi (γ) = Pr {γi ≤ γ} = Pr
{
λ
(
ri

2 + H2
)−mt−2 ≤ γ

}
= Pr

{
ri ≥

√(γ
λ

)− 1
mt+2 − H2

}

= 1− Pr

{
ri <

√(γ
λ

)− 1
mt+2 − H2

}
. (18)

Using the obtained CDF of ri and let Υ =

√(
γ
λ

)− 1
mt+2 −H2, the CDF of γRF can be

rewritten as

Fγi (γ) =


1− Pi,1 (Υ) 0 < Υ < a

1− Pi,2 (Υ) a < Υ < b

1− Pi,3 (Υ) b < Υ <
√
a2 + b2

. (19)

Observing the CDF of ri, one can have Fγ1 (γ) = Fγ2 (γ) = Fγ3 (γ) = Fγ4 (γ). Thus, we can

simplify the CDF of rRF as FγRF (γ) = Fγi (γ).

3. Outage Probability

In this work, outage probability is defined as the probability that the instantaneous SNR is

below a given threshold value, γth (γth > 0). Then, the OP of ith link can be given as

Prγi (γth) = 1− Pr

{
ri <

√(γth

λ

)− 1
mt+2 − H2

}
. (20)

In this paper, as the receiver is uniformly distributed on the indoor floor as suggested by

Fig. 4, then, one can easily see that the OP relies on the length and width of the room, and

the location of the receiver. Therefore, in the following, we will respectively derive the exact

expression of the OP in three cases according to the position of the receiver.

When 0 <

√(
γth
λ

)− 1
mt+2 −H2 < a, substituting Υ =

√(
γth
λ

)− 1
mt+2 −H2 into the first

formula of (19), the OP of this case can be given as

PrγRF,1
(γth) = 1−

π
[(

γth
λ

)− 1
mt+2 −H2

]
4ab

. (21)

When a <

√(
γth
λ

)− 1
mt+2 −H2 < b, substituting Υ =

√(
γth
λ

)− 1
mt+2 −H2 into the second

formula of (19), the OP of this case can be given as

PrγRF,2 (γth) = 1− a
tan

[
arccos

(
a

/√(γth
λ

)− 1
mt+2 −H2

)]
2b

−
[(γth

λ

)− 1
mt+2 −H2

]

×

[
π − 2 arccos

(
a

/√(γth
λ

)− 1
mt+2 −H2

)]
4ab

. (22)
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When b <

√(
γth
λ

)− 1
mt+2 −H2 <

√
a2 + b2, substituting Υ =

√(
γth
λ

)− 1
mt+2 −H2 into the

third formula of (19), the OP of this part can be given as

PrγRF,3 (γth) = 1− a
tan

[
arccos

(
a

/√(γth
λ

)− 1
mt+2 −H2

)]
2b

− b
tan

[
arccos

(
b

/√(
γth
λi

)− 1
mt+2 −H2

)]
2a

−
(γth
λ

)− 1
mt+2 −H2

4ab

×

[
π − 2 arccos

(
a

/√(γth
λ

)− 1
mt+2 −H2

)
−2 arccos

(
b

/√(γth
λ

)− 1
mt+2 −H2

)]
.

(23)

Therefore, the OP for the considered system can be easily given by the following theorem

by using the derived OP for above three cases.

Theorem 1. Assuming an indoor VLC system with a uniformly distributed receiver, the OP

of this system can be expressed as

PrγRF
(γth) =


1− PrγRF,1

(γth) 0 < Υ < a

1− PrγRF,2
(γth) a < Υ < b

1− PrγRF,3
(γth) b < Υ <

√
a2 + b2

. (24)

Proof. By dividing the rectangle into three parts and using (21), (22) and (23) in (19), Theo-

rem 1 can be easily achieved as (24).

Then, the proof is completed.

4. Ergodic Capacity

In this section, we will investigate the ergodic capacity of the target system, which is defined

as the expectation value of the instantaneous mutual information between the transmitter and

the receiver.

According to the definition, the ergodic capacity can be presented as 3

CRF (γ) = E (log2 (1 + γ)) =
1

ln 2

∞∫
0

ln (1 + γ)fRF (γ) dγ,

where fRF (γ) is the pdf of the γRF , which also equals to γi.

3As suggested in Chapter 6 of [34], the classical Shannon’s capacity can work well for the Poisson photon

counting channel when rectangular pulse techniques are employed. In this work we present ergodic capacity

analysis for the VLC systems adopting rectangular pulse techniques.

10



Then, using γi = λ(H2 + r2
i )
−mt−2

, we can caculate fRF (γ) as

fRF (γ) = −Υ′fri (Υ) , (25)

where Υ′ is the derivative of Υ, which can be derived as

Υ′ = − λ
1

mt+2γ
−mt+3
mt+2

2(mt + 2)

√(
γ
λ

)− 1
mt+2 −H2

. (26)

Thus, by using (11), (16) and (17), the pdf of γ can be finally given as

fRF (γ) =


fRF1 (γ) = −Υ′fi,1 (Υ) 0 < Υ < a

fRF2 (γ) = −Υ′fi,2 (Υ) a < Υ < b

fRF3 (γ) = −Υ′fi,3 (Υ) b < Υ <
√
a2 + b2

(27)

Furthermore, the ergodic capacity can be re-expressed as

CRF =
1

ln 2


γmax∫
γa

ln (1 + γ)fRF1 (γ) dγ

︸ ︷︷ ︸
I1

+

γa∫
γb

ln (1 + γ)fRF2 (γ) dγ

︸ ︷︷ ︸
I2

+

γb∫
γmin

ln (1 + γ)fRF3 (γ) dγ

︸ ︷︷ ︸
I3

 .
(28)

where γmin = γi,min and γmax = γi,max given under (9), while γb = λ(H2 + b2)
−mt−2

and

γa = λ(H2 + a2)
−mt−2

. In the following, we will calculate I1, I2 and I3, respectively.

In order to facilitate the following analysis, we first present a useful proposition as follow.

Proposition 1. Defining a new function g1 (A,B,C,D) =
A∫
B

G1,2
2,2

[
Dx
∣∣1,1
1,0

]
xC−1dx, where A,

B, C, D are constant, Gm,n
p,q

[
x
∣∣∣a1,··· ,apb1,··· ,bq

]
= 1

2πi

∫ m∏
j=1

Γ(bj−s)
n∏
j=1

Γ(1−aj+s)

q∏
j=m+1

Γ(1−bj+s)
p∏

j=n+1
Γ(aj−s)

xsds is the Meijer’s

G-function, as defined by [33, Eq. (9.301)]. Then, we can obtain

g1 (A,B,C,D) = ACG1,3
3,3

[
DA

∣∣∣1,1+C,1
1,−C,0

]
−BCG1,3

3,3

[
DB

∣∣∣1,1+C,1
1,−C,0

]
. (29)

Proof. Making use of [35, Eq. (26)], we can easily calculate g1 (A,B,C,D) as (29).

Then, the proof is completed.

To calculate the term I1 in (28), we give a lemma as follows.

Lemma 1. Assuming 0 <

√(
γth
λ

)− 1
mt+2 −H2 < a, I1 can be expressed as

I1 =
πλ

1
mt+2

4 (mt + 2) ab
g1

(
γmax, γa,−

1

mt + 2
, 1

)
. (30)

11



Proof. It is easy to have

I1 =

γmax∫
γa

ln (1 + γ) fRF1 (γ) dγ

=

γmax∫
γa

ln (1 + γ)

(
−πΥΥ′

2ab

)
dγ

=
πλ

1
mt+2

4 (mt + 2) ab

γmax∫
γa

ln (1 + γ) γ
−mt+3
mt+2dγ. (31)

Using [35, Eq.(11)] and ln (1 + x) = G1,2
2,2

[
x
∣∣1,1
1,0

]
, (31) can be re-expressed as

I1=
πλ

1
mt+2

4 (mt + 2) ab

γmax∫
γa

G1,2
2,2

[
γ
∣∣1,1
1,0

]
γ
−mt+3
mt+2dγ. (32)

Making use of Proposition 1, we can further obtain I1 as (30).

Then, the proof is completed.

Clearly, it is difficult to obtain the exact closed-form expressions for I2 and I3. In the

following, we wil introduce a solution with two simpler cases and derive the approximated

results: Case 1: the value of λ is relatively high and Case 2: λ is relatively low.

4.1. Case 1: The High λ Region

In subsection, we will derive the expression for the ergodic capacity when λ is high, which

means a good channel state.

Under this case, large λ leads to ln
[
1 + λ(t+H2)

−mt−2
]
≈ ln

[
λ(t+H2)

−mt−2
]

= lnλ −

(2mt + 4) lnH − (mt + 2) ln
(
t
H2 + 1

)
.

Then, in the following we will respectively derive the approximated expressions for the

terms, I2 and I3, in (28) by giving the following two lemmas.

Lemma 2. Assuming a <

√(
γth
λ

)− 1
mt+2 −H2 < b, I2 in high λ region can be expressed as

I2,H = − Ω

2ab

[
πa2 − b2 arcsin

(a
b

)
− a2b

√
1

a2
− 1

b2

]

+
mt + 2

2ab

∞∑
k=0

(2k)!a2k+1

22k(k!)2 (2k + 1)
g1

(
a2, b2,−2k − 1

2
,

1

H2

)
. (33)

Proof. See Appendix A.

12



Lemma 3. When λ is relatively large, the approximated result for I3,H can be given as

I3,H = − Ω

2ab

[
b2 arcsin

(a
b

)
+ a
√
b− a −

(
a2 + b2

)
arcsin

(
a√

a2 + b2

)
− ab

]
+
mt + 2

2ab

×
∞∑
k=0

(2k)!a2k+1

22k(k!)2 (2k + 1)
g1

(
b2, a2 + b2,−2k − 1

2
,

1

H2

)
− Ω

2ab

[
πb2 −

(
a2 + b2

)
arcsin

(
b√

a2 + b2

)
− ab

]
+

1

2ab

∞∑
k=0

(2k)!b2k+1 (mt + 2)

22k(k!)2 (2k + 1)

× g1

(
b2, a2 + b2,−2k − 1

2
,

1

H2

)
− πλ

1
mt+2

4 (mt + 2) ab
g1

(
γb, γmin,−

1

mt + 2
, 1

)
. (34)

Proof. See Appendix B.

Then, when λ is relatively large, the ergodic capacity of the target VLC system can be

obtained as

CRF,H =
1

ln 2
{I1 + I2,H + I3,H} . (35)

4.2. Case 2: The Low λ Region

In this subsection, we will derive the expression for the ergodic capacity when λ is low,

which represents a poor channel state.

Under case 2, low λ leads to −1 < 1 + λ(t+H2)
−mt−2

< 1, which satisfies the condition

that transforming the logarithmic function into infinite from [33, Eq.(1.151)]

ln (1 + x) =
∞∑
n=1

(−1)n+1x
n

n
, (−1 < x < 1) . (36)

Therefore, in the following we will respectively derive the approximated expressions for the

terms, I2 and I3, in (28) by giving the following two lemmas.

Lemma 4. Assuming a <

√(
γth
λ

)− 1
mt+2 −H2 < b, I2 in low λ region can be expressed as

I2,L=− 1

2ab

∞∑
n=1

(−1)n+1λ
n

n

∞∑
k=0

(2k)!a2k+1

22k(k!)2 (2k + 1)
H−(2m+4)ng2

(
a2, b2, (m+ 2)n,

2k + 1

2

)
.

(37)

Proof. See Appendix C.

Lemma 5. Assuming b <

√(
γth
λ

)− 1
mt+2 −H2 <

√
a2 + b2, I3 of this part in low λ region can

be given as

I3,L=− 1

2ab

∞∑
n=1

(−1)n+1λ
n

n

∞∑
k=0

(2k)!a2k+1

22k(k!)2 (2k + 1)
H−(2m+4)ng2

(
va, vb, (m+ 2)n,

2k + 1

2

)
− 1

2ab

∞∑
n=1

(−1)n+1λ
n

n

∞∑
k=0

(2k)!b2k+1

22k(k!)2 (2k + 1)
H−(2m+4)ng2

(
va, vb, (m+ 2)n,

2k + 1

2

)

− πλ
1

mt+2

4 (mt + 2) ab
g1

(
γb, γmin,−

1

mt + 2
, 1

)
. (38)
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Proof. See Appendix D.

Finally, when λ is relatively small, the ergodic capacity of the target VLC system can be

obtained as

CRF,L =
1

ln 2
{I1 + I2,L + I3,L} . (39)

5. Discussion for Multiple Users Scenarios

In multiple users scenarios where there are multiple terminals share one LED lamp, some

orthogonal multiple access (OMA) schemes have been proposed for VLC systems to deal with

this issue, e.g., optical orthogonal frequency division multiplexing, single-carrier frequency di-

vision multiple access, optical code division multiple access and optical space division multiple

access [36]. One can clearly see that under these OMA schemes no interferences exist, and

hence a conclusion can be achieved: Our proposed analytical models can work well under these

OMA scheme to model and understand the performance of the transmission between the LED

lamp and a target terminal.

Recently, non-orthogonal multiple access (NOMA) scheme, which allows all terminals to

access the entire bandwidth simultaneously through the principle of power-domain multiplexing,

has been introduced into VLC to increase system throughput and accommodate ubiquitous

connectivity in VLC systems [36]. Under NOMA scheme and considering the randomness of

the positions of the terminals, the performance of the transmissions between the LED lamp

and the terminals has not been studied, which is one of the directions for our future works.

6. Numerical Results

In this section, we will present the numerical results to validate our proposed analytical

models obtained in the previous sections, while the photodetector active area is A = 10−4, the

RF power constant CRF is 7.8 × 10−4, the semi-angle of the LED at half power φi,1/2 = 80◦,

the gain of optical filter Ts = 1, the transmitted bits and the generated random positions of

the receiver both are 1× 106.

6.1. Outage Performance

As observed from Fig. 5, we can see that increasing a and b means increasing the area of

the room. Then, the range of the distance between the receiver and the transmitter will be

expanded, which finally results in the degraded OP. It is important to note that a and b are

the 1/4 length of the sides of the room, which means a small increase in a or b will result in a

much higher increase in the area of the floor of the room.
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Figure 5: OP versus γth (the given threshold value) for Pt = 5 W, N0 = −20 dB and H = 2 m.
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Figure 6: OP versus γth (the given threshold value) for Pt = 5 W, N0 = −20 dB and a = 2 m.

As seen from Fig. 6, increasing H also leads to the degraded OP, due to the increased di.

Interestingly, H has a greater impact than the ones b or a have, because of the fact that H also

effects λ, which denotes the channel parameter. Comparing the curves of H = 3 m, b = 2.5 m

and H = 2.5 m, b = 3 m, we can clearly see that the curve for H = 3 m will drop slower than

the others and will overlap with the curve with a same b, as γth decreases.

Furthermore, we can also see from Figs. 5-6, that the system with a small γth outperforms

the one with a larger γth, since a higher SNR threshold means a better channel situation is

needed to achieve the same OP. It is also obvious that simulation and analysis results match

very well with each other, which verifies the correctness of our proposed analysis model and

the results of Theorem 1 .
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Figure 7: Ergodic capacity versus Pt (the same transmit power at all LEDs) for N0 = −35 dB.

6.2. Ergodic Capacity

6.2.1. Case 1: The High λ Region

As shown in Fig. 7, the ergodic capacity for the large λ is presented, while the truncation

factors of the summation in (33) and (34) are set as 10. Clearly, one can see that decreasing H,

a and b results in increased ergodic capacity and the height of the room has a greater impact on

ergodic capacity compared to a and b. This can be explained by the reason for the observation

on Fig. 6 in last subsection. It can also be seen from this figure that the channel capacity can

be significantly improved by the transmit power Pt of the LED, which provides more available

received power at the receiver in presence of a same distance.

3 4 5 6 7 8 9 10 11 12
7

8

9

10

11

12

13

14

15

Pt

E
rg

od
ic

 c
ap

ac
ity

 (
bi

ts
/s

/H
z)

 

 

N0 = −35 dB, Simulation
N0 = −40 dB, Simulation
N0 = −45 dB, Simulation
Analysis

Figure 8: Ergodic capacity versus Pt (the same transmit power at all LEDs) for a = 2 m, b = 2.5 m, H = 3 m.

Next, we will study the impact of the total noise on the ergodic capacity. As depicted in

Fig. 8, it can be clearly observed that ergodic capacity will increase when the power of noise

decreases, since the received SNR is improved. It important to note here that the approximate
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results of Lemma 5 and Lemma 6 developed for large λ match very well with simulation

results.
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Figure 9: Ergodic capacity versus a for b = 1.5 m, Pt = 7 W, N0 = 20 dB.

6.2.2. Case 2: The low λ Region

In Fig. 9, the impact of a and H in low λ (it includes the transmit power of LEDs , the

total channel noise, the height of the room and the RF power constant) region on the ergodic

capacity is presented, while the truncation factors of the summation in (37) and (38) are set

as 20 and 10, respectively. It is necessary to note here that the ergodic capacity will be much

smaller than the value in the Case 1 due to the condition −1 < 1 + λ(t+H2)
−mt−2

< 1. Similar

observations can be obtained for the effect of a and H on ergodic capacity as the ones in larger

λ region. It is clear that the approximated results of Lemma 7 and Lemma 8 are very close

to the simulation results and match well in smaller λ region. In other words, as observed from

the comparison between the expressions for the two cases, we can find that the approximation

error of the infinite series for Case 2 is larger than the one of the infinite series for Case 1.

From Figs. 7-9, one can observe that λ plays a very important role on the system perfor-

mance, as it consists of channel parameters, such as room height, RF power constant, the total

transmit power, the order of Lambertian emission and noise power. According to the knowledge

of the geometric progression, we can reach a conclusion as: the larger truncation factor of the

summation leads to the higher approximation accuracy.

7. Conclusion

In this paper, the performance of an indoor optical wireless communication system with

VLC and a spatially random receiver has been investigated. Specially, the size of the room

is unfixed and we only consider selecting the best communication link from four LED lamps
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located at the center of each sub-rectangle. The exact expression for outage probability and

the approximated expressions for ergodic capacity have been respectively derived.

The validity of the proposed analytical models has been verified by Monte-Carlo simulations.

By observing the numerical results, we can reach the following conclusions:

1) The approximated ergodic capacity can match the simulation ones very well, while as-

suming relatively large or small λ, and a large λ will lead to better approximation accuracy.

2) The size of the room can significantly influence the performance of the system. More

specifically, the height of the room will play a decisive role under a higher outage requirement,

while the length and width of the room will be more important with a lower channel threshold

value, γth.

3) λ, which includes the transmit power of LEDs, the total channel noise and the height of

the room, can improve the communication quality significantly. This means that the transmit

power plays a more important role, compared to two other parameters, since the transmit power

plays a positive role while the total channel noise and the height of the room play the negative

ones.
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Appendix A: Lemma 2

According to (28), we can derive I2,H as

I2 =

γa∫
γb

ln (1 + γ) fRF2 (γ) dγ

=

γa∫
γb

ln (1 + γ)

[
−

ΥΥ′arcsin
(
a
Υ

)
ab

]
dγ

=
1

2(mt + 2) ab

γa∫
γb

ln (1 + γ)λ
1

mt+2γ
−mt+3
mt+2 arcsin

(
a

/√(γ
λ

)− 1
mt+2 −H2

)
dγ. (40)
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To simplify this expression, let t =
(
γ
λ

)− 1
mt+2 − H2, we can obtain γ = λ(t+H2)

−(mt+2)
,

dγ = − (mt + 2)λ(t+H2)
−mt−3

dt and
(
γa
λ

)− 1
mt+2 − H2 = a2,

(
γb
λ

)− 1
mt+2 − H2 = b2, we can

further derive (40) as

I2 = − 1

2ab

b2∫
a2

ln
[
1 + λ

(
t+H2

)−mt−2
]
λ
mt+3
mt+2

[
λ
(
t+H2

)−mt−2
]−mt+3

mt+2
arcsin

(
a√
t

)(
t+H2

)−mt−3
dt

= − 1

2ab

b2∫
a2

ln
[
1 + λ

(
t+H2

)−mt−2
]

arcsin

(
a√
t

)
dt. (41)

For ln
[
1 + λ(t+H2)

−mt−2
]
≈ ln

[
λ(t+H2)

−mt−2
]

= lnλ−(2mt + 4) lnH−(mt + 2) ln
(
t
H2 + 1

)
,

I2,H can be approximated as

I2,H ≈ −
1

2ab

a2∫
b2

Ω arcsin

(
a√
t

)
dt

︸ ︷︷ ︸
I21

+
1

2ab

a2∫
b2

(mt + 2) ln

(
t

H2
+ 1

)
arcsin

(
a√
t

)
dt

︸ ︷︷ ︸
I22

, (42)

where Ω = lnλ− (2mt + 4) lnH for simplification.

In the following, I21 can be derived as

I21=− 1

2ab

a2∫
b2

Ω arcsin

(
a√
t

)
dt

u= 1√
t

= − 1

2ab

1
a∫

1
b

−2u−3Ω arcsin (au) du

=
1

ab

1
a∫

1
b

u−3Ω arcsin (au) du. (43)

Using [37, Eqs.(1.7.3.15)], we can obtain

I21 = − Ω

2ab

[
πa2 − b2 arcsin

(a
b

)
− a2b

√
1

a2
− 1

b2

]
. (44)

To derive I2, using [33, Eqs.(1.164.1)] to transform the arcsine function into infinite series,

one has

arcsin (x) =
∞∑

k=0

(2k)!x2k+1

22k(k!)2 (2k + 1)
. (45)
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Further, recalling [35, Eq.(11)] shown above (32) and g1 (A,B,C,D), we can derive I22 as

I22 =
mt + 2

2ab

a2∫
b2

ln

(
t

H2
+ 1

)
arcsin

(
a√
t

)
dt

=
mt + 2

2ab

a2∫
b2

G1,2
2,2

[
t

H2

∣∣∣1,11,0

] ∞∑
k=0

(2k)!a2k+1

22k(k!)2 (2k + 1)
t−

2k+1
2 dt

=
mt + 2

2ab

∞∑
k=0

(2k)!a2k+1

22k(k!)2 (2k + 1)

a2∫
b2

G1,2
2,2

[
t

H2

∣∣∣1,11,0

]
t−

2k+1
2 dt

=
mt + 2

2ab

∞∑
k=0

(2k)!a2k+1

22k(k!)2 (2k + 1)
g1

(
a2, b2,−2k − 1

2
,

1

H2

)
. (46)

Therefore, substituting (44) and (46) into (42), we can obtain the approximated result of

I2 in high λ region.

Then, the proof is completed.

Appendix B: Proof of Lemma 3

According to (28), we can derive I3 as

I3=

γb∫
γmin

ln (1 + γ) fRF3 (γ) dγ

=−
γb∫

γmin

ln (1 + γ)
ΥΥ′

[
2 arcsin

(
a
Υ

)]
2ab

dγ

γb∫
γmin

[
ln (1 + γ)

ΥΥ′
[
2 arcsin

(
a
Υ

)]
2ab

− ln (1 + γ)
ΥΥ′π

2ab

]
dγ.

(47)

Also, substituting Υ and Υ′ into (47), we can derive I3 as

I3 =
λ

1
mt+2

2(mt + 2) ab

γb∫
γmin

ln (1 + γ) γ
−mt+3
mt+2 arcsin

a√(
γ
λ

)− 1
mt+2 −H2

dγ

︸ ︷︷ ︸
I31

+
λ

1
mt+2

2(mt + 2) ab

γb∫
γmin

ln (1 + γ) γ
−mt+3
mt+2 arcsin

b√(
γ
λ

)− 1
mt+2 −H2

dγ

︸ ︷︷ ︸
I32

− πλ
1

mt+2

4 (mt + 2) ab

γb∫
γmin

ln (1 + γ) γ
−mt+3
mt+2dγ

︸ ︷︷ ︸
I33

(48)

To simplify this expression, let t =
(
γ
λ

)− 1
mt+2 − H2, we can obtain γ = λ(t+H2)

−(mt+2)
,

dγ = − (mt + 2)λ(t+H2)
−mt−3

dt and
(
γb
λ

)− 1
mt+2 −H2 = b2,

(
γmin
λ

)− 1
mt+2 −H2 = a2 + b2, we

can further derive I31 and I32 of (48) as
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I31 = − 1

2ab

a2+b2∫
b2

ln
[
1 + λ

(
t+H2

)−mt−2
]
λ
mt+3
mt+2

[
λ
(
t+H2

)−mt−2
]−mt+3

mt+2
arcsin

(
a√
t

)(
t+H2

)−mt−3
dt

= − 1

2ab

a2+b2∫
b2

ln
[
1 + λ

(
t+H2

)−mt−2
]

arcsin

(
a√
t

)
dt (49)

and

I32 = − 1

2ab

a2+b2∫
b2

ln
[
1 + λ

(
t+H2

)−mt−2
]
λ
mt+3
mt+2

·
[
λ
(
t+H2

)−mt−2
]−mt+3

mt+2
arcsin

(
b√
t

)(
t+H2

)−mt−3
dt

= − 1

2ab

a2+b2∫
b2

ln
[
1 + λ

(
t+H2

)−mt−2
]

arcsin

(
b√
t

)
dt. (50)

Similar to the approximate method of the (42), (49) and (50) can be further derived as

I31 = − 1

2ab

b2∫
a2+b2

ln
[
1 + λij

(
t+H2

)−mt−2
]

arcsin

(
a√
t

)
dt

≈ − 1

2ab

b2∫
a2+b2

Ω arcsin

(
a√
t

)
dt+

1

2ab

b2∫
a2+b2

(mt + 2) ln

(
t

H2
+ 1

)
arcsin

(
a√
t

)
dt

=
1

ab

1
b∫

1
a+b

u−3Ω arcsin (au) du+
mt + 2

2ab

∞∑
k=0

(2k)!a2k+1

22k(k!)2 (2k + 1)

b2∫
a2+b2

G1,2
2,2

[
t

H2

∣∣1,1
1,0

]
t−

2k+1
2 dt

= − Ω

2ab

[
b2 arcsin

(a
b

)
+ a
√
b− a −

(
a2 + b2

)
arcsin

(
a√

a2 + b2

)
− ab

]
+
mt + 2

2ab

×
∞∑
k=0

(2k)!a2k+1

22k(k!)2 (2k + 1)
g1

(
b2, a2 + b2,−2k − 1

2
,

1

H2

)
(51)

and

I32 = − 1

2ab

a2+b2∫
b2

ln
[
1 + λ

(
t+H2

)−mt−2
]
λ
mt+3
mt+2

≈ − 1

2ab

b2∫
a2+b2

Ω arcsin

(
b√
t

)
dt+

1

2ab

b2∫
a2+b2

(mt + 2) ln

(
t

H2
+ 1

)
arcsin

(
b√
t

)
dt

=
1

ab

1
b∫

1
a+b

u−3Ω arcsin (bu) du+
mt + 2

2ab

∞∑
k=0

(2k)!b2k+1

22k(k!)2 (2k + 1)

b2∫
a2+b2

G1,2
2,2

[
t

H2

∣∣∣1,11,0

]
t−

2k+1
2 dt

= − Ω

2ab

[
πb2 −

(
a2 + b2

)
arcsin

(
b√

a2 + b2

)
− ab

]
+

1

2ab

×
∞∑
k=0

(2k)!b2k+1 (mt + 2)

22k(k!)2 (2k + 1)
g1

(
b2, a2 + b2,−2k − 1

2
,

1

H2

)
(52)

21



Comparing I33 to I1, one can find that the difference between them is the upper and lower

limits of the integral. Thus, we can easily obtain

I33 =
πλ

1
mt+2

4 (mt + 2) ab

γb∫
γmin

ln (1 + γ) γ
−mt+3
mt+2dγ

=
πλ

1
mt+2

4 (mt + 2) ab

γb∫
γmin

G1,2
2,2

[
γ
∣∣1,1
1,0

]
γ
−mt+3
mt+2dγ

=
πλ

1
mt+2

4 (mt + 2) ab
g1

(
γb, γmin,−

1

mt + 2
, 1

)
. (53)

Substituting (51), (52) and (53) into (48), we can obtain I3,H as Lemma 6.

Then, the proof is completed.

Appendix C: Proof of Lemma 4

Using (36) and (45) to transform the logarithmic function and arcsine function into infinite

series, we can derive (41) as

I2,L = − 1

2ab

a2∫
b2

∞∑
n=1

(−1)n+1

[
λ(t+H2)

−m−2
]n

n

∞∑
k=0

(2k)!

22k(k!)2 (2k + 1)

(
a√
t

)2k+1

dt

= − 1

2ab

a2∫
b2

∞∑
n=1

(−1)n+1λ
n

n

∞∑
k=0

(2k)!

22k(k!)2 (2k + 1)
a2k+1

(
t+H2

)−(m+2)n
t−

2k+1
2 dt

= − 1

2ab

∞∑
n=1

(−1)n+1λ
n

n

∞∑
k=0

(2k)!a2k+1

22k(k!)2 (2k + 1)
H−(2m+4)n

a2∫
b2

(
t

H2
+ 1

)−(m+2)n

t−
2k+1

2 dt. (54)

To calculate the integral in last equation, we give a useful proposition as follows.

Proposition 2. Defining another new function g2 (A,B,C,D) =
A∫
B

(
t
H2 + 1

)−C
t−Ddx, we can

rewrite g2 (A,B,C,D) as

g2 (A,B,C,D) = G1,2
2,2

[
A

H2

∣∣∣1−C,D0,D−1

]
A−D+1

Γ (C)
−G1,2

2,2

[
B

H2

∣∣∣1−C,D0,D−1

]
B−D+1

Γ (C)
. (55)

Proof. Making use of [38, Eq. (8.4.2.5)], we can rewrite g2 (A,B,C,D) as

g2 (A,B,C,D) =

A∫
B

G1,1
1,1

[
t

H2

∣∣1−C
0

]
t−D

Γ (C)
dt. (56)

Therefore, (55) can be obtained by using [35, Eq. (26)].

Then, the proof is finished.

Thus, using Proposition 2, the expression of I2,L can be obtained.

Then, the proof is completed.
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Appendix D: Proof of Lemma 5

Obviously, the derivation of I3,L will be similar with the ones of I1 and I2,L. Thus, we can

obtain

I3,L = − 1

2ab

b2∫
a2+b2

∞∑
n=1

(−1)n+1

[
λ(t+H2)

−m−2
]n

n

∞∑
k=0

(2k)!

22k(k!)2 (2k + 1)

(
a√
t

)2k+1

dt

− 1

2ab

b2∫
a2+b2

∞∑
n=1

(−1)n+1

[
λ(t+H2)

−m−2
]n

n

∞∑
k=0

(2k)!

22k(k!)2 (2k + 1)

(
b√
t

)2k+1

dt

− πλ
1

mt+2

4 (mt + 2) ab

γb∫
γmin

ln (1 + γ) γ
−mt+3
mt+2dγ. (57)

Using Proposition 2, the expression of I3,L can be easily obtained.

Then, the proof is completed.
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