
1

Researcher Bias: The Use of Machine Learning
in Software Defect Prediction

Martin Shepperd, David Bowes and Tracy Hall

Abstract—
Background. The ability to predict defect-prone software components would be valuable. Consequently, there have been many
empirical studies to evaluate the performance of different techniques endeavouring to accomplish this effectively. However no one
technique dominates and so designing a reliable defect prediction model remains problematic.
Objective. We seek to make sense of the many conflicting experimental results and understand which factors have the largest effect
on predictive performance.
Method. We conduct a meta-analysis of all relevant, high quality primary studies of defect prediction to determine what factors
influence predictive performance. This is based on 42 primary studies that satisfy our inclusion criteria that collectively report 600
sets of empirical prediction results. By reverse engineering a common response variable we build a random effects ANOVA model
to examine the relative contribution of four model building factors (classifier, data set, input metrics and researcher group) to model
prediction performance.
Results. Surprisingly we find that the choice of classifier has little impact upon performance (1.3%) and in contrast the major (31%)
explanatory factor is the researcher group. It matters more who does the work than what is done.
Conclusion. To overcome this high level of researcher bias, defect prediction researchers should (i) conduct blind analysis, (ii) improve
reporting protocols and (iii) conduct more intergroup studies in order to alleviate expertise issues. Lastly, research is required to
determine whether this bias is prevalent in other applications domains.

Index Terms—Software defect prediction, meta-analysis, researcher bias.

F

1 INTRODUCTION

Being able to predict defect-prone software modules is
an important goal in software engineering. This would
enable efficient allocation of testing resources and bet-
ter informed decisions concerning release quality. Con-
sequently there have been many defect prediction stud-
ies. For example a 2009 mapping study by Catal and Diri
[1] identified 74 such studies; subsequently the number
has grown rapidly. The recent systematic review by Hall
et al. [2] located no less than 208 primary studies and
showed that predictive performance varied significantly
between studies. The meta-analysis contained within
this paper is based on the primary studies identified
by Hall et al. [2] and explores what causes predictive
performance to vary so much between them.

The literature makes two things clear about defect
prediction. First, no single prediction technique dom-
inates [3] and, second, making sense of the many pre-
diction results is hampered by the use of different data
sets, data pre-processing, validation schemes and per-
formance statistics [4], [3], [5], [6]. These differences
are compounded by the lack of any agreed reporting
protocols or even the need to share code and algorithms

• Martin Shepperd and Tracy Hall are with Brunel University, Uxbridge,
Middlesex, UB8 3PH,UK.
E-mail: {martin.shepperd,tracy.hall}@brunel.ac.uk

• David Bowes is with Science and Technology Research Institute, Univer-
sity of Hertfordshire, Hatfield, Hertfordshire, AL10 9AB, UK.
E-mail: d.h.bowes@herts.ac.uk

[7]. This means that it is difficult for researchers, and
more importantly practitioners, to have any clear sense
of which defect prediction techniques to employ or how
well they are likely to perform.

In order to address these problems and form some
overall view, we perform a meta-analysis (that is pooling
the results) of all relevant primary studies that satisfy
our inclusion criteria and in particular provide sufficient
details to enable quantitative analysis. In this way we
construct the most comprehensive picture of current
research possible. However, in order to have a common
basis for comparison we require a common performance
statistic (or response variable) from all the individual
primary studies or experiments. Unfortunately there is
no uniformity amongst researchers as to how classi-
fication performance should be reported. This lack of
uniformity has necessitated us reverse engineering a
common performance statistic (the Matthews correlation
coefficient (MCC) [8]) for the 600 sets of prediction res-
ults published in the 42 primary studies we analyse. The
details and rationale of our reverse engineering process
are discussed in some detail in the Methods section of
this paper.

We then perform a meta-anlysis using an ANOVA
model to explain the sources of variance in the clas-
sification performance between the various individual
studies. Given that the purpose of these primary stud-
ies is chiefly to compare different approaches and al-
gorithms for prediction one might expect the bulk of that
variability to be associated with the choice of prediction



2

approach. Importantly, we find this not to be the case;
instead much of the variability in performance from
different studies originates from other sources, predom-
inantly who does the research. It would therefore seem
unlikely that much progress will be made in building
practically useful defect prediction models — despite
the considerable efforts of many research teams — until
we better understand and control for these unwelcome
sources of variability.

Although the focus of this meta-analysis is software
defect prediction, and specifically binary classifiers that
assign software modules to one of two classes (faulty
or non-faulty), many of the principles of this analysis
can be applied far more widely. In particular we believe
the presence of unintentional researcher bias and the
need to address this make the results we report of some
considerable significance to other communities both in
software engineering and beyond.

The remainder of this paper is organised as follows.
The next section reviews current software defect predic-
tion research followed by a discussion of using meta-
analysis for the results from multiple primary studies.
Section 3 describes issues with the measurement of
classification performance, how the candidate primary
studies were selected and how we extracted a common
performance response variable from published results.
Then, we describe the meta-analysis itself along with
associated results. Section 5 gives a discussion of the
implications of our findings, a brief review of scientific
bias in other disciplines and concludes with three spe-
cific recommendations as to how bias might be reduced
for future research into empirically evaluating defect pre-
diction systems. The Supplementary Material contains
an exploration of some alternative approaches.

2 RELATED WORK

2.1 Software Defect Prediction
For some time software engineers have been interested
in predicting the quality of software systems that are
being developed. A specific focus is to predict software
defects and where they may be located, for instance
which modules are likely to be particularly defect-prone.
In order to achieve this, researchers have explored many
different techniques that can generate a prediction sys-
tem from known training examples. Since it is unclear a
priori which techniques are ‘best’ since we lack any deep
theory, experimental validation is required.

The general philosophy of experimental validation of
a putative prediction system is as follows. A prediction
system — and since we are exclusively dealing with
binary prediction we term them classifiers — is induced
by some means over some training instances which have
known labels or outcomes. This is known as supervised
learning. Because there is a danger of over-fitting to the
training instances the classifier must be evaluated on
unseen instances, usually referred to as testing instances.
The question of how a particular classifier can be trained

and then cope with new data is an empirical question.
Consequently, the vast majority of studies predicting
defect-prone modules use either primary, or more often,
secondary defect data that has been collected from real-
world software projects.

Ideally, empirical validation of classifiers would use
completely new data for testing purposes to reflect how
we might expect them to be deployed in practice. Unfor-
tunately the reality of how researchers work is that data
are in short supply and so we wish both to use what
data we have effectively and to realistically simulate
the deployment process. This is achieved through cross-
validation [9]. There are a range of strategies but essen-
tially they all partition the data into training and test
instances and this is done randomly and repeatedly in
order to maximise the potential of limited data and min-
imise the likelihood of outliers unduly influencing the
results. The results of the repetitions are then combined
typically using some measure of central tendency (see
[10] for a more detailed discussion). The most common
approach is m× n-fold cross validation.

As we have indicated, software defect prediction has
attracted many investigators over the past two decades
encouraged by the potential cost and quality rewards
associated with accurately predicting defect-prone soft-
ware [1], [2]. There is no expectation that a single,
universal classifier would be of any practical value so
researchers have concentrated on techniques for learning
or building classifiers from local or relevant data. These
studies vary greatly, but all have four basic elements:

1) the learning technique by which the particular clas-
sifier is derived

2) the defect data used to build and test the classifier
3) the types of input metrics or features used
4) the predictive performance measures used.

We will briefly discuss each in turn.
A wide variety of classifier building techniques have

been used by researchers. The dominant approach for
software defects is categorical prediction, usually dicho-
tomous (and only so in this study) so that the two
classes are defect-prone and not defect-prone software
components e.g., classes, files or subsystems. Such ap-
proaches can be characterised into more specific tech-
niques including rule induction algorithms such as C4.5,
Neural Networks, Random Forests, Bayesian approaches
and Regression which for binary classification is Logistic
Regression. The majority of studies have compared the
performance of classifiers using multiple learning tech-
niques and sometimes, though frequently not, with some
benchmark technique such as guessing with the odds
following the known distribution of classes.

Second, in order to assess classifier building tech-
niques most researchers have used real world data
though frequently the data is secondary, that is it has
been previously collected by other researchers. There are
various mechanisms to facilitate this sharing of data,
with the Promise Data Repository [11] being at the
forefront of such initiatives. Whilst sharing of data is



3

clearly a good thing it is not without risk, particularly
when problems and errors in the data are propagated
[12], [13]. However, it does afford us the opportunity
to examine the impact of other factors upon defect
prediction performance since many different researcher
groups have used the same data.

In addition, there is a debate on whether classifiers
are transferable to new settings or whether classifiers
are context specific [14]. But in any case, if only for prag-
matic reasons of exactly which data features are available
in a particular setting, it is necessary to be able to learn
new classifiers and therefore generalisation is through
the learning technique rather than via any specific classi-
fier. Consequently, the primary research preoccupation is
which classifier learning techniques work best, perhaps
with the rider of in what circumstances.

Third, a wide range of metrics have been used as
inputs to defect prediction models. These are divided
into three classes by Arisholm et al. [15]: structural meas-
ures, delta (or change) measures and process measures.
Structural measures are based on aspects of the code
such as size and complexity measures (example stud-
ies include [S31]). Delta measures relate to the change
that has taken place to the code, for example how the
structure of code has changed over versions of a code
unit (example studies include [S21]). Process measures
focus on how the code has been developed and include
developer experience (example studies include [S2]).

Fourth, there is no consensus on how to measure
classification performance. It is well known that simple
accuracy measures are misleading in the face of imbal-
anced data sets [16]. By way of illustration consider the
situation where 95% of software components are fault
free and only 5% contain defects, then the naı̈ve strategy
of predicting all modules are the modal class, that is
fault-free will achieve a 95% accuracy rate. However
this would hardly constitute a useful prediction sys-
tem!Note that such distributions are relatively common-
place amongst the defect data sets used by researchers
(see Figure 1 which reveals that over 40% of data sets
used by the 42 studies we analyse have less than 20%
instances of the positive class i.e. defect-prone). For this
reason the majority of researchers report either the F-
measure [17] or Area under the Curve (AUC) [18], [16].
We will discuss in more depth some of the subtleties of
these choices in Section 3.2, however, a wide range of
different statistics have been used and this has complic-
ated meaningful comparison between different primary
studies [19].

To summarise, there has been very substantial research
effort put into software defect prediction. However, a
consensus on what are the best prediction techniques,
even for a specific context, remains elusive. We find con-
siderable diversity as to what form of classifier technique
should be used and what inputs or metrics work best. In
addition, in order to facilitate generalisation, researchers
are using an increasing number of different defect data
sets for empirical validation. Unfortunately the situation

Frequency of being defective

P
er

ce
nt

ag
e 

of
 D

at
as

et
s

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0
5

10
15

20
25

Figure 1. Percentage Distribution of Positive Case Imbal-
ance in Data Sets

is somewhat complicated by the use of a wide range of
validation schemes. We believe the time is ripe to explore
the underlying reasons for this lack of convergence in
results hence we conduct a meta-analysis. This will
provide pointers to the most effective way forward for
future software defect prediction research.

2.2 Meta-analysis

Meta-analysis is some procedure for aggregating and
analysing results from more than one primary study.
They are often, but not necessarily, a part of a systematic
literature review which has the broader remit to also
include identification of the primary studies in some
objective and repeatable fashion driven by a formal,
and ideally public, protocol (see [20] for details). Nor-
mally meta-analysis takes the form of a quantitative
statistical procedure. This is clearly more straightforward
when the primary studies yield quantitative results (i.e.,
predictive performance) as is the case with our defect
prediction studies. The aggregation approach can either
utilise results or pool the raw data. In our case the
latter is not possible due to difficulties in obtaining
all the raw results. Alternatively results can be pooled,
though with the caveat that simplest approach of using
vote counting is vulnerable to heterogeneity amongst the
primary studies, particularly in terms of size or quality.
For this reason stringent quality inclusion criteria are
required, coupled with sensitivity analysis of the meta-
analysis results [21].

There is some disagreement as to what was the first
meta-analysis, however the term was coined by Glass
in the mid 1970s [22]. Meta-analysis has only gained



4

interest within empirical software engineering relatively
recently, despite initial work in the late 1990s [23], [24].

Naturally synthesising findings across studies presents
challenges. The Cruzes and Dybå [25] analysis of 31
systematic literature reviews in software engineering
found that limited attention was paid to the actual
synthesis of results as opposed to merely cataloguing
what existed. Less than half of all reviews contained any
synthesis and of those that did a narrative or relatively
informal approach predominated. Only two used meta-
analysis as their synthesising technique. Even in more
mature disciplines where meta-analysis is commonplace,
e.g. medicine, there can be challenges.

Thus the general view is that meta-analysis is a power-
ful tool but, unsurprisingly, can be abused when:

• it is used with no underlying model or theory.
A meta-analysis example from epidemiology was
highlighted by Egger et al. [26] that suggested caus-
ality between smoking and suicide rates which is
biologically implausible, rather it is the social and
mental states predisposing to suicide that also co-
vary with smoking. Nevertheless it can be easy to
persuade oneself of the ‘plausibility’ of some set of
results post hoc.

• meta-analysis cannot turn poor quality studies into
‘gold’. If a primary study is of very low quality then
its conclusions are jeopardised irrespective of how
it is merged with other studies [27].

• sources of heterogeneity are ignored e.g. the vari-
ance between types of study, use of blinding, etc.
though this can be addressed through sensitivity
analysis, especially based on mixed or random ef-
fects models [28].

Despite these cautions meta-analysis offers a powerful
and formal means of quantitatively aggregating results
from multiple studies. This can help overcome chance
outcomes (since even unlikely events can and do occur!),
can provide better sampling and highlight weak exper-
imental procedures. Therefore we propose to conduct a
formal meta-analysis of all relevant, high quality empir-
ical studies into software defect prediction.

3 METHOD

3.1 Selection of the Primary Studies

Our aim is to be as comprehensive as possible in terms of
selecting primary studies that are experimental studies
of software defect prediction models and further, these
must predict a dichotomous outcome (i.e, defect or not
defect-prone). This focus is essential in order to compare
like with like primary studies. Inclusion, requires (i) sat-
isfying various quality criteria so that the meta-analysis
is not distorted by methodologically weaker primary
studies and (ii) that sufficient details are provided such
that we can extract, or reverse engineer, our chosen
response variable so that we can meaningfully compare
across these primary studies.

A previous systematic literature review of defect pre-
diction studies in software engineering [2] identified a
total of 208 studies published from the start of 2000 to
the end of 2010. A set of criteria to assess whether or
not to extract data from prediction models presented in
these 208 studies is developed in [2] and summarised in
Table 1. These criteria are based on the context reporting
standards recommended by Petersen and Wohlin [29]
and on best practice reported in the defect prediction
literature (e.g. [6]). They require that a study reports a
set of basic information that enables full understanding
of the prediction models presented.

Table 1
Summary of Primary Study Inclusion Criteria (Taken

from [2])

Topic
1. Published between January 2000 and December 2010
2. An empirical study / experiment
3. Focused on predicting faults in units of a software system
4. Faults in code is the main output (dependent variable)
5. Not testing, fault injection, inspections, reliability modelling,
aspects, effort estimation, debugging, faults relating to memory
leakage, nano-computing, fault tolerance
6. Not debugging of known faults
Quality and Reporting Considerations
7. The classifier must be trained and tested on different data
8. Provide information on:
- source of data
- the maturity of the system being studied must be reported
(relaxed for NASA)
- the size of the system being studied must be given
- the application domain
- programming language(s)
- the independent variables
- the dependent variable(s)
- the granularity of the dependent variable reported
- the modelling [classifier learning] technique used reported
- the fault data acquisition process
- the independent variable data acquisition process
- the number of faulty versus non-faulty units

In this meta-analysis we started with 23 studies which
passed the criteria in [2] plus a further 24 studies which
were originally excluded from [2] because they did not
provide information on the maturity of the data sets
used (though they satisfied all other criteria). All 24 of
these studies are based on using NASA data. These were
added since we are able to obtain additional information
concerning the NASA data sets from other sources and
although concerns have been raised about data quality
this is in part due to the fact that they have been more
thoroughly scrutinised than other data sets [12], [13].
Consequently we believe them to be typical of much
data used for this kind of experimentation. Moreover our
goal is to try to better understand why results vary as
opposed to uncovering which classification techniques
are ‘best’.

From this set of 47 prediction studies, we exclude a
further five studies which do not allow us to compute the
base confusion matrix measures (see Table 3), without
which we cannot extract a prediction quality response
variable and so there is no common response variable.



5

Table 2
Included Primary Studies

Primary Study Reference Count Year
[S16], [S20], [S27] 3 2002
[S26], [S34] 2 2004
[S15], [S25], [S31] 3 2005
[S14], [S33], [S38] 3 2006
[S3], [S4], [S6], [S10], [S13], [S21], [S29],
[S36], [S37], [S41] 10 2007

[S8], [S9], [S17], [S30], [S35], [S39] 6 2008
[S1], [S2], [S5], [S7], [S11], [S40], [S42] 7 2009
[S12], [S18], [S19], [S22], [S23], [S24], [S28],
[S32] 8 2010

Table 3
Confusion Matrix

Predicted defective Predicted defect free
Observed
defective

True Positive
(TP)

False Negative
(FN)

Observed
defect free

False Positive
(FP)

True Negative
(TN)

The confusion matrix forms the fundamental basis from which
almost all other performance statistics can be derived.

This leaves us with a total of 42 primary studies (listed
in Table 2) that (i) report sufficient performance inform-
ation for us to reconstruct their confusion matrices with
confidence and (ii) satisfy our quality inclusion criteria.

3.2 Prediction Performance Measures

Assessing the prediction performance of a classifier is
based upon the confusion matrix (see Table 3 where
the cells comprise frequencies for each combination of
the two binary dichotomous variables. In general the
meanings of the values of the binary variables need not
be defined, however, for assessing classification perform-
ance we are more specific. The class labels are termed
positive and negative. It is customary to use the positive
label to refer to the outcome of interest so in our situation
the positive label refers to the software component being
defective. Hence we have true-positives (TP , that is the
instances of defects that are correctly classified, false-
positives (FP) which are those instances that the classifier
incorrectly assigns to the defect-prone class and so forth.

Determining classification performance is more subtle
than it might first appear since we need to take into
account both chance aspects of a classifier (even guessing
can lead to some correct classifications) and also what are
termed unbalanced data sets where the distribution of
classes is far from 50:50. As discussed previously this is
a commonplace situation for defect data sets since most
software units do not contain known defects.

Many commonly used measures such as the F-
measure are unsatisfactory due to their not being based
on the complete confusion matrix [16]. A widely used al-
ternative is the Area Under the Curve (AUC) ROC chart
[30], however, this because this is a measure on a family
of classifiers it cannot be interpreted unless one classifier

strictly dominates since since we’re not provided with
the relative costs of FP and FN. In other words for two
classifiers A and B, AUCA > AUCB 6=⇒ A � B. For
this reason we advocate a binary correlation coefficient
variously known as the Matthews correlation coefficient
(MCC) [8] or φ [31]. Unlike the F-measure, MCC is based
on all four quadrants of the confusion matrix.

MCC is identical to the binary correlation coefficient φ
originally due to Yule and Pearson in the early twentieth
century [31]. However, we will refer to the measure
as MCC rather than φ since we are dealing with the
particular binary variables and meanings of predicted
and actual class whereas the φ coefficient is a more
general measure of association, where the interpretation
of a negative correlation is more difficult to resolve.
It is a balanced measure and handles situations where
the ratio of class sizes are highly imbalanced which is
typical of software defect data (classes containing defects
are often relatively rare). A zero value indicates the
two variables are independent, tending towards unity
indicates a positive relationship between predicted and
actual class and tending towards minus unity a negative
relationship. Interestingly one could convert a very poor
or perverse classifier into a very good one by negating
the prediction (turning a positive to negative or vice
versa). Finally, MCC can be easily computed from the
confusion matrix.

One slightly awkward property of the φ coefficient,
and therefore MCC, is that depending upon the marginal
distributions of the confusion matrix, plus or minus
unity may not be attainable and so some statisticians
propose a φ/φmax rescaling [32]. We choose not to fol-
low this procedure since it results in an over-sensitive
measures of association in that a very small change in
the count of correctly classified instances (TP or TN)
lead to unintuitively large changes in the correlation. We
discuss this in more detail together with some potential
limitations of using a correlation coefficient in a meta-
analysis in the Supplementary Materials. Nevertheless,
we believe it is a good choice to evaluate classifier
performance in a meta analysis of published studies.

The 42 primary studies used for the meta-analysis
between them comprise 600 individual results from
which we extracted performance data i.e., MCC. Typ-
ically each study reported one or more experiments
where a number of treatments such as different classifier
learning techniques are compared using one or more
data sets. This is usually coupled with statistical infer-
encing procedures to determine whether the differences
in the response variable are in some sense significant.
However our concern is simply with the raw results.
Where studies did not report MCC we re-computed it
from the confusion matrix-based data that they provided
([33] explains our method for doing this). Identifying
a common set of performance measures for these 42
studies enables a quantitative meta-analysis of the per-
formance of all the reported 600 empirical results.



6

Table 4
Composite performance measures

Construct Defined as Description
Recall
pd (probability of detection)
Sensitivity
True positive rate

TP/(TP + FN)
Proportion of defective units correctly
classified

Precision TP/(TP + FP )
Proportion of units correctly predicted as
defective

pf (probability of false alarm)
False positive rate FP/(FP + TN)

Proportion of non-defective units incor-
rectly classified

Specificity
True negative rate TN/(TN + FP )

Proportion of correctly classified non de-
fective units

F-measure 2·Recall·Precision
Recall+Precision

Most commonly defined as the harmonic
mean of precision and recall

Accuracy (TN+TP )
(TN+FN+FP+TP )

Proportion of correctly classified units

Matthews Correlation Coefficient TP×TN−FP×FN√
(TP+FP )(TP+FN)(TN+FP )(TN+FN)

Combines all quadrants of the binary
confusion matrix to produce a value in
the range -1 to +1 with 0 indicating in-
dependence between the prediction and
the recorded results. MCC can be tested
for statistical significance, with χ2 = N ·
MCC2 where N is the total number of
instances.

3.3 Meta-Data Extraction
In order to explore the factors that influence experi-
mental results we need to consider those factors that
influence each primary experiment. These are known as
moderators. We use the following:

1) learning technique by which the particular classifier
is derived

2) defect data set used to build and test the classifier
3) types of input metrics or features used
4) research group

Note we do not need to consider the original choice of
predictive performance since we recompute a common
response variable for all experiments, namely MCC.

Having determined which factors or moderators to
use, two authors (TH and MS) each independently read
and categorised each paper within the meta-analysis.
The third author (DB) identified any inconsistencies
which were then resolved through discussion between
all three authors. Consequently we believe the extraction
process to be quite robust.

3.3.1 Classifier family
We grouped specific prediction techniques into a total of
seven families which were derived through a bottom-up
analysis of each primary study. The categories are given
in Table 9. This avoided the problem of every classifier
being unique due to subtle variations in parameter set-
tings, etc.

3.3.2 Data set family
Again these were grouped by base data set into 24
families representing 87 distinct defect data sets that
have been used in these studies. These groupings meant
that differing versions of systems were not regarded

as entirely new data sets. There are also substantial
overlaps in data set usage by primary studies including
many based, at least in part, on the NASA data sets or
on the Eclipse data set.

3.3.3 Metric family
Again we group specific metrics into families so for
example, we can explore the impact of using change
or static metrics. We use the classification proposed by
Arisholm et al. [15], namely Delta (i.e. change metrics),
Process metrics (e.g. effort) and Static metrics (i.e. de-
rived from static analysis of the source code e.g. the
Chidamber and Kemerer metrics suite [34]) and then
an Other category(e.g. the use of metrics derived from
socio-technical networks [S11]). Combinations of these
categories are also permitted (see Table 10). Again our
philosophy is to consider whether gross differences are
important rather than to compare detailed differences in
how a specific metric is formulated.

3.3.4 Researcher Group
The researcher groups were determined by linking re-
searchers through co-authorship to form clusters of re-
searchers. The largest clusters (of 8 and 10 researchers)
derived from three papers apiece. The smallest cluster
comprises a single author. This is depicted by Figure 2
which provides a visual though arbitrary impression of
the diversity of research groups. The cluster numbering
is arbitrary but provides a key to Table 5 which details
each group (note the first instance of each author is in
bold).

4 RESULTS
We use R (open source statistical software) for our
analysis.



7

Table 5
Researcher Groups

Group Paper
Ref Researchers

1 [S1] Calikli, G and Tosun, A and Bener, A
and Celik, M

[S2] Caglayan, B and Bener, A and Koch, S

[S3] Kutlubay, O and Turhan, B and
Bener, A

[S4] Turhan, B and Bener, A
[S5] Tosun, A and Bener, A

2 [S6] Menzies, T and Greenwald, J and
Frank, A

3 [S7] Kaur, A and Sandhu, P and Bra, A
[S8] Kaur, A and Malhotra, R
[S9] Singh, Y and Kaur, A and Malhotra, R

4 [S10] Pai, G and Dugan, J

5 [S11] Bird, C and Nagappan, N and Gall, H
and Murphy, B and Devanbu, P

[S12]
Nagappan, N and Zeller, A and Zi-
mmermann, T and Herzig, K and
Murphy, B

[S13] Zimmermann, T and Premraj, R and
Zeller, A

[S14] Schröter, A and Zimmermann, T and
Zeller, A

6 [S15] Koru, A and Liu, H
7 [S16] Denaro, G and Pezzè, M

8 [S17] de Carvalho, A and Pozo, A and Ver-
gilio, S and Lenz, A

[S18] de Carvalho, A and Pozo, A and Ver-
gilio, S

9 [S19] Nugroho, A and Chaudron, M and
Arisholm, E

[S20] Briand, L and Melo, W and Wust, J

[S21] Arisholm, E and Briand, L and Fu-
glerud, M

[S22] Arisholm, E and Briand, L and Johan-
nessen, E

10 [S23] Cruz, C and Erika, A

11 [S24] Yi, L and Khoshgoftaar, T and
Seliya, N

[S25] Seliya, N and Khoshgoftaar, T and
Zhong, S

[S26] Khoshgoftaar, T and Seliya, N

[S27] Khoshgoftaar, T and Yuan, X and Al-
len, E and Jones, W and Hudepohl, J

12 [S28] Mende, T and Koschke, R
13 [S29] Catal, C and Diri, B and Ozumut, B

14 [S30] Moser, R and Pedrycz, W and
Succi, G

15 [S31] Gyimothy, T and Ferenc, R and
Siket, I

16 [S32]
Vivanco, R and Kamei, Y and
Monden, A and Matsumoto, K and
Jin, D

17 [S33] Ma, Y and Guo, L and Cukic, B

[S34] Guo, L and Ma, Y and Cukic, B and
Harshinder Singh

[S35] Yue Jiang and Cukic, B and Ma, Y

18 [S36] Mizuno, O and Ikami, S and Nakai-
chi, S and Kikuno, T

[S37] Mizuno, O and Kikuno, T
19 [S38] Yuming Zhou and Hareton Leung

20 [S39]
Vandecruys, O and Martens, D and
Baesens, B and Mues, C and De
Backer, M and Haesen, R

21 [S40] Hongyu, Z

22 [S41]
Kanmani, S and Uthariaraj, V and
Sankaranarayanan, V and Tham-
bidurai, P

23 [S42] Shivaji, S and Whitehead, E and
Akella, R and Sunghun, K

Figure 2. Researcher Collaborations

4.1 Descriptive Analysis of the Empirical Studies
The variables collected are described in Table 6. They
are then summarised in Tables 7 and 8. There are a
total of seven Classifier family categories and the relative
distributions are shown in Table 9. It is clear that De-
cision Trees, Regression-based and Bayesian approaches
predominate with 172, 136 and 124 observations respect-
ively.

Table 6
Variables Used in the Meta-analysis

Variable Explanation
MCC Matthews correlation coefficient also known as

φ
Year Date of study publication
ClassifierFamily The class of classifier e.g. regression, case-based

reasoner, etc.
DatasetFamily The data set family (excludes version number)

used for validation e.g. Eclipse and Mozilla.
MetricFamily The category of metric used as input to the

classifier.
ResearcherGroup The cluster of researchers where one or more

common researchers between papers creates a
linkage and therefore a single group.

Table 7
Summary Statistics for the Numeric Variables

Variable Min Median Mean Max
MCC -0.504 0.305 0.308 0.989
Year 2002 n.a. n.a. 2010

Table 8
Summary Statistics for the Categorical Variables

Variable No. of classes
ClassifierFamily 8
DataSetFamily 24
MetricFamily 7

ResearcherGroup 23

Second, we consider Dataset family. Here there are 24
different classes but NASA dominates with approxim-
ately 59% of the observations followed by Eclipse with
21% (see Table 11). We believe a major factor determining
choice of data set is easy availability which could partly
explain why many researcher groups use the same data.
On the other hand one needs to be sure that the data are
representative and that any problems with data quality
are not propagated [12].



8

Third, is the Metric family. We observed a total of
seven distinct classes of metric category used as inputs
for the classifiers. The relative distributions are shown in
Table 10. It can be seen that Static metrics, that is those
extracted through static code analysis, dominate being
used in almost 85% of all studies.

Table 9
Frequency of Instances by Classifier Family

Instances Percent
DecTree 172 28.7

Regression 136 22.7
Bayes 124 20.7

CBR 77 12.8
Search 41 6.8
ANN 28 4.7
SVM 17 2.8

Benchmark 5 0.8

Table 10
Frequency of Instances by Metric Family

Instances Percent
Static 507 84.5
Other 28 4.7

DeltaProcessStatic 26 4.3
Process 16 2.7

DeltaOtherProcessStatic 11 1.8
DeltaStatic 11 1.8

ProcessStatic 1 0.2

Table 11
Result Count by Data Set Family

Count Percent
NASA 351 58.5
ECLIP 126 21.0

EMTEL 25 4.2
MOZ 25 4.2
COS 16 2.7

LibMan 12 2.0
EXCL 9 1.5

WhiteGoods 6 1.0
VISTA 4 0.7

APACHE 3 0.5
ARGO 3 0.5

HEALTH 3 0.5
BANK 2 0.3

CruiseControl 2 0.3
Ecomerce 2 0.3

JEDIT 2 0.3
XPOSE 2 0.3

COLUMBA 1 0.2
GALM 1 0.2

GFORGE 1 0.2
JCP 1 0.2

PONE 1 0.2
POSTGRES 1 0.2

SVN 1 0.2

Fourth, is researcher group determined by clustering
based on common researcher linkage so if A and B write
Paper 1 and B and C write Paper 2, this generates a single
cluster of A, B and C. The reasoning is that expertise will
be shared amongst the entire team. As Figure 2 reveals,
from our 42 primary studies there are 23 relatively small

Table 12
Frequency of Instances by Researcher Group

Result Count Percent
17 79 13.2
1 75 12.5
8 61 10.2

11 54 9.0
5 53 8.8

12 37 6.2
20 31 5.2
9 30 5.0

13 30 5.0
14 27 4.5
15 24 4.0
16 18 3.0
21 15 2.5
22 12 2.0
23 11 1.8
18 10 1.7
19 9 1.5
2 8 1.3

10 6 1.0
3 5 0.8
4 2 0.3
7 2 0.3
6 1 0.2

clusters ranging in size between 1 and 10 researchers.
The number of results that each group report is shown
in Table 12.

In particular we are interested in the distribution of
the response variable MCC. Figure 3 shows that the
distribution is approximately symmetrical. Likewise the
qqplot in Figure 4 is near to linear suggesting a reas-
onable approximation to a normal distribution, though
with some deviation at the tails. This deviation at the
tails is commonplace for correlation coefficients [35] as
they are bounded by unity. The standard correction is
the Fisher r to Z transformation, however as discussed
in more detail in the Supplementary Material this turns
out to be an unhelpful procedure for our meta-analysis
with the resultant distribution deviating further from
normality. We believe the most likely explanation to
be twofold. First, our observations are assuredly not a
random sample since researchers tend to report their
‘best’ or most ‘interesting’ results. Second, depending
upon the marginal probabilities of the confusion matrix
MCC is constrained to values less than unity (minus
unity) [32]

What is striking, however, is the number of observa-
tions of the correlation coefficient being close to zero
or even negative. This reveals that many classifiers are
performing extremely poorly, since zero indicates no re-
lationship at all and could therefore be achieved through
guessing. A negative value means the prediction would
be improved by adding an inverter. Moreover, the modal
value lies in the range 0.3-0.4 which hardly engenders a
great deal of confidence in terms of their practical use.

Next we check for possible autocorrelation effects
since the primary studies were published between 2002
and 2010 (see Table 2). In other words are there any
maturation effects over time (e.g. researchers have be-
come more expert and therefore more accurate). Fig-



9

MCC

fr
eq

ue
nc

y

−0.5 0.0 0.5 1.0

0
20

40
60

80
10

0
12

0
14

0

Figure 3. Histogram of Prediction Performance as Mat-
thews Correlation Coefficients

−3 −2 −1 0 1 2 3

−
0.

5
0.

0
0.

5
1.

0

rnorm(194)

M
C

C

●
●

●
●

●●
●●

●
●●●●●●●

●
●●●●●●●●●

●●●●●●●●
●●●●●●●●●

●●●●●
●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●

●●●●●●
●●●●
●●●●●

●●
●●●●●●●●

●
●●

●●
●
●●● ●

●

Figure 4. qqplot of the Matthews Correlation Coefficients

ure 5 shows the relationship between year (with jit-
tering) and MCC. The slight upward trend indicated
by a linear model is not significant and the R-squared
is approximately 1% (we have previously reported a
lack of methodological maturation in defect prediction
studies [36]). This means that we can safely discount
autocorrelation as a potential confounder and can now
proceed to our main analysis based on MCC as the
response variable and Classifier Family, Data Set Family,
Metric Family and Researcher Group as moderators plus
potential interactions between moderators.

4.2 ANOVA Model Results
We use a 4-way random effects ANOVA model where

MCC is the response variable and the four factors (or

2002 2004 2006 2008 2010

−
0.

5
0.

0
0.

5
1.

0

Year

M
C

C

●
●
● ●●

● ●●
●●●●

●

●
●●

●

●
●
●
●
●

●●

●

●

●

●
●●
●● ●●●●
●

● ●
●●●●●

●●●
●

●●
●●

●●●
● ●

●●

●●

●●
●

●

●●
●●

●●

●●
●
●

●

●

●●
● ●

●●

●

●

●

●

●

●

●

●●

●

●
●●●●
●

●

● ●●
●

●
●●

●

●
●●
●
●

● ●

●

●●
●●
●

●●●
●● ●●

●
● ●●●
●●●

●●
●●● ●

●

●

●

●

● ●●● ●
●●●
●●

●

●●●
●●
●

●●●●●●
●●●●●●●●● ●●●●●●●●●●●● ●● ●●●●
●

●●●
●
●●●

●●
●

●●
●

●●●●●

●
●●●● ●● ●●●

● ●

●

●

●

●
●●●
●●

●

●

●

●

●

●●

●
●●●● ●● ●●●●● ●
●●

●●●●●● ●●

●

●●
●● ●● ●●●

●

●●●
●●●●
●
●● ●
●

●●●●●

●

●●

●●●●
●● ●●
●●●●

●●
●● ●●●●●●●

●●●●●●
●

●
●

●
●●

●●

●●
●●
●●●

●●●
●●

●
●

●
● ●●●●●

●● ●●●●
●●

●

●●●●
●●●●● ●●● ●●●
●
●●

●
●●

●●●
●

●●

●● ●
● ●●● ●

●●● ●●●
●●● ●●

● ●●●●

●
●●●●

●●●●●●●●
● ●●

●●

●●●●

●● ●●
● ●●● ●●●●●●●●●●●●● ●●

●●●● ●●●●●● ●●●● ●
●●●●●

●● ●
●●
●

●

●

●
● ●
●
●

●
●●●●●

●●●

●

●

●●
●

●●
●

●●

●

●●●
●

●

●

●

●●

●
●●
●

●●●
●

●

●●●

●●

●●●●
●●● ●●

●● ●●●
●● ●●●
●●

●●●
●

●

● ●● ●● ●
● ●●●●● ●●

●

●

●●●●

●

●

●

●

●●

●

●
●

● ●●●
●

●
●
●●

Figure 5. Matthews Correlation Coefficients by Year

moderators) are:
• Classifier family
• Data set family
• Metric family
• Researcher group

Since this is not an orthogonal factorial model the order
the factors are entered into the model is significant as we
will discuss shortly. In addition we are also interested
in higher order interactions, e.g. the interaction between
Classifier Family and Dataset Family. The rationale for
this is that there may be a significant interaction between
the dataset and predictive performance. This has been
demonstrated elsewhere through simulation studies [37].

In this meta-analysis we wish to see how the four
factors contribute to the variation in performance as
measured by Matthews correlation coefficient. Or to put
the question rather more crudely: what matters in terms
of performance? An important point to stress is we use
random effects models. That is, we are interested in the
factor but not the specific levels, e.g. we are interested
in how much influence the choice of data set has on pre-
dictive performance but not whether using the Eclipse
data set, say, leads to greater or poorer performance than
Mozilla.

To reiterate, we are not seeking to determine which
is the ‘best’ technique for learning classifiers to predict
software defects but why results from different primary
study experiments vary. Our approach yields two be-
nefits. First, it provides more generality since we can
reason about hitherto unseen data sets, classifiers and
so forth. Second, the approach is more robust to unequal
distribution of variance1 between levels within a factor

1Testing for equality of variance in an ANOVA model is not
necessarily straightforward [38]. Complications include unbalanced
levels for different factors some with very few observations. However,
a robust Levene’s Test for Homogeneity of Variance based on medians
yields p=0.51 so we consider it reasonable to proceed.



10

since we will not test for differences between specific
pairs of levels within a factor [39].

First, however, we explore each factor by itself (using
a linear random effects model with intercept for the 1-
way ANOVA) before proceeding to build more complex
models where the factors are entered in decreasing order
of partial-eta squared value. That is the most important
factor goes first since our factors are not necessarily
orthogonal so some variance might conceivably be alloc-
ated to one of several factors depending upon the order-
ing of the factors in the model. As is conventional ([40],
[38], [41], [42]) we construct the model in decreasing
order of partial eta squared scores (see Table 13). All four
factors are significant. Note that a partial-eta squared
value indicates the proportion of the total variability
in the classifier performance that is associated with the
factor when all other factors are excluded determined
by a 1-way Analysis of Variance. When a more complete
model, i.e., multi-factor is constructed the ANOVA pro-
cedure will allocate variance between factors so unless
they are orthogonal the actual eta-squared value for a
particular model will decrease, excepting the first, and
most important, factor in the model.

Table 13
Partial Eta-Squared Values for the ANOVA Model (MCC

= Response Variable)

Factor Partial η2 Significance
Researcher Group 31.01% p < 0.0001

Dataset Family 31.00% p < 0.0001
Input Metrics 12.44% p < 0.0001

Classifier Family 8.23% p < 0.0001

Starting with the obvious question we look at Classi-
fier Family and its relationship with classifier perform-
ance (MCC). Table 13 shows that although Classifier
Family is significant it explains approximately 8% of the
total variation and the remainder goes to the error term.
This is a poor fit and particularly disappointing given the
aim of experiments contained in our primary studies are
primarily to find the effect of different classifiers upon
performance. Instead we see from the analysis of the 600
results that differences are largely due to causes other
than the classifier used.

Next, we examine the impact of data set. Elsewhere it
has been suggested that different data set characteristics
may have a major impact upon prediction system per-
formance [37], [43]. Again we examine a 1-way ANOVA
model using Dataset Family to determine the partial eta-
squared. Table 13 shows again a significant relationship
and an improved fit (compared with Classifier Family)
so the choice of data is influential in terms of classifier
performance. This would seem to fit with researcher
expectations since it is commonplace to apply multiple
classifiers to multiple data sets is e.g. [3].

Our third moderator (of experimental results) is the
choice of input metric for the classifier. Table 13 shows
the results of a 1-way ANOVA where the factor Metric

Family is significant but of limited explanatory value
since it covers slightly less than 13% of the total variation
in MCC. Interestingly this has not been such a dominant
theme to researchers as has been the choice of classifier
learning technique, nevertheless, it is associated with
50% more variation in the response variable.

The other moderator to analyse is researcher group
which are defined by an agglomerative clustering pro-
cess and the resultant 23 clusters are shown in Figure
2 and Table 5. Observe that by a small margin Re-
searcher Group has the highest partial eta-squared value
indicating that it accounts for the greatest proportion of
variance in the response variable of our four factors.
Also note that although the difference between it and
Dataset Family is small in other analyses of subsets of
the results the difference becomes more pronounced [44].
Back in the 1990s Michie et al. [45] commented that that
“in many cases researchers have developed their own
‘pet’ algorithm in which they are expert but less so in
other methods” which confounds empirical evaluation
studies. It may be that matters have not improved much
due to the increasing sophistication and complexity of
many machine learning techniques now in use.

So overall we see that the strongest relationship is
between Researcher Group and the performance statistic
MCC. However, it is likely that some, or all of our four
factors interact significantly, and so we move onto a
4-way random effects ANOVA model with interaction
terms, e.g. it is possible that the combination of classifier
and data set have a particular impact upon performance.
We build the model in order of the importance of each
factor from the 1-way ANOVA analysis previously de-
scribed.

Table 14
Eta-Squared Values from the 4-way ANOVA Model (MCC

= Response Variable)

Df Sum Sq
% of total
variance F value Pr(>F)

ResearcherGroup 22 6.38 31.0 16.47 0.000
Dataset 20 2.31 11.2 6.55 0.000
ResearcherGroup:
Classifier

33 1.36 6.6 2.34 0.000

Metric 5 1.07 5.2 12.19 0.000
Classifier 7 0.26 1.3 2.12 0.040
ResearcherGroup:
Dataset

2 0.22 1.0 6.11 0.002

Residuals 510 8.98 43.6

The model is then simplified by removing factors
that are not significant and so we derive Table 14.
The resulting model has a good fit (over 55%) when
we consider the diversity of primary studies and the
relative naı̈vety of the four moderators. It should also be
noted that there remains approximately 45% of external
variation (that is the residuals) to our model i.e. the error
term equates to less than half of all the variability in
the performance statistic MCC. This suggests that defect



11

prediction studies are unlikely to be very sensitive in
detecting small differences between competing classifiers
since other unknown factors account for just under
half the variance in classification performance. What is
also striking is that if the factor Researcher Group is
removed then the new model accounts for only 35%
of the variance, a reduction of 20%. Thus we conclude
that knowing who has conducted the research plays an
important part in understanding experimental results.

5 DISCUSSION

In this paper we have addressed the question of what
factors influence the predictive performance of software
defect classifiers measured by the Matthews Correlation
Coefficient. The question is important because (i) being
able to effectively predict the location of defects would
be useful for software engineers and (ii) there is no
real congruence between the many empirical results that
have been generated such that no classifier technique —
amongst the many proposed — dominates.

Fundamentally our finding from the meta-analysis of
600 experimental results drawn from 42 primary studies
is that the variability due to the choice of classifier
(which has driven much of our research design) is
extremely small. Moreover, these are studies that satisfy
our rigorous inclusion criteria and have been published
in top conferences and journals with demanding accept-
ance rates. Therefore we conclude that these represent
some of our best research efforts to date. By contrast the
variability due to the groups of researchers (Researcher
Group) could be seen as twenty five times higher2.
Knowing who has conducted the research means that
approximately 30% of total variance in performance can
be ‘explained’. Until this can be satisfactorily addressed
there seems little point in conducting further primary
studies since all one can conclude is the main effect is
due to the research team undertaking the work.

Clearly Research Group is a basket for a number
of concepts including prior knowledge, statistical and
data processing skills, interests, opportunities, relation-
ships with practitioners and so forth. What is rather
disappointing is it hardly matters what algorithms or
approaches they employ which associates a little over
1% of the variability in the response variable MCC. This
finding is not the consequence of there being no pre-
diction technique that is uniformly better in all contexts
[37]. If a technique worked only in some contexts we
would expect the interaction term Classifier:Dataset to
be important whilst in practice it isn’t significant in
our main analysis. We think this is a strength of our
meta-analyis in that it allows these kind of second order
factors to be explored.

The question therefore arises as to why this might be
so. We see two likely and complementary explanations.

2The exact ratio depend a little on how the analysis is conducted,
however, no model that we examined showed anything other than this
to be the strongly dominant factor.

First, there are differing levels of expertise between
researcher groups and second, there is the widespread
problem of researcher bias. At this juncture we should
stress that these are not derogatory explanations: such
phenomena are widely observed and therefore should be
expected. For example, [45] review problems of expertise
within the general machine learning community and [46]
discusses problems of bias within bioinformatics. The
problems associated with confirmation biases amongst
scientists have been shown experimentally by Mynatt et
al. [47] working with student scientists.

Bias and lack of blinding has been shown to be highly
influential in other sciences such as emergency medicine
where Bebarta et al. [48] report that the odds ratio
of finding an effect was 3.2 (95% CI 1.3 to 7.7) when
blinding was not or was employed. In other words
when the treatment groups are known to the researcher
they are three times more likely to report an effect. For
computational studies where placebos are not applicable,
blind analysis seems the obvious and compelling way
forward.

The next question is how should the research com-
munity respond? There are at least three possibilities.

• First, we are working with increasingly sophistic-
ated techniques and this is extends to the data pre-
processing. Better communication and document-
ation is needed of the details of how classifier
techniques have been used. The need for this has
long been a problem in software engineering [49].
Improving communication and documentation will
help protect against the other things which re-
searcher groups are doing, i.e. the unwritten setup
is just as important as that which is documented. A
useful motivating example is the journal Biostatistics
that has an associate editor for reproducibility who
can assign grades of merit to conditionally accepted
papers (D: data are available, C: code is available,
and R: the code can be run produces the same results
without much effort). In short we need to agree and
use adequate reporting protocols.

• Joint comparative empirical studies of defect predic-
tion between research centres such that researcher
groups do not have to be expert in all classifier
learning techniques.

• Last and very importantly we need to take blinding
seriously. We need to remind ourselves that scient-
ists are subject to the same extra-scientific pressures
and sources of bias as others. Thus it is hard to think
of any reason why blind analysis (that is analysing
the results without knowing the treatments) should
not be mandatory for all serious computational re-
search.

It is not our intention to be unduly negative, however,
the evidence is compelling and we cannot ignore the
fact that the main determinant of a defect prediction
experiment result is which researcher group undertakes
the work. This cannot be ignored if the community are



12

to make meaningful progress on what, after all, is a very
important problem of predicting software defects.

We briefly review potential threats to validity. ANOVA
models generally make three assumptions [50] which are
(i) normality, (ii) equality of variances, and (iii) random,
independent sampling. We consider each of these issues
in turn. A more detailed analysis, including a robust
alternative to our statistical procedure is provided in the
Supplementary Materials.

We have shown the response variable MCC is reas-
onably close to a normal distribution other than the
extreme tails (see Fig. 4) and as discussed in the Sup-
plementary Materials the standard corrective procedures
are not helpful in this particular setting. Non-normality
elevates the risk of a Type I error (i.e., wrongly rejecting
the null hypothesis) and reduces power, however, as
Harwell et al. ([51] - Table 7) suggest skewness may be
problematic than kurtosis (which is what we observe for
MCC in that the distribution is approximately symmet-
rical) but that the general impact is ‘negligible’ on both
Type I errors and power.

The robust Levene test of distribution of variance
is also satisfactory, furthermore, as Faraway comments
“most tests and CI’s [Confidence Intervals] are relatively
insensitive to non-constant variance” [40].

The choice of studies for the meta-analysis is more
complex, however, we have endeavoured to be ex-
haustive and have based the analysis on a previous
comprehensive systematic literature review [2]. Thus all
published studies that provide sufficient data for our
meta-analysis and sufficient contextual information to
be meaningfully compared are included. Consequently,
we do not believe our analysis is biased in this regard.
Moreover, the inclusion of interaction terms within the
meta-analysis means that we can explicitly capture and
account for dependencies between factors.

A second threat arise from the complexity of the 4-
way model which means that from a factorial point of
view many of the cells are empty since if we count the
levels this yields (23×24×7×8 = 30912). For this reason
we looked at “dense” subsets of our data. We performed
the analyses for both ECLIPSE and NASA datasets alone
and by restricting it to the most popular class of Metric
thereby reduced the model to two-way. Detailed results
are given in the Supplementary Materials however to
summarise Research Group remains dominant (account-
ing for between 5 and 60 times more variance than the
choice of Classifier technique).

A third source of threat are our choices of category
or class when we group specific values for each factor
e.g. for data sets we ignore version. We do not see
our process as being unduly subjective and are making
the raw data available3 to other researchers so that our
findings can be corroborated, extended or challenged. In
any case the levels of significance are so strong and the
effects so large that we do not believe the basic findings

3 https://codefeedback.cs.herts.ac.uk/mlbias.

are sensitive to changes in the classification scheme. In
addition it is a random-effects analysis so we focus on
which factors matter rather than specific inter-level dif-
ferences where choice of class might be more influential.
Given, we have chosen fairly coarse-grained schemes our
expectation is that effects would be magnified if more
detailed classifications were employed.

A fourth threat is that concerns have been expressed
about the quality of some of the data sets used, e.g.,
NASA and Eclipse [12], [52] and this might jeopardise
the results. However, choice of data set would therefore
be a proxy for quality and we would see its importance
as a moderator increase. This may well be the case, how-
ever, Research Group remains the dominant factor. To
further explore this question we conduct further studies
based on NASA, Eclipse and Mozilla data sets alone
and find no change in the main finding that Researcher
Group is the dominant factor (see the Supplementary
Materials).

Thus we conclude from the meta-analysis that there
is strong evidence that current experiments in software
defect prediction are extremely limited in their effective-
ness and that we must take into account the dominant
factor which is researcher group. Until we move on
from the situation where it doesn’t matter what you do,
merely who does it, progress will be restricted since our
research is not reproducible [53].

Finally, although our focus has been on dichotomous
defect classifiers we anticipate that these kind of prob-
lems will be manifest in other areas where prediction
systems are being researched. Given problems of bias
have been reported across many branches of science
it is difficult to imagine that other areas of software
engineering will be immune. Research to confirm, or
otherwise, this conjecture is urgently required.

ACKNOWLEDGMENTS

We are indebted to Audris Mockus for his assistance
with the original analysis and for valuable discussions.
This paper has also greatly benefited from the helpful
and insightful suggestions of the reviewers. Naturally
any remaining errors are solely due to the authors.

REFERENCES
[1] C. Catal and B. Diri, “A systematic review of software fault

prediction studies,” Expert Systems with Applications, vol. 36, no. 4,
pp. 7346–7354, 2009.

[2] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, “A
systematic literature review on fault prediction performance in
software engineering,” Software Engineering, IEEE Transactions on,
vol. 38, no. 6, pp. 1276 –1304, nov.-dec. 2012.

[3] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, “Benchmarking
classification models for software defect prediction: A proposed
framework and novel findings,” IEEE Transactions on Software
Engineering, vol. 34, no. 4, pp. 485–496, 2008.

[4] I. Myrtveit, E. Stensrud, and M. Shepperd, “Reliability and validity
in comparative studies of software prediction models,” IEEE Trans-
actions on Software Engineering, vol. 31, no. 5, pp. 380–391, 2005.

[5] T. Raeder, T. Hoens, and N. Chawla, “Consequences of variability
in classifier performance estimates,” in Data Mining (ICDM), 2010
IEEE 10th International Conference on, Dec 2010, pp. 421–430.

https://codefeedback.cs.herts.ac.uk/mlbias


13

[6] Q. Song, Z. Jia, M. Shepperd, S. Ying, and J. Liu, “A general soft-
ware defect-proneness prediction framework,” IEEE Transactions on
Software Engineering, vol. 11, no. 3, pp. 356–370, May 2011.

[7] D. Ince, L. Hatton, and J. Graham-Cumming, “The case for open
computer programs,” Nature, vol. 482, pp. 485–488, 2012.

[8] P. Baldi, S. Brunak, Y. Chauvin, C. Andersen, and H. Nielsen,
“Assessing the accuracy of prediction algorithms for classification:
an overview,” Bioinformatics, vol. 16, no. 5, pp. 412–424, 2000.

[9] R. Kohavi, “A study of cross-validation and bootstrap for accuracy
estimation and model selection,” International Joint Conference on
Artificial Intelligence, 1995.

[10] J. D. Rodrı́guez, A. Pérez, and J. A. Lozano, “Sensitivity analysis
of k-fold cross validation in prediction error estimation,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 32,
no. 3, pp. 569–75, 2010.

[11] T. Menzies, B. Caglayan, Z. He, E. Kocaguneli, J. Krall,
F. Peters, and B. Turhan. (2012, June) The PROMISE repository
of empirical software engineering data. [Online]. Available:
http://promisedata.googlecode.com

[12] D. Gray, D. Bowes, N. Davey, Y. Sun, and B. Christianson, “The
misuse of the NASA metrics data program data sets for automated
software defect prediction,” in EASE 2011. Durham, UK: IET, 2011.

[13] M. Shepperd, Q. Song, Z. Sun, and C. Mair, “Data quality:
Some comments on the nasa software defect datasets,” Software
Engineering, IEEE Transactions on, vol. 39, no. 9, pp. 1208–1215, Sept
2013.

[14] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy,
“Cross-project defect prediction: a large scale experiment on data
vs. domain vs. process,” in Proceedings of the the 7th joint meeting of
the European software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering, ser. ESEC/FSE
’09. New York, NY, USA: ACM, 2009, pp. 91–100.

[15] E. Arisholm, L. C. Briand, and E. B. Johannessen, “A systematic
and comprehensive investigation of methods to build and evaluate
fault prediction models,” Simula, Tech. Rep. TR-2008-06, 2008.

[16] D. Powers, “Evaluation: from precision, recall and f-measure to
roc, informedness, markedness and correlation,” Journal of Machine
Learning Technologies, vol. 2, no. 1, pp. 37–63, 2011.

[17] Y. Jiang, B. Cukic, and Y. Ma, “Techniques for evaluating fault
prediction models,” Empirical Software Engineering, vol. 13, pp. 561–
595, 2008.

[18] J. Hernández-Orallo, P. Flach, and C. Ferri, “A unified view of
performance metrics: Translating threshold choice into expected
classification loss,” Journal of Machine Learning Research, vol. 13, pp.
2813–2869, 2012.

[19] G. Forman and M. Scholz, “Apples-to-apples in cross-validation
studies: Pitfalls in classifier performance measurement,” ACM
SIGKDD Explorations Newsletter, vol. 12, no. 1, 2010.

[20] B. Kitchenham and S. Charters, “Guidelines for performing sys-
tematic literature reviews in software engineering, version 2.3,”
Keele University, UK, Tech. Rep. EBSE Technical Report EBSE-2007-
01., 2007.

[21] M. Blettner, W. Sauerbrei, B. Schlehofer, T. Scheuchenpflug, and
C. Friedenreich, “Traditional reviews, meta-analyses and pooled
analyses in epidemiology,” Intl. J. of Epidemiology, vol. 28, no. 1,
pp. 1–9, 1999.

[22] G. V. Glass, “Primary, secondary, and meta-analysis of research,”
Educational Researcher, vol. 5, no. 10, pp. 3–8, 1976.

[23] L. Pickard, B. Kitchenham, and P. Jones, “Combining empirical
results in software engineering,” Information & Software Technology,
vol. 40, no. 14, pp. 811–821, 1998.

[24] J. Miller, “Applying meta-analytical procedures to software en-
gineering experiments,” J. of Systems & Software, vol. 54, no. 1, pp.
29–39, 2000.

[25] D. Cruzes and T. Dybå, “Research synthesis in software engineer-
ing: A tertiary study,” Information and Software Technology, vol. 53,
no. 5, pp. 440–455, 2011.

[26] M. Egger, M. Schneider, and G. Davey-Smith, “Meta-analysis
spurious precision? Meta-analysis of observational studies,” BMJ,
vol. 316, p. 140, 1998.

[27] S. Shapiro, “Meta analysis/shmeta analysis,” American J. of Epi-
demiology, vol. 140, pp. 771–778, 1994.

[28] G. Glass, B. McGaw, and M. Smith, Meta-analysis in social research.
Beverly Hills, CA: Sage Publications, 1981.

[29] K. Petersen and C. Wohlin, “Context in industrial software en-
gineering research,” in 3rd IEEE Intl. Symp on Empirical Software
Engineering & Measurement (ESEM), 2009.

[30] T. Fawcett, “An introduction to roc analysis,” Pattern Recognition
Letters, vol. 27, no. 8, pp. 861–874, 2006.

[31] M. Warrens, “On association coefficients for 2 × 2 tables and
properties that do not depend on the marginal distributions,”
Psychometrika, vol. 73, no. 4, pp. 777–789, 2008.

[32] E. Davenport and N. El-Sanhurry, “Phi/Phimax: Review and
synthesis,” Educational and Psychological Measurement, vol. 51, pp.
821–828, 1991.

[33] D. Bowes, T. Hall, and D. Gray, “DConfusion: A technique
to allow cross study performance evaluation of fault prediction
studies.” Automated Software Engineering, 2013.

[34] S. Chidamber and C. Kemerer, “A metrics suite for object oriented
design,” IEEE Transactions on Software Engineering, vol. 20, no. 6, pp.
476–493, 2011.

[35] S. Siegel and N. Castellan, “Nonparametric statistics for the
behavioral sciences (Mcgraw-hill, New York),” 1988.

[36] T. Hall and D. Bowes, “The state of machine learning meth-
odology in software fault prediction,” in Machine Learning and
Applications (ICMLA), 2012 11th International Conference on, vol. 2,
dec. 2012, pp. 308 –313.

[37] M. Shepperd and G. Kadoda, “Comparing software prediction
techniques using simulation,” IEEE Trans. on Softw. Eng., vol. 27,
no. 11, pp. 987–998, Nov 2001.

[38] K. Krishnamoorthy, F. Lu, and T. Matthew, “A parametric boot-
strap approach for ANOVA with unequal variances: Fixed and
random models,” Computational Statistics and Data Analysis, vol. 51,
no. 12, pp. 5731–5742, 2007.

[39] T.-S. Lim and W.-Y. Loh, “A comparison of tests of equality of
variances,” Computational Statistics & Data Analysis, vol. 22, no. 3,
pp. 287–301, 1996.

[40] J. J. Faraway, “Practical regression and anova using r.” 2002.
[41] T. Levine and C. Hullett, “Eta squared, partial eta squared, and

misreporting of effect size in communication research,” Human
Communication Research, vol. 28, no. 4, pp. 612–625, 2002.

[42] C. Pierce, R. Block, and H. Aguinis, “Cautionary note on reporting
eta-squared values from multifactor ANOVA designs,” Educational
and Psychological Measurement, vol. 64, no. 6, pp. 916–924, 2004.

[43] B. Kitchenham and E. Mendes, “Why comparative effort predic-
tion studies may be invalid,” in Proceedings of the 5th International
Conference on Predictor Models in Software Engineering. ACM, 2009,
p. 4.

[44] M. Shepperd, “It doesn’t matter what you do but does
matter who does it!” UCL, London, 2011. [Online]. Available:
crest.cs.ucl.ac.uk/15/slides/MartinShepperdCOW15.pptx

[45] D. Michie, D. Spiegelhalter, and C. Taylor, Eds., Machine learning,
neural and statistical classification, ser. Ellis Horwood Series in
Artificial Intelligence. Chichester, Sussex, UK: Ellis Horwood,
1994.

[46] A.-L. Boulesteix, “Over-optimism in bioinformatics research,”
Bioinformatics, vol. 26, no. 3, pp. 437–439, 2010.

[47] C. Mynatt, M. Doherty, and R. Tweney, “Confirmation bias in
a simulated research environment: An experimental study of
scientific inference,” Quarterly Journal of Experimental Psychology,
vol. 29, no. 1, pp. 85–95, 1977.

[48] V. Bebarta, D. Luyten, and K. Heard, “Emergency medicine
animal research: does use of randomization and blinding affect the
results?” Academic Emergency Medicine, vol. 10, no. 6, pp. 684–687,
2003.

[49] B. Kitchenham, “What’s up with software metrics? - A prelimin-
ary mapping study,” J. Syst. Softw., vol. 83, no. 1, pp. 37–51, Jan.
2010.

[50] B. West, K. Welch, and A. Galecki, Linear Mixed Models: A Practical
Guide Using Statistical Software, ser. Chapman Hall/CRC Press.
Boca Raton, FL: Ellis Horwood, 2007.

[51] M. Harwell, E. Rubinstein, W. Hayes, and C. Olds, “Summarizing
monte carlo results in methodological research: The one- and two-
factor fixed effects anova cases,” Journal of Educational and Behavioral
Statistics, vol. 17, no. 4, pp. 315–339, 1992.

[52] C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein, V. Filkov,
and P. Devanbu, “Fair and balanced?: Bias in bug-fix datasets,”
in Proceedings of the the 7th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on The
Foundations of Software Engineering, ser. ESEC/FSE ’09. New York,
NY, USA: ACM, 2009, pp. 121–130.

[53] C. Drummond, “Replicability is not reproducibility: Nor is it good
science,” June 14-18, 2009 2009.

http://promisedata.googlecode.com
crest.cs.ucl.ac.uk/15/slides/MartinShepperdCOW15.pptx


14

SECONDARY LITERATURE

[S1] G. Calikli, A. Tosun, A. Bener, and M. Celik, “The effect of
granularity level on software defect prediction,” in Computer
and Information Sciences, 2009. ISCIS 2009. 24th International Sym-
posium on, sept. 2009, pp. 531 –536.

[S2] B. Caglayan, A. Bener, and S. Koch, “Merits of using reposit-
ory metrics in defect prediction for open source projects,” in
Emerging Trends in Free/Libre/Open Source Software Research and
Development, 2009. FLOSS ’09. ICSE Workshop on, 2009, pp. 31–
36.

[S3] O. Kutlubay, B. Turhan, and A. Bener, “A two-step model for
defect density estimation,” in Software Engineering and Advanced
Applications, 2007. 33rd EUROMICRO Conference on, aug. 2007,
pp. 322 –332.

[S4] B. Turhan and A. Bener, “A multivariate analysis of static code
attributes for defect prediction,” in Quality Software, 2007. QSIC
’07. Seventh International Conference on, oct. 2007, pp. 231 –237.

[S5] A. Tosun and A. Bener, “Reducing false alarms in software
defect prediction by decision threshold optimization,” in Em-
pirical Software Engineering and Measurement, 2009. ESEM 2009.
3rd International Symposium on, 2009, pp. 477–480.

[S6] T. Menzies, J. Greenwald, and A. Frank, “Data mining static code
attributes to learn defect predictors,” Software Engineering, IEEE
Transactions on, vol. 33, no. 1, pp. 2 –13, jan. 2007.

[S7] A. Kaur, P. S. Sandhu, and A. S. Bra, “Early software fault
prediction using real time defect data,” in Machine Vision, 2009.
ICMV ’09. Second International Conference on, 2009, pp. 242–245.

[S8] A. Kaur and R. Malhotra, “Application of random forest in
predicting fault-prone classes,” in Advanced Computer Theory and
Engineering, 2008. ICACTE ’08. International Conference on, 2008,
pp. 37–43.

[S9] Y. Singh, A. Kaur, and R. Malhotra, “Predicting software fault
proneness model using neural network,” Product-Focused Soft-
ware Process Improvement, vol. 5089, pp. 204–214, 2008.

[S10] G. Pai and J. Dugan, “Empirical analysis of software fault
content and fault proneness using bayesian methods,” Software
Engineering, IEEE Transactions on, vol. 33, no. 10, pp. 675 –686,
oct. 2007.

[S11] C. Bird, N. Nagappan, H. Gall, B. Murphy, and P. Devanbu,
“Putting it all together: Using socio-technical networks to predict
failures,” in 20th International Symposium on Software Reliability
Engineering. IEEE, 2009, pp. 109–119.

[S12] N. Nagappan, A. Zeller, T. Zimmermann, K. Herzig, and
B. Murphy, “Change bursts as defect predictors,” in Software
Reliability Engineering (ISSRE), 2010 IEEE 21st International Sym-
posium on, 2010, pp. 309–318.

[S13] T. Zimmermann, R. Premraj, and A. Zeller, “Predicting defects
for eclipse,” in Predictor Models in Software Engineering, 2007.
PROMISE’07: ICSE Workshops 2007. International Workshop on,
may 2007, p. 9.

[S14] A. Schröter, T. Zimmermann, and A. Zeller, “Predicting compon-
ent failures at design time,” in Proceedings of the 2006 ACM/IEEE
international symposium on Empirical software engineering. ACM,
2006, pp. 18–27.

[S15] A. Koru and H. Liu, “Building effective defect-prediction models
in practice,” Software, IEEE, vol. 22, no. 6, pp. 23 – 29, nov.-dec.
2005.

[S16] G. Denaro and M. Pezzè, “An empirical evaluation of fault-
proneness models,” in Proceedings of the 24th International Confer-
ence on Software Engineering, ser. ICSE ’02. New York, NY, USA:
ACM, 2002, pp. 241–251.

[S17] A. B. de Carvalho, A. Pozo, S. Vergilio, and A. Lenz, “Predicting
fault proneness of classes trough a multiobjective particle swarm
optimization algorithm,” in Tools with Artificial Intelligence, 2008.
ICTAI ’08. 20th IEEE International Conference on, vol. 2, 2008, pp.
387–394.

[S18] A. B. de Carvalho, A. Pozo, and S. R. Vergilio, “A symbolic
fault-prediction model based on multiobjective particle swarm
optimization,” Journal of Systems and Software, vol. 83, no. 5, pp.
868–882, 2010.

[S19] A. Nugroho, M. R. V. Chaudron, and E. Arisholm, “Assessing
uml design metrics for predicting fault-prone classes in a java
system,” in Mining Software Repositories (MSR), 2010 7th IEEE
Working Conference on, 2010, pp. 21–30.

[S20] L. Briand, W. Melo, and J. Wust, “Assessing the applicability of
fault-proneness models across object-oriented software projects,”
Software Engineering, IEEE Transactions on, vol. 28, no. 7, pp. 706
– 720, jul 2002.

[S21] E. Arisholm, L. C. Briand, and M. Fuglerud, “Data mining
techniques for building fault-proneness models in telecom java
software,” in Software Reliability, 2007. ISSRE ’07. The 18th IEEE
International Symposium on, nov. 2007, pp. 215 –224.

[S22] E. Arisholm, L. C. Briand, and E. B. Johannessen, “A system-
atic and comprehensive investigation of methods to build and
evaluate fault prediction models,” Journal of Systems and Software,
vol. 83, no. 1, pp. 2–17, 2010.

[S23] C. Cruz and A. Erika, “Exploratory study of a uml metric for
fault prediction,” in Proceedings of the 32nd ACM/IEEE Interna-
tional Conference on Software Engineering-Volume 2. ACM, 2010,
pp. 361–364.

[S24] L. Yi, T. M. Khoshgoftaar, and N. Seliya, “Evolutionary optimiz-
ation of software quality modeling with multiple repositories,”
Software Engineering, IEEE Transactions on, vol. 36, no. 6, pp. 852–
864, 2010.

[S25] N. Seliya, T. Khoshgoftaar, and S. Zhong, “Analyzing soft-
ware quality with limited fault-proneness defect data,” in High-
Assurance Systems Engineering, 2005. HASE 2005. Ninth IEEE
International Symposium on, oct. 2005, pp. 89 –98.

[S26] T. Khoshgoftaar and N. Seliya, “Comparative assessment of
software quality classification techniques: An empirical case
study,” Empirical Software Engineering, vol. 9, no. 3, pp. 229–257,
2004.

[S27] T. Khoshgoftaar, X. Yuan, E. Allen, W. Jones, and J. Hudepohl,
“Uncertain classification of fault-prone software modules,” Em-
pirical Software Engineering, vol. 7, no. 4, pp. 297–318, 2002.

[S28] T. Mende and R. Koschke, “Effort-aware defect prediction mod-
els,” in Software Maintenance and Reengineering (CSMR), 2010 14th
European Conference on, 2010, pp. 107–116.

[S29] C. Catal, B. Diri, and B. Ozumut, “An artificial immune system
approach for fault prediction in object-oriented software,” in
Dependability of Computer Systems, 2007. DepCoS-RELCOMEX ’07.
2nd International Conference on, june 2007, pp. 238 –245.

[S30] R. Moser, W. Pedrycz, and G. Succi, “A comparative analysis
of the efficiency of change metrics and static code attributes
for defect prediction,” in Software Engineering, 2008. ICSE ’08.
ACM/IEEE 30th International Conference on, 2008, pp. 181–190.

[S31] T. Gyimothy, R. Ferenc, and I. Siket, “Empirical validation of
object-oriented metrics on open source software for fault predic-
tion,” Software Engineering, IEEE Transactions on, vol. 31, no. 10,
pp. 897 – 910, oct. 2005.

[S32] R. Vivanco, Y. Kamei, A. Monden, K. Matsumoto, and D. Jin,
“Using search-based metric selection and oversampling to pre-
dict fault prone modules,” in Electrical and Computer Engineering
(CCECE), 2010 23rd Canadian Conference on, 2010, pp. 1–6.

[S33] Y. Ma, L. Guo, and B. Cukic, “A statistical framework for
the prediction of fault-proneness,” Advances in machine learning
application in software engineering, pp. 237–265, 2006.

[S34] L. Guo, Y. Ma, B. Cukic, and H. Singh, “Robust prediction
of fault-proneness by random forests,” in Software Reliability
Engineering, 2004. ISSRE 2004. 15th International Symposium on,
nov. 2004, pp. 417 – 428.

[S35] Y. Jiang, B. Cukic, and Y. Ma, “Techniques for evaluating fault
prediction models,” Empirical Software Engineering, vol. 13, no. 5,
pp. 561–595, 2008.

[S36] O. Mizuno, S. Ikami, S. Nakaichi, and T. Kikuno, “Spam filter
based approach for finding fault-prone software modules,” in
Mining Software Repositories, 2007. ICSE Workshops MSR ’07.
Fourth International Workshop on, may 2007, p. 4.

[S37] O. Mizuno and T. Kikuno, “Training on errors experiment to
detect fault-prone software modules by spam filter,” in Proceed-
ings of the the 6th joint meeting of the European software engineering
conference and the ACM SIGSOFT symposium on The foundations
of software engineering, ser. ESEC-FSE ’07. New York, NY, USA:
ACM, 2007, pp. 405–414.

[S38] Y. Zhou and H. Leung, “Empirical analysis of object-oriented
design metrics for predicting high and low severity faults,”
Software Engineering, IEEE Transactions on, vol. 32, no. 10, pp.
771 –789, oct. 2006.

[S39] O. Vandecruys, D. Martens, B. Baesens, C. Mues, M. De Backer,
and R. Haesen, “Mining software repositories for comprehens-



15

ible software fault prediction models,” Journal of Systems and
Software, vol. 81, no. 5, pp. 823–839, 2008.

[S40] Z. Hongyu, “An investigation of the relationships between lines
of code and defects,” in Software Maintenance, 2009. ICSM 2009.
IEEE International Conference on, 2009, pp. 274–283.

[S41] S. Kanmani, V. Uthariaraj, V. Sankaranarayanan, and P. Tham-
bidurai, “Object-oriented software fault prediction using neural
networks,” Information and Software Technology, vol. 49, no. 5, pp.
483–492, 2007.

[S42] S. Shivaji, E. J. Whitehead, R. Akella, and K. Sunghun, “Reducing
features to improve bug prediction,” in Automated Software En-
gineering, 2009. ASE ’09. 24th IEEE/ACM International Conference
on, 2009, pp. 600–604.


	Introduction
	Related Work
	Software Defect Prediction
	Meta-analysis

	Method
	Selection of the Primary Studies
	Prediction Performance Measures
	Meta-Data Extraction
	Classifier family
	Data set family
	Metric family
	Researcher Group


	Results
	Descriptive Analysis of the Empirical Studies
	ANOVA Model Results

	Discussion
	References
	Secondary Literature

