
The Jinx on the NASA Software Defect Data Sets

Jean Petrić
Science and Technology

Research Institute
University of Hertfordshire

Hatfield, Hertfordshire
AL10 9AB, UK

j.petric@herts.ac.uk

David Bowes
Science and Technology

Research Institute
University of Hertfordshire

Hatfield, Hertfordshire
AL10 9AB, UK

d.h.bowes@herts.ac.uk

Tracy Hall
Department of Computer

Science
Brunel University London

Uxbridge, Middlesex
UB8 3PH, UK

tracy.hall@brunel.ac.uk
Bruce Christianson

Science and Technology
Research Institute

University of Hertfordshire
Hatfield, Hertfordshire

AL10 9AB, UK
b.christianson@herts.ac.uk

Nathan Baddoo
Science and Technology

Research Institute
University of Hertfordshire

Hatfield, Hertfordshire
AL10 9AB, UK

n.baddoo@herts.ac.uk

ABSTRACT
Background: The NASA datasets have previously been
used extensively in studies of software defects. In 2013 Shep-
perd et al. presented an essential set of rules for removing
erroneous data from the NASA datasets making this data
more reliable to use.
Objective: We have now found additional rules necessary
for removing problematic data which were not identified by
Shepperd et al.
Results: In this paper, we demonstrate the level of erro-
neous data still present even after cleaning using Shepperd
et al.’s rules and apply our new rules to remove this erro-
neous data.
Conclusion: Even after systematic data cleaning of the
NASA MDP datasets, we found new erroneous data. Data
quality should always be explicitly considered by researchers
before use.

Keywords
Data quality, software defect prediction, machine learning

1. INTRODUCTION
Software defect prediction (SDP) uses historical software

data to predict locations in code likely to have defects be-
fore the software is released. Defects may cause software
behave in unintended ways deviating from requirements. To
find defects, SDP researchers use quantitative measures of
software, which are considered to correlate with parts of the
software that are likely to be defective. Various, usually au-
tomated, approaches are used to learn from historical data

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

EASE ’16, June 01-03, 2016, Limerick, Ireland
© 2016 ACM. ISBN 978-1-4503-3691-8/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2915970.2916007

and make predictions on new data.
Most automated defect prediction is performed using vari-

ous machine learning techniques [7, 9]. Regression and clas-
sification are the two most commonly used approaches in
defect prediction. Regression techniques predict the density
or number of possible defects for each module, whilst classi-
fication techniques only give categorical information (i.e. a
module is defective or non-defective). Gray et al. argue that
regression techniques should be preferred over classification
techniques since they can provide a priority list of poten-
tially defective modules [2]. However, according to Wahono,
77% of studies have used classification techniques, compared
to 14% that used regression techniques [9].

Historical software data is usually fed into machine learn-
ers for the purpose of their training. The training data con-
tain quantitative measures for each module, along with the
number or label depicting whether a module is defective
or not. Machine learners then search for patterns in data
and derive mathematical rules for predicting defectiveness.
Therefore, the accuracy of predictions highly relies on the
quality of historical data. Lessmann et al. conducted a com-
prehensive study benchmarking over 20 different machine
learning algorithms on the NASA MDP datasets [6]. The
authors concluded that the top performing 17 classifiers do
not result in significantly different prediction performances.
However, after Gray et al.’s [3] and Shepperd et al.’s [8]
efforts on data cleansing, Ghotra et al. [1] performed a sim-
ilar study to Lessmann et al. on the cleaned version of the
NASA MDP datasets. In this case, the authors concluded
that the classifiers’ prediction performances are significantly
different, and therefore that the choice of a classifier mat-
ters. Hence, poor data quality may significantly affect the
conclusions that researchers derive.

In the early 2000s, the lack of data availability was a great
challenge [5]. However, NASA stepped in and published
the NASA Metrics Data Program datasets for researchers
to use. These datasets soon became very popular among
researchers, since the data in its original form can easily be
used for doing defect prediction. According to Hall et al.,
the NASA MDP datasets have been used in 62 out of 208
software prediction studies from 2000 to 2010 [4]. However,

not much contextual information was released along with
the datasets. Without articulating sufficient contextual in-
formation it becomes more difficult for researchers to un-
derstand their results. Ambiguity in the metric definitions
makes it difficult or even impossible to verify the consistency
of these metrics. Therefore, future effort in collecting defect
data should ensure that enough contextual information is
also retrieved.

Shepperd et al.’s paper: “Data Quality: Some Comments
on the NASA Software Defect Datasets” was published in
the September 2013 issue of the IEEE Transactions on Soft-
ware Engineering journal [8]. Their paper, which extends
the work of Gray et al. [2, 3], presents a set of cleaning steps
for removing erroneous data from the NASA Metrics Data
Program datasets. The aim of this paper is to point out ad-
ditional inconsistency in some of the NASA MDP datasets.
The contribution of this paper is two-fold. First, we intro-
duce additional integrity checks essential for cleaning the
NASA MDP data before use. Second, we show to what
extent the NASA MDP data is affected by applying these
additional integrity checks.

In the next section we present related work aimed at clean-
ing NASA MDP datasets. Following the related work, we
show our findings and point out some additional integrity
checks that should be addressed when cleaning the defect
prediction data. Our conclusions are set out in the final
section.

2. RELATED WORK
Gray et al. systematically questioned the quality of the

NASA MDP datasets [2, 3]. Gray et al. pointed out a series
of problems in the data and offered a solution for dealing
with those problems. They identified several concerns that
can be summarised as:

• repeated or inconsistent instances: multiple software
modules contain the same attribute (i.e. static code
metric) and class values (i.e. defective label). This
situation is clearly possible in the real world, however
repeated data points can cause over-optimistic perfor-
mances when used in the machine learning context.
Inconsistent instances happen when multiple software
modules have the same attribute values, but different
class values. Again, such situation is possible in the
real world context, however it can potentially have a
negative impact on machine learners;

• data integrity : for example, 1.1 lines of code is a clear
example of such integrity check;

• constant and repeated attributes: attributes that do
not contain any variance are of no use for machine
learners. Repeated attributes, on the other hand, con-
tain the same values for each instance, which can harm
predictions having some attribute over-represented;

• missing values: can either be harmful or completely
ignored by classification methods.

Shepperd et al. have built on the work of Gray et al.
producing a comprehensive set of rules for data cleansing
[8]. Their most significant extension from Gray et al.’s rules
was in data integrity. They compiled a list of 18 different
referential integrity checks that can test the validity of data

instances. Overall, they found a significant number of er-
roneous data points, which they divided into two domains.
The first domain contains only the problematic data, i.e. the
data with impossible values. The other domain deals with
the data that is not problematic, but does not help defect
prediction (e.g. repeated attributes). All instances that fit
in either of these two categories were removed. The authors
provided the cleaned versions of the NASA datasets for both
domains to the scientific community.

3. INVESTIGATION AND RESULTS
Our analysis is based on the Shepperd et al.’s cleaned

versions of the NASA datasets from the tera-PROMISE
repository1, namely DS′ and DS′′. DS′ denotes data with
conflicting attribute values and implausible values removed,
whilst DS′′ is a dataset from which data have been removed
that are not problematic but which do not help improve
defect prediction (e.g., attributes with constant values, as
defined by Shepperd et al. [8]). The cleaned versions of the
NASA datasets were not publicly available from the Shep-
perd et al. original site2 at the time of our analysis. Conse-
quently, we used the Shepperd et al.’s cleaned version of the
NASA datasets from the tera-PROMISE repository. The
tera-PROMISE repository did not contain all 14 datasets
initially published by the NASA MDP. Datasets KC1 and
KC4 were not available in the tera-PROMISE repository,
and dataset KC2 did not contain Shepperd et al.’s cleaned
versions of the data. The remaining 11 NASA datasets
used in this study were at revision number 73 in the tera-
PROMISE SVN repository. Although the Shepperd et al.
and tera-PROMISE versions of the cleaned datasets may
differ, we used the tera-PROMISE version as this was the
only version now available. However, the tera-PROMISE
version is frequently used in software defect prediction stud-
ies.

Table 1 provides definitions and acronyms of the lines of
code (LOC) metrics used in this study. These definitions
were available on the now defunct MDP site4 in the original
NASA Metrics Data Program documents. For the sake of
simplicity and space, we use the letters a to e to denote the
LOC metrics used and replace the number of lines metric
with the letter N (as shown in Table 1). We introduce a
new variable, called ξ, which quantifies the missing lines in
a module (also shown in Table 1).

Table 1 shows that N counts all LOC between open and
close brackets in a module. Because all of these 11 NASA
systems were written in either C/C++ or JAVA, only a lim-
ited number of code structures are allowed to occur between
open and close brackets. In particular, a module may con-
tain a number of: blank lines (variable d), comment lines
(variable b) and lines containing code. In the NASA data
sets lines containing code are divided into either code and
comment on the same line (variable a) or only executable
code on a line (variable c). Consequently N is equal to:

N = a+ b+ c+ d+ ξ (IC1)

where we should have ξ = 0 provided that the variable a is

1http://openscience.us/repo/
2http://j.mp/scvvIU
3The most recent revision at the time of conducting our
analysis
4http://mdp.ivv.nasa.gov

Table 1: Definition of lines of code metrics in NASA MDP datasets
Acronym Metric Definition

a LOC CODE AND COMMENT The number of lines which contain both code & comment in a module.
b LOC COMMENTS The number of lines of comments in a module.
c LOC EXECUTABLE The number of lines of executable code for a module (not blank or comment)
d LOC BLANK The number of blank lines in a module.
e LOC TOTAL The total number of lines for a given module.
N NUMBER OF LINES Number of lines in a module. Pure, simple count from open bracket to close

bracket. Includes every line in between, regardless of character content.
ξ IRREGULARITY COUNT The number of unexpected missing lines in a module. We add this metric

to support a novel rule for removing erroneous data.

Table 2: Results of erroneous data in the NASA defect datasets violating two new integrity checks
DS' DS”

Dataset
IC1 partition IC1 violation

(P1 + P4)
IC2
violation

IC1 partition IC1 violation
(P1 + P4)

IC2
violationP1 P2 P3 P4 P1 P2 P3 P4

CM1 5 1 311 27 32 (9.3%) 0% 4 1 295 27 31 (9.48%) 0%
JM1 - - - - - 9555 (99.6%) - - - - - 7753 (99.63%)
KC3 0 0 128 72 72 (36%) 0% 0 0 123 71 71 (36.6%) 0%
MC1 0 0 3552 5725 5725 (61.71%) 0% 0 0 115 1873 1873 (94.22%) 0%
MC2 0 0 1 126 126 (99.21%) 0% 0 0 1 124 124 (99.2%) 0%
MW1 0 0 264 0 0 (0%) 0% 0 0 253 0 0 (0%) 0%
PC1 12 1 711 35 47 (6.19%) 0% 12 1 660 32 44 (6.24%) 0%
PC2 - - - - - 0% - - - - - 0%
PC3 2 3 1087 33 35 (3.11%) 0% 2 3 1040 32 34 (3.16%) 0%
PC4 0 0 275 1124 1124 (80.34%) 0% 0 0 228 1059 1059 (82.28%) 0%
PC5 0 0 1504 15497 15497 (91.15%) 0% 0 0 94 1617 1617 (94.51%) 0%

not subsumed in c, and similarly the variable b is not sub-
sumed in a. To verify that the variable a is not subsumed in
c we found multiple data points where a > c. The same ver-
ification test was used to confirm that the variable b is not
subsumed in a. Both verification tests were performed after
the datasets had been cleaned using our integrity checks.
C/C++ programming languages allow the use of preproces-
sor directives that could have been ignored by the metric
extraction tool and not counted in any of the LOC metrics
described above. However, we confirmed that this is not the
case since dataset KC3 is written in Java and some of KC3
instances also violate the (IC1) rule.

Table 3: All possible outcomes of violating the IC1
rule

Partition Rule Description

P1 ξ < 0
Implausible values. It is impossible
to have more lines of code than total
number of lines in a module.

P2 ξ = 0
Expected values. Number of lines in
a module matches the sum of lines
of the code metrics.

P3 ξ = 1
Out by one. This is the most com-
mon of these issues in the NASA
datasets.

P4 ξ > 1 The ξ are the missing lines in the
dataset.

Although all data should obey equation (IC1) with ξ = 0,
this is not the case for all of the 11 NASA datasets we anal-
ysed. Table 3 presents all possible outcomes of calculating
the integrity check (IC1). Partition P2 is the ideal situa-

tion where the data complies with (IC1), and therefore to
the equation (IC1). Partition P3 is where the result is out
by one. This is a commonly occurring situation in these
datasets and could be explained by tools not counting the
last line in a module. If the last line of a module is just a
bracket, the tool may count this as an additional line (N)
but not as a blank line (d), because the new line charac-
ter comes after the close bracket. This is not the case for
the beginning of a module, because the new line character
comes after the open bracket. However we cannot verify our
suspicion as no code is available with the NASA datasets.
We do not remove these out by one instances and accept the
data that are present in the partition P3 set. Partition P1
presents an impossible situation, because N must always be
equal to or greater than the sum of metrics from which it is
derived. In P4 missing lines of code occur, which we cap-
ture with the ξ variable. But, because we cannot know for
certain the source of ξ and what effect it may have on de-
fect prediction, we should probably avoid such occurrences.
Therefore, our opinion is that the data in the P1 and P4
sets are violating the (IC1) rule.

The total number of lines in a module (e) for all investi-
gated NASA datasets was equal to:

e = a+ c (IC2)

except for the JM1 dataset. We derived the IC2 rule by
checking its validity on 10 out of 11 NASA datasets we used.
Unfortunately, due to non-availability of the NASA source
code and information about the metric tools used, we could
not check the reason for this anomaly. However, it is likely
that problems were encountered during the collection of met-
rics for the JM1 dataset because it is the only instance of
the NASA datasets that violates the (IC2) rule.

Figure 1: The erroneous instances discarded by Shepperd et al. (PROMISE data) and by (Our study)

0.00

0.25

0.50

0.75

1.00

CM1 JM1 KC3 MC1 MC2 MW1 PC1 PC2 PC3 PC4 PC5

P
er

ce
nt

ag
e

(%
)

Our study
PROMISE

(a) Problematic data (DS′)

0.00

0.25

0.50

0.75

1.00

CM1 JM1 KC3 MC1 MC2 MW1 PC1 PC2 PC3 PC4 PC5

P
er

ce
nt

ag
e

(%
)

Our study
PROMISE

(b) Data that do not add to defect prediction (DS′′)

We also encountered problems with data availability. Datasets
JM1 and PC2 were missing N and d metrics, respectively,
so we could not check the (IC1) rule for these two NASA
datasets.

Table 2 presents the overall results of applying the (IC1)
and (IC2) rules to Shepperd et al. cleaned versions of the
NASA datasets. Table 2 shows that some datasets are af-
fected dramatically by applying the (IC1) rule. For exam-
ple, more than 60% of the data in MC1, MC2, PC4 and
PC5 breaks the (IC1) rule. Table 2 also shows that there
is more erroneous data in the DS′′ dataset than the DS′

dataset. This is because the DS′′ cleaning procedure re-
duces the amount of data affected by Shepperd et al.’s rules,
whilst not removing the data affected by our rules. Ta-
ble 2 shows that JM1 and MC2 datasets are particularly
problematic. After cleaning, insufficient data remains in the
JM1 and MC2 datasets, rendering them poor candidates for
defect prediction. Additionally, the post-cleaning of MC1
and PC4 datasets removed all defective data points, making
them unusable for defect prediction.

Finally, Figure 1 compares the amount of instances dis-
carded by applying the rules from Shepperd et al. and by
our rules. The black bar denotes the instances removed from
the tera-PROMISE version of the NASA MDP datasets by
using Shepperd et al.’s cleaning rules. Similarly, the white
bar denotes the instances eliminated by using our (IC1) and
(IC2) rules. The figures clearly show that JM1, MC1, MC2,
PC4 and PC5 NASA MDP datasets are highly affected by
our rules and not by [8]. Furthermore, in the case of DS′′ the
JM1, MC1, MC2 and PC5 datasets remain with less than
5% of the original data points.

4. CONCLUSION
Software defect prediction models rely on the quality of

the datasets on which they are built. NASA data has been
used frequently in previous defect prediction studies. The
quality of the NASA data underpins the confidence that we
can have in the results of studies using this data. Because
data collection mistakes are inevitable, it is essential that
the quality of data is explicitly considered and that data

is cleaned before use. It is critical that the data cleaning
presented by Shepperd et al. and extended here by us is
applied to the NASA data before it is used in future studies.

5. ACKNOWLEDGEMENTS
The authors would like to thank Dr David Gray and Pro-

fessor Martin Shepperd on their valuable comments and rec-
ommendations. This work was partly funded by a grant
from the UK’s Engineering and Physical Sciences Research
Council under grant number: EP/L011751/1.

6. REFERENCES
[1] B. Ghotra, S. McIntosh, and A. E. Hassan. Revisiting

the impact of classification techniques on the
performance of defect prediction models. In 37th Int.
Conf. on Software Engineering (ICSE), 2015.

[2] D. Gray, D. Bowes, N. Davey, Y. Sun, and
B. Christianson. The misuse of the NASA metrics data
program data sets for automated software defect
prediction. In Evaluation Assessment in Software
Engineering (EASE 2011), pages 96–103, 2011.

[3] D. Gray, D. Bowes, N. Davey, Y. Sun, and
B. Christianson. Reflections on the NASA MDP data
sets. Software, IET, 6(6):549–558, Dec 2012.

[4] T. Hall, S. Beecham, D. Bowes, D. Gray, and
S. Counsell. A systematic literature review on fault
prediction performance in software engineering.
Software Engineering, IEEE Transactions on,
38(6):1276–1304, Nov 2012.

[5] Y. Kamei and E. Shihab. Defect prediction:
Accomplishments and future challenges. In Software
Analysis, Evolution and Reengineering (SANER), 2016
IEEE 23rd International Conference on, 2016.

[6] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch.
Benchmarking classification models for software defect
prediction: A proposed framework and novel findings.
Software Engineering, IEEE Transactions on,
34(4):485–496, July 2008.

[7] R. Malhotra. A systematic review of machine learning
techniques for software fault prediction. Applied Soft
Computing, 27:504 – 518, 2015.

[8] M. Shepperd, Q. Song, Z. Sun, and C. Mair. Data
quality: Some comments on the NASA software defect
datasets. Software Engineering, IEEE Transactions on,
39(9):1208–1215, Sept 2013.

[9] R. S. Wahono. A systematic literature review of
software defect prediction: Research trends, datasets,
methods and frameworks. Journal of Software
Engineering, 1(1):1–16, 2015.

