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Abstract

Context: Replications are an important part of scientific disciplines. Replications test
the credibility of original studies and can separate true results from those that are unreliable.

Objective: In this paper we investigate the replication of defect prediction studies and
identify the characteristics of replicated studies. We further assess how defect prediction
replications are performed and the consistency of replication findings.

Method: Our analysis is based on tracking the replication of 208 defect prediction studies
identified by a highly cited Systematic Literature Review (SLR) [1]. We identify how often
each of these 208 studies has been replicated and determine the type of replication carried
out. We identify quality, citation counts, publication venue, impact factor, and data avail-
ability from all 208 SLR defect prediction papers to see if any of these factors are associated
with the frequency with which they are replicated.

Results: Only 13 (6%) of the 208 studies are replicated. Replication seems related to
original papers appearing in the Transactions of Software Engineering (TSE) journal. The
number of citations an original paper had was also an indicator of replications. In addition,
studies conducted using closed source data seems to have more replications than those based
on open source data. Where a paper has been replicated, 11 (38%) out of 29 studies revealed
different results to the original study.

Conclusion: Very few defect prediction studies are replicated. The lack of replication
means that it remains unclear how reliable defect prediction is. We provide practical steps
for improving the state of replication.
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1. Introduction

Defect prediction is a very active area of research in software engineering. However
the quality of defect prediction modelling is regularly criticised [2, 3]. Replications are
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an important way in which to identify the quality of original studies and to increase the
confidence that we can have in results [4, 5]. Replications also test the claim that “most
research findings are false” [6] and that a “little replication goes a long way” to separate
true research findings from false positives [7]. The more replication studies are performed,
the more opportunities there are for defect prediction studies to be improved and the state-
of-the-art to mature.

This paper aims to quantify the subsequent replications of 208 defect prediction studies
identified by Hall et al. [1]. We use Wohlin’s [8] forward snowballing approach to identify pa-
pers that cite these original 208 studies. Within these citing papers, we identify replications
of the original 208 defect prediction studies. We compare the prediction performance of an
original study with its accompanying replication study. We measure performance agreement
between studies. Agreements or disagreements show replication success or failure, and also
indicate the replicability of studies. We extract the characteristics of original studies which
have been replicated. Knowing the characteristics of replicated original studies should help
authors of primary studies produce studies more accessible to replication. We also present a
landscape of how replications are done in defect prediction. We aim to answer the following
four research questions:

RQ1 Are defect prediction studies replicated?
RQ2 How are replications performed in defect prediction?
RQ3 What features of a defect prediction study make it likely to be replicated?
RQ4 Do original and replication studies in defect prediction agree?

We make the following contributions. First, we present a methodology for analysing
replications that is based on using an existing SLR. Second, we provide a small baseline set of
39 defect prediction studies (originals with their corresponding studies) for researchers to use
in future studies. Third, we identify a set of characteristics of original studies for researchers
to incorporate into their work to encourage subsequent replication. Finally, we provide
practical recommendations which could increase the number of replications performed.

The paper is structured as follows: Section 2 gives background about replication and
related work. Section 3 details the methodology while Section 4 provides results. Threats
to validity are given in Section 5 and the implications and recommendations for replication
are discussed in Section 6. Finally, Section 7 concludes the study.

2. Background and Related Work

Defect prediction has “many researchers continuously proposing novel approaches to pre-
dict defects in software systems” [9]. Ioannidis [6] reports that there is a high risk of false
results in rapidly growing fields with many research groups (defect prediction can be de-
scribed this way). Moonesinghe et al. [7] shows that the probability of a research claim being
true is increased by replications. Quantifying replications in defect prediction is therefore
important.

The number of replications in software engineering has previously been investigated by
da Silva et al. [4] who found 96 software engineering papers replicating 72 original soft-
ware quality and testing studies between 1994 and 2010. A total of 70% of the replications
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were conducted after 2004, and 70% of those were self replications. Even though replica-
tion growth is evident, it does not keep pace with the growth of empirical primary studies;
therefore, more external replications are needed [4]. We set out to quantify external replica-
tions in one strand of software engineering, i.e. defect prediction. We based our analysis on
tracking the replications of a representative sample of defect prediction studies from Hall et
al. [1] because the study is one of the “very prominent ‘gold sets’ of published SLRs” and
the authors “define their work in enough detail for us to construct data sets for simulations”
[10].

The terms replication and reproducibility are often interchanged, but they carry different
meaning. Replication means to repeat an experiment by independent researchers within a
different environment, with changes to the original study aimed at getting consistent results.
Reproduction is to recompile the same artefacts used for a study, including data, analysis
and procedures for validation [11, 12] to get the same results.

Bias may be a major threat to repeatability. Shepperd et al. [13] found that bias intro-
duced by researchers accounts for most of the variance in defect prediction-model perfor-
mance. So,“it matters more who does the work than what was done” and “Clearly Research
Group is a basket for a number of concepts including prior knowledge, statistical and data
processing skills, interests, opportunities, relationships with practitioners and so forth” [13].
These bias factors suggest that a study done by a research group may not be repeatable
by others. Previous work has looked at the reproducibility of data mining studies [14, 15].
Defect prediction studies invariably are based on data mining. Barahona and Robles [14]
propose a process model to gauge the reproducibility of data mining studies by identifying
key elements of the research including: data source, retrieval methodology, raw dataset,
extraction methodology, study parameters, processed dataset, analysis methodology, and
results dataset.

Goodman et al. [16] suggest that in any scientific field the kind of replication must
be clearly specified. We adopt part of the Gómez et al. [5] replication taxonomy that
tracks changes made to components of an original study, and identifies the different types
of replications that can be performed. The taxonomy was originally defined for software
engineering human-centric experiments, but we adapt it to defect prediction experiments
(Section 3 presents our adaption).

According to Gómez et al. ’s [5] taxonomy, replication in software engineering can be
categorised into three broad types (see Table 1). Literal is a type of replication done by
authors of the original study. In effect, this type of replication is often named Repetition
because no component of the original study is changed; the same experiment is run by the
same authors using the exact tools on the same data to avoid bias in the results. Modi-
fying any component of the original study changes the type of replication to Operational.
For example, if different authors replicate an original study while data and tools remain
the same, it is the Operational replication type with Changed-experimenter (in effect the
same as reproduction). Under the Operational replication, 15 changes can be made to the
original study, and each change is given the appropriate name to reflect the change (Table 1
identifies these changes) for example the populations being studied may change. The third
replication type is called Conceptual because every aspect of the original study is changed
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Table 1: The identified replications in this study that are mapped & tagged to the considered categories of
the Gómez et al. [5] replication taxonomy.

Replication type Protocol Operationalisation Populations Experimenters Replication name & changed (∆) components
Literal = = = = Repetition

Operational

= = = 6= ∆-experimenter (A)
= = 6= = ∆-populations
= = 6= 6= ∆-populations/-experimenter (B)
= 6= = = ∆-operationalisation
= 6= = 6= ∆-operationalisation/-experimenters (C)
= 6= 6= = ∆-operationalisation/-populations
= 6= 6= 6= ∆-operationalisation/-populations/-experimenters (D)
6= = = = ∆-protocol
6= = = 6= ∆-protocol/-experimenters (E)
6= = 6= = ∆-protocol/-populations
6= = 6= 6= ∆-protocol/-populations/-experimenters (F)
6= 6= = = ∆-protocol/-operationalisation
6= 6= = 6= ∆-protocol/-operationalisation/-experimenters (G)
6= 6= 6= = ∆-protocol/-operationalisation/-populations
6= 6= 6= 6= ∆-protocol/-operationalisation/-populations/-experimenters (H)

Conceptual Unknown Unknown Unknown Unknown (only hypotheses are retained)

except the hypotheses. Applying this taxonomy to new and existing replications is crucial
in aggregating replication types and results, to consolidate and synthesise new knowledge.

We aim to identify the number of replicated original defect prediction studies, and iden-
tify characteristics of these studies likely to relate to a paper being replicated. The character-
istics of the original study we focus on are: study quality, publication venue, citation count
and dataset. We focus on quality because Aksnes [17] deems quality as the core knowledge
that leads to further developments by other researchers, with lasting significance. We focus
on publication venue and study influence as Garousi and Fernandes [18] report that highly
cited papers make studies influential. Aksnes [17] also reports that such influential papers
tend to be published in journals. We focus on dataset as the availability and usability of data
is likely to influence replication potential. Only the quality characteristics are not directly
measurable. We use the quality4p assessment process to characterise the quality of original
studies as used by Hall et al. [1]. The quality4p process assesses defect prediction studies
in terms of whether they employ a reliable methodological approach to building prediction
models and whether studies report sufficient information to comprehend a study [1] (Table
2 summarises the quality criteria). A more detailed description of quality4p is outlined in
Hall and Bowes [2].

3. Methodology

Our methodology has six stages with each stage further broken down.

3.1. Stage 1: Identification of replication papers

We use as our base set of studies the 208 original studies published in the 2012 SLR in
defect prediction [1]. We used forward snowballing [8] to identify papers that subsequently
cite and replicate the 208 original studies between 2000 - 2017 (15th April). This means
that we sift through papers that cite original studies, identifying all possible papers that
may replicate an original SLR study.
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We used Google Scholar to identify citing papers for each of the 208 original studies.
On the ‘cited by #papers’ page of each paper we used the ˜Replicate OR ˜Replication
OR ˜Replicated string and selected the ‘search within citing articles’ feature. In effect,
only papers that used these terms or their synonyms (denoted by tilde (˜)) were returned.
Applying this technique reduces the number of papers to be assessed as replications and
reduces false positives. We then read from the returned results page, the paper title and
its summarised phrases to identify if the paper was a replication of an original study in the
208. If not sufficient, we accessed the whole document to find the context in which the term
was used, as suggested by Wohlin [8]. For this search the in-built search feature of the web
browser used or document reader was used to find where the term replication is used. If
the replication term is not in the document we read the paper in full to establish if it was
a replication. Using this approach we identified a set of papers that replicated a sub-set of
the 208 original studies.

3.2. Stage 2: Inclusion criteria

Our focus is to find external replications (i.e., replications not by the original authors,
as these are considered true replications [19, 4]) of the original studies. We exclude a paper
if the replication is by any original author(s), or was extended work by any of the original
author(s). If the author(s) have extended an original piece of work, we considered this work
to be one paper, and any replication of either of these two is a replication of an original
study. We consider any author (whether a lead author or not) to be an author of the paper.
Consequently we track all replications by all authors of original studies1. We found 13
original studies that have been replicated by 26 replication papers. These 39 papers are our
final-set.

3.3. Stage 3: Data extraction process

3.3.1. Tool for extraction

For reproducibility (i.e. the ability of our research to be compiled and produce the same
result), we used our SLuRp tool2. SLuRp is a web-based tool developed to make Systematic
Literature Reviews (SLR) reproducible and also provides effective information storage and
retrieval. SLuRp was assessed as the best of the SLR tools by Marshall et al. [21]. We
did not use all of SLuRp’s functionality, many more useful SLR management features are
described in Bowes et al. [20]. We provide the following steps as a summary of SLuRp
together with how we used it for data extraction.

1. Import BibTEX files and store references to all original and replicated studies.
2. Assign two researchers (authors of this paper) to independently store extracted infor-

mation from each paper.
3. Allow researchers to modify and approve extracted information.

1To clarify: If paper P is authored by Anne, Ben and Ceri. And paper Q is authored by any of Anne,
Ben or Ceri, paper Q is NOT in the set of replicated papers. If paper R is an extension of paper P and has
none of the original authors, R is included.

2 [20] available at https://bugcatcher.stca.herts.ac.uk/bugcatchers/faces/slurp/SLuRp.xhtml
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4. Disagreements between researchers are flagged by SLuRp.
5. Create forms based on contextual and methodological information that must be ex-

tracted from each paper.
6. Store extracted information in the SLuRp database.
7. Retrieve stored information using SQL queries and organise into result tables.
8. Export tables as LATEX tables. Graphs and box plots are available.
9. Edit entire paper with SLuRp LATEX editor, including results, tables and compiled to

produce the final paper.

3.3.2. Extraction of selected data from final set

Three sets of data were extracted that allowed us to answer RQ2, RQ3 and RQ4. The first
set of extracted data (for RQ2) characterises how defect prediction studies are performed.
This dataset is based on the defect prediction characteristics presented in Hall et al. [1] and
Hall and Bowes [2]. These characteristics include:

1. dependent variables
2. independent variables
3. algorithms
4. dataset
5. tuning
6. cross validation
7. statistical analysis

This set of defect prediction characteristics data allows us to gain insights on replication
practice and to categorise replications based on changes replications make to the original
studies in terms of these characteristics. The information we collect allows us to categorise
replications into their respective categories (as defined in Table 1). Of the 39 final-set of
studies, 5 papers were read independently between two authors (by way of a validation
check on the data extraction process) and their data extracted, while agreements were
reached on this data extraction using SLuRp to minimise threats to validity. Information
on the remaining papers was then extracted by one of the authors. The second set of
data extracted (for RQ3) allows us to determine which features of defect prediction studies
make it likely that an original study will be replicated. This set of data is: study quality,
publication venue, citation count and dataset (as presented in Section 2). The extraction of
this data is described in Section 3.5. The third set of data extracted (for RQ4) allows us to
establish whether the results of a replication study are comparable to the original. Section
3.6 describes the process by which we establish study outcome agreement.

3.4. Stage 4: Categorisation of replications into types

The Gómez et al. [5] replication taxonomy (Table 1) requires understanding of a study
and its individual components before being applied to categorise replications into types.
We breakdown defect prediction study components for replication classification by adapting
the general component structure proposed by Gómez et al. [5] (see Appendix A). These
study components represent changeable aspects of an original study during its replication
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(as described above). Each component changed may assist in the discovery of unknown
factors that affect replication results.

The component data extracted from the final-set of papers are organised into tables (see
Appendix B). We mapped each replication study to its type in Gómez et al. [5] taxonomy
based on changes researchers made to the original study components during replication. We
detail the four components of a study as follows;

Protocol is the overall study design. In defect prediction the framework that pulls to-
gether different sub-components to build a prediction system is the overall study design
(protocol). Table B.16 shows the protocol sub-components we have used are:

1. cross validation scheme used
2. whether parameter tuning was performed
3. which statistics were used to compare performance results
4. whether data cleaning was used

These factors are motivated by Hall et al. [1] and Hall and Bowes [2] as outlined previously
in Section 3.3. The protocol is the design before it is implemented (i.e. operationalised).

Operationalisation has two aspects, cause and effect. The cause is the process of im-
plementing the protocol and considers the implementation environment (as shown in Table
B.17) we consider the following implementation factors (again motivated by Hall et al. [1]
and Hall and Bowes [2]):

1. Tools used
2. Algorithms used
3. Independent variables used

It should be noted that algorithms have been embedded into data mining tools like Weka
[22], in effect the tools carry out the treatments required to implement a prediction frame-
work. Therefore such tools and their versions must be considered because they may cause
differences in replication results. Effect is the process of determining and defining the aspects
of a model to be measured and selecting the appropriate measure. Since measures already
exist (e.g. recall; measures the proportion of actual defects a model correctly predicted),
it is a question of which appropriately measures the effect of the treatments in the model’s
prediction outcome. Consequently Table B.17 shows that the final operationalisation factor
we collect is the dependent variable.

Population is based on the systems analysed in studies. These systems are then mined from
source code repositories (open or closed sources). Changing a repository to mine data also
changes the population. Table B.18 shows that the population factors that are considered
are:

1. data source
2. domain
3. language
4. granularity of defect data

The granularity, i.e. method or class level, where the defective or non-defective data are
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gathered is also part of this. The programming languages used, size of project (KLOC), ma-
turity (years of use and development), etc. Changing any of these sub-components affects
the population and likely the replication results.

Experimenters are the researchers that conducted the study.

3.5. Stage 5: Identification of Factors Associated with Replication

For all 208 papers, as discussed previously, we extracted 6 factors to find out if any of
the factors have a relationship with the number of subsequent replications:

• quality4p

• number of citations of a paper
• publication venue
• publication venue’s impact factor
• data sharing/availability

We extracted quality4p assessment outcomes using Hall et al.’s quality check for defect
prediction studies [1] for the 208 original studies that have been replicated (see Table 2 for
a summary of quality4p).

Quality4p overlaps extensively with Barahona and Robles’ [14] reproducibility criteria
which includes checking the: data source, retrieval method, raw data, extraction method,
study parameters, analysis method, results method, identification and description. Two
elements of Barahona and Robles’ [14] reproducibility criteria are missing in quality4p and
these are data availability and data flexibility. We additionally collect availability data
(i.e. an element’s tendency to exist in the future). We explicitly checked all the links of
each study to confirm if data are accessible (in September 2017). We additionally collect
Barahona and Robles’ [14] flexibility criteria, i.e. adaptability to different environments by
extracting the formats of shared data in terms of e.g. csv, arff etc. For open or closed source
code repositories, metrics (e.g. object oriented metrics calculated on defective/non-defective
code) can be collected to form defect data used as input for building prediction models
(Org[1, 2, 3]). For example the NASA MDP program provided defect datasets calculated
from the raw source code of critical systems (e.g. Flight and Satellite systems). The raw
source code, being proprietary, were not available. However, it is possible to reproduce a
study based on the defect data which was shared even though if it was generated from a
closed source.

We extracted impact factor values for their publication venue from journalmetrics (details
are in Table 9). We used the Source Normalised Impact Average (SNIPA) [23] values which
are based on the average citation per paper of a journal in that subject area. In addition, we
extracted the ratings of journal/conference venues from Excellence in Research for Australia
(ERA). In 2009, the Australian Research Council consulted the public, expert reviewers and
academic bodies to rank journals and conferences, and produced the ERA rankings. We
used the ERA 2010 rankings since other ranking bodies only provide journal impact factors
and omit any ranking of conferences. ERA has 5 ranks according to research quality, see
Table 3.
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Table 2: Summarised Quality4p Criteria defined by [2]1,2 from [1]

Quality4p Assessment
Phases

Details of Phases

phase 1: Establishing
that the study is a
prediction study.

-Is a prediction model reported?
-Is the prediction model tested on unseen data?

phase 2: Ensuring
sufficient contextual
information is
reported.

-Is the source of data reported?
-Is the maturity of data reported?
-Is the size of data reported?
-Is the application domain of data reported?
-Is the programming language of the data reported?

phase 3: Establishing
that sufficient model
building information is
reported

-Are the independent and dependent variables clearly reported?
-Is the granularity of the dependent variables reported?
-Are the modelling techniques used reported?

phase 4: Checking
the model building
data

-Is the fault data acquisition process described?
-Is the independent variables data acquisition process described?
-Is the faulty and non-faulty balance of data reported?

1Phase 1 assesses defect prediction methodological approaches 2Phases 2, 3 and 4 assess re-
porting of prediction studies

Table 3: ERA Ranking Categories

Rankings Description
A* flagship conference, a leading venue in a discipline area
A excellent conference, and highly respected in a discipline area
B good conference, and well regarded in a discipline area
C other ranked conference venues that meet minimum standards

Unranked A conference for which no ranking decision has been made

http://www.core.edu.au/conference-portal

3.6. Stage 6: Assessing Agreements between Studies

We checked whether the performance reported in the original studies matched those
reported in the replications. If replications agree then original studies are replicable. We
also assessed reproducibility (getting the same results) since replications tend to vary because
of contextual differences. By comparing predictive performance measures for both original
and replication studies in the same context (i.e. same data, classifiers, metrics etc.). If the
performance is different by < 1% we assess this as having being reproduced. If the change
is < 5%, it is similar and if it is > 5%, we classify this as different. We chose these values
based on the intervals used in statistical testing, i.e. 1% probability and 5% probability
using standard statistical tests.

4. Results

4.1. RQ1: Are defect prediction studies replicated?
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Only 6% of 208 original studies were replicated, suggesting replication and reproducibility are largely
neglected in defect prediction studies

Only 13 out of the set of 208 original studies were replicated by different researchers
reported in 26 papers (Table 4): 6% of the original studies, a significantly lower rate than the
94% non-replicated original studies. Which means that the lack of replication is substantial,
consequently, there is a significant number of studies that have not been confirmed to report
valid results via replication.

4.2. RQ2: How are replications performed in defect prediction?

Replication studies make many changes to original studies.

Overall Table 4 shows that all replication studies made changes to the original study.
Typically replications made three sets of changes to components of original studies.

Two replication studies (Hamill and Goseva-Popstojanova (Rep[1, 2]), Hongyu Zhang
(Rep[3, 4])) replicated more than one original study, these two papers appear twice making
the number of replication studies 26; these papers then appear twice in the ‘Replication
studies’ column of Table 4 as Hamill and Goseva-Popstojanova (Rep[1, 2]), and Hongyu
Zhang (Rep[3, 4]).

Three original studies (Andersson and Runeson (Org[4]) (Rep[5]), Lessmann et al. (Org[5])
(Rep[6]), Ostrand et al. (Org[6]) (Rep[7])) also conducted replications of other original stud-
ies and within them, certain aspects of their study have also been replicated. For example
Lessmann et al. (Rep[6]) replicated Menzies et al. (Org[24]) and built a new classifier bench-
marking framework. Ghotra et al. (Rep[8]) subsequently replicated the new framework.
Therefore Lessmann et al. would appear twice in the the first two columns of Table 4 with
(Org[5]) and (Rep[6]).
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Table 4: 13 replicated original studies out of the 208 with their replication studies, data sets, replication
types and agreements between studies

Replicated original studies Replication studies Agreements Operation-
al rep.1

D’Ambros et al. (Org[1]) Mende (Rep[9]) Yes (A), (G)
Andersson and Runeson
(Org[4])

Hamill and Goseva-Popstojanova (Rep[1]) Yes (H)

Hongyu Zhang (Rep[3]) No (H)
Lessmann et al. (Org[5]) Ghotra et al. (Rep[8]) Yes, No (A), (H)
Ostrand et al. (Org[6]) Leszak Marek (Rep[10]) Partial (H)

Mende and Koschke (Rep[11]) Unknown (G)
Fenton and Ohlsson
(Org[7])

Andersson and Runeson (Rep[5]) Partial (H)

Galinac Grbac et al. (Rep[12]) Partial (H)
Ostrand et al. (Rep[7]) Yes (H)

Hongyu Zhang (Rep[4]) No (H)
Devine et al. (Rep[13]) Yes (H)

Hamill and Goseva-Popstojanova (Rep[2]) No (H)
Menzies et al. (Org[24]) Turhan and Bener (Rep[14]) Yes (G)

Zhang et al. (Rep[15]) Yes (G)
Lessmann et al. (Rep[6]) Yes (G)

Song et al. (Rep[30]) Yes, No (A),(H)
Singh and Verma (Rep[16]) Yes (H)

Moser et al. (Org[8]) Krishnan et al. (Rep[17]) Yes (H)
Kim, Zimmermann, White-
head Jr and Zeller (Org[9])

Rahman et al. (Rep[18]) Yes (H)

Zimmermann and Nagap-
pan (Org[2])

Tosun et al. (Rep[19]) Yes (H)

Nguyen et al. (Rep[20]) Yes (H)
Premraj and Herzig (Rep[21]) Yes (H)

Amasaki et al. (Org[10]) Okutan and Yıldız (Rep[22]) Unknown (H)
Schröter, Zimmermann and
Zeller (Org[11])

Duala-Ekoko and Robillard (Rep[23]) Yes (H)

Zimmermann et al. (Org[3]) Kpodjedo et al. (Rep[24]) Unknown (H)
Khoshgoftaar and Seliya
(Org[12])

Li et al. (Rep[25]) Yes (H)

1Replication name tags: (A) changed-experimenters, (G) changed-protocol/-operationalisation/-experimenters, (H) changed-protocol/-
operationalisation/-populations/-experimenters

Table 4 shows that many changes are made to studies:
1. Changed-experimenters (tag A, 3 papers)
2. Changed-protocol/-operationalisation/-experimenter (tag G, 5 papers)
3. Changed-protocol/-operationalisation/-populations/-experimenters (tag H, 21 papers)

Replications in which most components are changed together dominates. Table 4 shows that
Mende, Song et al., Ghotra et al. replicate with sets of two study-component changes (A,G
and A,H). With changed-experimenter (A) as the first change and (H) as the last, changes
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(B,...,F) have been omitted for all replications indicating gaps in steps that need to be taken
during replications.

The data we synthesised from all studies (in Table 11, Table 12, Table 13 for original
studies, and in the appendix Table B.16, Table B.17, Table B.18 for replication studies)
depicts a landscape of some of the tools, algorithms, and statistical analyses used in de-
fect prediction. Table 5 shows that the statistical test component has the most changes
compared to parameter tuning with the least changes. Replications tend to focus more on
finding the most suitable statistical methods to describe data (e.g. Zhang (Rep[3]) suggests
distribution of software faults are better described as a Weibull distribution, not in terms of
the Pareto principle as originally proposed by Fenton and Ohlsson (Org[7])). While tuning
the parameters of the prediction models to improve performance is considered the least.

There are 3 replication studies (Mende (Rep[9]), Song et al. (Rep[30]), Ghotra et al. (Rep[8]))
that did multiple runs of a single original study. The first run reproduced the original
study as it is, and the second run either modified the protocol (e.g. Mende (Rep[9])
changed D’Ambros et al. (Org[1]) protocol by adding a cross validation step, Song et
al. (Rep[30]) used feature selection that ensured the test instances are not seen by the pre-
diction model), or dataset (Ghotra et al. (Rep[8]) used less noisy data and a new dataset,
Song et al. (Rep[30]) also added more datasets). These multiple runs have implications for
agreements between studies and the types of replications performed, though such multiple
runs are generally good practice.

Table 5: Study-components of original studies that were changed during replication

Protocol
Stats CrossVal DataClean Parameter tuning

19 8 5 2

Operationalisation
IndepVar DepVar Algorithm Tools

15 4 12 14

Populations
Granularity Domain SourceCode ProgLang

14 12 11 7

Full field names: statistical analysis, cross validation, data cleaning, optimising
parameters, independent and dependent variables, programming language

4.3. RQ3: What features of a defect prediction study make it likely to be replicated?

Our results suggest that studies based on industry closed source data published in the Transactions on
Software Engineering journal (highest impact in software engineering (during the time period covered
by [1])) leads to a paper being replicated.

We analysed the factors we extracted from each paper statistically3. We use a χ2 test
to establish the relationship between each binary factor and replications and Kendall’s Tau

3Using R 3.3.1 open source statistical software.
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rank correlation to test the relationship between citations and replications (as citations is
continuous data).

Table 6: The 208 papers categorised as having quality
4p

, shared data, appeared in TSE w.r.t being replicated∗

quality4p shared data InTSE∗

Replicated Yes No Yes No Yes No
Yes 3 10 5 8 5 8
No 33 162 70 125 10 185

∗ chosen as TSE dominates in Table 8

Table 7: The formats of the data and the number of papers which use the format and the availability of the
data

Data format (flexibility) Not replicated Replicated
arff 60 2
csv 0 1

csv, arff 2 1
csv, xml 1 0

excel 1 0
xml 3 1

Table 7 shows the data format of the papers with datasets. Table 7 shows that there are
few papers using formats other than arff. The small numbers do not allow a sound statistical
analysis to be carried out for the affect of flexibility on the ability to be replicated.

Table 8: Statistical tests for assessing quality4p, shared data, TSE and citations, individually against repli-
cations

Chi Square test χ2 p-value

quality4p ∗ replication 0.322 0.570

shared data ∗ replication 0.035 0.852

InTSE ∗ replication 20.237 < 0.0001

Kendall z τ p-value

citations ∗ replication 4.7614 0.269 < 0.0001

There were 85 venues in which the 208 papers appeared (Online-Appendix4). Only
6 venues published papers that were subsequently replicated: PROMISE, MSR, ESEM,
ISSRE, ICSE and TSE. TSE has the highest number of papers published with subsequent
replications (Table 9). Table 8 shows that papers published in TSE are more likely to be
replicated. We do not consider the impact factor of venues directly since, for non-replicated
studies, impact factors are not available for many (63) publication venues.

4https://bugcatcher.herts.ac.uk/replication/Online-Appendix.html
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Table 8 shows that a paper’s influence (citations) has an impact on replication. However
the quality of original papers or shared data use is not associated with subsequent replication.

Table 9 shows 10 of the 13 replicated studies have not passed the quality4p assessments. A
replication not based on quality4p has ramifications on the validity of findings. For instance,
data cleaning of the quality4p may have been overlooked or not reported, an indication that
some findings may be erroneous. It is particularly true for the noisy NASA datasets used
by 59 original studies (Table OA.1 Online-Appendix).

Table 9: The replicated original studies and whether they extracted contextual factors

Citations Original Studies Journal ERA1 Impact2 Quality4p Assessment3

failed at phase
#Reps

128 Andersson and Runeson (Org[4]) TSE A* 4.423 phase1 No prediction
done

2

577 Lessmann et al. (Org[5]) TSE A* 4.423 phase2 NASA Data
used

1

535 Ostrand et al. (Org[6]) TSE A* 4.423 phase4 Model building 2
684 Fenton and Ohlsson (Org[7]) TSE A* 4.423 phase1 No prediction

done
6

816 Menzies et al. (Org[24]) TSE A* 4.423 phase2 NASA Data
used

5

361 Moser et al. (Org[8]) ICSE A 2.988 pass all 1
330 Kim et al. (Org[9]) ICSE A 2.988 phase4 Model building 1
393 Zimmermann and Nagappan (Org[2]) ICSE A 2.988 phase4 Model building 3
240 D’Ambros et al. (Org[1]) MSR C 1.876 pass all 1
43 Amasaki et al. (Org[10]) ISSRE A 1.383 phase2 Contextual in-

formation
1

159 Schröter et al. (Org[11]) ESEM4 A 0.992 pass all 1
126 Khoshgoftaar and Seliya (Org[12]) ESEM5 A 0.992 phase2 Contextual in-

formation
1

508 Zimmermann et al. (Org[3]) PROMISE U 0.001 phase2 Contextual in-
formation

1

1

CORE contributed to ERA rankings. Both rankings agree except on ICSE; A by ERA, A* by CORE (TSE not ranked)
2

Source is journalmetrics, 2015 source normalised impact (SNIPA); takes average citation per paper of a journal in subject area
3

QA details summarised in Table 2. 4ISESE, 5METRICS are now part of ESEM http://www.esem-conferences.org/history.php

Table 10: Descriptions of replicated original studies based on the type of data source and defect data sharing

Source Code Shared data no of papers no of reps

Closed
No 6 15
Yes 2 6

Open
No 2 2
Yes 3 3

Table 10 shows that 21 of 26 replication studies replicated original studies which were
based on closed source industrial data (these will have needed to be replicated with different
datasets). This suggests that studies based on closed source industrial data may be more
attractive for replication.
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Table 11: Protocol: Original Studies

Org. Studies Cross Val. Parameter Tuning Statistics Data Cleaning
Andersson and Runeson(Org[4]),(Rep[5]) No No Pearson product-moment

correlation
Yes: Duplicate failures

Lessmann et al.(Org[5]),(Rep[6]) Hold-out set Yes Friedmans test (rank clas-
sifiers), Nemenyi post hoc
(statistical significance test
on classifiers)

No

Ostrand et al.(Org[6]),(Rep[7]) No No t-test No
Fenton and Ohlsson(Org[7]) No No Alberg diagrams No

Menzies et al.(Org[24]) 10 by 10 randomised No Quartile chart No
Moser et al.(Org[8]) 10 by 10 randomised No Kruskal-Wallis test No
Kim et al.(Org[9]) No No No No

Zimmermann and Nagappan (Org[2]) split-sample No Spearman correlation, Pear-
son, Nagelkerke (predictive
power of logistic regression
models), F-tests

No

Amasaki et al.(Org[10]) No No Error rate, Fishers exact
test (correlation between 2
variables)

No

Schröter et al.(Org[11]) random splits No Two t-test, Spearman rank
correlation

No

D’Ambros et al.(Org[1]) 50 by 10fold randomised No F-test (explanative sig-
nificance), Spearman
correlation (evaluating
predictive power of models)
with Spearman coefficient
(skewed data)

No

Zimmermann et al.(Org[3]) No No Spearman correlation, Pear-
son correlation

No

Khoshgoftaar and Seliya(Org[12]) 10 fold cross validation No Z-test No

4.4. RQ4: Do original and replication studies in defect prediction agree?

It is difficult to confirm agreements in published results as there is inconsistent reporting of the per-
formance measures.

Overall our analysis shows that the performance of 18 replicated experiments5 agreed
with original performance values. This suggests that 62% of the replicated experiments were
successful. The performance of 5 replicated experiments (17%) did not agree with originals
and 3 replicated experiments (10%) resulted in partial agreement with originals (i.e. where
some of the replicated results were the same as the originals but not all). Additionally 3
studies did not report the level of agreement with the original study.

Our results show a variety of disagreements between the original and replicated results.
There are a range of reasons for these disagreements that we will now discuss. Song et
al. (Rep[30]) did 2 replication runs of Menzies et al. (Org[24]). In the first run the replication
agrees with Menzies et al. Org[24]. In the second run, Song et al. (Rep[30]) disagreed and
report a flaw in (Org[24])’s attribute selection approach which meant that the test data
included seen information and therefore inflated performance of the defect prediction models.

Ghotra et al. (Rep[8]) did 2 replication runs of Lessmann et al. (Org[5]). The first run
was based on uncleaned NASA data (including duplicate and inconsistent instances, see
[25]) to confirm if no single classifier is best as in the original (Org[5]). The Friedman test

5Some papers conduct more than one experiment, there are 26 papers running 29 experiments
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Table 12: Operationalisation: Original Studies

Org. Studies Tools Algorithms Independent Var Dependent Var

Andersson and
Runeson(Org[4]),
(Rep[5])

No No Size (LOC)

Number of
faults, fault
density
pre-release and
post-release

Lessmann et
al.(Org[5]),
(Rep[6])

YALE machine learning

Statistical(7), Nearest
Neighbours(2), Neural
Networks(3),
SVMs(5),
Tree-based(3),
Ensembles (2)

static code metrics
Defective or
Not-defective

Ostrand et
al.(Org[6]),
(Rep[7])

VCS
Negative binomial
regression

code age, programming
language, logKloc,file status,
release

Number of
faults

Fenton and
Ohlsson(Org[7])

ERIMET (metrics),FCTOOL
(formal description language)

No

Complexity (McCabe
cyclomatic complexity), size
(LOC), communication
(SigFF;new and modified
signals count, inter and intra
modules)

Number of
faults, fault
density
prerelease and
post-release

Menzies et
al.(Org[24])

WEKA
OneR, J48, and Naive
Bayes

Static code metrics
Defective or
Not defective

Moser et
al.(Org[8])

WEKA
logistic regression,
Naive Bayes, J48
(version 8)

Process, change, static code
Defective or
Not defective

Kim et
al.(Org[9])

Kenyon Infrastructure,
APFEL (metrics), SVN, CVS

Least recently used
(LRU)

spatial locality, temporal
locality,Changed-entity and
new-entity locality (churn)

Number of
faults

Zimmermann
and Nagappan
(Org[2])

MaX (dependency information
tracker), Ucinet 6 (network
metrics)

linear and logistic
regression

Network measures on
Dependency graphs, OO
metrics, static code metrics

Number of
defects,
Defective or
Not defective

Amasaki et
al.(Org[10])

Netica (bayesian belief
network software)

Bayesian Belief
Network

design (product size), effort
(person-day), detected faults,
test items

Number of
residual faults
at acceptance
test

Schröter et
al.(Org[11])

R, BUGZILLA, CVS, SZZ
Linear and Ridge
regression, Regression
trees, SVM

import relationships (e.g.
org.eclipse.ui) packages and
imported classes

Number of
defects,
Defective or
Not defective
(post-release)

D’Ambros et
al.(Org[1])

CVS, SVN, Bugzilla, Jira,
Famix-Compliant OO model
(scm metrics), Infusion
(source code converter into
FAMIX model), Moose (scm
calculator), Churasco (history
model, bug data extractor,
classes linker, system files and
bugs versioner)

linearReg

process, change , entropy of
change , entropy, churn of
source code, source code
metrics, CK, OO

Number of
defects
(post-release)

Zimmermann
et al.(Org[3])

Java parser (complexity
metrics)

linear regression
(ranking), logistic
regression
(classification)

static code metrics
(complexity), structure of
abstract syntax tree (no of
nodes etc.)

Number of
defects,
Defective or
Not defective
(prerelease,
post-release)

Khoshgoftaar
and
Seliya(Org[12])

S-Plus (advanced data
analysis), EMERALD -
Datrix(fault data collection)

least squares tree,
s-plus, least absolute
deviation

Design
Number of
faults
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used in Lessmann et al. (Org[5]) showed the ranking of model performances are not random;
subsequently Nemenyi post hoc test was applied to detect which of the classifiers differed
significantly. Ghotra et al. (Rep[8]) agree with Lessmann et al. (Org[5]) in the first run
with the same data and different statistics, but disagree in the second run with a cleaned
dataset curated by Shepperd et al. [26] and different statistics. In the second run, Ghotra
et al. (Rep[8]) reported;

“We used the Scott-Knott test to overcome the confounding issue of overlapping groups
that are produced by several other post hoc tests, such as Nemenyis test [13], which was
used by the original study. Nemenyis test produces overlapping groups of classification
techniques, implying that there exists no statistically significant difference among the
defect prediction models trained using many different classification techniques.”

The curated data by Shepperd et al. [26] has been cleaned further by Petrić et al. [25].
The data errors found during this further cleaning may have also affected previous models.
Overall, these findings suggest that replication leads to the discovery of mistakes and provides
the opportunity to remedy those shortcomings.

Overall our results suggest that replications in defect prediction are possible with or
without quality4p in the original study. Of the 29 studies, partial agreements (3) and dis-
agreements (5) make up to 28% of the results, indicating that replication is able to detect
errors and limitations of studies. Unreported (3) replications results (10%) are relatively
high. We suggest that all replications need to state agreements and disagreements.

Table 14: Model performance measure from Menzies et al. set of replications and Lessmann et al.

Data
Naive Bayes SVM VP

recall auc balance auc

(Org[24]) Us (Rep[14]) (Rep[15]) (Rep[16]) (Rep[6]) (Rep[30]) (Org[5]) Uslog Us (Org[5]) Uslog Us
pc4 98 87 − − 72.6 85 82.6 92 95 50 83 87 52
pc3 80 79 − − 80.6 81 71.4 77 94 53 74 74 47
kc4 79 80 − − − 68 71.9 77 85 60 73 79 75
kc3 69 78 − − 99 83 74.1 86 85 50 74 83 62
pc1 48 73 − − 66.2 79 64.6 80 94 56 75 79 53
cm1 71 77 − − 81.5 72 72.7 70 96 51 72 79 54
pc2 72 86 − − 83.3 85 81.8 85 71 50 50 50 50
mw1 52 78 − − 100 80 70.5 65 83 50 73 77 52
avg 71 79.7 64 85 83 79 74 79 89 53 72 76 56

For a more detailed assessment of agreements, we extracted the performance values of
replications with only ’changed - experimenter’, as this type of replication is useful for as-
sessing the reproducibility of research. Reproducibility aims to get the same result as the
original study [12, 11]. We categorise a paper as reproducible if the difference in the per-
formance between an original and its replication does not go beyond 5%. We identified 5
replications of Menzies et al. ((Org[24]) shown in Table 14). Table 14 shows that Turhan
and Bener (Rep[14]), and Zhang et al. (Rep[15]) report > 5% different recall performance
(64% and 85%), which means that neither study has succeeded in reproducing Menzies et
al. (Org[24]) (71% recall). Table 14 also shows that Lessmann et al. ’s replication (Rep[6])
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used a different measure (auc) to the original measure reported making it difficult to assess
reproducibility; similarly Song et al. (Rep[30]) reported only one performance measure (bal-
ance)6. These results show that reporting inconsistencies between replications and original
studies make it difficult to confirm agreements.

We investigate reproducibility further by ourselves reproducing (Org[5]) and (Org[24]).
Table 14 shows that our results are mixed despite matching closely all study components.
In reproducing these original studies a number of anomalies with the original studies arose
which may explain the differences in our performance values compared to the original studies.
These anomalies include that the datasets we downloaded varied from the original in terms
of number of defective units, number of instances etc. and also that our feature selection
outcomes were not the same as the originals. Our Online-Appendix provides full details of
these anomalies.

5. Threats to Validity

The main threat to validity is that replication is currently performed so seldom that it is
difficult to draw conclusions from the population of replications that we have. Many more
replications need to be performed before it is possible to draw highly reliable conclusions
about replication.

Another important threat is the identification of papers that replicate the 208 original
studies and the tool used for the search, that is Google Scholar. The main search ended in
2016 and since then we have automatically monitored replicated papers with triggered mail
alerts of new citing papers. The search string is saved and is run automatically by Google
Scholar with every new citation of the replicated study. Each paper is checked to confirm if
it was a replication or not; no new replication has been identified and we believe this threat
has been mitigated.

There are different search engines (Scopus, ISI Web of Science etc.) and we chose Google
Scholar because it has been effective as demonstrated by Wohlin [8] for this type of search.
In addition between 2011 and 2012 Google Scholar has “very significantly expanded its cov-
erage... at a stable rate” Harzing [27]. Primarily, we are concerned about getting a reliable
number of citations for our analysis and not usability. Although we found it useful to reduce
the number of papers to read manually due to the ‘search within citing articles’ feature. We
are confident that Google Scholar is sufficient for our work.

Threats also exists in assessing and extracting information. We mitigated these threats;
two authors in this study read and extracted information from 5 of the final-set of 39 papers
and for the six factors extracted from all the 208 papers. Using the SLuRp tool Bowes et
al. [20] any disagreements were identified and then resolved and the data updated.

The features of the data collected introduces another threat. In particular the analysis
of citation count and the number of replications involves data with many ties. We therefore

6Mende (Rep[9]) reproduced D’ambros et al. (Org[1]), the results are mostly the same about (< 1%), but
with a few differences that could not be explained. We do not include Mende (Rep[9]) due to lack of space, but
all the results can be found in our replication package https://bugcatcher.herts.ac.uk/replication.
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used Kendal’s Tau correlation, rather than Spearman’s correlation because it is known to
deal with ties better.

We show that most threats have been minimised and believe to the best of our ability
our findings are sound. We hope researchers replicate our study and our replication package
is available (Online-Appendix). Under such conditions, significance tests of the Kendell
correlation coefficient may be unreliable.

6. Discussion

Overall we have shown that defect prediction suffers from a lack of external replications
with only 6% of 208 studies replicated. Silva et al. [4] identified 96 articles, reporting
133 replications performed between 1994 and 2010 in software engineering, indicating that
replication in software engineering is carried out less frequently than in defect prediction.
We also show that the few replications performed are not consistently systematic and of the
29 replications we analysed, only 18 (62%) results agreed with the original paper.

The characteristics of replicated original studies include those studies being published in
the TSE journal and being based on closed source industrial data. Most of the replicated
original studies do not satisfy a quality assessment (quality4p) this despite being largely
published in high impact venues. Such a potential lack of quality in original studies is
surprising and suggests unreliable findings may be being propagated.

Reporting inconsistencies are also problematic for interpreting the outcomes of repli-
cations. For example, agreements are not always reported clearly, performance values of
original studies are not always reported in the replication.

Our findings suggest that defect prediction replication can offer valuable lessons that can
be built upon by others. The original studies that have multiple replications have demon-
strated opportunities to improve defect prediction and develop more stable conclusions (e.g.
Menzies et. al (Org[5])).

Conversely, the lack of replication studies could be an indication of the need to define new
research goals in defect prediction; our results may simply demonstrate decreasing interest
in defect prediction. Recent criticisms of the area focus on the lack of impact that defect
prediction research has in industry. For example, Lanza et al. [9] reported that the problem
with defect prediction lies in how the approaches are evaluated and benchmarked and further
suggested that “researchers should seriously consider putting their predictors out into the
real world and having them used by developers who work on a live code”. Shepperd [28]
mentioned that the evaluation of prediction models is problematic and “that the concerns of
researchers need to be better aligned with the likely end-users”. Kitchenham[29] highlights
the importance of these issues in relation to replication when she talked in-depth about
the 4Rs (Rigour, Reproducibility, Replication and Relevance) and how they are linked; with
good Rigour, there is value in Reproducing the work and also useful Replicating reproducible
work to check stability across multiple organisations provided they are relevant to what the
practitioners need. Kitchenham claims that “very few papers consider practical issues”[29]
and suggests the need for obtaining more realistic datasets and collaborations with industry
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partners. It is criticisms related to these industry issues that are currently affecting the area
of defect prediction.

Our results suggest that far more replications are needed. Furthermore that replications
need to be done much more systematically. We show that important replication steps have
been missed out based on the taxonomy that we applied. Incremental changes should be
made to original studies in replications while analysing the effect of changes on model per-
formance. Being systematic may be easier when artefacts are open source (for reuse and
reduced variability) so that a researcher can break down a study into separate components.
The typical components of a defect prediction study include, tools, statistics, cross valida-
tion, feature selection, parameter optimising, etc. (e.g. Table 5). Replicated experiments
should be run with the same components as the original (reproduced), with intentional vari-
ation of changeable components implemented systematically, i.e. change one after another
while recording their effect on model performance. This systematic approach has the po-
tential to discover those factors affecting results. A good example of systematic replication
is Song et al. (Rep[30]); the study first reproduced the original Menzies et al. (Org[24]) to
confirm it, then performed several combinations of the components while recording the effect
on model performance.

6.1. Practical Recommendations for the replication of defect prediction studies

We make the following recommendations for replication in defect prediction studies.
These suggestions are not a hard and fast set of rules and as such should not be used as a
mechanism to exclude papers from being replicated.

[Recommendation 1] Highly cited papers should be replicated as such papers tend to
influence future defect prediction practice. Other papers should also be replicated.

[Recommendation 2] Use a replication infrastructure (e.g. OpenML [http://www.openml.
org/] [31] or Zenodo [https://zenodo.org/]). Such infrastructures typically include an ap-
plication programming interface API (Weka, R, REST, Java, .Net, Python, mlR, Moa) based
repository designed to allow experiments to be configured on it and run on a user’s machine.
This keeps one version of datasets, the results, the protocol for easy sharing, and has persis-
tence; most likely going to have the availability attribute [14] for researchers to use in future.

[Recommendation 3] Better use of existing reporting guidelines should be made. This
requires the development of comprehensive software engineering reporting guidelines. These
should be based on existing guidelines, including Runeson and Höst’s [32] on case study de-
sign, Kitchenham et al. ’s [33] on empirical software engineering, Carver’s [34] on reporting
replications, da Silva et al. ’s [4] on designing and reporting replication studies and Mende’s
(Rep[9]) on replication remedies, pitfalls and challenges. Crucially, these guidelines must be
collected and structured as a repository similar to the repositories that already exist in the
Medical field (e.g. Munafò et al. [35] [http://www.equator-network.org]).
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[Recommendation 4] Replication Impact Factors should be put into practice. As Schim-
mack says: “Demonstrating replicability should become an important criterion of research
excellence that can be used by funding agencies and other stakeholders to allocate resources
to research that advances science” [36]. The following are possible ways in which replication
can be implemented in Impact Factors:

• Use number of replications per study as additional impact factor metric R− index [36]

• Use number of reproductions per study as additional impact factor metric Reproindex

• Use number of replications and reproductions as the most significant impact factor
metric RRindex.

[Recommendation 5] Quality assessments (e.g. quality4p ) should be applied to original
studies. Researchers should consider quality in two parts; the quality of the methodology
and quality of the reporting. These quality checks should be made on original studies before
replication to minimise the spread of potentially erroneous results.

[Recommendation 6] The replication of important studies needs to be incentivised. Cur-
rently there is little reason for a researcher to replicate a study, as original studies are more
likely to be cited than a replication. Highly rated publication venues should specifically
encourage replications.

[Recommendation 7] Reproduction should be carried out before replication. This will
demonstrate how close the replicating authors can get to the original study. There is little
point attempting to replicate results if reproduction is not possible because, e.g. the raw
defect data is not both accessible and held in a secure source.

These suggestions are not exhaustive. We hope that future researchers will evaluate, re-
fine and extend these recommendations.

7. Conclusion

Replication is reported to be very important [6], yet not often enough performed in
software engineering [4]. In this paper we particularly investigated replication in defect pre-
diction - a very active area of research in software engineering. In this study we investigated
the replication of 208 original defect prediction studies identified by a highly cited SLR [1].

Our findings suggest low replication in defect prediction and potential low quality in
defect prediction studies. Only 13 of the 208 original studies have been replicated by re-
searchers that are independent to the those of the original studies. Only 3 of the 13 original
replicated studies are assessed as quality studies with regards to research methodology and
reporting. We have also shown some of the difficulty in comparing original results with repli-
cated results, as replications can report their results using measures not used by original
studies. This reporting inconsistency makes comparing results difficult.
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We have given some practical suggestions to incentivise and standardise aspects of repli-
cation suggesting, for example the calculation of a new Replication and Reproduction impact
factor, data sharing, and guidelines of reporting.

Our results show that studies published in a high impact journal (in particular TSE) tend
to attract replications. This means that there is an opportunity that these publication venues
could come up with ways to encourage more replications, for example a best replication paper
award could be created. Industrial based original studies also seem to have more replications.

We hope our study drives discussions along the line of our suggestions and we hope re-
searchers replicate and extend this study to get more insight into replication across Software
Engineering.

The Original Studies

[Org1] M. D’Ambros, M. Lanza, R. Robbes, An extensive comparison of bug prediction approaches, in:
Mining Software Repositories (MSR), 2010 7th IEEE Working Conference on, 2010, pp. 31–41.
doi:10.1109/MSR.2010.5463279.

[Org2] T. Zimmermann, N. Nagappan, Predicting defects using network analysis on dependency graphs, in:
Proceedings of the 30th International Conference on Software Engineering, ICSE ’08, ACM, New
York, NY, USA, 2008, pp. 531–540. doi:10.1145/1368088.1368161.
URL http://doi.acm.org/10.1145/1368088.1368161
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2007, pp. 9–9.

[Org4] C. Andersson, P. Runeson, A replicated quantitative analysis of fault distributions in complex
software systems, Software Engineering, IEEE Transactions on 33 (5) (2007) 273–286. doi:

10.1109/TSE.2007.1005.
[Org5] S. Lessmann, B. Baesens, C. Mues, S. Pietsch, Benchmarking classification models for software defect

prediction: A proposed framework and novel findings, Software Engineering, IEEE Transactions on
34 (4) (2008) 485–496. doi:10.1109/TSE.2008.35.

[Org6] T. Ostrand, E. Weyuker, R. Bell, Predicting the location and number of faults in large software
systems, Software Engineering, IEEE Transactions on 31 (4) (2005) 340–355. doi:10.1109/TSE.
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30th International Conference on, 2008, pp. 181–190. doi:10.1145/1368088.1368114.

[Org9] S. Kim, T. Zimmermann, E. J. Whitehead Jr., A. Zeller, Predicting faults from cached history,
in: Proceedings of the 29th International Conference on Software Engineering, ICSE ’07, IEEE
Computer Society, Washington, DC, USA, 2007, pp. 489–498. doi:10.1109/ICSE.2007.66.
URL http://dx.doi.org/10.1109/ICSE.2007.66

[Org10] S. Amasaki, Y. Takagi, O. Mizuno, T. Kikuno, A bayesian belief network for assessing the likeli-
hood of fault content, in: Software Reliability Engineering, 2003. ISSRE 2003. 14th International
Symposium on, 2003, pp. 215–226. doi:10.1109/ISSRE.2003.1251044.

[Org11] A. Schröter, T. Zimmermann, A. Zeller, Predicting component failures at design time, in: Pro-
ceedings of the 2006 ACM/IEEE international symposium on Empirical software engineering, ACM,
2006, pp. 18–27.

[Org12] T. Khoshgoftaar, N. Seliya, Tree-based software quality estimation models for fault prediction,
in: Software Metrics, 2002. Proceedings. Eighth IEEE Symposium on, 2002, pp. 203–214. doi:
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[Rep12] T. Galinac Grbac, P. Runeson, D. Huljenić, A second replicated quantitative analysis of fault

distributions in complex software systems, Software Engineering, IEEE Transactions on 39 (4)
(2013) 462–476. doi:10.1109/TSE.2012.46.

[Rep13] T. R. Devine, K. Goseva-Popstojanova, S. Krishnan, R. R. Lutz, J. J. Li, An empirical study of pre-
release software faults in an industrial product line, in: 2012 IEEE Fifth International Conference
on Software Testing, Verification and Validation, 2012, pp. 181–190. doi:10.1109/ICST.2012.98.

[Rep14] B. Turhan, A. Bener, A multivariate analysis of static code attributes for defect prediction, in:
Quality Software, 2007. QSIC ’07. Seventh International Conference on, 2007, pp. 231–237. doi:

10.1109/QSIC.2007.4385500.
[Rep15] H. Zhang, X. Zhang, M. Gu, Predicting defective software components from code complexity mea-

sures, in: Dependable Computing, 2007. PRDC 2007. 13th Pacific Rim International Symposium
on, 2007, pp. 93–96. doi:10.1109/PRDC.2007.28.

24

http://dx.doi.org/10.1109/TSE.2007.256941
http://dx.doi.org/10.1007/s11219-014-9235-5
http://dx.doi.org/10.1007/s11219-014-9235-5
http://dx.doi.org/10.1007/s11219-014-9235-5
http://dx.doi.org/10.1007/s11219-014-9235-5
http://dx.doi.org/10.1007/s11219-014-9235-5
http://dx.doi.org/10.1007/s11219-014-9235-5
http://dx.doi.org/10.1007/s11219-014-9235-5
http://dx.doi.org/10.1007/s11219-014-9235-5
http://dx.doi.org/10.1109/TSE.2007.70771
http://dx.doi.org/10.1109/TSE.2007.70771
http://dx.doi.org/10.1109/TSE.2007.1005
http://dx.doi.org/10.1109/TSE.2007.1005
http://dx.doi.org/10.1109/TSE.2008.35
http://dx.doi.org/10.1109/TSE.2005.49
http://dx.doi.org/10.1109/TSE.2005.49
http://doi.acm.org/10.1145/1868328.1868336
http://dx.doi.org/10.1145/1868328.1868336
http://doi.acm.org/10.1145/1868328.1868336
http://dx.doi.org/10.1109/CSMR.2010.18
http://dx.doi.org/10.1109/CSMR.2010.18
http://dx.doi.org/10.1109/TSE.2012.46
http://dx.doi.org/10.1109/ICST.2012.98
http://dx.doi.org/10.1109/QSIC.2007.4385500
http://dx.doi.org/10.1109/QSIC.2007.4385500
http://dx.doi.org/10.1109/PRDC.2007.28


[Rep16] P. Singh, S. Verma, An efficient software fault prediction model using cluster based classification,
International Journal of Applied Information Systems (IJAIS) 7 (3) (2014) 35–41.

[Rep17] S. Krishnan, C. Strasburg, R. R. Lutz, K. Goseva-Popstojanova, K. S. Dorman, Predicting failure-
proneness in an evolving software product line, Information and Software Technology 55 (8) (2013)
1479 – 1495. doi:http://dx.doi.org/10.1016/j.infsof.2012.11.008.
URL http://www.sciencedirect.com/science/article/pii/S0950584912002340

[Rep18] F. Rahman, D. Posnett, A. Hindle, E. Barr, P. Devanbu, Bugcache for inspections: Hit or miss?,
in: Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European Conference on
Foundations of Software Engineering, ESEC/FSE ’11, ACM, New York, NY, USA, 2011, pp. 322–
331. doi:10.1145/2025113.2025157.
URL http://doi.acm.org/10.1145/2025113.2025157

[Rep19] A. Tosun, B. Turhan, A. Bener, Validation of network measures as indicators of defective modules
in software systems, in: Proceedings of the 5th International Conference on Predictor Models
in Software Engineering, PROMISE ’09, ACM, New York, NY, USA, 2009, pp. 5:1–5:9. doi:

10.1145/1540438.1540446.
URL http://doi.acm.org/10.1145/1540438.1540446

[Rep20] T. Nguyen, B. Adams, A. Hassan, Studying the impact of dependency network measures on software
quality, in: Software Maintenance (ICSM), 2010 IEEE International Conference on, 2010, pp. 1–10.
doi:10.1109/ICSM.2010.5609560.

[Rep21] R. Premraj, K. Herzig, Network versus code metrics to predict defects: A replication study, in:
Empirical Software Engineering and Measurement (ESEM), 2011 International Symposium on,
2011, pp. 215–224. doi:10.1109/ESEM.2011.30.

[Rep22] A. Okutan, O. T. Yıldız, Software defect prediction using bayesian networks, Empirical Software
Engineering 19 (1) (2014) 154–181.

[Rep23] E. Duala-Ekoko, M. P. Robillard, A detailed examination of the correlation between imports and
failure-proneness of software components, in: Proceedings of the 2009 3rd International Sympo-
sium on Empirical Software Engineering and Measurement, ESEM ’09, IEEE Computer Society,
Washington, DC, USA, 2009, pp. 34–43. doi:10.1109/ESEM.2009.5316047.
URL http://dx.doi.org/10.1109/ESEM.2009.5316047

[Rep24] S. Kpodjedo, F. Ricca, P. Galinier, Y.-G. Guéhéneuc, G. Antoniol, Design evolution metrics for
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Appendix A. Components that make up a defect prediction study

Table A.15: Changeable Components of Defect Prediction Studies adapted from Gomez et al. [5]

Protocol Operationalisation Populations Experimenter
Definition:
The configuration of sub-
components to observe an
outcome
Changes:
-Experimental design of
how treatments are allo-
cated, e.g. model building
framework configures data
preprocessing, parameter
optimisation, cross valida-
tion, prediction, data col-
lection framework config-
ures defect linking, ex-
tracting and labelling -
Statistical analyses

Definition:
Mode of applying treatments
(techniques) e.g training a model
on train and test set gives unreal-
istic results than on train set only
Changes (cause construct:
cause of differences in re-
sults):
-Literature sources, training, in-
structions for applying a proce-
dure during experiments -Tools
used for running experiments e.g
IDE -Algorithms for, building
prediction models, dealing with
imbalance, linking defects
Changes (effect construct:
effect on results):
-Defining dependent/ indepen-
dent variables, e.g. number of de-
fects post release/code complex-
ity -Process of calculating the
variables, e.g. number of defects
fixed after released to customers
and linked to the point the defect
was introduced -Measuring model
performance with different mea-
sures

Definition:
The subject and objects
properties used in a con-
trolled experiment
Changes:
-Source code of project
(open (Eclipse) or closed
(NASA) source) -Design
documents, programming
language, size, complex-
ity, maturity (years used
and growth), domain etc.
-Granularity of indepen-
dent variables (metrics)
such as class or method
level, granularity of depen-
dent variables such as de-
fective or not and number
of defects

Definition:
The designer, trainer,
monitor, measurer and
analyst involved in the
experiments (authors).
Changes:
-Different authors may or
may not optimise param-
eters of an algorithm on
the same dataset
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Appendix B. Changed components data extracted from Replication Studies

Table B.16: Protocol: Replication Studies

Rep. Studies Cross Val. Parameter Tuning Statistics Data Cleaning
Hongyu Zhang
(Rep[3]),(Rep[4])

No No computed the coefficient
of determination and the
Standard Error of Esti-
mate

No

Ghotra et al. (Rep[8]) Yes Yes Scott-Knott statistical
test

Mixed: Yes on NASA, No
on Apache family

Leszak Marek (Rep[10]) No No No No
Mende and Koschke
(Rep[11])

10 by 10 cross validation No Friedman test, Nemenyi
post hoc test

No

Galinac Grbac et
al. (Rep[12])

NA NA Pearson correlation co-
efficient, nonparametric
Spearman correlation,
vote counting

Yes: removed duplicates,
outliers

Devine et al. (Rep[13]) No No Spearman correlation No
Hamill and Goseva-
Popstojanova (Rep[2])
Turhan and Bener
(Rep[14])

10 by 10 randomised No T-test No

Zhang et al. (Rep[15]) 10 by 10 randomised No No Removed duplicates, miss-
ing values

Song et al. (Rep[30]) 10 by 10 randomised Yes % difference, Wilcoxon
signed 1-tailed

Removed outliers, missing
values

Singh and Verma
(Rep[16])

10 by 10 stratified ran-
domised

No No No

Krishnan et al. (Rep[17]) 10 by 1000 randomised No Figner-Killeen, Kruskal-
Wallis, one-way ANOVA,
t-test with Bonferroni cor-
rection of p-value

No

Rahman et al. (Rep[18]) No No Wilcoxon one sided paired No
Tosun et al. (Rep[19]) split-sample 10 by 5 No Spearman, Pearson No
Nguyen et al. (Rep[20]) split-sample by 50 No Spearman rank correla-

tion, Wilcoxon rank test,
ANOVA

No

Premraj and Herzig
(Rep[21])

stratified hold-out No Kruskal-Wallis two pairs
test, ANOVA

Yes

Okutan and Yıldız
(Rep[22])

10 by 20 randomised strati-
fied

No t-test Yes

Duala-Ekoko and Robil-
lard (Rep[23])

No No Chi-square No

Mende (Rep[9]) 50 by 10fold and 10fold Cross-
Val

Kpodjedo et al. (Rep[24]) No No Wilcoxon signed rank test,
Cohen-d statistics

No

Li et al. (Rep[25]) No No Weibull, Power, Gamma,
Exponential, Theil

No
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Table B.17: Operationalisation: Replication Studies

Rep. Studies Tools Algorithms Independent Var Dependent Var
Hongyu Zhang (Rep[3]),
(Rep[4])

SPSS Non linearReg static code (complexity),
structure of abstract syn-
tax tree (no of nodes etc.)

Number of defects (prere-
lease, post-release).

Ghotra et al. (Rep[8]) Weka Statistical, Clustering,
Rule-based, Nearest
Neighbours, Neural-
Net, SVMs, Tree-based,
Ensembles

static code, CK,
QMOOD, Martin’s

Defective or Not defective

Leszak Marek (Rep[10]) ClearDDTSTM (from IBM-
Rational), ClearCaseTM
(from IBM-Rational)

Correlation analysis Process, Complexity of
changes, source file size,
file age, defect density
(file, release)

Number of defects (prere-
lease, post-release)

Mende and Koschke
(Rep[11])

R RandomForest Static code metrics Defective or Not defective

Galinac Grbac et
al. (Rep[12])

No No Size (LOC) Number of faults (pre-
release, analyse post-
release)

Devine et al. (Rep[13]) SourceMonitor (metrics),
StatSVN (analyse SVN logs)

Stepwise regression source code, change, fault
metrics

Number of defects, defect
density

Hamill and Goseva-
Popstojanova (Rep[1])
(Rep[2])

No No fault types, detection ac-
tivities, severity

Number of faults (prere-
lease, post-release)

Turhan and Bener
(Rep[14])

Matlab: no version Naive Bayes, Linear Dis-
criminant, Quadratic Dis-
criminant

static code Defective or Not defective

Zhang et al. (Rep[15]) Function to Component level
data aggregator, Weka: No
version.

BayesNet, Bagging, k-NN,
RandFor, NeuralN, Lo-
gisticR, RBFNet, SVM,
NaiveBayes, C4.5(J48),
K-Star, AdaBoostM1

LOC, CyclComplex and
HalsteadVol

Defective or Not defective

Song et al. (Rep[30]) No Naive Bayes, J48, OneR static code Defective or Not defective
Singh and Verma
(Rep[16])

No K-means static code Defective or Not defective

Krishnan et al. (Rep[17]) CVSPS(capture commit
transactions), Weka, R

J48 change Defective, Not-defective

Rahman et al. (Rep[18]) Git Least recently used (LRU) churn, temporal locality,
spatial locality

defect density and the cost
effectiveness of inspection

Tosun et al. (Rep[19]) Ucinet 6 Network Analy-
sis tool (network metrics),
open-source metrics extrac-
tion tool, Prest (dependen-
cies)

NaiveBayes, LogisticReg,
LinearReg

complexity, network Defective or Not defective

Nguyen et al. (Rep[20]) UCINET (network metrics),
Structure101 (extract depen-
dencies), Understand (com-
plexity metrics)

linearReg, logisticReg Import packages, Network
metrics, Complexity, OO,
Function

Number of faults(post-
release), Defective or Not
defective

Premraj and Herzig
(Rep[21])

Understand V2.0 Build 505
(metrics for Java, C++),
JDT frame (map class back to
file), UCINET (network met-
rics), R

KNN, LogisticReg, Naive-
Bayes, Rpart, SVM, Tree-
Bagging

code, socio-technical (net-
work metrics), combined

Number of defects, Defec-
tive or Not defective

Okutan and Yıldız
(Rep[22])

PMD source code analyser
plugin in Netbeans (for
LOCQ), Weka (no version)

Bayesian Networks OO, static code Defective or Not defective,
Number of defects

Duala-Ekoko and Robil-
lard (Rep[23])

SemDiff and Mylyn (mapping
bug fixes to bug reports)

No Import packages, classes Number of faults

Mende (Rep[9]) R logisticReg, NaiveBayes process, change , entropy
of change , entropy, churn
of source code, source
code metrics, CK, OO

Number of defects

Kpodjedo et al. (Rep[24]) PADL (extract CK metrics) logistic regression Design metrics (class dia-
grams)

Defective or Not defective

Li et al. (Rep[25]) R PCA, linearReg, k-means,
non-linearReg, CART

change, development met-
rics (no of in-dev process
defects)

Number of faults
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Table B.18: Populations: Replication Studies

Rep. Studies Prog. Lang. Domain Granularity Source
Hongyu Zhang (Rep[3]),
(Rep[4])

Java IDE package Eclipse Versions 2.0, 2.1, 3.0

Ghotra et al. (Rep[8]) C, Java (Satellite, Flight, Stor-
age), web

Module (predictions),
code (metrics)

NASA, PROMISE, Apache,
GNU

Leszak Marek (Rep[10]) C++, C, shell
script, tcl/tk, perl

Telecom File (metrics) Lucent

Mende and Koschke
(Rep[11])

R Static code metrics Defective or Not defective

Galinac Grbac et
al. (Rep[12])

PLEX Telecom Module, file Industrial 5 releases

Devine et al. (Rep[13]) Java Software testing tools Component PolyFlow Software Product
Line: 4 projects

Hamill and Goseva-
Popstojanova (Rep[1])
(Rep[2])

No Flight software safety-
critical

Component NASA (not public)

Turhan and Bener
(Rep[14])

C , Java Satellite, Flight, Storage Method NASA

Zhang (Rep[15]) C, Java Satellite, Flight, Storage Component NASA
Song et al. (Rep[30]) C, Java Satellite, Flight, Storage Method NASA, PROMISE
Singh and Verma
(Rep[16])

C, Java Satellite, Flight, Storage Method NASA, PROMISE

Krishnan et al. (Rep[17]) Java, C, C++ IDE File (predictions) Eclipse 2.0, 2.1, 3.0, 3.3, 3.4, 3.5,
3.6

Rahman et al. (Rep[18]) C, Java Web server, Image ma-
nipulator, File manager,
Email client, Text search
engine

File (predictions) Apache Httpd, Gimp, Nautilus,
Evolution, Lucene

Tosun et al. (Rep[19]) C, Java IDE, Embedded systems function, file (predic-
tions), file (metrics)

Eclipse, Embedded systems

Nguyen et al. (Rep[20]) Java IDE Class, package (predic-
tions) Classes, Packages,
Function (metrics)

Eclipse

Premraj and Herzig
(Rep[21])

Java IDE source files (predictions),
class and method (met-
rics)

JRuby, ArgoUML, Eclipse

Okutan and Yıldız
(Rep[22])

Java Web Server Class (predictions) Apache Family

Duala-Ekoko and Robil-
lard (Rep[23])

Java IDE File, Method (predictions) Eclipse version 2,3

Mende (Rep[9]) Java IDE Class (predictions, met-
rics)

Eclipse (Mylyn, Equinox, PDE,
Lucene, Score)

Kpodjedo et al. (Rep[24]) Java IDE, UML, Javascript In-
terpreter

Class (predictions), Class
diagram (metrics)

ArgoUML, Rhino

Li et al. (Rep[25]) No Operating System Release (predictions) IBM
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