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Abstract: P2P applications appear to emerge as ultimate killer applications due to their 
ability to construct highly dynamic overlay topologies with rapidly-varying and 
unpredictable traffic dynamics, which can constitute a serious challenge even for 
significantly over-provisioned IP networks. As a result, ISPs are facing new, severe 
network management problems that are not guaranteed to be addressed by statically 
deployed network engineering mechanisms. As a first step to a more complete solution to 
these problems, this paper proposes a P2P measurement, identification and optimisation 
architecture, designed to cope with the dynamicity and unpredictability of existing, well-
known and future, unknown P2P systems. The purpose of this architecture is to provide 
to the ISPs an effective and scalable approach to control and optimise the traffic produced 
by P2P applications in their networks. This can be achieved through a combination of 
different application and network-level programmable techniques, leading to a cross-
layer identification and optimisation process. These techniques can be applied using 
Active Networking platforms, which are able to quickly and easily deploy architectural 
components on demand. This flexibility of the optimisation architecture is essential to 
address the rapid development of new P2P protocols and the variation of known 
protocols.     

1. Introduction and Motivation 
P2P overlays do not adopt any notions of centralised management nor do they employ the 

traditional static client/server paradigm. Most of the peers in a P2P network are symmetric 
and can allow their resources to be shared amongst other peers to deliver a common service 
[Ora01]. Consequently, within a file sharing P2P overlay every peer can simultaneously act as 
a server and a client, fetching and providing data objects that range from a few megabytes to 
approximately one gigabyte in size [GDS03]. By exploiting a user-configurable, arbitrary 
amount of peers’ end-systems resources, a P2P overlay can perturb the Internet in new ways 
by constituting random nodes and portions of the network highly loaded for an unpredictable 
amount of time. Internet Service Providers (ISP)s can hence experience rapidly varying traffic 
patterns at non-statically-provisioned portions of their networks, which can adversely impact 
the network performance experienced by all traffic flows. For example, a recent study that 
analysed traffic collected from a 1 Gb/s link connecting an ISP backbone to several ADSL 
areas revealed that at least 49% of the overall traffic is due to P2P applications, as this has 
been reported by well-known transport port numbers [AG03]. In addition, it has also been 
recently reported that the proportion of P2P traffic on Tier 1 networks is steady if not 
increasing the last two years [KBB04]. This, coupled with the dynamicity of P2P traffic, can 
impact not only the peering relationships among ISPs, but also the volume-based charging 
imposed by upstream providers. Traditional tools for network management support quite 
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static forms of network and traffic engineering usually based upon offline post-analysis of 
monitored data and estimated approximation of path, traffic and demand matrices [GR02]. 
However, the rapidly varying traffic patterns expected by P2P flows are not addressed by 
such tools, since P2P requests are not guaranteed to be addressed to a few popular servers, as 
is the case for the client-server environment [SW02]. Rather, the main dynamic of P2P 
systems is the advertisement of new data objects, which can appear at arbitrary peers 
[GDS03], and hence operators are in need of more dynamic (real time) mechanisms to 
provide fine control over the network-wide P2P traffic flow.  

A longer-term perspective of P2P dynamics is the constant evolution of P2P protocols 
and the creation of new P2P applications, which are rapidly spreading over the Internet. The 
P2P phenomenon is still relatively recent and does not conform to any standards or rules 
regarding program interfaces, connection behaviour, etc. The mutation of the P2P protocols as 
well as the appearance of new protocols makes tracking of P2P traffic steadily more 
complicated and static planning of network resources less successful. The P2P community is 
averse to ISP control of any kind and invents protocols that attempt to prohibit and avoid 
traffic identification, shaping and blocking. An ISP, therefore, needs to track actual P2P 
development and to adapt on new techniques and protocols quickly. 

The store-compute-and-forward model of operation facilitated by network node 
programmability is particularly suitable for such dynamic, non-standardised and highly 
unpredictable systems. The additional intelligence and control that is integrated with the 
network’s main forwarding operation can be exploited to provide for dynamic identification 
of P2P traffic, and consequently for network performance optimisation in the onset of P2P 
activity. Such traffic control enforcement can also employ application-aware programmable 
mechanisms that do not simply shape and block P2P traffic, but favour well-behaved P2P 
systems and optimise the overall resource utilisation of the network. 

This paper focuses on the investigation and deployment of a synergistic network-layer 
and application-aware programmable framework aimed at measuring, managing, and 
optimising the performance in networks that support P2P applications. Section 2 discusses 
existing P2P identification and optimisation approaches and raises its limitations. Section 3 
describes the architectural properties of an always-on programmable system that exploits 
network and application-level knowledge to synergistically detect and the onset of P2P 
activity and employ traffic optimisation algorithms over both the overlay and the physical 
network topologies. Preliminary analysis has initially focused on the network-level 
identification of P2P flows based on their internal traffic behaviour, and comparison between 
the performance characteristics of P2P and non-P2P flows are presented in section 4. In 
addition, wavelet analysis results that demonstrate the existence of discriminating information 
within P2P traffic behaviour are presented. Section 5 concludes the paper and outlines future 
work directions.  

2. P2P Traffic Identification and Optimization Challenges 
Currently, there are three, widely-used approaches for passive P2P traffic identification: 

application signatures, transport layer ports and network/transport layer P2P pattern 
recognition based on heuristics. The application signatures based approach [SSW04] searches 
for protocol specific patterns inside the packet payloads. The simplicity of this method is 
obvious, but it also introduces some important problems. First, it cannot be adapted 
automatically to unknown, recently-introduced P2P protocols. Enhancements to existing 
protocols, as well as the appearance of new protocols, occur frequently. Second, application-
level pattern search in each transport packets creates a higher load compared to other network 
and transport-layer-based approaches. Finally, some P2P protocols avoid payload inspection 
by using encryption algorithms. The transport layer port identification [SW02] solves the last 
two problems. It is easy to use, does not produce too much load at the measurement nodes and 
does not rely on inspecting application payloads. This method suffers from inability to adapt 
to modified or recently-introduced protocols. Furthermore, many P2P applications have 
begun using variable or non-P2P port numbers (HTTP, FTP, etc.) to deliberately avoid port-
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based identification and allow P2P communication through firewalls. As a result, port-based 
P2P identification highly underestimates the actual P2P traffic volume [KBB03]. Heuristic 
based network/transport layer approaches [KBB03, KBF04] use simple network/transport 
layer patterns, e.g. the simultaneous usage of UDP and TCP ports and the packet size 
distribution of a P2P flow between two peers. This method gives good performance for 
existing P2P protocols and can even be used to discover unknown protocols. The problem 
here, however, is that it is straightforward to construct a new P2P protocol, effectively 
avoiding the proposed heuristics. Recently, it has been suggested that the observation of host 
behaviour and the identification of social, functional and application-level patterns therein can 
lead to accurate traffic classification that obviates the aforementioned concerns [KPF05].   

Active P2P traffic identification approaches (active probing) have been used to traverse 
and gather topological information about different types of P2P networks [Gnu, Tuts04, KaZ]. 
These approaches use some probing peers called crawlers to connect to a desired P2P 
network. The crawlers then issue search requests and collect the IP addresses of the answering 
peers. By collecting these addresses, one can reconstruct the overlay topology of the P2P 
network. One obvious advantage of constructing such a topology is that subsequent P2P 
traffic measurement and identification needs to concentrate only on flows coming from or 
directed to IP addresses collected by the crawler. This improves the identification 
performance considerably and is an example of how application-aware, active probing can 
support passive P2P identification approaches. On the other hand, active probing has its 
limitations. In the eDonkey network, for example, it is only possible to discover the eDonkey 
superpeers in an efficient way. Identifying eDonkey clients can be done efficiently by using 
passive P2P identification approaches, which track flows coming from and directed to 
eDonkey superpeers. Therefore, a combination of application-aware active probing and 
network-level passive identification techniques is a promising strategy. 

As it has already been mentioned, network-layer controlling techniques do not consider 
preserving or even improving the functionality and performance of the P2P network. This 
goal can be achieved by using application-layer optimisation approaches [ADD04, Fry99, 
DeMeer03, GDS03, LHK04, LBB02, THH04], which all rely on P2P traffic redirection, 
shaping or proxy caching. These approaches work fine for a big number of P2P protocols, 
which are still widely open (not encrypted and can be reverse-engineered), so the redirection 
and shaping are possible. Application-aware programmable mechanisms can transparently 
provide for micro-services such as application-level routing, and application-specific resource 
discovery and differentiation. An ISP-controlled overlay mesh can be established in this way 
to manage the associated (P2P) traffic flows, through an understanding of application-specific 
data transfers without knowing the details of the underlying physical network. However, 
application-level approaches are strongly dependent on application-specific semantics. A 
programmable networking infrastructure that enables the deployment of specific application-
aware optimiser and identification components for new, recently reverse-engineered P2P 
protocols is required,  

On the other hand, network-layer controlling techniques (shaping and blocking) do not 
depend on application protocol internals. The combined use of both network-level and 
application-level optimisation techniques to enforce control mechanisms to optimise the 
overall network operation opens new promising grounds for research and, at the same time, 
yields many integration issues. A straightforward example of such synergy is to force P2P 
clients to use a certain application layer optimisation service provided by the ISP by blocking 
and shaping non-conforming P2P traffic at the network layer [MTT03]. 

 

3. Architectural and Experimental design 
This paper describes an always-on Monitoring Measurement and Control (MMC) 

architecture for P2P identification and network optimization deployed on programmable 
nodes at strategic points in the network. The choice of these points depends on numerous 
factors such as programmable node performance, and network topology and load. Instead of 
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statically specifying strategic points, MMC relies on the dynamic instantiation of ALAN 
proxylets [Fry99] to allow the on-demand installation and removal of components at different 
programmable network nodes. Such approach also allows the fast deployment of application-
specific modules for P2P protocols that have been newly reverse-engineered. The ALAN 
infrastructure operates synergistically with the LARA++ active router framework, essentially 
offering an additional application-specific programmable layer. LARA++ is a software 
implementation of a programmable router that augments the functionality of a conventional 
router/host by exposing a programmable interface, allowing active programs  -referred to as 
active components- to provide network level services on any packet-based network [SFS01]. 
Figure 1 shows the coarse structure of the proposed architecture. It is divided in three 
processing planes spread across the network and application layers. These planes try to 
synergistically address the identification and optimisation challenges presented in section 2. 
Additionally, a communication module is used to exchange locally collected data among 
programmable nodes. Its purpose is to enable global identification and optimization of P2P 
traffic. The communication module can for example be implemented in a centralistic way 
(programmable nodes exchange information through a central database server). Other 
possible communication approaches like the construction of a decentralized programmable 
node overlay structure.This paper does not rely on any particular design of the 
communication module. 

 

 
Figure 1: Architecture – Two Layer Programmability 

 

Measurement and Identification Planes 
The measurement plane takes as input the traffic, passing through its network node. It 

captures and aggregates relevant microflow patterns used for traffic clustering. A microflow 
can be easily identified at the network layer by a 5-tuple including the source and destination 
IP addresses, transport protocol and transport layer source and destination port numbers, if not 
encrypted [CBP95, Cla94]. In contrast to common passive flow measurement systems that 
only record aggregate flow indicators [Bro97, NFL], the flow-based classification and 
measurement employed by this architecture needs to keep per-packet state in order to 
compute performance properties such as packet inter-arrival time and packet size 
distributions. Such state needs to be captured continuously but at the same time reduced at a 
minimum by periodically substituting per-packet information with aggregate statistics. Packet 
timestamps and lengths kept for each active flow are being periodically aggregated by the 
pattern detection measurement modules to distribution summary statistics. The raw indicators 
are subsequently removed from the flow table. Further state reduction through sampling is 
considered with systematic count-based sampling schemes being appropriate candidates due 
to the simplicity of the sampling algorithm, but also due to its ability to capture the traffic’s 
burstiness and produce accurate approximation of the parent population for both single and 
multi-point performance metrics [CPB93, Zse05]. 
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(a)     (b) 

Figure 2: (a) Identification-Measurement Plane and (b) Optimization Plane 

 
Figure 2(a) presents a more detailed view on the components of the identification and 

measurement planes. Plug-in measurement modules that are implemented as ALAN proxylets 
act as microflow pattern detectors and periodically compute properties of the identified 
microflows in order to classify them into similarity classes, according to some per-packet 
and/or inter-packet characteristics. Estimates of the packet size distribution, for example, can 
be used to distinguish bulk from interactive and signalling TCP flows. Although this can 
prove more challenging than exploiting simple heuristics, interactive flows’ dependence on 
user-behaviour can be revealed from the periodicity of their time series as well as from their 
distribution’s heavy tails. The main dynamic behaviour of the measurement process lies in the 
ability of new instances of measurement-based pattern detector ALAN proxylets to be loaded 
on-demand to compute additional metrics. This also influences the operation of the traffic 
monitor and shaper which can be dynamically configured to record and deliver additional per-
packet information passed to the corresponding microflow pattern detector. The microflow 
patterns collected at the measurement layer are stored in a flow database. The microflow 
classifier component, which is located at the identification plane, searches for correlations 
between microflows passing through this access point node. The microflows are clustered into 
similarity classes according to the patterns collected at the measurement plane. Supervised 
and unsupervised adaptive techniques for flow classification can be applied to discover 
similarity classes. A comparative study of classification (clustering) methods is presented in 
[Zai97]. Unsupervised techniques have the advantage of detecting new unknown traffic 
classes. The addresses of all source and the destination hosts producing traffic in the same 
similarity class are collected in the database. With this information, a topology can be 
constructed, containing all hosts that produce traffic belonging to that similarity class. The 
micro and macroflow information (patterns, similarity classes) is stored with some history, 
which allows the correlation of flows that are not necessarily passing through the 
instrumented node at the same time. The macroflow classifier uses the topology information 
to distinguish between P2P like traffic and non-P2P traffic. For example in P2P systems the 
participating nodes are mostly acting both as client and server. A P2P topology collected by 
the macroflow aggregator would thus contain incoming and outgoing flows for the most of 
the nodes. On the other hand, a topology collected for the HTTP protocol would have a two 
level hierarchical structure, with each node uniquely identifiable as a server or a client. And a 
DNS topology would have a multi level hierarchical structure. The knowledge about the 
topology is a powerful traffic identification criterion, which can help to identify even 
unknown traffic. The macroflow aggregator exports its macroflow knowledge to the other 
programmable nodes by using the communication module. Respectively, the macroflow 
classifier uses macroflow information coming from the communication module to construct a 
local view of a certain traffic topology and to decide whether it is P2P like.    

Finally active crawler ALAN proxylets are dynamically loaded at the application layer to 
traverse and discover the overlay networks of reverse-engineered P2P protocols. The results 
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of the crawlers are stored into the flow database and are compared with the results of the 
identification components at the network layer in order to improve and verify the performance 
of the latter.  

Optimization Plane 
Based on the information collected and produced by the measurement and the 

identification planes, optimization and manipulation actions regarding identified P2P 
protocols can be taken at the optimisation plane (Figure 2(b)). The blocking and shaping 
component for unknown P2P traffic initiates network level actions, without semantic 
knowledge about a P2P protocol. Such actions can be priority-based routing, complete 
blocking or bandwidth limits for certain traffic flows (similarity classes). These actions may 
have regional or global character. The P2P optimizer components do not block or shape P2P 
traffic, but instead redirect it, thus avoiding network congestions and at the same time 
improving the P2P network performance. Different application-level optimization techniques 
are applicable for different P2P protocols, so the application optimizer component has to be 
adjusted to a predefined set of supported applications. Some of the application level 
techniques need to install blocking or shaping strategy components for the network layer to 
prohibit P2P traffic to run around the optimizing entities (P2P caches, proxies).   

 Experimental Design 
A critical aspect of the methodology described above is to determine the network-level 
characteristics of P2P application traffic of relevance to different microflow pattern detectors.  
An isolated network tracing environment has been constructed to capture traces of synthetic 
traffic from a number of P2P applications.  An eDonkey-specific setup using this environment 
is shown in Figure 3 below. 
 

 
Figure 3: Experimental Packet Capture Environment 

 
Isolated experimental configurations have been setup in three participating sites (universities 
of Glasgow, Passau, and Lancaster), and initial tests using the eDonkey protocol have been 
conducted. No other network traffic was active on the sub-nets behind the isolation routers, 
although the traced traffic was subject to variable delays due to congestion in the campus 
intra-networks and the Internet. The analysis discussed below was with respect to a single 
content-providing peer interacting with a single downloading peer at a remote site. After a 
short search for the content at the superpeer, the downloading peer initiated the download of a 
600 MB file from the providing peer. Full packet traces were recorded at the edges of each 
isolated configuration by GPS-synchronised GigEMON passive monitoring systems, which 
are engineered to perform lossless, full-packet capture of traffic in both directions to disk 
storage [End]. 

Pattern Detection Methodology 
The initial approach to detecting network-level packet patterns is to look for specific 

temporal behaviours associated with the packets in a P2P micro-flow.  For time-dependent 
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processes that are stationary, the traditional approach is to perform a Fourier analysis of the 
signal, thus converting the large number of experimental data points to a small, bounded 
number of coefficients for the Fourier basis functions in the Fourier expansion of the signal. 

Due to the time varying nature of the Internet, one does not expect the temporal behaviour 
of a micro-flow to be stationary.  Wavelet analysis techniques [Chu92] have been developed 
to address temporal behaviour that is non-stationary.  Wavelet techniques exhibit good time 
resolution in the high frequency domain (implying good localization in time) as well as good 
frequency resolution in the low frequency domain [AV98].  
For a non-stationary signal, wavelet analysis can determine sharp transitions simultaneously 
in both frequency and time domains.  This property of wavelet analysis makes it possible to 
detect hidden but highly regular traffic patterns in packet traces.  The result of wavelet 
analysis is a small, bounded number of coefficients for scaling and wavelet basis functions. 
Initially, the collected eDonkey traces have been subjected to wavelet analysis to understand 
whether such analysis provides the ability to distinguish eDonkey traffic from non-eDonkey 
traffic.  To that end, analysis results for an FTP session transferring the same file in the 
experimental environment are provided for comparison with the eDonkey analysis results in 
the following discussion. 

4. Preliminary Analysis and Results 
Before discussing the results of wavelet analysis, it is informative to first look at various 

statistical characterizations of the measured traces.  The initial focus has been with respect to 
packet inter-arrival time and packet size distributions. 
Each flow consists of control packets used by the applications to locate and initiate data 
transfers and data packets that correspond to the actual download of the requested content.  
The packet patterns for these two, different sub-flows are expected to exhibit significantly 
different characteristics, since the control/signalling traffic is an RPC-style interaction at the 
application level, while the data traffic is more characteristic of an asynchronous, reliable 
flow from the server to the client.  Therefore, signalling and data traffic are considered 
separately below. 

Inter-arrival Time Distributions 
Figures 4 and 5 below show the probability/frequency distribution functions for the inter-
arrival time distributions for the data and signalling sub-flows, respectively.  Two 
observations are immediately obvious from these figures: 
• The data streams exhibit resonances at the same values of packet inter-arrival time; even 

though the resonance at 10-4 seconds for the p2p data sub-flow is more pronounced than 
for the ftp flow, it is not sufficiently significant to confidently discriminate between 
eDonkey and FTP based upon this evidence alone. 

 

 
(a)     (b) 

Figure 4: Probability distribution as a function of packet inter-arrival time (in seconds) for (a) 
eDonkey data and (b) ftp data flows 
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• The signalling sub-streams, on the other hand, exhibit significant differences in their 
inter-arrival time spectra, especially for large inter-arrival times.  If these differences 
persist over different congestion regimes of the intervening networks (to be established 
experimentally in future work), then it is feasible that high-confidence discrimination can 
be achieved with appropriate pattern matching filters. 

 

 
(a)     (b) 

Figure 5: Frequency distribution as a function of packet inter-arrival time (in seconds) for (a) eDonkey 
control and (b) ftp control flows 

Packet Size Distributions 
Figures 6 and 7 below show the frequency distribution functions for the packet size 
distributions for the data and signalling sub-flows, respectively.  Two observations are 
immediately obvious from these figures: 
• The data streams exhibit strong resonances at essentially the same values of packet size; 

note that the p2p data sub-flow exhibits a small number of packets interspersed between 
the two strong resonances; it is not clear whether the presence of these intermediate 
packet size values is sufficiently significant to confidently discriminate between eDonkey 
and FTP based upon this evidence alone. 

• The signalling sub-streams, on the other hand, exhibit differences in their packet size 
spectra, especially for large packet sizes.  If these differences persist over different 
congestion regimes of the intervening networks (to be established experimentally in 
future work), then it is feasible that high-confidence discrimination can be achieved with 
appropriate pattern matching filters. 

 

 
(a)     (b) 

Figure 6: Frequency distribution as a function of packet size (in bytes) for (a) eDonkey data and (b) ftp 
data flows 
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(a)     (b) 

Figure 7: Frequency distribution as a function of packet size (in bytes) for (a) eDonkey control and (b) 
ftp control flows 

 
Note that analysis by others has yielded similar insights [Nla].  The results for the signalling 
sub-stream, if they hold across congestion regimes, augurs well for developing pattern 
matching filters for detection of control sub-flows when the packets are encrypted, as most 
encryption schemes are packet-size preserving, modulo padding introduced to make the 
packet size a multiple of 4 or 8 bytes. 

Wavelet Analysis 
 Despite the fact that the distributions for the p2p and ftp data flows shown in figures 4 and 6 
do not show significant differences, scatter plots of these traces with respect to both attributes 
do show significantly more variation in the p2p trace than in the ftp trace (not shown due to 
space reasons).  This indicates that there is scope for discriminating between such traces.  The 
first attempt at such discrimination has been through the use of wavelet analysis. Only aspects 
of wavelet analysis that are critical to this application are discussed below; interested readers 
are urged to consult [DAU92] for more details. 
In terms of wavelet theory, a signal Y0(t) (e.g. bursty traffic) can be represented as: 
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where k and j denote time and frequency indices, respectively.  The )(ka J
Y  are scaling 

(approximation) coefficients, and the )(kd j
Y are wavelet (detail) coefficients. A scaling 

function with low-pass filter properties kJ ,ϕ  is used to capture an approximation signal (low-

frequency signal), and a wavelet function kj ,ψ  with band-pass filter properties is used to 
extract the detailed information (high-frequency signal). 
Wavelet signal analysis consists of three primary phases: 
• The analysis phase decomposes the data into a hierarchy of component signals by 

iteration. Starting with a signal S, the first step of the transform decomposes S into two 
sets of coefficients, namely approximation coefficients )(1 kaY  and detail coefficients 

)(kd j
Y . The input S is convolved with the low-pass filter to yield the approximation 

coefficients. The detail coefficients are obtained by convolving S with the band-pass 
filter. This procedure is followed by down-sampling by a factor of 2, and this process is 
then applied to the down-sampled signal. At each iteration of this phase, the input is a 
signal of length N, and the output is a collection of two or more derived signals which are 
all of length N/2. We obtain the approximation signal at the highest level j and the 
collection of detail coefficients at each level until the end of decomposition.     

• The signal processing phase compresses, de-noises and detects the underlying signal by 
modifying some wavelet coefficient values and then reconstructs the signal using these 
altered wavelet coefficients. 
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• The synthesis phase is the inverse of the iteration phase. 
The wavelet coefficients are key to matching the spike pattern of a signal. By focusing on the 
Probability Density Function (PDF) of wavelet coefficients, one can determine the algorithm 
for selecting a suitable threshold and dropping non-significant coefficients when 
reconstructing the signal. 
Tools to perform this analysis on micro-flow, inter-arrival time distributions obtained from 
the the experimental environment described in section 4 above have been developed and 
validated.  These tools have been applied to the data sub-flow distributions shows in figure 4 
above. 
Exploration of the information resulting from these analyses is in its beginning stages; the 
initial focus has been to concentrate on measures of the significance of wavelet coefficients at 
each decomposition level, denoted by the index j.  Table 1 below shows the significance for 
each decomposition level in the analysis of the p2p and ftp data sub-flow traces. 
 

Table 1: Level-specific coefficient significance from wavelet decomposition 

 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 
p2p -5.3490 -4.5921 -4.0269 -5.0712 6.7115 -1.1379 
ftp -9.6785 -5.3787 4.5109 -4.5486 4.8186 -6.0644 

 
A particularly useful way to visualize the relationships between decompositions for different 
applications is to plot these values on a radar diagram.  Such a diagram is shown in Figure 8 
below.  From this diagram, it is immediately apparent that the p2p trace is significantly 
different from the ftp trace at levels 1, 3 and 6.  While Figure 4 did not provide sufficient 
information to discriminate between the two data flows, it is apparent that sufficient 
discriminating information is contained in the traces.     
 

 
Figure 8: Wavelet coefficient significance per level for eDonkey and ftp data sub-flows. 

 

Real-Time Considerations 
A micro-flow detector must detect patterns in real-time to feed the optimization layer in the 
architecture described in section 4. It is important to estimate the ability of a detector based 
upon wavelet analysis to function in real-time. 
In order to perform a wavelet analysis to level N, a sufficient number of packets must be 
accumulated in the inter-arrival time histogram for a micro-flow such that 2N bins have 
nonzero frequency counts. For example, if analysis to level 3 is sufficient to discriminate the 
flows of interest, then 8 non-zero bins are required. In addition to considerations regarding 
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minimum number of observations, one must also assure that the time duration of the observed 
portion of the flow is sufficient to mask any startup transients and to yield a distribution that 
is representative of the entire flow. 

As with any predictive technique, the expected accuracy of predictions will improve if more 
data is available over which to perform the analysis.  Given that most p2p sessions are 
operational for a long period of time, there is a tradeoff to consider between rapidity of 
prediction versus accuracy of prediction.  Reduction of false positives, consistent with rapid 
enough prediction, is the long-term goal. 

5. Conclusions and Future Work 
This paper has introduced an architecture for exploiting active/programmable networking 

techniques to manage p2p applications.  Crucial to the success of an infrastructure based upon 
this architecture is the ability to detect onset of p2p activity by passively observing network-
level micro-flows. Application-level probing mechanisms can support the network-layer 
identification process, which can in turn be the basis for application-layer optimisation 
techniques that improve P2P performance. 

The project has constructed an experimental infrastructure that enables the full packet 
capture of synthetic micro-flow traffic.  The traces resulting from this synthetic traffic enables 
the assessment of a number of p2p pattern detectors for driving such management activities. 
The first analysis technique that has been assessed has been based upon the use of wavelets.  
Preliminary results indicate that these techniques may prove useful for constructing real-time 
p2p pattern detectors. 

Future work will focus on extensive measurement and analysis of further invariant factors 
that can be measured in real-time to identify P2P activity in short timescales. Traces of a 
number of p2p and non-p2p applications will be captured and analysed to gain confidence in 
the efficacy of wavelet analysis. 

References 
 
[ADD04] F. U. Andersen, H. De Meer, I. Dedinski, C. Kappler, A. Mäder, J. Oberender, K. 

Tutschku, “Enabling Mobile P2P Networking.” LNCS, Vol. 3472: Wireless Systems and 
Mobility in Next Generation Internet: First International Workshop of the EURO-NGI 
Network of Excellence, Dagstuhl Castle, Germany, 2004. 

[AG03] Azzouna, N., B., Guillemin, F., Analysis of ADSL traffic on an IP Backbone link, in 
Proceedings of IEEE Globecom 2003, San Francisco, USA, December 1-5, 2003 

[AH01] Ali N. Akansu, Richard A. Haddad. Multiresolution signal decomposition --Transforms, 
Subbands, and Wavelets. Academic Press, 2001 

[AV98] Patrice Abry, and Darryl Veitch, “Wavelet Analysis of Long Range Dependent Traffic”, 
IEEE Transactions on Information Theory, Vol. 44, No. 1, pp.2-15, January 1998 

[Bro97] Brownlee, N., Traffic Flow Measurement: Experiences with NeTraMet, IETF, Network 
Working Group, RFC2123, March 1997 

[CBP95] K.C. Claffy, H.-W. Braun, G.C. Polyzos, A Parameterizable Methodology for Internet 
Traffic Flow Profiling. IEEE Journal On Sketched Areas In Communications 13(8) (1995) 
1481–1494. 

[Chu92] Charles K. Chui. An introduction to the wavelets. Academic Press, 1992. 
[Cla94] K.C. Claffy, Internet Traffic Characterization. PhD thesis, University of California, San 

Diego, CA, 1994. 
[CPB93] Claffy, K., Polyzos, G., Braun, H.-W., Application of Sampling Methodologies to 

Network Traffic Characterisation, ACM SIGCOMM’93, San Francisco, California, USA, 
September 13-14, 1993 

[Dau92] I. Daubechies, editor. Ten Lectures on Wavelets. S.I.A.M, 1992. 
[EH96] G. Erlebacher, M.Y. Hussaini and L.M. Jameson, editor. Wavelets: Theory and 

Applications. Oxford University Press, 1996 
[End] http://www.endace.com 
[Fry99] Fry M., Ghosh A., “Application Level Active Networking”, Computer Networks, 31 (7) 

(1999) pp. 655-667. 



 12

[GDS03] Gummadi, K., P., Dunn, R., J., Saroiu, S., Gribble, S., D., Levy, H., M., Zahorjan, J., 
Measurement, modeling, and analysis of a peer-to-peer file-sharing workload, in 
Proceedings of the nineteenth ACM symposium on Operating systems principles, Boston, 
October 19-22, 2003 

[Gnu] Gnutella. http://www.gnutella.com/ 
[GR02] Grossglauser, M., Rexford, J., Passive Traffic Measurement for IP Operations, The 

Internet as a Large-Scale Complex System (K. Park and W. Willinger, eds.), Oxford 
University Press, 2002 

[KaZ] KaZaa. http://www.kazaa.com/ 
[KBB03] T. Karagiannis, A. Broido, N. Brownlee, K. Claffy, M. Faloutsos, “File-sharing in the 

Internet: A characterization of P2P traffic in the backbone”Technical report. November, 
2003. 

[KBB04] T. Karagiannis, A. Broido, N. Brownlee, K.C. Claffy, M. Faloutsos, Is P2P dying or just 
hiding?, IEEE Global Internet and Next Generation Networks (Globecom’04), Dallas, 
Texas, USA, 29 Nov - 3 Dec, 2004 

[KBF04] T. Karagiannis, A. Broido, M. Faloutsos, K. Claffy, “Transport layer identification of P2P 
traffic”, in Proceedings of the 4th ACM SIGCOMM conference on Internet measurement 
2004. 

[KPF05] T. Karagiannis, D. Papagiannaki, M. Faloutsos, BLINC: Multilevel Traffic Classification 
in the Dark, ACM SIGCOMM’05, Philadelphia, PA, USA, August 2005 

[LBB02] N. Leibowitz, A. Bergman, R. Ben-Shaul, A. Shavit, "Are File Swapping Networks 
Cacheable? Characterizing P2P Traffic", presented at 7th International Workshop on Web 
Content Caching and Distribution (WCW'03), Boulder, CO, 2002. 

[LHK04] Le Fessant, F., Handurukande, S., Kermarrec, A.-M., Massoulie, L., Clustering in Peer-to-
Peer File Sharing Workloads, in Proceedings of The 3rd International Workshop on Peer-
to-Peer Systems (IPTPS’04), San Diego, February 26-27, 2004 

[Mal01] S. Mallat. A Wavelet Tour of Signal Processing. Academic Press, San Diego, 2001 
[MTT03] H. de Meer, K. Tutschku, P. Tran-Gia. Dynamic Operation in Peer-to-Peer Overlay 

Networks. Praxis der Informationsverarbeitung und Kommunikation -Special Issue on 
Peer-to-Peer Systems (PIK Journal), June 2003. 

[NFL] Cisco IOS Netflow, on-line resource, 
http://www.cisco.com/warp/public/732/Tech/nmp/netflow/index.shtml 

[Nla] http://www.nlanr.net/NA/Learn/packetsizes.html 
[Ora01] Oram, A., (Ed.), Peer-to-Peer: Harnessing the Benefits of a Disruptive Technology, O’ 

Reilly, 2001 
[SFS01] S. Schmid, J. Finney, A.C. Scott, W.D. Shepherd, “Component-based Active Network 

Architecture”, IEEE Symposium on Computers and Communications, July 2001 
[SSW04] S. Sen, O. Spatscheck, D. Wang, “Accurate, scalable in-network identification of p2p 

traffic using application signatures”, in Proceedings of the 13th international conference on 
World Wide Web, 2004. 

[SW02] S. Sen, J. Wong, "Analyzing peer-to-peer traffic across large networks", Second Annual 
ACM Internet Measurement Workshop, 2002. 

[THH04] B. Tagami, Teruyuki Hasegawa, Toru Hasegawa, “Analysis and Application of Passive 
Peer Influence on Peer-to-Peer Inter-Domain Traffic”, in Proceedings of the Fourth 
International Conference on Peer-to-Peer Computing, IEEE 2004. 

[Tuts04] K. Tutschku: A Measurement-based Traffic Profile of the eDonkey Filesharing Service. 
In the Proceedings of the 5th Passive and Active Measurement Workshop 
(PAM2004), Antibes Juan-les-Pins, France, April 2004.  

[Zai97] Zait, M., Messatfa, H., Comparative study of clustering methods, Future Gener Comput 
Syst. Vol. 13, no. 2-3, pp. 149-159. Nov. 1997 

[Zse05] 
 

Zseby, T., Sampling Techniques for Non-Intrusive QoS Measurements: Challenges and 
Strategies, to appear in Computer Communications Special Issue on Monitoring and 
Measurement, 2005 

 
 
 


