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1. INTRODUCTION
Distributed Hash Tables (DHTs) have been shown to be a

promising form of decentralised structured peer-to-peer net-
working, offering substantial scalability and resilience. Un-
surprisingly, there exist numerous DHT systems [11][13][16].
Primarily, DHTs serve as an object location service that can
be used as a substrate for multiple large-scale distributed
applications such as storage [4][9], multicast [3][2] and load
balancing systems [8][6].

Historically, the approach to DHT design has involved
connecting an overlay of homogeneous and autonomous nodes
together. The homogeneity arises from the fact that nodes
are assumed to have similar properties such as network band-
width and network stability. On the other hand, the auto-
nomicity of nodes arises in the sense that any node may join
or leave the network, and perform any operation supported
by the DHT such as routing messages or handling object
references (keys) as they wish.

Realistically, measurement studies have shown that nodes
are not homogeneous [14] and nodes are likely to be contin-
ually joining and leaving the network in an unpredictable
fashion, a situation commonly referred to as churn. Many
DHT systems will simply break down under high churn [12],
unfortunately, severe levels of churn are likely, especially for
networks with mobile nodes [7][10].

Another issue is that of trust among users: traditional
content-delivery models separate clients and servers, unlike
DHT-based content systems where the end-users play a role
in the content location and delivery. It is unwise to allow
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all nodes the same privileges on the network due to the
potential for abuse [15][5].

We propose a Stealth Distributed Hash Table (Stealth DHT)
algorithm, which aims to preserve the advantages of DHT-
based systems, while offering greater security and control at
the DHT level. A Stealth DHT makes a subset of nodes ef-
fectively “invisible” to the routing decisions on the network.
As a result, invisible nodes will never receive any queries
and therefore cannot intercept nor reply to them.

2. STEALTH DHT
There are two types of nodes in a Stealth DHT, namely

service nodes and stealth nodes. Service nodes can execute
all operations supported by the DHT, while stealth nodes
are prevented from storing keys and forwarding data. In
a commercial context, for example, service nodes could be
highly stable and capable machines owned by a content
service provider, and they are assumed to be trusted; on
the other hand, stealth nodes would be autonomous de-
vices owned by end-users who request service(s) from the
provider. Note however, that the assignment of role (service
or stealth) to nodes is application dependent and in no way
prescribed or constrained by the Stealth DHT itself.

To this end, the routing state of all nodes in the Stealth
DHT contains entries for only service nodes. Consequently,
any node (and in particular stealth nodes) can only send
messages to service nodes. The service nodes then forward
the message (only via other service nodes) to the destina-
tion, which will also be a service node. In other words,
stealth nodes cannot communicate with one another, nor
will service nodes communicate with stealth nodes for any
purpose other then replying directly to requests issued by
stealth nodes. Consequently, stealth nodes are invisible to
each other, and when “quiet”, their presence is invisible to
the service nodes.

To achieve the differentiation between service and stealth
nodes, stealth nodes make use of a lightweight join mecha-
nism. This mechanism prevents the stealth node announcing
their presence to the network, thus keeping them out of the
other nodes’ routing tables. Intuitively, when a stealth node
joins, no routing updates are required, and when a stealth
node leaves, no routing entries become stale.

As stealth nodes do not appear in the service nodes’ rout-
ing tables, the stealth nodes do not receive updates to their
own tables. This can lead to a stealth node having an in-
creasingly stale routing table. There are three possible low-
cost mechanisms to tackle this, piggybacking routing infor-



mation on replies to stealth nodes, periodically polling for
routing state, and rejoining the node to the network.

3. PERFORMANCE EVALUATION
We implemented both Pastry [13] (i.e. a generic DHT)

and our Stealth DHT in our own discrete-event packet-level
simulator. The underlying network consisted of 1000 routers
on a transit-stub network (4% transit nodes), generated with
GT-ITM [1]. Peers were attached to the physical network
in a random fashion.

Simulations were run with a realistic workload in which
randomly selected nodes performed put and get operations
on a set of 1,000,000 keys. These simulations were run for
both Pastry and a Stealth DHT, with and without churn in
the network.

Regardless of churn Stealth DHTs outperform Pastry in
many standard DHT measurements, such as average hop
count, relative delay penalty (often referred to as stretch),
join overhead and load balancing. We also found that in a
Stealth DHT increasing the number of stealth nodes had no
significant impact on these metrics.

Without churn, the cost of using a Stealth DHT was in-
creased link stress for a small percentage of the network
compared to Pastry, as well as higher average load (the num-
ber handled message) for the service nodes. Under churn,
however, generic DHTs generate a large number of mes-
sages to detect and repair the failures. Overall, under churn
the Stealth DHT was found to have a lower average and
maximum link stress, as well as reduced average load per
node. We attribute this to the lightweight joining protocol
for stealth nodes, and the lack of repair messages required
when stealth nodes leave the DHT.

4. CONCLUSION
Most of the research in DHT-based systems has focused

on performance issues. However, a generic DHT design does
not generally address issues such as heterogeneous nodes in
a network and security.

We proposed a new DHT paradigm called Stealth DHT
that is capable of tackling these problems. In particular,
a Stealth DHT simplifies the DHT operations for stealth
nodes, which leads to improved performance. In addition,
by preventing stealth nodes from forwarding messages, the
service nodes can actually restrict the content stored in the
DHT and enforce control over network operations, thus im-
proving security.

Stealth DHT could support commercial applications where
the distributed and resilient aspect of the DHT is required,
but where the content stored in the network needs to be
limited to licence materials. Mobility is another area where
Stealth DHTs could be used, by restricting mobile devices
to stealth nodes their churn would not adversely affect the
network.

Consequently, Stealth DHTs are poised to improve sup-
port for existing DHT applications in real world commu-
nication environments as well as enabling the commercial
development of the technology.
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