
TENNISON: A Distributed SDN Framework for
Scalable Network Security

Lyndon Fawcett∗, Member, IEEE, Sandra Scott-Hayward†, Member, IEEE, Matthew Broadbent∗,
Member, IEEE, Andrew Wright† and Nicholas Race∗, Member, IEEE

∗Lancaster University and †Queen’s University Belfast
l.fawcett1@lancaster.ac.uk

Abstract—Despite the relative maturity of the Internet, the
computer networks of today are still susceptible to attack.
The necessary distributed nature of networks for wide area
connectivity has traditionally led to high cost and complexity in
designing and implementing secure networks. With the introduc-
tion of Software Defined Networks (SDN) and Network Functions
Virtualisation (NFV), there are opportunities for efficient network
threat detection and protection. SDN’s global view provides a
means of monitoring and defence across the entire network.
However, current SDN-based security systems are limited by a
centralised framework that introduces significant control plane
overhead, leading to the saturation of vital control links. In
this paper, we introduce TENNISON, a novel distributed SDN
security framework that combines the efficiency of SDN control
and monitoring with the resilience and scalability of a distributed
system. TENNISON offers effective and proportionate monitoring
and remediation, compatibility with widely-available networking
hardware, support for legacy networks, and a modular and
extensible distributed design. We demonstrate the effectiveness
and capabilities of the TENNISON framework through the use
of four attack scenarios. These highlight multiple levels of
monitoring, rapid detection and remediation, and provide a
unique insight into the impact of multiple controllers on network
attack detection at scale.

Index Terms—SDN, Monitoring, Network Security, Distributed
Control, Scalable Security.

I. INTRODUCTION

IN an increasingly networked world we rely on having
reliable communications technologies for everyday busi-

ness and social interaction. At the same time, the frequency
of network disruptions caused by cyber-attacks is increasing.
Distributed Denial of Service (DDoS) attacks, for example,
increased by 71% between 2015 and 2016, with a 138%
increase in attacks greater than 100 Gbps in the same period
[1]. In October 2016, multiple DDoS attacks targeted systems
operated by the Domain Name Server (DNS) provider, Dyn.
The attack is believed to have been orchestrated by a botnet of
IoT devices infected with the Mirai malware with more than 60
services affected [2]. These examples highlight several features
of today’s network attacks; they are distributed, can involve
high traffic volume, and execute remotely through network
intrusion. These features indicate the importance of monitoring
network events, including network traffic, flow, and device
status, to enable effective attack detection and protection.

Network threat detection and protection in traditional net-
works has typically been achieved with dedicated hardware

security appliances (middleboxes), which are costly and re-
quire careful placement in the network to ensure appropriate
traffic capture. This fixed placement constrains the capability
of the network security functions by limiting visibility to the
traffic on a particular network segment and thereby limiting
the potential for contextual analysis of the captured data.

Software Defined Networking (SDN) has emerged as a
concept for the dynamic control of configuration of computer
networks. Fundamentally, SDN separates the control and data
planes within a network device. This control is then ceded to
a software-based controller, which defines the behaviour and
operation of the network. The characteristics of SDN include
the global network view and programmability of the data
plane. In addition, the OpenFlow (OF) Switch specification
[3], which describes a protocol for communication between the
SDN data and control planes, defines counters for each flow
entry/rule in the switch flow table. The flow rule definition also
supports a large number of packet header fields (> 40 fields).
The granularity of these network statistics captured at the data
plane supports traffic monitoring for security functions.

These characteristics enable a powerful feedback loop as
follows: network attacks can be detected by capturing traffic
flow information and analysing the flow statistics with respect
to known signatures/patterns (or through the application of
machine learning techniques). Having detected an attack by
a volume, type or pattern of traffic, the intrusion protection
system can be deployed. The benefit of SDN is that it can be
used to program the flow rules to block or filter traffic, or apply
another remediation mechanism. However, a performance/ac-
curacy trade-off arises when deploying a traffic monitoring
service at scale. The volume of information to be collected can
lead to overall performance degradation, whilst introducing a
longer collection interval can lead to inaccuracy or delayed
remediation. The impact of the volume of monitoring data is
particularly significant in a centralized SDN security system
with the potential to overwhelm the controller processing
functions. It is possible for the monitoring of a DoS attack
to generate sufficient monitoring traffic towards the controller
that the controller itself becomes subject to DoS [4]. A solution
is therefore required to offer a flexible and proportionate
monitoring capability with distributed functionality to disperse
the control and monitoring load for scalability and resilience.

To address this challenge, we present TENNISON, a dis-
tributed SDN security framework built on a multi-level re-
mediation mechanism. A number of OF security frameworks

and applications have been proposed previously, each of which
builds on a selection of these SDN characteristics. However,
TENNISON’s novelty is that it supports a multi-level capability
for monitoring. It offers the ability to perform light-weight
monitoring across a large number of flows, whilst offering
the capability to perform Deep Packet Inspection (DPI) on a
selection of flows.

The remainder of the paper is structured as follows. Section
II reviews related work followed by a summary of the contri-
butions of TENNISON in Section III. The system architecture is
detailed in Section IV. In Section V, we conduct an evaluation
of Distributed SDN Controller performance, analyse the per-
formance of TENNISON in the context of four attack scenarios,
and assess the scalability of TENNISON components. Finally,
Section VI concludes the paper.

II. RELATED WORK

TENNISON is a distributed SDN security framework that
supports multiple levels of monitoring. In this Section, we
review prior work relating to SDN-based monitoring, SDN-
based security systems and distributed SDN controller per-
formance. There are also a number of IETF documents that
are relevant to this work. For example, Interface to Network
Security Functions (I2NSF) [5], DDoS Open Threat Signaling
(DOTS) [6], and Network Security Header (NSH) [7]. We
will address these specifically with respect to the TENNISON
architecture in Section IV.

A. SDN Monitoring

The combination of the global network view and the gran-
ularity of the network statistics captured at the data plane has
generated significant interest in network monitoring advances
with SDN. Combinations of traditional monitoring protocols
such as NetFlow/IPFIX and sFlow with the SDN protocol,
OpenFlow, have been explored [8], [9].

Prior work has aimed to tackle the challenges of monitoring
at scale. For example, FlowSense [10] uses a push-based
approach to receive flow statistics from switches. Adaptive
rate monitoring has also been introduced; OpenNetMon [11]
and OpenTM [12] poll selected switches at an adaptive rate
to reduce network and switch CPU overhead. PayLess [13]
uses an adaptive sampling algorithm to vary polling frequency
based on measured throughput. Similarly, FlowCover [14]
reduces the monitoring communication cost by optimizing the
polling function. OpenMeasure [15] uses online learning to
adapt flow measurement. This enables scalable measurement
with monitoring of the most informative flows and optimal
placement of monitoring rules across multiple switches. Proxy-
based Monitoring [16] introduces a monitoring table in the
proxy to specify the measurement interval for traffic moni-
toring and associated flow rules are pushed to the OpenFlow
switches. Flow-stats-requests/replies are then only exchanged
for those specified monitored flows rather than all flows.
This reduces the volume of statistics communication in a
similar fashion to OpenTAM [17], which is an ONOS-specific
adaptive monitoring tool. However, there are several identified
limitations to the work; packet capture performance is limited

to 60Mbps, the system is limited to 600 condition entries (i.e.
rules for capture/monitoring) and it is based on OpenFlow 1.0.

In FlowRadar [18], the authors address the challenge of
monitoring in data centers where the existing NetFlow imple-
mentation options are unsuitable either due to the prohibitive
cost of high-end routers (hardware-based) or excessive switch
CPU resource requirements (software-based). The FlowRadar
solution is to balance the workload by encoding per-flow
counters with low memory requirement and constant insertion
time at switches. The decoding and analysis of the flow
counters is then performed at the remote collector where
there is available computation resource. FlowRadar provides a
scalable solution for network-wide monitoring across the data
centre independent of SDN or OpenFlow.

SDNMon [19] seeks to improve on monitoring application
granularity with an SDN monitoring framework that separates
the monitoring logic from the forwarding logic. SDNMon
achieves monitoring in a similar way to TENNISON by us-
ing multiple tables to separate monitoring and forwarding.
However, these tables are not OpenFlow tables, but instead
are situated within an application that sits on a customised
version of the Lagopus software switch. As such, SDNMon
only works with this switch. UMON [20] also addresses
the separation of forwarding and monitoring logic. This is
achieved by introducing an additional monitoring table at the
end of the forwarding pipeline. New monitoring actions are
also introduced to support statistics collection on non-routing
fields e.g. SYN, ACK etc. This enables, for example, port
scan detection based on fine-grained monitoring. However, the
implementation is specific to OpenvSwitch.

Most recently, Tsai et al. [21] present an overview of
SDN monitoring solutions identifying the challenges and open
issues. The research developments are classified according to
the monitoring phase i.e. collection, preprocessing, transmis-
sion, analysis, and presentation, with the majority of research
focused in the preprocessing phase e.g. OpenTM [12]. The
benefit of leveraging sFlow is highlighted to integrate mon-
itoring in hybrid environments with legacy network devices,
which is the approach taken with TENNISON. Similarly, we
tackle the open issues identified in [21]; leveraging monitoring
and data collection to detect security threats, and multi-domain
collaborative network monitoring.

TENNISON extends existing monitoring solutions to offer
the unique ability to perform light-weight monitoring across a
large number of flows whilst offering the capability to perform
DPI on select flows. The TENNISON multi-level monitoring
design selects the appropriate monitoring tool for the required
detection i.e. sFlow when sampled monitoring is sufficient,
IPFIX for detailed monitoring, and mirroring/redirection to
DPI for payload inspection. This reduces the volume of moni-
toring traffic, supporting deployment in a large-scale network.
The design of TENNISON further supports scalable monitoring
through the distribution (and coordination) of monitoring
across multiple controller instances.

B. SDN Security Systems
The first protection architecture for SDN was proposed in

[22], prior to the development of the OpenFlow protocol. Since

then, prior work has focused on taking advantage of SDN
characteristics for intrusion detection/prevention services.

FRESCO [23] proposed a framework for the design and
development of security specific modules as OpenFlow ap-
plications. TENNISON also provides a security framework.
However, TENNISON combines SDN and NFV to leverage
both existing security functions (e.g. Snort, Bro etc.) and
to provide the appropriate network telemetry for advanced
security applications.

CIPA [24] applies an artificial neural net (ANN) across
OF-SDN switches for the detection of distributed, coordi-
nated intrusion attacks such as scanning, worm outbreak and
DDoS. The False Positive/Detection Rate and communication
overhead are all shown as improvements over Gamer [25].
With [26] and [27], Ha et al. consider intrusion detection
in SDNs. In [26], a flow grouping scheme is proposed to
determine which flows to forward to which IDSs to achieve
the best intrusion detection performance. Principal Component
Analysis (PCA) is used for grouping suspicious flows and
gravity-based clustering is used to assign these groups to
IDSs. In the example results, each of the TAPs feed into
an aggregation switch from which the assignment to IDSs is
made. From a latency perspective, this would counteract the
benefit of the distributed implementation.

In [27], the authors present results for optimising the sam-
pling rate for each switch to improve inspection performance
of malicious traffic in large networks. This is designed to
fully utilise the inspection capability of the malicious traffic
while keeping the total volume of sampled traffic below the
maximum processing capacity of the IDS. The optimisation
is a function of the data rates of the switches, the malicious
traffic rate of the flows and the sampling rate at the switches.
However, the malicious traffic rate must be estimated to begin
with and can then converge to the actual value based on
the adjusted sampling rates. The selection of this rate would
strongly influence the convergence time. Simulation results
showed that the algorithm converged in about 100 s for the
smaller network, which is somewhat impractical.

SDN4S [28] is proposed as a system and solution to min-
imise the time between incident detection and resolution by
using automated countermeasures based on SDN. The system
creates incident-specific response work-flows that automati-
cally implement actions and network countermeasures. The
work is motivated by the issue with the increasing volume
of network threats and hence security alerts and the limited
resources to analyse and respond to the alerts. The solution
is based on the concept of playbooks, which match/tailor the
security incident response to the business and environment.
This work has some similarities with TENNISON. For example,
there is a similar component architecture, the ability to receive
alerts from external security systems, and the OpenFlow-
based network protection mechanism. However, although the
motivation of SDN4S is to minimize response time, there is
no evaluation of the response time or of the effectiveness of
the detection/protection mechanisms.

PSI [29] is proposed as a new enterprise network security
architecture to address the issue of existing enterprise security
approaches lacking precise defences in isolation, context, and

agility. The authors describe these as follows: for isolation,
the defence system must ensure that security policies do not
interfere with each other; for context, the defence system must
be able to enforce customised policies for individual network
devices, and for agility, the defence system must be able to
change policy at fine-grained time-scales. PSI and TENNISON
address a similar set of problems related to usable network
security; that of appropriate, efficient network security. Both
systems achieve this by leveraging SDN and NFV. PSI em-
phasizes the use of NFV with the tunnelling of all network
traffic through a cluster of virtualised appliances within which
the relevant services are applied to the traffic. In contrast,
TENNISON emphasizes the use of SDN. Rather than tunnelling
all traffic through a cluster (albeit virtual and hence flexibly
deployed), TENNISON leverages the SDN switch design to
effectively apply security policy in the data plane through the
selection of traffic for monitoring at different granularities.
This results in flows being conservatively mirrored (rather
than redirected), reducing overall network load and latency for
benign traffic. Additionally, unlike PSI, the use of IPFIX and
sFlow provides TENNISON with visibility in legacy networks.

Finally, Athena [30] is an SDN anomaly detection frame-
work. Like TENNISON, Athena addresses the issue of scalabil-
ity across large, distributed SDN deployments. The framework
supports the development of machine-learning based security
applications with two scenarios illustrated; DDoS detection
and Link Flooding Attack mitigation. However, Athena does
not support interoperability while TENNISON can integrate
with a hybrid SDN-legacy network. Furthermore, Athena does
not offer adaptive measurement for resource optimisation.

C. Distributed SDN Controller Performance

As highlighted in Section I, the ability to scale up controller
processing in response to network traffic variations is critical to
the network security system. Both hierarchical and distributed
control mechanisms have been proposed, as surveyed in [4].
A few of these works specifically consider load-balancing.
In Kandoo [33], local decision-making is separated from
network-wide decision-making. Certain applications can be
supported by event processing at local controllers reducing
the load on the root controller. ElastiCon [34] proposes an
elastic distributed controller architecture to dynamically adjust
the controller pool in response to changing traffic conditions.

Hydra [35] presents a solution to support latency-sensitive
applications by partitioning the control function based on
functional rather than topological slicing (as in [33], [34]).
Functional slicing splits control plane functions (and, there-
fore, applications) across servers. The performance results pre-
sented in [35] show an improvement in controller throughput
and response time under increasing load for latency-sensitive
applications. However, the dependency on communication-
awareness means that the placement algorithm would be
required to run very frequently in larger networks.

The SDN controller, ONOS [36], publishes performance
results for each new controller version [37]. These include
distributed performance results. However, the results analyse
particular components of the controller in isolation. In this

TABLE I: Scalability comparison of SDN security systems

System Name Controller Multi-level
monitoring

OF response
methodology

Attack detection
(Extensibility) Distribution SIEM-Like Human

Interface

TENNISON [31] ONOS Yes Hybrid 4+ (Yes) Yes (Control &
System) Yes

FRESCO [23] NOX No Reactive 3+ (Yes) No No
CIPA [24] POX No Reactive 3+ (Yes) No No
SDN4S [28] HPE VAN No Reactive 1+ (Yes) No Yes
PSI [29] ODL No Proactive 1+ (via NFV) Yes (System) No

Athena [30] ONOS No Reactive 2+ (Yes) Yes (Control &
System) No

OFX [32] Ryu No Hybrid 2+ (Yes) Yes (Switch) No

paper, we provide distributed control performance results for
a full network implementation scenario considering varying
traffic, cluster size, and network scale (volume of network
devices). By simultaneously considering these multiple factors,
real conclusions can be drawn regarding the performance of a
distributed ONOS cluster in a production network.

III. TENNISON CONTRIBUTIONS

Section II-B highlighted security frameworks and applica-
tions that build on the SDN characteristics of programmability
and logically centralised control. The performance impact in-
troduced by the control communication channel (and controller
processing capacity) is a challenge for low-latency attack
detection. Similarly, many of the proposed security frame-
works/applications rely on modifications to OpenFlow, SDN
devices, or interference with fundamental network forwarding
behaviours, which restrict real deployment of the solutions.

In Table I, we highlight the features of a scalable, distributed
monitoring and security system, and compare existing solu-
tions with the TENNISON framework.

The TENNISON framework is motivated by the desire to
present an adaptive and extensible security platform that is
technology-independent and capable of supporting a wide
range of security functions. TENNISON does not remove
the requirement for controller interaction, as demonstrated
in Avant-Guard and OFX [32], [38]. However, the level of
controller interaction is rendered flexible and proportionate to
the threat detection requirements. This is assisted by the use
of other monitoring and inspection tools that are deployed to
the network, relieving pressure from the SDN control channel.

TENNISON offers a next-generation security framework
with the following attributes:

• Efficiency and Proportionality: TENNISON provides an
efficient monitoring and remediation framework where
resource consumption is commensurate to current threat
levels. TENNISON supports standard network monitoring
protocols such as sFlow and IPFIX, incorporating them
in a multi-level monitoring function, as described in
Section II. As demonstrated in Section V, a volumetric
attack can be efficiently detected using the TENNISON L1
monitoring with sFlow while more fine-grained attacks
engage L2 IPFIX monitoring and/or L3 DPI capabilities.

• Scalability and Visibility: The network view provided
by the distributed ONOS control function and leveraged

by the TENNISON coordinator enables placement of the
monitoring and remediation rules on the appropriate
network devices for optimal security protection. Visibility
across the network includes legacy equipment, through
compatibility with ubiquitous protocols such as sFlow.
Separation of the TENNISON coordinator from the SDN
controller helps to scale out the system, and maintain
openness in the selection of TENNISON’s controller.

• Programmability and Extensibility: The TENNISON
framework provides a rich API that allows operators to
define the behaviour of the network and its resources
in response to new and existing threats. To introduce
a new security function, the template sFlow/IPFIX/DPI
application can be modified and activated via the GUI.
To modify a threshold in an existing function e.g. DDoS
attack trigger threshold, the new threshold value is simply
added via the GUI. This will automatically be mapped to
the relevant TENNISON components.

• Transparency: TENNISON is transparent to other net-
work functions within the network. This is realised using
a custom security pipeline built using the OpenFlow
multi-table feature to provide the network monitoring and
remediation without interfering with the basic forwarding
functionality and additional services of the network.

• Availability and Resiliency: One of the key requirements
of a SDN security platform is the resilience of the
control plane to support high availability and provide
redundancy in the case of controller failure [39]. For this
reason, TENNISON has been designed to integrate with
a production-grade distributed controller, ONOS [36],
which supports high availability and fault tolerance. Even
in the case of a failure of a controller instance, the system
can still monitor and protect the network.

• Interoperability: Finally, TENNISON works in conjunc-
tion with de-facto industry-standard security tools, such
as Snort and Bro. The integration of Snort DPI with
TENNISON is demonstrated in Section V. Available DPI
instances are automatically detected by TENNISON.

IV. TENNISON SYSTEM ARCHITECTURE

In this section, we introduce the TENNISON system architec-
ture highlighting the individual components and features of the
design that realise the objectives of the framework described
in the previous section.

Fig. 1: TENNISON System Architecture

ONOSBro/Snort DPI

Alert
Generator

sFlowRT

IPFIX
Collector

Alert
Listener

sFlow
Collector

+ Instance…

IPFIX
Exporter

Flow
API

Flow
Control

Resource
Monitor

Northbound Interface

Security
App

Security
App

Security
App

Security
App

Application
 Layer

Collection
 Layer

Coordination
Layer

TENNISON
Coordinator

Input

Output

+ Instance

In Figure 1, we illustrate the overall system architecture.
The lower layers (Bro and Snort DPI, ONOS Controllers,
and sFlowRT) are the appliances and instances deployed
within the network, cumulatively referred to as the Collection
layer. These instances are fundamental to the operation of
TENNISON, in that they provide both control and monitoring
functionality to the higher layers.

In some cases, minor extensions have been made to the
Collection appliances to enable them to report and commu-
nicate with the TENNISON Coordinator, which forms the
Coordination layer of the architecture, and is responsible for
storing and aggregating all of the information generated by
these appliances. The interfaces between these appliances and
the Coordinator represent a flow of information, with the
interfaces providing input or output (see legend in Figure 1).
This illustrates that both the packet inspection tools and the
flow monitoring applications produce input while the ONOS
controller alone offers an output. This output enables the
coordinator to modify the forwarding plane of the network, via
the ONOS controller, and provide the functionality and pro-
grammability required for TENNISON to operate effectively.

The Coordinator is responsible for coordinating the overall
operation of the architecture, and acts as an intermediary
between the upper and lower layers; Application and Collec-
tion layers, respectively. The Coordinator is intentionally built
independent of any other component, and is completely tech-
nology agnostic. This allows interoperability with alternative
technologies and flexibility in terms of design and placement
in the network. The system is easily distributable (i.e. multiple
TENNISON instances), and, as such, is able to scale to the
size of network. The central role of the coordinator grants an
authoritative view of the network topology and its current state
with the ability to simultaneously modify both the network
and the monitoring services running within it. The final, and
uppermost layer, is the Application layer, which hosts security
applications. These applications interact with the coordinator
leveraging its functionality to realise custom and dynamic
security behaviours. This enables the creation of applications
tailored to specific threats, or integration with existing tools

deployed in a network.
The remainder of this section contains a detailed breakdown

of each of the system components.

A. TENNISON Coordinator

In this section we detail the subsystems within the Co-
ordinator that together provide the functionality to security
applications in the Application layer (see Figure 2).

1) Southbound Interface (SBI) Modules: The first SBI
module is the Flow Control interface, which is an output from
the Coordinator. The Coordinator uses this to control the flow
of traffic through a network, directing and shaping this towards
the various appliances under its control. Importantly, this is an
intent driven process; rather than defining a specific switch on
which a flow should be modified, the Coordinator describes
a high level intent, which is implemented by the network
controller based on its knowledge of the topology. Further
details of the network controller are provided in Section IV-C.

The remaining four SBI modules all provide inputs to the
Coordinator. The Alert Listener is a REST interface used to
collect messages generated from the various packet inspec-
tion appliances located in the network. An alert message is
generated by a DPI tool when a suspicious flow or packet
flows through the appliance. This alert is then passed from
the appliance to the coordinator via this interface module. A
similar process is followed for the IPFIX Collector, sFlow
Collector and Resource Monitor interfaces. In the case of the
IPFIX Collector, aggregate flow records are received from the
network controller. Similarly, the sFlow Collector provides
sampled flow record statistics when high volume monitoring
is used in the network. Finally, the Resource Monitor collects
resource usage information (e.g. cpu/memory/flow table oc-
cupancy) from the switches and controllers in the network.
Together, these interfaces provide a holistic view of the entire
network, including traffic levels, threat analysis and resource
utilisation. We note that in networks managed by an NFV
orchestrator, an additional SBI module would be required to
share identifiers (e.g. MAC addresses) of new vDPIs added to
the network.

IPFIX
Collector

Alert
Listener

sFlow
Collector

Flow
Control

Resource
Monitor

Northbound Interface

Data Broker Event
Logs

Policy
Engine

TENNISON
Coordinator

Intents
Alert REST IPFIX sFlowRT Syslog/SNMP

Fig. 2: TENNISON Coordinator Subsystems and SBI

2) Data Broker and Event Logger: Once a message is
received from an SBI module, its content is passed to the
Data Broker. This acts as an intermediary to determine the
destination of the message within the system; toward the
Policy Engine and/or the Event Logger. Importantly, the Data
Broker enables extensibility of the SBI by providing a generic
interface to which new collectors can connect. Furthermore,
the Data Broker queues messages, acting as a virtual buffer
between incoming messages and the policy engine.

The Event Logger is a long-term storage medium, realised
with a key-value store, that keeps each message in its entirety.
This database can then be searched by both the system and
external and entities- to retrieve historical information. It
provides persistent storage for the coordinator, enabling rapid
recovery in cases of failure or migration. The event logger can
also be configured to automatically expunge stored messages
after a fixed period. This allows the storage footprint to remain
consistent without the need for explicit maintenance.

3) Policy Engine: The Policy Engine contains the logic
through which new messages are processed (originating from
one of the input interfaces), historical trends are analysed
(via Event Logger) and resulting actions are taken (via Flow
Control). The policy engine has a permanent storage state to
record security policies and monitoring decisions. It is also
fully configurable by the security applications, to add, remove
or modify logic, as required. Examples of the implementation
of this policy engine are provided in Section IV-D.

4) Northbound Interface (NBI): The Northbound Interface
is key to enabling the programmability and extensibility in-
herent in TENNISON. As shown in Figure 3, the NBI enables
the security applications to both read the current network state
and to modify it according to custom internal logic, with the
ability for multiple applications to be used in parallel.

A security application connecting to the NBI first registers
with the controller by providing a unique ID and a set
of credentials. This enables the coordinator to identify the
application, and to authorise it with the appropriate permis-
sions. This includes permission to read the network topology,
and permission to interact with neighbouring applications,

Southbound Interface

TENNISON
Coordinator

Start or
Stop
apps

Query
apps

Query
messages
or alerts or
thresholds

Add or
update or

modify
thresholds

Register
and

configure
app

App IDApp ID &
credientalsAll apps

state
System

state
Threshold

Fig. 3: TENNISON Coordinator Northbound Interface

as required. The benefit of this interaction with the other
applications and access to the Coordinator policy information
is to remove potential conflicts between applications in terms
of network behaviour. From a system security perspective, this
capability is closely controlled by the application authorisation
in TENNISON to avoid information leakage that could expose
the network to malicious attack.

We note the work by the IETF Interface to Network Security
Functions (I2NSF) working group [5], which describes a
framework and reference model for the integration of net-
work security functions. RFC8329 [40] specifically highlights
the importance of authentication, authorisation and auditing
(AAA) of application functions and management of overlap-
ping security policy. While TENNISON is currently a single-
domain prototype implementation, the framework aligns with
the recommendations of I2NSF e.g. AAA, IPFIX support etc.
However, some extensions would be required to both the NBI
and the policy engine to integrate externally controlled NSFs.

As will be described in Section V, one of the services
provided by TENNISON is single-domain DDoS detection and
mitigation. IETF DOTS (DDoS Open Threat Signaling) [6]
proposes a protocol for a DOTS agent to alert a gateway to
the threat of a DDoS attack by advertising black or whitelisted
addresses. To provide an alert for neighbouring domains or to
enable interoperation with multiple DDoS mitigation vendors,
TENNISON could act as the DOTS client exporting an alert
via the NBI.

B. TENNISON Security Pipeline

A key benefit of TENNISON is the ability to provide net-
work monitoring and remediation without interfering with for-
warding functionality and additional services of the network.
This transparency is achieved with the TENNISON Security
pipeline, as shown in Figure 4. The pipeline manifests itself as
an ONOS driver, which prepends TENNISON’s security tables
to the other network application tables.

There were three primary reasons for designing a new
pipeline for TENNISON. Firstly, the switches need to be able to
store specific rules based on traffic that needs to be monitored,
secondly to be able to support existing forwarding applications
with TENNISON’s security application, and thirdly, to mirror
and tunnel duplicated traffic to DPIs using an overlay network.
Where tunneling is required in an SDN environment, it is
typically manually configured on the SDN switch using an

existing tunneling protocol, such as Generic Routing En-
capsulation (GRE). There are a number of other solutions
considered for SDN, including NSH [7] and Geneve [41].
However, these solutions focus on solving challenges such
as Service Function Chaining or are designed to be used
as a conventional tunnel without mirroring. For the purpose
of a system such as TENNISON where dynamic scaling of
functionality is required (i.e. allowing network functions to
be automatically added/removed within the network), none of
these solutions are suitable. As such, TENNISON implements
a simple ONOS application to create point-to-point tunnels.

TENNISON Switch Security Pipeline

Tunnel
Table

Table n

Default
IPFIX
Table

Table n+3

Default Forwarding
Application

Table n+m

Forwarding
Application

Table n+4
…

ForwardingDrop

OpenFlow
flow stats

TENNISON
pipeline

Forwarding
pipelineTunneled traffic

to DPI node

sFlow

Stripping
Table

Table n+!

Default
Remediation

Table

Table n+2

Default

Fig. 4: TENNISON Security Pipeline

A number of designs were considered for the security
pipeline during the development of TENNISON, alongside an
analysis of the level of conformance of current market SDN
switching equipment with OpenFlow 1.3 functionality. In order
to provide a practical solution capable of deployment with
available SDN devices, and because of limitations identified
with current SDN hardware switches relating to the number
of tables available, the match fields per table, and the actions
available per table, the TENNISON security pipeline assumes
only the base non-extended OpenFlow 1.3 requirements.

As shown in Figure 4, tables controlled by TENNISON
precede the regular forwarding functionality. This enables
transparent monitoring and actions to be implemented without
the requirement to modify the forwarding functionality.

TENNISON employs a security pipeline with a total of 4
flow tables:

• The Tunnel table is the first table in the overall pipeline
and acts as an overlay forwarding application that uses
VLANs to classify tunneled traffic. The primary purpose
of the table is to forward traffic to the nearest DPI service
on the network.

• The Stripping table is used to strip tunneling forwarding
logic from mirrored flows. Although not strictly required,
this table is maintained to support compatibility across all
OpenFlow 1.3 compliant hardware and software switches.

• The Remediation table contains the remediation intents.
After tunneling management, this table appears next in
the pipeline in order to optimise network performance by
blocking/dropping traffic identified as malicious before it
absorbs further processing resources.

• The IPFIX table contains the monitoring intents. This
table is last in the security pipeline and may pass mon-
itored traffic either to the DPI table for further analysis
or directly on to the forwarding pipeline.

C. Network Controller

TENNISON relies on a network controller to operate ef-
fectively. Using SDN technology, this controller should be
capable of viewing and modifying the underlying physical or
virtual network paths, and support traffic steering or manipula-
tion. TENNISON does not require a specific SDN technology.
For the purpose of this work, we use ONOS [36].

1) Controller distribution: Designed by ON.Lab, Open
Network Operating System (ONOS) was launched in 2014 as a
SDN network operating system for service provider networks
with a focus on high availability, scalability and performance.
ONOS implements distributed control with multiple controller
instances forming a cluster, which is a process by which one
or more controllers are connected and data about the state of
the network is shared between them. This ensures that in the
event of one controller failing, the other remaining controllers
in the cluster maintain the network. It also supports scale-out
of the system; making it possible to manage networks with
100s of networking devices and 1000s of hosts.

The ONOS cluster instances synchronise to provide the
global network graph using the Raft [42] consensus algorithm.
The StorageService interface ensures a consistent state of
the databases across all instances of an ONOS cluster. Each
network element is assigned a master ONOS instance and the
remaining instances will be standby for that network element.
If the master instance fails, an election takes place between
the remaining instances to elect a new master. It is possible to
balance the masters to provide an even distribution of network
elements to each member of the cluster.

For TENNISON, distributed ONOS provides a scalable and
fault-tolerant substrate. TENNISON also leverages the ONOS
default forwarding and routing applications.

2) Security Intents: As described in Section IV-A1, the
Coordinator generates topology-agnostic intents, which are
implemented by the network controller to alter the network
behaviour. Several modifications have been made to ONOS to
support integration with TENNISON, creating a more generic
intent API. These modifications are present as an ONOS
application and are represented as the Flow API in Figure 1.
The ONOS application is registered with the highest priority
in the ONOS event processing pipeline to support the flow
illustrated in Figure 4. The provided intents are as follows:

Monitoring intent: A monitoring intent instructs the
controller to monitor a specific flow. Based on this intent,
the ONOS controller will insert flow rules into switches that
the flow traverses. OpenFlow statistics for this flow are then
aggregated and converted into IPFIX data, which is passed to
the TENNISON Coordinator via the IPFIX Collector.

Redirection intent: A redirection intent instructs the
controller to redirect a specific flow (defined by a tuple)
towards a specific type of appliance. For example, it may
instruct the controller to redirect all TCP traffic traversing
port 80 towards the nearest Snort DPI instance. This redirect
modifies the complete flow, tunneling it to a new destination,
and stops any packets of the flow from traversing the normal
forwarding path within the network. Based on the security
pipeline logic, the redirection intent is written to the first table
of the TENNISON pipeline.

Mirror intent: The mirror intent has similar functionality
to that of redirection. However, there is a significant difference
in that the original flow remains in the network. As such, the
traffic is copied in the first instance, with the duplicate flow
tunneled towards a new destination (e.g. DPI appliance), whilst
the original packets are forwarded as normal.

Remediation intent: A remediation intent is the final
step of a security application used by TENNISON, and enables
the coordinator to make a definitive action with regard to
an identified and detected threat. This includes completely
blocking a flow in the network, or rate limiting a flow to
control its behaviour. As previously noted, this intent is written
to the third table in the TENNISON pipeline.

D. TENNISON Multi-level Monitoring

TENNISON operates a tiered system of monitoring to pro-
vide scalable and transparent network security. The multiple
levels of monitoring are illustrated in Figure 5, with light-
weight monitoring for a high volume of flows at L1 and L2
leading to detailed monitoring for a reduced flow count at L3.

Payload
inspection

Continuous header
data and fine-grained

 sampled payload

Header data and coarse-grained sampled payload
+

Legacy network support

M
onitoring detail

M
on

ito
rin

g
ca

pa
cit

y DPI

PreFIX & sFlow

IPFIX & sFlow

L1

L2

L3

Fig. 5: TENNISON multi-level monitoring

“PreFIX” identified in Figure 5 is part of L1 and, by default,
provides the header information for the first packet in the flow
for every flow. At both L1 and L2, sFlow provides latent,
always-on sampled monitoring. Furthermore, as sFlow can be
configured on non-SDN switches, it provides TENNISON with
visibility of legacy networks. sFlow captures flow information
based on sampling. The sFlow agent in the network element
is configured to export sFlow records to sFlow-RT, which then
reports alerts to the TENNISON Coordinator for remediation
and to support multi-stage attack detection. The sampling rate,
polling rate, and packet header length are configurable and
can be dynamically updated based on the network state and
immediate monitoring requirements.

In addition, at L2, IPFIX data input to TENNISON based on
defined OF monitoring intents provides a more fine-grained
and continuous monitoring capability suitable for detection of
attacks that can evade a sampling-based monitoring approach.

Finally, L3 represents TENNISON’s capability to forward
suspicious traffic towards DPIs for classification. This lever-
ages TENNISON tunneling, which provides the means to for-
ward and mirror specific traffic from any host on the network

to any destination without modifying the packet. This is a
further example of the system scalability. As the network
increases in size and DPI processing throughput reduces,
additional DPI instances and tunnels can be instantiated on-
the-fly ensuring optimal network protection. This also has
the advantage that it is invisible to reconnaissance from an
attacker; with traffic being mirrored and not redirected, no
latency is added to the forwarding plane.

1) Implementing Multi-level Monitoring: There are two key
factors in the implementation of multi-level monitoring in
TENNISON. The first is the TENNISON policy engine, which
enables the network operator to define and specify monitoring
and security detection and protection mechanisms in accor-
dance with the network deployment environment. Figure 6
provides a visualisation of the policy engine in the form of
a match action table. This table is “hit” when a new event
enters the coordinator; an event could be generated from a
variety of sources including DPI, sFlow-RT, IPFIX, PreFIX,
or a custom event from a northbound application. The three
columns in Figure 6 represent the following: Matches, which
consist of packet headers or alert types; Conditions, which
verify if an event violates a threshold; and Treatments, which
manipulate or upgrade the level of monitoring for specified
traffic. For example, policy #2 can be read as follows: given
a DPI alert on a specified MAC src address, that flow will be
blocked. Similarly, for policy #4, given an sFlow RT alert for
an identified IP src address, and with the threshold specified
by policy #1 exceeded, that flow will be rate limited.

IP SRC > BandwidthPort Redirect#1

#2

#3

#4

#5

DPI Alert MAC SRC Block

&& Policy #1sFlow-RT Alert IP SRC Rate Limit

+

+

+

MAC SRC Tier 2 monitoring

Tier 3 monitoringIP SRC

Proactive Reactive Treatment Condition Match

Match Condition(s) Treatment(s)

Fig. 6: TENNISON Policy Engine illustration

The second key element is the resource monitor, which
provides three specific functions based on the resource usage
information; (1) The optimal placement of the monitoring rule
(i.e. on which switch(es) along the traffic path to place the rule)
is determined with the objective of maximising network pro-
tection while maintaining network performance (i.e. avoiding
potential switch flow table overflow and controller processing
overload). (2) In the case that a switch/controller pair is ap-
proaching a resource limit, the management of the switch will
be transferred to another controller. This enables more efficient
network operation and accelerates detection/protection times in
the case of attacks due to reduced latency on the data-control
communication path. (3) In a high-traffic volume scenario, the
resource usage information is used to dynamically adjust the
monitoring level (simultaneously reducing IPFIX monitoring

and increasing sFlow sample-based monitoring to actively
manage the network resources). While introducing a marginal
increase in attack detection time, this multi-level monitoring
design enables continued network operation under high load.

V. TENNISON EVALUATION

This Section provides a comprehensive evaluation of TEN-
NISON. We outline our test environment, evaluate the scala-
bility properties of a distributed SDN Controller, analyse the
performance of TENNISON in the context of four attack sce-
narios, and assess the scalability of TENNISON components.

A. Evaluation Environment

To evaluate TENNISON, we use a topology with 350 nodes
connected to 19 partially connected switches, representative
of a large size business network [43] with access, distribu-
tion and core networking layers. This topology was realised
using Mininet [44]. Mininet is a network experimentation
tool that enables evaluation, validation and measurement of
SDN applications. In order to create the network topology,
Mininet instantiates Linux namespaces, which logically creates
multiple hosts and switches (such as Open vSwitch (OvS)).
The testbed runs on a general-purpose server with 256GB
RAM, and two Intel Xeon E5-2697v4s totalling 32 cores.
The server runs Ubuntu 16.04.3 and resources were shared
between Mininet (Hosts, OvS), the SDN Controllers (ONOS
v.1.11) and TENNISON. In order to test performance at scale,
we use the controller benchmarking tool cbench [45], which
can emulate the control plane of thousands of SDN switches.

B. Distributed SDN Controller Performance

Prior to testing the performance of TENNISON, two ex-
periments were carried out using cbench to understand the
scalability properties and potential overheads associated with
running a distributed SDN controller; ONOS.
1. Controller maximum packet-in processing throughput.
This was achieved by sending packet-ins originating from
16 emulated switches, and counting the number of response
packet-outs from the controller. This experiment was repeated
70 times. The responses per second for an increasing number
of controller instances are shown in Figure 7. From this, it
can be determined that the performance of ONOS increases
logarithmically to the cluster size.
2. Impact of increasing number of switches on ONOS
cluster size. For this test, 1000 packet-ins per second are
generated per switch, and the delay in their response is
measured and averaged. The results in Figure 8 illustrate
the latency with both an increasing number of switches and
an increasing number of controller instances. These results
highlight the trade-off between cluster size and volume of
switches controlled by the cluster. For a network of up to
32 switches, a single controller instance provides the optimal
response time. The reduction in latency is only achieved with
additional controller instances for larger network sizes.

The results presented in Figures 7 and 8 provide a bench-
mark of the performance of the distributed controller and the

1 2 3 4 5
Controller cluster size

0

2

4

6

8

10

12

14

16

18

R
es

po
ns

es
 p

er
 s

ec
on

d

105

Fig. 7: ONOS Controller Performance (Responses/s)

0

20

40

60

80

100

120

140

160

1 2 3 4 5

La
te

nc
y (

m
s)

16 32 64 128Switches:

Controller cluster size

Fig. 8: ONOS Controller Performance (Latency)

relationship between network size and distributed control. We
further explore the impact of multiple controller instances on
detection and remediation time in an enterprise environment
in Section V-E.

C. Attack Detection and Remediation

TENNISON is designed to support the detection and reme-
diation of a variety of attack types. In order to demonstrate
TENNISON’s multi-level monitoring capability, four attack
scenarios are used to exercise different components of the
system. TENNISON’s detection capability goes beyond these
four attack scenarios (summarsised in Table II), but they serve
to illustrate the system operation.

The performance of TENNISON against these attack scenar-
ios is measured by the length of time it takes to detect and
subsequently protect against each attack. Figure 9 shows the
breakdown of the attack remediation with each attack (DoS,
DDoS, scanning and intrusion) stressing different parts of the
system. In the figures, “Monitor rule” refers to the time to
install the appropriate monitoring, “App detection” refers to
the TENNISON northbound application attack detection time,
“Mirror rule” refers to the time to install the mirroring rule,
“Alert” refers to the time for Snort/sFlowRT to detect the
attack and generate an alert, and “Block rule” refers to the
time to install the block rule in the relevant network elements.

TABLE II: Summary of Attack Detection/Protection Mechanisms

Attack Type Attack Identification Fields of Interest Detection Method Protection Method

DoS Volume of traffic flows targeting a single host
exceeds a defined threshold IP Source and Destination Level 1 (sFlow) Block/Drop

DDoS A volume of traffic flows from multiple source IPs
targeting a single host exceeds a defined threshold IP Source and Destination Level 2 (IPFIX) &

Level 3 (DPI) Block/Drop

Scanning Increase in Attacker, Host A, ratio to target
addresses IP Source and Destination & Port Level 2 (IPFIX) Block/Drop

Intrusion
Attacker tries to log in to an FTP server with a

username containing the predefined control
sequence

Port & Username Field Level 3 (DPI) Block attacker and
FTP Server

Note that the time to detect an attack can include the attack
execution time e.g. x packets within y seconds includes ≤ y
in the measurement. This will be discussed per scenario, as
appropriate. During each experiment, the nodes performing
attacks as well as the emulation environment are under stress,
which can produce slightly varied results on each iteration.
This variation is exacerbated on attacks that are more resource
intensive. For this reason, the test is reproduced 10 times for
each attack type (40 experiments in total) and the results
averaged. The range of variability in remediation time is
illustrated by the error bars in Figure 9.

0 2 4 6 8 10 12 14
Time (seconds)

DDoS

DoS

Scanning

Intrusion

Se
cu

rit
y

fu
nc

tio
ns

Monitor rule
App detection
Mirror rule
Alert
Block rule

Fig. 9: Attack Remediation Latency - Single Controller

1) DDoS: For this attack, a single host is flooded with TCP
SYN requests from multiple source IP addresses. The attack
is executed using Hping3 with the following configuration:
small packet size, SYN flag, random source, and fast sending
rate. The method of detection for a DDoS attack is reactive
as the number of host connections has to be tracked and the
traffic then has to be forwarded to a DPI for confirmation.
The attack is first detected when a volume of unique flows
targeting a single host exceeds a configurable threshold within
TENNISON’s IPFIX DDoS application. For this experiment,
the threshold was set to 70 connections from multiple sources
to a single destination within 10 seconds. Note that it takes
the attacker at least 2.5 s to send sufficient packets to exceed
the set threshold defined in both Snort and TENNISON. The
traffic is mirrored to Snort where the attack is confirmed via
the Snort rule. An alert is sent to the coordinator, which in
turn instructs ONOS to block traffic for that destination node.

As shown in Figure 9, the DDoS attack detection time is
the longest of all those measured. This is a consequence of the
application logic and the time to complete the attack. However,

0 5 10 15
Time given to detect attack (seconds)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ac
cu

ra
cy

Accuracy over detection time

Fig. 10: Accuracy of DDoS Detection and Remediation

this combined detection approach ensures a high detection
accuracy (low false positive rate), as illustrated in Figure 10.

The accuracy of the IPFIX DDoS application was measured
with respect to the configured Snort DDoS SYN Flood de-
tection threshold. It takes a number of parameters including
packet count, which affect the time to detect an attack and
the False Positive Rate (FPR). The accuracy measurement is
based on Equation 1.

Accuracy =
TP + FP

TP + FP + TN + FN
(1)

The results in Figure 10 show that for a detection time
between 0 and 1.7 s, the accuracy is low due to a high FPR.
However, increasing the Snort detection time, increases the
accuracy. Of course, this also increases the overall attack
remediation time. Once the detection time is increased beyond
10 s, the accuracy drops sharply. This is due to a high True
Negative Rate (TNR), which occurs because the threshold is
now too high to detect the DDoS SYN Flood attack. Due
to this trade-off, we conclude that a Snort threshold detection
time of 2 s will provide an optimum remediation time and high
accuracy. Analysis of the error bars in Figure 9 highlights a
significant variance of the DDoS attack when compared to the
other attacks. This fluctuation in results between experiment
iterations is due to the host-intensive nature of the attack,
which causes the attacker to fluctuate the number of packets
per second being sent, thus changing the time until thresholds
are met within the system. TENNISON’s detection accuracy is
comparable to results shown in Athena, which under similar
conditions show a +0.99 accuracy [30].

2) Scanning: For this attack, with Nmap, a single host
scans 200 ports on another host on the network. The method
of detection for a port scan is reactive as the number of
ports has to be tracked. The TENNISON northbound port scan
application tracks the number of ports accessed across all hosts
on the network. Once the number of ports between two hosts
exceeds the configured threshold within the defined period,
the source of the attack is blocked. Similar to the TENNISON
IPFIX DDoS application, the majority of detection time is
absorbed by the gradually increasing suspicion within the
application logic to determine whether or not the traffic is
malicious. The results for the port scan are also in Figure 9.

3) Intrusion: For this exploit a backdoored version (2.3.4)
of VSFTPD was used. The detection method for this exploit is
proactive as the required thresholds to detect the attack are pre-
installed within TENNISON; a threshold to mirror FTP traffic
and a threshold to define the response to the Snort alert. The
FTP server is exploited by connecting over a network and
using ‘:)’ as the username upon login. This opens a network
interface on port 6500 which provides direct shell access to the
servers’ host. Then as the attacker logs in, traffic is redirected
to Snort which analyses the payload, scanning for ‘:)’ as the
username. Once detected, an alert is sent to TENNISON, which
in turn blocks the attacker.

Figure 9 shows that this attack is the quickest to detect.
This is due to the proactive nature of the detection method
with pre-installed thresholds. Furthermore, only one packet is
required to detect this attack (the login packet) whereas the
other attacks are detected over time following observation of
multiple packets. The results from this attack are indicative of
the general performance of the TENNISON framework as the
attack exercises the complete security pipeline (i.e. monitoring,
redirecting, and blocking) but without the variance included by
the DDoS/Port Scan applications, which are dependent on the
specific threshold configuration.

4) High-volume DoS: For this attack, a single host is
flooded with TCP-SYN requests. The attack is executed using
Hping3. An sFlowRT DoS application is configured with a
threshold to detect network traffic towards any host exceeding
20,000 packets/s. The sFlow sample rate is set to 1:500. Once
the threshold is exceeded, an alert is sent to the coordinator.
The coordinator then sends a block intent to ONOS for the
flow that exceeded the threshold. In this case, detection time
is primarily dependent on the sFlow sampling rate configured
in the network elements and the processing speed of sFlowRT.
We note that sFlow monitoring is specifically selected for
defence against the volumetric attack in order to protect the
infrastructure from the increased load due to monitoring the
volumetric attack. This is further highlighted in Section V-E.

D. System Usability
TENNISON has various aspects that attribute to its ease of

use. Table III shows the comparison of lines of code (LoC) for
each attack detection application (including imports) between
TENNISON and Athena [30]. It is not possible to provide the
comparison with other similar security frameworks [23], [24],
[29], [35] as either their source code is not openly available
or they do not support user applications.

TABLE III: User Application LoC Comparison

System DDoS DoS Intrusion Scan
TENNISON 107 304 0 135
Athena 1946 [46] - - -

As shown in similar work [23], [30], [47], LoC can be
loosely attributed to the development learning curve of a
system. The comparison in Table III shows that the application
creation and integration with TENNISON is relatively easy.
This is due to TENNISON’s rich RESTful northbound API,
which enables users to easily and succinctly create applications
without directly tying to the complexity of the larger system.

E. System Scalability

This section describes TENNISON monitoring scalability.
In order to show that TENNISON will operate in a variety
of network sizes and topologies, this section also analyses
multiple components of the system and compares the results
with statistics from real network traces.

1) Multi-Level Monitoring: The limitations of reactive
based SDN applications under extreme traffic volumes i.e.
heavy controller communication/processing workload are
highlighted in [48], [49]. To combat this, TENNISON imple-
ments multi-level monitoring, as described in Section IV-D.

A specific optimisation is also applied to protect the network
controller against the effects of a traffic flooding scenarios,
such as those caused by DDoS attacks. This was introduced
in response to an issue identified with ONOS in which the con-
trollers would experience high CPU and memory use, losing
communication with the switches and eventually leading to
the collapse of the network. The solution makes use of the
TENNISON resource monitor and introduces a thresholding
mechanism to scale back the volume of monitoring traffic,
when appropriate, to prevent the controller and control plane
from becoming overwhelmed by traffic. Although ONOS is
designed to transfer control to a back-up controller in case
of failure, in reality the transfer takes place too late. Our
TENNISON solution pre-emptively maintains network control.

The polling rate is adjusted based on three thresholds:
Threshold A: Once the network traffic reaches threshold
A, the TENNISON resource monitor triggers TENNISON to
increase the IPFIX polling interval to from 1 s to 5 s. This
reduces processing on the controller which aids in perfor-
mance. Threshold B: On breach of the second threshold,
the polling interval is increased to 10 s. Threshold C: Once
the third threshold is exceeded, TENNISON disables the IPFIX
polling and increases the sFlow sampling rate. In this situation,
TENNISON relies solely on sFlow for network monitoring.

For each threshold, the default timeout is 20 s i.e. after 20 s,
TENNISON resets the IPFIX polling interval back to the default
(in the case of thresholds A & B) or to re-enable IPFIX polling
(in the case of threshold C). The impact of the increased
polling interval on DDoS attack detection/protection latency
is illustrated in Table IV. The results are averaged across a
series of 5 tests with thresholds A, B, and C set to 1 Kpps,
5 Kpps, and 20 Kpps, respectively.

TABLE IV: Impact of polling rate adjustment on DDoS attack
detection/protection latency

IPFIX
Polling Rate

Protection
Time

Protection Time
Increment

1 s 7.865 s -
5 s 8.585 s +9.154%
10 s 8.500 s -0.990%

As shown in Table IV, there is a small increment in
DDoS protection time based on the increased polling interval.
However, the benefit of the adaptive polling interval is to
enable continuous attack detection even in a situation of high
traffic processing load at the controller. It should be noted that
these results have been produced with a multiple controller (3
ONOS instances) test environment.

2) Distributed Control Cost: As previously highlighted, in
order to scale to larger networks, an increased number of
SDN controllers will be necessary to manage the additional
networking devices and requests from the network. As network
state information is shared between all of the ONOS controller
instances, this may ultimately lead to an increase in the
TENNISON detection and remediation times. To determine the
potential impact of multiple controller instances, additional
experiments were carried out to measure the time to remediate
a DDoS attack (as per the test set-up described in Section
V-C1) in distributed cluster configurations of varying sizes.

Figure 11 shows the impact (additional delay) of adding
ONOS controller instances to the cluster. The results show
that after the second instance is added, the time to detect
and remediate gradually increases with new instances. Note
that this increase in the remediation time is not attributed
to the design of TENNISON but is a result of the distributed
ONOS implementation (based on state synchronisation). Cur-
rent research in this area is exploring the optimum design for
distributed controllers [50].

2 3 4 5
Controller instances

0

0.5

1

1.5

2

2.5

3

3.5

Ti
m

e
(s

ec
on

ds
)

Fig. 11: DDoS Attack Remediation Latency

3) Monitoring Performance Analysis: As described in Sec-
tion IV, the policy engine in TENNISON stores the thresholds
against which the security applications detect an event/attack.
The size of this threshold table and the matching algorithm for
event detection is a potential source of delay in the system.

Figure 12a shows the time that it takes to process an incoming
flow against the threshold table within the policy engine for an
increasing volume of policies (thresholds). The results indicate
that the incurred delay is relatively minor e.g. 500 ms to test
a threshold when the policy engine contains 100K thresholds,
with the delay increasing approximately linearly.

Figure 12b identifies the time it takes to install a set
of monitoring rules. This measurement indirectly shows the
maximum capacity of new flows that can be monitored per
second. Importantly, this does not describe the ability of the
system to manage throughput, but merely shows that this is
the maximum number of new flows that could be monitored
per second. The results show that TENNISON can handle up
to 10K new flows in burst and 8K continuously. For flows that
have already been observed with monitoring setup, TENNISON
will process packets at line rate as per the capabilities of the
networking hardware with which TENNISON is deployed.

Figure 12c shows the cost of RAM per flow based on actual
system readings during the DDoS attack. The memory usage
per flow was calculated from the overall system’s baseline
memory usage and the measured memory usage at different
traffic loads. On average, each flow monitored consumes
around 64 KB of RAM. This means that with 6 GB of RAM,
the system can keep track of 100,000 flows.

4) Summary and discussion of TENNISON’s scalability:
TENNISON uses both distribution and adaptive escalation tech-
niques to achieve scale whilst maintaining detailed monitoring
capability. Based on the results in Figure 12, it is evident that
TENNISON can scale to a range of network environments and
use cases. For example, one of Facebook’s datacenters man-
ages 500 flows per second [51], and in [52], the authors discuss
10 different datacenters that individually support between 20
to 5000 active flows. In these examples, even in the worst case
of all active flows starting simultaneously, TENNISON can still
monitor each flow without added congestion or packet drops,
and using less then 300 MB of RAM.

In cases where the network size exceeds ONOS’s maximum
switch capacity [53], multiple SDN controller clusters should
be deployed into various islands, separating the load of any
controller cluster to its respective domain(s). The results in
Figures 7, 8 and 11, show the impact of multiple controllers
on systems such as TENNISON. Whilst adding more controllers
increases monitoring capacity, traffic capacity, and resiliency,
it also adds a relatively small delay to remediation time due to
the additional delays associated with a distributed system. In
order to fulfil uptime requirements, the system should always
be deployed with more than one controller. However, the trade-
off in remediation time, as illustrated in Figure 11, should be
taken into consideration.

VI. CONCLUSIONS AND FUTURE WORK

This paper has presented TENNISON, a multi-level dis-
tributed monitoring and remediation framework for SDNs.
With a unique security pipeline, TENNISON offers lightweight
visibility across a large number of flows. The distributed
implementation is supported by multiple control instances, tun-
neling for efficient attack detection and remediation, and multi-
level monitoring. The evaluation illustrates the low latency de-

0 0.2 0.4 0.6 0.8 1 1.2 1.4
Time (seconds)

0

1

2

3

4

5

6

7

Po
lic

y
en

tri
es

105

(a) Policy Engine Performance

0 0.5 1 1.5

2000

4000

6000

8000

10000

Monitor setup time (seconds)

Fl
ow

s

(b) Monitor Setup Time

0

100

200

300

400

500

600

2000 4000 6000 8000 10000

RA
M

 (
M

B)

No. of monitored flows

(c) RAM Usage

Fig. 12: TENNISON Scalability Results

tection and protection capability and the potential for scalable
monitoring in large networks. The current implementation sup-
ports optimisation of network monitoring and protection based
on appropriate controller/switch assignment and optimal mon-
itoring rule placement. Future work includes automation of the
scaling process, including provisioning additional controllers
to meet increased network load. In addition, the potential for
scaling at different layers within the TENNISON architecture
will be investigated. For example, introducing distribution
at the coordination layer creates additional requirements in
terms of consistency, which must be appropriately handled to
provide continued coverage and visibility. Finally, as P4 and
the concept of SDN matures, new attack definition methods
could be introduced to TENNISON along with the potential to
further optimise the TENNISON security pipeline.

ACKNOWLEDGEMENTS

The authors are grateful to the UK Engineering and Physical
Sciences Research Council (EPSRC) for funding the TOU-
CAN (EP/L020009/1) and NG-CDI (EP/R004935/1) projects,
which supported the work presented in this paper, and are
grateful to Lancaster University for funding Lyndon Fawcett’s
PhD studentship in association with TOUCAN.

REFERENCES

[1] “Dyn DDoS Mitigation,” https://dyn.com/ddos/.
[2] “DDoS on Dyn Impacts Twitter, Spotify, Reddit and other

social media services,” https://krebsonsecurity.com/2016/10/
ddos-on-dyn-impacts-twitter-spotify-reddit/.

[3] “OpenFlow Switch Specification Version 1.5.1,” Open Networking
Foundation. [Online]. Available: https://www.opennetworking.org/
sdn-resources/technical-library

[4] S. Scott-Hayward, S. Natarajan, and S. Sezer, “A survey of security in
software defined networks,” IEEE Communications Surveys & Tutorials,
vol. 18, no. 1, pp. 623–654, 2016.

[5] IETF I2NSF (Interface to Network Security Functions). [Online].
Available: https://datatracker.ietf.org/wg/i2nsf/documents/

[6] IETF DOTS (DDoS Open Threat Signaling). [Online]. Available:
https://datatracker.ietf.org/wg/dots/documents/

[7] P. Quinn, U. Elzur, and C. Pignataro, “Network service header (nsh),”
Tech. Rep., 2018.

[8] K. Giotis, C. Argyropoulos, G. Androulidakis, D. Kalogeras, and
V. Maglaris, “Combining OpenFlow and sFlow for an effective and
scalable anomaly detection and mitigation mechanism on SDN envi-
ronments,” Computer Networks, vol. 62, pp. 122–136, 2014.

[9] A. Zaalouk, R. Khondoker, R. Marx, and K. Bayarou, “Orchsec: An
orchestrator-based architecture for enhancing network-security using
network monitoring and sdn control functions,” in Network Operations
and Management Symposium (NOMS), 2014 IEEE. IEEE, 2014, pp.
1–9.

[10] C. Yu, C. Lumezanu, Y. Zhang, V. Singh, G. Jiang, and H. V. Mad-
hyastha, “Flowsense: Monitoring network utilization with zero measure-
ment cost,” in International Conference on Passive and Active Network
Measurement. Springer, 2013, pp. 31–41.

[11] N. L. Van Adrichem, C. Doerr, and F. A. Kuipers, “Opennetmon:
Network monitoring in openflow software-defined networks,” in Network
Operations and Management Symposium (NOMS), 2014 IEEE. IEEE,
2014, pp. 1–8.

[12] A. Tootoonchian, M. Ghobadi, and Y. Ganjali, “OpenTM: traffic matrix
estimator for OpenFlow networks,” in International Conference on
Passive and Active Network Measurement. Springer, 2010, pp. 201–
210.

[13] S. R. Chowdhury, M. F. Bari, R. Ahmed, and R. Boutaba, “Payless: A
low cost network monitoring framework for software defined networks,”
in Network Operations and Management Symposium (NOMS), 2014
IEEE. IEEE, 2014, pp. 1–9.

[14] Z. Su, T. Wang, Y. Xia, and M. Hamdi, “Flowcover: Low-cost flow
monitoring scheme in software defined networks,” in Global Commu-
nications Conference (GLOBECOM), 2014 IEEE. IEEE, 2014, pp.
1956–1961.

[15] C. Liu, A. Malboubi, and C.-N. Chuah, “Openmeasure: Adaptive flow
measurement & inference with online learning in sdn,” in Computer
Communications Workshops (INFOCOM WKSHPS), 2016 IEEE Con-
ference on. IEEE, 2016, pp. 47–52.

[16] Y. Taniguchi, H. Tsutsumi, N. Iguchi, and K. Watanabe, “Design and
evaluation of a proxy-based monitoring system for openflow networks,”
The Scientific World Journal, vol. 2016, 2016.

[17] “OpenTAM Traffic Analysis and Monitoring.” [Online].
Available: https://wiki.onosproject.org/display/ONOS/OPEN-TAM%
3A+Traffic+Analysis+and+Monitoring

[18] Y. Li, R. Miao, C. Kim, and M. Yu, “FlowRadar: A Better NetFlow for
Data Centers,” in NSDI, 2016, pp. 311–324.

[19] X. T. Phan and K. Fukuda, “Sdn-mon: Fine-grained traffic monitoring
framework in software-defined networks,” Journal of Information Pro-
cessing, vol. 25, pp. 182–190, 2017.

[20] A. Wang, Y. Guo, F. Hao, T. Lakshman, and S. Chen, “Umon: Flexible
and fine grained traffic monitoring in open vswitch,” in Proceedings of
the 11th ACM Conference on Emerging Networking Experiments and
Technologies. ACM, 2015, p. 15.

[21] P.-W. Tsai, C.-W. Tsai, C.-W. Hsu, and C.-S. Yang, “Network Monitor-
ing in Software-Defined Networking: A Review,” IEEE Systems Journal,
2018.

[22] M. Casado, T. Garfinkel, A. Akella, M. J. Freedman, D. Boneh,
N. McKeown, and S. Shenker, “Sane: A protection architecture for
enterprise networks.” in USENIX Security Symposium, vol. 49, 2006,
p. 50.

[23] S. Shin, P. A. Porras, V. Yegneswaran, M. W. Fong, G. Gu, and
M. Tyson, “Fresco: Modular composable security services for software-
defined networks.” in NDSS, 2013.

[24] X.-F. Chen and S.-Z. Yu, “CIPA: A collaborative intrusion prevention ar-
chitecture for programmable network and SDN,” Computers & Security,
vol. 58, pp. 1–19, 2016.

[25] T. Gamer, “Collaborative anomaly-based detection of large-scale internet
attacks,” Computer Networks, vol. 56, no. 1, pp. 169–185, 2012.

[26] T. Ha, S. Yoon, A. C. Risdianto, J. Kim, and H. Lim, “Suspicious
Flow Forwarding for Multiple Intrusion Detection Systems on Software-
Defined Networks,” IEEE Network, vol. 30, no. 6, pp. 22–27, 2016.

[27] T. Ha, S. Kim, N. An, J. Narantuya, C. Jeong, J. Kim, and H. Lim,

“Suspicious traffic sampling for intrusion detection in software-defined
networks,” Computer Networks, vol. 109, pp. 172–182, 2016.

[28] T. Koulouris, M. Casassa Mont, and S. Arnell, “SDN4S: Software
Defined Networking for Security,” https://www.hpl.external.hp.com/
techreports/2017/HPE-2017-07.pdf, Hewlett Packard Labs, 2017.

[29] T. Yu, S. K. Fayaz, M. Collins, V. Sekar, and S. Seshan, “Psi: Precise
security instrumentation for enterprise networks,” in Proc. NDSS, 2017.

[30] S. Lee, J. Kim, S. Shin, P. Porras, and V. Yegneswaran, “Athena:
A framework for scalable anomaly detection in software-defined net-
works,” in 2017 47th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN). IEEE, 2017, pp. 249–260.

[31] “TENNISON,” https://github.com/SDN-Security/TENNISON/, 2018.
[32] J. Sonchack, J. M. Smith, A. J. Aviv, and E. Keller, “Enabling practical

software-defined networking security applications with ofx.” in NDSS,
vol. 16, 2016, pp. 1–15.

[33] S. Hassas Yeganeh and Y. Ganjali, “Kandoo: a framework for efficient
and scalable offloading of control applications,” in Proceedings of the
first workshop on Hot topics in software defined networks. ACM, 2012,
pp. 19–24.

[34] A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and R. Kompella,
“Towards an elastic distributed sdn controller,” in ACM SIGCOMM
Computer Communication Review, vol. 43, no. 4. ACM, 2013, pp.
7–12.

[35] Y. Chang, A. Rezaei, B. Vamanan, J. Hasan, S. Rao, and T. Vijayku-
mar, “Hydra: Leveraging functional slicing for efficient distributed sdn
controllers,” arXiv preprint arXiv:1609.07192, 2016.

[36] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, W. Snow et al., “Onos: towards
an open, distributed sdn os,” in Proceedings of the third workshop on
Hot topics in software defined networking. ACM, 2014, pp. 1–6.

[37] “ONOS Topology scaling results,” https://wiki.onosproject.org/display/
ONOS/1.11-Performance+and+Scale-out.

[38] S. Shin, V. Yegneswaran, P. Porras, and G. Gu, “Avant-guard: Scalable
and vigilant switch flow management in software-defined networks,”
in Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security. ACM, 2013, pp. 413–424.

[39] S. Scott-Hayward, “Design and deployment of secure, robust, and
resilient sdn controllers,” in Network Softwarization (NetSoft), 2015 1st
IEEE Conference on. IEEE, 2015, pp. 1–5.

[40] D. Lopez, E. Lopez, L. Dunbar, J. Strassner, and R. Kumar, “Framework
for interface to network security functions,” Tech. Rep., 2018.

[41] J. Gross, T. Sridhar, P. Garg, C. Wright, I. Ganga, P. Agarwal, K. Duda,
D. Dutt, and J. Hudson, “Geneve: Generic network virtualization encap-
sulation,” IETF draft, 2014.

[42] J. Halterman and J. Halterman, “Atomix: RAFT based Fault-
tolerant distributed coordination framework.” [Online]. Available:
http://atomix.io/atomix/docs/

[43] C. N. Academy, Connecting Networks Companion Guide. Pearson
Education, 2014, ch. 1.1.1 Enterprise Network Campus Design.

[44] “Mininet,” http://mininet.org.
[45] R. Sherwood and Y. KOK-KIONG, “Cbench: an openflow controller

benchmark tool,” 2010.
[46] “Athena DDoS user application,” https://github.com/shlee89/athena/

blob/master/athena-tester/src/main/java/athena/user/application/Main.
java.

[47] S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and J. C. Mogul,
“Enforcing network-wide policies in the presence of dynamic middlebox
actions using flowtags.” in NSDI, vol. 14, 2014, pp. 543–546.

[48] A. Bianco, P. Giaccone, R. Mashayekhi, M. Ullio, and V. Vercellone,
“Scalability of onos reactive forwarding applications in isp networks,”
Computer Communications, vol. 102, pp. 130–138, 2017.

[49] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and
S. Banerjee, “Devoflow: scaling flow management for high-performance
networks,” in ACM SIGCOMM Computer Communication Review,
vol. 41, no. 4. ACM, 2011, pp. 254–265.

[50] A. Panda, W. Zheng, X. Hu, A. Krishnamurthy, and S. Shenker, “Scl:
Simplifying distributed sdn control planes.” in NSDI, 2017, pp. 329–345.

[51] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside the
social network’s (datacenter) network,” in ACM SIGCOMM Computer
Communication Review, vol. 45, no. 4. ACM, 2015, pp. 123–137.

[52] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in Proceedings of the 10th ACM SIGCOMM
conference on Internet measurement. ACM, 2010, pp. 267–280.

[53] “ONOS Experiment E: Topology Scaling Operation,”
https://wiki.onosproject.org/display/ONOS/1.10%253A+Experiment+
E+-+Topology+Scaling+Operation.

Lyndon Fawcett Lyndon Fawcett is a PhD Student
within the School of Computing and Communica-
tions at Lancaster University and is associated with
the EPSRC funded TOUCAN project. His primary
research interests are in applying NFV and SDN to
Fog computing infrastructures to enhance network
security at the edge. This research encompasses
multiple disciplines and entails designing innovative
platforms for network and infrastructure orchestra-
tion.

Sandra Scott-Hayward Dr. Sandra Scott-Hayward,
CEng, is a Lecturer (Assistant Professor) in Net-
work Security at Queen’s University Belfast. In the
Centre for Secure Information Technologies (CSIT)
at QUB, Sandra leads research and development
of network security architectures and security func-
tions for software-defined networking (SDN). She
has presented her research globally and received
Outstanding Technical Contributor and Outstanding
Leadership awards from the Open Networking Foun-
dation (ONF) in 2015 and 2016, respectively.

Matthew Broadbent Dr. Matthew Broadbent is
a Lecturer in Computer Networks and Networked
Systems at Lancaster University. His main research
interests lie in the use of software-defined network-
ing, and in particular, their ability to aid service
delivery and deploy experimental environments. He
has been involved in a number of national and
international research projects, including OFELIA,
GN3plus, Fed4FIRE, TOUCAN, and more recently,
NG-CDI.

Andrew Wright Mr Andrew Wright is a Senior
Engineer at Queen’s University Belfast, in the Centre
for Secure Information Technologies (CSIT). An-
drew’s interests are in the general area of network
and software security but with a focus on using code
efficiently to provide secure services especially on
low power devices.

Nicholas Race Prof. Nicholas Race is a Professor of
Networked Systems within the School of Computing
& Communications at Lancaster University. His re-
search is broadly around experimental networking
and networked media, specialising in the use of
Software Defined Networking (SDN) and Network
Functions Virtualisation (NFV) for new network-
level services, including in-network media caching,
network-level fairness and network monitoring.

