
LANCASTER UNIVERSITY

School of Computing and Communications

A Transfer Learning-aided Decision Support

System for Multi-Cloud Brokers

by

Faiza Samreen
MS in Computer Science, International Islamic University, 2007

Bachelor of Computer Science (Hons), International Islamic University, 2003

Thesis submitted for the degree of

Doctor of Philosophy

June 2017

ABSTRACT

A Transfer Learning-aided Decision Support System for Multi-Cloud Brokers

by Faiza Samreen

MS in Computer Science, International Islamic University, 2007

Bachelor of Computer Science (Hons), International Islamic University, 2003

Thesis submitted for the degree of Doctor of Philosophy

June 2017

School of Computing and Communications

Lancaster University

Decision-making in a cloud environment is a formidable task due to the proliferation of service

offerings, pricing models, and technology standards. A customer entering the diverse cloud market

is likely to be overwhelmed with a host of difficult choices in terms of service selection. This applies

to all levels of service, but Infrastructure as a Service (IaaS) level is particularly important for the

end user given the fact that IaaS provides more choices and control for application developers. In the

IaaS domain, however, there is no straightforward method to compare virtual machine performance

and, more generally cost/performance trade-offs, within or across cloud providers. A wrong decision

can result in a financial loss as well as a reduced application performance. A cloud broker can help in

resolving such issues by acting as an intermediary between the cloud provider and the cloud consumer

– hence, serving as a decision support system for assisting the customer in the decision process.

In this thesis, we exploit machine learning for building an intelligent decision support system which

assists customers in making application-driven decisions in a multi-cloud environment. The thesis ex-

amines a representative set of appropriate inference and prediction based learning techniques, that

are essential for capturing application behaviour on different deployment setups, such as Polynomial

Regression and Support Vector Regression (SVR). In addition, the thesis examines the efficiency of

the learning techniques, recognising that machine learning can impose significant training overhead.

The thesis also introduces a novel transfer learning aided technique, leading to substantial reduction

in this overhead. By definition, transfer learning aims to solve the new problem faster or with a

better solution by using the previously learned knowledge. Quantitatively, we observed a reduction

iii

of approximately 60% in the learning time and cost by transferring the existing knowledge about the

application and cloud platform in order to learn a new prediction model for some other application

or cloud provider. Intensive experimentation has been performed in this study for learning and eval-

uation of proposed decision support system. Explicitly, we have used three different representative

applications over two cloud providers, namely Amazon and Google. Our proposed decision support

system, enriched with transfer learning methods, is capable of generating decisions that are viable

across different applications in a multi-cloud environment. Finally, we also discuss lessons learned in

terms of architectural principles and techniques for intelligent multi-cloud brokerage.

Declaration

I declare that the work in this thesis is my own work and has not been submitted either in whole or in

part for the award of a higher degree elsewhere. Any sections of the thesis which have been published

are clearly identified.

................

Faiza Samreen

v

Acknowledgements

When I first joined the Ph.D. program at the Lancaster University back in 2013. I could not fathom

what it would feel like to successfully defend my thesis so many years later. I have been so lucky to

be accepted into such a prestigious university as LU. It was such an adventure moving from Pakistan

to the beautiful city of Lancaster, and I know that no matter where I am my heart will always have a

special place for the Windy City. So it is with a sense of bittersweet accomplishment that I sit today

to type up my Acknowledgements and add the final touches to my thesis just hours before my final

submission.

I think all Ph.D. graduate students go through the same highs and lows when they are working on

their research. But having a good supervisor is probably the only thing that can actually make you

come out stronger when you feel you have hit a wall and you don’t know which direction to turn.

I have been extremely fortunate with my supervisors, Professor. Gordon Blair and Dr. Yehia

Elkhatib. Professor. Gordon Blair is one of the nicest professors I know. Every time I would leave

his office after a lengthy meeting I would think to myself, “I hope I can be as good a supervisor as

he is one day.” His thoroughness and attention to detail always inspired me. From our talks and

discussions, I learned many things other than about my research that I will remember for years to

come. With him, I never felt that I was “just another student”. He is extremely kind and considerate,

and he does what it takes to make his students come out shining on top no matter how far behind

they were when they started. I would say to all students who are lucky enough to have him as their

supervisor that they could not be in better hands.

I would like to thank Dr. Yehia Elkhatib, who was always there to keep me on my toes. If not

for him keeping me on track I would probably be stuck in a dead-end idea. Nothing I write here can

come close to expressing the gratitude I have for the time and effort he expended on me the last 4

years. He is professional, yet he is also very understanding and he knew how to keep me motivated by

telling me exactly what I needed to hear to stay focused and to not lose sight of what my aims were.

I acknowledge partial funding by COMSATS Institute of Information Technology, Amazon Web

Services educational research grant, Graduate School travel grant, PEEL studentship and William

Ritchie & Friends Program for the financial help to assist my study.

I am really very grateful to Dr. Vatsala Nandllol, Irni Khairuddin, Roberto Rodrigues and Izhar

Ullah for always standing by my side whenever I had needed them.

vii

I thank my dear friend Zunaira, who was always there to answer my frantic emails or phone calls

about the challenges I was running into with my research. In her usual calm way, she would always

give me good advice on how to pull through the difficulties and luckily things always worked out better

than I expected.

I would like to thank Fatimah, Naheed, and Sana, my best friends with whom I probably shared

the best times of my life before coming to LU. They were always there to make me laugh through

whatever crisis I felt I was going through, be it personal or professional. I am very grateful to Aleena,

Aneesa, Sadia and Maheen for their continuous support.

I would like to thank my dear brother Dr. Asif, and my dear sisters Dr. Humera, Dr. Sumera and

Dr. Sadia, who always motivated and supported me during my time at LU. They have always been

there to make me cheerful by sharing the loving memories of our childhood. They are very close to

my heart and my life is incomplete without them. I thank Amna, Ayaan, Hamnah, Talha and Taaha

for adding beautiful memories in our lives.

I would like to thank my dearest husband, Ahmad Waseem, who was always there to help me and

to make me happy. He is the best partner anyone can wish for. His calmness, kindness, and tolerance

helped me to finish my thesis in great spirits. Along with the many tiring hours, I spent in front of

my computer typing up my thesis, I had many fun hours in front of T.V watching countless movies

and Hasb-e-Hall with him. He has contributed as much to this thesis as I have just by being by my

side. He is probably the only one who could truly understand my feelings of despair. Knowing that

we both were in the same boat really helped get us through the tough times together!

My special gratitude for my parents, who have always been my great support. Their prayers,

encouragement and spectacular advice were always with me. I can never forget what they have taught

me nor can I stop loving them and thanking them for all that they have done for me. I am lucky enough

to have parents like them who have not let a single second pass without loving me unconditionally.

May Allah bless them always.

Lastly, I would like to say thanks to my lovely son Umar, who filled my life with happiness. My

dear son Umar! when I tell you I Love You, I say it to remind you that you are the Best Thing that

ever happened to me.

Faiza Samreen

To my parents, Dr. Muhammad Alim and Fayyaz Akhtar.

Without the inspiration, determination, and support that you have given me,

I might not be the person I am today.

ix

Contents

Abstract iii

Declaration v

Acknowledgement vii

Dedication ix

List of Figures xvii

List of Tables xix

1 Introduction 1

1.1 Overview . 1

1.2 Motivation . 2

1.3 Background . 3

1.3.1 Cloud Computing . 3

1.3.2 Cloud Brokers . 4

1.3.3 Decision Support Systems . 5

1.4 Limitations of Existing Approaches . 6

xi

1.5 Statement of Research . 7

1.5.1 Goals & Research Questions . 7

1.5.2 Research Methodology . 8

1.5.3 Contributions . 10

1.5.4 Thesis Organization . 11

2 Background & Related Work 13

2.1 Background . 14

2.2 Cloud Broker . 16

2.2.1 Taxonomy of Brokerage Solution . 16

2.3 Decision Support Systems . 20

2.3.1 Service Measurement Index Approach . 22

2.3.2 Model Driven Engineering Approach . 24

2.3.3 Semantic Approach . 25

2.3.4 Benchmarking & Profiling Approach . 27

2.3.5 Application Specific Approach . 28

2.3.6 Summary & Discussion . 29

2.4 Machine Learning . 32

2.4.1 Machine Learning Classification . 33

2.4.2 Machine Learning for Decision Support System 36

2.4.3 Machine Learning for Cloud and VM Selection 39

2.4.4 Summary . 41

2.5 Discussion & Conclusion . 43

3 Daleel, A Decision Support System 45

3.1 Overview . 45

xii

3.2 Problem Formulation . 46

3.3 Proposed Solution . 46

3.3.1 Overview of Daleel . 46

3.3.2 Architecture of Daleel . 47

3.4 Daleel’s Decision Support . 48

3.4.1 Analysis Phase . 49

3.4.2 Learning Phase . 53

3.4.3 Planning Phase . 63

3.5 Machine Learning Methods for Model Generation . 64

3.5.1 Multiple Polynomial Regression . 65

3.5.2 Support Vector Regression (SVR) . 67

3.6 Revisiting the Related Research Goals . 69

3.7 Summary . 70

4 The Traditional Learning Setting 73

4.1 Overview . 73

4.2 Experimental Details . 73

4.2.1 Applications . 74

4.2.2 Cloud IaaS . 75

4.2.3 Experimental Setup . 76

4.3 Model Generation . 77

4.3.1 MPR Based Learning Models . 81

4.3.2 Generic Learning Model . 84

4.3.3 SVR Based Learning Models . 88

4.4 Experiential Analysis . 90

4.5 Summary . 94

xiii

4.5.1 Potential Benefits of Daleel . 95

4.5.2 Discussion . 95

5 The Transfer Learning Setting 97

5.1 Introduction . 97

5.2 Transfer Learning . 98

5.2.1 Transfer Learning Techniques . 99

5.2.2 Approaches to Transfer Learning . 100

5.3 Transfer Learning-aided Decision Support System . 102

5.3.1 Motivation . 102

5.3.2 Problem Formulation . 102

5.3.3 Overview of Proposed Solution . 103

5.4 Daleel in the Transfer Learning Setting . 104

5.4.1 Auxiliary Data . 107

5.4.2 Similarity Measure . 109

5.4.3 Base Learner . 113

5.4.4 Two-mode Transfer Learning Scheme . 114

5.4.5 Model Training & Assessment . 117

5.5 Evaluation of the Two-mode Transfer Learning Scheme 117

5.5.1 Experimental Details . 119

5.5.2 Evaluation 1: Cross-application . 121

5.5.3 Evaluation 2: Cross-provider . 125

5.5.4 Evaluation 3: Corss-application & Cross-provider 128

5.5.5 Limitation . 133

5.6 Summary and Discussion . 133

5.6.1 Learning Cost . 134

xiv

5.7 Potential Benefits of Intelligent Cloud Brokerage . 135

6 Conclusion 139

6.1 Introduction . 139

6.2 Thesis Summary . 140

6.3 Contributions . 141

6.3.1 Main Contributions . 141

6.3.2 Other Significant Contributions . 144

6.4 Future Work . 145

6.5 Revisiting the Research Goals . 145

Appendices 147

A Statistical Methods 147

A.1 F-Statistics . 147

A.2 Residual Sum of Squares (RSS) . 147

A.3 P-value . 148

A.4 R-squared . 148

A.5 Residual Standard Error (RSE) . 148

A.6 Cross Validation (CV) . 149

A.7 Variance Inflation Factor (VIF) . 149

B R Markdown 151

Bibliography 181

List of Figures

1.1 The number of Linux-based instance types offered by major IaaS providers, as of July

2017. 2

1.2 IBM Softlayer configurations, as of 2017 . 3

1.3 Area of study . 6

1.4 Research methodology approach . 9

2.1 Chapter structure . 14

2.2 Three level classification scheme for cloud broker . 17

2.3 Categorical distribution Of decision support system methodologies 21

2.4 Classifications of machine learning with specified characteristics (purple box) of each

category along with representative examples of algorithms. 33

2.5 Supervised learning work-flow . 34

2.6 Unsupervised learning workflow . 35

2.7 Semi-supervised learning workflow . 36

2.8 Reinforcement learning work-flow . 36

3.1 Daleel’s architecture. 47

3.2 Overview of the three phase decision support system. 49

3.3 Collected data Traces details . 50

xvii

3.4 Transformed values in a CSV file. 53

3.5 Flow chart of the Learning phase. 54

4.1 Plot of actual vs predicted values of itemRecommender 86

4.2 Plot of actual vs predicted values of smallpt . 86

4.3 Plot of actual vs predicted values of VARD . 87

4.4 VARD execution time over different cloud instance types. 90

4.5 Smallpt execution time over different cloud instance types. 91

4.6 Item Recommender execution time over different cloud instance types. 92

4.7 Dispersion of application execution time during all days of the week on different EC2

instance types. Notice that all graphs have the same y-axis range apart from m3.medium. 93

5.1 Fundamental approach of Transfer Learning. 99

5.2 Use of auxiliary data in the transfer learning technique. 103

5.3 Daleel’s decision support architecture in knowledge transfer setting. 105

5.4 Flow chart of the Learning Phase in transfer learning setting 107

5.5 Plot of actual vs predicted values for three representative applications using two machine

learning methods: SVR and polynomial regression. 108

5.6 A code snippet of transfer learning setting. 118

5.7 Left: Effect of instance knowledge transfer from the Item-Recommender to the VARD.

Right: Effect of instance knowledge transfer from the VARD to the Item-Recommender. 125

5.8 Left: Effect of Item-Rec.-EC2 instance knowledge (source domain) on the model gen-

eration for the VARD-GCE (Target domain). Right: Effect of VARD-GCE instance

knowledge (source domain) on the model generation for the Item-Recommender-EC2

(Target domain). 131

5.9 Left: Effect of VARD-EC2 instance knowledge (source domain) on the model genera-

tion for the Item-Recommender-GCE (Target domain). Right: Effect of movie-GCE

instance knowledge (source domain) on the model generation for the VARD-EC2 (Tar-

get domain) . 131

5.10 The cost of running 1000 VARD jobs on EC2. 136

5.11 The cost of running 1000 VARD jobs on GCE. 137

5.12 The cost of running 1000 smallpt jobs on EC2. 137

5.13 The cost of running 1000 smallpt jobs on GCE. 138

6.1 The Daleel Architecture. 141

6.2 Model Fitting process . 142

6.3 Two-mode transfer learning scheme. 143

List of Tables

2.1 Summary: Decision Support System Methodologies . 31

2.2 Summary: machine learning aided decision support systems 42

4.1 Application specific properties (Application Vignette). 76

4.2 The computational specification of EC2 instances. 77

4.3 Significant predictors. 81

4.4 VARD’s model assessment. 83

4.5 Smallpt’s model assessment. 84

4.6 Item-Recommender’s model assessment. 84

4.7 List of all learning models to identify similar terms to extract a generic learning model. 85

4.8 MSE values for generic model on test data. 87

4.9 MSE values for SVR Model on test data. 89

4.10 MSE values for SVR and Polynomial model. 94

5.1 KS test results . 111

5.2 The computational specification of GCE instances. 120

5.3 Cross-application: Evaluation results of the two-mode transfer learning scheme 124

5.4 Cross-provider: Evaluation results of the two-mode transfer learning scheme. 126

xx

5.5 Cross-application & Cross-provider: Evaluation results of the two-mode transfer learn-

ing scheme. 129

5.6 Cross-application & Cross-provider: Evaluation results of the transfer learning scheme

using polynomial regression method. 132

5.7 Failing Scenario. The two-mode transfer learning scheme could not help to generate

a prediction model for the Item-Rec. (target domain) to predict performance on the

GCE deployment setup. 133

Chapter 1
Introduction

1.1 Overview

The cloud computing market is growing incredibly fast. In 2013, the global application market had

a value of 30.35 billion U.S. dollars which kept on increasing every year and had reached to 62.5

billion U.S. dollar in 2017 [1]. According to Gartner’s lastest worldwide public cloud services revenue

forecast, the market is projected to grow 18.5% in 2017 reaching $260.2 billion, up from $219.6 bilion

in 2016 [2]. Consequently, decision-making in a cloud environment is a challenging task due to the

proliferation of service offerings, pricing models, and technology standards [3]. This applies to all

levels of service, but the Infrastructure as a Service (IaaS) level is particularly important for the end

user given the fact that IaaS provides more choices and control for application developers. In the

IaaS domain, there is no straightforward method to compare virtual machine performance and, more

generally cost/performance trade-offs, within or across cloud providers. A wrong decision can result

in financial loss as well as reduced application performance [4, 5, 6, 7]. A cloud broker can help in

resolving such issues by acting as an intermediary between the cloud provider and the cloud customer

– hence, serving as a decision support system for assisting the customer in the decision process [8].

The thesis investigates the problem of decision making to assist cloud customers in finding an

optimal IaaS deployment strategy based on application-specific requirements and customer-related

QoS constraints. The thesis argues for the use of machine learning methods for developing an intelligent

decision support system. We believe that machine learning can provide behavioural and performance

insights about the application and deployment setup necessary to make optimal decisions in terms of

1

2 1. Introduction

performance and cost. Recognising that machine learning can impose significant training overhead, a

key contribution of this thesis is a transfer learning aided methodology for efficient decision making,

thus making this approach more cost-effective for cloud brokers.

The remainder of this chapter is organised as follows. The chapter starts with a discussion about

the significance of decision support systems. Following that, the chapter outlines the key underline

concepts of cloud brokers, decision support systems and machine learning and explains their rela-

tionship in the context of cloud computing. Moreover, the chapter discusses the limitations of the

current state of the art. Further to that, the chapter presents the research goals of the thesis, research

methodology and contributions. Lastly, the chapter outlines the structure of the thesis.

1.2 Motivation

13 17 10 10 7

9

7 6 6 2

4 4 10 7

23 22 11 4 7

4 5 5 5

DigitalOcean

RackSpace

Google Compute Engine

Joyent Compute

Amazon EC2

Microsoft Azure

0 10 20 30 40 50 60 70
Number of Instance Types

Ia
aS

 P
ro

vi
de

r

Instance Class
General Purpose
Memory Intensive
CPU Intensive
I/O Optimised
Other Types

Figure 1.1: The number of Linux-based instance types offered by major IaaS providers, as of July 2017.

Figure 1.1 depicts an overview of the cloud market in July 2017, showing the offered instance

types under different categories by major IaaS providers. The various colours in the graph indicate

1.3. Background 3

the categories of Linux-based instance types (virtual machines) and the horizontal axis depicts the

number of instance types in each category. This data is collected manually, based on market leading

cloud service providers. It is evident that most IaaS vendors offer 20 or more instance types under

different categories. Microsoft Azure is offering more than 60 different instance types, the maximum

of all the listed IaaS providers.

IBM Softlayer is offering even more choices by providing an interface to the cloud customers where

they can use a slider to build a virtual server that fits their needs, as shown in Figure 1.2. The

customers can choose hourly or monthly billing. In addition, they can opt for additional services

such as extra storage, firewall provision, monitoring, and various operating systems according to their

choice. Such an interface offers hundreds of different types of virtual machine setup permutations.

No one can imagine how challenging it would be to select from such a pool of offered instance types.

There is a clear need for tools to simplify selection decision and potentially automate such decision

making.

Figure 1.2: IBM Softlayer configurations, as of 2017

1.3 Background

1.3.1 Cloud Computing

Cloud computing is not a new technology; rather it has evolved from various existing technologies such

as grid computing, utility computing, virtualisation and autonomic computing [9]. Cloud computing

is an exciting technological model where resources, such as CPU time, storage and bandwidth are

provided as general utilities for lease by users over the internet in an on-demand fashion. Cloud

computing has had a tremendous impact on the IT industry with its features of lowering operational

4 1. Introduction

cost, high scalability, zero upfront investment and reduction of maintenance expenses. Large companies

such as Amazon, Google, Microsoft and others are striving to provide reliable and cost-efficient cloud

platforms to users.

Cloud providers can be classified as public or private. Public cloud providers offer their resources as

a service to the general public and charge them under a specified pricing model for utilised resources.

Private clouds are mainly designed for the internal use of an organization to get full control of security,

performance, and reliability.

Cloud providers offer their services at three main levels: infrastructure as a service (IaaS), plat-

form as a service (PaaS) and software as a service (SaaS) [10]. IaaS refers to the provisioning of

computer infrastructure (such as platform virtualisation), storage and networking. These offerings

have heterogeneous configuration options (e.g. different choices of virtual machine configurations in

terms of memory, CPU, I/O, etc), availability zones and so on. Examples of IaaS are Amazon EC2

and the Google Compute Engine. PaaS provides platform layer resources such as operating system

support and software development frameworks. Google App Engine, Microsoft Windows Azure, and

Force.com are some examples. SaaS refers to providing turn-key applications over the internet such

as Salesforce.com.

Cloud providers use a variety of pricing models, including usage-based fixed pricing, usage-based

dynamic pricing, subscription-based pricing, reserved services contracts with a combination of usage-

based fixed pricing and up-front fees, auction-based pricing and so on [11]. In addition to that, different

cloud providers use different pricing schemes. For instance, Amazon charges for virtual machines on

an hourly basis, Microsoft Azure bills on a per minute basis while Google charges a minimum of 10

minutes per virtual machine.

1.3.2 Cloud Brokers

A cloud broker is an important supporting actor in the cloud environment, acting as an intermediary

between the provider and the consumer [12]. According to NIST, a cloud broker is defined as, “an entity

that manages the use, performance, and delivery of cloud services and negotiates relationships between

the cloud providers and the cloud consumers” [13]. Cloud brokers participate in a cloud computing

environment with various roles such as intermediation, aggregation, arbitrage and integration [14].

A large body of research has been carried out to provide brokerage solutions such as abstraction and

interoperability to reduce deployment complexity. In addition, there has been research investigating

1.3.3. Decision Support Systems 5

the management of multi-cloud environment. Here, the term ”multi-cloud” denotes the usage of

multiple independent clouds by a client or service. Moreover, there has been a small amount of

research looking at decision making to assist customers in the selection process by ranking cloud

providers and their offered services.

Brokerage solutions can be classified as either hosted or deployable services. Hosted services are

externally managed by a third party and customers have no insight as to how the application is

provisioned. RightScale Cloud Portfolio Management [15], anStratus [16], xStream [17] and Cliqr [18]

are some of the examples of a hosted service. In contrast, deployable services rely on open source

software solutions that can be operated either internally by a corporation or externally as a grey-box

service. Deployable approaches intend to be transparent for the application developer in order to feed

the deployment and scalability policies. Examples include Apache Brooklyn [19], Scalr[20], Standing

Cloud [21] and Aelous [22]. The mentioned solutions tackle interoperability and abstraction to reduce

the deployment complexity of applications. However, except for RightScale, none of these solutions

provide assistance for cloud selection.

1.3.3 Decision Support Systems

The cloud computing market is crowded with a large number of public IaaS providers [1, 2]. Therefore,

a customer entering the cloud market has to face difficult comparisons and complex decisions. One

way to address this challenge is to explore all the possible options exhaustively, which is quite an

expensive and time-consuming task. Another way is to select a provider based on their reputation

and then choose the resources from their suggested VM options. Such selections are not necessarily

an effective choice for optimised performance or cost. The service offerings of cloud providers are

somewhat of a black box for customers as they are not aware of the necessary details required for

selection. Therefore, decision support is considered one of the fundamental objectives of cloud bro-

kerage. However, current cloud broker frameworks tend to focus on abstraction, interoperability, and

policy management. However, they are lacking support in automated decision-making and hence the

selection of IaaS resources is mostly left to the customer.

A decision support system has to be responsive in order to satisfy customer-defined policies

throughout the application life cycle. STRATOS [23], MODACloud [24], Cloud4SOA [25], Cloud-

cmp [26] and Broker@Cloud [27] have taken some preliminary steps in this regard. The decisions are

6 1. Introduction

typically based on the ranking of cloud providers or services taking into account the non-functional re-

quirements and ignoring variability in application behaviour and cloud resource. Apart from ranking,

some of the decisions are derived from a synthetic workload that cannot portray the real performance

variation of the cloud [26, 28, 29]. Overall, decision making is challenging due to issues such as

adaptability and also the need to satisfy multi-objective requirements from cloud customers [27].

Machine learning can help address such complicated decisions by observing application behaviour

and modelling relationships amongst independent sources of knowledge such as cloud resource con-

figuration and application behaviour. Therefore, machine learning has the potential to provide an

intelligent and grounded decision support system. CloudProphet [28], Matrix [30] and [31] have taken

first steps towards the use of machine learning in this context. These solutions are not considered a

cost-effective option due to the requirement for a large amount of training data for the model genera-

tion. Furthermore, the learning models are not generalised enough to be used for different application

types or Quality of Service (QoS) attributes. Despite such considerable efforts, a decision support

system in a multi-cloud environment is still an under-researched and demanding area that needs to

be explored.

1.4 Limitations of Existing Approaches

The research in this thesis sits at the intersection of the three areas studied above, namely cloud

brokers, decision support systems and machine learning (see Figure 1.3). Area ’A’, indicates the area

of work where cloud brokers mainly support interoperability, abstraction and unification of multi-

cloud systems. Area ’B’ focuses on areas such as policy and SLA management regardless of cloud

broker concepts. Area ’C’ captures the research where machine learning is taking advantages of

cloud computing to deal with big data analytic. Area ’F’ represents decision making in a cloud

environment where machine learning is used to provide solutions to many problems such as scheduling,

load balancing and energy consumption. There is barely any research effort (area ’G’) to exploit

machine learning to assist the functionality of cloud brokers. A few solutions are available from the

cloud broker community to assist the customer with deployment-related decisions and are indicated

in area ’D’. Most notably, there is very little research at the intersection of all three areas (area ’E’)

which is the focal point of this research.

To date, there have been no successful integrated framework providing an end-to-end solution to

1.5. Statement of Research 7

Cloud Computing

A B

C

E

D

G F

Figure 1.3: Area of study

assist customers with optimal deployment choice. Moreover, the available methods are designed to

deal with a specific application or single cloud infrastructure. In addition, there is a lack of solutions

that consider support for a range of application types across multiple cloud providers.

1.5 Statement of Research

This thesis suggests that intelligent decision support systems integrated with cloud brokerage are still

an under-researched area. Likewise, there is still a long way to go in terms of providing efficient decision

making to help the customer in terms of optimised and application-driven deployment decisions in a

multi-cloud environment.

1.5.1 Goals & Research Questions

The key goal of the work presented in this thesis is to investigate the role of machine learning in

developing a decision support system integrated with a cloud brokerage solution in a multi-cloud

environment. More precisely, the end goal is a decision support system to assist customers in making

8 1. Introduction

deployment decisions by taking into account the application requirements and customer constraints.

This overall goal can be further decomposed into three inter-dependent research goals.

1. The designing of a cloud broker architecture integrated with an implementation of an intelligent

decision support system.

The key research questions associated with this goal are:

(a) What is the potential role of an intelligent decision support system in enhancing cloud

brokerage?

(b) What does an intelligent decision support system architecture look like and which of its

components is responsible for offering an understanding of application behaviour?

2. The investigation of machine learning methods that can be applied for optimal decision making

in the decision support system of a cloud broker.

The key research questions associated with this goal are:

(a) What machine learning methods are most applicable to support decision making in the

cloud?

(b) How can machine learning methods provide the insight necessary to help decision support

systems? And to what extent can generalised learning models be used for learning across

different application domains?

3. The development and evaluation of an efficient decision-making method integrated with the

established decision support system (assuming that the research goal 2 is viable) to reduce the

learning and decision-making cost and to making it more cost-effective for use in cloud brokers.

The key research questions associated with this goal are:

(a) What are appropriate methods to make use of existing knowledge?

(b) How can learning be done efficiently to overcome the challenge of additional time and

learning cost?

1.5.2 Research Methodology

This work adopts an experimental systems research methodology, with an iterative approach that is

based on quantitative analysis of real systems.

1.5.3. Contributions 9

Experimental: In order to investigate the role and effectiveness of the machine learning for a

decision support system, a prototype named Daleel is developed to iteratively test different learning

models. A large-scale analysis is used to incrementally enhance the learning model in order to make

it more effective in a generalised manner. This is shown in Figure 1.4, where the analysis results are

to fed iteratively into the design of learning models. Daleel requires generalised learning model(s) to

be used for decision making.

Iterative: A learning method is selected by exploring different traditional machine learning tech-

niques. The exploration of different machine learning methods is used to build the learning models

to be eventually used, keeping in mind the need for getting insight about the application behaviour

with respect to the deployment setups. The intuition behind exploring different learning methods is

the use of diverse baseline models that can be used for diagnostic and accuracy assessment as well.

The learning models are built and refined following circular processes as shown in the middle green

circle in Figure 1.4. The process of getting a final learning model starts with the selection of learning

method followed by fitting a model. The fitted model is then evaluated on analysed data and further

examined using statistical methods for update and re-fit. A human intervention is involved at this

level in order to visually analyse the output of statistical results. By following this iterative process

and further evaluating it with incremental data analysis a final model for decision making is derived.

A detailed experimental study is done to check the feasibility of offering different learning models

which are discussed in detail using different visualisations.

Quantitative: Furthermore, our research methodology follows a quantitative assessment of real

world scenarios in a real-time environment. A quantitative analysis is performed on a large scale

experimental setup of two major IaaS providers; the first one is EC2 of Amazon Web Services and

second is Google Compute Engine (GCE). For evaluation, three real-time applications of different

categories are used as a representative subset of problems, as depicted in the blue rectangle at the

top of Figure 1.4. The real-time data traces of the applications, running on different deployment

setups (EC2 and GCE), are used for training and assessment of the prediction models. Therefore, the

knowledge-base is comprised of real-time workload traces instead of synthetic workloads.

1.5.3 Contributions

This thesis investigates the problem of decision making in a multi-cloud environment and examines

how an intelligent decision support system integrated with cloud brokerage can benefit the cloud

10 1. Introduction

Benchmark applications

Application 1 Application 2 Application 3

1. Select
learning
method

4. Examine
and update

fit

2. Fit a
model

3. Apply
analysis data
on learning

model
Le

ar
n

in
g

M
o

d
e

ls Daleel
architecture

Analysis
Feedback

Figure 1.4: Research methodology approach

customer for making deployment decisions. The main contributions of this thesis are:

1. The architectural insight of a decision support system for inclusion of the machine learning

methods and its integration with multi-cloud brokerage.

2. Model fitting engine equipped with generalised as well as application specific learning models.

1.5.4. Thesis Organization 11

3. A two-mode transfer learning scheme for efficient decision making. This scheme is based on

transferring knowledge from one domain to the other. The efficiency is achieved by reducing

the learning overhead in terms of time and cost. Quantitatively, an overall reduction of 60% is

observed.

Additional contributions of this thesis are:

1. A detailed study of machine learning techniques in general in different domains and more specif-

ically in cloud brokerage.

2. A comprehensive study about cloud brokerage and decision support system methodologies.

3. Experiential insight about cloud providers and performance variations across different virtual

machine instances

1.5.4 Thesis Organization

The remainder of the thesis is structured as follows:

Chapter 2 provides an understanding of the problem space as well as a background overview of

cloud brokerage and decision support systems. A detailed analysis of related decision support solutions

is provided. In addition, the chapter gives an overview of using machine learning to achieve the goals

mentioned in section 1.5, also exploring the state of art where machine learning methods are used in

decision making. The chapter concludes by highlighting the potential of machine learning to be used

for decision making integrated with cloud brokerage in a multi-cloud environment.

Chapter 3 describes the architecture of Daleel for cloud instance selection.Following this, the

chapter describes the key principles behind machine learning and also explores the core intelligence

aspects of decision support systems. Finally, selected machine learning methods are explained along

with their potential benefits.

Chapter 4 provides an experimental evaluation of different learning strategies leading to the adop-

tion of a set of approaches. The chapter also highlights a possible performance issue over training

overhead. The chapter concludes with the final architecture of a generic learning model along with as

assessment feasibility across different applications.

Chapter 5 investigates a transfer learning technique to enhance the efficiency of an intelligent

decision support system and reduce the training overhead in terms of time and cost. In particular, this

chapter introduces a novel two-mode transfer learning scheme with the goal of achieving substantial

reduction in this overhead. Following this, a detailed evaluation is carried out using two public cloud

providers i.e, Amazon Web Services (AWS) and the Google cloud.

Finally, Chapter 6 concludes this thesis highlighting the main contributions and detailing future

work. Furthermore, this chapter revisits the research goals, showing where the questions are answered

in the thesis.

Chapter 2
Background & Related Work

Decision making in cloud environment is quite challenging due to the proliferation of service offerings,

pricing models and technology standards. A customer entering the cloud market is overwhelmed with

a host of difficult questions without much of a support for a decision support system. Moreover, there

is no hard and fast rule for optimal selection of instance types that best suit the application needs

and customer constraints.

The previous chapter has introduced key goals of this thesis, highlighting key limitations of existing

decision support systems, along with the contributions and the adopted research methodology. The

central tenet of this chapter is to investigate the current state of the art in decision support system,

either offered as a service by cloud broker or just an independent effort in a multi-cloud environment.

Moreover, the potential role of machine learning is also explored for developing an intelligent decision

support system for a multi-cloud environment.

The upcoming sections cover the detail in the following manner, as shown in Figure 2.1. A

quick recall of the problem domain is provided in Section 2.1. Section 2.2 defines cloud broker and

classification of broker based offerings along with some of the brokerage examples. The role of decision

support system and the current state of the arts are described in Section 2.3. This Section elaborates

different methodologies involved in decision support system in the cloud or multi-cloud environment.

The role of machine learning for developing decision support methodology is explored as well, and

some supportive examples are stated in Section 2.4. The last section discusses the conclusion in view

of limitations of existing approaches.

13

14 2. Background & Related Work

Decision Support Systems

Service Measurement Index (SMI) Approach

Model Driven Approach

Semantics based Approach

Application Specific Approach

Benchmarking & Profiling based Approach

Summary & Discussion

Background

Cloud Broker

Discussion & Conclusion

Machine learning

2.1

2.2

2.3

2.4

2.5

Supervised Learning

Unsupervised Learning

Semi-Supervised Learning

Reinforcement Learning

Machine Learning Based Decision Support System

Summary & Discussion

Taxonomy of Brokerage Solutions

Figure 2.1: Chapter structure

2.1 Background

Cloud computing has opened up a world of new opportunities, not only for larger organizations

but for small and medium sized businesses as well. As the dimensionality of cloud computing is

increasing, it is facing many challenges such as energy efficiency, interoperability, resource utilisation,

2.1. Background 15

service provisioning, security, green computing, SLA management, heterogeneity and many more

[32, 33, 34, 35, 36, 37, 8, 38]. Thus, researchers are striving to find best possible solutions.

One of the biggest challenge of cloud computing is inherent complexity in terms of different tech-

nologies, terminologies, services and interfaces. Every cloud provider is opting for different approaches

of service offerings, pricing models for services and interfacing with its services. This variety is reflect-

ing series of issues starting from vendor lock-in, portability to the performance comparison across the

provider’s offerings. The interoperability and portability are important for end-user investors as many

of them do not want to stick their applications to one cloud provider only [14]. The cloud customers

want to avoid the risk of being tied to one cloud provider to avail the option of application migration

due to pricing and availing similar service with additional offers from some other cloud provider. The

goal of interoperability and portability is to allow cloud customer to make best use of diverse offerings

from cloud providers.

The cloud performance comparison is an important aspect of cloud and Infrastructure as a

Service (IaaS) service selection for cloud customers. The Infrastructure as a Service (IaaS)

selection is significantly important for the end-user as there is no straight method to compare the

virtual machine performance within or across cloud providers. A wrong decision can lead to the

financial as well as reduced application performance loss. A common practice by the user for selection

of cloud provider is based on experience or reputation. On the other hand, virtual machines are selected

simply by matching configuration details with the offered virtualisation service of that particular

cloud provider. However, such selection criteria cannot be considered optimal in every case due to

hidden uncertainties of cloud offerings such as scheduling algorithm, load balancer policies, co-location

strategies, virtual to physical machine mapping rules, etc [39, 40]. In contrast to reputation based

selection, one can explore all the possibilities regarding cloud provider and their offered infrastructure

services as selection criteria. Considering the dimensionality of cloud providers along with the offered

infrastructure services, the exploration exercise conducted by the cloud-user is not feasible in terms

of time and cost. The selection criteria is not just a one-time task, it is an ongoing process till the

end of application life cycle. Such activity becomes a hectic milestone at deployment or migration

level. A new user entering the cloud market has to suffer from the cumbersome selection task and

overwhelming thoughts of potential risk to wrong selection. Diversity of service offerings in terms of

pricing model, functionality, virtual machine categories with various configuration options has raised

the complexity of service comparison. There is no rule of thumb for transparent service comparison

16 2. Background & Related Work

and selection under diverse conditions.

A cloud broker can help in resolving such issues by acting as an intermediate between the cloud

provider and cloud consumer and offer a decision support system to assist the customer through the

decision process. Machine learning assisted methods can enhance the potential role of decision support

system by adding intelligence for application-driven decisions. An intelligent decision support system

as a brokerage service can reduce the customer’s efforts for optimal selection of infrastructure resources

in a multi-cloud environment. This can lead to the satisfaction of application needs as well as user

constraints in an optimal way. Here, the term ”multi-cloud” denotes the usage of multiple independent

clouds by a client or service [33, 41].

2.2 Cloud Broker

A cloud broker is an entity in a cloud ecosystem to manage the use, performance, and delivery of

services along with negotiation of the relationship between the cloud provider and cloud consumer [42].

A number of tasks can be done by cloud brokers on behalf of customers like arbitrage, aggregation

and integration/intermediation. Generally, we can define cloud brokerage solutions as either hosted

or deployable. Hosted services are mostly commercial ones and are externally managed by the third

party stakeholders. Such services are not transparent to the users and do not provide information of

how the application is being provisioned. In contrast, deployable services are most commonly open

source solutions and can be managed internally by a corporation or externally as grey-box service.

2.2.1 Taxonomy of Brokerage Solution

By looking through the literature at the term ”broker” in a broad view of cloud and multi-cloud

environment, we can highlight a list of services inclined with the brokerage solutions delivered by

the broker itself. By definition, a cloud broker intends to offer different services considering its role

between cloud-provider and cloud-user. However, cloud brokerage is still in its infancy and no single

solution is reflecting full essence of brokerage system. We have identified and categorised some of the

offered services into three level scheme of classification considering the intricacy of cloud broker role.

Figure 2.2 shows an abstract list of offerings for these levels. Different state of the arts developed over

time capture different aspects and offerings of cloud broker that are discussed in conjunction with

classification levels. This three level taxonomy is considered a representative of literature knowledge

2.2.1. Taxonomy of Brokerage Solution 17

to clarify the scope of cloud and multi-cloud management in brokerage domain. The intention behind

this effort is to give our reader a clear picture about cloud brokerage based research and development

efforts with a glimpse of problem domain and potential research focus.

• Optimised workload management (scheduling, load

balancing, and resource scaling.......)

• Adaptive workflow management

• Adaptive decision support system (automated service

selection, intelligent decision making,

recommendation....)

• Adaptive policy generation (semantics & ontologies)

•

• Interoperability resolution

• Automated application deployment based on

user defined rules

• Component dependency resolution

• Auto scaling

• Policy driven control plane

• Blue print creation & provisioning

•

• Self-service interface

• Infrastructure visualization

• Role based access

• Configuration management

• Image provisioning

• Billing and metering

•

Level 1

Level 2

Level 3

Cloud

Management

Multi-Cloud

Management

Adaptive

Optimisation

Figure 2.2: Three level classification scheme for cloud broker

Level 1 refers to the cloud management platform. The offerings and list of important tools at

this level are not considered as brokerage service, however, a necessary bridge to build smart and

adaptive brokers. The services at this level include self-service interface, infrastructure visualization,

role based access, configuration management, image provisioning, billing and metering. Configuration

18 2. Background & Related Work

management tools like chef [43], puppet [44], Ansible [45], CFEngine [46], SaltStack [47], etc are

used as supporting tools in this layer and layers ahead for similar tasks. Level 2 refers to the provi-

sioning of multi-cloud management solutions. This level contains services related to interoperability

resolution, automated application deployment, dependency resolution and scaling management with

the policy-driven control plane.

In the last couple of years, considerable developments have taken place in terms of solving the

vendor lock-in and portability issues. The development of libraries/APIs is considered a principal effort

to help reducing lock-in issue. Some useful libraries developed over time, to enhance interoperability,

are discussed here. Apache jclouds [48] is an open source multi-cloud toolkit for Java to create an

application that is portable across clouds. This library allows the full control of the cloud features to

be used by the customer. Apache Libcloud [49] is a Python library and provides a unified API to

interact with different cloud service providers. Apache Deltacloud [50] (moved to Apache Attic) is a

REST-based API written in Ruby to interact with various cloud resources. Simple Cloud API [51]

is a PHP library to access cloud application services offered by multiple vendors. It provides support

for file and document storage and queue service of Amazon and Azure.

These libraries are facilitating interoperability and portability at different level of cloud services

like virtual machine, storage, queue service, etc. Such solutions have opened up the venue for cloud

brokers and cloud consumers to take full advantage of the multi-cloud environment. Various factors

can lead to the use of multi-cloud environment like cost optimization; improve in QoS, customer

specific constraints regarding storage or geographical locations, and sometimes to handle the peaks in

demand of service. The commercial brokerage services as well as open source community has taken

advantage of abstraction libraries to offer different multi-cloud management services/solutions. Some

examples related to cloud and multi-cloud management are discussed here. RishtScale [15] offers a

service to deploy and manage an application in different clouds. Users can manage the application

on virtual machine of multiple clouds using the provided console. Users can add private cloud as

well using the console. Scale up and down policies can be added as action by users and he can also

specify the location of resources to be provisioned in case of scale-up policy. Enstratus [16] (on sale)

is a unified management solution for deploying and managing enterprise-class applications on public

and private clouds. Standing Cloud (part of App Direct now) [21]assist to deploy and manage

applications on a variety of IaaS platforms without losing control or flexibility. Kaavo [52] offers a

service to deploy and manage any application across multiple clouds. IMOD is Kaavo’s core product

2.2.1. Taxonomy of Brokerage Solution 19

for secure application deployment, scheduling and automation. This product is offered as a SaaS

management solution as well as on premise solution for enterprise customers. As cloud computing

evolves, the integration of cloud services becomes hassle for cloud consumer. Brooklyn [19] is an open

source application management solution to deploy your application across multi-cloud environment.

It also provides features for application monitoring and some base level scaling based on user defined

policies. Similar to Rightscale, Aeolus [22] Blender intends to provide a solution for the automatic

deployment and configuration of complex service-based distributed application. Blender is a software

product maintained by Mandriva, based on the approach taken by the Aeolus project to overcome the

limitations of using pre-configured images. Blender is an integration of three tools, Zephyrus, Metis

and Armonic. The provisioning features of Aeolus are similar to Rishtscale and Brooklyn, feasible

for multi-cloud application management rather automated decision making to assist customer for

virtualization selection. RightScale, Enstratus and Kavoo are some examples of the commercial

broker services. In contrast, Brooklyn and Scalr [20] are considered deployable solutions for the

cloud user.

The examples discussed so far from cloud brokerage solutions are focusing more on resolving inter-

operability and providing solutions for cloud or multi-cloud application management solutions. These

solutions are catering the need for automatic deployment, monitoring and defining the deployment

and scaling requirements. These requirements are fed by the application-user in terms of specified

configurations, targeted cloud provider along with basic scaling rules. In short, all decisions regarding

application deployment are based on statically defined constraints. The most critical among these

static constraints is the selection of suitable cloud provider. Further to that, the user has to be precise

about mentioning the required configurations at virtual machine level.

Level 3 in Figure 2.2, is considered an advanced level with a focus of adaptation and goal optimiza-

tion. Researchers are applying enhanced methods like mathematical, analytical, machine learning and

semantics to generate adaptive and optimised solutions for various goals related to cloud and multi-

cloud management. Decision support system is part of this level that is a prime focus of our objective

defined in chapter 1. The decisions could be related to the selection of cloud provider or service selec-

tion, particularly at the IaaS layer. STRATOS [23], CELAR [53], MODACloud [54], mOSAIC

[37] and OPTIMIS are considered some of the initial efforts for providing decision making service

in addition to multi-cloud management solutions. These state of the arts are discussed in details in

Section 2.3. Level three is also considered a target point for machine learning methods to optimise

20 2. Background & Related Work

the goals. Machine learning has proven its effectiveness in various aspects of distributed system ap-

proaches like scheduling, load balancing, etc. Very few efforts are seen in the literature as decision

support strategies for multi-cloud environments. PuLSaR, Matrix and [55, 56] are considered some of

these efforts to help customers by recommending cloud and service selection.

The next sections will highlight some of the potential efforts regarding decision support system

that are either offered as cloud brokerage service or independent efforts. The state of the art in

decision support system is categorised based on different methodologies as shown in Figure 2.3. The

contributions and limitations are also discussed keeping in view the objective of this research work.

2.3 Decision Support Systems

The rapid increase in cloud service offerings has increased the opportunity for users to have redundant

and replaceable services from multiple providers. As a result, the quality of service may improve and

the customer can get even better performance at a reduced cost.

Users of Infrastructure as a Service (IaaS) level are faced with a composite decision:

1. Which provider she should choose?

2. What instance types(s) would provide her with the cost: performance ratio that suits her needs?

3. Does the time of day at which she requests these resources affect how her application runs?

No general rule can be applied to answer such subjective questions. Each customer application

based requirements has to be considered carefully against the various cloud offerings before selection

of resources. Further complications are manifested due to disparate pricing models across different

cloud providers. The public cloud providers are offering the infrastructure services with personal

defined standards and pricing options. For example, Amazon uses the term ECU what they refer as

computation units to express the CPU capabilities of its various compute offerings while Rackspace

defines CPU as a proportion of the physical host machine. In terms of pricing, Amazon charges for

virtual machines on hourly basis, Microsoft azure bills on a per minute basis while Google charges

a minimum of 10 minutes per virtual machine. Furthermore, the public cloud providers are offering

their infrastructure service under self-defined categories based on the different configuration settings of

virtual machines to cater specific needs of the application. The optimal selection of suitable instance

2.3. Decision Support Systems 21

Decision Support System Methodologies

Service Measurement Index (SMI)

Approach

Model Driven Approach

Semantics based Approach

Application Specific Approach

Benchmarking & Profiling based

Approach

Machine learning based Approach

 Key performance indicators

 Analytic Hierarchy Process (AHP)

 Weighted Sum

 PREDIQT analysis tool

 CORAS analysis tool

 DSL for defining requirements and

rules

 Linear Regression

 Auto-Regression

 Neural Network

 Support Vector Machine

 Fuzzy Analytic Hierarchic Process

 Response Surface

Figure 2.3: Categorical distribution Of decision support system methodologies

22 2. Background & Related Work

types from the range of infrastructure offerings is still a challenge for cloud users especially when user

defined objectives has to be satisfied. So a cloud customer entering the market is overwhelmed by

excessive hosting information without much knowledge of selection criteria.

An effective decision support system can help the customer by handling the bulk of information

and ensuring the appropriate selection decision according to the mentioned requirements. This section

discusses different approaches and methods for decision support systems. The offerings and limitations

are critically evaluated keeping in view the research objective. These decision support solutions are

explored with a viewpoint of brokerage in a multi-cloud environment.

2.3.1 Service Measurement Index Approach

The Service Measurement Index (SMI), developed by Cloud Service Measurement Initiative Con-

sortium (CSMIC), is considered one of the approaches to compare different cloud offerings/services

[57]. SMI is a set of Key Performance Indicators (KPI’s) to provide standardized methods for mea-

suring and comparing the services. These KPI’s are categorized as accountability, agility, assurance,

financial, performance, security and privacy, and usability. These seven characteristics are further

divided into four or more attributes to capture all of its properties. These SMI indicators have been

used by some of the commercial or open source broker based solutions for ranking different cloud

providers and their offered services. Further, these ranking methods are used for decision making of

cloud or service selection.

The work done by [58] for ranking of cloud computing services is considered one of the initial efforts

for using SMI indicators. The proposed strategy measure all the KPIs of SMI and rank the cloud

services based on the measuring results. An Analytical Hierarchical Process (AHP) based mechanism

is proposed for the ranking mechanism. The proposed ranking is a three-phased process. Starting

with the decomposition of a complex problem in a hierarchical structure to specify the interrelation

among QoS attributes sub-attributes and alternative services. In the second phase, a relative property

is calculated for each pair of QoS proceeding with pairwise comparison of cloud services for computing

their local ranks as part of the third phase. The modeling of qualitative attributes is not in the scope

of current work. Some other efforts are also done to define additional key performance indicators for

SLAs and improved ranking methods [59, 60].

STRATOS [23] is a cloud broker service to facilitate the multi-criteria Resource Acquisition

Decision (RAD). Three objectives are considered in the RAD decision: cost, vendor lock-in, and online

2.3.1. Service Measurement Index Approach 23

provisioning. This methodology requires the application owner to specify the application requirements

in terms of KPI. The KPI based requirements are then compared to all the provider’s offerings to

select the best acquisition. This selection acquisition is used at deployment time as well as at run

time to fulfill the elasticity requirement. All the application specific details and objectives are defined

in a Topology Descriptor File (TDF). SMI is used to measure cloud performance and the selection

of resources is based on the defined details in TDF. Weighted sum method is used for objective

optimization.

The main idea behind the OPTIMIS [36] project is to offer a toolkit for optimizing the whole

service lifecycle, including service construction, deployment and operation on the basis of trust, risk,

and eco-efficiency. In short, a suitable Infrastructure Provider (IP) is selected for Service Provider (SP).

This project does not rely on the use of SMI, however, the measurement techniques for decision metrics

are similar to the measurement of KPIs. The service life cycle starts with the service construction,

where Service Provider (SP) prepares and configures the virtual machine images that constitute the

service along with a specification of dependencies. As a next phase, most suitable Infrastructure

Provider (IP) is selected for hosting the service. The selection process is based on the deployment

cost along with other metrics including trust, risk, and energy impact. Reputation is considered a

subjective measure of the perception of social network members regarding trust and risk analysis.

One of the components of OPTIMIS is a deployment engine that is responsible for service packaging,

discovery, and negotiation with a suitable cloud for hosting a particular service. The admission control

component is responsible for analysing the current workload on infrastructure provider to carry on

with the acceptance or rejection of service deployment request. After deployment, service and cloud

optimizer components of OPTIMIS are responsible for monitoring the provisioning according to agreed

SLAs.

Analysis: To measure the long list of SMI indicators along with KPI requires proper understand-

ing of cloud environment and fine grain application specific requirements. The user has to opt different

methods for measuring the functional and non-functional based KPIs that may lead to monitoring

the run time cloud environment with application specific fine-grained information like CPU, memory,

bandwidth, etc. Past experiences are also counted as an input to some quantitative measurements

that cannot be standardized. Moreover, consideration of reputation of the certain cloud provider to

evaluate certain attributes like trust and risk can end up in a biased decision. In addition to that,

24 2. Background & Related Work

virtual machines are selected by matching the user defined configuration requirements with the of-

fered cloud infrastructure services. Such resource acquisition cannot be considered application-driven

without knowing how the application will actually perform.

2.3.2 Model Driven Engineering Approach

Model driven engineering based solutions help application developers to model vendor-agnostic cloud

services. A model-driven framework combined with different QoS based model-driven analysis can

help in quantifying performance for the future. The MODACloud [54] project developed is a model

driven approach for design and execution of applications on multiple clouds. It aims to provide a deci-

sion support system, an open source IDE, runtime environment for high-level design, semi-automatic

code generation and automatic deployment on multi-cloud environments. A decision support method

(DSM) [61] is presented to assist a cloud customer for selecting a cloud provider as well as service

considering three QoS factors: risk, quality, and cost. This DSM is using the concepts of CORAS

and PREDIQT to help to analyse these three QoS attributes. PREDIQT is a model-based quality

assessment tool to predict the impacts of architectural design changes on system characteristics like

performance, scalability, security, etc. CORAS is a model-based risk assessment tool and based on

ISO 31000 risk management standards. It provides a customised language for threat and risk modeling

and Unified Modelling Language (UML) is typically used to model the target of the analysis. The

types of the proposed decision models are based on the modeling notations, languages and tools of

CORAS and PREDIQT.

Similar to MODACloud, PaaSage [62] follows the principals of model-based software engineering.

PaaSage is an open and integrated cloud management platform supporting design, development, opti-

mization and deployment of existing and new applications. Cloud Modelling and Execution Language

(CAMEL) is used by PaaSage to describe the application deployment model and scalability rules. The

deployment starts with the translation of workflow description into a CAMEL model which is then

consumed by another PaaSage component to generate a deployment plan. Finally, the deployment

plan is passed to the execution component of PaaSage to perform the actual deployment. Application

auto scaling is also managed by the execution component of PaaSage based on the rules mentioned

against the workflow execution stage.

ARTIST [63] is another model-driven engineering based project to be used for migration of legacy

applications on the cloud. The methodology is a three phase process starting with feasibility analysis,

2.3.3. Semantic Approach 25

modernization of software and validation in post-migration phase. The decisions are mostly related

to the business level, where a feasibility analysis is done to foresee the investment risk. However, both

technical and business aspects of migration are covered to help the user in customizing according to

application needs. The outcome of this project is a toolbox for the migration, modernization, and

cloudification of the legacy application. The core of the offered software suite is the Methodology

Process Tool for customisation and instantiation of the generic methodology on the pre-migration

analysis results.

Analysis: Model-driven engineering based solutions are heavily dependent on the fine-grained

information from domain experts, analysts and decision makers to get complete knowledge of business

models and company strategies. A designer must be aware of the impact of decisions, alternative deci-

sions, actor interactions, dependencies, and processes while designing the workflows and architectural

models. Such processes require sufficient time to follow the model based design principals. In the

case of DSM-MODACloud, there is no clear picture of how the cloud service measurements will be

collected and which parameters to consider.

2.3.3 Semantic Approach

Semantic technology helps in representing resources, domain concepts and rules with the help of on-

tologies. In this way, application requirements and service specifications can be defined in a vendor

independent way raising the abstraction for the user. mOSAIC [37] is an open source PaaS pro-

gramming interface for the development and deployment of multi-cloud based applications. mOSAIC

has an assumption about the deployed application that it is component based and dependencies for

both communication and data are defined explicitly among components. Furthermore, application

architecture must be service oriented and only the mOSAIC API should be used for inter-component

communication. Resource Brokering is one of the components of mOSAIC to act as a mediator

between client and cloud provider. The mediation involves the responsibility of cost optimization

and performance maximization. The mOSAIC platform assists the user for automatic provisioning

without direct user involvement. However, the SLA based performance indicators at application and

component level have to be defined by the user. mOSAIC assists the customer at PaaS level in order

to combine services from different clouds and to provide a new service on top of existing ones (and

provide transparency of multiple clouds).

In the context of the mOSAIC project, a knowledgebase is developed representing resource and

26 2. Background & Related Work

domain concepts by means of Semantic Web Ontologies and inference rules. The proposed ontology is

focusing on the IaaS layer for resource provisioning. This knowledgebase (support tool) is comprised

of two components, Semantic Engine and Cloud Agency. Semantic Engine (a prototype tool) is

responsible for helping the user to abstract the requirements in vendor independent way starting from

application requirements or from specific vendor resources. A Cloud Agency compares the different

offers of providers with the user proposal and retrieves the best offer. Cloud Agency is a Multi-

Agent System conceived for provisioning by negotiation, monitoring, and reconfiguration of acquired

resources. However, the proposed approach is taking advantage of inference rules and trying to overlap

the gap between high-level requirements and technical requirements.

Cloud4SOA [25] is a multi-PaaS approach to semantically interconnect heterogeneous PaaS of-

ferings across different cloud providers that share the same technology. This is a broker based solution

for the PaaS layer so the developers can select, deploy and manage their applications on PaaS offerings

and can switch between platforms without re-architecting the original application. The ontology-based

semantic matchmaking capabilities provided by Cloud4SOA establishes a set of abstraction among dif-

ferent PaaS offerings to support seamless deployment and management of application across different

cloud platforms. Cloud4SOA is based on five layer architecture to support Service Oriented Architec-

ture (SOA), user-centric focus, PaaS Semantic Interoperability Framework (PSIF) and management

of the cloud-based application. The PaaS Recommendation module in SOA layer is responsible for

suggesting for the best match of PaaS offering. The semantic profiles of application and PaaS offerings

define the degree of their relation to helping in matchmaking.

Analysis: mOSAIC and Cloud4SOA are multi-PaaS semantic based management and governance

solution for the multi-cloud environment. Use of ontologies and semantic technology is an effective

way of abstracting the complexities from cloud user. However, it comes with an on-going follow-up

process. For example, to present the actual offering details along with some new addition, the semantic

database has to be updated all the time. On the other hand, Cloud4SOA offers the PaaS Semantic

Interoperability Framework (PSIF) for the formal presentation of information regarding PaaS offerings,

application and user profile. So, all the offerings and details must be defined in a standard way to be

used in this system.

2.3.4. Benchmarking & Profiling Approach 27

2.3.4 Benchmarking & Profiling Approach

Due to the diversity in cloud computing infrastructure services, it is very difficult for the user to

choose which virtual machine has the maximum performance capability to be selected for deploying the

application. Sometimes, the wrong choice of selection ends up with under-performance of application

or increase in resource cost. One of the methods to help categorize the virtual machines is to benchmark

the performance. Mostly the benchmarking is performed independently of the application which is

not an appropriate selection and categorization method as the heterogeneous virtual machine would

have varying performance capability for various standards like CPU utilization or memory utilization

etc which might not be a good choice for some other application.

A six step benchmarking methodology is proposed by [29]. In this strategy, different virtual

machines are grouped (memory & process group, computation group, local communication group,

and storage group) together based on the similarity of VM attributes. The attributes are normalized

to rank the VM performance within each group. For each input application, weights are assigned to

the respective groups by the experts. In this way, a relevancy of application is shown with the group

using a value ranging from 0-5. Application experts indicate the relevance of application to the four

groups (computation, memory, processor and storage) by assigning weights to each group. Scores

are calculated by multiplying the weight and normalized value of the group and virtual machines are

ranked accordingly. A high ranked virtual machine can be selected now to maximize the application

performance.

CloudCmp [26] strategically measures the performance for a range of different cloud services

for multiple cloud providers. These services include elastic compute cluster, persistent storage, and

intra-cloud networking. The performance of these services is evaluated using different benchmarks and

metrics e.g., the speed of CPU, memory and disk I/O, storage service response time, scaling latency,

network latency, available bandwidth etc. The main goal of the work is to run the benchmarks to

measure above mentioned services on four providers and then use the results for real-time application

deployment. In this way there is no need to run the application on each cloud provider, instead use

the benchmark results to select the provider and resources according to application type. Java based

benchmark tasks from SPECjvm2008 are used to evaluate the computation metrics which includes

benchmark completion time, cost per benchmark and scaling latency. Storage metrics evaluates re-

sponse time, throughput, cost and time to consistency. The Network metrics are measured using

standard tools like iperf and ping.

28 2. Background & Related Work

Profiling-as-a-Service (PraaS) [64] approach is an adaptive instrumentation strategy to collect

profiling information of running application on a cloud while achieving the defined QoS. This service

intends to provide help to perform a trade-off between performance, cost, and accuracy of profiling

data. In terms of accuracy, application architects can define expected QoS and constraints to achieve

a certain level of accuracy. The policies are then uploaded to the PraaS service and instrumented

application is deployed for resource usage monitoring.This service is tested for an open source web-

based application. The current implementation supports profiling in three modes, no profiling, partial

profiling and full profiling that can be applied to target VM instance of Windows Azure. The main

focus for profiling is the resource utilization (CPU usage and data exchange) by different components

of applications.

Analysis: The ranking method depends on the assigned weights by experts and so requires

fine-grained application specification and requirement knowledge. In contrast, the benchmarking

based decision making is considered a useful solution. However, such decisions cannot be considered

application-driven as the behavioral change of application and cloud resources are ignored. IaaS of-

ferings are black-box for the user; the different software and hardware based policies at virtualization

level can cause uncertainty about decision outcome. Profiling methods are considered effective cap-

turing irregularities about application behavior. This is very evident that by increasing profiled data

ratio, better results could be derived, though at a cost of time and budget. Such solutions show no

relevance to broker based system though considered substantial efforts for decision making.

2.3.5 Application Specific Approach

Some research efforts regarding decision making for resource selection are based on application specific

solutions. These solutions may not come with the assumption of being part of a brokerage system or

multi-cloud environment. Such solutions are also considered domain specific decision support methods

and may not be performing effectively in different domains.

Conductor [65] is an approach to automatically manage cloud resources to satisfy user specific

goals such as cost or completion time. The solution is restricted to MapReduce computations and

the resource allocation problem is addressed using linear programming. It is quite feasible to use

linear programming to build a generic model for MapReduce computations due to the availability of

predefined data flow patterns. However, the same model might not be a viable choice for other kinds

of applications.

2.3.6. Summary & Discussion 29

To find out the suitable hardware and software configuration for an application is non-trivial,

especially with customer specific constraints regarding budget, performance and time. A common

practice is to follow the past experience for such decisions. [55] has applied the concept of Response

surface (a statistical method) for selection of hardware and software resources for MapReduce applica-

tion. Response Surface model captures the performance change of application on different setups of

hardware and software. In this methodology, a Response Surface is build using a range of exploratory

variables including hardware platform, network, and software configuration. The parameter values

can be collected from simulation to populate response service.

Analysis: Simulation-based data can be collected easily in a faster way in a controlled envi-

ronment; however it cannot represent the actual behavior of cloud environment on any application.

Mathematical or statistical methods are considered a good choice to understand and explore the re-

lationship among data attributes. This can lead to learning a system behavior. Such models can be

easily used under enhanced machine learning methods.

2.3.6 Summary & Discussion

This section has investigated the related work to decision support system for cloud brokers in a

multi-cloud environment and identified methodologies for decision making. The state of the art is

summarised in a Table 2.1 to quickly evaluate the contribution. This table is composed of 9 columns

where the first column represents the state of the art. Second column defines the cloud service layer

where the decision support methodology is applied to Infrastructure as a Service layer or Platform as a

Service layer. Third column defines the decision support method opted by the state of the art. Fourth

column represents the decision making criteria in terms of quality of service attributes or user defined

attributes. Fifth column declares the categorical name of the decision support methodology by which

state of the arts is categorized. Some additional dimension of summarised comparison is added in the

last four columns to indicate whether approaches are designed for single or multi-cloud environments;

how much information has to be provided by the user; and how easy it is for each approach to respond

to changes in the cloud market. Last column reports the application architecture approach is tested

on or provide support for. In the table, fine-grained information refers to the low level configuration

specific detail like number of CPU cores, CPU speed, RAM, storage, etc. On the other hand, coarse-

grained information represents a high level set of information in the form of threshold levels to define

QoS like high performance or low cost, etc.

30 2. Background & Related Work

RightScale, Aelous, Kavoo, Brooklyn and Scalr are providing means of service offering for control

and administration of distributed application deployed over different clouds, as stated in Section 2.2.

These solutions help for automated deployment of cloud or multi-cloud application and the user is

responsible for providing the choice for targeted cloud and virtual machine configurations. Optimis,

mOSAIC, Cloud4SOA are offering platforms for management and governance of cloud services (de-

ployable service for multi-cloud). Reputation is considered a subjective measure of trust and risk

analysis in Optimis and STRATOS (Section 2.3.1). mOSAIC and Cloud4SOA also provide semantic-

based solutions for matching of PaaS which requires a standard way of getting the requirements and

matchmaking (Section 2.3.3). MODACloud, ARTIST, and PaaSage are considered Model-driven en-

gineering solutions for multi-cloud and use analytical methods for decision making and requires a lot

of information from domain experts, analysts and decision makers belong to business or organisation

(Section 2.3.2). Ranking or matchmaking based methods cover fine grained requirements, however,

do not consider how an application will perform on different cloud setups.

Benchmarking or run-time application profiling is an effective way for monitoring the service level

objectives as well as provisioning of required resources (Section 2.3.4). Application profiling data is

useful to capture performance change and to detect any implementation error. However, it comes

with an additional overhead cost. Offline profiling can be used to reduce the overhead cost and

to observe performance change in a controlled environment in order to define policies to apply in

an on-line manner. This strategy sometimes is not suitable for the cloud environment where many

unknown factors can change the application specific QoS. Utilisation of existing data traces is also

used in application specific approach, where performance change is captured using mathematical and

statistical models (Section 2.3.5).

2.3.6. Summary & Discussion 31

Table 2.1: Summary: Decision Support System Methodologies

State of the

Art

Layer Decision

Support

Method

Decision Cri-

teria

Category Supported

Cloud

Level of

User Spec-

ified Info.

Response to

Changes

Supporting

Apps.

[58, 59, 60] IaaS/PaaS KPI, SMI +

AHP

Ranking of ser-

vice

Service Mea-

surement

Index

Multi Fine-

grained

Re-calculate

ranking with

updated data

All (in theory)

STRATOS

[23]

IaaS SMI +

Weighted

sum

Cost, Lock-in Service Mea-

surement

Index

Multi Fine-

grained

May need

to re-adjust

weights

Web bench-

marks

PaaSage [62] IaaS/PaaS User defined

rules using

DSL

User Specified Model Driven

Engineering

Multi Fine-

grained

may need to

re-evaluate

selection after

adding new

rules, update

ontological

concepts

Scientific

applications

ARTIST [63] IaaS Analysis of

Legacy Appli-

cations

User Specified Model Driven

Engineering

Single Fine-

grained

Re-design

business model

or update

ontological

concepts

legacy apps.

OPTIMIS [36] IaaS/PaaS User pref-

erence +

Reputation

Trust, Risk,

Energy Effi-

ciency

Management &

Governance

Multi Fine-

grained

Update toolkit

to accom-

modate new

APIs

Not specified

mOSAIC [37] IaaS/PaaS Semantic On-

tologies

User defined

application

and PaaS pro-

file matching

Semantic +

Management

& Governance

Multi Fine-

grained

Update seman-

tics and onto-

logical model

Not specified

MODACloud

[54]

IaaS/PaaS Analysis using

CORAS &

PREDIQT

tools

Risk, Quality,

Cost

Model Driven

Engineering

Multi Fine-

grained

May need to

re-evaluate

output

Distributed

and stand-

alone apps.

Cloud4SOA[25] PaaS Semantic On-

tologies

Not mentioned Semantic +

Management

& Governance

Multi Fine-

grained

Update seman-

tics and onto-

logical model

Business apps.

Conductor

[65]

IaaS Linear Pro-

gramming

Cost, Comple-

tion Time

Application

Specific

Hybrid Coarse-

grained

May need

parameter tun-

ing or model

tweaking

MapReduce

Cloudcmp

[26]

IaaS Benchmarking Computation,

Memory, Pro-

cessor, Storage

Benchmarking

& Profiling

Multi Coarse-

grained

May require

model update

Parallel sci-

entific, E-

commerce,

latency sensi-

tive

[55] IaaS Response sur-

face

Hardware

& Software

specific

Application

Specific + Ma-

chine Learning

Single Coarse-

grained

May require

model tweak-

ing

MapReduce

Cloudbench

[29]

IaaS Benchmarking

& Weight

Assignment

Computation,

Storage, Net-

work

Benchmarking

& Profiling

Multi Coarse-

grained

May require

new data for

re-evaluation

and weight

adjustments

CPU, mem-

ory, network

intensive

benchmarks

Profiling as a

Service [64]

IaaS Application

Profiling

CPU Utilisa-

tion & Data

Exchange

Benchmarking

& Profiling

Single Coarse-

grained

Re-profiling

and model

update

Web applica-

tions

32 2. Background & Related Work

Statistical and mathematical methods are considered quite effective for defining the underlying

relationships among data attributes. These methods are also linked with statistical machine learning,

where the captured relationships are utilised in deriving adaptive and robust learning models for a

given domain. This fortifies towards the argument of prospective use of machine learning for decision

making. We will try to explore if machine learning can play a vital role to overcome many of the

shortcomings in existing decision support methods. Limitations of existing state of the arts are

summarised in different key questions in order to evaluate if machine learning can help answer these.

1. How can we use machine learning for application-driven acquisition decisions without much

intervention of human choices? Particularly, the decisions related to virtual machine selection

at IaaS layer.

2. Can we rely on machine learning methods to capture application behavior on different deploy-

ment environments?

3. Are machine learning methods useful in deriving inference relations between the data instances

where some uncertainties are generated due to the black-box nature of cloud provisioning?

4. Can we integrate learning based decision support system with brokerage architecture?

5. Can we design and develop learning based solutions that are viable across multi-cloud environ-

ment?

The next section targets the evaluation of machine learning for decision support system keeping

in view all the raised key questions.

2.4 Machine Learning

Machine learning is a branch of artificial intelligence, which helps a system learn from past experiences

- or the so-called datasets or training sequences. about the construction and study of systems that

can learn from data. Tom Mitchel [66] defined a learning problem as: “A Computer program is said

to learn from experience E with respect to some class of tasks T and performance measure P, if its

performance at tasks in T, as measured by P, improves with experience E”

2.4.1. Machine Learning Classification 33

Learn to ReactData-Driven

· Unlabelled data
· No direct feedback
· Find hidden pattern

Task-Driven

· Labelled data
· Feedback loop
· Predict outcome or

future

Machine Learning

Supervised Learning
Unsupervised

Learning
Reinforcement Learning

· Decision process
· Reward based system
· Try learning series of

actions

· Linear Regression
· Polynomial Regression
· Support Vector Regression
· Decision Trees
· Neural Network

· Support Vector Machine
· Logistic Regression
· Naïve Byes
· Linear Discriminant Analysis
· K Nearest Neighbour

Regression

Classification

· K-mean
· Fuzzy C-mean
· Gaussian Mixture
· Neural Network

-Deep Belief
-Self Organising Map

· Generative Adversarial
Network

· Hidden Markov Model
· Hierarchical Clustering
· Principal Component

Analysis

Clustering
· Monte Carlo
· Temporal Difference

Methods
· Q-Learning
· SARSA algorithm

Data+Task-Driven

· Few labelled + large
unlabelled data

· Assumption based
underlying structure

· Infer correct labels
and predict outcome

Semisupervised
Learning

· Generative Models
· Graph Based Models
· Heuristic Approach
· Low Density

Separation

Figure 2.4: Classifications of machine learning with specified characteristics (purple box) of each category

along with representative examples of algorithms.

2.4.1 Machine Learning Classification

Machine Learning can be divided into 4 categories, 1) Supervised learning [69] 2) Unsupervised learning

[70] 3) Semi-supervised learning [67] [68] 4) Reinforcement learning [71] as shown in Figure 2.4. This

figure explains high-level characteristics of each of the category along with some examples of machine

learning methods.

34 2. Background & Related Work

1. Supervised Learning

Supervised learning uses known data sets (labelled data) as training data for making predictions.

The training data includes input data as well as response values. Explicitly, a supervised learning

algorithm builds a model based on the training data, which predicts future response values for

new data set, such as weather forecast to predict temperature or precipitation value.

Supervised learning can be divided into two categories: Classification and Regression as shown

in Figure 2.4. Classification is a way of learning from categorical response values, where data can

be separated into specifically labelled classes. In other words, it can be classified as a discrete-

valued output method, for example, to detect if the cancer is benign or not. By contrast,

Regression algorithm is used for predicting continuous output response, for instance, predict a

house price, and temperature prediction for the weather forecast. Some of the learning methods

under Classification and Regression categories are listed in Figure 2.4.

A workflow model of supervised learning is explained in Figure 2.5. A process of model generation

starts with feature extraction from available labelled data. Extracted features are then used to

fit a model which is then trained on a training data set in an iterative fashion to update the

model. To check the accuracy of data, the model is tested on test data set and if satisfied then

used for future prediction.

Raw Data
(Labelled)

Feature
Extraction

Fit a Model
Train a
Model

Test a
Model

Use Model for
Prediction

Figure 2.5: Supervised learning work-flow

2. Unsupervised Learning

Unsupervised learning is a technique for finding hidden patterns or intrinsic structures in the

data. It is used to draw inferences from datasets, which consists of input data without labelled

responses. Clustering is a common technique for unsupervised learning, which aims at finding

patterns or similarities using the Euclidean or the probabilistic distance. This technique is widely

used in bioinformatics, computer vision, and medical imaging. Some representative algorithms

for clustering are listed in Figure 2.4. A workflow model of unsupervised learning is also explained

in Figure 2.6. A process of model generation starts with feature extraction from unlabelled data.

2.4.1. Machine Learning Classification 35

Extracted features are then used to group subsets of data into clusters and later on used to predict

labels of new data.

Raw Data
(Unlabelled)

Feature
Extraction

Group into
Classes/
Clusters

Predict Label

Figure 2.6: Unsupervised learning workflow

3. Semi-Supervised Learning

Semi-supervised learning falls between the supervised and the unsupervised learning, because

it considers labelled as well as unlabelled data for training. Some of the semi-supervised

learning models are self-training models, mixture models, co-training and multi-view learn-

ing, graph-based methods, and semi-supervised support vector machines. Furthermore, since

semi-supervised learning makes assumptions about the distribution of unlabelled data, for ex-

ample smoothness assumption, cluster assumption, and manifold assumption, so it is a form of

transductive and inductive learning.

A workflow model of semi-supervised learning is explained in Figure 2.7. A process of model

generation starts with feature extraction from few labelled and a large amount of unlabelled

data. Extracted features are then used to fit a model based on initial assumptions about the

underlying relationship of features with the response variable. Learned model is then used to

infer correct labels/values for the unlabeled data and tested on test data set. If the model is

performing well on test data then the model is further used to predict future values. Most of

the learning algorithms defined for supervised and unsupervised learning can also be used under

semi-supervised learning approach.

4. Reinforcement Learning (RL)

RL aims for mapping situations to the actions so as to maximize the reward. RL is similar to

behavioural psychology. Specifically, RL is a trial and error learning technique, which aims to

strike a reasonable trade-off between exploration and exploitation- exploitation is when an agent

36 2. Background & Related Work

Raw Data
(Few labelled,

mostly
unlabelled)

Feature
Extraction

Fit a Model
Train to infer
correct label

Test a
Model

Use Model
for

Prediction

Figure 2.7: Semi-supervised learning workflow

uses its past experience, while exploration is to make a better action selection in future. On

the success of an action, the agent receives a numerical reward. Hence, the agent tries to learn

and select those actions, which would maximize its accumulated reward over time. A workflow

model of RL is explained in Figure 2.8. Agent learns to react to some action by trial and error

process of applying actions on the environment and analysing the result of action by reviewing

next state as well as reward value. This type of learning is mostly applied in the robotics field.

Some commonly known algorithms under this category are listed in Figure 2.4

Agent

Environment

ActionReward

State

Figure 2.8: Reinforcement learning work-flow

2.4.2 Machine Learning for Decision Support System

Machine learning is not only contributing enormously to various areas, for example feature and speech

recognition, bioinformatics and robotics but also performing quite well in resolving complex problems

of cloud computing.

Machine learning has proved its effectiveness in various aspects of cloud computing environment like

2.4.2. Machine Learning for Decision Support System 37

scheduling, load balancing and resource scaling, by forecasting the future needs. Machine learning also

helps in deriving suitable decision models for complex application scenarios. Some potential research

efforts are discussed here to explore the scope of machine learning in this domain. Furthermore,

machine learning based decision support methods are also investigated in the context of multi-cloud

brokerage solutions. In this regard, different machine learning algorithms are also highlighted to

indicate their effectiveness for prediction methods.

This work[72] is considered one of the initial efforts for dynamic resource scaling in the cloud. Three

platform-agnostic algorithms are analysed under the defined objective. One of the three algorithms

is developed by RishtScale, while the two others predict system load using linear regression and

autoregression of level 1. The Regression analysis is a statistical process for estimating relationship

among variables of the dataset (scalar dependent variable y and one or more explanatory variables

X). This relationship can be linear in nature if the relationship is modelled using linear predictor

function. Autoregression is a stochastic process used to estimate future values based on weighted sum

of past values. Furthermore, the authors’ also established a scoring metric based on availability and

cost for measuring the effectiveness and efficiency of these algorithms. Here, availability is counted by

considering the number of dropped requests out of a total number of requests. The results demonstrate

that linear regression is considered more susceptible to small fluctuations in the generated load. By

contrast, autoregression shows less sensitivity to load fluctuations. In addition to that autoregression

is far more reactive than RisghtScale algorithm.

Caron et al. [73] targets resource scaling by identifying the patterns of past incidences of

short-term workload and matching with current occurrences, which is similar to string matching.

Furthermore, Knuth-Morris-Pratt (KMP) algorithms is used to identify the similarities in the past

and the current data. Historical data about CPU utilization is used as target pattern and a unit time

of 100 seconds is fixed to make chunks of data for matching. This process is very time-consuming

as the current pattern has to be matched with loads of historical patterns until the match is found.

Another limitation is the time unit used for capturing data traces, which is not feasible in case of

cloud computing environment where pricing schemes are different. For example, Amazon charges on

hourly basis, so any delay in the decision can increase the utilization cost.

The objective of this work [74] is to provision resources ahead of time before these are actually

required. Future demands are predicted earlier using different machine learning methods. Three

quality of service attributes are considered as input to the prediction methods, the attributes are

38 2. Background & Related Work

response time, throughput and CPU utilization. Linear Regression (LR), Support Vector Machine

(SVM) and Neural Network (NN) are used as prediction methods. SVM is a supervised learning model

with associated learning algorithms to analyse data used for regression and classification. The NN

approach is inspired by the way a biological brain solves the problem where a large number of neurones

are gathered in a cluster and attached with a central point. Artificial Neural Network (ANN) model

shows interconnections between neurons in different layers of each system which defines interconnection

patterns between different layers. The learning process updates the weight of interconnection based

on the input and then activates the function to convert the neuron’s weighted input to its output

activation.

Applications relying on dynamic autoscaling techniques may not be capable of handling a sudden

traffic surge resulting from special offers or events, and hence, turn out to be low in performance.This

work [75] focuses on the limitation of reactive dynamic auto-scaling approach and the use of empirical

data for adaptive resource provisioning. Similar to [74], this approach also targeted the predictive

resource provisioning for web server using Neural Network (NN) and Linear Regression (LR) methods

though using benchmark on Amazon EC2 to collect data for training and testing. This work also uses

the sliding window method and tries to capture the workload patterns for forecasting. The efficiency

of prediction model depends on the workload patterns only. This work also targets the limitation

of [73] by reducing the unit time of 100 seconds to 60 seconds for data log in order to be reactive

according to billing time for Amazon EC2.

Jim [76] has developed a neural network based framework that learns from actual data to model

the performance of power plant. This work targets the application of machine learning for power

optimization of Google data center. The machine learning based power performance model predicts

the power usage in Google data centers and results in improved energy efficiency.

This work [77] targets the resource management decisions in cloud computing using machine

learning. Support vector regression is used as a prediction method to estimate the response time

for designing the resource allocation strategy. A Genetic Algorithm (GA) based resource dispatch

mechanism is proposed for the relocation of resources. The resource dispatch mechanism aims at

complementing the SLA between virtual machine operators and cloud service providers by effectively

utilizing the resources and maintaining the desirable performance at cloud level.

Analysis: The above-mentioned state-of-the art are applying different machine learning methods

to achieve the goals of resource provisioning, auto-scaling, and power optimisation. Some of the

2.4.3. Machine Learning for Cloud and VM Selection 39

work has applied the methodology to local virtual machines or simulated data that cannot reflect

the actual domain of cloud or multi-cloud environment. Some specific applications are targeted as

problem domains that cannot lead to generalised methods to be applied to a wide variety of application

set. These are closer to application specific prediction and decision making. The core focus of these

research methods is the prediction of upcoming workload to configure virtual machine ahead of time.

So the decisions are related with ”When” to provision rather than ”How” and ”Which” type of virtual

machine to select. [77] and [76] are using machine learning for effective utilisation of resources and

power consumption from the view of the cloud provider, which is slightly different from our core

objective of assisting the customer.

Provisioning of intelligent decision support systems as brokerage solutions in a multi-cloud environ-

ment are very few in numbers. We will critically explore these solutions in next section to strengthen

our argument about the potential domain to be explored.

2.4.3 Machine Learning for Cloud and VM Selection

Apart from these state-of-the art, some research efforts are started to surface for cloud and resource

selection (hardware & Software) or virtual machine selection. These solutions are either offered as a

generic recommender for service selection or application specific resource management in a distributed

clustered environment. These selection methods are based on the use of machine learning techniques

in various ways that are described in detail ahead.

Matrix [30] is a performance and resource management system based on machine learning meth-

ods. It uses clustering models with probability estimates to predict the performance of new workload

on a different virtual machine. In this regard, Matrix constructs performance models for different

workloads, while new workload is classified using the support vector clustering technique. Matrix is

capable of recommending a VM, which is good in performance and incurs minimal cost. Support

vector machine with different kernel functions is used to find optimized resource allocation. Repre-

sented applications or workloads are selected from some widely used benchmark suites e.g., FileBench,

SysBench, SPEC2006, PARSEC and Cloud9. These benchmarks provide a diverse range of workloads

to cover CPU intensive, IO intensive and memory intensive application types.

Preference based cloud service recommender (PuLSaR) [27] is a multi-criteria decision-

making approach, which offers optimization as a brokerage service. Service evaluations are done using

the comparison of qualitative and quantitative characteristics of cloud offerings. The author considers

40 2. Background & Related Work

the use of imprecise and precise metrics, which are more meaningful for characterizing and ranking a

cloud service. This recommender system uses the notion of imprecise metrics along with the precise

one for capturing the fuzzy or linguistics, which are required by the customer. This approach is an

extension of the SMI model, which now includes a new top-level attribute called Reputation, while

some existing attributes like robustness, support and monitoring, are re-adjusted as a second and third

level imprecise attributes. Based on this enhanced model the service KPI and user requirements can

be fuzzy numbers and intervals. Furthermore, fuzzy Analytical Hierarchical Process (AHP) is used

for comparison and ranking. Explicitly, AHP is a structural technique for analysing and organising

complex decisions using mathematical and psychology-based methods.

This work [56] has presented twofold contribution. A CSP indexing technique is proposed to

efficiently manage a large number of cloud service providers. The CSP-index is developed using the

B+-tree data structure technique. This technique facilitates easy integration of new index structure

with the existing system. The data structure includes ten property values for each service provider.

The ten values stored as properties for each service provider, which are related to Quality of service,

measuring units, pricing units, security, and virtual machine configuration. The focal point of using

the properties is to quantify relationship among the service providers. Service providers are clustered

based on the encoded index key. K-mean algorithm is applied for clustering, while iDistance is used to

quantify similarity between points. Consequently, the same type of service providers will be clustered

together. Once a customer enters his requirements, the requirement is transformed into a query to

search for a match from cluster.

Response surface [55] is used as a statistical machine learning methodology for selecting suitable

hardware and software resources for the MapReduce-based application. Alongside to the Polynomial

Regression approach, Response Surface methodology explores the relationship between explanatory

variables and one or more response (output) variable. In this methodology, a Response Surface

is built using a range of exploratory variables including hardware platform, network, and software

configuration. The parameter values for populating response surface can be collected from simulation.

Simulation-based data can be easily recorded in a controlled environment; however, it does not portray

the actual behavior of application on cloud environment due to its black-box nature.

Analysis: The afore-mentioned state-of-the art is restricted from the perspective of its research

scope. Except for PuLSaR, all other decision-making solutions [30, 77, 56, 55] are considered inde-

pendent efforts apart from brokerage solution. [55] provides the application-specific (MapReduce)

2.4.4. Summary 41

solution, which may not be effective on another kind of applications as well. Also, this solution does

not target the comparison of infrastructure-level service of different cloud providers. PuLSaR is based

on extended SMI method, which relies on customer specified details for ranking. Such methods can

rank the cloud service irrespective of how the application will behave once deployed. Matrix is based

on similarity matching of sampled traces. Sampling the performance data is an effective way to track

the profile of application behavior. The basic strategy of Matrix is similar to the [64] and [29] as

discussed in Section 2.3. However, cannot be considered time and cost effective considering the di-

mensionality of multi-cloud environment. A range of learning methods is applied in aforementioned

state-of-the-arts. From the learning model perspective, sometimes the underlying relationship between

the predictors and response variable is non-linear in nature and to derive such model require a lot of

effort and expertise of this domain. Moreover, one learning model might not be considered effective

for different applications or cloud providers and requires the need for multi-models based on different

learning techniques.

2.4.4 Summary

In this section, we surveyed the work related to machine learning and its impact for decision support

system. The research contribution discussed above are summarised in Table 2.2, which comprises of

four columns. First column represents a reference to the state of the art. Second column indicates

the objective of research work and proposed methodology. Third column presents machine learning

methods utilised by the research, while the fourth column indicates the Quality of Service (QoS) at-

tributes considered for decision-making using the machine learning methods. Similar to table 2.1 some

additional dimension of summarised comparison is also added in this table. Last four columns indicate

whether approaches are designed for single or multi-cloud environments; how much information has to

be provided by the user; and how easy it is for each approach to respond to changes in the cloud mar-

ket. Last column reports the application architecture for which the proposed approach is tested on.

The purpose of this exercise was to ascertain that to what extent the state-of-the-art is answering the

key questions raised in Section 1.5. The literature has shown evidence of the use of machine learning

approaches in decision making as well as their effectiveness for predictions (Section 1.5-RQ1). Machine

learning models have the ability to capture the data distribution for predicting the future behavior,

which helps in observing application performance with different instances of input metrics (Section

1.5-RQ2). Some regularities are yet to be unfolded for unanswered questions, however, captured as

requirements for designing a solution.

42 2. Background & Related Work

Table 2.2: Summary: machine learning aided decision support systems

State of

The Art

Objective Machine

Learning

Methods

QoS Supported

Cloud

Level of

User Spec-

ified Info.

Response to

Changes

Supported

Apps.

[72] Dynamic Re-

source Scaling

RightScale

Algorithms,

Autoregression

of Level 1

and Linear

Regression

Availability

and Cost

Multi Performance

metrics

May require

parameter tun-

ing and model

tweaking

Network traffic

[73] Resource Scal-

ing

Pattern

Matching

Using KMP

Algorithm

CPU Utilisa-

tion

3 Grids Specify

threshold

values

Model tweak-

ing

Orchestrate

video

[74] Resource Pro-

visioning

Linear Regres-

sion, Support

Vector Ma-

chine, Neural

Network for

predicting

workload

pattern

Response

Time,

Through-

put, CPU

Utilisation

Single Specify

threshold

in terms

of response

time and

throughput

Model retrain-

ing based on

new data

E-commerce

benchmark

[75] Auto Scaling Linear Regres-

sion, Neural

Network and

sliding window

to predict

traffic surge

Workload,

Traffic Surge

Single None Retrain model

based on new

data

Web server

[76] Power Op-

timisation

For Cloud

Provider

Neural Net-

work for power

prediction

Energy effi-

ciency

Single Absolute

power range

Parameter

tuning and

retraining

Data center

[77] Resource

Management

For Cloud

Provider

Support Vec-

tor Regression,

Genetic Algo-

rithm

Response Time Single SLA perfor-

mance met-

rics

Model tuning

and training

Not mentioned

Matrix [30] Performance &

Resource Man-

agement

Support Vec-

tor Machine

For Clustering

Performance &

Cost

Multi Performance

metrics

Model tweak-

ing and re-

training

CPU-intensive,

memory-

intensive, I/O

intensive

Preference

based cloud

service rec-

ommender

(PuLSaR)

[27]

Decision Mak-

ing Broker

SMI & Fuzzy

Analytical Hi-

erarchical Pro-

cess

Qualitative &

Quantitative

Multi Fine-

grained

performance

metrics

Model tweak-

ing and re-

training

CPU-intensive,

memory-

intensive

[56] Cloud Service

Provider Selec-

tion

K-Mean For

Clustering

Pricing, Secu-

rity, Virtual

Machine Con-

figuration

Multi Coarse-

grained

metrics

Model retrain-

ing

Not mentioned

[55] Resource

Selection

Response Sur-

face

MapReduce

Performance

Single Coarse-

grained

May require

model tweak-

ing

MapReduce

2.5. Discussion & Conclusion 43

2.5 Discussion & Conclusion

In this chapter, we surveyed the background and related work aligned with the research goals stated

in Chapter 1. The investigation was three-fold with a focus on a multi-cloud broker, machine

learning and decision support system particularly for decisions regarding resource selection at

the infrastructure level. First, the cloud brokerage offerings were investigated, looking at the state-of-

the-art providing services at the different classified level of the broker. This provided the big picture

of the broker services with ample examples to give the reader a wider level of understanding about the

need for decision support system. Following this, methodologies of the decision support system were

discussed to provide an overview of possible techniques to help cloud customer for decision making

at infrastructure level in a cloud or multi-cloud environment. Lastly, the related work to the use of

machine learning for decision making was investigated. To summarise, the following conclusion can

be drawn from this chapter

1. The research efforts for decision support system are scattered around variable boundaries in

cloud computing environment. Some of the efforts propose decision-making methods without

considering the multi-cloud environment or any part of brokerage architecture. It is clearly

depicted that very few efforts have targeted the decision support system as a brokerage service

for multi-cloud environmental decisions. However, these solutions have lots of requirements to

deal with. For example, users must have fine-grained information of their applications. They

should be aware of all the business policies to show the impact of any change in the architectural

design. Some decision support methods are based on ranking methods that ignores the fact of

performance uncertainty. Moreover, these methods require the customer to specify application

requirements in their own defined way like rating in numbers or assigning weights.

2. The decision support methods, which considers performance fluctuations using benchmarks or

data traces cannot be considered cost and time effective keeping in view the dimensionality

of cloud options. Though, such options could be very effective for making application-driven

decisions, if aligned with learning strategies.

3. Machine learning can be applied for decision-making in a cloud environment in order to capture

the application behavior on different deployment setups. However, there is a need to derive a

generalised model or set of models, which can be applied to a range of applications. The design

of intelligent decision support system integrated with cloud-brokerage solution will be considered

a productive effort to offer similar services as a package to the cloud-customer. Moreover, to

design and develop learning based decision support solutions that are viable across the multi-

cloud environment.

4. If one decides to apply machine learning methods on the collected traces, the traditional manner

has to be followed which requires sufficient amount of data for testing and training purpose. If

there is any change in the distribution of data the trained model is no more considered reliable

about predicting the result. With the change in the distribution of data, the same traditional

exercise has to be followed again starting from data collection, training, and testing which might

not be considered an optimal way of applying learning methods. One should consider the learning

approaches to transfer the knowledge between different learning scenarios. This would reduce

the cost and time efforts.

Chapter 3
Daleel, A Decision Support System

3.1 Overview

Chapter 2 has provided a holistic overview of the cloud brokerage, decision support systems and the

use of machine learning for decision making. Unfortunately, existing approaches are lacking in many

ways: i) user friendliness, ii) providing application-driven and realistic solutions, and iii) flexibility

in terms of dealing with different cloud providers and application domains.

This chapter explores the design and architecture of Daleel, an intelligent decision support system,

to specifically address the first research goal as stated in Chapter 1 and recalled here.

“The designing of a cloud broker architecture integrated with an implementation of an intelligent

decision support system.”

Firstly, a set of important design requirements are constructed by observing the limitations and

challenges of existing approaches. Secondly, an abstract overview of the proposed solution is given

based on these requirements. Thirdly, the design principles at the core of Daleel are discussed. This

includes the construction of machine learning aided decision support module and its methodological

steps to achieve the learning models that are viable across different application domains.

Now, recall second research goal, as stated in Chapter 1:

“The investigation of machine learning methods that can be applied for optimal decision making

in the decision support system of a cloud broker.”

45

46 3. Daleel, A Decision Support System

To address this research goal, a machine learning aided decision support module is constructed

and its methodological steps are explained in order to build learning models that are viable across

different application domains. Lastly, the representative machine learning methods are discussed to

answer key research question of second goal, regarding applicability of learning methods for designing

a decision support system in a cloud environment.

3.2 Problem Formulation

The decision support system should be an integral part of any cloud brokerage framework. The

decision support module should have a capability to assist the customer by providing realistic as well

as application-specific decisions related to cloud and service selection. This module should provide

valuable behavioural insight into the application performance necessary for making optimal decisions.

Moreover, the architecture of decision support module should have the capacity for large-scale analysis

related to any decision making process. The decision-making process should be presented to a customer

in an easy way by abstracting details of any computational complex methods. The user should not

be asked to provide any fine-grained application specific details or configuration requirements.

3.3 Proposed Solution

Daleel is a solution devised to provide a decision support system to assist customer for optimal

deployment decisions in a way that meets the requirements set above. The proposed solution is

devised to meet the above-mentioned set of requirements and based on the following design principles.

3.3.1 Overview of Daleel

Daleel offers a decision support system integrated with the cloud brokerage. It is specifically de-

signed to provide assistance to the cloud customers for optimal decision making related to application

deployment. More precisely, decisions related to the selection of optimal IaaS provider and instances.

The main design principles of Daleel are twofold. The first principle is to equip customer with some

evidence-based knowledge considering the black-box nature of cloud offerings. As, cloud providers do

not provide any necessary details such as scheduling algorithms, the parallel workload on virtual

3.3.2. Architecture of Daleel 47

machines or how virtual cores are pinned to physical cores. Therefore, machine learning provides

necessary insight for decision making. The second design principle of Daleel is to abstract the com-

plexity of the decision making steps from customers. The solution requires the high-level specification

of an application from the customer, collected as application vignette. This information is collected

in a user-friendly and understandable format. The application vignette (general description) is a

short set of key-value pairs provided by the customer that serves as a high-level description of the

application requirements. This also includes high-level descriptors of the application to categorise it

as either memory-intensive, CPU-intensive, memory-CPU intensive and so on. The customer related

constraints are also collected regarding the QoS attributes. The customer constraints include the cus-

tomer’s functional and non-functional requirements, such as minimum QoS, availability, location, and

budget. A cloud provider’s portfolio contains data that we obtain (through APIs and web scraping)

based on their resource provisioning levels, resource meta-data, and pricing models.

3.3.2 Architecture of Daleel

Knowledge Base

Actuator

Cloud
Infrastructure

M
et

ri
cs C

SP

P
o

rt
fo

lio

Application Performance

D
ec

is
io

n

Su
p

p
o

rt

A
p

p
lic

at
io

n

V
ig

n
et

te

C
u

st
o

m
er

C

o
n

st
ra

in
ts

Learning

Analysis Planning

Customer

Trigger

DALEEL

Figure 3.1: Daleel’s architecture.

48 3. Daleel, A Decision Support System

The basic architecture of Daleel, depicted in Figure 3.1, consists of three primary architectural ele-

ments: Decision Support, Actuator, and Knowledge Base. The Decision Support module, equipped

with machine learning models, is at the heart of Daleel’s architecture. This module relies on a three-

phase process that continuously operates throughout the application life cycle to predict application

performance. These phases are: Analysis, Learning, and Planning. Each phase carries out different

yet complementary operations to acquire deep knowledge of the available cloud deployment options

and how suitable they are for a given application. The detailed functioning and architecture of these

three phases is revealed in next section. Daleel supports incremental and iterative design feature for

development of application specific as well as generalised learning models based on the analysis of dif-

ferent applications deployed on cloud IaaS. The generated learning models are then used for predicting

application performance to assist the user in making application-driven decisions. The Actuator trig-

gers the Decision Support module into operation at different times. This could be based on thresholds

set according to the customer constraints on application QoS, application load, or Knowledge Base

information (change in a provider’s portfolio). Such triggers will launch new Analysis and Learning

cycles, or will activate the Planning logic to begin migration to a new cloud infrastructure. Migration

between different cloud infrastructures is a big challenge in its own right and is outside the boundaries

of this work. However, the Planning logic could easily be extended to incorporate migration methods

[78]. The Knowledge Base holds data collected by the Decision Support module. This data is

comprised of profiling traces, cloud portfolios, an application vignette, learning models and learning

settings/ parameter settings.

3.4 Daleel’s Decision Support

The three phases of Decision Support module are responsible to perform important tasks in order to

provide an optimal deployment decision. A detailed modular description of these phases are described

in Figure 3.2.

3.4.1. Analysis Phase 49

Model
Training

Model Fitting
· Identifying significant predictor
· Identifying variable importance
· Identifying type of relationship
· Identifying strength of

relationship
· Remove outliers
· Detecting multi-collinearity
· Interaction terms

Model
Assessment

Update Fit

Model Generation

Learning
Method

Function
Repository

Application 1,2,3, ...n

Profiling

Fetch Model

Predict
Performance

Calculate
Deployment

Cost

Get
Customer’s
Constraints

Find Best Fit

Analysis Phase Learning Phase Planning Phase

Analysis Phase

Application
Profiling

Learning Phase

Model
Generation

Function
Repository

f1
f2
f3
..
fn

Planning Phase

Planner
∑

Figure 3.2: Overview of the three phase decision support system.

3.4.1 Analysis Phase

The Analysis Phase kicks off the process of decision-making. This stage contains the Application

Profiling module that records the time-series traces of the application’s and the infrastructure’s per-

formance. Data profiling is an effective way of tracking the application’s behaviour under different

deployment setups. This can be carried out live on a shared cloud infrastructures (whether public or

50 3. Daleel, A Decision Support System

private), or offline in a completely controlled and isolated virtual environment.

Collected Data
Traces

Application
Vignette

Cloud Profile

Execution
Details

Deployment
Details

Resource
Utilisation

CPU%, Mem%,
Paging, Storage, ...

Application execution
time in day, hour, minute

and seconds

Application Type
Architecture Details-> parallel,
multi-threaded, load-in-mem,

external file requirement

Pricing Scheme
Instance Price
Instance Type

Configuration Details->
RAM, CPU, Memory,

Storage, any standard

Deployment Type
Deployment Date, Time, Year

Deployment Setup
(including application details and

instance type details)

Figure 3.3: Collected data Traces details

The profiling data contain information about the application’s performance on a representative

set of selected virtual machines. Each dataset is extracted as an outcome of individual experiments

targeting the specific application’s deployment on a subset of selected virtual machines (EC2). The

collected data traces are composed of information about the application vignette, cloud portfolio and

details regarding deployment, execution and resource utilisation, as shown in Figure 3.3. Application

vignette sustains information about the application type such as whether the application is memory

intensive, CPU intensive or a mix of both. It also holds information about the application’s architecture

such as whether it is single threaded, parallel or multi-threaded. Other details that exist include the

external file requirement, external file size and in-memory computation. Deployment details include

information about the deployment date, time, day and year. Execution details include application

3.4.1. Analysis Phase 51

execution time in days, hours, minutes and seconds. Utilisation details include CPU utilisation,

memory utilisation, paging, storage,and so on. Cloud profile include information about instance

specification and pricing scheme. Aggregating different application profiles builds up the Knowledge

Base with information about the application’s description and its behaviour on different deployment

setups.

Application profiling module is responsible for collecting profiling information by deploying the

application on different virtual machines. Following activities are involved in this process:

1. Application vignette -getAppVignette(): A user has to provide application executable

files along with its vignette. getAppVignette() function collects following application-specific

information from user and writes to a CSV file. <int applicationId>: id is automatically assigned

to each application. <String applicationName>: name of the application has to be provided

by the user. <String applicationType>: the user has to choose the type of application from a

displayed list such as IO, CPU, Memory, etc. In this research, we have used three representative

applications of three types, one is CPU-intensive, second is memory-intensive and third is a mix

of CPU and memory. <boolean parallel>: the user has to specify if the application architecture

exploits parallel architecture. <boolean multiThreading>: this information keeps track if the

application is single-threaded or multi-threaded. <boolean loadinMemory>: the user has to

identify if the application execution requires some file to be loaded into memory, as the case

in memory-intensive applications. <boolean externalFilerequired>: it has to be specified if the

application requires some input file to be used during application execution. <int fileSize>: if

the application requires some supporting file (as input) what is the size of the file.

2. Create VM - createVM() : A VM can be launched through a portal or createVM() function

which makes use of provider Java SDK. In this research, the representative cloud providers are

Amazon and Google. To create a virtual machine following parameter values need to be provided:

<Credentials>: it includes the <access-key> and <secret-key>. <setInstanceType(String in-

stance)>: every provider offers different categories of virtual machines specific to different ap-

plication needs, for example, t2.small is an instance type in Amazon EC2. In this research we

chose a representative set of virtual machines from different categories, the details can be found in

Section 4.3.2. <setMinCount(int mincount)>, <setMaxCount(int maxcount)>: this number ex-

plains the number of virtual machines to be created for each type. <setAvailabilityZone(String

52 3. Daleel, A Decision Support System

zone)>: A user can choose any availability zone. The selected availability zone in this re-

search is EU-west. <setImageId(String imageid)>: this is operating system image a virtual

machine would have when launched. In this research, we used 64 bit Ubuntu Linux14.04.

<setKeyName(String keyname)>: name of the secret key has to be provided by the user.

3. Deploy application - deploy.sh: a bash script is written to deploy the application. This script

provides support to deploy executable of a standalone application. Deployer has to make sure

that all the executables, scripts and supporting files are in the same location to be copied to VM

through SCP. This script can be included during VM creation process through a portal or can be

executed through terminal once the VM is created. This script is also responsible for monitoring

application elapsed time in each iteration and logs output in a text file (applicationlog.txt) which

is stored in the local storage of VM. The application executes for a given number of runs and

a delay can be added using a sleep() function in each pair of the run. Further details about

number of runs and delay are given in Chapter 4. Following are two example commands in the

script to log application execution date and elapsed time.

$ date | tee −a applicationlog.txt

$ time −o applicationlog.txt −a java -jar applicationlnx.jar

4. System monitoring - monitor.sh: System monitoring script logs information about the

virtual machine specifications, few script snippets are shown below.

$ echo ”*****CPU INFO********” |tee -a cpuout.txt

$ cat /proc/cpuinfo |tee -a cpuout.txt

$ echo ”*****MEMORY INFO********” |tee -a cpuout.txt

$ cat /proc/meminfo |tee -a cpuout.txt

$ echo ”*****CPU HARDWARE********” |tee -a cpuout.txt

$ lscpu |tee -a cpuout.txt

vmstat and sysstat are two system monitoring tools used to monitor the system performance

during the time of application execution on a virtual machine. vmstat traces are logged in a text

file (vmstatlog.txt) after every 3 seconds. On the other hand, sysstat keeps track of system traces

after every minute for 24 hours which can be saved in a syststoutput.log file. sysstat is a system

performance tool for Linux. It includes several system performance tools like iostat, sar, mpstat,

pidstat, sadf. Sar collects system activity information, iostat informs CPU utilisation and disk

3.4.2. Learning Phase 53

I/O statistics, mpstat reports pre-processor statistics, pidstat informs about Linux processes and

sadf is responsible to display stats collected by sar. The stats collected by sar informs about I/O

transfer rate , paging activity, interrupts, network activity, memory utilisation, CPU utilisation

and kernel activities. All the monitoring data is extracted through a SCP command and saved

on a specified private storage.

5. Parsing log files: The above mentioned collected data is in raw format and requires transforma-

tion to a comma delimiter CSV file to be used by the Learning module. The parseApplication(path-

to-.txt-file) and parseVmstat(path-to-.txt-file) functions (written in Java) read the txt files and

write the extracted output into a .CSV file along with application vignette. The resulting CSV

file contains information about deployment details, cloud profile, execution detail and applica-

tion vignette, as shown in Figure 3.4 with some selected columns to be displayed. Some of the

factor based values, for example, application specific parameters, are transformed into numerical

values for the sake of reducing data complexity for model generation.

Figure 3.4: Transformed values in a CSV file.

3.4.2 Learning Phase

The second phase in the Decision Support module is the Learning phase, which is comprised of the two

elements shown in Figure 3.2; the Model Generation element and the Function Repository element.

The Learning Phase aims to generate a prediction function to accurately predict the application

execution time which can further be used to calculate the cost of application execution. It also aims

to calculate the correlation between predictors and responses so as to infer a relationship between the

two and use this relationship for future predictions.

54 3. Daleel, A Decision Support System

M
O
D
E
L

G
E
N
E
R
A
T
I
O
N

Start

2: Receive Profiling Data
from Analysis Phase

Model Fitting

Model Training

Satisfactory

End

 Function
Repository

Pre-processing & Data
Split

Training set

Model Assessment

Test set

NO,
Update model

YES

Select Learning Method

Figure 3.5: Flow chart of the Learning phase.

Figure 3.5 explains the flow of steps to generate a learning model to predict application execution

time. Learning phase starts by receiving data (.CSV file) form Analysis phase and selects a machine

3.4.2. Learning Phase 55

learning method to start development process of a learning model. The third step is a selection of a

machine learning method. In this research different machine learning methods are used to generate

prediction and inference functions for multiple applications such as f1, f2, ..., fn, and are stored in

the Function Repository. The machine learning methods used in the Learning phase are discussed in

Section 3.5. The Model Generation module starts with pre-processing of data to remove any empty

or wrong values within the .CSV file. Pre-processed data is then split into training and test set. The

Model Generation module comprises a set of processes that are executed in an iterative way, as shown

in Figure. These processes are Model Fitting, Model Training, Model Assessment and Update Fit.

Amongst all of these, Model Fitting is the most important and time-consuming phase of generating a

model that is explained in detail ahead. Model fitting process received training data and generate a

learning model. The fitted model is then get trained and passed on to the model assessment which

evaluates the trained model on test data set. If the prediction results are satisfactory the model is

saved into function repository and in case of unsatisfactory results, model starts update phase.

Model generation follows the traditional principle of learning a model that includes the presence

of data traces (generated by Analysis phase) which belong to the same data distribution set. This

means the decisions are related to one type of application for a particular cloud provider.

1. Model Fitting

Model Fitting is comprised of following steps as shown in Figure 3.2. Algorithm for Model

Generation module is stated in Chapter 4 (Algorithm 1) and details pertaining to each of these

steps are described here. An R markdown script explaining R code with respect to each of

the stage is presented in Appendix B. All steps can be performed automatically through the

markdown script, however, a human intervention is required at few places to assess results.

Assessment criteria is mentioned at each stage to be understandable by a human having less or

no expertise in machine learning.

(a) Identifying significant predictors.

Q: are any of the predictors X useful in predicting the response Y?, and which of the

predictors are associated with the response?

This can be achieved by hypothesising the relationship R and to check for the contribution

of each predictor in that relationship. A relationship R can take any mathematical form to

describe the relationship between dependent variable Y and independent variable(s) X.

56 3. Daleel, A Decision Support System

For example, one can start with a hypothesis Hi, indicating a significant linear relationship

R between the independent variable X and the dependent variable Y . In contrast, the null

hypothesis H0 states that there is no relationship between the predictors and the response

variables. The linear relationship R can be described mathematically

Y ≈ β0 + β1X (3.1)

“≈” can be read as “approximately modelled as”, in other words, one can say that Y is

regressing on X. In equation 3.1, the terms β0 and β1 represents model coefficients (constant

values) and indicate the intercept and slope terms in a linear model.

We test the null hypothesis,

H0 : β1 = β2 = ... = βp = 0 (3.2)

and the alternate hypothesis

H1 : atleast one βj has a non zero value (3.3)

Some fundamental statistical methods are used to evaluate results of hypothesis, for exam-

ple, F-statistics, p-value, Residual Sum of Square (RSS) and Total Sum of Squares (TSS).

Details for each of the method is explained in Appendix A.

lm() function: a linear function in R can be generated using this built-in function that

tries to create a linear relationship between response and predictor variables, as shown

below.

> Model = lm(< responseV ariable > < predictors >, data = trainingData)

Summary of the generated function can be displayed using summary() function that takes

a model as an input.

> summary(Model)

The summary can display all the learned coefficient values, F-statistics, p-value ,and R-

value for the model. The actual implementation of this function with real values along with

interpretation instructions is detailed in Appendix B.

glm() function: a non-linear function in R can be generated using this built-in function

that tries to create a non-linear relationship between response and predictor variables with

different polynomial order, as shown below.

3.4.2. Learning Phase 57

> Model = glm(< responseV ariable > < poly(predictors, degree) >, data = trainingData)

(b) Verifying variable importance.

Q: Do all the predictors help to explain Y, or just a subset of predictors are considered

significant?

Variable selection determines that which of the predictors are associated with response to

fit a model and are significant for deriving a robust model. Variable selection could be

done by comparing a lot of models, each containing a different predictor subset. Forward

selection and backward elimination of variables are used to select a subset of predictors

that are considered important to define a relationship between predictors and response

variables. The P-value is one of the key measures used to determine the importance of the

variables that contribute towards defining a strong relationship. The P-value associated

with each predictor is evaluated and whichever has a lower value is selected for the model

generation. Ideally, variable selection is performed by trying various models that contain

different subsets of predictors. The R2-value, which is also known as the coefficient of

determination, is a statistical method for measuring the closeness of the actual and predicted

data in terms of how similar the actual data are to the model fitted line or curve.

regsubsets() function: this built-in function can automatically apply forward and back-

ward selection method to identify important predictors. It takes a dataset as an input with

the identification of response variable and selected method (forward or backward).

> ForwardSelection = regsubsets(< responseV ariable > ., data = trainingData, nvmax =

5,method = ”forward”)

> summary(ForwardSelection)

> BackwardSelection = regsubsets(< responseV ariable > ., data = trainingData, nvmax =

5,method = ”backward”)

> summary(BackwardSelection)

regsubsets() function: can also be used to identify subsets of predictors showing best

relationship with the response variable. In the example, it tries to find 7 best subsets

comprising different combinations of predictors. The implementation of this function with

real values can be found on page 2 of Appendix B.

> nbest = regsubsets(< responseV ariable > ., data = trainingData, nbest = 7)

> summary(nBest)

58 3. Daleel, A Decision Support System

The list of significant predictors as a result of this research are shown in Chapter 4, Table

4.3.

(c) Identifying type of relationship.

Q: Is the relationship always linear?

It is not necessary that the true relationship between the responses and predictors is always

linear. Residual plots are used to identify if there is a chance of non- linearity in the

relationship.

residualPlots() function: residual plots are graphical representations of residuals on

the vertical axis and the independent variable(s)/predictors on the horizontal axis.

> residualP lots(Model, 1, fitted = TRUE)

The term residual indicates the difference between the observed value of the response vari-

able(y) and the predicted value (y). Residuals are one of the bases for most of the diagnostic

methods. For example, if we have hypothesised a linear relationship between the response

and predictors and if the hypothesis is true then the points in the residual plots are ran-

domly spread around the horizontal line to indicate a linear relationship. On the other

hand, if the true relationship is not linear, patterns or curves are observed in the plot, thus

indicating non-linearity. This plot is very useful in exploring the combined and individual

relationship of response(s) and predictor(s). The plot shows no pattern if the relationship

is linear.

marginalModelPlots() function: Component- Plus-Residual (CPR) or marginalModel

plots are considered to be an effective technique to find non-linear relationships between

individual predictor(s) with response variables.

> marginalModelP lots(Model)

If the relationship denies the chance of linearity then other functions can be used to sum-

marise the association of response(s) and predictor(s). This must follow the same steps

starting from the hypothesis generation.

avPlots(), crPlots() function: Added variable graphs are good to see the effect of each

regressor after adjusting for all other regressors and shows the impact of observations on

regression coefficient.

> avP lots(Model, id.n = 2, id.cex = 0.6)

> crP lots(Model)

3.4.2. Learning Phase 59

crPlots function tries to fit smoothness function (polynomial order) on each of the predictor

to identify the range of non-linearity.

Further explanation of these functions (R-built-in functions) can be seen on page 15 onwards

of Appendix B. This phase requires a human support to manually scan the generated plotted

results.

(d) Identifying strength of relationship.

Q: How well does the model fit the data?

The strength of the relationship is measured using the model’s accuracy. Two measures

are used to check the model accuracy, one is by using the Residual Standard Error (RSE)

and other is by using R2. Above two stages can identify if the relationship is linear or

non-linear. Further to that non-linearity can be checked by transforming predictors as well

as applying different non-linear functions, for instance, a polynomial of a different order.

glm() function can be used to check the model fitness with inclusion of any polynomial

order. More explanation of this type of function can be found in Appendix B.

> Model = lm(< responseV ariable > poly(predictorV ariable, 3)+poly(predictorV ariable, 2)+

..., data = trainingData)

svm() function: This built-in function provides support for regression as well as classi-

fication problem. This function has capability of operating with different kernel methods,

such as, Radial, Polynomial, etc. This function can take any number of parameters with

kernel function and tries to fit a model by mapping a function to high dimensional hyper-

plane. Following example code tries to learn a function with polynomial of degree three

with certain parameters that help to tune a model. Details of these parameters can be

found in Section 4.3.3.

> svm(< responseV ariable > < predictors >, data = trainingData, scale = FALSE, kernel =

”polynomial”, degree = 3, gamma = x, cost = 0.1, coeff = 1...)

The generated learning models for the representative applications using glm() and svm()

functions are listed in Section 4.3.1 and 4.3.3.

Regularization methods can be used to prevent overfitting of a function and can improve

generalisability of the learning model. One can apply most common forms of regularization

methods, such as Ridge and Lasso. Further details can be found in Appendix B (page 11)

and in [39] where we applied these methods on the generated learning models.

60 3. Daleel, A Decision Support System

Response and predictor transformation is a way of transforming the non-normal distribution

of dependent variables into normal. Normality is an important assumption before applying

large set of statistical test methods. One can use Box-Cox transformation for response

variables and Box-Tidwell for predictor transformation as detailed on page 41 of Appendix

B.

(e) Remove Outliers.

Q: Is it necessary to remove outliers? Are they leading the relationship towards negative

results?

An outlier is an observation that is far away from the random variables in the population

sample. This could be due to some variability in the dataset or some measurement error.

Outliers should be investigated carefully as sometimes they contain useful information about

the dataset. Box plots and some statistical methods are used to identify any outliers in

the dataset. The removal of outliers is sometimes necessary as they can influence the

coefficient measurement. Outliers are identified in the box plot using the interquartile

range and greatly effect the mean of the dataset. They also show a non-normal distribution

with a heavy or long tail that is indicated in the distribution plot. Outliers can either be

truncated or replaced with the nearest possible value that can be accommodated in the

dataset while not influencing any relationship.

spreadLevelPlot() function: Outliers can be identified using studentized residual, which

is a form of t-statistics and is the quotient resulting from the division of a residual by an

estimate of its standard deviation. This function takes a model as an input, as shown

below.

> spreadLevelP lot(Model)

For this research, we have removed all the data set values having more than double of

standard deviation in the response time.

(f) Detecting multi-collinearity.

Q: What is the impact of multi-collinearity on the relationship?

Multi-collinearity or collinearity refers to the high correlation of two or more predictor

variables in a regression model setting. For example, when one of the predictor variable

can be linearly predicted from the other. Multi-collinearity does not affect the predicting

power of a model as a whole although it affects the coefficient values regarding an individual

predictor. This can result in a large amount of standard errors in the model.

3.4.2. Learning Phase 61

vif() function: collinearity in regression analysis can be detected using the Variance In-

flation Factor (VIF) which measures the increase in variance of estimated regression coef-

ficients due to collinearity. Statistical details can be found in Appendix A and an example

use of this function is shown below.

> vif(Model)

The result of this method is a collinearity factor, higher the value the more chance of

collinearity. This inflation can be tackled by removing predictor of higher inflation factor.

(g) Interaction terms.

Q: Can interaction terms be used to derive a relationship?

A synergy exists between different sets of predictors that contribute to defining a relation-

ship with a response. A standard linear model assumes an additive relationship between

response(s) and predictor(s). Such models clearly indicate the effect of the predictor on

the response and are easy to interpret in terms of the relationship. The use of interaction

terms in the model sometimes increases the R2 value; in such a case, interaction terms

are considered a substantial addition to the model. The generated learning models with

interaction terms are listed in Section 4.3.1 and details are listed on page 50 of Appendix

B.

2. Model Training

Model training involves training the fitted model function f ′Train on training dataset with fixed

parameters that are calculated during model fitting stage. We train and assess the accuracy

of the model through different testing measures: p-value, R2, Residual Standard Error (RSE),

and F-statistics. R2 measures the proportion of variability in the response variable that can

be explained by the predictors. The RSE shows the actual deviation of the response from the

predicted value and measures the lack of fit for the model [79]. Although the R2 value shows

the goodness of fit, it cannot assess how accurately the predictors can estimate the response.

Therefore, resampling methods such as cross validation and bootstrapping are employed on the

training set for model assessment and model training [80]. Resampling methods repeatedly draw

samples from the training set and refit the model on each sample to get additional information

about the fitted model’s performance, such as variability estimates of regression fit [81]. Cross

validation is one of the widely used resampling methods for model selection. We used the k-fold

cross validation method, computed by averaging the Mean Squared Error (MSE) for k-folds

62 3. Daleel, A Decision Support System

over the test sample. Statistical details of cross validation method and MSE can be found in

Appendix A.

ModelTraining(trainingData, Model) function:

a code snippet of this function is shown below. the sample code will train a model in 200

iterations where each of the iterations will have a 10-fold cross-validation of data for 200 times.

> for(1 : 200)

> MSEtraining = cv.glm(trainingData,Model, k = cvV alue)$delta[1]

3. Model Accuracy

Model accuracy is evaluated on the test data set that is not involved in any fitting or training

process.

ModelTesting(testData, Model): the test set is considered a validation set in order to assess

the strength and relationship of a predictive function that is derived using the training dataset.

Following code calculates the mean squared value of actual and predicted data on the test

dataset.

> MSEtest = mean((responseV ariable.testData− predict(Model, testData))2)

If the testMSE is less than the trainingMSE value the model is accepted, this also indicates that

the model is not over-fitted.

3.4.3. Planning Phase 63

4. Update Fit

Update fit is the process of repeating the model generation and specifically tuning the model

parameters in order to refine the results. This stage influences the next iteration using the

evaluation results of the previous iteration. This phase is responsible for two things: for starting

a new iteration of the model generation step with a different dataset or machine learning method

and for ending with agreeable model results.

3.4.3 Planning Phase

The third phase in Decision Support module is Planning Phase as shown in Figure 3.2. This phase

takes input from the Learning phase in the form of a prediction model which generates a vector

output based on the input requirements of the customer. The Planning phase is designed to support

a multi-criteria decision making problem, where a set of vectors describing the performance is the

learning outcome. Multi-criteria resolution does not come under the scope of this work and this thesis

targets two QoS attributes as our criteria, namely VM price and application performance. Therefore,

the planning logic takes into account these two QoS attributes and provides recommendations for the

application’s deployment. The planning process outputs the deployment options following these steps

as shown in the right hand box in Figure 3.2:

1. Fetch the learning model f from Function Repository.

2. Predict application performance on a set of inputs. predict() function takes two inputs, one is a

prediction model, and second is a data frame comprised of predictor variables which are part of

the prediction model.

> new.data < −df.frame(predictors)

> predict(Model, new.data)

3. Calculate the price for each deployment option according to the cloud metrics.

4. Get customer constraints. In this research, we are informing customer with a list of output

showing price and performance for each of the nodes in incremental order.

5. Find the best fit criteria according to constraint.

64 3. Daleel, A Decision Support System

3.5 Machine Learning Methods for Model Generation

This thesis focuses on the use of supervised machine learning technique where the known training

dataset is used for generating a prediction function which then is used for predicting future values.

The proposed architecture of Daleel supports the supervised learning methodology where the datasets

are provided by the Analysis Phase in the Decision Support module. The motive for using machine

learning methods in the Decision Support module is three-fold: i) provision of evidence-based knowl-

edge, ii) capture of realistic performance behaviour and iii) understanding of behavioural relationships.

Considering these motives different machine learning algorithms are explored.

In context of this research, statistical inference methods are explored to understand the relationship

of application with the deployment characteristics: for example, to understand the relationship of

application performance with respect to change in the virtual machine configurations. This information

is valuable and provides necessary insight for realistic decision making. An inference method estimates

how Y changes as a function of X. In this case the estimated function is not treated as a black-box

because it presents all the necessary relationship details.

The statistical inference is used to answer either questions such as: i) which predictors are associ-

ated with response? ii) what is the relationship of response and predictor? iii) what is the strength

and type of relationship? and so on. The inference methods follow a statistical approach which starts

with an assumption about the relationship of response variable and predictor and tries to fit the model.

To some extent, this process is time consuming as it requires initial assessment about assumptions

and an inevitable repeating of the model fitting process multiple times. This process provides valuable

information to capture behavioural change in application performance as required for optimal decision

making. An additional advantage of applying inference methods is reduction in the feature space by

identifying the significant independent variables. The process of inference estimates with some initial

assumption is categorised as a parametric method [80]. In contrast, non-parametric methods do not

make explicit assumptions about the relationship of X and Y. Instead they try to estimate a function

that gets as close to the data points as possible. Non-parametric methods choose flexible models

that can fit many different possible functional forms to estimate the function. In general, fitting a

more flexible model requires estimating a large number of parameters which makes the model more

complex. One advantage of non-parametric methods is the flexibility to estimate any given function.

This however, requires a large number of observations for function estimates.

3.5.1. Multiple Polynomial Regression 65

Considering both advantages and disadvantages of parametric and non-parametric methods, this

research tries to make use of both model generation methods for supervised machine learning. The

architecture of the proposed decision support system supports both inference and flexible methods.

Multiple Polynomial Regression (MPR) is used to get necessary insight about the relationship

and to estimate an inference function using the least square function.On the other hand, Support

Vector Machine (SVM) in regression setting is used to take advantage of flexible methods. In

addition, SVM are used due to two main advantages: i) it has a regulaization parameter to avoid

over-fitting, and ii) it uses the kernel engineering to generate expert knowledge.

This sections presents fundamental details about the selected machine learning methods that are

used for model generation in the decision support system of Daleel.

3.5.1 Multiple Polynomial Regression

Regression analysis traces the distribution of a response variable (Y) (or some characteristics of this

distribution, such as the mean) as a function of one or more explanatory variables (X1...Xn). The

response variable is often referred to as the dependent variable and the explanatory variable is referred

to as the predictor or independent variable. Regression analysis explores the relationship of response

variables with the explanatory or predictor variables.

The predictors can be numerical variables, such as: height or age on an in- formation sheet;

qualitative variables, such as sex, country of origin or application category; ordinal variables, such

as assessment scale on a range of 5 points. In regression analysis, the predictors are converted to

regressor variables, which are numerical in nature. For example, a qualitative variable with n distinct

level requires n− 1 regressors. However, a numeric predictor corresponds to one regresssor that is the

predictor itself. In some cases, regressors may require transformation to another scale using logarithms

or polynomial equations.

Multiple regression extends the concept of simple linear regression by allowing more than one

predictor or regressor in a linear regression model. This can be done by giving a separate slope

coefficient to each predictor. The multiple linear regression can be represented mathematically as

shown in Eq 3.4:

Y = β0 + β1X1 + β2X2 + ...+ βpXp + ε (3.4)

66 3. Daleel, A Decision Support System

Polynomial regression is the extended form of a linear relationship to accommodate a non-linear

relationship between response and predictor. Such a model for a single predictor X is

Y = β0 + β1X1 + β2X
2 + ...+ βhX

h + ε (3.5)

Here h refers to the degree of the polynomial in one variable equation.

A quadratic regression equation can take up the following mathematical form as given in Eq 3.6

Y = β0 + β1X1 + β2X
2 + β3X

2
1 + β4X

2
2 + β5X1X2 + ε (3.6)

Suppose there are 50 data points in a data set and the relationship among the data points is

explained using quadratic regression, the matrices for the second order degree polynomial model can

be described as shown in Eq 3.7 and 3.8:

Y =



y1

y2

y3
...

y50


X =



1 x1 x21

1 x2 x22

1 x3 x23
...

...
...

1 x50 x250


(3.7)

ε′ =



ε1

ε2

ε3
...

ε50


β′ =


β0

β1

β3

 (3.8)

Polynomial regression is an important form of non-linear regression where the relationship between

response and predictor can be modelled by a quadratic function. A polynomial of order K can have

k-1 bends is the regression line. Most often, polynomial of degree less than 4 are employed for data

analysis and model generation.

If the values of qualitative variables are categorical labels rather than measurements or numeric

values, we refer to these qualitative variables as factors and the categories as levels. While generating a

regression/linear model, the factors may be be used by transforming them into dummy values. These

dummy values are numerical and their range is equal to the number of categorical levels. For example,

in a clinical environment that dispenses medicinal tablets, if there are 4 dosages for tablets indicated

3.5.2. Support Vector Regression (SVR) 67

as D1, D2, D3, D4, then a dummy range of values can refer to each factor value such as 1 for D1, 2 for

D2...4 for D4. the values 1...4 are known as dummy regressors. Sometimes a model can be generated

using interaction terms as well.

The first step towards making a prediction is to estimate the coefficients. Let’s suppose there are

n observation pairs, each of which consists of X (predictor) and Y (response). The principal goal of

applying this model is to find the estimates for b0 and b1 such that the linear model fits the available

data well. An intercept b0 and slope b1 must be found so that the resulting line is as close to the actual

data points. This closeness is measured using the least squares method. The least squares approach

chooses b0 and b1 to minimise the RSS. RSS stands for residual sum of squares and can be defined as

shown in Eq A.2.

RSS = e1
2 + e2

2 + ..+ en
2 (3.9)

Equivalent of RSS equation can be written as

RSS = (y1 − β′0 − β′1x1)2 + (y2 − β′0 − β′1x2)2 + ..+ (yn − β′0 − β′1xn)2 (3.10)

The least square approach chooses β′0 and β′1 to minimise the RSS using the following minimiser

equations

β′1 =

∑n
i=1(xi − x′)(yi − y′)∑n

i=1(xi− x′)2
(3.11)

β′0 = y′ − β′1x′ (3.12)

3.5.2 Support Vector Regression (SVR)

The Support Vector (SV) algorithm is a non-linear generalisation of the Generalised Portrait algorithm

developed by Vladimir Vapnik and his co-workers [82]. This algorithm is based on the supervised

learning model and has its roots in statistical learning theory or VC theory that characterises the

properties of learning machines to enable them generalising to unseen data. Support Vector Machines

can be characterised by the usage of kernels, absence of local minima, sparseness of the solution and

capacity control obtained by acting on the margin or on number of support vectors, large margin

hyperplane, and usage of slack variables to overcome noise in the data etc. All these features were

68 3. Daleel, A Decision Support System

already known in the machine learning community since 1960’s, however it was not until 1992 when

all these features were put together to form the maximal marginal classifier, the basic Support Vector

Machine. Support Vector Machines can be applied to both classification and regression problems.

Support vector regression is similar to any other regression technique. You give it a set of input

vectors with associated response values and it tries to fit a model to predict the response given

a new input vector [83]. Kernel methods apply some transformation on your dataset prior to the

learning step and are used to capture non-linear trends in data. Using kernel methods you will have

a hyperparameter that can be fine-tuned to get results. A simple decision function for linear SVM is

defined as

f(x) = (w.x) + b

SVR works on the same principles as SVM to minimise the error and maximise the margin to

separate the hyperplane; the difference is a margin of tolerance (epsilon) that is set in approximation

to the SVM. In SVR the basic idea is to map the data x into a higher dimensional features space F

via a nonlinear mapping φ so the f(x):

f(x) = (w.φ) + b

Training the SVM means solving:

yi − 〈w, xi〉 − b < ε

〈w, xi〉+ b− yi < ε

xi is the training sample with target value y. The inner product plus intercept 〈w, xi〉 is the

prediction for that sample and ε is used to set threshold so that all predictions have to be in range of

ε. SVM tries to adjust the hyperplane 〈w, x〉 by maximising the margin (1/2IIwII2) and minimising

the training error. IIwII2 enforces flatness in the feature space. The constant C determines the

trade-off between the flatness of f and the amount of deviation tolerated larger than epsilon. This

corresponds to the ε-insensitive loss function. The Polynomial kernel is one of the kernel methods

used for the learning of non-linear models that represent the similarity of training samples (vectors)

in a feature space over polynomials of original variables. So the same kernel trick is used as in SVR.

The polynomial kernel with degree d is defined in Eq 3.13:

k(x, y) = (XT y + c)d (3.13)

3.6. Revisiting the Related Research Goals 69

X and y are vectors in the input space, i.e. vectors of features computed from training or test

data set. C is responsible to adjust the influence of higher and lower order polynomials. K as a kernel

corresponds to an inner product in a feature space based on some mapping φ:

k(x, y) = 〈φ(x), φ(y)〉

The decision function in the non-linear case be defined as:

f(x) = w.φ(x) + b

f(x) learns the map from φ(x) to y, Where w can be completely described as a linear combination of

the training patterns xi. Moreover the complete algorithm can be described in terms of dot products

between the data. In a sense the complexity of a function’s representation by SVs is independent of

the dimensionality of the input space X, and depends only on the number of SVs. The difference to the

linear case is that w is not given explicitly. Also note that in the non-linear setting, the optimization

problem corresponds to finding the flatness function in feature space instead of input space.

3.6 Revisiting the Related Research Goals

The main contributions of this chapter are reviewed by revisiting the research goals as well as require-

ments stated in Section 1.5 and 3.2 respectively.

Daleel offers an architectural design of a decision supports system integrated with a cloud broker-

age framework. Daleel is designed to be a multi-criteria decision-making framework to assist the user

in the selection of a suitable cloud provider and a virtual machine instance with regards to the ap-

plication requirements and customer-specific constraints. The architecture allows module interaction

with existing components related to interoperability and application management solutions.

The decision support system is designed to provide optimal decisions by making use of machine

learning techniques. Machine learning methods are used to build learning models for predicting

application’s performance on different deployment setups. The model generation requires large amount

of data to be used for the training and testing of learning methods. The data sets are collected

containing information about the application deployment and resource monitoring details. The offered

solution follows a modular design to support the specific tasks related to the intelligent decision making

process. The designed solution is able to save all the information related to application, monitoring

70 3. Daleel, A Decision Support System

and decision solutions. Daleel follows an iterative and incremental approach to generate robust and

generalised learning models that are equally effective across different applications.

3.7 Summary

This chapter has discussed the proposed approach of using machine learning for decision support

system in a multi-cloud environment. The decision support system is designed as an integrated module

within overarching cloud brokerage architecture to assist customers in making decisions at IaaS level

according to defined requirements and constraints. The decision support module comprises of three

major phases: Analysis, Learning and Planning. These phases run in an incremental and iterative

manner to generate decisions starting from data collection to model generation. The Analysis Phase

is responsible for gathering application profiling data that is comprised of details about application

performance on different deployment setups. The generated application profiling data is then used by

the Learning Phase to build a model for the prediction of application performance.

Model generation follows the traditional method of learning and deriving a model. A series of

processes are executed in a circular fashion starting from model fitting, which requires the application

of a series of statistical methods applied to analyse data and identify the basic structure of a learning

model. This part of the process is the most important and time-consuming and any discrepancies can

lead to inaccurate results. The fitted model is then trained on the training data. The trained model

is further assessed for its accuracy using different statistical methods such as R2, cross-validation,

and MSE. Model assessment is done on both the training and testing data. The Update fit phase

is responsible to either increment the start of the process or to retrieve an output as a model esti-

mate/prediction function f. A prediction function f results from the iterative and incremental process

of model generation.

In this study, the selected learning methods are MPR and SVR. There is always a trade-off between

time to generate a learning model and to extract detailed knowledge about the true relationship of

that model and so the polynomial regression and SVR are selected as representative methods to

reflect the grey-box and black box nature of learning techniques. Regression methods are represented

as inference methods providing a better understanding of the underlying association of response and

predictor variables in a dataset. Once the detailed knowledge about inference relationship is available

that knowledge can be used to generate other models using flexible approaches, such as SVR. Flexible

approaches have the ability to take up any form to explain data variability, however, limited to

explain the individual relationship of response and predictor. Chapter 4 elaborates, how these learning

methods are tailored following the model generation steps for estimating prediction and inference

functions.

Chapter 4
The Traditional Learning Setting

4.1 Overview

Chapter 3 detailed the architecture of an intelligent decision support system integrated with cloud

brokerage. The core intelligent part is based on three-phase modular architecture to support large-

scale, back-end analysis to be fed iteratively into the model generation.

Chapter 4 focuses on the objective of creating learning models to capture application performance

variations on different node configurations considering the black-box nature of IaaS resources. This

chapter describes the experimental study and use of proposed approach for model generation using

different machine learning methods that have already been described in 3.5. The experimental details

include dataset information that are collected using real world applications and cloud IaaS. Details of

model generation and evaluation of generated learning models are given in this chapter. This chapter

also provides some experiential analysis and highlight potential advantage of using proposed approach.

4.2 Experimental Details

The objective of this experimentation is to validate if the decision support system is able to provide

valuable behavioural insight about the application performance necessary for taking optimal decisions.

A core output of the decision support module is the model generation to capture application behaviour

and predict its performance according to deployment setup. A learning model can be generated

73

74 4. The Traditional Learning Setting

using representative machine learning methods and following the model generation process of decision

support module explained in Chapter 3.

Before getting into the description of application specific as well as generalised learning model gen-

eration, it is necessary to explain the experimental details related to applications and cloud instances

that are used in this study. The datasets used for model generation and evaluation have been pop-

ulated using representative applications running on a public cloud provider: Amazon EC2 instances.

The reason for conducting extensive deployment experiments is to provide a sufficient amount of data

for the model generation activities and specifically to avoid any synthetic data in this study.

4.2.1 Applications

Representative applications have been selected with different architectures and categories relating to

their intensity of memory and CPU usage.

1. VARD is a tool designed to detect and tag spelling variations in historical text, particularly

in Early Modern English [84]. The output is aimed at improving the accuracy of other corpus

analysis solutions. VARD is a single threaded Java application that is highly memory intensive.

It holds in memory a representation of the full text, as well as various dictionaries that are used

for normalising spelling variations. VARD is considered a pre-processor tool to other corpus

linguistic tools such as keyword analysis, semantic taggings and annotations etc.

2. smallpt is an open source, global illumination rendered application written in C++. Unbiased

Monte Carlo path tracing is used for rendering the scenes. Smallpt is a multi-threaded OpenMP

based application, categorised as CPU intensive. This application is a composition of different

features such as anti aliasing, ray-sphere intersection and Russian roulette for path termination.

This application requires a number of samples per pixel as input, which is considered as number of

paths per pixel for rendering a scene. For this research we selected a box scene that is constructed

out of nine very large overlapping spheres. The image is computed using numerical equations

that solve the rendering equation. The Monte Carlo path tracing algorithm is used with Russian

roulette for path termination. OpenMP is used to achieve parallelism for dynamic allocation of

rows of the image to different threads where each thread is allocated to each available processor

or core.

3. Item Recommender is an item-based recommemnder technique to recommend similar items,

such as movies, to users based on the collaborative filtering technique that is using loglikelihood

4.2.2. Cloud IaaS 75

similarity to identify similar items. The item recommender is a Java based program that com-

pares users with critics of other users in the form of a rating from 0-10 and recommends movies

by comparing the similarity amongst users. Item recommender uses the MovieLens dataset

collected and made available by the GorupLensResearch, which targets the social computing

research at the University of Minnesota [85]. The dataset is comprised of 10 million ratings

of 10,000 movies by 72,000 users. The idea is to recommend movies to a user based on the

preferences of other users. The program takes every other person who has reviewed at least 5

movies in common with the user and calculates the Pearson correlation between these 2 users.

Based on the similarity between users, weights are calculated for the percentile ratings. The

weights are then converted to numerical values to be assigned to the user’s scale and finally the

recommendations are listed after sorting.

Summary: These three applications have been selected to give a representative spread of applica-

tion nature and types. The application characteristics are summarised in Table 4.1. By architecture,

VARD is a single threaded, non-parallel application and requires lots of memory to hold data file for

processing. The second application Smallpt is a CPU-intensive application following a multi-threaded

and paralleled architecture. There is no external file requirements for this application. The third

application Item Recommender is similar to VARD in terms of architecture. However it does not

require the data file to be loaded into the memory. This application sits between two categories and

has a medium CPU utilisation compared to smallpt.

4.2.2 Cloud IaaS

Extensive experiments are conducted on Amazon Elastic Cloud Compute (EC2) using a representative

set of applications as mentioned earlier. The Amazon EC2 is the leading public cloud service provider

with a 57% share of the IaaS market [86]. All instances used are 64-bit Ubuntu Linux of different

capacities as shown in Table 4.2. Note that ‘vCPU’ indicates the number of virtual cores assigned to

a VM. An ‘ECU’ refers to an EC2 Compute Unit ; Amazon does not advise how an ECU relates to

physical processing speed; it only assures that it is a standard unit across its IaaS offerings. ‘Price’

refers to the hourly charge for running a VM of the referenced instance type.

Amazon provides a differentiated series of instance types, catering to different application needs

(eg compute-intensive, memory intensive, I/O-intensive, and so on). Each series contains a number of

instance types offering different setups of computational resources. We targeted the General Purpose

76 4. The Traditional Learning Setting

Table 4.1: Application specific properties (Application Vignette).

Properties Application 1 Application 2 Application 3

VARD Smallpt Item Recommender

Category Memory Intensive CPU Intensive Mix

External File Y N Y

Multi-threading N Y N

In-mem. Processing Y N N

Parallel Processing N Y N

File Size 3kb 0 123MB

CPU Utilisation Low High Medium

Mem. Utilisation High Low Low

series T2 and M3 as well as the Compute Optimised series C4 in order to evaluate varying combinations

of resource capacities over a relatively wide price range. Only on-demand instances are used for this

experiment. These have no long-term commitments and are charged on a pay-as-you-go basis at an

hourly rate. All instances are chosen to be located in eu-west-1 availability zone, hosted in Ireland.

Amazon EC2 uses the Xen hypervisor to host the VM instances but does not provide the details of

the scheduling algorithms used by the hypervisor. Some of the information, such as details of parallel

workload on virtual machines, scheduling algorithms and how EC2 virtual cores are pinned to physical

cores is not provided by the public cloud providers. So the users of infrastructure as a service cannot

perceive any collocation or interference effect on their running application.

4.2.3 Experimental Setup

To collect a substantial amount of data, three representative applications are deployed on a subset of

EC2 nodes, as explained in Section 3.4.1. Experiments are continuously repeated using the represen-

tative set of applications, over a period of seven days with a delay of ten minutes in between each pair

of runs. The reason for the selected duration of the experiment is to investigate temporal variations.

The Some of the parameters were fixed in order to reduce the dimensionality of experiments and

evaluation. For example, two of the applications, VARD and Item Recommender, require external

4.3. Model Generation 77

files as input. Therefore, the experiment was conducted with fixed input file sizes of 3kb and 123MB,

respectively. While running the smallpt application the grid size to render the image was set to 200.

Table 4.2: The computational specification of EC2 instances.

Series Node vCPU ECU RAM Storage Price

(GB) (GB) ($/h)

T2 (General t2.small 1 Var. 2 20 0.026

Purpose) t2.medium 2 Var. 4 20 0.052

M3 (General m3.medium 1 3 3.75 4(S) 0.070

Purpose) m3.large 2 6.5 7.5 32(S) 0.140

m3.xlarge 4 13 15 32(S) 0.280

C4 (Compute c4.large 2 8 3.75 20 0.116

Optimised) c4.xlarge 4 16 7.5 20 0.232

c3.xlarge 4 14 7.5 32(S) 0.239

4.3 Model Generation

The model generation process is as described in algorithm 1 below and detailed in Section 3.4.2.

78 4. The Traditional Learning Setting

Input: (i) S(X, Y) where X = xi,xn

(ii) MLMethod = MPR or SVR

(iii) SplitRatio = R

Output: (i) SignificantPredictors = {Xx}

(ii) PredictionFunction = f

Function:1 → DataSplit (S,R)

Return STrain, STest

Function: 2 → ModelGeneration (STrain, STest,MLMethod)

Start ModelGeneration

Function:3 → ModelFitting(STrain, MLMethod)

Start ModelFitting

while satisfactory MSE is found do

foreach xi ∈ x1, ..., xn do

compute y′ = f(x) + ε

compute coefficient values β

compute F-statistics

if F statistics and β has a non zero value then

xi.marked = significant

else

xi.marked = nonsignificant

end

Return Ssignificant

end

for all xi ∈ xsignificant do

compute f ′ with polynomial or Kernel function

remove outliers

calculate VIF factor if required and applicable

apply interaction terms if required and applicable

apply parameter tuning if required and applicable

compute MSEFit for f ′ where MSE = 1
n

∑n
i=1(yi − f̂(xi))

2

compute R2
Fit

select f ′ with highest R2 and lowest MSE

end

select f ′ with highest R2 and lowest MSE

Return f ′Fit

End ModelFitting

end

4.3. Model Generation 79

Function:4 → ModelTraining (STrain, f ′Fit)

Start ModelTraining

for iteration i = 1-2000 do

Compute f ′Train using re-sampling method CV(k) = 1
k

∑k
i=1MSEi , where k = 10

aggregateMSE = MSETrain = 1
n

∑n
i=1(yi − f̂(xi))

2

compute MSETraint

compute R2
Train

end

Return f ′Train

End ModelTraining

Function:5 → ModelTesting (STest, f
′
Train)

Start ModelTesting

Compute f ′Test using re-sampling method CV(k) = 1
k

∑k
i=1MSEi , where k = 10

aggregateMSE = MSETrain = 1
n

∑n
i=1(yi − f̂(xi))

2

compute MSETest

compute R2
Test

if MSETest < MSETrain then

Return f ′Test

save f ′Test in Function Repository

else

Call Function UpdateFit

end

End ModelTesting

Function:6 → UpdateFit()

Start UpdateFit

Call ModelFitting with new dataset

Call ModelFitting with different Learning method

End UpdateFit

End ModelGeneration
Algorithm 1: Algorithm for Model Generation

80 4. The Traditional Learning Setting

� Input → The Model Generation module of the Learning Phase gets input S(X,Y) in the form

of a profiled dataset generated by the Analysis Phase, where Y is a response variable and X

is a set of multiple predictors. This thesis leverages the use of Multiple Polynomial Regression

(MPR) and SVR to generate prediction functions.

� Output→ The Model generation module aims to estimate the prediction function f to capture

the application’s behaviour on different deployment setups. The response variable Y for this

prediction function f is the application’s execution time.

� DataSplit → After the machine learning method has been selected, the data must be split

into training and test sets: 1) a training set to be used for learning, and 2) a test sample

for assessment and model evaluation. For the current evaluation, we split the data set into a

training and test set with a ratio of 60% and 40% respectively, which is above the conventional

ratio of 70:30 percentage split [39].

� ModelFitting→ Once the training and test sets have been finalized, the model must be fitted to

the data as stated in Function:3 of Algorithm 1. This function has two steps. First, the significant

predictors are marked. Second, the mathematical form of the function f is identified applying

various methods as explained in detail in Section 3.4.2-Application Vignette. The predictors in

Table 4.3 are the significant predictors and are identified using a regression method, specifically

multiple regression. Furthermore, the same predictors are used for generating an SVR-based

model as well. The predictors are indicated as Xi, where i represents the index number for the

predictor variable. Section 4.3.1 and 4.3.3 elaborates the generated models which are presenting

various forms of relationship that are derived using different subsets of significant predictors, as

shown in Table 4.3.

� ModelTraining → involves training the fitted model function f ′Train on the training dataset

with fixed parameters that are calculated during the model fitting stage. Model training involves

Monte Carlo type processing to train a model. This implies training a model in 2000 iterations

and 10-fold cross validation is involved at each iteration.

� ModelTesting → The trained model is further assessed on the test dataset via the Model

assessment step as explained in Function:5 of Algorithm 1. The model accuracy is assessed

using p-value, R2 and MSE values. The MSE result of test set lower than training set confirms

4.3.1. MPR Based Learning Models 81

Table 4.3: Significant predictors.

Predictor ID Predictor Name

X1 ECU

X2 VCPU

X3 RAM

X4 Multithreading

X5 Load in memory

X6 Application Type

X7 External file requirement

X8 Parallel execution

X9 File size

X10 Day

the satisfactory prediction results and that the model is not over-fitted. If the prediction model

verifies satisfactory results, it is saved to the Function Repository.

� UpdateFit→ The results of Model assessment are explored to determine if the model fit needs

to be updated. If the results are not satisfactory, the next iteration can be started from model

fitting. A different machine learning method can be used to generate the learning model for the

same dataset and the whole process will re-start.

4.3.1 MPR Based Learning Models

Multiple models are derived for each application using the multiple polynomial regression method.

These models are represented in simple mathematical form, where Xi indicates the different significant

predictors and ”:” sign indicates the interaction between two terms. Table 4.3 provides details about

the predictors Xi where i = 1..10. The superscript number in the model indicates the degree of

polynomial and all the prediction functions (learning models) are written using simple mathematical

notation.

These models are generated following the traditional principle of applying machine learning where

82 4. The Traditional Learning Setting

training and test data sets are drawn from the same data distribution. It means the learning models

are generated and can be applied on a specific application for particular deployment setup.

Learning Models for VARD:

Learning models for the VARD application are indicated as Model 1, Model 2, Model 3 and Model

4. Multiple models indicate that prediction functions can be derived using different predictors and

mathematical forms. However, some of the predictors are firmly present in each model. Deriving

a range of models is a good approach to finding a generic model by indicating the use of common

predictors and mathematical forms.

Model 1 (M1) can be described using the equation given in 4.1

Y = X3
1 : X4 +X2

2 +X3
3 : X5 +X6 (4.1)

Similarly, Models 2 (M2), 3 (M3) and 4 (M4) are mathematically described as:

Y = X3
1 : X4 +X2

2 +X2
3 : X5 +X6 (4.2)

Y = X3
1 : X4 +X2

3 : X5 +X6 (4.3)

Y = X3
1 +X3

3 +X3
10 (4.4)

The first two models are composed of using the same predictors and interaction terms but they

vary in the degree of polynomial order. In contrast, Model 3 is composed of using different number of

predictors as well as polynomial order. Model 4 is the simplest model using few predictors but a high

order polynomial of degree 3.

Table 4.4 provides the model assessment of VARD prediction models. Model assessment is per-

formed by using resampling methods and by comparing MSE values on the training and test data.

The MSE values for the first three models are almost the same when compared to the last model that

has the lowest MSE value amongst all models. The table clearly shows a reduction in MSE of test

data when compared to the training data. This also indicates that the model is performing better

on test data and is not an over fitted model. R2 value for all these models depicts that models are

capturing more than 96% of data variation.

4.3.1. MPR Based Learning Models 83

Table 4.4: VARD’s model assessment.

Model R2 MSE (Training Set) MSE (Test Set)

Model 1 0.98 144.65 137.802

Model 2 0.98 144.65 137.802

Model 3 0.98 144.65 137.802

Model 4 0.96 133 129

Learning Models for smallpt:

The following Models 1 (M1), 2 (M2) and 3 (M3) (described by the equations 4.5, 4.6 and 4.7) are

generated for the smallpt application using the multiple polynomial regression method.

Y = X3
1 : X4 +X2

2 +X3 : X5 +X6 (4.5)

Y = X3
1 : X4 +X2

2 +X3 +X6 (4.6)

Y = X3
1 : X4 +X2

2 +X3 : X5 (4.7)

Model 1 uses a large number of predictors and interaction terms compared to other models. Model

2 and Model 3 differ in the selection of predictors. Noticeably, all the models uses the same degree of

polynomial. The model assessment of learning models for smallpt application is shown in Table 4.5.

Reduced MSE values for test data set compared to training dataset confirms that the model is not

over fitted. The highest value of R2 for all three models confirms the accuracy of model in terms of

capturing the data variability, which is 98% for all the models.

Learning Models for Item Recommender:

The following two models are generated for the Item Recommender application using polynomial

regression. Model 1 uses an additional predictor for model composition as compared to model 2 and

also uses a high order polynomial with interaction terms. Model 2 is considered a relatively simple

model.

84 4. The Traditional Learning Setting

Table 4.5: Smallpt’s model assessment.

Model R2 MSE (Training Set) MSE (Test Set)

Model 1 0.98 9.8360 7.3716

Model 2 0.98 9.8198 7.3716

Model 3 0.98 9.8198 7.3716

Model 1 (M1) takes the following mathematical form:

Y = X3
1 : X4 +X2

2 +X2
3 : X5 +X6 (4.8)

similarly, Model 2 (M2) can be mathematically described as:

Y = X3
1 : X4 +X2 +X3 +X6 (4.9)

The model assessment of learning models for the Item Recommender is shown in Table 4.6. MSE

values for the test data are numerically less compared to the values of the training data and confirm

that the model is not over fitted. In addition, these models are also capable of capturing 98% of data

variability which is considered a considerable good value.

Table 4.6: Item-Recommender’s model assessment.

Model R2 MSE (Training Set) MSE (Test Set)

Model 1 0.98 23.901 22.718

Model 2 0.98 25.226 22.067

4.3.2 Generic Learning Model

A number of models are generated for each of the application by applying multiple polynomial re-

gression method. We have observed that all the models share some common predictors as well as

polynomial order and based on the commonality a generic model can be derived. All of these models

are considered equally good to capture non-linear patterns in the data set as explained by the R2 value

which confirms that models are capturing more than 95% of data variability. However, the MSE values

for all these three applications are different and show slightly different levels of prediction accuracy.

4.3.2. Generic Learning Model 85

Table 4.7: List of all learning models to identify similar terms to extract a generic learning model.

X VARD smallpt Item Recommender

M1 M2 M3 M4 M1 M2 M3 M1 M2

X2
1 N N N Y N N N N N

X3
1 : X4 Y Y Y N Y Y Y Y Y

X2
2 Y Y N N Y Y Y Y N

X3
3 N N N Y N N N N N

X3 N N N N N Y N N N

X2
3 : X5 N Y Y N N N N Y Y

X3
3 : X5 Y N N N N N N N N

X6 Y Y Y N Y Y N Y Y

X10
3 N N N Y N N N N N

X3 : X5 N N N N Y N Y N N

X2 N N N N Y N Y N Y

Generating a generic model requires the extraction of common predictors and similar non-linear

patterns indicated by some mathematical form. In order to do this we build a table 4.7 that indicates

such commonalities and similarities across the different learning models.

In Table 4.7, First column lists all the predictors which are part of different models. Mi (from

second column onwards) represents a model with respect to mentioned application. In the table,

value Y confirms the presence of a predictor in Mi model and N negates the presence of a particular

predictor within a model. The common terms/predictors are highlighted in grey. This also indicates

the similarity of non-linear patterns amongst different datasets of different applications. If any model

uses higher degree terms then by default all the lower degree orders are also included in the model.

This creates similarities in the pattern at different polynomial degrees. By extracting mostly used

common terms/predictors in all the models can build up a generalised learning model. A generic

model takes the following mathematical form:

Y = X3
1 : X4 +X2

2 +X3
3 : X5 +X6 (4.10)

86 4. The Traditional Learning Setting

−50

0

50

0 300 600 900 1200
Index number

D
iff

er
en

ce
 o

f A
ct

ua
l v

s
P

re
di

ct
ed

M3.Med M3.large C4−Large C4.XL C3.XL

Figure 4.1: Plot of actual vs predicted values of itemRecommender

−50

0

50

0 500 1000 1500
Index number

D
iff

er
en

ce
 o

f A
ct

ua
l v

s
P

re
di

ct
ed

M3.Med M3.Large M3.xlarge C4−Large C4.XL C3.XL

Figure 4.2: Plot of actual vs predicted values of smallpt

4.3.2. Generic Learning Model 87

−50

0

50

0 500 1000 1500
Index number

D
iff

er
en

ce
 o

f A
ct

ua
l v

s
P

re
di

ct
ed

M3.Med M3.Large M3.xlarge C4−Large C4.XL

Figure 4.3: Plot of actual vs predicted values of VARD

Table 4.8: MSE values for generic model on test data.

MSE (Smallpt) MSE (Item Recommender) MSE (VARD)

7.5147 23.775 146.479

The following MSE values are computed when the generic model is applied on each of three

applications, as shown in Table 4.8.The MSE values for the generic model are almost equivalent to

the the application specific models and this confirms the accuracy of generic model.

The Figures 4.1, 4.2 and 4.3 display the difference of actual vs predicted values for three applica-

tions. The predicted values for response variable Y are calculated by applying the generic model on

test data of the three applications. In each of the graphs, the x-axis represent the index numbers of

the values for the response variable in the test dataset. The y-axis represents the difference of actual

and predicted values of the response variable, which is application execution time. In the graphs of

smallpt and Item Recommender applications, the difference for most of the values are aligned around

0 and this indicates the good prediction accuracy. However, VARD indicates some spikes of difference

88 4. The Traditional Learning Setting

which is mainly caused by too much variable and unpredictable performance of m3 series. The predic-

tion accuracy for these two applications is also represented by MSE and R2 values as shown in Table

4.8, 4.4, 4.6 and 4.5. Overall, the generic model as well as application specific models are performing

equally well in terms of prediction.

4.3.3 SVR Based Learning Models

The second machine learning method that is considered for model generation in this thesis is SVR.

SVR takes an input vector with associated response values and outputs a prediction function using

kernel methods. Kernel functions apply data transformations to capture any non-linear trends in

the data. SVR is a blackbox for end users as it does not provide some of the relationship details of

predictors and response variable.

The same data sets which are used for model generation using polynomial method are used for

SVR as well. However, instead of going through the same process of identifying significant predictors

or blindly adding all the predictors, we preferred to use the same predictors which from the first place

are result of first experimental phase with polynomial regression as a learning method. The rationale

behind this is very clear: polynomial regression methods have provided sufficient insight about data

relationships and importance of predictors. In this way, we can reduce the data dimensionality for

running SVR based model generation, as only significant predictors are fed into the SVR model rather

than the complete set of predictors. Reduced predictors can reduce the model complexity and a better

result can be generated in less computational time. This would also save computation power and cost

for running the complex computations.

At this point, instead of fitting an SVR model by exploring all possible kernel functions, existing

knowledge can be used from any inference based methods, as we have seen that all the models that

are generated shows a non-linear trend in data. The application of the regression method has already

indicated the presence of a non-linear relationship that can be described by some polynomial function,

thereby allowing the use of a polynomial kernel for SVR.

For the model generation most of the significant predictors are used in the SVR model that are

identified using polynomial regression method, as stated in Table 4.3.

The SVR model is described in the following mathematical form along with all the tuning param-

eters and constant variables. The same model is applied on three of the representative applications

4.3.3. SVR Based Learning Models 89

and performing reasonably well in terms of prediction accuracy.

SVM(X1(ECU) +X2(V CPU) +X3(RAM) +X4(Multithreading)+

X5(Loadinmemory) +X7(Externalfilerequirement)

+X8(Parallelexecution) +X9(Filesize),Kernel = Polynomial,

Coef = 0, Degree = 3, Learningrate = 0.3, cost = 1,

Gemma = 1/d, Cachesize = 40, F ittedvalue = TRUE,

Scale = FALSE, TerminationCriteria = 0.001, Epsilon = 0.1) (4.11)

As a result of the various learning iterations, the following tuning parameters are derived for the

SVR-based learning models. The SVR function requires a Learning Rate value that is chosen between

0 and 1. The Learning Rate in our model is 0.3. The cost of constraints violation is set to 1. The

polynomial kernel is selected with coef0 set to 0, and Degree to 3. The value of Gamma is set to

1/data dimensionality. The Cachesize is set to 40MB. The Tolerance termination criteria is set to

0.001. The Epsilon value indicates intensive loss function and is set to 0.1. The Shrinking heuristics

is set to True. The models allow the inclusion of fitted values that can be used in each iteration to

refine the results and this is set to true. The inclusion of fitted values is allowed in each iteration to

further refine the model.

Table 4.9: MSE values for SVR Model on test data.

MSE (Smallpt) MSE (Item Recommender) MSE (VARD)

8.038 24.392 169.584

The computed MSE values for three applications using the SVR model are shown in Table 4.9.

The MSE values for smallpt and Item Recommender are almost similar and for VARD a little higher,

in contrast to the MSE values for application specific as well as generic models generated by the

MPR method. The similarity at the MSE level for the generated models using both machine learning

approaches confirms the model accuracy.

90 4. The Traditional Learning Setting

4.4 Experiential Analysis

We investigated the performance of running three representative applications on different EC2 instance

types. The results of running VARD are summarised in Figure 4.4 where every dot represents the

execution time of one run. Shorter execution times reflect a lower hourly rate over a full workload.

There are several striking observations. First, contrary to intuition, m3.medium (a memory-rich

instance) is of consistently poor performance. We also observe that c4.large surpasses both m3.medium

and m3.large in performance. In fact it is on par with c4.xlarge, which is twice both in specification

and cost. Overall, the T2 series offers by far the best value for money. A possible explanation is the

c4.large

c4.xlarge

m3.large

m3.medium

t2.medium

t2.small

50 100 150 200 250 300

Execution Time (seconds)

In
st

an
ce

 T
yp

e

Figure 4.4: VARD execution time over different cloud instance types.

CPU Credits scheme, offered only on the T2 series, which enables customers to collect credits for idle

instances and later spend them when full CPU utilisation is needed. T2 instances are thus good for

applications that do not consistently fully use the CPU, but it also means that there is a degree of

uncertainty associated with an application’s performance that depends on its idle time.

4.4. Experiential Analysis 91

c3.xlarge

c4.large

c4.xlarge

m3.large

m3.medium

m3.xlarge

t2.medium

t2.small

2000 4000 6000
Execution Time (seconds)

In
st

an
ce

 T
yp

es

Figure 4.5: Smallpt execution time over different cloud instance types.

The results of running smallpt are summarised in Figure 4.5. Smallpt is a multi-threaded CPU-

intensive application. In contrast to results of VARD, the performance of T2 series is low and the

obvious reason is CPU capacity. Similar to the above results, m3.medium is performing poorly com-

pared to other series. It is notable that m3.medium is performing similar to T2.medium which is far

less in price. The performance of c3.xlarge and c4.xlarge are almost same. These instance types vary

in price and are similar in vCPU capacity. An interesting observation is the same performance of both

c3.xlarge and c4.xlarge, and this is also similar with c4.large, regardless of difference in offered ECU ca-

pacity. This indicates that the ECU capacity cannot be considered a standard measure of performance

because the instance types are performing according to vCPU capacity. Another striking observation

is the similar performance of m3.xlarge with c4.xlarge and c3.xlarge regardless of that m3 series is a

recommended series for memory-intensive applications. This illustrates a similar performance of all

.xlarge series.

The results of running Item Recommender are summarised in Figure 4.6. Item Recommender is

similar to VARD in architecture but has a medium CPU utilisation compared to smallpt. To some

92 4. The Traditional Learning Setting

c3.xlarge

c4.large

c4.xlarge

m3.large

m3.medium

m3.xlarge

t2.medium

t2.small

1000 2000 3000 4000
Execution Time (seconds)

In
st

an
ce

 T
yp

es

Figure 4.6: Item Recommender execution time over different cloud instance types.

extent, the results of Item Recommender are quite similar to smallpt. For example, the T2 series is not

performing well and this reflects the CPU need of Item Recommender. Most importantly, m3.medium

is again performing poorly regardless of its high price compared to T2 series. Surprisingly, c4.large

sits between the .xlarge series in terms of performance, so a low price instance type is performing

better than the instance type of high price. To some extent, instance types are performing according

to vCPU power and the ECU unit is creating misleading information.

We now turn our attention to uncertainty in application performance due to the time at which

they are executed. This is depicted by the box-plots in Figure 4.7. The T2 series offers the least RAM

but exhibits the least variance in performance between the different days of the week. m3.medium

VMs display application execution times that are fairly high albeit predictable: the median and

quartiles show very little variation across the days of the week. m3.large also offers quite predictable

performance across the week, with a narrow first quartile which is favourable. The two C4 instance

types portray contrasting performances. c4.large is rather predictable with a steady median and right

skewness (i.e. a very narrow first quartile). On the other hand, dispersion in the c4.xlarge instances

is more towards the high end of application execution time with a median that is less regular: less left

4.4. Experiential Analysis 93

●● ●

●

●

●

●●●●●●●●●●

●

●

●●

●

●●

●

●

●

●

●●

●

●●

●

●●●●
●

●●

●

●

●

●
●

●

●●●
●

● ● ●●

●
●

●

●

●

●

●

●●●

●

●

●●

●

●●
●●
●●●●

●

●●
●
●●●●●

●

●●

●

●●●●●

●

● ●

●

●●●●●

●

●●●●●●●
●●●●●●●●●●●●
●
●
●

●

●●
●●●●

●
●●●

●

●●●●●●●●●●
●●●●●●
●●

●

●

●●●

●

●●

●●●

●
●●

●●●

●●●●●

●●

●

●●

●
●

●●

●●

●

●

●●

●●●●●
●
●

●

●

●

●●●●●●●
●
●●
●
●
●●●

●

●●●

● ●● ●

●

●●

●●●●●●●●●● ●●●●●●●●

c4.large

c4.xlarge

m3.large

m3.medium

t2.medium

t2.small

50
100
150
200
250

50
100
150
200
250

50
100
150
200
250

50
100
150
200
250

50
100
150
200
250

50
100
150
200
250

Mon Tues Wed Thurs Fri Sat Sun

Day of the Week

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

)

Figure 4.7: Dispersion of application execution time during all days of the week on different EC2 instance

types. Notice that all graphs have the same y-axis range apart from m3.medium.

skewness is observed on Wednesday, Saturday and Sunday. This could be down to different reasons

such as demand from other users, the provider’s resource sharing algorithms, and the provider’s energy

94 4. The Traditional Learning Setting

efficiency policy. These are difficult attributes for us to ascertain from the outside. Nevertheless, we

detect certain regularities that helps us determine the predictability of application performance at

different times.

4.5 Summary

Decision making in cloud environments is not a trivial task especially when it comes to the selection

of IaaS, keeping in view the QoS constraints. Traditional machine learning methods can help ease the

difficult decision making process of choosing the right resource for the application and the handling

of constraints as well. The basic principle behind the learning process is quite straight forward: build

a model, train the model using collected data and use the model for predicting unseen data. These

steps are followed to build different learning models for the three representative applications which

are VARD, smallpt and Item Recommender. Data collection is done using extensive experimentation

of deploying these applications on different instances of Amazon EC2. Multiple learning models are

generated using two machine learning algorithms such as polynomial regression and SVR. A generic

model is derived out of all regression-based learning models build for individual applications. Table

4.10 shows the MSE values for two models applied on the test data sets of three applications. The

MSE values for both SVR and polynomial regression models are close enough to indicate that both

models are performing equally well.

We also investigated how variable the performance obtained from different IaaS settings could

be, making the execution of a simple application rather uncertain, as explained in Section 4.4. This

demonstrates that public IaaS offerings are to a great extent black boxes. First, selecting instance types

solely based on their advertised resource specifications is not necessarily optimal. Second, selecting

which day of the week to run an application could result in significant variation in performance. Third,

choosing a wrong deployment setup can lead to high computational cost.

Table 4.10: MSE values for SVR and Polynomial model.

Learning Method MSE (Smallpt) MSE (Item Recommender) MSE (VARD)

SVR 8.038 24.392 169.584

Polynomial regression 7.5147 23.775 146.479

4.5.1. Potential Benefits of Daleel 95

4.5.1 Potential Benefits of Daleel

Daleel equips a cloud customer with evidence-based knowledge of an IaaS setup specification that is

optimal for the customer’s particular application. The integrated architecture of the intelligent decision

support system with a cloud brokerage framework supports the provisioning of realistic and application

driven decisions that require necessary insight about the application behaviour on different deployment

setups. Daleel supports the development of learning models to predict application performance and

leverages the use of machine learning algorithms to generate learning models in order to capture the

application’s behaviour on different deployment setups. Such integrated solutions can be offered as

a brokerage service to assist customer for making optimal deployment decisions by abstracting away

the underlying complex methods and cumbersome comparison tasks.

4.5.2 Discussion

The current research work follows the traditional approach for applying machine learning methods.

Total learning time includes time for data collection as well as model generation. A large amount

of cost and time is involved in the first phase of our experiments where we tried to collect sufficient

data to explore any temporal variability even at the day level. Further to that, we were interested to

generate multiple learning models using different machine learning algorithms while keeping the same

observational criteria for the purpose of evaluation. Each of the experiment had a data collection

cost of $153.888 involving 8 virtual machines belonging to different series and price range on Amazon

EC2 running 24 hours for 7 days. On the other hand, learning cost varies for SVR and MPR.

MPR is a representative of inference based methods and is used to get a better understanding of the

actual relationship between a response variable and predictors. This learning method requires human

intervention at various stages, as explained in Section 3.4.2, therefore requires more learning time.

This learning effort, however, is reduced to some extent with the help of R-markdown script which

can generate and display most of the important finding as well as visual graphs in nearly 30-60 minutes

(depending on different data size, number of methods, iterations and computational speed). Based on

the code generated findings, users with a different range of expertise can take few hours to a couple

of days to generate a reasonable prediction model. These models are advantageous in certain aspects:

Get a robust knowledge about the underlying relationship of response and predictors to generate

a concrete set of outcomes. Moreover, use that knowledge to feed into complex machine learning

methods to enhance the level of understanding. SVR is a representative of complex models which do

not start with initial assumptions and the learning function is free to adopt any mathematical form.

This, however, requires a lot of training time to adjust its parameters and does not clearly describe

a transparent relationship of response and predictors at the end. This research follows the same

approach of extracting useful information (from MPR based models) and to use it within complex

learning methods (SVR based models) as explained in Section 3.5. By following this approach the

training time of generated models ranges from a second to a maximum of 1 minute considering 10-fold

cross-validation. This evidently describes a trade-off between the level of understanding and learning

time.

A common assumption in a traditional learning setting is that the test and training data set are

drawn from the same distribution and if the distribution changes then the lengthy process of rebuilding

the model starts from the first step. Furthermore, the model derived for one type of distributional base

data might not produce effective results for a different distribution. The change in distribution could

be due to different applications or different cloud providers or virtual machines. This may result in

having to repeat the approach from scratch by data collection. This leads us to think about generating

a learning model be trained to produce an equally effective result with different distributional data.

We tried resolving this matter by creating a generic model (Section 4.3.2) which can work equally

effective on representative applications, yet not tested on different cloud providers. Conducting such

experiments is still time-consuming and requires a cost for data collection. At this point, further

challenges come into view from the perspective of cost-effectiveness that give rise to questions such as:

1. How can the cost and time be reduced when applying the machine learning technique?

2. How can we make our solution viable across different applications and cloud providers?

Our first intuition to answer above questions leading us to think about re-usability of existing

knowledge that has been generated while creating learning models for different applications.

Chapter 5
The Transfer Learning Setting

5.1 Introduction

Chapter 4 has demonstrated that machine learning can play a vital role in designing an intelligent

decision support system. Moreover, it provided the traditional principle of generating application

specific as well as generic models using two machine learning methods, i.e. polynomial regression and

SVR. The generated models are able to capture application behaviour on different deployment setups

in order to make application-driven decisions. The chapter also examined the efficiency of the learning

techniques, recognising that machine learning can impose significant training overhead.

Chapter 5 investigates enhanced learning techniques in order to make our proposed decision support

system more efficient in terms of cost and time thus addressing the third research goal as stated in

Chapter 1 and recalled here.

“The development and evaluation of an efficient decision-making method integrated with the estab-

lished decision support system to reduce the learning and decision-making cost and to making it more

cost-effective for use in cloud brokers.”

In particular, this chapter introduces a novel two-mode transfer learning scheme leading to sub-

stantial reduction in the training overhead. The chapter also details the fundamentals of transfer

learning technique and methods of transferring knowledge across domains. Furthermore, it explains

how the two-mode transfer learning scheme is used to enhance the capability of our decision support

system to make it more cost-effective for multi-cloud brokers. This transfer learning aided decision

97

98 5. The Transfer Learning Setting

support system is evaluated using different applications and two public cloud providers, namely AWS

and GCE.

5.2 Transfer Learning

Traditional machine learning is characterised by training data and test data having the same input

feature space and the same data distribution. When there is a difference in data distribution between

the training data and test data, the results of a predictive learner can be degraded [87]. In certain

conditions, obtaining training data that matches the feature space and predicted data distribution

characterisation of the test data can be difficult and expensive.

Transfer learning is used to improve a learner from one domain by transferring information from

a related domain. An example from real-world but non-technical experience is quoted here to express

the feasibility of transfer learning. Consider an example of two people who want to learn to play the

piano. One person has no experience of playing any music and the other person has an extensive

background of playing the guitar. The person with knowledge of the guitar will be able to learn piano

more efficiently by transferring the previously learned musical knowledge to the task of learning to

play the piano. The piano and guitar are considered sub-domains of a music domain, so common

knowledge can be utilised to train the target learner based on the domain similarity [88]. As such,

transfer learning provides a mechanism to solve new problems faster or improve their solution by using

previously learned knowledge.

By definition, transfer learning aims to extract knowledge from one or more source domain and

source task and apply that knowledge to achieve a target task in the target domain [88, 89]. The

process of achieving the target task by learning from the source domain and source task is depicted

in figure 5.1.

In a traditional statistical setting, we define a domain as a collection of two components: a feature

space X and a marginal probability distribution P(X), where

X = {x1, x2..., xn} ∈ X

Given a source domain DS and source task TS , a target domain DT and target task TT , transfer

learning aims to help improve the prediction function of DT using the knowledge in DS and TS where

DS = DT or DS 6= DT or TS = TT or TS 6= TT [88].

5.2.1. Transfer Learning Techniques 99

Learning
System

Target
Domain

Target Task

Source
Domain

Source Task

K
n

o
w

le
d

ge Transfer Knowledge

Learning
System

Application A

Predicting
Execution Time

on Cloud Y

TARGETTARGETSOURCE

Application A
Predicting

Execution Time
on Cloud X

K
n

o
w

le
d

ge Transfer Knowledge

Learning
System

Application B

Predicting
Execution Time

on Cloud X

TARGETTARGETSOURCE

Application A
Predicting

Execution Time
on Cloud X

K
n

o
w

le
d

ge Transfer Knowledge

Learning
System

Application B

Predicting
Execution Time

on Cloud Y

TARGETTARGETSOURCE

Application A
Predicting

Execution Time
on Cloud X

K
n

o
w

le
d

ge Transfer Knowledge

Similarity at application level

Similarity at cloud level

No similarity at application or
cloud level

Figure 5.1: Fundamental approach of Transfer Learning.

Transfer learning has been applied to many real-world applications including image classification

[90, 91, 92], sentiment classification [93], human activity classification [94], software defect classification

[95] and multi-language text classification [96, 97, 98]. In order to transfer knowledge, both the source

and target domains should have some similarity. Rosentein et al. emphasised the relatedness of the

source and target domains in order to avoid any negative knowledge transfer [99]. Weighted function

of conditional probability, flat naive bayes and KL-divergence for rank of domain are some of the

methods used to measure the relatedness of the source and target domains for classification based

transfer learning [100, 99, 101].

5.2.1 Transfer Learning Techniques

Transfer learning can be categorised into two subtypes, inductive transfer learning and transductive

transfer learning [88].

Inductive Transfer Learning

Inductive transfer learning aims to improve the learning of target predictive function with the help

of source domain DS and source task TS , considering that the source and target domains are the same

(TS = TT) but the tasks differ (TS 6= TT) [88]. This type of transfer learning can further be extended

in two modes: multi-task learning and a self taught learning. Multi-task learning refers to the case

where a source domain has multiple source tasks and each of these tasks is achieved simultaneously

using an existing labelled source dataset [102, 103, 104]. In self taught learning, a task is achieved

using unlabelled source data due to the absence of valid labelled data [105]. This type of learning runs

100 5. The Transfer Learning Setting

in various iterations and tries to label the data to make it usable for further learning.

Transductive Transfer Learning

Transductive transfer learning aims to improve the learning of target predictive function with the

help of DS and TS , where DS 6= DT but the tasks are the same (TS = TT) [88]. This is also referred

to as domain adaptation [106]. The difference between the source and target domain appears either

due to a varying feature space or a different marginal probability distribution. Transductive transfer

learning can be categorised as unsupervised learning, although this condition can be relaxed with the

inclusion of a little amount of target data to give the model an idea about the distribution of the

target domain. Such auxiliary data helps in boosting the performance of the prediction model. Such

transfer learning methodology is referred to as semi-supervised transfer learning or semi-supervised

transductive transfer learning, where the auxiliary target data is available at the training time and

this data is not part of the test data [107, 108].

5.2.2 Approaches to Transfer Learning

In a transfer learning setting, the most critical question is to identify the type of knowledge that can

be transferred from a source to a target domain. Different ways of transferring the knowledge between

two domains have been explained in [88, 89]. We briefly review them.

1. Transferring knowledge of instances

Instance knowledge transfer is applied by re-weighing some portion of source data to be used in

the target domain and iteratively measure the model fitness for target task learning [109, 110,

111, 112, 113]. MSE is considered one of the fitness measures for model assessment. Instance

knowledge transfer seems quite intuitive considering the fact that the source and the target

domains are quite similar in data distribution, and the use of the source data (instance) at

training time can have a positive impact on learning a target task for the target domain. Even

with a slight difference in distributions of target and source domain, one can still make use of the

source data for learning a target task. Despite the fact that this method of knowledge transfer

seems straight forward, misleading data examples from source data can lead to negative transfer

of information [99].

A suitable example for this type of knowledge transfer is when there is a lack of high-quality

training data or collection of the training data is very expensive. In this case, the training and

5.2.2. Approaches to Transfer Learning 101

test data from some previous similar task can be used as a training set to achieve the target

task.

2. Transferring knowledge of feature representation

This type of knowledge transfer requires identification of good features that can reduce the

differences between source and target domains in order to minimise the model error and domain

divergence [105, 108, 114, 115, 116]. More effective results can be generated by increasing the

weights on features that can fairly represent the target domain and are part of the source domain

as well. However, this depends entirely on being able to select the right features and, if this is

not achieved, the end result can be a poorly fitted model.

Suppose that the source and the target applications vary in category; for example, one is memory-

intensive and the other CPU-intensive. A learning model for the target application can be

generated by extracting or using those features that reduce the differences between the source

and target applications.

3. Transferring knowledge of parameters

This approach transfers the parameter knowledge with an assumption that the source and target

task share some parameters or prior distributions of the hyper-parameters of the models [104,

117, 103, 118]. Hence, the details of the learning model (source task) are transferred from the

source to the target domain, such as, the degree of smoothness, kernel information, learning

rate, learning constants, weights in the loss function, and so on. This type of knowledge transfer

can work well in the case when both source and target domains are different in terms of data

distribution as well as feature space, but the objective task is the same for both.

4. Relational Knowledge transfer

This knowledge transfer approach deals with the transfer learning problems in relational domain

[119, 120, 121]. This approach does not assume that the data drawn from each domain be

independent and identically distributed, and can be represented by multiple relations, such as

networked data and social network data. The statistical relational techniques are widely been

used to solve this problem. This knowledge transfer technique builds mapping of the relational

knowledge between the source and target domains.

102 5. The Transfer Learning Setting

5.3 Transfer Learning-aided Decision Support System

5.3.1 Motivation

In principle, transfer learning can be applied when the training and test data sets are drawn from

different distributional data. This characteristic contrasts with traditional machine learning. In the

traditional machine learning setting, if the data distribution changes, a learning model needs to be

rebuilt from scratch starting from data collection. Therefore, in a real-world scenario repeating this

activity is not efficient and incurs both additional time and cost. This is the situation our intelligent

decision support system is faced with. The different applications and varying deployments setups lead

to a change in data distribution as well as feature space. Transfer learning has a potential to deal with

the challenge of a model generation when data distribution or feature space differ between source and

target domain.

5.3.2 Problem Formulation

The decision support system explained in Chapter 3 required a learning model to predict application

performance on different virtual machines in order to make an optimal deployment decision. The

learning models are generated for every application following the traditional principle of machine

learning, which is a time-consuming job. Moreover, the learning process also requires a huge amount

of data collection for training and testing purposes, as described in Chapter 4. Repeating the same

process for every new application incurs significant learning time and model generation cost. This

causes a decrease in efficiency due to learning overhead, which decreases the overall efficiency of the

decision support system.

In this context, efficiency can be improved by reducing the training overhead and the learning cost

of model generation thus addressing the third research question stated in Chapter 1 and described as:

“The development and evaluation of an efficient decision-making method integrated with the estab-

lished decision support system to reduce the learning and decision-making cost and to making it more

cost-effective for use in cloud brokers.”

5.3.3. Overview of Proposed Solution 103

5.3.3 Overview of Proposed Solution

The proposed approach is designed in the context of the cloud computing domain, where an intelligent

decision support system is assisting customers in making optimal deployment decisions. The core

objective of this approach is to provide efficient decision-making by reducing the training overhead to

generate a learning model. There is a strong match between the properties of transfer learning and

one of our main objectives about enhancing the efficiency of intelligent decision support systems. The

proposed solution, therefore, targets the use of the transfer learning technique to help achieve such a

goal.

Semi-supervised Transfer LearningTraditional Learning

Text Text Training
set Text Test set Text

D1

Training Set Test Set
Text Text Training

set Text Test set Text

D1

Training Set

Text Text Training set Text Test set Text

D2

Learn

Train
Model

Auxiliary Data

Prediction

Learn

Train
Model

Prediction

Figure 5.2: Use of auxiliary data in the transfer learning technique.

Transfer learning is used to generate a learning model for the target domain using the existing

knowledge of the source domain, considering that the data distribution or feature space differs in both

domains. In relevance to the target objective this thesis answers the following key questions:

1. How to identify the source and its learned data which can give the best performance to realising

the target task?

2. What type of source knowledge can contribute towards achieving our goal and how to transfer

that knowledge?

104 5. The Transfer Learning Setting

3. How to avoid negative knowledge transfer?

4. Which machine learning methods can be used under the transfer learning methodology.

In this research, the applied method of transfer learning is the semi-supervised transductive transfer

learning method that allows the contribution of auxiliary target data for model generation. The

motivation for using the semi-supervised approach is its ability to learn with a little amount of labeled

data. This allows the reduction of the required training data for the target domain, which is one of the

key concerns of learning efficiency. The auxiliary data contributes at the model generation phase from

the target application. The complete training data set may be composed of the source instance data

as well as the target instance data. Figure 5.2 provides details of a model generation and prediction

process for both traditional learning and transfer learning. The left-hand side of the figure explains

the traditional principle of a model generation where test and training data are drawn from the same

distribution. In contrast, transfer learning makes use of learned data along with some auxiliary data

for model generation. The right-hand side of the figure explains this process where learned data is

coming from a domain D1, while domain D2 is contributing by providing auxiliary data. This is the

approach our proposed solution is based on.

5.4 Daleel in the Transfer Learning Setting

This chapter presents a novel contribution of this thesis, a two-mode transfer learning scheme,

which is designed to satisfy the goal of enhancing the learning efficiency. This scheme is designed using

the fundamental principles of transfer learning and integrated with the existing architecture of Daleel.

Hence, supported by the Learning Phase as shown in Figure 5.3. This scheme requires auxiliary data

from the target domain and works in accordance with the base learner and similarity of source and

target domain. The two-mode transfer learning scheme is derived from an extensive experimental

analysis involving two public cloud providers and three representative applications. No synthetic or

simulated data is being used at any stage of developing or evaluating this scheme.

This section details about the functionality of two-mode transfer learning scheme along with its

important modules related to auxiliary data, the base learners, and the similarity measurement. It also

describes how the existing intelligent decision-making module compliments the use of the proposed

approach.

5.4. Daleel in the Transfer Learning Setting 105

In this regard, only the relevant modules of Daleel are discussed which support the functionality

of two-mode transfer learning scheme: these are Analysis Phase and Learning Phase. The internal

architecture of Analysis and Learning phase is presented in Figure 5.3, where Learning Phase supports

the transfer learning process.

Analysis Phase Learning Phase

Model
Training

Model
Assessment

Application 1,2,3, ...n

Model Generation

Auxiliary
Data-

‘sufficient’

Knowledgebase

Function Repository

Transfer learning Scheme

Two-mode
Transfer
Learning

Similarity
Mesaure

Figure 5.3: Daleel’s decision support architecture in knowledge transfer setting.

As mentioned earlier, this research is following the semi-supervised transfer learning approach

so the proposed methodology requires auxiliary data from the target domain. The Analysis Phase

is responsible to collect auxiliary data. The function of the Learning phase is provisioning of the

learning models. The model, however, is not generated from scratch by following the long steps of

model fitting, as described in Chapter 3. Rather, the model is generated using the proposed two-

mode transfer learning scheme as shown in Figure 5.3.The generated model is then trained using the

transferred knowledge as well as the sufficient amount of target application data. Model assessment

is performed on the generated model and if the output is not satisfactory, the process re-starts by

106 5. The Transfer Learning Setting

fetching a new application from the knowledgebase. The test data set for the model assessment is

comprised of the target application’s data only. Finally, the accepted model is saved in the Function

Repository to be used by the Planning Phase.

The complete model generation process is briefly explained via flow chart as stated in Figure 5.4.

1. The Analysis Phase is responsible to collect a ’sufficient’ amount of data for the target applica-

tion.

2. The Learning Phase receives data and starts the similarity measurement process.

3. The source application(s) is tagged according to the similarity output.

4. The two-mode transfer learning scheme starts transferring the knowledge according to the se-

lected scheme based on the similarity result as explained in Algorithm 4. If, similar or partly

similar applications are identified and the transferred learning method is SVR then the learning

model is generated using the transferred knowledge by following the Transfer-All scheme. In

contrast, if the applications are not similar and the learning method is still SVR, the Transfer-

Model scheme is responsible to generate a learning model for the target application. On the

other hand, if the learning method is MPR, a learning model is generated by following the

Transfer-Model scheme.The detail of transfer learning approaches are already explained above

in detail.

5. The generated model is then trained using the transferred knowledge as well as the sufficient

amount of target application data. Most importantly, in a Transfer-All scheme the training

data set is composed of two different distributional data coming from the source and the target

domain.

6. Model assessment is performed on the generated model and if the output is not satisfactory the

process re-starts from step 3. The test data set for the model assessment is comprised of the

target application’s data only.

7. The accepted model is saved in the Function Repository to be used by the Planning Phase.

Now, we explain the detailed functionality of the two-mode transfer learning scheme and its sup-

porting modules such as the auxiliary data and the similarity measure.

5.4.1. Auxiliary Data 107

Start

2: Receive ‘sufficient’
Data

Saux

5: Model Training

6: Model Assessment

7: Output Function
Estimation

Satisfactory

End

YES

 Function
Repository

f(Saux)

1: Collect
‘sufficient’

profiling data

3: Similarity
Measurement

4: Follow 2 Mode
Knowledge Transfer

Scheme

NO

Skb.tagged

“Sufficient” Training Data

Testing Data

Knowledgebase

Skb

M, Skb, f(Skb)

Figure 5.4: Flow chart of the Learning Phase in transfer learning setting

5.4.1 Auxiliary Data

As mentioned earlier, application of the semi-supervised transductive transfer learning requires pres-

ence of the auxiliary data for the model generation.

108 5. The Transfer Learning Setting

1

2

3

4

5

20 40 60 80

lo
g1

0(
M

S
E

)
itemrec_MPR
itemrec_SVR
small_MPR
small_SVR
vard_MPR
vard_SVR

Figure 5.5: Plot of actual vs predicted values for three representative applications using two machine learning

methods: SVR and polynomial regression.

In this context, the term, “sufficient amount of data” is introduced, which represents the auxiliary

data requirement for the target application to be used in the two-mode transfer learning scheme.

So, extensive experimentation is done to assess the right amount of data to assess what constitutes

“sufficient” in practice, that needs to be collected as profiling data for the target application. A

“sufficient amount” is identified by observing model convergence according to the change in percentage

contribution of training data. To illustrate this, a graph is plotted for observed MSE values against

the percentage of data which is utilised at training time to train the fitted model. This graph is shown

in figure 5.5, where the x-axis indicates the percentage of training data set used to train a model and

the y-axis represents the MSE values. The different colour lines indicate the models generated using

SVR and polynomial regression methods by utilising the datasets of three representative applications

running on Amazon EC2 instances. The line curves indicate the convergence of SVR-based and

polynomial regression-based models. Except one SVR-based model, all models are converging quickly

and are producing a constant prediction accuracy. A slow convergence is observed in one of the

5.4.2. Similarity Measure 109

plotted SVR-based models which requires minimum of 22% data to be used as a training set. Note

that the 100% data represents the collected application profiling data over a period of seven days using

representative set of applications.

Analysis phase takes care of collecting a sufficient amount of data. This phase performs the

same way as explained in Section 3.4.1, but the given number of application runs to collect profiling

data is different under transfer learning setting. The amount of data collection is reduced to 22%

which involves executing an application for nearly 36 hours. Recall steps for application profiling, as

explained in Section 3.4.1, profiling information is collected by deploying the application on different

virtual machines of a cloud provider involving pipeline of processes starting from getting application

vignette, creating a virtual machine, deploying the application, and system monitoring. This collected

information is then transformed into a readable format (CSV) for the Learning phase.

5.4.2 Similarity Measure

A similarity measure is required to identify which of the source data (source application) will give the

best performance on the target domain (target application) to learn the target task (prediction model).

A similarity measurement approach is proposed in this thesis considering it an essential pre-requisite

for applying the transfer learning scheme. In this research, the similarity between the source and

target domain is measured using two methods: 1) Profile comparison, and 2) Kolmogorov–Smirnov

(KS) test

Profile comparison compares the target application metrics with the source application metrics

saved in the knowledgebase. A metric is comprised of the cloud portfolio and application vignette as

mentioned in Chapter 4. This is simply a value comparison for each attribute of application vignette.

This comparison tries to find similarities at an application or cloud deployment level. Very often,

it is difficult to compare deployment settings and resource utilisation between the two applications,

especially when the virtual machines belong to different cloud providers and vary in configuration

standards. Moreover, a simple comparison of resource utilisation is not an easy task due to the

multiple level fine grained information. However, statistically, it is viable to quantify the level of

similarity.

110 5. The Transfer Learning Setting

Input: (i) Auxiliary data = Saux

(ii) Knowledgebase data = Skbi , where i = 1...n and n=total number of applications

Output: (i) Dd and Df , a similarity estimate for each Skbi

(ii) Tagged knowledgebase datasets = Skbi .tagged

initialization;

� Let Aj1, ..., Ajq, .., Ajk be the value in Saux, where Aj1..Ajq represents application architecture,

and Ajq..Ajk represents deployment details

� Let Bl1, ..., Blq, .., Blm be the value in Skbi , where Bl1..Blq represents application architecture,

and Blq..Blm represents deployment details

Function SimilarityMeasure (Saux, Skbi)

Start SimilarityMeasure

foreach Skbi ∈ {Skb1 , ..., Skbn} do

foreach x ∈ {Aj1, ..., Ajk} ∪ {Bl1, ..., Alm} do

for Two.Sample.KS.Test(xa, xb) do

Compute p-value → Dp

Compute D′-value → Dd

if p-value >0.05 then

x.mark = ”SAME”

else

if D′<0.5 then

x.mark = ”SAME”

else

x.mark = ”DIFFERENT”

end

end

end

end

aggregate.x.mark for {Aj1..Ajq} and {Ajq..Ajk}

if value of aggregate.x.mark is ”SAME” for all {Aj1..Ajq} then

Skbi .tagged = ”SIMILAR”

else

if value of aggregate.x.mark is ”SAME” for >half of {Aj1..Ajq} then

Skbi .tagged = ”PARTLY − SIMILAR”

else

Skbi .tagged = ”NOT − SIMILAR”

end

end

end

END SimilarityMeasure
Algorithm 2: Similarity Measure

5.4.2. Similarity Measure 111

Table 5.1: KS test results

Feature A & B. B & C A & C

D-value p-value D-value p-value D-value p-value

vmtype 0.4082 2.20E-16 0.3986 2.20E-16 0.662 2.56E-07

vcpu 0.4063 2.20E-16 0.431 2.20E-16 0.0662 2.56E-07

ecu 0.4063 2.20E-16 0.431 2.20E-16 0.0662 2.56E-07

ram 0.4063 2.20E-16 0.431 2.20E-16 0.0662 2.56E-07

day 0.0804 2.32E-16 0.0926 2.20E-16 0.173 2.56E-07

sub-time 0.4063 2.20E-16 0.431 2.20E-16 0.0662 2.56E-07

Ex-time 1 2.20E-16 1 2.20E-16 0.633 2.20E-16

apptype 0.4063 2.20E-16 0.431 2.20E-16 0.0662 2.56E-07

multi-threading 0.4063 2.20E-16 0.431 2.20E-16 0.0662 2.56E-07

external file 0 1 1 2.20E-16 1 2.20E-16

load in mem 1 2.20E-16 1 2.20E-16 0 1

parallel 0 1 1 2.20E-16 1 2.20E-16

file size 1 2.20E-16 1 2.20E-16 1 2.20E-16

Result Partly-similar Not-similar Not-similar

The KS test is a statistical way of comparing the probability distribution of two separate datasets.

This is a non-parametric test of the equality of continuous, one dimensional probability distribution

to compare a sample with a reference probability distribution. It also quantifies the distance between

the empirical distribution function of the two samples. In other words, the two-sample KS test checks

whether two data samples come from the same distribution. However, it does not specify what that

common distribution is (e.g. whether it’s normal or otherwise).

The KS test is applied considering following reasons. First, the similarity test can be performed

without knowledge about the common distribution of the source and target domain data. Second, it

is sensitive to distribution. Third, it works well even if we do not know the mathematical distribution

of observed properties of the dataset. Fourth, the application of KS test has no restriction on the

112 5. The Transfer Learning Setting

sample size. Lastly, the KS test can be applied without restriction to any scientific problem, as this

has been widely used in the astronomy domain as well, to find similarities amongst galaxies.

In the KS test the null distribution is calculated under a null hypothesis which postulates that

both samples are drawn from the same distribution. The null and alternate hypotheses are stated:

H0[x = y], H1[x differs from y] (5.1)

Algorithm 2 compares the probability distribution of the target application’s profiling data (Saux)

with the existing applications (Skbi) and identifies similar distributional application(s) (Skbi .tagged)

from the knowledgebase. The application(s) are tagged according to the calculated values for distribu-

tional difference (Dd) and feature difference (Df). The KS/similarity test is applied on vector inputs

(Aj1, ..., Ajk & Bl1, .., Blm) from both source and target domain that needs distributional comparison.

Each vector input represents a single feature from the source and target domains. The test outputs a

p-value (Dp) and a D-value (Dd) for two samples each from source (Skbi) and target (Saux) application

where p-value quantifies the probability of two samples populated from same or different distribution

and D-value represents the difference of empirical distribution functions of two samples. The sub-level

similarity tagging is assigned to each pair of features based on the p and D values.

If the p-value rejects the similarity hypothesis, then the D-value is evaluated to get an idea about

the probability of similarity. A value in the range of 0-0.5 is considered as a measure of corresponding

sample similarity from 50% to 100%. If we mark p-values and D-values accordingly we can get

aggregated values to decide for similarity. The closeness is tagged as one of these three categories: 1)

Similar, 2) Partly-Similar, or 3) Not-Similar. Table 5.1 presents the outcome of a similarity analysis

based on three real world applications. The first 7 features in the table represent cloud and deployment

related information and the remaining features explain application architecture. The three applications

are named anonymously as A, B and C. Each D-value and p-value is calculated for each feature vector

from the source and target applications as explained in “Function SimilarityMeasure()”. The similar

features are marked as “*”. An application with high number of similar feature will get higher rank

at similarity.

The aggregated similar features for A and B is higher than A and C so for application A being a

target application B would be the first choice to be used as source of knowledge. Moreover, application

A and B are closer in their defined architecture and are tagged as Partly-Similar for each other, however

5.4.3. Base Learner 113

application C is tagged as Not-Similar. For application C both the applications A and B are ranked

the same to be used as the source, however both applications have almost no similarity at application

architecture level and will be tagged as Not-Similar to each other.

In a nutshell, the comparison looks for a similar application that has been logged in the knowl-

edgebase. This similarity measure identifies the closeness of a new application (target domain) with

the existing application(s) (source domain) present in the knowledgebase. The closeness is tagged as

one of these three categories: 1) Similar, 2) Partly-Similar, or 3) Not-Similar.

The SimilarityMeasure() method uses a builtin R function ks.test(). This function requires fol-

lowing parameters in this form:

> ks.test(x, y, alternative = c(”two.sided”, ”less”, ”greater”),

exact = NULL, tol = 1e− 8, simulate.p.value = FALSE,B = 200)

where x and y are numeric vector of data values and represents each column of a transformed

CSV file, as this function tries to find distributional similarity between multiple columns of source and

target application. ‘alternative’ indicates the alternative hypothesis and can take any of these values

such as ‘two-sided’, ‘less’ and ‘greater’. In this research we calculated ks test value using alternate

hypothesis as ‘two.sided’ which calculates if the true distribution of x is equal to y. ‘exact’ indicates

whether an exact p-value should be calculated or not. ‘tol’ represents an upper bound for possible

rounding an error. ‘simulate.p.value’ represents the inclusion of a Monte Carlo simulation to check

goodness of fit and ’B’ indicates the number of times this simulation will run.

5.4.3 Base Learner

Base learners are the machine learning methods used in the two-mode transfer learning scheme. The

functionality of these learners is to learn a prediction model (target task). For this study, MPR

and SVR are two machine learning methods used as the base learners and are referred as “MPR-

learner” and “SVR-learner”, respectively, throughout the chapter. There are some potential reasons

for the selection of SVR and MPR as learners. A usage of common machine learning algorithms

under traditional and transfer learning gives a fair comparison to highlight any potential benefits

of one approach over the other. Moreover, we already have observed in Chapter 4 the prospective

benefit of using these learning algorithms. The models which are generated using the traditional

learning approach can be used for assessing the model accuracy with the transfer learning approach.

Therefore, in order to avoid any further complexity and to prove the generality of the proposed

114 5. The Transfer Learning Setting

approach, the same set of learning algorithms are used for transfer learning. Another important factor

is the extensive use of SVM to solve classification problems using the transfer learning approach, which

strengthens our decision of exploiting the use of SVM for regression [88].

5.4.4 Two-mode Transfer Learning Scheme

Two-mode transfer learning scheme aims in efficiently generating a learning model by following the

proposed method which is based on the principle of transfer learning technique. As the name explains,

the Two-mode transfer learning scheme has two modes and each mode follows different approaches

of transfer learning for knowledge transfer across different domains. The working for this scheme is

described in Algorithm 3. The two modes of this scheme are: 1) Transfer-All Mode and, 2) Transfer-

Model Mode.

1. Transfer-All Mode

This mode includes three approaches to transfer knowledge from the source to the target domain.

(a) Transferring knowledge of feature representation

(b) Transferring knowledge of instances

(c) Transferring knowledge of parameter

2. Transfer-Model Mode

This mode includes two approaches to transfer knowledge from the source to the target domain.

(a) Transferring knowledge of feature representation

(b) Transferring knowledge of parameter

This mode works by activating one of these modes and activation is based on the inputs from

similarity measure and base learner. Similarity measure results in the identification of similarity

between the source and the target application at the feature space and the marginal distribution level.

5.4.4. Two-mode Transfer Learning Scheme 115

Input: (i) Auxiliary data = Saux

(ii-a) Tagged knowledgebase datasets = Skbi .tagged

(ii-b) Xsig of Skbi .tagged

(ii-c) Learning Method = M , where M can be SVR or MPR

(ii-d) PredictionFunction = f(Skbi)

Output: (i) PredictionFunction = f(Saux)

Function TwoModeTransferLearning (Saux, Skbi .tagged, M)

Start TwoModeTransferLearning

Sort Skbi .tagged based on tagged value, SIMILAR applications comes first

foreach Skbi .tagged do

if Skbi .tagged == ”SIMILAR” ‖ Skbi .tagged == ”PARTLY-SIMILAR” then
Set Dd = FALSE

if M == SVR then
Set BaseLearner=M

CallFunction TrasnferAll(Saux, Skbi .tagged,BaseLearner, Dd)

else

if M == MPR then
Set BaseLearner=M

CallFunction TrasnferModel(Saux, Skbi .tagged, BaseLearner, Dd)

else

end

end

else

if Skbi .tagged == ”NOT-SIMILAR” then
Set Dd = TRUE

if M == SVR then
Set BaseLearner=M

CallFunction TrasnferModel(Saux, Skbi .tagged, BaseLearner, Dd)

else

if M == MPR then
Set BaseLearner=M

CallFunction TrasnferModel(Saux, Skbi .tagged, BaseLearner, Dd)

end

end

end

end

end

END TwoModeTransferLearning
Algorithm 3: Two-mode Transfer Learning Scheme

116 5. The Transfer Learning Setting

Now, we explain the approaches involved in the designed scheme to transfer knowledge.

1. Transferring knowledge of feature representation

The feature space represent specific properties regarding application architecture, deployment

configurations and execution details as explained in Section Chapter 3. If both the source and

target domains have some similarity at the application or deployment level, then the chances for

effective contribution of same feature space are high while generating a learning model for the

target domain.

(a) If the feature space is same or nearly same in both source and target domain. The ’signif-

icant’ features are selected and transferred from the source domain to the target domain.

The significant features are the predictors which are identified while generating the predic-

tion model for the source domain.

(b) If the marginal distribution differs in both source and target domains due to the difference

of application architecture. The identification of similar features is required in order to

reduce the domain difference.

(c) If the feature space differs in both source and target domains due to the varying standards

of IaaS offerings. The mapping of similar features is required which can be done manually

using the shared knowledge of both domains or automatically using the results of KS test.

2. Transferring knowledge of instances

The instance knowledge represents a sample set comprised of the selected feature space. If

the source and target domains have some similarity then the instance knowledge transfer can

positively contribute for the model generation of target domain.

(a) Transfer the instance knowledge of the selected feature space. The feature space is identified

and selected during the knowledge transfer of feature representation.

(b) The instance knowledge is transferred in an incremental way in order to avoid any influential

effect of the source data.

3. Transferring knowledge of parameter

The parameter knowledge details about the mathematical formulation of estimation or prediction

function. This module transfers the parameter knowledge with respect to the selected base

learner.

5.4.5. Model Training & Assessment 117

(a) If the base learner is SVR, transfer the kernel function, tuning parameters learning rates,

learning-cost function and model constants.

(b) If the base learner is polynomial regression, transfer the polynomial order specific to each

predictor, coefficient values and interaction terms.

For the purpose of detailed evaluation at each stage, we manually added model details based

on the similarity measure. For example, if the application A is closely similar to application

B we copied complete model structure from its source script to make it easy for knowledge

transfer purpose.A self-explanatory code snippet is shown in Figure 5.6 explaining different

steps involved in the model generation process. This process starts with reading source and

data files and applying pre-processing method. This code tries to train model with increasing

percentage of source data and target data. This process will run for multiple iterations with

varying percentage of the source and target data in order to find any influential effect. All the

outputs in each of the iteration are logged into a data file which then is evaluated by a human

expert to detect any discrepancies regarding model generation (not a mandatory step).

5.4.5 Model Training & Assessment

Model training and assessment are two of the stages similar in both traditional settings as well as

transfer learning setting. Details pertaining to functionality and method details is already explained

in Section 3.4.2. The only difference in these methods under transfer learning is the distributional

difference between test and training data set. Training data set includes data from the source and

target applications, however, test data set is only comprised of data from the target application. As

a model assessment result if the MSE is not satisfactory the next similar application is fetched to be

used for model generation. A simple method to check goodness of fit is a comparison of training and

test MSE.

5.5 Evaluation of the Two-mode Transfer Learning Scheme

This section provides evaluation of the two-mode transfer learning scheme. The main objective of this

evaluation is to assess the generality of the proposed approach with a belief that the proposed scheme

is able to make use of the learned knowledge to enhance model generation efficiency in terms of cost

and time. This will lead to the achievement of the high level objective of efficient decision making.

118 5. The Transfer Learning Setting

 dataSource=read.csv('path-to-file.csv',header=T) # read source file
 dataSource=na.omit(dataSource) # remove null values

 dataTarget=read.csv('path-to-file.csv',header=T) # read target file
 dataTarget=na.omit(dataTarget) # remove null values

 split_source=xPercent # default percentage is 5

 repeat
 {
 percentage=floor((60*totaldatasize(dataSource))/100)
 split_target=xPercent # sefault percentage is 5

 repeat
 {

 for (j in 1:200){ # train model in 200 iterations

 train1=sample(totaldatasize(dataSource),percentage)
 data_trainSource=dataSource[train1,]
 data_testSource=dataSource[-train1,]

 percentage1=floor((60*totaldatasize(dataTarget))/100)
 train2=sample(totaldatasize(dataTarget),percentage1)
 data_trainTarget=dataTarget[train2,]
 data_testTarget=dataTarget[-train2,]

 combineTrainingData=rbind(data_trainSource,data_trainTarget)

 Model=svm(responseVariable~ram+vcpu+ecu+externalfile+predictor + ... + ...+, data=combineTrainingData, scale=FALSE,

kernel="polynomial",degree=3,,,)

 MSETraining=mean((combineTrainingData$responseVariable-predict(Model,combineTrainingData))^2) # calculate MSE on training
data

 df=data.frame(....,, ,....) # put details in dataframe and write in a table
 write.table(df, file='file-to-path.csv',row.names=FALSE,sep=",",col.names=FALSE, append=TRUE)

 } # end of for loop j

 MSETest=mean((data_testTarget$ttime-predict(Model,data_testTarget))^2) # calculate MSE on test data

 compareMSE(MSETest, MSETraining) # compare test and training MSE for assessment
 incrementsplit_target ()
 if (split_target>60) break
 }
 } # end of for loop
 incrementsplit_source()
 if (split_source>60) break
 }

Figure 5.6: A code snippet of transfer learning setting.

5.5.1. Experimental Details 119

We start evaluating this approach with three evaluation strategies in order to cover a wider span

of possibilities, which are:

1. Cross-application. Can transfer learning scheme be applied across different applications that

require deployment decisions on the same target cloud provider?

2. Cross-provider. Can transfer learning scheme be applied to assist in the deployment decisions

of an application across different target cloud providers?

3. Cross-application & cross-provider. Can transfer learning scheme be applied to assist

different applications for deployment decisions across different target cloud providers?

The evaluation process aims to assess the two-mode transfer learning scheme subject to the fol-

lowing fine-grained objectives:

1. Feasibility of approach with above mentioned evaluation strategies.

2. Rationality of the proposed scheme.

3. Assessment of the applied scheme.

4. Accuracy of the generated models.

We evaluate under certain assumptions. First, a large amount of data is available for mentioned

evaluation strategies. Second, the data is normally distributed and outliers are removed. Third,

the data contains no null values and all the column values are according to the set standard such

as conversion of text values to numerical and unit conversion of file size. Fourth, knowledgebase is

accessible which contains previously logged applications data as well as model details. Lastly, all the

application packages are installed.

5.5.1 Experimental Details

The assumptions lead to the requirement of a large amount of data sets for multiple applications

along with the learning models to represent application behaviour on different deployment setups. A

substantial amount of data has already been collected by extensive experimentation on Amazon EC2

as stated in Chapter 4. The learning models were also generated for three representative applications.

120 5. The Transfer Learning Setting

Table 5.2: The computational specification of GCE instances.

Series Node vCPU GCEU RAM Storage Price

(GB) (GB) ($/h)

Standard n1-standard-1 1 2.75 3.75 16(32 in Beta) 0.042

Type n1-standard-2 2 5.5 7.5 16(64 in Beta) 0.084

n1-standard-4 4 11 15 16(64 in Beta) 0.168

High n1-highmem-2 2 5.5 13 16(64 in Beta) 0.106

Memory

High n1-highcpu-2 2 5.5 1.8 16(64 in Beta) 0.064

CPU n1-highcpu-4 4 11 3.6 16(64 in Beta) 0.128

n1-highcpu-8 8 2.2 7.2 16(64 in Beta) 0.256

To completely explore all evaluation methods, we extend our experiment with the inclusion of another

public cloud/IaaS provider: Google Compute Engine (GCE).

A substantial amount of data was also generated for GCE by following the same principles used

for data collection for Amazon EC2. The experiments are continuously repeated using the same

representative set of applications, over a period of seven days with a delay of ten minutes in between

each pair of runs. The Linux tools vmstat, glances and sysstat are used to continuously monitor

resource utilisation. The motive behind this activity was to generate comparative results to evaluate

our approach and to highlight the benefit of transfer learning scheme.

Similar to Amazon EC2, GCE provides a differentiated series of instance types, catering to different

application needs (eg compute-intensive, memory intensive, I/O-intensive, and so on). Each series

contains a number of instance types offering different setups of computational resources. We targeted

the Standard Type series n1-standard-1, n1-standard-2 and n1-standard-4. In addition, we selected the

High CPU series n1-highcpu-2, n1-highcpu-4 and n1-highcpu-8 as well as the High Memory series n1-

highmem-2 in order to evaluate varying combinations of resource capacities over a relatively wide price

range. Only on-demand instances are used for this experiment. These have no long-term commitments

and are charged on a pay-as-you-go basis at a 10 min rate.

Google Compute Engine uses KVM as the hypervisor which is used to launch virtual machines

5.5.2. Evaluation 1: Cross-application 121

based on the 64 bit x86 architecture. All instances used run 64-bit Ubuntu Linux of different capacities

as shown in Table 5.2. Google compute engine unit (GCEU), which is pronounced as GQ, is an

abstraction of compute resources. According to Google, 2.75 GCEUs represent the minimum power

of one logical core. Some of the information, such as details of parallel workload on virtual machines,

scheduling algorithms and how GCE virtual cores are pinned to physical cores is not provided by the

public cloud providers. So the users of infrastructure as a service cannot perceive any collocation or

interference effect on their running application.

GCE differs from the Amazon-EC2 in various aspects such as the pricing scheme, virtual machine

configuration measurement units and compute units. Amazon charges on an hourly basis for a virtual

machines; in contrast, Google charges a minimum of 10 minutes per virtual machine. Both providers

have non-standard categories to offer the pool of virtual machine’s computational power and units.

Amazon uses the term ’ECU’ as a computation unit to express the CPU capabilities of its various

compute offerings while Google has defined its own computational unit as ’GCEU’. The capacity unit

for measuring the disk size, machine type memory, and network usage are calculated in gigabytes

(GB) for each EC2 instance of Amazon. Contrary to that, GCE uses gibibyte (GiB) as a measuring

units for describing configurations of the virtual machines. It is very hard to make a 1:1 comparison

with such a vague and non-standard description about the computational units and varying standards.

This creates a difference of feature space at domain level. The proposed approach deals with such

differences at the feature space level by mapping of similar features.

5.5.2 Evaluation 1: Cross-application

First evaluation strategy ascertain whether the two-mode transfer learning scheme is able to satisfy the

objective of enhancing the learning efficiency in a cross-application scenario where the target provider

is same for different applications. This can be explained using an example scenario.

A prediction model for the application B can be generated to predict its performance on cloud X

using the learned knowledge of application A having a prediction model to predict performance on cloud

X and vice versa.

The data source of three representative applications running on EC2 is utilised for this evaluation.

For each of the target application as stated in Table 5.3, a source application is listed along with

the similarity outcome. According to the similarity measurement, VARD and Item-Recommender are

considered two of the applications which are closely similar to each other. However, rest of the test

122 5. The Transfer Learning Setting

cases indicate no similarity at application level, the similarity output can be seen in Table 5.1.

Based on the similarity outcome and the activated transfer learning scheme, as stated in column

4-5, a prediction model is generated using the activated base learner. In order to assess the model

accuracy, the MSE value of the generated model (as an outcome of two-mode transfer learning scheme)

is compared with MSE value of the base model, as listed in the last two columns of Table 5.3.

The similarity at MSE values endorse that a learning model can be generated using the transferred

knowledge of the similar application. It also validates the feasibility of applied transfer learning scheme

for the representative test cases.

Moreover, the similar MSE results of both models confirms the applicability of the knowledge

transfer approaches used for the applied transfer learning scheme. Besides, it also justifies feasibility

of SVR and MPR as base learners to generate a learning model under transfer learning scheme. A

similar result is presented to show the positive contribution of instance knowledge transfer which is

one of the knowledge transfer approaches in the Transfer-All scheme.

Figure 5.7 shows the effect of instance knowledge (source application) transfer for the model

generation of the target application. The effect is measured using MSE values on the test data set. The

test data set belongs to the target application only; in contrast, the training dataset is composed of the

mix of source and target domain data. The horizontal axis represents the percentage contribution of

the source instances for the model generation, while the vertical axis lists the mean-MSE values for the

test data. The left-hand plot in Figure 5.7 shows the effect of instance knowledge transfer of the VARD

(source data) to generate the learning model (target task) for the Item-Recommender application

(target domain). The consistent MSE value with low MSE confirms the positive contribution of the

source data for the model generation. The right-hand plot also confirms the above justification when

the instances from the Item-Recommender (source domain) are transferred to the model generation

for the VARD (target domain). These results re-confirm the efficiency of the proposed scheme and

the accuracy of the SVR-learner.

Comparable results are seen when the source and target applications have no similarity at applica-

tion architecture level, as stated in Table 5.3. These test cases follow the Transer-Model scheme with

both SVR and MPR as base learners. The model assessment result confirms that the feature repre-

sentation is fairly describing both applications even when they belong to different categories. This

also proves the generality of our designed generalised learning algorithm. In addition, the transferred

model parameter details are able to generate a learning model to capture a different application’s

5.5.2. Evaluation 1: Cross-application 123

behaviour.

Besides the validation of applied transfer learning scheme, the model accuracy confirms the reduc-

tion in model generation time and training cost as only the ’sufficient’ data was required from the

target application to train the generated model. Moreover, the lengthy effort of model generation is

reduced due to the use of existing knowledge.

The overall efficiency is achieved by saving 60% of required cost and time. This significantly has

reduced a single virtual machine usage for data collection for one application from 168 hours to 67

hours. Consequently, saving a cost of $92.332 out of $153.888 on eight virtual machines of Amazon-

EC2.

The 100% success rate validates the hypothesis for the viability of our approach across different

applications for the same cloud provider. Further to that, the similarity of MSE values also endorses

the accuracy of applied SVR-learner for transfer learning scheme. It also confirms that the efficiency

can be achieved in terms of time and cost by making use of learned knowledge.

124 5. The Transfer Learning Setting

T
a
b

le
5
.3

:
C

ro
ss

-a
p

p
li

ca
ti

o
n

:
E

va
lu

a
ti

o
n

re
su

lt
s

o
f

th
e

tw
o
-m

o
d

e
tr

a
n

sf
er

le
a
rn

in
g

sc
h
em

e

T
e
st

C
a
se

T
a
rg

e
t

S
o
u

rc
e

S
im

il
a
ri

ty
A

p
p

li
e
d

S
ch

e
m

e
G

e
n

e
ra

te
d

M
o
d

e
l

B
a
se

M
o
d

e
l

B
as

e
L

ea
rn

er
≈

M
S

E
M

S
E

1
It

em
-R

ec
.-

E
C

2
V

A
R

D
-E

C
2

Y
es

T
ra

n
sf

er
-A

ll
S

V
R

2
4
.3

6
6

2
3
.9

9
5

Y
es

T
ra

n
sf

er
-M

o
d

el
M

P
R

2
3
.3

6
2

2
3
.3

6
2

sm
al

lp
t-

E
C

2
N

o
T

ra
n

sf
er

-M
o
d

el
M

P
R

2
3
.3

6
2

2
3
.3

6
2

N
o

T
ra

n
sf

er
-M

o
d

el
S

V
R

2
3
.9

9
5

2
3
.9

9
5

2
V

A
R

D
-E

C
2

It
em

-R
ec

.-
E

C
2

Y
es

T
ra

n
sf

er
-A

ll
S

V
R

1
7
7
.1

8
0

1
7
7
.9

6
0

Y
es

T
ra

n
sf

er
-M

o
d

el
M

P
R

1
4
1
.7

4
1

1
4
1
.7

4
1

sm
al

lp
t-

E
C

2
N

o
T

ra
n

sf
er

-M
o
d

el
S

V
R

1
7
7
.9

6
0

1
7
7
.9

6
0

N
o

T
ra

n
sf

er
-M

o
d

el
M

P
R

1
4
1
.7

4
1

1
4
1
.7

4
1

3
sm

al
lp

t-
E

C
2

V
A

R
D

-E
C

2
N

o
T

ra
n

sf
er

-M
o
d

el
S

V
R

9
.7

4
6

9
.7

4
6

N
o

T
ra

n
sf

er
-M

o
d

el
M

P
R

8
.9

8
3

8
.9

8
3

It
em

-R
ec

.-
E

C
2

N
o

T
ra

n
sf

er
-M

o
d

el
S

V
R

9
.7

4
6

9
.7

4
6

N
o

T
ra

n
sf

er
-M

o
d

el
M

P
R

8
.9

8
3

8
.9

8
3

5.5.3. Evaluation 2: Cross-provider 125

2

3

4

5

20 40 60
Target Data

M
ea

n
S

qu
ar

ed
 E

rr
or model

svr

Movierating (Source) − VARD (Target)

2

3

4

5

20 40 60
Source Data

M
ea

n
S

qu
ar

ed
 E

rr
or model

svr

Movierating (Source) − VARD (Target)

2

3

4

5

20 40 60
Target Data

M
ea

n
S

qu
ar

ed
 E

rr
or model

svr

VARD (Source) − Movierating (Target)

2

3

4

5

20 40 60
Source Data

M
ea

n
S

qu
ar

ed
 E

rr
or model

svr

VARD (Source) − Movierating (Target)

Figure 5.7: Left: Effect of instance knowledge transfer from the Item-Recommender to the VARD. Right:

Effect of instance knowledge transfer from the VARD to the Item-Recommender.

5.5.3 Evaluation 2: Cross-provider

The second evaluation strategy ascertain whether the two-mode transfer learning scheme is able to

satisfy the objective of enhancing the learning efficiency in a cross-provider scenario where the same

application needs deployment decisions on different cloud providers. This can be explained using an

example scenario.

A prediction model for the application A can be generated to predict its performance on cloud Y

using the learned knowledge of the same application having a prediction model to predict its performance

on the cloud X and vice versa.

This evaluation involves two cloud providers: Amazon EC2 and Google GCE. Therefore, the data

sets collected from these two providers differ in feature space due to varying configuration standards

at the virtual machine level, as stated earlier in this section. Table 5.4 lists all the test cases related

to the described scenario. For each of the listed target application, a prediction model is generated

using activated transfer learning scheme as well as the base learner.

Similar to the previous evaluation, the MSE values are assessed for the model accuracy. The model

that is generated by following the transfer learning scheme is compared with the base model.

126 5. The Transfer Learning Setting

T
a
b

le
5
.4

:
C

ro
ss

-p
ro

v
id

er
:

E
va

lu
a
ti

o
n

re
su

lt
s

o
f

th
e

tw
o
-m

o
d

e
tr

a
n

sf
er

le
a
rn

in
g

sc
h

em
e.

T
e
st

T
a
rg

e
t

S
o
u

rc
e

S
im

il
a
ri

ty
A

p
p

li
e
d

S
ch

e
m

e
G

e
n

e
ra

te
d

M
o
d

e
l

B
a
se

M
o
d

e
l

C
o
m

m
e
n
ts

C
a
se

B
as

e
L

ea
rn

er
≈

M
S

E
M

S
E

1
V

A
R

D
-G

C
E

V
A

R
D

-E
C

2
Y

es
T

ra
n

sf
er

-A
ll

S
V

R
10

5.
97

9
1
0
5
.9

7
9

Y
es

T
ra

n
sf

er
-M

o
d

el
M

P
R

98
.9

86
9
8
.9

8
6

2
V

A
R

D
-E

C
2

V
A

R
D

-G
C

E
Y

es
T

ra
n

sf
er

-A
ll

S
V

R
16

2.
73

37
-

17
7.

6
3
9

1
7
7
.9

6
0

R
ed

u
ce

d
M

S
E

Y
es

T
ra

n
sf

er
-M

o
d

el
M

P
R

14
1.

74
1

1
4
1
.7

4
1

3
S

m
al

lp
t-

G
C

E
S

m
al

lp
t-

E
C

2
Y

es
T

ra
n

sf
er

-A
ll

S
V

R
0.

34
1

0
.3

4
1

Y
es

T
ra

n
sf

er
-M

o
d

el
M

P
R

0.
32

83
0
.3

2
8
3

4
S

m
al

lp
t-

E
C

2
S

m
al

lp
t-

G
C

E
Y

es
T

ra
n

sf
er

-A
ll

S
V

R
4.

68
1-

9.
74

6
9
.7

4
6

R
ed

u
ce

d
M

S
E

Y
es

T
ra

n
sf

er
-M

o
d

el
M

P
R

8.
98

3
8
.9

8
3

5
It

em
-R

ec
.-

E
C

2
It

em
-R

ec
.-

G
C

E
Y

es
T

ra
n

sf
er

-A
ll

S
V

R
23

.7
25

2
3
.9

9
5

Y
es

T
ra

n
sf

er
-M

o
d

el
M

P
R

23
.3

62
2
3
.3

6
2

5.5.3. Evaluation 2: Cross-provider 127

Surprisingly, a reduction in MSE values is observed in two of the listed test cases with SVR as a

base learner. In the first case, a prediction model is generated for the VARD-EC2 using the learned

knowledge of VARD-GCE, listed under 2nd test case in Table 5.4. The observed MSE value 162.733

is significantly less than the base model MSE observed as 177.960. In the second case, the learned

knowledge of smallpt-GCE is used to generate a prediction model for smallpt-EC2, as listed under

4th test case in Table 5.4. A reduction in MSE value is observed, where the base model value is

9.746 and the new model MSE is 4.681. This reduction at MSE level also indicates the valid source of

information for the target domain, and we can say that VARD-GCE & smallpt-GCE are considered

a good source of information for the two target domains such as VARD-EC2 & smallpt-EC2. This

also confirms the positive influence of the transferred knowledge which validates the efficacy of applied

transfer learning approach.

The results validates the feasibility of applied scheme and argues that it is possible to make use of

the existing knowledge that can even help in increasing the model accuracy. The similar prediction

results illustrate the generality of this approach in a cross-provider scenario as well.

This evaluation scenario also re-confirms the reduction in the model generation time and training

cost as only a ‘sufficient’ amount of data is used from the target application for the training purpose.

Comparable results are seen when the proposed scheme is using SVR and MPR as base learners

on the same test case, for example VARD-GCE and VARD-EC2 as target applications. The MPR

learner is generating a model with reduced MSE compared to the SVR.

Another interesting fact is related to the capability of capturing data variation at model level. The

source models are good in capturing the data variation of target domain in case of test cases on GCE,

therefore, the model MSE values of all three applications are far less than the test cases running on

EC2. This also indicates the high performance fluctuation at EC2 instances, as already described in

Chapter 4.

A significant training overhead can be reduced up-to 67 hours out of 168 for a single virtual machine

and more than 800 hours for a minimum of eight virtual machines. Hence, a cost of $92.332 from total

of $153.888 can be saved on one single experiment comprised of 8 nodes on EC2. Similarly, on GCE,

a cost of $85.478 from total of $142.464 can be saved on one single experiment comprised of 7 nodes.

More precisely, an overall learning efficiency of 60% is achieved by saving on the actual cost and time.

128 5. The Transfer Learning Setting

5.5.4 Evaluation 3: Corss-application & Cross-provider

Third evaluation strategy ascertain, whether the two-mode transfer learning scheme satisfies the high-

level objective of enhancing the learning efficiency, in a cross-application scenario when the target

providers are different for both applications. Thus, providing deployment decisions across the different

applications and cloud providers. An example scenario for such evaluation is stated as:

A prediction model for the application B can be generated to predict its performance on the cloud

Y using the learned knowledge of application A having a prediction model to predict performance on

cloud X.

5.5.4. Evaluation 3: Corss-application & Cross-provider 129

T
a
b

le
5
.5

:
C

ro
ss

-a
p

p
li

ca
ti

o
n

&
C

ro
ss

-p
ro

v
id

er
:

E
va

lu
a
ti

o
n

re
su

lt
s

o
f

th
e

tw
o
-m

o
d

e
tr

a
n

sf
er

le
a
rn

in
g

sc
h

em
e.

T
e
st

C
a
se

T
a
rg

e
t

S
o
u

rc
e

S
im

il
a
ri

ty
A

p
p

li
e
d

S
ch

e
m

e
G

e
n

e
ra

te
d

M
o
d

e
l

B
a
se

M
o
d

e
l

B
as

e
L

ea
rn

er
≈

M
S

E
M

S
E

1
V

A
R

D
-G

C
E

It
em

-R
ec

.-
E

C
2

Y
es

T
ra

n
sf

er
-A

ll
S

V
R

1
0
5
.9

7
9

1
0
5
.9

7
9

S
m

al
lp

t-
E

C
2

N
o

T
ra

n
sf

er
-M

o
d

el
S

V
R

1
0
5
.9

7
9

1
0
5
.9

7
9

2
It

em
-R

ec
.-

E
C

2
V

A
R

D
-G

C
E

Y
es

T
ra

n
sf

er
-A

ll
S

V
R

2
3
.7

2
5

2
3
.9

9
5

S
m

al
lp

t-
G

C
E

N
o

T
ra

n
sf

er
-M

o
d

el
S

V
R

2
3
.9

9
5

2
3
.9

9
5

3
V

A
R

D
-E

C
2

It
em

-R
ec

.-
G

C
E

Y
es

T
ra

n
sf

er
-A

ll
S

V
R

1
7
7
.6

3
9
9

1
7
7
.9

6
0

S
m

al
lp

t-
G

C
E

N
o

T
ra

n
sf

er
-M

o
d

el
S

V
R

1
7
7
.9

6
0

1
7
7
.9

6
0

4
S

m
al

lp
t-

E
C

2
V

A
R

D
-G

C
E

N
o

T
ra

n
sf

er
-M

o
d

el
S

V
R

9
.7

4
6

9
.7

4
6

It
em

-R
ec

.-
G

C
E

N
o

T
ra

n
sf

er
-M

o
d

el
S

V
R

9
.7

4
6

9
.7

4
6

5
S

m
al

lp
t-

G
C

E
V

A
R

D
-E

C
2

N
o

T
ra

n
sf

er
-M

o
d

el
S

V
R

0
.3

4
1

0
.3

4
1

It
em

-R
ec

.-
E

C
2

N
o

T
ra

n
sf

er
-M

o
d

el
S

V
R

0
.3

4
1

0
.3

4
1

130 5. The Transfer Learning Setting

Similar to the previous two evaluations, the MSE value of the generated model is compared with the

base model in order to assess the feasibility of two-mode transfer learning scheme. In this evaluation

strategy, we are trying to conceive if the data of different applications with a considerable similarity

at application architecture level can contribute towards a model generation for the target application.

For each of the target test case, list of the source applications are stated in Table 5.6 and 5.5. This

evaluation considers test sets from different distribution and feature space, and assess if the applied

scheme is able to extract and transfer useful data across different domains.

The similarity at the MSE values of all test cases confirms that the transfer learning scheme is

then able to achieve the model generation using the knowledge of the source domain and source task,

even when the domains have no similarity at the cloud or the application level. This also proves

that a good feature representation can reduce the domain differences even if the domains have some

heterogeneity at the cloud and application level. The model assessment results confirm that the

feature representation is fairly describing both applications domain even when there is no similarity at

application or cloud platform level. In addition, the transferred model parameters compliment with

the feature representation and the generated model is able to capture different application’s behaviour

equally well.

Moreover, the efficiency is increased for the model generation by using the learned knowledge. In

addition, the results validate the accuracy of the SVR-learner and MPR-learner used in a transfer

learning technique.

A similar result is presented to show the positive contribution of instance knowledge transfer based

on the application similarity even if the deployment setup differs in both. Figure 5.8 show the effect of

using the instance knowledge for a given source domain (Item-Rec.-EC2) for generating a prediction

model for the target domain (VARD-GCE) and vice versa. In addition, Figure 5.9 shows the positive

influence of the source data (VARD-EC2) for a model generation for the target domain (Item-Rec.-

GCE) and vice versa. The effect is measured using MSE values on the test data set. The test data

set belongs to the target application only; in contrast, the training dataset is composed of the mix

of source and target domain data. The horizontal axis represents the percentage contribution of the

source instances for the model generation, while the vertical axis lists the mean-MSE values for the

test data. In both figures, the consistent MSE value with low MSE confirms the positive influence of

the source data for the model generation even when the applications belong to different deployment

settings.

5.5.4. Evaluation 3: Corss-application & Cross-provider 131

2

3

4

5

20 40 60 80
Target Data

M
ea

n
S

qu
ar

ed
 E

rr
or model

svr

Movierating−EC2 (Source) − VARD−GCE (Target)

2

3

4

5

20 40 60 80
Source Data

M
ea

n
S

qu
ar

ed
 E

rr
or model

svr

Movierating−EC2 (Source) − VARD−GCE (Target)

2

3

4

5

20 40 60 80
Target Data

M
ea

n
S

qu
ar

ed
 E

rr
or model

svr

VARD−GCE (Source) − Movierating−EC2 (Target)

2

3

4

5

20 40 60 80
Source Data

M
ea

n
S

qu
ar

ed
 E

rr
or model

svr

VARD−GCE (Source) − Movierating−EC2 (Target)

Figure 5.8: Left: Effect of Item-Rec.-EC2 instance knowledge (source domain) on the model generation for the

VARD-GCE (Target domain). Right: Effect of VARD-GCE instance knowledge (source domain)

on the model generation for the Item-Recommender-EC2 (Target domain).

2

3

4

5

20 40 60 80
Target Data

M
ea

n
S

qu
ar

ed
 E

rr
or

model

svr

VARD−EC2 (Source) − Movierating−GCE (Target)

2

3

4

5

20 40 60 80
Source Data

M
ea

n
S

qu
ar

ed
 E

rr
or

model

svr

VARD−EC2 (Source) − Movierating−GCE (Target)2

2

3

4

5

20 40 60 80
Target Data

M
ea

n
S

qu
ar

ed
 E

rr
or

model

svr

Movierating−GCE (Source) − VARD−EC2 (Target)

2

3

4

5

20 40 60 80
Source Data

M
ea

n
S

qu
ar

ed
 E

rr
or

model

svr

Movierating−GCE (Source) − VARD−EC2 (Target)

Figure 5.9: Left: Effect of VARD-EC2 instance knowledge (source domain) on the model generation for

the Item-Recommender-GCE (Target domain). Right: Effect of movie-GCE instance knowledge

(source domain) on the model generation for the VARD-EC2 (Target domain)

An overall learning efficiency of 60%, in terms of time and cost, is achieved by applying the transfer

learning scheme. A significant training overhead can be reduced up-to 800 hours on 8 virtual machines.

Hence a cost of more than $200 can be saved on both EC2 and GCE.

132 5. The Transfer Learning Setting

T
a
b

le
5
.6

:
C

ro
ss

-a
p

p
li

ca
ti

on
&

C
ro

ss
-p

ro
v
id

er
:

E
va

lu
a
ti

o
n

re
su

lt
s

o
f

th
e

tr
a
n

sf
er

le
a
rn

in
g

sc
h

em
e

u
si

n
g

p
o
ly

n
o
m

ia
l

re
g
re

ss
io

n
m

et
h

o
d

.

T
e
st

C
a
se

T
a
rg

e
t

S
o
u

rc
e

S
im

il
a
ri

ty
A

p
p

li
e
d

S
ch

e
m

e
G

e
n

e
ra

te
d

M
o
d

e
l

B
a
se

M
o
d

e
l

B
as

e
L

ea
rn

er
≈

M
S

E
M

S
E

6
V

A
R

D
-G

C
E

It
em

-R
ec

.-
E

C
2

Y
es

T
ra

n
sf

er
-M

o
d

el
M

P
R

9
8
.9

8
6

9
8
.9

8
6

S
m

al
lp

t-
E

C
2

N
o

T
ra

n
sf

er
-M

o
d

el
M

P
R

9
8
.9

8
6

9
8
.9

8
6

7
It

em
-R

ec
.-

E
C

2
V

A
R

D
-G

C
E

Y
es

T
ra

n
sf

er
-M

o
d

el
M

P
R

2
3
.3

6
2

2
3
.3

6
2

S
m

al
lp

t-
G

C
E

N
o

T
ra

n
sf

er
-M

o
d

el
M

P
R

2
3
.3

6
2

2
3
.3

6
2

8
V

A
R

D
-E

C
2

It
em

-R
ec

.-
G

C
E

Y
es

T
ra

n
sf

er
-M

o
d

el
M

P
R

1
4
1
.7

4
1

1
4
1
.7

4
1

S
m

al
lp

t-
G

C
E

N
o

T
ra

n
sf

er
-M

o
d

el
M

P
R

1
4
1
.7

4
1

1
4
1
.7

4
1

9
S

m
al

lp
t-

E
C

2
V

A
R

D
-G

C
E

N
o

T
ra

n
sf

er
-M

o
d

el
M

P
R

8
.9

8
3

8
.9

8
3

It
em

-R
ec

.-
G

C
E

N
o

T
ra

n
sf

er
-M

o
d

el
M

P
R

8
.9

8
3

8
.9

8
3

10
S

m
al

lp
t-

G
C

E
V

A
R

D
-E

C
2

N
o

T
ra

n
sf

er
-M

o
d

el
M

P
R

0
.3

2
8

0
.3

2
8

It
em

-R
ec

.-
E

C
2

N
o

T
ra

n
sf

er
-M

o
d

el
M

P
R

0
.3

2
8

0
.3

2
8

5.5.5. Limitation 133

5.5.5 Limitation

There are three cases when the two-mode transfer learning scheme failed to generate an accurate

learning model to predict the target application’s performance. The Item-Recommender-GCE is the

target application in all of these failing scenarios, as stated in Table 5.7.

We have observed a slightly different relationship of the response and one of predictor variable.

This has given us motivation to further investigate towards this approach. This however, is part of

our future work. An insightful idea is the exploration of relationship possibilities which leads towards

using Bayesian approach.

Table 5.7: Failing Scenario. The two-mode transfer learning scheme could not help to generate a prediction

model for the Item-Rec. (target domain) to predict performance on the GCE deployment setup.

CS Source Target Similarity SVR MPR Base Model

Domain Domain MSE-SVR MSE-MPR MSE

1 Item-Rec.-EC2 Item-Rec.-GCE Yes 670.177 849.7076 243.445

2 VARD-EC2 Item-Rec.-GCE Yes 849.706 849.7076 243.445

3 Smallpt-EC2 Item-Rec.-GCE No 670.177 849.706 243.445

5.6 Summary and Discussion

The proposed approach leverages the use of a transfer learning technique and provides a scheme that

can help in enhancing decision making efficiency by reducing the training overhead, thus achieving a

learning model by making use of existing knowledge from a similar domain regardless of the change at

data distributional level or feature space level. Hence, addressing two challenges related to learning

cost and viability across application and cloud provider, as discussed in Section 4.5.2.

The proposed solution achieves the following. Firstly, the similarity measure method is able to

identify relevancy at data distributional level in order to identify relevancy at domain level. Secondly,

the two-mode scheme identifies the type of knowledge that can be used to achieve our goal. Thirdly,

this scheme blocks transfer of knowledge that can have a negative impact on achieving the target task.

Experimental evaluation has proved that, by following this scheme, knowledge about the source

134 5. The Transfer Learning Setting

application can be used for model generation of the target application. A model accuracy of more

than 90% is observed for the generated models. Most importantly, this scheme fulfils the design

objective of reducing the training overhead and improving the efficiency of model generation in terms

of time and cost. Quantitatively, an overall reduction of 60% in terms of cost and time is observed. In

some of the experiments, an increase in the model accuracy highlights that a better performing model

can be achieved using transfer learning. The two-mode transfer learning scheme shows promising

results to provide decisions across different applications and cloud platforms. Moreover, results also

illustrate that the SVR and polynomial regression are complimentary to the adopted transfer learning

techniques.

5.6.1 Learning Cost

One of the major challenges is related to learning cost that is involved in the traditional way of applying

machine learning. It is evident that an initial cost is involved in the absence of any knowledge to

create a knowledge base, but the presence of usable knowledge results in a huge reduction of learning

cost. Let’s evaluate the level of reduction in the light of experiments that we did the to generate

learning models by following traditional machine learning approach as well as using transfer learning

methodology.

The data collection cost has been reduced to 60% in the transfer learning approach. This signif-

icantly reduced a single virtual machine usage for data collection for one application from 168 hours

to 67 hours. Consequently, saving a cost of $92.332 out of $153.888 on eight virtual machines of

Amazon-EC2. Similarly, on GCE, a cost of $85.478 from total of $142.464 was saved on one single

experiment comprised of 7 nodes. Same is the case with the number of days reduced from seven to

less than three days. Now, consider learning time which has reduced from days to few seconds up to 3

minutes. This is a huge cut down in terms of learning time as there is no need to generate a new model

from scratch involving evaluation of multiple stages and human expertise. The only implication, in

this case, is presence and availability of knowledgebase. More precisely, an overall learning efficiency

of 60% is achieved by saving on the actual cost and time.

The two-mode transfer learning scheme is a stepping stone towards developing an intelligent and

efficient decision support system that can help generating decisions across different applications and

cloud providers. We believe that a decision support system equipped with the novelty of machine learn-

ing and transfer learning is a cost-effective approach for the development of cloud brokers operating

5.7. Potential Benefits of Intelligent Cloud Brokerage 135

in a multi-cloud environment.

5.7 Potential Benefits of Intelligent Cloud Brokerage

We try to present end-end cost-benefit of Intelligent brokerage approach compared to a random choice

of cloud configuration by considering an example demand: what would be cost and time of running

1000 jobs of x application? We can use the data collected during Analysis phase of this research work.

We are selecting two applications of different architectures in relation to their intensity of memory

(VARD) and CPU (smallpt) usage. Considering the observed variation on EC2 and GCE, we identify

two cases which are labeled as Best Case and Worst Case. We now try to unravel cost-effectiveness

and variation therein from the perspective of users who need to execute a certain number of jobs. We

assume that each submitted job takes the same amount of time. The results are plotted in Figure

5.10, 5.11, 5.12, and 5.13 where we also indicate the amount of time needed for executing 1,000 jobs

above each bar. With VARD on EC2, the cheapest instance t2.small is the most cost-effective: only

$0.75 to run 1,000. This cost rises between 6 and 8 folds for the most expensive instance. The amount

of time reveals interesting facts as well. One can spend 27-29 hours to run 1,000 jobs on t2.small

as opposed to 20-27 hours on c4.xlarge or 24-32 hours on m3.large. In effect, the user would pay

much more cost for an uncertain reduction in execution time. t2.medium seems to be by far the most

balanced in terms of cost and execution time: $1.25 for 22-24 hours, almost 3-5 times cheaper than

the expensive nodes and with a fairly certain and acceptable execution time.

For VARD on GCE, it is both time and cost effective to use the cheapest instance type n1S1, which

can finish 1,000 job runs for just $0.90 in exactly 25 hours. All other instance types are more expensive

in time and cost. c4.xlarge provides the best cost:hour ratio compared to other EC2 instances, able

to run 1,000 jobs for the same cost as with c4.large, but in nearly half the time. The same trend is

noticed in m3.xlarge and m3.large.

Interestingly, the cost of smallpt jobs on GCE are almost equal on all instances except n1S2 and

n1mem2. In terms of time, n1CPU8 (the most expensive per hour) takes only 58-59 hours which is less

than half of the time needed on the next fastest instance type (n1CPU4 and n1S4). This is a clear

example illustrating that the cheapest instance is not necessarily the most cost- or time-effective.

smallpt also helps us draw a stark contrast between the two CSPs. Within the instance types

we studied, GCE seems to outshine EC2 for executing smallpt jobs. Comparing n1S2, the second

least cost- and time-effective GCE instance, to its EC2 counterparts: it is of equivalent performance

and cost to c4.large but much cheaper than m3.large. Furthermore, general purpose GCE instance

types extremely outperform the EC2 counterparts.

A cost and time are involved if there is no initial knowledge available with a broker. A possible

solution to cut down cost and time is the availability of a range of real-world data traces and learning

models for prediction. Supplementary model generation and initial data collection involve some cost

and time, however, with the availability of initial data a broker is able to reduce this learning cost

using transfer learning approach and so the cost will be cut down to 60% of the original. If we take

the worst case example of spending 58-59 hours on a poorly performing node and recall the time

required to collect auxiliary data which is 36 hours then spending these hours for analysis purpose

and model generation can result in better performance and reduced cost. Now, if we assume that

initial knowledge and auxiliary data both are available with a broker then the maximum learning time

to generate a model is negligible compared to spending huge cost and time by choosing a worst-case

option.

$0
.7

0

$0
.7

5

$1
.1

4

$1
.2

5

$3
.9

9

$4
.1

3

$2
.5

5 $3
.2

5

$3
.3

6

$4
.4

8

$4
.6

4

$6
.2

6

27
h

29
h 22

h

24
h

57
h

59
h

22
h 28

h

24
h

32
h

20
h

27
h

0

2

4

6

t2.small

t2.medium

m3.medium
c4.large

m3.large

c4.xlarge

Node Type

C
os

t o
f r

un
ni

ng
 1

00
0

jo
bs

 (
$)

Best Case
Worst Case

Figure 5.10: The cost of running 1000 VARD jobs on EC2.

$0
.9

0

$0
.9

0 $1
.7

9

$1
.9

6

$2
.1

3 $2
.7

0

$3
.0

7 $3
.7

1

$3
.7

8

$4
.1

3

$4
.4

0

$4
.6

9

25
h

25
h

32
h

35
h

30
h 38

h 29
h 35

h

32
h 35

h 31
h 33

h

0

2

4

6

n1S1

n1CPU2
n1S2

n1mem2

n1CPU4
n1S4

Node Type

C
os

t o
f r

un
ni

ng
 1

00
0

jo
bs

 (
$)

Best Case
Worst Case

Figure 5.11: The cost of running 1000 VARD jobs on GCE.

$4
2.

87

$4
3.

21

$3
6.

82

$3
8.

32

$5
1.

17

$5
1.

31

$2
4.

36

$2
4.

48

$3
4.

72

$3
4.

86

$2
4.

59

$2
4.

59

$2
7.

72

$2
7.

96 $3
5.

00

$3
5.

00

16
49

h
16

62
h

70
8h

73
7h

73
1h

73
3h

21
0h

21
1h

24
8h

24
9h

10
6h

10
6h 11

6h
11

7h

12
5h

12
5h

0

10

20

30

40

50

60

t2.small

t2.medium

m3.medium
c4.large

m3.large

c4.xlarge

c3.xlarge

m3.xlarge

Node Type

C
os

t o
f r

un
ni

ng
 1

00
0

jo
bs

 (
$)

Best Case
Worst Case

Figure 5.12: The cost of running 1000 smallpt jobs on EC2.

$1
4.

82

$1
5.

15

$1
6.

66

$1
6.

73 $2
2.

32

$2
2.

32

$3
3.

18

$3
3.

81

$1
6.

59

$1
6.

59

$1
6.

61

$1
6.

61

$1
6.

45

$1
6.

73

31
2h

31
9h

23
5h

23
6h 23

5h

23
5h

31
3h

31
9h

11
7h

11
7h

11
7h

11
7h

58
h

59
h

0

10

20

30

40

50

60

n1S1

n1CPU2
n1S2

n1mem2

n1CPU4
n1S4

n1CPU8

Node Type

C
os

t o
f r

un
ni

ng
 1

00
0

jo
bs

 (
$)

Best Case
Worst Case

Figure 5.13: The cost of running 1000 smallpt jobs on GCE.

Chapter 6
Conclusion

6.1 Introduction

The increase in magnitude and diversity in cloud service offerings at the IaaS layer has raised the com-

plexity of decision making for cloud customers. Given this, it is increasingly important to offer decision

support system as a fundamental component of a cloud brokerage architecture. Such a broker can assist

a customer w.r.t application-specific requirements and customer-related constraints. Unfortunately,

existing approaches are lacking in many ways: i) user friendliness, ii) providing application-driven and

realistic solutions, and iii) flexibility in terms of dealing with different cloud providers and application

domains.

In order to address this problem, this thesis puts forward an argument for developing an intelligent

decision support system. The thesis investigates current solutions and forms a list of requirements

deemed necessary to deliver an intelligent decision support solution. This decision support system

makes use of machine learning techniques to provide behavioural and performance insight about the

application and deployment setup necessary to make valid decisions.

Considering the fact that machine learning can impose significant training overhead, the efficiency

of applying machine learning methods was also investigated. A key contribution of this thesis is the

two-mode knowledge transfer scheme to make the intelligent decision support system more efficient

across multi-cloud environments. This work adopts an experimental systems research methodology,

with an iterative approach that is based on a quantitative analysis of real systems. This chapter

provides an overall set of conclusions for the research, highlighting the main contributions and also

139

140 6. Conclusion

listing possible areas of future work.

6.2 Thesis Summary

Chapter 1 motivated and described the area of research, highlighting the main objective: Investi-

gating the role of machine learning for designing a decision support system integrated with a cloud

broker to assist customers in making application-driven deployment decisions across multi-cloud en-

vironments. This chapter also provided an introduction to the three broad domains underpinning

the research, namely cloud brokerage, decision support systems and machine learning. Finally, the

research methodology and the key contributions of the research work were also summarised.

Chapter 2 surveyed the state of the arts in cloud brokers, decision support systems and machine

learning, keeping in mind the core objective of the research work. First, the brokerage solutions

were classified and presented in a three level taxonomic structure to give the reader a broad view of

broker offerings and solutions. The three levels correspond to cloud management solutions, multi-

cloud management services and goal optimisation. Second, a detailed analysis of related decision

support systems was provided. Finally, the role of machine learning for decision support systems was

discussed, highlighting the need for intelligent decision support system to provide realistic decisions.

Chapter 3 described the architecture of Daleel. The fundamental part of Daleel is the intelligent

decision support module enriched with different machine learning algorithms for the prediction of

performance and assistance in IaaS selection. Finally, the selected machine learning methods were

explained with their potential benefits.

Chapter 4 presented an experimental evaluation of different learning strategies leading up to the

adoption of a set of approaches. The experimental evaluation was performed using different instances

of Amazon EC2 using a representative set of real-world applications. This chapter also explained how

application-driven decisions can be taken using these learning models. The chapter also highlighting

possible performance issues over training overhead. Chapter 4 concluded with the final architecture

of a generic model predicting the performance of different applications.

Chapter 5 investigated transfer learning techniques to enhanced the efficiency of an intelligent

decision support system and reduce the problem of training overhead. In particular, the chapter

introduced a novel two-mode transfer learning scheme with the goal of achieving substantial reduction

6.3. Contributions 141

in this overhead. The scheme was evaluated using two public cloud providers, i.e, Amazon Web

Services (AWS) and Google cloud to validate the feasibility of proposed approach. Quantitatively, an

overall training reduction of 60% was observed.

6.3 Contributions

The main contributions of this thesis are divided into two categories: the main overall contributions

and other significant contributions. The main contributions coincide with the thesis objectives and

the general contributions represent supporting knowledge that was achieved during this research work.

6.3.1 Main Contributions

1. Architectural Insight

Knowledge Base

Actuator

Cloud
Infrastructure

M
et

ri
cs C

SP

P
o

rt
fo

lio

Application Performance

D
ec

is
io

n

Su
p

p
o

rt

A
p

p
lic

at
io

n

V
ig

n
et

te

C
u

st
o

m
er

C

o
n

st
ra

in
ts

Learning

Analysis Planning

Customer

Trigger

DALEEL

Figure 6.1: The Daleel Architecture.

An important contribution of this thesis is the architectural details of an intelligent decision

142 6. Conclusion

support system, a key component of cloud brokerage. The complete architecture of Daleel,

depicted in 6.1, consists of three primary architectural elements: Decision Support, Actuator,

and Knowledge Base. The Decision Support module, equipped with machine learning models,

is at the heart of Daleel’s architecture and each of its module is responsible for performing tasks

related to the learning objective. The framework adopts an iterative approach to incrementally

determine the required machine learning methods. Moreover, the framework supports large-

scale, back-end analysis to be fed iteratively into the model generation.

The initial design concept is published in the CrossCloud’14 workshop [5].

2. Model Fitting Engine

Model
Training

Model Fitting
· Identifying significant predictor
· Identifying variable importance
· Identifying type of relationship
· Identifying strength of

relationship
· Remove outliers
· Detecting multi-collinearity
· Interaction terms

Model
Assessment

Update Fit

Model Generation

Learning
Method

Function
Repository

Application 1,2,3, ...n

Profiling

Fetch Model

Predict
Performance

Calculate
Deployment

Cost

Get
Customer’s
Constraints

Find Best Fit

Analysis Phase Learning Phase Planning Phase

Analysis Phase

Application
Profiling

Learning Phase

Model
Generation

Function
Repository

f1
f2
f3
..
fn

Planning Phase

Planner
∑

Figure 6.2: Model Fitting process

6.3.1. Main Contributions 143

A second contribution of this thesis is the model fitting engine which is critical to this approach

and provides support for decision making. Polynomial regression and SVR are two of the machine

learning methods applied for the model generation. This engine is equipped with generalised as

well as generic models to help with application-driven decisions. Some initial outcomes of this

approach along with concrete architectural details are published in the NOMS conference 2016

[39].

3. Two-mode transfer learning scheme

Analysis Phase Learning Phase

Model
Training

Model
Assessment

Application 1,2,3, ...n

Model Generation

Auxiliary
Data-

‘sufficient’

Knowledgebase

Function Repository

Transfer learning Scheme

Two-mode
Transfer
Learning

Similarity
Mesaure

Figure 6.3: Two-mode transfer learning scheme.

The final major contribution of this thesis is the two-mode transfer learning scheme which is

based on transferring knowledge from one domain to another using an approach based on semi-

supervised learning, as shown in Figure 6.3. This technique significantly increase the efficiency

of the intelligent decision support system by reducing the training overhead in terms of time and

cost. Quantitatively, an overhead reduction of approximately 60% in the learning time and cost

has been observed.

144 6. Conclusion

A manuscript is been drafted to be submitted to IEEE Transaction on Cloud Computing.

6.3.2 Other Significant Contributions

As well as the major contributions, a number of other interesting insights have emerged from the work:

1. The thesis includes a detailed study of machine learning techniques for decision support systems

in general, and cloud brokerage in particular. This survey highlighted the huge diversity in

machine learning techniques and the need to tailor solutions carefully for given problems, and

even at a finer granularity, for sub-problems - like fitting a model for a particular application

and for a given virtual machine.

2. The thesis also contains a comprehensive survey of cloud brokerage and related decision support

system methodologies. This work provides an overall classification of existing approaches into

cloud management, multi-cloud management, and goal optimisation. In addition to this, decision

support systems were explored and classified according to applied methodologies.The survey

highlighted that to date, there have been no successful integrated framework providing an end-

to-end solution to assist customers with optimal deployment choice.

3. The empirical observation of application performance on instance types provided interesting

insight into the actual performance of different virtual machine instances and how this varied

from anticipated performance. This included some surprises. For example, in the experimental

work carried out for the NOMS paper, it was identified that the M3 series of Amazon-EC2 is

consistently under-performing. As of May 2017, Amazon has removed this series from their

list of offerings. To someone unfamiliar with the IaaS market this might seem an insignificant

change. However, based on the experience gained in this thesis, we have a clear explanation why

, i.e. the virtual machine instance was not performing to specification.. This further illuminates

the deep insight gained by the algorithmic machine learning approach presented in this thesis

into the internals of IaaS operation.

6.4. Future Work 145

6.4 Future Work

Working on this thesis has opened up a number of avenues for future research. In particular it would

be interest to:

1. Enrich the algorithmic framework with supplementary learning methods and explore addi-

tional machine learning techniques to be used as base-learners for the semi-supervised and un-

supervised transfer learning techniques such as Bayesian methods and Reinforcement learning.

2. Investigate classification methods to identify patterns and interesting clusters regarding different

classes of application in different virtual machine settings.

3. Extend the study to deal with multi-criteria decision making to deal with trade-offs across

multiple QoS attributes.

4. Extend the experimental evaluation using other categories of application and cloud providers to

increase the understanding of the generality of the proposed approach.

5. More generally, it would be interesting to develop a full cloud broker architecture offering full in-

dependence from underlying cloud providers and also supporting a range of management options

including migration and cloud bursting.

6.5 Revisiting the Research Goals

The main contributions of the thesis are reviewed by revisiting the research goals set in Section 1.5.

1. The designing of a cloud broker architecture integrated with an implementation of an intelligent

decision support system.

The first goal has been achieved by designing an integrated decision support architecture as

discussed in Chapter 3.

2. The investigation of machine learning methods that can be applied for optimal decision making

in the decision support system of a cloud broker.

The second goal has been delivered by the model fitting engine which is populated by the learning

approaches and generated models as detailed in Chapter 4.

3. The development and evaluation of an efficient decision-making method integrated with the es-

tablished decision support system to reduce the learning and decision-making cost.

The third goal has been accomplished by the two-mode transfer learning scheme as explained in

Chapter 5.

Appendix A
Statistical Methods

A.1 F-Statistics

F-statistics is a statistical test to measure the correlation between predictor and response with a

given hypothesis. This test can be used to determine if we should keep the null hypothesis or not.

F-statistics can be calculated using the formula as stated in equation A.1

F =
(TSS −RSS)/p

RSS/(n− p− 1)
(A.1)

F-statistic closer to 1 validates the absence of any relationship between X and Y and negates

the hypothesis H1. On the other hand, F-statistic greater than 1 confirms the validity of hypothesis

H1. The lower p-value corresponding to the F-statistic indicates the clear evidence of a relationship

between response and predictor.

A.2 Residual Sum of Squares (RSS)

RSS stands for residual sum of squares and can be defined as

RSS = e1
2 + e2

2 + ..+ en
2 (A.2)

ei = yi−yi′ represents the ith residual which indicates the difference between the ith observed and

147

148 A. Statistical Methods

ith predicted value. Here TSS represents the total sum of squares and measures the total variance in

the response Y. TSS can be calculated as stated in equation A.3

TSS =
∑

(yi − y)2 (A.3)

A.3 P-value

P-value is another statistical method to test statistical hypothesis. P-value defines the probability for

a given statistical model when the null hypothesis is true. The lower the P-value the higher the chance

to reject null hypothesis. If p-value is ¡0.5 then we reject the null hypothesis.

A.4 R-squared

The R2-value, is a statistical method for measuring the closeness of the actual and predicted data in

terms of how similar the actual data are to the model fitted line or curve. The model fitted line or

curve represents an estimated function (prediction function) for the actual data. R2 can be calculated

using following equation

R2 =
TSS −RSS

TSS
(A.4)

An R2 value closer to 1 indicates that the regression line/curve explains the larger proportion

of the variability in the response. In contrast, an R2 value closer to 0 indicates that much of the

variability is not explained by the regression. An adjusted R2 value along with different residual plots

are also used for model assessment to evaluate the selection of significant predictors.

A.5 Residual Standard Error (RSE)

RSE estimates the standard deviation of the response from the regression line. The R2 statistic

indicates the percentage of the variability recorded in the response that is explained by the predictors.

The RSE measure can be calculated using following the formula given in Eq A.5

RSE =

√
1

n− 2
RSS (A.5)

A.6 Cross Validation (CV)

Cross validation is one of the widely used resampling methods for model selection. We used the k-fold

cross validation method, computed by averaging the Mean Squared Error (MSE) for k-folds over the

test sample using the following formula given in Eq:

CV(k) =
1

k

k∑
i=1

MSEi

where k = 20 in our case. The MSE serves as a risk function for an estimator to measure the average

of the squares of the error that is basically the difference between the estimator and estimated value

[79]. It is calculated using following formula:

MSE =
1

n

n∑
i=1

(yi − f̂(xi))
2

A.7 Variance Inflation Factor (VIF)

Collinearity can complicate or prevent the identification of an optimal set of explanatory variables

for a statistical model. Collinearity can be identifies by observing variance inflation factors (VIF).

VIF calculations are straightforward and easily comprehensible; the higher the value, the higher the

collinearity. A VIF for a single predictor (explanatory variable) is obtained using the r-squared value

of the regression of that variable against all other explanatory variables:

V IFi = 1
1−R2

i

where the VIF for variable i is the reciprocal of the inverse of R2 from the regression. A VIF is

calculated for each predictor and those with high values are removed.

Appendix B
R Markdown

151

Model fit

Relationship between response and predictors

our first goal is to determine whether the provided data has some association among the response and
predictor variables. This leads us to argue with our null hypothesis that shows the evidence of no relationship in
response and predictor. If we find an evidence to reject the null hypothesis then the second step is to check the
strength of that relationship, this is an important factor to express the level of accuracy for the prediction. Based
on this relationship we can highlight those predictors having significant contribution towards prediction of
response variable.Nature of this relation can be linear or non-linear and so we can start our experiment with
regression.

In order to deal with the relationship exploration we have to adopt statistical ways to find out the answer. As
a first step we apply linear regression and evaluate regression coefficients to accept or reject the null
hypothesis. Coefficients with a zero value provides an evidence for the null hypothesis, this can be interpreted as
no relationship among the response and predictors. Statistically we not only check coefficient values but
adjusted R2 and P-value also. Adjusted R2 and p-value are some of the statistical ways to determine the
association. R2, also known as coefficient of determination, is a statistical measure to show how close the
data is with regression line. R2 close to 0 indicates that the model does not explain the variability in the
response and as R2 close to 1 shows the model accuracy in terms of capturing the data variation in a given
model.P-value less than 0.5 indicates the significance of the predictors within the model.

In our case,the predictors are mix of both hardware specific variables and application related variables. The
hardware specific variables are related to ecu capacity, ram capacity and vcpu capaity. On the other hand, the
application dependent variables indicate application type, threading information, external file requirement and
load in memory information. We explore the relationship of response and predictors to see the association of
application specific and hardware specific variables on response variable. ### Hardware specific predictors

hfit=lm(ttime~ecu+vcpu+ram, data=data_train)
summary(hfit)

##
Call:
lm(formula = ttime ~ ecu + vcpu + ram, data = data_train)
##
Residuals:
Min 1Q Median 3Q Max
-553.1 -269.9 -8.7 205.6 2034.3
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 790.104 16.614 47.56 <2e-16 ***
ecu 103.169 4.019 25.67 <2e-16 ***
vcpu -643.518 20.250 -31.78 <2e-16 ***
ram 60.060 2.392 25.11 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 458.6 on 6996 degrees of freedom

1

Multiple R-squared: 0.143, Adjusted R-squared: 0.1426
F-statistic: 389.1 on 3 and 6996 DF, p-value: < 2.2e-16

The significant predictors are marked as ’*‘under p-value column. A very less value of R2 shows that the
multiple regression model, based on hardware specific predictors, is not showing much of the variability in the
response, however p-value for all the predictors indicates their significance within model. ### Application
specific predictors Multiple regression model based on application specific predictors, shows 36% of the
variability in the response as indicated by R2 value. Most revealing thing in this model is the significance of
the predictors which determines that only two variables, apptype and externalfile are contributing in this
model and rest of the predictors are ignored which are indicated by NA under the p-value column. ’NA’ more
generally means that the coefficient is not estimable due to collinearity. Sometimes, it can also happen due
to less observations to estimate the relevant parameters (e.g. if p>n). In our case the reason seems more
collinearity rather than less observations.

afit=lm(ttime~apptype+externalfile+loadinmem+threading, data=data_train)
summary(afit)

##
Call:
lm(formula = ttime ~ apptype + externalfile + loadinmem + threading,
data = data_train)
##
Residuals:
Min 1Q Median 3Q Max
-304.31 -234.33 -9.73 17.27 2032.17
##
Coefficients: (2 not defined because of singularities)
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1381.39 50.03 27.613 <2e-16 ***
apptype -697.92 49.59 -14.074 <2e-16 ***
externalfile 104.18 49.56 2.102 0.0356 *
loadinmem NA NA NA NA
threading NA NA NA NA

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 396 on 6997 degrees of freedom
Multiple R-squared: 0.3611, Adjusted R-squared: 0.361
F-statistic: 1978 on 2 and 6997 DF, p-value: < 2.2e-16

We have to look for those variables/predictors that can positively contribute towards explaining the variability
of response in a model. Comparing all the models containing different subset of predictors is quite a hectic
job, to deal with this task we look for best subset selection or variable selection as discussed in next section.

Deciding on important variables

Variable selection determines that which of the predictors are associated with response to fit a model and
are significant for deriving a robust model. Variable selection could be done by comparing a lot of models,
each containing a different predictor subset. In order to find out the best model from a set of models, we use
statistical method adjusted R2 and select the one that has highest adjusted R2 value. This is not always true
that a model with high adjusted R2 value is the best or robust model so we do a step further to evaluate the
model accuracy using cross validation, will be discussed in the section ahead. Forward selection, backward

2

selection and mixed selection are methods for best subset selections and the quantifying measure is RSS.
Below output is indicating the best possible combinations of predictors that can lead to a robust model in a
linear, non-linear or with some interaction terms that we have explored in the last section.

library(leaps)
leaps=regsubsets(ttime~. , data=data_train, nbest=7)

Warning in leaps.setup(x, y, wt = wt, nbest = nbest, nvmax = nvmax,
force.in = force.in, : 2 linear dependencies found

Warning in leaps.setup(x, y, wt = wt, nbest = nbest, nvmax = nvmax,
force.in = force.in, : nvmax reduced to 5

summary(leaps)

Subset selection object
Call: regsubsets.formula(ttime ~ ., data = data_train, nbest = 7)
7 Variables (and intercept)
Forced in Forced out
ecu FALSE FALSE
vcpu FALSE FALSE
ram FALSE FALSE
apptype FALSE FALSE
externalfile FALSE FALSE
threading FALSE FALSE
loadinmem FALSE FALSE
7 subsets of each size up to 5
Selection Algorithm: exhaustive
ecu vcpu ram apptype externalfile threading loadinmem
1 (1) " " " " " " " " " " " " "*"
1 (2) " " " " " " "*" " " " " " "
1 (3) " " " " " " " " " " "*" " "
1 (4) " " " " " " " " "*" " " " "
1 (5) " " "*" " " " " " " " " " "
1 (6) "*" " " " " " " " " " " " "
1 (7) " " " " "*" " " " " " " " "
2 (1) " " "*" " " " " " " " " "*"
2 (2) " " "*" " " "*" " " " " " "
2 (3) " " "*" " " " " " " "*" " "
2 (4) " " "*" " " " " "*" " " " "
2 (5) "*" " " " " "*" " " " " " "
2 (6) "*" " " " " " " " " " " "*"
2 (7) "*" " " " " " " " " "*" " "
3 (1) "*" "*" " " " " " " " " "*"
3 (2) "*" "*" " " "*" " " " " " "
3 (3) " " "*" "*" " " " " " " "*"
3 (4) " " "*" "*" "*" " " " " " "
3 (5) " " "*" " " " " " " "*" "*"
3 (6) " " "*" " " " " "*" " " "*"
3 (7) " " "*" " " "*" " " "*" " "
4 (1) "*" "*" "*" " " " " " " "*"
4 (2) "*" "*" "*" "*" " " " " " "

3

4 (3) "*" "*" " " "*" " " "*" " "
4 (4) "*" "*" " " "*" "*" " " " "
4 (5) "*" "*" " " " " "*" " " "*"
4 (6) "*" "*" " " " " " " "*" "*"
4 (7) "*" "*" " " "*" " " " " "*"
5 (1) "*" "*" "*" " " " " "*" "*"
5 (2) "*" "*" "*" " " "*" " " "*"
5 (3) "*" "*" "*" "*" "*" " " " "
5 (4) "*" "*" "*" "*" " " "*" " "
5 (5) "*" "*" "*" "*" "*" " " " "
5 (6) "*" "*" " " "*" "*" " " "*"
5 (7) "*" "*" " " " " "*" "*" "*"

7 subsets of each size up to maximum significant predictors are shown in the above output. In our case a
limit of 5 predictors is indicated as significant in the respective models with variable set of predictors. we can
also use forward selection or backward selection to get best subset of predictors.

regft.fw=regsubsets(ttime~., data=data_train, nvmax=5,method="forward")

Warning in leaps.setup(x, y, wt = wt, nbest = nbest, nvmax = nvmax,
force.in = force.in, : 2 linear dependencies found

summary(regft.fw)

Subset selection object
Call: regsubsets.formula(ttime ~ ., data = data_train, nvmax = 5, method = "forward")
7 Variables (and intercept)
Forced in Forced out
ecu FALSE FALSE
vcpu FALSE FALSE
ram FALSE FALSE
apptype FALSE FALSE
externalfile FALSE FALSE
threading FALSE FALSE
loadinmem FALSE FALSE
1 subsets of each size up to 5
Selection Algorithm: forward
ecu vcpu ram apptype externalfile threading loadinmem
1 (1) " " " " " " "*" " " " " " "
2 (1) " " "*" " " "*" " " " " " "
3 (1) "*" "*" " " "*" " " " " " "
4 (1) "*" "*" "*" "*" " " " " " "
5 (1) "*" "*" "*" "*" "*" " " " "

regft.bw=regsubsets(ttime~., data=data_train, nvmax=5,method="backward")

Warning in leaps.setup(x, y, wt = wt, nbest = nbest, nvmax = nvmax,
force.in = force.in, : 2 linear dependencies found

summary(regft.bw)

4

Subset selection object
Call: regsubsets.formula(ttime ~ ., data = data_train, nvmax = 5, method = "backward")
7 Variables (and intercept)
Forced in Forced out
ecu FALSE FALSE
vcpu FALSE FALSE
ram FALSE FALSE
apptype FALSE FALSE
externalfile FALSE FALSE
threading FALSE FALSE
loadinmem FALSE FALSE
1 subsets of each size up to 5
Selection Algorithm: backward
ecu vcpu ram apptype externalfile threading loadinmem
1 (1) " " " " " " "*" " " " " " "
2 (1) " " "*" " " "*" " " " " " "
3 (1) "*" "*" " " "*" " " " " " "
4 (1) "*" "*" "*" "*" " " " " " "
5 (1) "*" "*" "*" "*" "*" " " " "

The following subset of predictors are selected from the above outcome and nearly all the subsets shows that
hardware specific variables are considered more significant. The models are divided into 3 categories, the first
category contains the 4 variable based models where all of the hardware predictors are used with inclusion of
just one application specific variable. The second category is composed of 5 variable model which include all
hardware specific variables and 2 of the application specific variables. The third category has the models in
which one of the hardware specific variable “ram”" is excluded and 3 of the application specific variables are
used in each model.

4 variable with inclusion of all hardware specific predictors ecu+vcpu+ram+apptype ecu+vcpu+ram+loadinmem
ecu+vcpu+ram+externalfile ecu+vcpu+ram+threading

5 variable with inclusion of two application specific predictors ecu+vcpu+ram+threading+loadinmem
ecu+vcpu+ram+externalfile+loadinmem ecu+vcpu+ram+apptype+externalfile ecu+vcpu+ram+apptype+threading

5 variable with exclusion of one hardware predictor ecu+vcpu+apptype+externalfile+loadinmem
ecu+vcpu+externalfile+threading+loadinmem

Model fit

We will use these selected subset predictors in a rgression model and see the output. ### 4 variable–all
hardware + 1 application specific

The models comprised of all hardware specific variables and one application specific variable shows large
proportion of the data variability, however inclusion of either apptype or loadinmem shows more than 61% of
response variability that is higher than other models that are using rest of the application specific variables.
To check the percentage of response variability, have a look at the adjusted R2 value of each model.

fit1=lm(ttime~ecu+vcpu+ram+apptype, data=data_train)
summary(fit1)

##
Call:
lm(formula = ttime ~ ecu + vcpu + ram + apptype, data = data_train)
##

5

Residuals:
Min 1Q Median 3Q Max
-369.43 -144.57 -98.06 2.62 1479.33
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2301.675 19.815 116.157 <2e-16 ***
ecu 53.964 2.751 19.618 <2e-16 ***
vcpu -490.814 13.698 -35.830 <2e-16 ***
ram 15.915 1.676 9.497 <2e-16 ***
apptype -796.127 8.625 -92.302 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 308 on 6995 degrees of freedom
Multiple R-squared: 0.6136, Adjusted R-squared: 0.6134
F-statistic: 2777 on 4 and 6995 DF, p-value: < 2.2e-16

fit2=lm(ttime~ecu+vcpu+ram+loadinmem, data=data_train)
summary(fit2)

##
Call:
lm(formula = ttime ~ ecu + vcpu + ram + loadinmem, data = data_train)
##
Residuals:
Min 1Q Median 3Q Max
-369.43 -144.57 -98.06 2.62 1479.33
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1505.548 13.585 110.828 <2e-16 ***
ecu 53.964 2.751 19.618 <2e-16 ***
vcpu -490.814 13.698 -35.830 <2e-16 ***
ram 15.915 1.676 9.497 <2e-16 ***
loadinmem -796.127 8.625 -92.302 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 308 on 6995 degrees of freedom
Multiple R-squared: 0.6136, Adjusted R-squared: 0.6134
F-statistic: 2777 on 4 and 6995 DF, p-value: < 2.2e-16

fit1a=lm(ttime~ecu+vcpu+ram+externalfile, data=data_train)
summary(fit1a)

##
Call:
lm(formula = ttime ~ ecu + vcpu + ram + externalfile, data = data_train)
##
Residuals:
Min 1Q Median 3Q Max
-252.98 -147.84 -97.30 6.67 1488.90

6

##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1490.671 14.039 106.18 <2e-16 ***
ecu 57.042 2.833 20.13 <2e-16 ***
vcpu -502.994 14.119 -35.63 <2e-16 ***
ram 18.117 1.725 10.50 <2e-16 ***
externalfile -771.233 8.854 -87.11 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 317.7 on 6995 degrees of freedom
Multiple R-squared: 0.5889, Adjusted R-squared: 0.5887
F-statistic: 2505 on 4 and 6995 DF, p-value: < 2.2e-16

fit1b=lm(ttime~ecu+vcpu+ram+threading, data=data_train)
summary(fit1b)

##
Call:
lm(formula = ttime ~ ecu + vcpu + ram + threading, data = data_train)
##
Residuals:
Min 1Q Median 3Q Max
-252.98 -147.84 -97.30 6.67 1488.90
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -51.795 15.028 -3.447 0.000571 ***
ecu 57.042 2.833 20.131 < 2e-16 ***
vcpu -502.994 14.119 -35.627 < 2e-16 ***
ram 18.117 1.725 10.502 < 2e-16 ***
threading 771.233 8.854 87.106 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 317.7 on 6995 degrees of freedom
Multiple R-squared: 0.5889, Adjusted R-squared: 0.5887
F-statistic: 2505 on 4 and 6995 DF, p-value: < 2.2e-16

5 variable–all hardware specific predictors + 2 app specific

The five variable models are using all of the hardware and two of the application specific predictors. If we
compare adjusted R2 value with above models, we find out the same value. However in each model one of
the application specific variable is shown unsignificant that we can see under p-balue column. The possible
reason could be collinearity among the variables and so further diagnostics will be used to evaluate it.

fit3=lm(ttime~ecu+vcpu+ram+threading+loadinmem, data=data_train)
summary(fit3)

##
Call:

7

loadinmem -842.617 38.923 -21.648 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 310 on 6995 degrees of freedom
Multiple R-squared: 0.6086, Adjusted R-squared: 0.6084
F-statistic: 2720 on 4 and 6995 DF, p-value: < 2.2e-16

Regularization

The subset selection method use least square to fit a linear model that comprised of a subset of predictors. In
extension to our linear assumption We can use another technique that uses all the predictors in the model fit
and can shrink some of the coefficeints estimates to zero. This shrinkage of coeffiecint estimates is also known
as regularization. The two well known techniques for this method are the ridge regression and lasso. ###
Ridge regression Ridge regression is similar to least squares but minimises the coefficient estimates with a
slightly different quantity of lambda. Lambda is a tuning parameter that controls the relative impact of the
least square and shrinkage penalty on the regression coefficient estimates. When lambda=0, the penalty term
has no effect and estimates are least square. However, as lambda grows to infinity the shrinkage penalty
grows and the coefficient estimates approaches zero.

Ridge regression includes all the variables as P predictors in the final model. Highest value of lambda can
reduce the coefficient value but cannot exclude any variable from the resulting model. On the other hand,
Lasso overcomes this disadvantage by forcing some of the coefficient estimates to be equal to zero especially
when the lambda value is large enough. For the ridge and lasso regression model fit, we use a range of values
starting from lamda= 10 power 10 to lambda=10 power -2, covering the full range of scenarios from the null
model containing only the intercept to the least square fit.

library(glmnet)

Loading required package: Matrix
Loading required package: foreach
Loaded glmnet 2.0-2

grid=10^seq(10,-2,length=100)
x=model.matrix(ttime~.,data=data_train)[,-1]
y=data_train$ttime

ridge.mod=glmnet(x,y,alpha=0,lambda=grid)
dim(coef(ridge.mod))

[1] 8 100

Output will be a 8x100 (8 predictors and 100 colum values for lambda) matrix which shows coefficinets values
for each value of lambda, can be seen from the output of dim() function.

We expect the coefficeint estimates to be much smaller, in terms of l2 norm when a lareg value of lambda is
used as compared to when a small value of lambda is used. check if coefficeinet estimate of lambda[50]=
11,498 is higher than lambda[60]=705

ridge.mod$lambda[50]

[1] 11497.57

11

coef(ridge.mod)[,50]

(Intercept) ecu vcpu ram apptype
437.54070780 -0.52608162 -3.51598432 -0.09832739 -22.19444952
externalfile threading loadinmem
-21.54179748 21.54179295 -22.19443095

sqrt(sum(coef(ridge.mod)[-1,50]^2))

[1] 43.88545

ridge.mod$lambda[60]

[1] 705.4802

coef(ridge.mod)[,60]

(Intercept) ecu vcpu ram apptype
784.250996 -7.819823 -51.736508 -5.217145 -134.125738
externalfile threading loadinmem
-123.270345 123.276213 -134.109438

sqrt(sum(coef(ridge.mod)[-1,60]^2))

[1] 262.931

Change the parameter value as per predictor/variable values. We can use predict() func to obtain ridge
regression coefficeints for a new value of lambda lets say 50.

predict(ridge.mod,s=50,type="coefficients")[1:8,]

(Intercept) ecu vcpu ram apptype
1311.984584 -2.598538 -185.462669 -3.719652 -256.142263
externalfile threading loadinmem
-135.136443 137.826054 -258.706751

Fit a ridge regression model on the trining set and evaluate its MSE on the test set using lambda=4.

train=sample(1:nrow(x),nrow(x)/2)
test=(-train)
y.test=y[test]
ridge.mod=glmnet(x[train,],y[train],alpha=0,lambda=grid,thresh=1e-12)
ridge.pred=predict(ridge.mod ,s=4, newx=x[test,])
mean((ridge.pred -y.test)^2)

[1] 89379.79

1e10 means 10 power 10, remember that least square is simply ridge regression with lambda=0.

12

ridge.pred=predict(ridge.mod ,s=1e10, newx=x[test,])
mean((ridge.pred -y.test)^2)

[1] 228212.6

ridge.pred=predict(ridge.mod ,s=0, newx=x[test,], exact=T)
mean((ridge.pred -y.test)^2)

[1] 89213.3

The lm is more useful to see output if we want to fit unpenalized least square model.

lmridge=lm(y~x, subset=train)
summary(lmridge)

##
Call:
lm(formula = y ~ x, subset = train)
##
Residuals:
Min 1Q Median 3Q Max
-416.75 -143.47 -114.60 5.95 1442.68
##
Coefficients: (2 not defined because of singularities)
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2396.092 62.062 38.608 < 2e-16 ***
xecu 54.749 4.003 13.677 < 2e-16 ***
xvcpu -506.793 19.863 -25.515 < 2e-16 ***
xram 15.749 2.449 6.430 1.45e-10 ***
xapptype -839.645 57.870 -14.509 < 2e-16 ***
xexternalfile 23.813 57.569 0.414 0.679
xthreading NA NA NA NA
xloadinmem NA NA NA NA

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 317.7 on 3494 degrees of freedom
Multiple R-squared: 0.6164, Adjusted R-squared: 0.6158
F-statistic: 1123 on 5 and 3494 DF, p-value: < 2.2e-16

predict(ridge.mod ,s=0, exact=T,type="coefficients")[1:8,]

(Intercept) ecu vcpu ram apptype
1990.674452 54.747547 -506.788721 15.748636 -416.573178
externalfile threading loadinmem
14.959059 -8.827652 -423.046442

choose tuning parameter using cross validation

13

cv.out=cv.glmnet(x[train,],y[train],alpha=0)
plot(cv.out)

4 6 8 10 12

10
00

00
20

00
00

log(Lambda)

M
ea

n−
S

qu
ar

ed
 E

rr
or

7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

bestlam=cv.out$lambda.min
bestlam

[1] 33.36339

ridge.pred=predict(ridge.mod ,s=bestlam ,newx=x[test,])
mean((ridge.pred -y.test)^2)

[1] 93846.97

Above code has shown further improvemnt over test MSE so refit the ridge regression model on the full
dataset using bestlamda and EXAMINE THE COEFFICIENT ESTIMATES.

out=glmnet(x,y,alpha =0)
predict(out ,type="coefficients",s=bestlam)[1:8,]

(Intercept) ecu vcpu ram apptype
1392.873529 2.688446 -218.187820 -1.697293 -276.041108
externalfile threading loadinmem
-119.263954 122.482560 -279.142263

14

Model diagnostics

Residual plots are the most basic diagnostic graphs when these are plotted gainst the fitted values as well as
each of the predictors. Residual plots are used to find: Non linearity in the regression function Non constant
variance of error term and if the error terms are not independent Outliers in the data set

A plot is known as null plot if there is no prominent pattern in it and so it shows the adequacy of model. If
a linear model adequately describing the data then the pearson residuals are independ of the fitted values
and the predictors and the graphs will be null graphs. No indicative pattern means that the conditional
distribution of the residuals (on the vertical axis) should not change with the predictors or fitted values (on
x-axis). If the fitted vs pearson residuals has curved general trend it indicates that the model is not adequate
to describe the data. Just one null plot is insufficient as an evidence that the model is best fit or adequate
however, one non-null plot is sufficient to suggest that the model does not match the data.

This command generates scatter plots of the pearson residulas vs each predictors and the fitted values. By
default .the line shown on the graphs are the fitted quadratic regression of the pearson residuals on each
predictor. By changing the argument one can plot Studentized residuals instead of pearson. You can even
change the quadratic curve to lowess smooth by setting smooth=TRUE and quadratic=FALSE. Write lack of
fit test w.r.t each regression model page 289

Plotting residuals

Here we have plotted the graph of residuals vs the fitted values only that can visually describe the adequacy
of model fit to data. All of the diagnostic graphs are showing a curve trend as an evidence to indicate that
the model is not a best fit for the data or the model does not match the data.

library(car)
residualPlots(fit1, ~1, fitted=TRUE)

15

0 500 1000

0
50

0
10

00
15

00

Fitted values

P
ea

rs
on

 r
es

id
ua

ls

Test stat Pr(>|t|)
Tukey test 81.055 0

library(car)
residualPlots(fit2, ~1, fitted=TRUE)

16

0 500 1000

0
50

0
10

00
15

00

Fitted values

P
ea

rs
on

 r
es

id
ua

ls

Test stat Pr(>|t|)
Tukey test 79.285 0

Marginal model plots

Marginal model plot is another variation of the basic residual plots in which the response variable is plotted
against all the predictors as well as fitted values, in this case ttime is the response variable. The plots of
the response vs individual predictor shows the conditional distribution of the response given each predictor
and ignoring the other predictors. On the other hand the fiited value vs response variable plot shows the
conditional distribution of the response given the fit of the model. In each of the plot, regression function is
estimated by fitting a smother to the points in the plot that uses a lowess smooth function and is indicated
by a solid line in the graph. The second smooth is also indicated by a dashed line and this line shows that if
the fitted values can fairly estimate the response given a predictor on x-axis. If the two lines matches each
other it indicates that the model fits the data well, otherwise it indicates the lack of fit. In our case, all the
plotted marginal model graphs of, pair of smooths fails to match and provides an evidence that the models
are not good fit to data.

25

marginalModelPlots(fit1)

5 10 15

0
15

00

ecu

tti
m

e

Data Model

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0
15

00

vcpu

tti
m

e

Data Model

2 4 6 8 10 12 14

0
15

00

ram

tti
m

e

Data Model

1.0 1.2 1.4 1.6 1.8 2.0
0

15
00

apptype

tti
m

e

Data Model

0 500 1000

0
15

00

Fitted values

tti
m

e

Data Model

Marginal Model Plots

marginalModelPlots(fit2)

26

5 10 15

0
15

00

ecu

tti
m

e

Data Model

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0
15

00

vcpu

tti
m

e

Data Model

2 4 6 8 10 12 14

0
15

00

ram

tti
m

e

Data Model

0.0 0.2 0.4 0.6 0.8 1.0

0
15

00

loadinmem
tti

m
e

Data Model

0 500 1000

0
15

00

Fitted values

tti
m

e

Data Model

Marginal Model Plots

marginalModelPlots(fit3)

27

5 10 15

0
15

00

ecu

tti
m

e

Data Model

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0
15

00

vcpu

tti
m

e

Data Model

2 4 6 8 10 12 14

0
15

00

ram

tti
m

e

Data Model

1.0 1.2 1.4 1.6 1.8 2.0

0
15

00

threading
tti

m
e

Data Model

0.0 0.2 0.4 0.6 0.8 1.0

0
15

00

loadinmem

tti
m

e

Data Model

0 500 1000

0
15

00

Fitted values

tti
m

e

Data Model

Marginal Model Plots

marginalModelPlots(fit4)

28

5 10 15

0
15

00

ecu

tti
m

e

Data Model

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0
15

00

vcpu

tti
m

e

Data Model

0.0 0.2 0.4 0.6 0.8 1.0

0
15

00

externalfile

tti
m

e

Data Model

1.0 1.2 1.4 1.6 1.8 2.0

0
15

00

threading
tti

m
e

Data Model

0.0 0.2 0.4 0.6 0.8 1.0

0
15

00

loadinmem

tti
m

e

Data Model

0 500 1000

0
15

00

Fitted values

tti
m

e

Data Model

Marginal Model Plots

Added variable plots

Added variable plot are also called partial regression plots and show the partial relationship between response
and predictor adjusted for all other predictors. The graphs are scatterplots in which residuals for y-axis are
computed by regressing y on all the regressors excluding x1 while x-axis residulals are obtained by regressing
x1 on the other regressors. Added variable graphs are good to see the effect of each regressor after adjusting
for all other regressors and shows the impact of observations on regression coefficient.

comment: Leverage plots only work for linear functions.

avPlots(fit1, id.n=2, id.cex=0.6)

33

−2 −1 0 1

0
50

0
15

00

ecu | others

tti
m

e
 |

ot
he

rs

44844476

16681495

−0.2 0.0 0.2 0.4

0
10

00

vcpu | others

tti
m

e
 |

ot
he

rs

44844476

14101668

−3 −2 −1 0 1 2 3 4

0
50

0
15

00

ram | others

tti
m

e
 |

ot
he

rs

44844476

57206266

−0.6 −0.2 0.2 0.6

−
50

0
50

0
15

00

apptype | others

tti
m

e
 |

ot
he

rs

44844476

40604276

Added−Variable Plots

avPlots(fit2, id.n=2, id.cex=0.6)

34

−2 −1 0 1

0
50

0
15

00

ecu | others

tti
m

e
 |

ot
he

rs

44844476

16681495

−0.2 0.0 0.2 0.4

0
10

00

vcpu | others

tti
m

e
 |

ot
he

rs

44844476

14101668

−3 −2 −1 0 1 2 3 4

0
50

0
15

00

ram | others

tti
m

e
 |

ot
he

rs

44844476

57206266

−0.6 −0.2 0.2 0.6

−
50

0
50

0
15

00

loadinmem | others

tti
m

e
 |

ot
he

rs

44844476

40604276

Added−Variable Plots

avPlots(fit3, id.n=2, id.cex=0.6)

35

−2 −1 0 1 2

0
10

00

ecu | others

tti
m

e
 |

ot
he

rs 44844476

16681495

−0.4 −0.2 0.0 0.2 0.4

0
10

00

vcpu | others

tti
m

e
 |

ot
he

rs 44844476

92279232

0.0e+00 5.0e−12 1.0e−11 1.5e−11 2.0e−11

0
10

00

externalfile | others

tti
m

e
 |

ot
he

rs 44844476

458
1410

0.0e+00 5.0e−12 1.0e−11 1.5e−11 2.0e−11

0
10

00

threading | others
tti

m
e

 |
ot

he
rs 44844476

458
8676

−1.0 −0.8 −0.6 −0.4 −0.2 0.0

0
10

00

loadinmem | others

tti
m

e
 |

ot
he

rs 44844476

92009198

Added−Variable Plots

Transformations

Response transformation

the generic qqPlot function plots the Studentized residuals against the corresponding quantiles of t(n-k-2).
By default this plot generates the 95% pointwise confidence envelope for the Studentized residuals. This
graph is useful to check the behaviour of residuals in case of skewness. A non parametric density estimate
can figure out the shape of the residual distribution. QQ plot are further used to evaluate. . . . non normal
error

par(mfrow=c(2,2))
qqPlot(fit1, id.n=0)
plot(density(rstudent(fit1)))

41

−4 −2 0 2 4

−
1

2
4

t Quantiles

S
tu

de
nt

iz
ed

 R
es

id
ua

ls
(f

it1
)

−1 0 1 2 3 4 5

0.
0

1.
0

density.default(x = rstudent(fit1))

N = 7000 Bandwidth = 0.05465

D
en

si
ty

Box-Cox transformation Normality transformation: A positive skew in the distribution sometimes can
be corrected using the power trnaformation for y. Y (ttime) is strictly positive so we will use Box-Cox power
transformation, if y is not poitive one can use Yeo-Johnson function for transformation. poserTransform
function in car package provides similar but numeric results compared to boxcox function.
comment: apply qq plot and see.

summary(powerTransform(fit1))

bcPower Transformation to Normality
##
Est.Power Std.Err. Wald Lower Bound Wald Upper Bound
Y1 -0.4335 0.0065 -0.4461 -0.4208
##
Likelihood ratio tests about transformation parameters
LRT df pval
LR test, lambda = (0) 4297.506 1 0
LR test, lambda = (1) 27577.265 1 0

Linearity transformation: Inverse response plot is an alternative to Box-Cox transformation and this method
produces a transformation towards linearity rather than normality.

inverseResponsePlot(fit1,id.n=4)

42

0 500 1000 1500 2000 2500

0
50

0
10

00

ttime

yh
at

4484447647674644

λ̂: 0.2 −1 0 1

lambda RSS
1 0.1984048 199625859
2 -1.0000000 345461903
3 0.0000000 209427530
4 1.0000000 407141642

In our case inverse reponse plot is not successful for selecting a suitable transformation of the response
variable. The problem in our case is more likely lack of normality rather than linearity therefore inverse
reponse plot is not suitable.

Predictor transformation

Sometimes predictor transformation resolves the fitted model problems or reduces the lack of fit. In order
to see the non-linearity we evaluate the component-plus-residual plots and help in detectin if the predictor
needs some trnasformation.

The outcome of below plots shows that the predictors are not linearly realted to each other.

crPlots(fit1)

Warning in smoother(.x, partial.res[, var], col = col.lines[2], log.x =
FALSE, : could not fit smooth

43

5 10 15

−
50

0
50

0

ecu

C
om

po
ne

nt
+

R
es

id
ua

l(t
tim

e)

1.0 1.5 2.0 2.5 3.0 3.5 4.0

−
50

0
10

00

vcpu

C
om

po
ne

nt
+

R
es

id
ua

l(t
tim

e)

2 4 6 8 10 12 14

0
50

0
15

00

ram

C
om

po
ne

nt
+

R
es

id
ua

l(t
tim

e)

1.0 1.2 1.4 1.6 1.8 2.0

−
50

0
50

0
15

00

apptype

C
om

po
ne

nt
+

R
es

id
ua

l(t
tim

e)

Component + Residual Plots

we can alter the graphs by permitting quadretic relationship among the predictors and can use following line
of code, crPlots(fit1, order=2)

The component-plus-residual plot for ecu looks more like cubic. in contrast the component-plus residual plot
for vcpu is slightly non-linear. finally the component-plus residual plot for ram looks like cubic as well.

The Box-Tidwell method for choosing predictor transformations: Polyno-mial transformation Linear
regression and regularization methods have shown significant limitations in terms of predictive power. This
uncertainty of a linear model fit indicated non-linearity in our data that we have diagnosed using crPlot()
function. We can relax the linearity assumptions with simple extensions of linear models like polynomial
regression.

fitp1=lm(ttime~ecu+vcpu+ram+apptype,data=data_train)
summary(fitp1)

##
Call:
lm(formula = ttime ~ ecu + vcpu + ram + apptype, data = data_train)
##
Residuals:
Min 1Q Median 3Q Max
-369.43 -144.57 -98.06 2.62 1479.33
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2301.675 19.815 116.157 <2e-16 ***

44

poly(ecu, 3)3 -52916.950 280.369 -188.7 <2e-16 ***
vcpu -1999.328 7.362 -271.6 <2e-16 ***
poly(ram, 3)1 68302.840 280.487 243.5 <2e-16 ***
poly(ram, 3)2 -61560.752 287.863 -213.9 <2e-16 ***
poly(ram, 3)3 67023.229 262.697 255.1 <2e-16 ***
apptype -573.041 2.840 -201.8 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 87.97 on 6991 degrees of freedom
Multiple R-squared: 0.9685, Adjusted R-squared: 0.9685
F-statistic: 2.686e+04 on 8 and 6991 DF, p-value: < 2.2e-16

fitp11=lm(ttime~poly(ecu,3)+poly(vcpu,2)+poly(ram,3)+apptype,data=data_train)
summary(fitp11)

##
Call:
lm(formula = ttime ~ poly(ecu, 3) + poly(vcpu, 2) + poly(ram,
3) + apptype, data = data_train)
##
Residuals:
Min 1Q Median 3Q Max
-1066.84 -51.92 -4.01 43.79 307.31
##
Coefficients: (1 not defined because of singularities)
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1247.609 4.325 288.49 <2e-16 ***
poly(ecu, 3)1 -60359.686 499.403 -120.86 <2e-16 ***
poly(ecu, 3)2 -73467.397 337.493 -217.69 <2e-16 ***
poly(ecu, 3)3 51788.600 213.016 243.12 <2e-16 ***
poly(vcpu, 2)1 67204.918 642.464 104.61 <2e-16 ***
poly(vcpu, 2)2 81561.468 319.679 255.13 <2e-16 ***
poly(ram, 3)1 -18923.696 209.502 -90.33 <2e-16 ***
poly(ram, 3)2 8616.103 152.714 56.42 <2e-16 ***
poly(ram, 3)3 NA NA NA NA
apptype -573.041 2.840 -201.77 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 87.97 on 6991 degrees of freedom
Multiple R-squared: 0.9685, Adjusted R-squared: 0.9685
F-statistic: 2.686e+04 on 8 and 6991 DF, p-value: < 2.2e-16

Polynomial transformation with Interaction Terms

Alternatively, other functions of the predictors could be considered rather than polynomials. It is not hard
to see that there are many possible ways to enlarge the feature space, and that unless we are careful, we
could end up with a huge number of features. One might additionally want to enlarge the feature space with
higher-order polynomial terms, or with interaction terms.

50

fitp12=lm(ttime~poly(ecu,3):threading+vcpu+poly(ram,3)+apptype,data=data_train)
summary(fitp12)

##
Call:
lm(formula = ttime ~ poly(ecu, 3):threading + vcpu + poly(ram,
3) + apptype, data = data_train)
##
Residuals:
Min 1Q Median 3Q Max
-449.89 -80.30 -1.42 43.91 725.29
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1805.620 31.163 57.941 < 2e-16 ***
vcpu 39.607 11.757 3.369 0.000759 ***
poly(ram, 3)1 9369.220 453.046 20.681 < 2e-16 ***
poly(ram, 3)2 -12431.132 435.106 -28.570 < 2e-16 ***
poly(ram, 3)3 14905.603 347.467 42.898 < 2e-16 ***
apptype -958.800 6.147 -155.989 < 2e-16 ***
poly(ecu, 3)1:threading -30386.421 576.748 -52.686 < 2e-16 ***
poly(ecu, 3)2:threading 15667.163 288.543 54.297 < 2e-16 ***
poly(ecu, 3)3:threading -2658.827 257.367 -10.331 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 212 on 6991 degrees of freedom
Multiple R-squared: 0.8171, Adjusted R-squared: 0.8169
F-statistic: 3904 on 8 and 6991 DF, p-value: < 2.2e-16

fitp13=lm(ttime~poly(ecu,3):threading+poly(vcpu,2)+poly(ram,3)+apptype,data=data_train)
summary(fitp13)

##
Call:
lm(formula = ttime ~ poly(ecu, 3):threading + poly(vcpu, 2) +
poly(ram, 3) + apptype, data = data_train)
##
Residuals:
Min 1Q Median 3Q Max
-974.68 -12.72 0.36 7.81 173.49
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1150.379 2.149 535.25 <2e-16 ***
poly(vcpu, 2)1 -15762.816 182.391 -86.42 <2e-16 ***
poly(vcpu, 2)2 53789.569 103.256 520.93 <2e-16 ***
poly(ram, 3)1 13834.603 72.307 191.33 <2e-16 ***
poly(ram, 3)2 -20756.764 70.782 -293.25 <2e-16 ***
poly(ram, 3)3 28258.307 60.739 465.24 <2e-16 ***
apptype -496.702 1.317 -377.01 <2e-16 ***
poly(ecu, 3)1:threading -7838.340 101.132 -77.51 <2e-16 ***

51

poly(ecu, 3)2:threading -14782.225 74.213 -199.19 <2e-16 ***
poly(ecu, 3)3:threading 8269.647 45.865 180.30 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 33.59 on 6990 degrees of freedom
Multiple R-squared: 0.9954, Adjusted R-squared: 0.9954
F-statistic: 1.683e+05 on 9 and 6990 DF, p-value: < 2.2e-16

fitp14=lm(ttime~poly(ecu,3):threading+poly(vcpu,2)+poly(ram,3):loadinmem+apptype,data=data_train)
summary(fitp14)

##
Call:
lm(formula = ttime ~ poly(ecu, 3):threading + poly(vcpu, 2) +
poly(ram, 3):loadinmem + apptype, data = data_train)
##
Residuals:
Min 1Q Median 3Q Max
-797.59 -15.45 -2.51 21.09 97.92
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -17331.61 325.98 -53.17 <2e-16 ***
poly(vcpu, 2)1 -7825.45 210.06 -37.25 <2e-16 ***
poly(vcpu, 2)2 41755.99 249.49 167.37 <2e-16 ***
apptype 18211.86 327.75 55.57 <2e-16 ***
poly(ecu, 3)1:threading -17628.09 203.18 -86.76 <2e-16 ***
poly(ecu, 3)2:threading -5186.41 197.58 -26.25 <2e-16 ***
poly(ecu, 3)3:threading 5651.37 78.73 71.78 <2e-16 ***
poly(ram, 3)1:loadinmem 3785642.68 65637.69 57.67 <2e-16 ***
poly(ram, 3)2:loadinmem 2550051.95 44714.94 57.03 <2e-16 ***
poly(ram, 3)3:loadinmem 408182.07 6605.98 61.79 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 29.62 on 6990 degrees of freedom
Multiple R-squared: 0.9964, Adjusted R-squared: 0.9964
F-statistic: 2.167e+05 on 9 and 6990 DF, p-value: < 2.2e-16

Nonconstant error variance

Cross Validation–Model Selection Model assessment was done using cross-validation using the MSE which
estimated the test errors associated with the learning method to evaluate its performance. Most commonly
used measure for the quality of fit in regression analysis is the mean squared error (MSE) and cross
validation uses this measure. In our case we preferred to choose the model that is lower in test MSE compared
to training MSE. We applied regression diagnostics to check the assumptions for linear regression with non-
linear transformation of the predictors. Non-linear models outperformed the linear ones as indicated by
different factors. Our prediction function is showing the similar results that we derived from data visualisation
this shows the validation of our prediction method.

52

library(boot)
glm.fit14=glm(ttime~poly(ecu,3):threading+poly(vcpu,2)+poly(ram,3):loadinmem+apptype,data=data_train)
cv.error=cv.glm(data_train,glm.fit14,K=10)$delta[1]
cv.error

[1] 897.0517

mean((newdata$ttime-predict(glm.fit14,newdata))[-train1]^2)

[1] 661.2765

60

BIBLIOGRAPHY 181

Bibliography

[1] Statista, Cloud computing market view, https://www.statista.com/statistics/475670/

cloud-applications-market-size-worldwide/ (Accessed: 2018-03-22).

[2] Gartner, Cloud computing market view, https://www.gartner.com/newsroom/id/3815165

(Accessed: 2018-03-22).

[3] A. Barker, B. Varghese, J. S. Ward, I. Sommerville, Academic cloud computing research: Five

pitfalls and five opportunities, in: Proceedings of the 6th USENIX Conference on Hot Topics in

Cloud Computing, HotCloud’14, USENIX Association, Berkeley, CA, USA, 2014, pp. 2–2.

URL http://dl.acm.org/citation.cfm?id=2696535.2696537

[4] P. Leitner, J. Cito, Patterns in the chaos - a study of performance variation and predictability

in public iaas clouds, CoRR abs/1411.2429.

URL http://arxiv.org/abs/1411.2429

[5] F. Samreen, G. S. Blair, M. Rowe, Adaptive decision making in multi-cloud manage-

ment, in: 2nd International Workshop on CrossCloud Systems, ACM, 2014, pp. 4:1–4:6.

doi:10.1145/2676662.2676676.

[6] P. Leitner, J. Cito, Patterns in the chaos — a study of performance variation and predictability

in public IaaS clouds, ACM Transactions on Internet Technology 16 (3) (2016) 15:1–15:23.

doi:10.1145/2885497.

[7] Z. Ou, H. Zhuang, J. K. Nurminen, A. Ylä-Jääski, P. Hui, Exploiting hardware heterogeneity

within the same instance type of amazon ec2, in: HotCloud, USENIX, 2012.

URL https://www.usenix.org/conference/hotcloud12/exploiting-hardware-heterogeneity-within-same-instance-type-amazon-ec2

[8] Y. Elkhatib, Mapping Cross-Cloud Systems: Challenges and Opportunities, in: Proceedings of

the 8th USENIX Conference on Hot Topics in Cloud Computing, USENIX Association, 2016,

pp. 77–83.

[9] I. Foster, Y. Zhao, I. Raicu, S. Lu, Cloud computing and grid computing 360-

degree compared, in: 2008 Grid Computing Environments Workshop, 2008, pp. 1–10.

doi:10.1109/GCE.2008.4738445.

182 B. R Markdown

[10] Q. Zhang, L. Cheng, R. Boutaba, Cloud computing: state-of-the-art and research challenges,

Journal of Internet Services and Applications 1 (1) (2010) 7–18. doi:10.1007/s13174-010-0007-6.

URL http://dx.doi.org/10.1007/s13174-010-0007-6

[11] I. S. Artan Mazrekaj, B. Sejdiu, Pricing schemes in cloud computing: An overview, International

Journal of Advanced Computer Science and Applications(ijacsa),7(2), 2016.

URL http://dx.doi.org/10.14569/IJACSA.2016.070211

[12] S. Grivas, T. Kumar, H. Wache, Cloud broker: Bringing intelligence into the cloud,

in: IEEE International Conference on Cloud Computing (CLOUD), 2010, pp. 544–545.

doi:10.1109/CLOUD.2010.48.

[13] P. M. Mell, T. Grance, Sp 800-145. the nist definition of cloud computing, Tech. rep., Gaithers-

burg, MD, United States (2011).

[14] A. Barker, B. Varghese, L. Thai, Cloud services brokerage: A survey and research roadmap,

CoRR abs/1506.00485.

URL http://arxiv.org/abs/1506.00485

[15] RightScale), Rightscale cloud portfolio management, http://rightscale.com/

why-cloud-management-platform/benefits.html (2016).

[16] enStratus, enstratus, http://enstratus.html (2016).

[17] xStream, xstream from virtustream, http://virtustream.com/software.html (2016).

[18] CliQr, Cliqr, http://cliqr.html (2016).

[19] Apache Brooklyn, Apache brooklyn, https://brooklyn.apache.org/.html (2016).

[20] Scalr, Scalr the cloud management platform, http://.scalr.com.html (2016).

[21] Standingcloud by AppDirect, Cloud application marketplace and management platform, http:

//www.standingcloud.com.html (2016).

[22] The Aeloud Project, Aelous, http://www.aeolus-project.org.html (2016).

[23] P. Pawluk, B. Simmons, M. Smit, M. Litoiu, S. Mankovski, Introducing stratos: A cloud broker

service, in: Cloud Computing (CLOUD), 2012 IEEE 5th International Conference on, 2012, pp.

891–898. doi:10.1109/CLOUD.2012.24.

BIBLIOGRAPHY 183

[24] S. Gupta, V. Muntes-Mulero, P. Matthews, J. Dominiak, A. Omerovic, J. Aranda, S. Seycek,

Risk-driven framework for decision support in cloud service selection, in: International Sym-

posium on Cluster, Cloud and Grid Computing (CCGrid), IEEE/ACM, 2015, pp. 545–554.

doi:10.1109/CCGrid.2015.111.

[25] E. Kamateri, N. Loutas, D. Zeginis, J. Ahtes, F. D’Andria, S. Bocconi, P. Gouvas, G. Ledakis,

F. Ravagli, O. Lobunets, K. Tarabanis, Cloud4SOA: A Semantic-Interoperability PaaS Solution

for Multi-cloud Platform Management and Portability, Vol. 8135 of LNCS, Springer, 2013, Ch. 6,

pp. 64–78. doi:10.1007/978-3-642-40651-5 6.

[26] A. Li, X. Yang, S. Kandula, M. Zhang, Cloudcmp: Comparing public cloud providers, in:

Proceedings of the 10th ACM SIGCOMM Conference on Internet Measurement, IMC ’10, ACM,

New York, NY, USA, 2010, pp. 1–14. doi:10.1145/1879141.1879143.

URL http://doi.acm.org/10.1145/1879141.1879143

[27] I. Patiniotakis, Y. Verginadis, G. Mentzas, Preference-based cloud service recommendation as

a brokerage service, in: 2nd International Workshop on CrossCloud Systems, ACM, 2014, pp.

5:1–5:6. doi:10.1145/2676662.2676677.

[28] A. Li, X. Zong, S. Kandula, X. Yang, M. Zhang, Cloudprophet: Towards application performance

prediction in cloud, in: Proceedings of the ACM SIGCOMM 2011 Conference, SIGCOMM ’11,

ACM, New York, NY, USA, 2011, pp. 426–427. doi:10.1145/2018436.2018502.

URL http://doi.acm.org/10.1145/2018436.2018502

[29] B. Varghese, O. Akgun, I. Miguel, L. Thai, A. Barker, Cloud benchmarking for performance, in:

2014 IEEE 6th International Conference on Cloud Computing Technology and Science, 2014,

pp. 535–540. doi:10.1109/CloudCom.2014.28.

[30] R. C. Chiang, J. Hwang, H. H. Huang, T. Wood, Matrix: Achieving predictable virtual machine

performance in the clouds, in: 11th International Conference on Autonomic Computing (ICAC

14), USENIX Association, Philadelphia, PA, 2014, pp. 45–56.

URL https://www.usenix.org/conference/icac14/technical-sessions/presentation/

chiang

[31] I. Patiniotakis, Y. Verginadis, G. Mentzas, Preference-based cloud service recommendation as a

brokerage service, in: Proceedings of the 2Nd International Workshop on CrossCloud Systems,

184 B. R Markdown

CCB ’14, ACM, New York, NY, USA, 2014, pp. 5:1–5:6. doi:10.1145/2676662.2676677.

URL http://doi.acm.org/10.1145/2676662.2676677

[32] E. Feller, L. Ramakrishnan, C. Morin, On the Performance and Energy Efficiency of Hadoop

Deployment Models, in: The IEEE International Conference on Big Data 2013 (IEEE BigData

2013), Santa Clara, United States, 2013.

URL https://hal.inria.fr/hal-00856330

[33] D. Petcu, Multi-cloud: Expectations and current approaches, in: Proceedings of the 2013 Inter-

national Workshop on Multi-cloud Applications and Federated Clouds, MultiCloud ’13, ACM,

New York, NY, USA, 2013, pp. 1–6. doi:10.1145/2462326.2462328.

URL http://doi.acm.org/10.1145/2462326.2462328

[34] D. Guyon, A. C. Orgerie, C. Morin, Energy-efficient user-oriented cloud elasticity for data-

driven applications, in: 2015 IEEE International Conference on Data Science and Data Intensive

Systems, 2015, pp. 376–383. doi:10.1109/DSDIS.2015.57.

[35] D. Margery, D. Guyon, A.-C. Orgerie, C. Morin, G. Francis, C. Palansuriya, K. Kavoussanakis,

A CO2 emissions accounting framework with market-based incentives for Cloud infrastructures,

in: SMARTGREENS: International Conference on Smart Cities and Green ICT Systems, Porto,

Portugal, 2017.

URL https://hal.inria.fr/hal-01486185

[36] A. J. Ferrer, F. HernáNdez, J. Tordsson, E. Elmroth, A. Ali-Eldin, C. Zsigri, R. Sirvent, J. Gui-

tart, R. M. Badia, K. Djemame, W. Ziegler, T. Dimitrakos, S. K. Nair, G. Kousiouris, K. Kon-

stanteli, T. Varvarigou, B. Hudzia, A. Kipp, S. Wesner, M. Corrales, N. Forgó, T. Sharif,

C. Sheridan, Optimis: A holistic approach to cloud service provisioning, Future Gener. Comput.

Syst. 28 (1) (2012) 66–77. doi:10.1016/j.future.2011.05.022.

URL http://dx.doi.org/10.1016/j.future.2011.05.022

[37] D. Petcu, Portability and interoperability between clouds: Challenges and case study, in: Pro-

ceedings of the 4th European Conference on Towards a Service-based Internet, ServiceWave’11,

Springer-Verlag, Berlin, Heidelberg, 2011, pp. 62–74.

URL http://dl.acm.org/citation.cfm?id=2050869.2050876

[38] G. Blair, D. Schmidt, C. Taconet, Middleware for internet distribution in the context of cloud

computing and the internet of things, Annals of Telecommunications 71 (3) (2016) 87–92.

BIBLIOGRAPHY 185

doi:10.1007/s12243-016-0493-z.

URL http://dx.doi.org/10.1007/s12243-016-0493-z

[39] F. Samreen, Y. Elkhatib, M. Rowe, G. S. Blair, Daleel: Simplifying cloud instance selection using

machine learning, in: Proceedings of the Network Operations and Management Symposium,

IEEE, 2016, pp. 557–563. doi:10.1109/NOMS.2016.7502858.

[40] A. K. Maji, S. Mitra, B. Zhou, S. Bagchi, A. Verma, Mitigating interference in cloud services by

middleware reconfiguration, in: Proceedings of the 15th International Middleware Conference,

Middleware ’14, ACM, 2014, pp. 277–288. doi:10.1145/2663165.2663330.

[41] N. Grozev, R. Buyya, Inter-cloud architectures and application brokering: Taxonomy and survey,

Softw. Pract. Exper. 44 (3) (2014) 369–390. doi:10.1002/spe.2168.

URL http://dx.doi.org/10.1002/spe.2168

[42] L. Badger, R. Bohn, S. Chu, M. Hogan, F. Liu, V. Kaufmann, J. Mao, J. Messina, K. Mills,

A. Sokol, J. Tong, F. Whiteside, D. Leaf, US government cloud computing technology roadmap,

Tech. Rep. (Special Publication) 500-293, National Institute of Standards and Technology (Nov.

2011).

[43] chef: Automate your infrastructure, https://www.chef.io/chef/.

[44] Configuration management with puppet, https://puppet.com/solutions/

configuration-management.

[45] Ansible for configuration management, https://www.ansible.com/.

[46] Cfengine automation tool, https://cfengine.com/.

[47] Saltstack automation for cloudops, https://saltstack.com/.

[48] Apache jcloud, https://jclouds.apache.org/.

[49] Apache libcloud api, https://libcloud.apache.org/.

[50] Apache deltacloud api, https://deltacloud.apache.org/.

[51] Simple cloud api, https://simplecloud.org/.

[52] Kavoo), Kavoo, http://kavoo.com (2016).

186 B. R Markdown

[53] CELAR, Celar, http://linc.ucy.ac.cy/CELAR/ (2016).

[54] D. Ardagna, E. D. Nitto, P. Mohagheghi, S. Mosser, C. Ballagny, F. D’Andria, G. Casale,

P. Matthews, C. S. Nechifor, D. Petcu, A. Gericke, C. Sheridan, Modaclouds: A model-

driven approach for the design and execution of applications on multiple clouds, in: 2012

4th International Workshop on Modeling in Software Engineering (MISE), 2012, pp. 50–56.

doi:10.1109/MISE.2012.6226014.

[55] A. E. Gencer, D. Bindel, E. G. Sirer, R. van Renesse, Configuring distributed computations using

response surfaces, in: Proceedings of the 16th Annual Middleware Conference, Middleware ’15,

ACM, New York, NY, USA, 2015, pp. 235–246. doi:10.1145/2814576.2814730.

URL http://doi.acm.org/10.1145/2814576.2814730

[56] S. Sundareswaran, A. Squicciarini, D. Lin, A brokerage-based approach for cloud service selec-

tion, in: IEEE International Conference on Cloud Computing (CLOUD), 2012, pp. 558–565.

doi:10.1109/CLOUD.2012.119.

[57] J. Siegel, J. Perdue, Cloud services measures for global use: The service measurement index

(smi), in: 2012 Annual SRII Global Conference, 2012, pp. 411–415. doi:10.1109/SRII.2012.51.

[58] S. K. Garg, S. Versteeg, R. Buyya, A framework for ranking of cloud computing services, Future

Gener. Comput. Syst. 29 (4) (2013) 1012–1023. doi:10.1016/j.future.2012.06.006.

URL http://dx.doi.org/10.1016/j.future.2012.06.006

[59] G. Baranwal, D. P. Vidyarthi, A cloud service selection model using improved ranked voting

method, Concurrency and Computation: Practice and Experience 28 (13) (2016) 3540–3567,

cPE-14-0389.R2. doi:10.1002/cpe.3740.

URL http://dx.doi.org/10.1002/cpe.3740

[60] Key Performance Indicators for Cloud Computing SLAs, ACM, New York, NY, USA, 2009,

534095.

[61] O. Aida, Supporting cloud service selection with a risk-driven cost-benefit analysis, in: Ad-

vances in Service-Oriented and Cloud Computing: Workshops of ESOCC 2015, Taormina, Italy,

September 15-17, 2015, Revised Selected Papers, Springer International Publishing, Cham, 2016,

pp. 166–174.

URL http://dx.doi.org/10.1007/978-3-319-33313-7_12

BIBLIOGRAPHY 187

[62] B. Balis, K. Figiela, A Lightweight Approach for Deployment of Scientific Workflows in Cloud

Infrastructures, 2016.

[63] A. Menychtas, K. Konstanteli, J. Alonso, L. Orue-Echevarria, J. Gorronogoitia, G. Kousiouris,

C. Santzaridou, H. Bruneliere, B. Pellens, P. Stuer, et al., Software modernization and cloudifi-

cation using the ARTIST migration methodology and framework, Scalable Computing: Practice

and Experience 15 (2) (2014) 131–152. doi:10.12694/scpe.v15i2.980.

[64] N. Kaviani, E. Wohlstadter, R. Lea, Profiling-as-a-service: Adaptive scalable resource profiling

for the cloud in the cloud, in: G. Kappel, Z. Maamar, H. R. Motahari-Nezhad (Eds.), Service-

Oriented Computing, Springer Berlin Heidelberg, Berlin, Heidelberg, 2011, pp. 157–171.

[65] A. Wieder, P. Bhatotia, A. Post, R. Rodrigues, Orchestrating the deployment of computations

in the cloud with conductor, in: Proceedings of the 9th USENIX Conference on Networked

Systems Design and Implementation, NSDI’12, USENIX Association, Berkeley, CA, USA, 2012,

pp. 27–27.

URL http://dl.acm.org/citation.cfm?id=2228298.2228335

[66] T. Mitchell, Machine Learning, McGraw Hill, 1997.

[67] N. N. Pise, P. Kulkarni, A survey of semi-supervised learning methods, in: 2008 Inter-

national Conference on Computational Intelligence and Security, Vol. 2, 2008, pp. 30–34.

doi:10.1109/CIS.2008.204.

[68] V. J. Prakash, L. M. Nithya, A survey on semi-supervised learning techniques, CoRR

abs/1402.4645. arXiv:1402.4645.

URL http://arxiv.org/abs/1402.4645

[69] S. B. Kotsiantis, Supervised machine learning: A review of classification techniques, in: Pro-

ceedings of the 2007 Conference on Emerging Artificial Intelligence Applications in Computer

Engineering: Real Word AI Systems with Applications in eHealth, HCI, Information Retrieval

and Pervasive Technologies, IOS Press, Amsterdam, The Netherlands, The Netherlands, 2007,

pp. 3–24.

URL http://dl.acm.org/citation.cfm?id=1566770.1566773

[70] P. Mehta, H. Shah, V. Kori, V. Vikani, S. Shukla, M. Shenoy, Survey of unsupervised ma-

chine learning algorithms on precision agricultural data, in: 2015 International Conference on

188 B. R Markdown

Innovations in Information, Embedded and Communication Systems (ICIIECS), 2015, pp. 1–8.

doi:10.1109/ICIIECS.2015.7193070.

[71] L. P. Kaelbling, M. L. Littman, A. W. Moore, Reinforcement learning: A survey, CoRR

cs.AI/9605103.

URL http://arxiv.org/abs/cs.AI/9605103

[72] J. Kupferman, J. Silverman, P. Jara, J. Browne, Scaling into the cloud, Tech. rep., University

of California, Santa Barbara (2009).

[73] E. Caron, F. Desprez, A. Muresan, Forecasting for grid and cloud computing on-demand re-

sources based on pattern matching, in: Conference on Cloud Computing Technology and Science

(CloudCom), IEEE, 2010, pp. 456–463. doi:10.1109/CloudCom.2010.65.

[74] A. A. Bankole, S. A. Ajila, Predicting cloud resource provisioning using machine learning tech-

niques, in: Canadian Conference on Electrical and Computer Engineering (CCECE), IEEE,

2013, pp. 1–4. doi:10.1109/CCECE.2013.6567848.

[75] S. Islam, J. Keung, K. Lee, A. Liu, Empirical prediction models for adaptive resource

provisioning in the cloud, Future Generation Computer Systems 28 (1) (2012) 155–162.

doi:http://dx.doi.org/10.1016/j.future.2011.05.027.

[76] J. Gao, Machine learning application for data center optimization, Tech. rep., Google (2013).

[77] C.-T. G. H.-M. C. :Chenn-Jung. Huang, Yu-Wu. Wang, J.-J. Jian, Applications of machine

learning to resource management in cloud computing, 2013.

[78] J. Hadley, Y. Elkhatib, G. S. Blair, U. Roedig, Metabox: A lightweight, vendor-independent

cloud broker, in: Under submission to Middleware, 2015.

[79] E. Alpaydin, Introduction to Machine Learning, MIT Press, 2014.

[80] G. James, D. Witten, T. Hastie, R. Tibshirani, An Introduction to Statistical Learning: With

Applications in R, 4th Edition, Springer, 2014.

[81] T. Hastie, R. Tibshirani, J. Friedman, The elements of statistical learning, seventh Edition,

Springer, 2013.

BIBLIOGRAPHY 189

[82] A. J. Smola, B. Schölkopf, A tutorial on support vector regression, Statistics and Computing

14 (3) (2004) 199–222. doi:10.1023/B:STCO.0000035301.49549.88.

URL http://dx.doi.org/10.1023/B:STCO.0000035301.49549.88

[83] K.-R. Müller, A. J. Smola, G. Rätsch, B. Schölkopf, J. Kohlmorgen, V. Vapnik, Predicting time

series with support vector machines, in: Proceedings of the 7th International Conference on

Artificial Neural Networks, ICANN ’97, Springer-Verlag, London, UK, UK, 1997, pp. 999–1004.

URL http://dl.acm.org/citation.cfm?id=646257.685538

[84] A. Baron, P. Rayson, VARD2: A tool for dealing with spelling variation in historical corpora,

in: Postgraduate conference in corpus linguistics, 2008.

[85] Itemrecommender: Movielens dataset, https://grouplens.org/datasets/movielens/.

[86] RightScale, 2015 state of the cloud survey, Tech. rep. (2015).

[87] H. Shimodaira, Improving predictive inference under covariate shift by weighting the log-

likelihood function (2000).

[88] S. J. Pan, Q. Yang, A survey on transfer learning, IEEE Trans. on Knowl. and Data Eng. 22 (10)

(2010) 1345–1359. doi:10.1109/TKDE.2009.191.

URL http://dx.doi.org/10.1109/TKDE.2009.191

[89] K. Weiss, T. M. Khoshgoftaar, D. Wang, A survey of transfer learning, Journal of Big Data

3 (1) (2016) 9. doi:10.1186/s40537-016-0043-6.

URL http://dx.doi.org/10.1186/s40537-016-0043-6

[90] Y. Zhu, Y. Chen, Z. Lu, S. J. Pan, G.-R. Xue, Y. Yu, Q. Yang, Heterogeneous transfer learning

for image classification, in: Proceedings of the Twenty-Fifth AAAI Conference on Artificial

Intelligence, AAAI’11, AAAI Press, 2011, pp. 1304–1309.

URL http://dl.acm.org/citation.cfm?id=2900423.2900630

[91] W. Li, L. Duan, D. Xu, I. W. Tsang, Learning with augmented features for supervised and

semi-supervised heterogeneous domain adaptation, IEEE Transactions on Pattern Analysis and

Machine Intelligence 36 (6) (2014) 1134–1148. doi:10.1109/TPAMI.2013.167.

[92] B. Kulis, K. Saenko, T. Darrell, What you saw is not what you get: Domain adaptation using

asymmetric kernel transforms, in: Proceedings of the 2011 IEEE Conference on Computer Vision

190 B. R Markdown

and Pattern Recognition, CVPR ’11, IEEE Computer Society, Washington, DC, USA, 2011, pp.

1785–1792. doi:10.1109/CVPR.2011.5995702.

URL http://dx.doi.org/10.1109/CVPR.2011.5995702

[93] C. Wang, S. Mahadevan, Heterogeneous domain adaptation using manifold alignment, in: Pro-

ceedings of the Twenty-Second International Joint Conference on Artificial Intelligence - Vol-

ume Volume Two, IJCAI’11, AAAI Press, 2011, pp. 1541–1546. doi:10.5591/978-1-57735-516-

8/IJCAI11-259.

URL http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-259

[94] M. Gal-on, S. Mannor, Learning from multiple outlooks, CoRR abs/1005.0027.

URL http://arxiv.org/abs/1005.0027

[95] J. Nam, S. Kim, Heterogeneous defect prediction, in: Proceedings of the 2015 10th Joint Meeting

on Foundations of Software Engineering, ESEC/FSE 2015, ACM, New York, NY, USA, 2015,

pp. 508–519. doi:10.1145/2786805.2786814.

URL http://doi.acm.org/10.1145/2786805.2786814

[96] Y. R. Yeh, C. H. Huang, Y. C. F. Wang, Heterogeneous domain adaptation and classification

by exploiting the correlation subspace, IEEE Transactions on Image Processing 23 (5) (2014)

2009–2018. doi:10.1109/TIP.2014.2310992.

[97] J. T. Zhou, S. J. Pan, I. W. Tsang, Y. Yan, Hybrid heterogeneous transfer learning through

deep learning, in: Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence,

AAAI’14, AAAI Press, 2014, pp. 2213–2219.

URL http://dl.acm.org/citation.cfm?id=2892753.2892859

[98] P. Prettenhofer, B. Stein, Cross-language text classification using structural correspondence

learning, in: Proceedings of the 48th Annual Meeting of the Association for Computational

Linguistics, ACL ’10, Association for Computational Linguistics, Stroudsburg, PA, USA, 2010,

pp. 1118–1127.

URL http://dl.acm.org/citation.cfm?id=1858681.1858795

[99] M. T. Rosenstein, Z. Marx, L. P. Kaelbling, T. G. Dietterich, To transfer or not to transfer, in:

In NIPS’05 Workshop, Inductive Transfer: 10 Years Later, 2005.

BIBLIOGRAPHY 191

[100] R. Chattopadhyay, Q. Sun, W. Fan, I. Davidson, S. Panchanathan, J. Ye, Multisource domain

adaptation and its application to early detection of fatigue, ACM Trans. Knowl. Discov. Data

6 (4) (2012) 18:1–18:26. doi:10.1145/2382577.2382582.

URL http://doi.acm.org/10.1145/2382577.2382582

[101] B. Gong, Y. Shi, F. Sha, K. Grauman, Geodesic flow kernel for unsupervised domain adaptation,

in: 2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012, pp. 2066–2073.

doi:10.1109/CVPR.2012.6247911.

[102] R. Caruana, Multitask learning, Machine Learning 28 (1) (1997) 41–75.

doi:10.1023/A:1007379606734.

URL http://dx.doi.org/10.1023/A:1007379606734

[103] E. V. Bonilla, K. M. Chai, C. Williams, Multi-task gaussian process prediction, in: J. C. Platt,

D. Koller, Y. Singer, S. T. Roweis (Eds.), Advances in Neural Information Processing Systems

20, Curran Associates, Inc., 2008, pp. 153–160.

URL http://papers.nips.cc/paper/3189-multi-task-gaussian-process-prediction.

pdf

[104] T. Evgeniou, M. Pontil, Regularized multi–task learning, in: Proceedings of the Tenth ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’04, ACM,

New York, NY, USA, 2004, pp. 109–117. doi:10.1145/1014052.1014067.

URL http://doi.acm.org/10.1145/1014052.1014067

[105] R. Raina, A. Battle, H. Lee, B. Packer, A. Y. Ng, Self-taught learning: Transfer learning from

unlabeled data, in: Proceedings of the 24th International Conference on Machine Learning,

ICML ’07, ACM, New York, NY, USA, 2007, pp. 759–766. doi:10.1145/1273496.1273592.

URL http://doi.acm.org/10.1145/1273496.1273592

[106] H. D. III, D. Marcu, Domain adaptation for statistical classifiers, CoRR abs/1109.6341.

URL http://arxiv.org/abs/1109.6341

[107] A. Arnold, R. Nallapati, W. Cohen, A comparative study of methods for transductive transfer

learning, in: Data Mining Workshops, 2007. ICDM Workshops 2007. Seventh IEEE International

Conference on, 2007, pp. 77–82. doi:10.1109/ICDMW.2007.109.

192 B. R Markdown

[108] H. Daumé, III, A. Kumar, A. Saha, Frustratingly easy semi-supervised domain adaptation, in:

Proceedings of the 2010 Workshop on Domain Adaptation for Natural Language Processing,

DANLP 2010, Association for Computational Linguistics, Stroudsburg, PA, USA, 2010, pp. 53–

59.

URL http://dl.acm.org/citation.cfm?id=1870526.1870534

[109] W. Dai, Q. Yang, G.-R. Xue, Y. Yu, Boosting for transfer learning, in: Proceedings of the 24th

International Conference on Machine Learning, ICML ’07, ACM, New York, NY, USA, 2007,

pp. 193–200. doi:10.1145/1273496.1273521.

URL http://doi.acm.org/10.1145/1273496.1273521

[110] W. Dai, G.-R. Xue, Q. Yang, Y. Yu, Transferring naive bayes classifiers for text classification,

in: Proceedings of the 22Nd National Conference on Artificial Intelligence - Volume 1, AAAI’07,

AAAI Press, 2007, pp. 540–545.

URL http://dl.acm.org/citation.cfm?id=1619645.1619732

[111] J. Jiang, C. Zhai, Instance weighting for domain adaptation in nlp, in: In ACL 2007, 2007, pp.

264–271.

[112] B. Zadrozny, Learning and evaluating classifiers under sample selection bias, in: Proceedings of

the Twenty-first International Conference on Machine Learning, ICML ’04, ACM, New York,

NY, USA, 2004, pp. 114–. doi:10.1145/1015330.1015425.

URL http://doi.acm.org/10.1145/1015330.1015425

[113] X. Liao, Y. Xue, L. Carin, Logistic regression with an auxiliary data source, in: Proceedings

of the 22Nd International Conference on Machine Learning, ICML ’05, ACM, New York, NY,

USA, 2005, pp. 505–512. doi:10.1145/1102351.1102415.

URL http://doi.acm.org/10.1145/1102351.1102415

[114] R. K. Ando, T. Zhang, A high-performance semi-supervised learning method for text chunking,

in: Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics,

ACL ’05, Association for Computational Linguistics, Stroudsburg, PA, USA, 2005, pp. 1–9.

doi:10.3115/1219840.1219841.

URL https://doi.org/10.3115/1219840.1219841

[115] J. Blitzer, R. McDonald, F. Pereira, Domain adaptation with structural correspondence learning,

in: Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing,

BIBLIOGRAPHY 193

EMNLP ’06, Association for Computational Linguistics, Stroudsburg, PA, USA, 2006, pp. 120–

128.

URL http://dl.acm.org/citation.cfm?id=1610075.1610094

[116] A. Argyriou, T. Evgeniou, M. Pontil, Convex multi-task feature learning, Machine Learning

73 (3) (2008) 243–272. doi:10.1007/s10994-007-5040-8.

URL http://dx.doi.org/10.1007/s10994-007-5040-8

[117] A. Schwaighofer, V. Tresp, K. Yu, Learning gaussian process kernels via hierarchical bayes, in:

L. K. Saul, Y. Weiss, L. Bottou (Eds.), Advances in Neural Information Processing Systems 17,

MIT Press, 2005, pp. 1209–1216.

URL http://papers.nips.cc/paper/2595-learning-gaussian-process-kernels-via-hierarchical-bayes.

pdf

[118] N. D. Lawrence, J. C. Platt, Learning to learn with the informative vector machine, in: Pro-

ceedings of the Twenty-first International Conference on Machine Learning, ICML ’04, ACM,

New York, NY, USA, 2004, pp. 65–. doi:10.1145/1015330.1015382.

URL http://doi.acm.org/10.1145/1015330.1015382

[119] L. Mihalkova, et al., Transfer learning from minimal target data by mapping across relational

domains (2009).

[120] L. Mihalkova, T. Huynh, R. J. Mooney, Mapping and revising markov logic networks for transfer

learning, in: Proceedings of the 22Nd National Conference on Artificial Intelligence - Volume 1,

AAAI’07, AAAI Press, 2007, pp. 608–614.

URL http://dl.acm.org/citation.cfm?id=1619645.1619743

[121] M. Richardson, P. Domingos, Markov logic networks, Machine Learning 62 (1) (2006) 107–136.

doi:10.1007/s10994-006-5833-1.

URL http://dx.doi.org/10.1007/s10994-006-5833-1

