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Abstract

Headwater streams are important in the carbon cycle and there is a need to better
parametrize and quantify exchange of carbon-relevant gases. Thus, we characterized
variability in the gas exchange coefficient (k) and dissolved oxygen (O,) gas transfer
velocity (k) in two lowland headwaters of the River Avon (UK). The traditional one-
station open-water method was complemented by in situ quantification of riverine sources
and sinks of O, (i.e., groundwater inflow, photosynthesis and respiration in both the water
column and benthic compartment) enabling direct hourly estimates of &, at the reach—
scale (~150 m) without relying on the nighttime regression method. Obtained £, values
ranged from 0.001 — 0.600 h™'. Average daytime k, were a factor two higher than values
at night, likely due to diel changes in water temperature and wind. Temperature
contributed up to 46% of the variability in £ on an hourly scale, but clustering
temperature incrementally strengthened the statistical relationship. Our analysis
suggested that & variability is aligned with dominant temperature trends rather than
with short-term changes. Similarly, wind correlation with & increased when clustering
wind speeds in increments correspondent with dominant variations (1 m s™). Time
scale is thus an important consideration when resolving physical drivers of gas
exchange. Mean estimates of &gy from recent parametrizations proposed for
upscaling, when applied to the settings of this study, were found to be in agreement
with our independent O, budget assessment (within <15%), adding further support to
the validity of upscaling efforts aiming at quantifying large-scale riverine gas

emissions.
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Introduction

Revisions of the global carbon cycle have indicated that rivers and other
inland waters contribute substantially to the global cycling of organic carbon and
emission of carbon dioxide (CO,) and methane (CHy) to the atmosphere (e.g., Cole et
al. 2007; Battin et al. 2008; Tranvik et al. 2009; Aufdenkampe et al. 2011; Raymond
et al. 2013; Hotchkiss et al. 2015; Stanley et al. 2015; Marx et al. 2017). However,
due to a lack of an appropriate universal scaling for quantification of emissions,
headwaters (stream order < 4) were initially not included in these assessments (see
Cole et al. 2007), despite the fact they represent 17% of global riverine area (in
perennial riverine systems e.g., Downing et al. 2012). Later inclusions of headwaters
have proposed that small streams (order 1) might represent more than a third of the
total regional emissions of CO, from riverine systems (Butman and Raymond 2011)
and thus could be more prominent at the global scale (Raymond et al. 2013). This has
highlighted the need for better constraining gas exchange at the reach scale (Trimmer
et al. 2012), with the overarching goal of fine-tuning parametrizations used for large
scale and global upscaling of metabolism and gas emissions.

Accurate assessments of gas exchange require quantification of the gas
transfer velocity, or piston velocity (k; unit of length per unit of time™, e.g., m h™),
which physically controls the exchange of gases at the stream—air interface (see Hall
et al. 2012). Thus, estimates of k are critical to the assessment of emission of
greenhouse gases such as CO; (e.g., Hotchkiss et al. 2015; Marx et al. 2017) and CH4
(e.g., Stanley 2015; Crawford and Stanley 2016) and for the quantification of the gas
exchange rate of dissolved oxygen (O,) and estimates of whole-reach metabolism
(e.g., Odum 1956). Stream gas exchange is most commonly assessed from total, i.e.,

whole-stream, metabolism estimates using open water (OW) methods based on local
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dissolved oxygen (O,) mass balances (e.g., Odum 1956; Marzolf et al. 1994;
Mulholland et al. 2001; Riley and Dodds 2013; Siders et al. 2017). The OW approach
provides an integrative quantification of gas exchange Rey (in pmol L unit of time™)

as
Rey = kZ(OZ(sat) —03) (1)

with (Ozsar) - O2) being the O, saturation deficit, i.e., the difference between the O,
concentration at saturation for the local physical conditions (Oxa)) and the actual O,
concentration in the stream water, and 4, the O, gas exchange coefficient, often
termed the re-aeration coefficient (k; or K, unit of time™, e.g., h™). The coefficient k»
represents the product of the depth-corrected O, gas transfer velocity, or piston
velocity (k; unit of length per unit of time™, e. g, m h') and local stream area-to-
volume ratio, which is often approximated as the inverse of the mean water depth (in
m™) (see Raymond et al. 2012; Demars et al. 2015). As assessments of gas exchange
critically rely on the quantification of k; or £, several direct and indirect methods have
been developed for deriving these values.

Direct measurements of these parameters are characterized by the de-gassing
of a conservative tracer gas that is subsequently scaled to O, (e.g., Wanninkhof et al.
1990; Genereux and Hemond 1992; Reid et al. 2007; Benson et al. 2014). This
approach is logistically demanding and temporal upscaling is difficult (Demars et al.
2015). Indirect measurements depend on parameterizations of the local physical
characteristics of the stream reach such as depth, flow and slope (e.g., Parker and Gay
1987; Parker and DeSimone 1992 and references therein), as well as fitting of gas
transfer parameters to O, time series based on simplified relationships (Hornberger
and Kelly 1975; Chapra and DiToro 1991; McBride and Chapra 2005) or more

complex modeling efforts (Holtgrieve et al. 2010; Grace et al. 2015; Appling et al.
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2018). Empirical equations and parameterizations have proven to be useful as
predictors of gas-exchange dynamics for specific reaches (see Genereux and Hemond
1992), but usually show large discrepancies in k, estimates when applied to streams
with comparable hydrological characteristics (Moog and Jirka 1998; Aristegi et al.
2009; Palumbo and Brown 2014). To further constrain these parametrizations for
spatial upscaling, recent studies have focused on a better characterization of the
stream morphology. For example, Raymond et al. (2012) used a large collection of
stream metadata to more rigorously scale k parametrizations to stream physical
characteristics (i.e., flow, depth, slope, discharge).

Although £ variability on short timescales, i.e., hours, has been reported (e.g.,
Tobias et al. 2009; Berg and Pace 2017), direct and indirect methods mostly focus on
determining a mean value for &, for either the day or night, or an average for the
whole day-night period, with little consideration being given to its short-term
dynamics that are characteristic of most rivers. Recent application of the aquatic eddy
co-variance technique (AEC) in rivers has provided robust assessment of reach-scale
(~150 m) benthic metabolism (Koopmans and Berg 2015; Rovelli et al. 2017) and,
most recently, an ‘inverted” AEC approach has been used to directly quantify O, gas
exchange in large (order 3) streams (Berg and Pace 2017) and in an estuarine
embayment (Long and Nicholson 2018). Yet, irrespective of the approach being
applied to assess £, little emphasis has been given to small headwaters streams (order
1-2), despite their potential implications for the regional and global carbon cycling
(e.g., Butman and Raymond 2011; Raymond et al. 2013).

The goal of our study was to provide a proof-of-concept for the derivation
(values and dynamics) of &, and £ at the reach scale in small, headwater streams

(stream order 1). This was achieved by combining in situ O, measurements from a
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single station OW approach together with direct assessments of riverine metabolism
using AEC, sample incubations, and groundwater inflow measurements. The
proposed method was compared to the traditional nighttime regression (NR) method,
and was used to characterize temporal variability in £ on hourly to daily time scales.
Furthermore, we evaluate & dynamics and its relation to the local physical drivers
such as mean stream flow, temperature and wind patterns. The results of this study are

discussed in light of parametrizations of k for regional to large-scale upscaling.
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Materials and procedures
Study site

This study focused on two headwaters of the Hampshire River Avon, southern
England: the Chalk River Ebble (CE) and the Greensand West Avon (GA) (see
Heppel et al. 2017; Supporting Information Fig. 1). For each headwater, a
representative ~150 m reach was selected based on previous surveys of the sub-
catchment morphology and geology (see field measurements). The selected CE reach
(CE1'; 51°1'41.171" N/ 1° 54' 56.309" W) was investigated over three days (25-27
Apr 2013) in spring, when the reach was characterized by a net outflow of stream
water to the aquifer, i.e., a losing reach (see Supporting Information Fig. 2). The reach
was also characterized by profuse growth (36% cover by area) of Ranunculus spp,
which is widespread throughout the sub-catchment (Watson 1987). The water column
of the River Ebble was characterized by low turbidity, with suspended sediment
concentration limited to, on average, 37 mg L™ (Heppell and Binley 2016a). The
selected GA reach (GA2; 51°19'10.173" N/ 1° 51' 33.135" W) was investigated over
three days from 28-30 Apr 2013. In contrast to the CE reach, the GA reach was
characterized by a constant inflow of low-oxygenated groundwater; i.e., a gaining
reach (Supporting Information Fig. 2) and only patchy macrophyte coverage (4% by
area). Turbidity in the water column was 40% higher on average than at the CE reach
(Heppell and Binley 2016a). The reaches are referred to as CE and GA throughout the

text.

Reach scale oxygen budget

! Reach designations within the Macronutrient Cycles Programme (http:/macronutrient-
cycles.ouce.ox.ac.uk/).
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The assessment of O, gas exchange and stream metabolism based on a single
station open-water approach (e.g., Odum 1956) relies on O, time series. Temporal
changes in O, concentration, d0,/dt, are attributed to local whole-stream primary

production (P), respiration (R) and atmospheric exchange (Rex) as

do, B
—; = P+ R+ Rex = P+ R +ky(Ozsa) = 02) (2)

with k, being the gas exchange coefficient (in h™") and (Oz(sat) — 02) the O,
saturation deficit. The spatial integration of a one-station approach, i.e., the integrated
stretch length along the stream, is typically in the order of 1000s of m and can be
quantify as 3v/k,,with v being the mean stream flow velocity (in m d™') and k, (in d”
(see Grace and Imberger 2006).

Rates for R and R are typically estimated by applying the established
nighttime regression (NR) method (Hornberger and Kelly 1975). The method plots
the nighttime d0,/dt at each time step against the O, saturation deficit during the
night and assumes P = 0 and that respiration is light-independent. The resulting linear
relationship, obtained via least-squares regression, provides both 4, (slope) and R
(intercept). As NR-based k», kng, is only obtained at night, many studies have adopted
a temperature correction term to account for temperature changes between night and

day following the parameterization of Elmore and West (1961):

ko = k2(20°c)(1-0241)(T_20) 3)

where ky0°c) is the gas exchange coefficient at 20°C and k(1) the gas exchange
coefficient at the given temperature 7.
The O, budget (OB) approach used in the current study expands Eq. 2 by

accounting for all relevant processes including i) metabolic activity in both sediment
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and water, and ii) exchange with both the atmosphere and groundwater (Fig. 1). The

temporal O, concentration was thus defined as:

do, A
d_tz =V [Fp + Fwc + Fk] (4)

where Fg, Fwc, Fi are the O, flux (in mmol m> h'l) associated with the benthic
compartment, the water column, and atmospheric exchange, respectively. The O,
fluxes were expressed as volumetric rates (in pmol L™ h™") by multiplying the values
by the average ratio between stream area (A) and stream volume (V), which, under
smooth stream water surface conditions, is approximated as the mean stream depth (d)
(Demars et al. 2015).

The main strength of the proposed approach is that each flux component
within the OB (Eq. 4) can be directly quantified in the field. Estimates of F were
obtained from Aquatic Eddy Co-variance (AEC) measurements, while Fyc was
quantified by incubating discrete water samples in situ (see section 2.3). While F
does include both streambed (Fyeampbed) @and groundwater contributions to the O,
budget, fluxes associated with the inflow of O, depleted groundwater were

independently quantified as:
Fow = vgw(oz(gw) - 02) (5)

with Oygw) being the groundwater O, concentration (in pmol L'l), O, the in-stream
concentration and vy, the local groundwater inflow (in m h'l).

The atmospheric exchange rate was quantified as:
|4
Fy = Zkz (Oz(sat) - 02) (6)

with k = ky(V/A) = kod being the O, gas transfer velocity, or O, piston velocity (in m h”

1) and Oy the local O, concentration at saturation. As Ox,y) can be quantified as a
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function of temperature (see Garcia and Gordon 1992), the OB approach effectively
enabled a direct estimate of k.

To facilitate comparisons with published reference values and
parameterizations from previous studies, &, values were also expressed as k20°c) (see
Eq. 3). Similarly, estimates of O, gas transfer velocity were also standardized to a

Schmidt number of 600* (ks00) based on Jahne et al. (1998) as

ooy _ (600) " @
k Scr

where Scy ~ 0.00086842T* — 0.10115T3 + 4.8055T2% — 124.34T + 1745.1 is the
Schmidt number for O, in freshwater at the local water temperature 7 (see
Wanninkhof 2014). Stream temperature time series were obtained from background
measurements of physical parameters during the observational period at each site

(Rovelli et al. 2016Db).

Field measurements

Site selection — The investigated reaches (CE and GA) were carefully selected
to represent the sub-catchment dominant stream morphology features (e.g., stream
course shape, depth, bends, riparian zone) and in-stream habitat patchiness
(macrophytes, sediment type). Particular emphasis was given to ensure that each
reach also fulfilled the theoretical requirements of the NR method, i.e., streams with
relatively high metabolic activity and low gas exchange (see Hornberger and Kelly
1975). Field measurements were also executed under stable hydrological condition,
i.e., constant flow and mean water depth over > 3 days. This enabled 1) the evaluation

of our local O, budget (OB) method and ii) comparisons with the nighttime regression

2 Schmidt number for CO, at 20 °C and O, at 17.5 °C in freshwater.

10
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(NR) method and standardized functional equations for &, quantification from mean
hydrological parameters (Table 4).

Background physicochemical measurements — Stream water column O,
concentration, temperature and photosynthetically active radiation (PAR) at the
streambed (~15 cm above the bottom) were monitored within each reach at 1 min
intervals with a conductivity—temperature—depth logger (CTD; XR-420, RBR,
Kanata, Canada), equipped with an Aanderraa O, optode sensor (Aanderaa, Bergen,
Norway) and a 41 PAR sensor (QCP-2000; Biospherical Instruments, San Diego,
United States). The data were also used to calibrate the O, sensors used for flux
estimates and to define nighttime periods (PAR < 2 pmol quanta m™ s™). Wind speed
and direction near the stream surface (1.5 m elevation) were recorded at 15 s intervals
with a SkyWatch GEOS 11 portable weather station (JDC Electronic SA, Yverdon-
les-Bains, Switzerland).

Benthic oxygen flux — The benthic oxygen flux was quantified using the AEC
technique (Berg et al. 2003). Our AEC module consisted of small, lightweight,
stainless steel tripod frame equipped with an acoustic Doppler velocimeter (ADV;
Vector, Nortek A/S, Rud, Norway), Clark-type O, microelectrodes (Revsbech 1989)
and submersible O, amperometric amplifiers (McGinnis et al. 2011). Up to two O,
microelectrodes were positioned ~0.5 cm outside the ADV sampling volume, at an
inclination of ~60°. Each microelectrode had a 90 % response times < 0.5 s and
stirring sensitivity < 0.5 % (Gundersen et al. 1998). The ADV’s flow measurements
were obtained at 8 — 15 cm from the streambed with a frequency of 64 Hz and with
the ADV x-axis aligned to the main flow direction. The acquired datasets were
processed following the same procedure described in Rovelli et al. (2017). In short,

the dataset was averaged to 8 Hz while applying data quality controls and despiking

11
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routines (e.g., Mori et al. 2007) to the dataset to remove dataset artifacts and reduce
signal noise. A double coordinate rotation was applied to the flow time series to
minimize the influence of horizontal motions on the vertical velocity component. The
datasets were then aligned, i.e., time-shifted, to account for the relative distance
between the ADV sampling volume and the microelectrode tip and for the
microelectrode time constant (see Donis et al. 2015). The AEC-based turbulent
oxygen fluxes (in mmol m™ h™) were estimated from time-averaged vertical
velocity fluctuations (w”) and O, concentration fluctuations (C"), as

Fppc = w'c’ ®)
(see Berg et al. 2003) via a Reynolds’ decomposition, specifically linear detrending,
using the program suite Sulfide-Oxygen-Heat Flux Eddy Analysis (SOHFEA version
2.0; see McGinnis et al. 2014). The optimal detrending interval represents a trade-
off between including low-frequency turbulent contributions and excluding non-
turbulent contributions (McGinnis et al. 2008), and was inferred to be 5 min
from cumulative averages of oxygen fluxes and friction velocity (u+) (see Attard
et al. 2014). To account for the effect of transient O, concentration changes in the
water column between the sediment-water interface and the AEC measurement height
(h), which can potentially bias Fagc (see Holtappels et al. 2013; Rheuban et al. 2014),
an O, storage term was estimated after Rheuban et al. (2014). The benthic oxygen flux
corrected for O, storage, F's, was defined as

hac
Fg = Fypc + Fstorage = Fapc + Edz )
0

with dC/dt being the measured O, concentration gradient.
The smallest area of the streambed that contributes to 90 % of AEC flux, termed the

“footprint area”, was estimated from the sediment surface roughness parameter (z)

12
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and / following the parameterization by Berg et al. (2007). Values for z, were

approximated as z, = h - exp(—K - ui) with ® being the von Karman constant (0.41),

and u the average flow velocity (Wiiest and Lorke 2003).

Water column activity — Water column oxygen production and consumption
rates were estimated by incubating 100 mL rack-mounted glass bottles in situ over 24
h in the light and in the dark, with continuous measurements of O, concentration via
O, optical fibers (4 channel FirestingO2; Pyro Science GmbH, Aachen, Germany). A
set of 1 dark bottle, and 1 clear bottle were incubated at the streambed, while 1 bottle
was incubated near the stream surface. The fourth bottle was either incubated at mid-
depth at GA (depth > 0.4 m) or near the surface for the shallower CE. Three
additional replicate sets were also mounted on the rack but O, measurements were
only performed at the start and end of each incubation via Winkler titrations (Winkler
1888). Volumetric oxygen fluxes (in pmol L™ h™) were estimated from temporal O,
concentration gradients via linear regressions for daytime and nighttime periods,
respectively. No difference in fluxes were observed at the different depths, indicating
a homogenously, well-irradiated water column and thus depth-independent rates. The
areal oxygen fluxes Fwc (in mmol m? h'l) were obtained by multiplying the values
with the average stream depth. Contributions from macrophytes were deemed to be
well-integrated within benthic measurements and thus were not further addressed
within the water column oxygen budget (Rovelli et al. 2017).

Groundwater influx — Dissolved oxygen flux resulting from local inflow of O,
depleted groundwater was estimated based on measurements of the local hydraulic
gradients from in-stream piezometers and porewater O, concentrations. Two clusters
of in-stream piezometers were installed at each site, approximately 10 m apart in the

river thalweg. Each cluster comprised three piezometers screened at 20, 50 and 100

13
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287  cm depth; the 100 cm piezometer was also fitted with narrow polytetrafluoroethylene
288  tubing to depths of 10, 20, 30, 50, 70 and 100 cm for the purposes of pore water

289  sampling. Installation and design of the piezometers followed the description in

290 Binley et al. (2013).

291 Hydraulic head was measured in all piezometers using HOBO pressure

292 transducers (Onset Computer Corporation, Bourne, United States) at GA and

293 Levelogger Edge pressure transducers (Solinst, Georgetown, Canada) at CE.

294  Measurements were validated with manual dips on a fortnightly basis and, if needed,
295  corrected assuming a linear drift. River stage was measured using a pressure

296  transducer suspended within a stilling well. Falling and rising head slug tests

297  (measurements taken by pressure transducers installed inside the piezometers) were
298  used for computation of saturated hydraulic conductivity using the Hvorslev method
299  (e.g., Binley et al. 2013). Vertical groundwater flux was computed using Darcy’s
300 Law, from measurements of the hydraulic gradient between the 50 cm deep

301  piezometric head and local stream stage, combined with a weighted harmonic mean of
302  hydraulic conductivity from slug tests carried out in the 20 cm and 50 cm deep

303  piezometers (see Binley et al. 2013).

304 Pore water samples were collected from sampling tubes located on the

305  piezometers every two months, from February 2014 to June 2016, using a syringe and
306  tygon tubing. The O, concentration of pore water and river water was measured

307 immediately following sample collection using a calibrated Clark-type O,

308  microelectrode (50 pum tip) connected to an in-line amplifier and data-logging meter
309  (Unisense, Aarhus, Denmark) (see Heppell and Binley 2016b).

310 Data handling — Collected hydrological and physicochemical data were used

311  to i) characterize average conditions at each reach and ii) assess short term, i.e.,

14



312

313

314

315

316

hourly, to diel dynamics. O, fluxes obtained for each stream compartment were
considered separately, to assess their magnitude and variability within and across the

reaches, as well as within the O, budget context, to quantify and characterize &

variability.
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Assessment

Reach characterization

Hydrological data and background information for each reach are summarized
in Table 1. Temperature ranged from 7.8 — 13.5 °C overall, reflecting a moderate
variation (< 5%) between day and night at the two sites. Daily-integrated PAR
(PAR4) ranged between 11.9 — 17.4 mol quanta m™ d”', with peaks of up to 1630
umol quanta m™ s™'. Overall, the average stream flow, based on ADV measurements
(12 cm above the streambed), was in the order of 0.18 —0.33 m s™ with an associated
discharge of 0.209 — 0.640 m® s™" (Table 1) and showed no significant change between
day and night, or within the observational period, indicating a stable flow. Wind
speeds at CE showed irregular patterns but an overall higher wind speed during the
day than at night (Fig. 2). Wind dynamics at GA, in contrast, were markedly diel,
with an average wind speed of 2.4 — 3 ms™ during the day and 0 — 0.2 m s at night
(Fig. 3). At both sites the water column showed well-defined diel fluctuations in O,
concentration, with nighttime under-saturation (down to 82%) and daytime
oversaturation (up to 133%), with diel O, concentration changes reaching ~147 pmol
L (Fig. 2, 3). The O, saturation deficit ranged from -108 —-96 umol L™, during the
day, to 43 — 65 umol L™, at night. The average deficit over 24h ranged from 2 pmol

L to an O, saturation surplus of 15 pumol L™\

Dissolved oxygen budget

Benthic compartment — Hourly oxygen fluxes for the benthic compartment
ranged between -14.0 to 23.0 mmol m™ h™' (Fig. 2, 3). At CE, oxygen fluxes followed
a clear diel pattern (Fig. 2), with average daytime rates of 4.2 mmol m™ h™" and

nighttime rates of -2.8 mmol m™ h'. AEC-based benthic fluxes were estimated to

16
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cover a footprint area 26 m long and 1 m wide (~20 m?), with most of the flux
contribution, i.e. the region of maximum flux, located 0.5 m upstream of the AEC
sampling point. At GA, a diel pattern in the benthic oxygen fluxes was also observed
(Fig. 3). However, both mean fluxes at night and during the day were negative,
amounting to -6.2 mmol m™ h™ and -3.0 mmol m™ h™', respectively. The theoretical
footprint area was 80 m long and 1 m wide (~70 m2) with the region of maximum flux
located 2 m upstream of the of the AEC sampling point.

Water column — At CE, metabolic activity in the water column was below
detection (< 0.1 pmol L™ h™") and negligible for the local O, budget (Fig. 2). In
contrast, in the more turbid, sandy GA, water column activity ranged from net oxygen
production rates of 2.8 pumol L™ h™ during the day, to oxygen consumption of -0.9
umol L' h™' at night. The average daytime rate of oxygen production was ~1.2 mmol
m~ h™', with an average nighttime consumption rate of -0.5 mmol m™ h™" (Fig. 3).

Groundwater — During our study, the CE reach was losing water to the
aquifer. This net local outflow of stream water had no measurable effect on in-stream
0O, concentrations (Fig. 2). At gaining reach GA, the inflow of groundwater amounted
to 0.043 m d”' on average, with a mean groundwater O, concentration of 63.5 pmol L
'. Groundwater contributed to an areal O, concentration decrease of -0.4 — -0.7 mmol
m?h' (average -0.5 mmol m™ h™), representing 6-7% of the combined nighttime flux
caused by metabolic activity in the benthic compartment and the water column (Fig.
3).

Atmospheric exchange — The derived rate of O, exchange between the stream
and the atmosphere ranged from -22.3 to 14.5 mmol m™? h™'. Estimates of k, based on
the O, budget (OB) method ranged from 0.001 to 0.600 h™ with mean values of 0.252

h™ and 0.,259 h™' for CE and GA, respectively (Table 2). Within such range of k» and
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with mean flow velocities of 0.18 —0.33 m s'l, one-station based assessment are
expected to integrate a stream length of > 7 km).

Estimates of the gas exchange coefficient k; using the NR method (kng) were
0.555 h™ at CE and 0.434 h™ at GA (Table 3 and Supporting Information Fig. 3), and
thus around a factor 2 higher than those obtained with the OB method. (Table 2, 3).
At CE, we observed a significant (p < 0.01) difference between daytime and nighttime
estimates of k, (Fig. 2 and Table 2). The average daytime k» (kqay) was 0.331 h™ and
about 2 times higher than £ at night (ky;gn). Similar conditions were observed at GA
(Fig. 3 and Table 2), suggesting that diel changes in temperature and wind could
partly explain the observed difference between day and night variability in 4, at both

sites.

Dynamics and variability of O, gas exchange

Temperature — Gas exchange coefficient (k) and gas transfer velocity (k) are
expected to be related to local stream temperature (Elmore and West 1961; Kilpatrick
et al. 1989; Demars and Manson 2013). Yet, temperature has been reported to be a
weak predictor of £ in some settings (Tobias et al. 2009; Demars and Mason 2013), as
well as in modeling studies (e.g., Correa-Gonzalez et al. 2014). For example, Tobias
et al. (2009) used a modified sulfur hexafluoride (SF¢) tracer approach to assess
variability in & (ksge) on time scales of hours (in 3h intervals) and found that kgpe
varied by 30% over a 32 h observational period and could apportion 39% of the
observed variability to changes in temperature (Demars and Mason 2013).

At CE, our hourly estimates of & varied by 60%, on average, between
consecutive measurements during our 3 days observational period, with temperature

accounting for 46% of that variability (Supporting Information Fig. 4). As expected
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from previous studies (e.g., Tobias et al. 2009; Demars and Manson 2013), part of this
variability could be accounted for by applying the Elmore and West (1961)
temperature correction to normalize & to 20°C (ky; Supporting Information Fig. 4).
However, we found that temperature corrected ko could only explain 10% of the &k —
temperature relationship, and only 5% of the variability measured in k at CE. This
provided further evidence that the dynamics of & could not be properly accounted for
by simple functions for temperature corrections.

Instead, at CE we found that the relationship between k and temperature could
be strengthened by clustering k values to fixed temperature increments, increasing
stepwise from 0.5 to 1.7°C. The best linear relationships (i.e., highest regression
coefficients) were observed by clustering data in increments of 1.0 to 1.5 °C (R*>
0.8), with R? decreasing, either side, for shorter or longer increments (Supporting
Information Fig. 4) and we found the best fit to the data occurred with 1.5°C
increments (Fig. 4a). As the clustering procedure partially accounts for the variability
in both temperature and £, the trend in increasing fit to the data (higher R?) suggested
that dynamics in £ and temperature, and their interaction, may occur at variable time
scales. This trend was, however, not observed at GA, where temperature revealed no
direct correlation with & on hourly time scales (R*=0.02) or with temperature
clustering (R*=0.03), indicating that temperature changes in the water column did not
significantly contribute to & variability at the site.

Temperature dynamics, however, may affect gas exchange without any
detectable changes in bulk O, concentrations in the water, as recently proposed by
Berg and Pace (2017). The authors applied the same AEC approach as in this study,
but in an “upside-down” configuration, with AEC measurements being performed

near the (underside) of the stream surface (~5 cm below the atmosphere-water
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interface), rather than near the streambed. This enabled the quantification of O, flux
and heat flux across the stream surface, from which they inferred local O, gas
exchange and values for k. Their results showed that temperature fluctuations
occurring just below the surface might bias the quantification of O, fluctuations and
thus AEC-based assessments of k. The implications of the study by Berg and Pace
(2017) suggest that other methodological approaches commonly used for the
quantification of k at timescales ranging from minutes to complete diel cycles could
also be impacted. The absence of any relationship between water column temperature
and k at GA could thus, in part, be attributed to small-scale temperature dynamics that
are not accounted for by simple temperature correction functions; though other
physical parameters such as wind, for example, could also modulate £ at GA.

Wind — Here the reaches were open to the wind (e.g., Supporting Information
Fig. 1), with frequent wind-induced ripples being observed during the day, suggesting
an interaction between flow and wind that could affect gas exchange. On time scales
of hours, however, wind dynamics revealed no significant relationship with the
derived variability in k (R*=0.13). Similar results have also been reported from other
methodological approaches, e.g., tracer release (Tobias and al. 2009) and AEC (Berg
et al. 2017); though both studies relied on off-site, rather than on-site wind
measurements. As large variability in both £ and wind might mask any general trend,
wind data were temporally clustered to investigate any time lag between wind
dynamics and derived k values. Using a bin interval of 1 m s™, which represented the
dominant (> 90%) wind fluctuations at each site (Supporting Information Fig. 5), we
revealed a robust positive linear relationship (R2 > (.7) between local wind and kg at
each site and for both sites combined (Fig. 4b). Given the relatively low range in wind

speed (0 — 4 m s™), a linear relationship provided a suitable approximation, though for
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more extensive ranges in wind speed a quadratic form is more appropriate (e.g.,
Wanninkhof 1992; Nightingale et al. 2000; Sweeney et al. 2007; Wanninkhof 2014).
Similarly to the effect of temperature, increasing or decreasing the size of the wind
clustering increment resulted in a lowering of the regression coefficient, thus further
supporting the argument of a temporal misalignment between the drivers of &

variability and actual £ dynamics.
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Discussion

Parametrization of gas exchange coefficients

Our study was performed under stable discharge and constant stream depth,
which allowed both i) the evaluation of our local O, budget (OB) method for deriving
k, directly and then, ii) the comparison with the nighttime regression (NR) method
and standardized functional equations for &, quantification (Table 4). The advantage
of the OB method over the latter approaches is that the method is not limited to stable
hydrological conditions or specific time periods. This contrasts with the NR method,
for instance, where estimates of k, obtained at night might not be applicable during
the day. Furthermore, the OB approach relies on in situ measurements of local O,
mass balance variables, rather than parametrizations and scaling relationship from
literature values. The method is therefore ideal for investigating discrepancies
between the various procedures for estimating &, and thus strengthens the
parameterization procedures applied for upscaling global estimates of outgassing
coefficients for other gases such as CO, and CHy.

In this study, the NR method systematically provided among the highest
estimates of k; for both reaches. Values of knr Were, on average, a factor of two
higher than &, derived by the OB method (Fig. 5). The largest discrepancies, by up to
a factor of three, were observed at nighttime, while, during the daytime, mean values
were within reported uncertainties for this approach (Palumbo and Brown 2014).
Potential issues with NR method applicability or dataset quality were deemed
marginal, as both CE and GA met the requirements of the NR method (see Methods),
and the O, time series were of a high quality (Supporting Information Fig. 3).
Therefore, the observed discrepancies in k; are attributed to a biased estimation of R

derived at nighttime using the NR method (Rxg), leading to a systematic
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overestimation of k.

Studies investigating the effect of local inflows of O,-depleted groundwater
have shown that groundwater might bias the quantification of R in open water
approaches and thus whole-stream O, budget assessments (e.g., McCutchan et al.
2002; Hall and Tank 2005; Koopmans and Berg 2015). The magnitude of such effect,
which would lead to an overestimation of R, might vary according to hydrological
characteristics and hydrological connectivity of each stream, ranging from negligible
to substantial (see McCutchan et al. 2002). In this study, the contribution from
groundwater to the O, budgets was quantified directly. At gaining reach GA,
groundwater contributions to whole-stream estimates of R were limited to 0.5 mmol
m™ h’', representing < 5% of the mean Ry (15.5 mmol m™ h™); the combined R from
the benthic compartment and water column activity was 6.7 mmol m™? h™'. At losing
reach CE, contributions from groundwater were negligible but the NR method still
estimated R at 8.7 mmol m™ h™ which is some 3-fold higher than our direct
measurements (2.8 mmol m? h™).

An overestimation of R during night could also result from a temporal misalignment
between actual changes in whole stream respiration and physical parameters
controlling gas exchange. As shown in both datasets (Fig. 2, 3), temperature
decreased at night until about 6 — 8 AM, and directly affected the measured saturation
deficit. If &, is assumed to be constant, as shown from our NR regression plots (see
Supporting Information Fig. 3), then the temperature-driven increase in the O,
concentration at saturation, and associated O, saturation deficit, will result in an
erroneous estimate of the magnitude of Ryg.

It has recently been shown that & (and thus k) might display changes of up to a

factor of 2-3 over timescales of 10s of minutes to hours, even under constant
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hydrological conditions (e.g., Berg and Pace 2017), implying that &, will not remain
constant over the several hours’ time scale associated with the NR method. Since the
NR approach considers changes in the magnitude of k; as a direct and instantaneous
consequence of changes in R, variability in k, could explain the magnitude of the Ryr
bias obtained in this study, though the drivers of that variability, such as temperature,
wind and stream discharge, need further investigation (Berg and Pace 2017).
Hydrological parameters such as stream depth, stream flow and stream energy
(e.g., slope, shear velocity) have been used to derive k; (e.g., O’Connor and Dobbins
1958; Palumbo and Brown 2014) and subsequently kg0. Given the local hydrology
(0.4 —0.57 m mean depth, 0.18 — 0.33 m s mean flow velocity), our mean values of
kego derived with the (OB) method (0.121 + 0.007 m h™' for CE and 0.190 + 0.016 m
h! for GA), are well within the range predicted by 19 sets of proposed functional
equations extracted from the literature (0.009 —0.236 m h™" at CE and 0.023 —
0.373mh™! at GA; Table 4, Fig. 5). NR-derived values were also within that range,
although they ranked towards the upper end of the range. As expected from previous
studies (see Aristegi et al. 2009; Palumbo and Brown 2014), estimates from each
equation were highly scattered throughout the obtained range, with little consistency
between the two sites. For instance, even equations that were previously identified to
perform well in hydrology settings similar to our study, i.e., “top performer”
equations (see Palumbo and Brown 2014), still showed large discrepancies - both
within and across sites (Fig. 5). In contrast, we found that the revised functional
equations provided by Raymond et al. (2012) provided well-constrained estimates,
which were not only consistent within sites (see Supporting Information Fig. 6), but
also between sites, with mean k499 values (0.113 m h™! for CE and 0.201 m h™! for GA)

within 5-7% of the local estimates from our OB method (Fig. 5).
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Comments and recommendations

The aquatic eddy co-variance technique (AEC) has been shown to be an
effective tool for quantifying streambed metabolism and, more recently, for the
quantification of O, gas exchange and k from O, fluxes near the stream surface (Berg
and Pace 2017). A combination of the AEC technique with other traditional methods
appears to be a promising next step towards better constrained assessments of gas
exchange and k& dynamics in headwaters, provided that careful consideration is given
to 1) the site selection and ii) the representativeness of the reach within the km-sized
integration of, e.g., open-water approaches. The O, budget (OB) approach presented
in this study serves as a proof-of-concept towards this goal. While the approach is
more time consuming and field demanding that traditional methods, it does enable i)
the compartmentalization of stream metabolism and ii) the assessment of short-term &
variability. The study has highlighted short-term variability in & dynamics with a
dampened relationship to variations of well-known physical drivers. The apparent
lack of correlation could be attributed to temporal misalignments between the
variability of the derived & and physical drivers, and to small-scale variability in
temperature. This was clearly observed at CE, where temperature-corrected ko and
keoo values still revealed a marked temperature dependency, suggesting that common
temperature corrections were insufficient to fully account for the observed &
variability. It remains unclear whether and to what extend such small-scale variability
in temperature will affect the overall gas exchange.
Although the above aspects are still poorly constrained at the local scale and on short
time scales (hours), estimates of k& from the most recent functional parametrizations

compared well with the independent assessments of this study and should therefore be
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preferred over earlier parametrizations. Validations of & on local scales such as the
ones presented in this study are strongly required to strengthen and add more
confidence to the upscaling of & for the quantification of large-scale metabolism and
global emission of climate-relevant gases such as CO, and CH, across headwaters and

throughout riverine networks.
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883  Figure Legends

884  Fig. 1. Dissolved oxygen mass balance approach. Changes in stream O, concentration are
885  expressed as a function of contributions from the water column (Fwc), benthic compartment
886  (FB) and atmospheric exchange (Fx) following the parameterization of Eq. 4. Benthic Fp
887  includes contributions from the streambed (Fgyeambed) and from groundwater inflow/outflow
888  (Fgw). Note that lateral exchange and advection processes were not considered.

889

890  Fig. 2. Estimates of k, for the river Ebble (CE) during the spring. (A) Wind speed

891  recorded 1.5 m above the stream surface. (B) Local dissolved oxygen (O,)

892  concentration (gray line) and associated O, concentration at atmospheric saturation

893  (dotted line). Black lines indicate nighttime (PAR <2 pmol quanta m”s™). (C) Time
894  series of oxygen fluxes encompassing benthic (£3), water column (Fyc) and

895  groundwater (Fgw) contributions to the local O, budget. (D) Hourly averaged

896  estimates of k, based on the O, budget (OB) method in spring (circles), with

897  temperature overlain (dashed line).

898

899  Fig. 3. Estimates of k, for the river West Avon (GA) during the spring. (A) Wind

900  speed recorded 1.5 m above the stream surface. (B) Local dissolved oxygen (O,)

901  concentration (gray line) and associated O, concentration at atmospheric saturation

902  (dotted line). Black lines indicate nighttime (PAR <2 pmol quanta m?s™). (C) Time
903  series of oxygen fluxes encompassing benthic (F3), water column (Fwc) and

904  groundwater (Fgw) contributions to the local O, budget. (D) Hourly averaged

905  estimates of k; based on the O, budget (OB) method in spring (circles), with

906  temperature overlain (solid line). Note that the wind data were shifted by 24 h to fill

907  the measurement gap on day 1.

908

909  Fig. 4. Temperature and wind dependencies of the gas transfer velocity k. (A)

910  Temperature relationship of k at CE. Values for £ (solid black circles), £ normalized

911  to 20°C (kao; open grey circles) and to a Schmidt number of 600 (&g, solid grey

912  circles) were clustered into 1.5°C temperature increments to account for temporal

913  misalignments and to provide the most robust linear analysis (R*> 0.9; see

914  Supporting Information Fig. 4). (B) Standardized kq09 as a function of wind speed for
915  CE (solid black squares), GA (open white squares) and both sites combined (dotted

916 line). Wind speeds were clustered into 1 m s bins to account for the dominant
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magnitude of wind fluctuations (see Supporting Information Fig. 5). Linear trends

were obtained via least squares regression.

Fig. 5. Estimates of kg0 (in m h™") for (A) river Ebble and (B) West Avon. Estimates are
obtained from different published hydrological parameterizations (Equations 1 — 18, and
Raymond et al. (2012)); from the O, budget (OB) method used in this study (see Eq. 4); and
from the nighttime regression (NR) method. Equation numbering follows Table 4. Note that
crossed equations were reported to be the “top-performer” within a specific mean depth and
mean flow range from an extensive database of tracer-based &, values and hydrological
parameters (see Palumbo and Brown 2014). Mean value and uncertainty range (dashed and
dotted lines) for the hydrological parameterizations of Raymond et al. (2012) were obtained
by combining mean and range from of each equation. (see Table 4; Supporting Information
Fig. 6). Note that to better highlight the differences between the OB, NR and common

parametrizations, the equation order was re-arranged to show an incremental increase in keoo.
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Atmosphere

| 1

Groundwater

Figure 1. Dissolved oxygen mass balance approach. Changes in stream O, concentration are expressed as a
function of contributions from the water column (Fwc), benthic compartment (Fg) and atmospheric exchange
(Fk) following the parameterization of Eq. 4. Benthic Fg includes contributions from the streambed (Fstreambed)
and from groundwater inflow/outflow (Few). Note that lateral exchange and advection processes were not
considered.
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Figure 2. Estimates of k> for the river Ebble (CE) during spring. (A) Wind speed recorded 1.5 m above the
stream surface. (B) Local dissolved oxygen (0O;) concentration (gray line) and associated O, concentration at
atmospheric saturation (dotted line). Black lines indicate nighttime (PAR < 2 ymol quanta m? s™'). (C) Time
series of oxygen fluxes encompassing benthic (Fg), water column (Fwc) and groundwater (Few) contributions

to the local O, budget. (D) Hourly averaged estimates of k, based on the O, budget (OB) method in spring

(circles), with temperature overlain (dashed line).
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Figure 3. Estimates of k> for the river West Avon (GA) during the spring. (A) Wind speed recorded 1.5 m
above the stream surface. (B) Local dissolved oxygen (0O2) concentration (gray line) and associated O,
concentration at atmospheric saturation (dotted line). Black lines indicate nighttime (PAR < 2 pymol quanta
m2s?). (C) Time series of oxygen fluxes encompassing benthic (Fg), water column (Fwc) and groundwater
(Few) contributions to the local O, budget. (D) Hourly averaged estimates of k; based on the O, budget (OB)
method in spring (circles), with temperature overlain (solid line). Note that the wind data were shifted by 24
h to fill the measurement gap on day 1.
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Figure 4. Temperature and wind dependencies of the gas transfer velocity k. (A) Temperature relationship of
k at CE. Values for k (solid black circles), kK normalized to 20°C (kzo; open grey circles) and to a Schmidt
number of 600 (keoo, solid grey circles) were clustered into 1.5°C temperature increments to account for

temporal misalignments and to provide the most robust linear analysis (R? > 0.9; see Supporting

Information Fig. 4). (B) Standardized ksoo as a function of wind speed for CE (solid black squares), GA (open

white squares) and both sites combined (dotted line). Wind speeds were clustered into 1 m s bins to
account for the dominant magnitude of wind fluctuations (see Supporting Information Fig. 5). Linear trends
were obtained via least squares regression.
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CE - River Ebble

5 OB 1617 8 4bl12b4al2a3 15 NR

GA - West Avon

2a1810146b6a 7 112b 1 13 5 9 4bl2b4al2a8 OB 173 NR

Equations

Figure 5. Estimates of ksoo (in m h™*) for (A) river Ebble and (B) West Avon. Estimates are obtained from
different published hydrological parameterizations (Equations 1 — 18, and Raymond et al. (2012)); from the
0, budget (OB) method used in this study (see Eq. 4); and from the nighttime regression (NR) method.
Equation numbering follows Table 4. Note that crossed equations were reported to be the “top-performer”
within a specific mean depth and mean flow range from an extensive database of tracer-based k. values and
hydrological parameters (see Palumbo and Brown 2014). Mean value and uncertainty range (dashed and
dotted lines) for the hydrological parameterizations of Raymond et al. (2012) were obtained by combining
mean and range from of each equation. (see Table 4; Supporting Information Fig. 6). Note that to better
highlight the differences between the OB, NR and common parametrizations, the equation order was re-
arranged to show an incremental increase in Keoo.
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E1 4NS London, United Kingdom

7 Department of Ocean and Environmental Sciences, Tokyo University of Marine
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Table 4. Estimates of k, at 20°C (kz20°c), in day™) from established empirical equations applied to the

CE and GA study sites. Input variables”: d — stream depth (m), u — flow velocity (m s, u” — friction

velocity (m s™), s — stream slope (m m™), Q — discharge (m® s™), and Fr = u/,/gd — Froude number

with g being the gravitational acceleration constant. Note that for equations providing ke (in m day™)

ka20°cy values were scaled based on Eq. 7 and the O, Schmidt number at 20°C.

CE GA
Eq. Reference Abbr.# Equations ¥
k2(20°C) [day™]
0.5
1 O'Connor and Dobbins (1958) OD k, =39 % 6.303 5.206
2.695
2a  Churchill et al. (1962) E, ky = 0.0217 T 0.563 1.044
0.969
2b CEB ky = 5_01% 4227 4382
0.404
3 Krenkel and Orlob (1963) E¢, KO k, = 173.01 % 12.658 13.010
0.73
4a Owens et al. (1964) Eg k, = 6.91 Zi% 9.407 8.226
0.67
4b Eo, OEG ky = 5,35% 8.825 7201
5 Dobbins (1965 DB* ky = 55,2 T ETT @R [ATS@DMEY L saa
obbins (1963) 27009+ P d O [(09+ Fryos ' '
u
6a Langbein and Durum (1967) E; ky, = 5'14W 3.029 3.582
u
6b LD ky =514 1.681 2472
u
7 Issacs and Gaudy (1968) IG ky = 476—75 3.264 3.650
Cadwallader and McDonnell (us)%
8 (1969) E;, CM k, = 186.07 8.611 8.386
0.85
9  Negulescu and Rojanski (1969)  NR k, = 10.91 (g) 5.419 6.856
* 0.5
10 Thackston and Krenkel (1969)  TK* k, = 24_9% 0813  1.140
0.703
11 Padden and Gloyna (1971) PG ky, = 4.53 % 3.473 3.758
u0.41350.273
12a  Bennett and Rathbun (1972) E1, BR1 ky, = 32'69W 10.357 8.365
0.607
12b E, BR2 ky = 5,58% 3.884 7357
2 0.375
13 Parkhurst and Pomeroy (1972)  PP* K, = ag.5 L OL7F ; )(us) 6140  5.590
0.6
14 Bansal (1973) BN k, = 1_81% 2.254 2.044
15 Owens (1974) - ky = 508 14998 17.013
16  Tsivoglou and Neal (1976) E, TN ky = ky'us™ 8.100 14.850
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17 Smoot (1988)

18 Thackston and Dawson (2001)

192 Raymond et al. (2012)
19b
19¢
19d
19¢
19f
19g

0.5325.0.6236

o ke = 543 = do.;ss
o k, = 4,97 L+ O™
d
Rm, koo = 5037 (us)089d05*
Rm, keoo = 5937(1 — 2.54Fr?)(us)°89d%-58
Rm; koo = 116200855077
R kego = 951.5(us)°76
Rams keoo = 2841us + 2.02
Rmg keoo = 929 (us)075Q0-011
Rm; kgoo = 4725 (us)086Q 0144066

8.634

0.740

7.150
7.965
6.106
6.169
8.048
6.488
8.115

9.387

1.077

10.524
11.520
7.321
7.018
7.410
7.296
13.108

#: Average stream depth and flow velocity are taken from (Table 1). The average shear velocity, u«, computed as u, = u(Cp.
with Cp being the drag coefficient (Wiiest and Lorke 2003). An average Cp of 3.3 x 10~ was used for both sites based on f

surveys of the River Avon sub-catchments (Rovelli et al. 2017). The average slope, 0.002 m m™, was estimated from GPS

measurements during the respective field campaigns.

##: Reference equation numbers and abbreviations from Aristegi et al. (2009) and Palumbo and Brown (2014), respectively.

###: This equation requires depth in cm and flow velocity in cm s,

#HH#: with &, being 31183 s m™ d”' for Q <0.280 m® s™" and 22500 s m™ d”! for Q > 0.280 m’ s, respectively (Palumbo and

Brown 2014).

*: These equations were identified to be the most suited (i.e., top performer) for the site mean depth and flow based on the

suggestions of Palumbo and Brown (2014).
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Supporting Figures

Figure S1. Catchment of the Upper River Avon and field measurement setup in the
River Ebble (UK). The instruments consisted of [1] an aquatic eddy co-variance
module, [2] a water column incubation stand, and [3] a CTD logger, which was also
equipped with a PAR sensor and an O, optode. The setup also included riparian
piezometers and a meteorological station (see Heppell et al., 2017). Dots on the
catchment maps indicate the investigated reaches on the rivers Ebble (CE) on the

Chalk, and West Avon (GA) on the Greensand.
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Figure S2. Stream stage and groundwater hydraulic gradient at the rivers Ebble (CE;
a—c) and West Avon (GA; d-f). The hydraulic gradient was determined from in-
stream 50 cm deep piezometers 10 m apart, upstream (UC50) and downstream
(DC50), from dipped levels. Positive gradients indicate groundwater upwelling, i.e. a
net inflow of groundwater into the stream, while negative gradients indicate
downwelling, i.e., a net loss of water from the stream to the aquifer. Estimates for
spring 2013 were assumed to be equal to the same period in 2014, as mean seasonal
gradients were found to be comparable across consecutive years. Stage plot for CE (a)
are based on dips, while GA stage time series (d) was obtained at 15-min interval
from a pressure logger (HOBO pressure transducer; Onset, USA) installed in the

piezometer.
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0.4 4 River Ebble (CE
o Night 1
o Night 2

—_

dO /dt (umol L miny

b

dO,/dt (umol L min'l)

30 40 0

O, saturation deficit (umol L™

Figure S3. Nighttime regression (NR) method applied to in-stream measurements of
O; at the rivers (a) Ebble (CE) and (b) West Avon (GA). The dashed line indicates the
linear regression fitted through both night’s data combined, with the slope
representing the nighttime gas exchange coefficient (kng) and the intercept
representing nighttime respiration. Values of Ang and associated regression
coefficients, R” are presented in Table 2. Note that no statistically significant
(p<0.05) difference was observed between knr from night 1 and 2 at GA, while kng

values at CE were statistically different, but within <10%.
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® k ----(R™=0.46)
(R’=0.41)

11
Temperature (°C)

N

Regression coefficient (R”)

05 06 07 08 09 10 1.1 12 13 14 15 1.6 1.7
Temperature clustering increments (°C)

Figure S4. Temperature dependencies of the gas transfer velocity k& at river Ebble
(CE). (a) Local gas transfer velocity, &, and k standardized to 20°C (k) and to a
Schmidt number of 600 (kep) as a function of temperature. (b) Effect of temperature
clustering increments on the relationship between temperature and local oxygen gas
transfer velocity, &, and for & standardized to 20°C (kyo) and to a Schmidt number of
600 (keo0). For each increment, only clusters with #>3 were considered usable for
analysis by linear regression, to ensure that sparse single data points or data pairs
would not bias the relationship; similarly, only increments with at least 4 data clusters
were further considered for the regression analysis. The highest correlation (R*>0.9)
was obtained by clustering temperature in 1.5 °C increments. The standard deviation

bars of R? values were comparable in size for &, k9 and ko, but are only shown for £.
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Figure S5. (a) Effect of wind clustering increments on the relationship between wind
speed (m s™) and the standardized oxygen gas transfer velocity to a Schmidt number
of 600 (kep0). For each increment, only clusters with #>3 were considered suitable for
analysis by linear regression, to ensure that sparse single data points or data pairs
would not bias the relationship; similarly, only increments with at least 4 data clusters
were further considered for the regression analysis. Note that the highest correlation
was obtained by clustering wind dynamics in 1 m s™ increments. Error bars indicate
the standard deviation of RZ. (b) Frequency count analysis on combined wind
measurements at river Ebble (CE) and West Avon (GA). Based on a Gaussian

distribution curve fit (R*=0.97), >90% of the wind fluctuations were within 1 m s™.
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CE - River Ebble

mean

;

GA - West Avon

5 mean

Equation

Figure S6. Prediction of gas transfer velocity (kepo) for (a) River Ebble (CE) and (b)
West Avon (GA) based on each streams’ hydraulic properties and the equations
provided by Raymond et al. (2012). Error bars on each equation represent the
statistical range of the estimates and were obtained by accounting for the variability
(i.e., standard deviation) of each parameter (see Raymond et al. 2012). The combined

mean value + standard deviation from all equation is also provided for comparison.
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