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Abstract 

In this paper, we study the probability density function, IP'(e, a:, (3, n) de, of the center 
of mass of the finite n Jacobi unitary ensembles with parameters a: > -1 and /3 > -1; 
that is the probability that trMn E (e, e + de), where Mn are n x n matrices drawn 
from the unitary Jacobi ensembles. We compute the exponential moment generating 
function of the linear statistics Lj=l f(xj) := Lj=l Xj, denoted by Mi(>., a, (3, n). 

The weight function associated with the Jacobi unitary ensembles reads x°'(l -
x )f3, x E [O, 1]. The moment generating function is the n x n Hankel determinant 
Dn(>., a, (3) generated by the time-evolved Jacobi weight, namely, w(x; >., a, (3) = x°'(l
x)f3 e->-x, x E [O, 1], a: > -1, (3 > -1. We think of>. as the time variable in the 
resulting Toda equations. The non-classical polynomials defined by the monomial 
expansion, Pn(x, >.) = xn + p(n, >.) xn-l + • • • + Pn(O, >.), orthogonal with respect to 
w(x, >., a, (3) over [O, 1] play an important role. Taking the time evolution problem 
studied in Basor, Chen and Ehrhardt [5], with some change of variables, we obtain 
a certain auxiliary variable rn(>.), defined by integral over [O, 1] of the product of the 
unconventional orthogonal polynomials of degree n and n - l and w(x; >., a, (3)/x. It is 
shown that rn(2iez) satisfies a Chazy II equation. There is another auxiliary variable, 
denote as Rn(>.), defined by an integral over [O, 1] of the product of two polynomials 
of degree n multiplied by w(x; >., a, (3)/x. Then Yn(->.) = 1 - >./ Rn(>.) satisfies a 
particular Painleve V: Pv(a:2 /2, -/32 /2, 2n +a:+ (3 + l, 1/2). 

The CTn function defined in terms of the >.p(n, ->.) plus a translation in >. is the 
Jimbo-Miwa-Okamoto u-form of Painleve V. The continuum approximation, treating 
the collection of eigenvalues as a charged fluid as in the Dyson Coulomb Fluid, gives an 
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approximation for the moment generating function Mi(>., 0:, /3, n) when n is sufficiently 
large. Furthermore, we deduce a new expression of M1(>.., 0:, /3, n) when n is finite in 
terms the a- function of this the Painleve V. An estimate shows that the moment 
generating function is a function of exponential type and of order n. From the Paley
Wiener theorem, one deduces that IJ:D(c, a:, /3, n) has compact support [O, n]. This result 
is easily extended to the /3 ensembles, as long as w the weight is positive and continuous 
over [O, l]. 

1 Introduction 

In random matrix theory, Hankel determinants play a significant role, e.g. the determinants 
represent the partition functions, moment generating function of linear statistics, or the 
distribution of the smallest or largest eigenvalue. We continue with the ivestigation of the 
center of mass distribution of the Jacobi unitary ensembles, studied in [5] by Basor, Chen 
and Ehrhardt. In [5], it is shown that, the generating function of the Gaussian unitary and 
the Laguerre unitary ensembles, can be easily found in simple closed form by translation and 
re-scaling. It transpired that for Jacobi unitary ensembles, the moment generating function 
is governed by a particular Painleve V, which was found by Forrester and Witte [21]. Based 
on our approach (see section 4) we obtained the cumulants of the center of mass, which 
reduces to those obtained by Savin, Sommers and Wieczorek [34] by setting the (3 parameter 
to 0. In this paper we consider 

w(x; >., o:, (3) = x°'(l - x)f3 e->-x, x E [0, 1], o: > -1, (3 > -1. (1.1) 

Here w(x; 0, o:, (3) is the standard Jacobi weight on the interval [0, 1], and the factor e->-x 
deforms w(x; 0, o:, /3) to w(x; >., o:, (3). Then x n Hankel determinants for w(x; >., o:, /3) satisfy 
Painleve transcendental differential equations in >., and recurrence relations in n. There is 
an extensive literature on the appearance of Painleve equations in the unitary ensembles, 
see for example, [2, 13, 16, 17, 21, 29, 41] and the references therein. The ladder operator 
approach adopted in the current paper gives rise to certain supplementary quantities that 
ultimately is a pair of non-linear difference equations, we note that by taking special values 
of the parameters (see section 2, Remark 3), the results obtained by Masuda, Ohta and 
Kajiwara [28] using a different approach. 

Generally, let w(x) be a positive weight function on the interval [0, 1] and µj := f0
1 xjw(x)dx 

be the moments for j = 0, 1, .... We use the handy notation 

~n(x) := IT (xk - Xj) = det [xj-1];,k=l 
1"5_j<k-5.n 

for the Vandermonde determinant and introduce, as in the Andreief-Heine identity, the 
Hankel determinant 

(1.2) 
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Hankel determinants play an important role in the study of orthogonal polynomials [40], and 
random matrices. The joint probability density function of the Hermitian matrix ensemble 
for weight w is given by (see [29, 43]) 

~n(x)2 n 

p(x1, ... , Xn) = ID [ ] IT w(xz), 
n. n W l=l 

(1.3) 

where { x1 : Z = l, ... , n} are the real eigenvalues of the complex Hermitian matrices X, and 
the probability measure is invariant under the unitary conjugation X f---+ U xut for unitary 
U and Hermitian X. The linear statistic Q associated with a continuous real function f 
is the random variable Q = L7=1f(xj), where the variables {xj: j = 1,2, ... ,n} are 
random subject to the unitary ensemble for the weight w(x; >..., a, (3). In this paper, the large 
n behavior of the Hankel determinant is obtained from a linear statistics theorem. This 
follows the approach of [3, 4, 18, 30, 31]. 

Suppose Q has a density function denoted by IP' 1( Q), writing <5 for the Dirac point mass 
at 0, we determine IP't(Q) by the standard formula 

(1.4) 

Suppose that f(x) 2: 0 for all x E [0, 1]. Then the moment generating function of Q is 
denoted by Mt(>'-, a, (3, n) so MtC>..., a, (3, n) is the Laplace transform of IP't(Q), in the trans
form variable >.... We can express the expectation of e->-Q by replacing w(x) by w(x)e->.f(x) 
as in 

( ) ·- 100 ( ) ->.Q - I17~t hj(>...) Mt >..., a, (3, n .- IP't Q e dQ - n-l , 
a rrj=O hj(o) 

(1.5) 

where 

hj(>...) := 11 PJ(x)w(x)e->-t(x)dx, j E {O, 1, · · · }, 

is the square of the L2 norm of the polynomials { Pj}'J':=0 orthogonal with respect to w(x)e->.f(x). 
In particular we take f(x) = x to obtain the linear statistic c = x1 +x2 + · · · +xn, soc is 

the center of mass of the unitary ensemble for weight w(x; >..., a, (3). The Hankel determinant 
generated by w(x; >..., a, (3) which is denoted by 

(1.6) 

The linear statistics theorem 4.2, equivalent to Chen-Lawrence [18] is in fact the one
dimensional free Poincare inequality related to Free probability, see Ledoux and Popescu 
[26], see also [8]. 

Let { Pj ( x)} ~o be the sequence of manic orthogonal polynomials with respect to the 
weight w(x; >..., a, (3), (over [0,1]), where Pj(x) has degree j. An immediate consequence of 
orthogonality is that the polynomials satisfy a three-term recurrence relation, that is, a linear 
second-order difference equation, involving Pn+l ( x), Pn ( x) and Pn-l ( x). The x-independent 
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recurrence coefficients, denoted as an(A) and f3n(A), play an important role in computing the 
Hankel determinant Dn(A, a, /3) and ultimately JPl(c, a, /3, n). By the Paley-Wiener theorem 
theorem we show that probability density function of the center of mass is support on [O, n]. 

This paper is organized as follows. In section two, we derive the Toda molecule equations 
for { Pj }~0 via the three-term recurrence relation for the monic polynomials orthogonal with 
respect to w(x; A, a, /3) = x°'(l - x).Be->.x, which is a semi-classical weight. We also introduce 
the ladder operators which raise and lower terms in sequence { Pj }~0 . The ladder operators 
involve rational functions An(z) and Bn(z) that have residues Rn(A) and rn(A), and their 
properties are the main theme of this paper. We derive a pair of coupled Riccati equations 
and a pair of first-order difference equation for them; see Theorems 2.4-2.6. While these 
formulas are rather complicated, we obtain explicit solutions for the special case a = f3 = 1/2 
in terms of Bessel functions of the first kind. These results are consistent with those of Basor, 
Chen and Ehrhardt [5], who considered (1 - x)°'(l + x).Be-tx on x E [-1, 1]. For general 
a, f3 > -1, we do not expect closed form solutions in terms of standard transcendental 
functions. 

The ladder operators provide an effective and direct approach towards the Painleve tran
scendental differential equations. In section 3, we show that, with suitable change of variable, 
Rn(A) • Yn(-A) satisfies a particular Painleve V with specific initial conditions. Also, rn(A) 
satisfies a Chazy II differential equation. Let p(n, A) be the coefficient of the sub-leading 
term of our monic polynomials, then o-n(A) = nA + Ap(n, -A) -n(n+ /3) satisfies the Jimbo
Miwa-Okamoto o--form of this Painleve V. These results are of interest in their own right, 
and are the foundation of the asymptotic analysis in the subsequent sections. 

In section 4, we compare the Hankel determinant Dn(A, a, /3) for the weight x°'(l -
x).Be->-x, with the Hankel determinant for Dn(O,a,/3) for the classical Jacobi weight x°'(l
x).B when n is large. With f(x) = x, the ratio M1(A, a, /3, n) = Dn(A, a, /3)/ Dn(O, a, /3) is the 
moment generating of the linear statistics ~7=1 Xj· We approximate M1(x, a, /3, n) for large 
but finite n by the Dyson's Coulomb fluid approach and then use the Painleve analysis of 
section 3 to compute the cumulants JPl(c, a, /3, n). Our method leads to asymptotic expansions 
with explicit and computable coefficients. In section 5, we replace the weight x°'(l-x).Be->. x 
by the the complex function x°'(l - x).Bei>. x; several of the basic formulas remain valid. Thus 
we compute the Fourier transform of Dn(-iA, a, /3), and hence obtain the probability density 
function of c, JPl(c, a, /3, n). Finally we study the characteristics of asymptotic expressions 
JPl(c, a, /3, n) denote by P(c, a, /3, n). 

2 Toda Evolution and Riccati equations 

Our first purpose in this section is to deduce two coupled Toda type equations. The general 
Toda hierarchy can be found, in [1, 23, 32, 44]. The three-term recurrence relation is an 
immediate consequence of the orthogonality of of Pn(z), namely, 

with the initial conditions 

P0 (z) := 1 and /30 (A)P_ 1 (z) := 0. 
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Here, Pj(z) depends on,\, a, f3 but to simplify notation we do not always display them. Then 
we write our monic polynomials as, 

Pn(z, >.) =Zn+ p(n, >.)zn-l + · · · + Po(z, >.), 

with the conditions 
P0 (z, >.) := 1 and p(0, >.) := 0. 

An easy consequence of the recurrence relation is 

an(>.) = p(n, >.) - p(n + 1, >.), 

(3 (>.) = hn(A) = Dn+1(>.)Dn-1(A) 
n hn-1(.\) D~(>.) · 

From (2.3) together with p(0, >.) = 0, we have 

n-1 

L aj(>-) = -p(n, >-). 
j=O 

Then after some simple computation we obtain, 

d 
d>. logDn(>.,a,/3) =p(n,>.), 

d 
d>.p(n, >.) = f3n(>.). 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

Proposition 2.1. The recursion coefficients an(>.) and f3n(>.) satisfy the coupled Toda equa
tions 

/3~ = f3n(O:n-1 - O:n), 
O:~ = f3n - f3n+l, 

and the Toda molecule equation, see {37}, 

~l D (>. /3) = Dn+1(,\,a,f3)Dn-1(,\,a,f3) 
d;.2 og n 'a, D~(>., a, /3) . 

(2.8) 
(2.9) 

(2.10) 

In what follows, we will obtain two coupled Riccati equations based on ladder operators. 
The ladder operators, also called lowering and raising operators, have been applied by many 
authors; see for example, [2, 6, 9, 14, 15]. In our case, they read 

(:z + Bn(z)) Pn(z) = f3nAn(z)Pn-1(z), 

(:z - Bn(z) -v'(z)) Pn(z) = -An-1(z)Pn(z), 
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where 

An(z) := hl [1 v'(z) - v'(y) P;;(y)w(y)dy, 
n Jo z - Y 

1 11 v'(z) - v'(y) 
Bn(z) := -h ----Pn(y)Pn-1(y)w(y)dy. 

n-1 o Z - Y 

Here w(x) = e-v(x) and we assumed the w(0) = w(l) = 0. 

(2.13) 

(2.14) 

Then we obtain two fundamental supplementary conditions (S1), (S2 ) and a "sum-rule" 
(S~), valid for all z, 

Bn+1(z) + Bn(z) = (z - an)An(z) - v'(z) 

1 + (z - an)(Bn+1(z) - Bn(z)) = ,Bn+1An+1(z) - ,BnAn-1(z) 
n-1 

(S~) 
j=O 

supplemented by the 'initial' conditions, 

Bo(z) = A_1(z) = 0. 

The equations of (S~) will be highly useful in what follows. Equations (S1 ), (S2 ) and (S~) 
can also be found in [12, 14, 15, 27, 41]. In our problem, the linear statistic for f(x) = x, 
and the correspondingly deformed weight becomes 

w(x; a, ,8, >..) = x°'(l - xte->..x, x E [0, 1], a> -1, ,8 > -1. 

Proposition 2.2. The coefficients An(z) and Bn(z) appearing in the ladder operators (ob
tained via integration by parts) are 

A ( ) = Rn(>..) A - Rn(>..) 
n z + l ' z z-

Bn(z) = rn(>..) _ n + rn(>..), 
z z - l 

where 

a 11 p2(y) Rn(>..) := -h _n_y°'(l - y)f3e->..Ydy, 
n O Y 

(') ·= ~ 11 Pn(y)Pn-1(Y) °'(1 - )f3 ->..yd r n "' . h y y e y. 
n-1 O Y 

Proof. See [5]. 

(2.15) 

(2.16) 

• 
Ultimately, the recurrence coefficients may be expressed in terms rn(>..) and Rn(>..). 

To begin with, substituting (2.15) and (2.16) into (S1 ) and (S~), we obtain 

r~ - arn = ,BnRnRn-1, 
(rn + n) 2 + ,B(rn + n) = ,Bn(Rn - >..)(Rn-1 - >..), 
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n-1 

2rn(rn + n) - arn + f3rn - an+ Arn+ L Rj = f3n [Rn (Rn-1 - >..) + Rn-1 (Rn - >..)]. (2.19) 
j=O 

After easy computations, we have, 

Proposition 2.3. The recurrence coefficients an, f3n are expressed in terms of Rn, r n as, 

>..an = 2n + 1 +a+ /3 + >.. - Rn, (2.20) 
>.. 

f3n(>.. 2 - >..Rn) = n(n + /3) + (2n +a+ /3)rn + - (r~ - arn). (2.21) 
Rn 

Theorem 2 .4. The auxiliary variables r n ( >..) and Rn ( >..) satisfy coupled Ricca ti equations 

(2.22) 

(2.23) 

Theorem 2.5. The auxiliary variables rn(>..) and Rn(>..), satisfy non-linear second order 
ordinary differential equations 

R~ = 2>..2(Rn 1_ >..)Rn { (2Rn - >..)(>..R~)2 - 2>..R~R~ + 2R~ - 2a2 >..2 Rn+ a 2 >._3 

- [2(2n + 1 +a+ /3) + 5>..]R~ + 4>..(2n + 1 +a+ /3 + >..)R~ 

- [>..3 - >..(1 + a 2 - (32) + 2>..2(2n + 1 +a+ /3)]R~}, (2.24) 

[>.. 2r~ + 8r~ + 6(2n - a+ f3)r~ + 4(n2 - 2na + n/3 - af3)rn - 2n(n + f3)a + >..r~] 2 

= (4rn + >.. + 2n - a+ /3) 2 [4rn(rn - a)(rn + n)(rn + n + /3) + (>..r~)2] . (2.25) 

In addition to the coupled Riccati equation, rn(>..) and Rn(>..) also satisfied a pair of 
coupled nonlinear first order difference equations. 

Theorem 2.6. The auxiliary quantities rn(>..) and Rn(>..) satisfy the coupled difference equa
tions 

>..(rn+l + rn) = R~ - Rn(2n + 1 +a+ /3 +>..)+>..a, 

( >._2 >.. >.. ) 
n(n + /3) + (2n +a+ /3)rn = (r~ - arn) RR - -R - -R , 

n n-1 n n-1 

for n = 0, 1, ... with the 'initial' conditions 

ro(>..) = 0, Ro(>..) = (a+ /3 + l)M(a; 1 +a+ /3; ->..) 
M(l+a;2+a+/3;->..) ' 

where M ( a; b; z) is the Kummer function. 

(2.26) 

(2.27) 

(2.28) 

From Proposition 2.2 and Theorem 2.6, one could, in principle, obtain the Rn(>..) and 
rn(>..), iteratively, step by step inn. 
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To check that the integral representation for r n given by Proposition 2.2 makes sense, 
note that, 

ri(.X) =a_ (a+ l)(a + ,B + 2) M(a; a+ ,B + 1; -.X) M(a + 2; a+ ,B + 3; -.X) 
( a + ,B + 1) M ( a + 1; a + ,B + 2; - A) 2 ' ( 2 · 29) 

Substitute n = 0 into (2.26); from the fact that r0 = 0, and Ro given (2.28), we obtain, 

( ') (a+,B+1)2M(a;a+,B+l;-.X)2 (a+,B+1)2M(a;a+,B+l;-.X) r1 A =------------ - ------------+a 
,X M(a + 1; a+ ,B + 2; -.X) 2 ,X M(a + 1; a+ ,B + 2; -.X) 
(a+ ,B + 1) M(a; a+ ,B + 1; -.X) 

M(a + 1; a+ ,B + 2; -.X) 

a rather large expression. However, (2.29)-(2.30) gives 0. 

(2.30) 

Remark 1. A direct computation shows that R 0 (.X), satisfies (2.24) evaluated at n = 0. Also 
a direct computation shows that r 1 (.X) given by (2.29) satisfies (2.25) evaluated at n = 1. 

Remark 2. In particular, if we take a = ,B = ½, then Rn ( .X) and r n ( .X) can be represented 
by a Bessel function of the first kind with imaginary argument, e.g. 

This result is consistent with the corresponding case in /5}. One can verify the differential 
equation of Theorem 2.6 for R 0 (.X) by hand calculation or Mathematica. 

Remark 3. Disregarding the integral representation of Rn(-X) and rn(-X), and putting a= -k 
(k = 0, 1, 2, · · ·) and ,B = a - a (a E R ), we see that R 0 (.X) and r0 (.X) are given by Laguerre 
polynomials, 

R (.X) = (a+ l)M(-k; a+ 1; -.X) = kLt)(-.X) 
0 M(-(k - 1); a+ 2; -.X) Lti1\-.X)' 

(2.31) 

thus 

(2.32) 

Thus we generate rational solutions in terms of the Laguerre polynomials. On page 21 of 
Appendix A, Masuda, Ohta and Kajiwara /28} produced such rational solutions of Painleve 
V. 
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3 Painleve V, Chazy Equation and discrete o--form 

3.1 Painleve V 

Forrester and Witte [21] obtained Pv in their Proposition 3.1, which is essentially a solution 
of Toda's equation. Incidentally, their (3.12) needs the condition v3 - v1 - n > -1 for 
convergence. This is important when n is large. For the problem at hand, the auxiliary 
quantities Rn(A) and rn(A) maybe recast into familiar form. We make a change of variables 

A A 
Rn(A) := -Yn(-A) - 1 ~ Yn(-A) = 1 - Rn(A). 

Theorem 3.1. The quantity Yn(A) satisfies the Painleve V equation 

Fv - - - 2n + 1 +a+ r-1 -( a 2 f32 1) 
2 ' 2 ' I-', 2 ' 

namely 

Y" = 3Yn - 1 yi2 _ Y~ (Yn - 1)2 (a2 Y: _ {32 /2) 
n 2Yn(Yn - 1) n A + A2 2 n Yn 

( r-1) Yn 1 Yn (Yn + 1) + 2n + 1 +a+ I-' - - - ----
A 2 Yn-1 ' 

with initial conditions 
1 

Yn(0) = 1 and Y~(O) = 
2n+ 1 +a+ 

Proof. See also Basor, Chen and Ehrhardt [5]. 

(3.1) 

• 
Theorem 3.2. The quantity Zin satisfies the following Jimbo-Miwa-Okamoto /24, 33} O"-form 
of Painleve V 

(Aci~) 2 = [<in - Ari~+ 2 (5~) 2 - (2n - a+ /3) ci~] 2 

- 45~ (ci~ - a) (ci~ + n) (ci~ + n + /3), 

with the initial conditions 

cin(0) = n(n + /3) and ci~(0) = - n(n + /3) 
2n+a+ 

Comparing with Jimbo-Miwa O"-form /24}, (C.45), it shows 

v0 = 0, v1 = -a, v2 = n, v3 = n + /3. 

Proof. For this problem, introduce, 

(3.2) 

O"n(A) := nA + Ap(n, -A) - n(n + /3). (3.3) 

It can be shown, following [5], that, 

(AO"~/= [O"n - AO"~+ (2n +a+ /3)0"~] 2 + 4 [(0"~)2 + aO"~] [AO"~ - O"n - n(n + /3)], (3.4) 

Let cin(A) := -O"n(A) we arrive at (3.2), the O"-form of Painleve V. • 
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3.2 Chazy Equation 

We will obtain an ODE satisfied by rn(>.) from the a-form of Painleve V. Following [36], let 

3(>.) :=>. d~ log Dn(->., a, ,B) - n>. + n(n + ,B), 

3'(>.) = rn(->.). 

Proposition 3.3. The rn(>.) satisfies the following Chazy II system, 

( d21J 3 )
2 

( z)2 [(d1J)
2 

4 2 ] dz2 - 21J - 0:11J - ,81 = -4 1J - e dz - 1J - 0:11J - 2,811J - 11 , 

where 
1 

1J(z) = 2irn(2iez) - 2(2n - a+ ,B), 

1 
0:1 = 2(4n2 + 4na + 3o:2 + 4n,B + 2a,B + 3,83), 

1 
,81 = - 2(2n +a+ ,B)(a + ,B)(a - ,B), 

1 
11 = 16 (2n + a - ,B)(2n - a+ ,B)(2n + 3a + 2,B)(2n +a+ 3,8). 

3.3 The Discrete a-form 

Theorem 3.4. The quantities an+l, an and an-1 satisfy 

(an - an-1 - o:)[(2n +a+ ,B)(an + n 2 + n,B) - n>.(n + ,B)](an - an+l + a)· 
(2n - a+ ,B - >. - an-1 + an+1) + [2na(n + ,B) + (2a + >.)an+ (n2 + n,B + an) 
· (an-1 - an+1)][2na(n + ,B) + (2a + >.)an+ (n2 + n,B + an)(an-1 - an+1) 
- a>.(2n - a+ ,B - >. - an-1 + an+1)] = 0, 

which we call the discrete a-form. 

Proof. From (2.19), (2.20) and (3.3), we have 

>.2 ,Bn +Arn= an(->.)+ n(n + ,B). 

Together with (2.3), (2.20) and (3.3), we obtain, 

Rn = a + an ( - >.) - a n+l ( - >.). 

Then sum of (3.7) at 'n' and the same at 'n - l', leaves 

(3.5) 

(3.6) 

(3.7) 

Rn+ Rn-1 = 2a + an-1(->.) - an+1(->.). (3.8) 

From (2.17), (2.18) and (3.8) , we get 

->.,Bn[2a + an-1(->.) - an+1(->.) - >.] - (2n +a+ ,B)rn = n(n + ,B). (3.9) 

Eliminating ,Bn and rn in (2.17) from (3.6) and (3.9), simultaneously, changing variable 
>. to ->., then the discrete a-form will be obtained immediately. • 
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Theorem 3.5. Our orthogonal polynomials Pn(z) satisfy a linear second-order ode, with 
rational coefficients in z, and the residues at the poles are in terms of Yn(->..), o-n(->..) and 
do-n(->..) / d>... 

P:(z) + R(z)P~(z) + Q(z)Pn(z) = 0, (3.10) 

where 

R z ·=a+ 1 + {3 + l _ >.. _ 1 
( ) . z z - l z + l/[Yn(->..) - l]' 

Q(z) := n(a + 1) - o-n(->..) + n(>.. - a - 1) + o-n(->..) 
z z-l 

+ ___ 1 ___ [-1- (n + _do-_n(_->.._)) _ ! _do-_n(_->.._)] 
z + l / [Yn ( - >..) - 1] z - l d>.. z d>.. . 

Proof. Eliminating Pn-i(z) from (2.11) and (2.12), we obtain a second-order linear ordinary 
differential equation for Pn(z). If y(z) := Pn(z), then y(z) satisfies the differential equation 

y"(z) - (,/(z) + ~:i:i) y'(z) + ( B~(z) - B,,(z) ~:i:i + t A;(z)) y(z) ~ 0. (3.11) 

Substituting (2.15) and (2.16) into the above equation, keeping in mind the relationship of 
Rn amd Yn, with rn and O"n, the equation (3.10) is found via some simple computations. • 
Remark 4. We can also rewrite o-n(>..) in terms ofYn(>..), and this reads, 

1 
O-n(>..) = 4Yn(4Yn _ l) 2 {/32 - (>..Y~) 2 + a 2Y; + [a2 + ({3 - >..) 2 - 4a({3 + 2n) + 2>..(a + 6n)]Y; 

+ 2[a(2n - a+ {3 - >..) - 4n>..]Y; + 2[2n(a - >..) + {3(a - {3 + >..)]Yn}· (3.12) 

4 Mf(A, a, /3, n) for large n and finite n, Linear Statistics 
and the a-form 

In this section, our objective is to approximate the moment generating function M1(>.., a, {3, n) 
of the linear statistic c = x 1 + • • • + Xn, for large n. In [34], Savin, Sommers and Wieczorek 
worked out cumulants in some cases, mainly by analysis of the Selberg integral, and report 
on some particular cases. The results about cumulants below involve an essentially new 
method and cover the results on the cumulants systematically. 

4.1 Log-concavity of the density of the center of mass 

Proposition 4.1. Suppose that a, {3 > 0, and suppose that { x j} 7=1 are random subject to the 
Jacobi unitary ensemble for the weight w(x, 0). Then the center of mass c has a log-concave 
probability density function IP'( c, a, {3, n). 
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Proof. We can view c as the center of mass or as the trace of a Hermitian matrix. Let 
Mt:(C) be the space of n x n complex Hermitian matrices, which we regard as a complex 
inner product space with the inner product (X, Y) = trace (XY*). Let v : (0, 1) ----+ R be 
convex and twice continuously differentiable, and suppose v(x) = oo for x < 0 and x > 1. 
Now let V(x) = trace v(X) for X E Mt:(C); then there exists Zn > 0 such that 

(4.1) 

defines a probability measure on Mt:(C) where dX is Lebesgue measure on the entries that 
are on or above the leading diagonal. The crucial point is that the function V: Mt:(C) ----+ R 
is convex, as we now show; compare [7]. Let { ~j} 7=1 be an orthonormal basis of en given 

by eigenvectors of X E Mt: that correspond to eigenvalues { x j} 7=1 ; for X in a set of full 
Lebesgue measure, we can assume that all the Xj E Rare distinct. Then by the Rayleigh
Ritz formula 

n 

(Hess V, Y ® Y) = L v"(xj)(Y~j, ~j }~n 
j=l 

(4.2) 

which is nonnegative by convexity of v. The matrix X has a system of coordinates given by 
the real and imaginary parts of entries X = I:,]=1 ejjUjj + Lj<k ejk(ujk +ivjk), where ejk are 
the standard matrix units. We introduce a new orthonormal basis (Yi, ... , Yn2) for Mt:(C) 
where Y1 = I:,]=1 ejj / y'n, so that the new variables are Yk = (X, Yk) for k = 1, ... , n 2 ; in 
particular y 1 = trace(X)/ y'n. Thus we change variables to Y = U(X) where U: Mt:(C) ----+ 
Mt:(C) is a unitary linear transformation. The function W(Y) = V(u- 1(Y)) is also convex, 
so by Prekopa's theorem from page 106 of [10], the marginal density 

g1(y1) = { z-1e-W(Y1,···,Yn2)dy2 ... dyn2 
}Rn2-1 

is a probability density function such that - log g1 (yi) is convex. 

(4.3) 

In particular, we can take v(x) = -a log x - ,B log(l - x), since v"(x) ~ (a 113 + ,8113 ) 3 for 
0 < x < 1, and 

n 

Y1 = trace(X)/vn = Lxj/vn = c/y'n. 
j=l 

The Vandermonde D-n(:r) 2 arises as a Jacobian factor when one passes down from X E 

Mt:(C) to x E Rn, so by rescaling we can write the probability density function of c as 
IP'(c,a,,B,n) = e-vn(c), where Vn: (0,oo)----+ (-00,00) is convex. D 

From this result, we have Mt(>.., a, ,B, n) = fa°° e->..c-vn(c)dc. By the Cauchy-Schwartz in
equality, 

(>.. > 0). 
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so log M f ( >., a, ,8, n) is convex. Let 

v~(>.) = sup{>.c - vn(c) : c > O} 

be the Legendre transform of Vn, which is also convex. From the definition, we have an 
optimal inequality e->-c-vn(c) ~ ev;;(->.). According to Laplace's approximation method for 
integrals, v~ ( ->.) provides a first approximation to log M f ( >., a, ,8, n). In the next subsec
tion, we refine this idea by using Dyson's method for Coulomb fluids. 

4.2 Dyson's Coulomb Fluid 

In this subsection, we show that the moment generating function of linear statistics can 
be computed via the Dyson's Coulomb Fluid approach, as can be found [18]. We first 
present some background to the Linear Statistics formula, originating from the Coulomb 
fluid. Consider the quotient of the Hankel determinants 

Dn(>., a, ,8) ·= e-(Fn(>-)-Fn(O)) 

Dn(O, a, ,8) · ' 
(4.4) 

where 

Dn(\ a, ,8) := { exp [-E(x1, ... , xn) - >. t f (xj )] dx1 ... dxn. ( 4.5) 
l[o,1Jn j=l 

Interpreting { xk : k = 1, 2, ... , n} as the positions of n identically charged particles on the 
real line, we see that 

n 

E(x1, ... , Xn) := -2 L log I Xj - Xk I +n L vo(xj), 
j=l 

with 
a ,8 

v0 (x) = --logx - -log(l - x), 
n n 

is the total energy of the n repelling, classical charged particles which are confined by a 
common external potential nv0 ( x). The linear statistic associated with f ( x), acts as a 
perturbation to the original system, which modifies the external potential. 

For large enough n, the collection particles can be approximated as a continuous fluid 
with a certain density c,(x) supported on a single interval (a, b) ~ [O, 1], see [20]. This density 
corresponds to the equilibrium density of the fluid, obtained by the constrained minimization 
of the free-energy function, F[c,], i.e. 

mJn F[c,] subject to 1b c,(x)dx = 1, c,(x) 2: 0 

with 
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Upon minimization [42], the equilibrium density o-(x) satisfies the integral equation 

,\ 1b vo(x) + - f(x) - 2 log Ix - ylo-(y)dy = A, 
n a 

x E [a, bl, (4.6) 

where A is the Lagrange multiplier which imposes the constraint that the equilibrium density 
has total charge of unity, i.e. J: o-(x)dx = l. 

We note that A and o- depend upon,\ and n, but not upon x. The (4.6) is converted into 
a singular integral equation by taking a derivative with respect to x, 

1b o-(y) ,\ 
2PV --dy = v' (x) + -J'(x), 

a x-y O n 
x E [a, bl, 

where PV denotes the Cauchy principal value. The boundary condition on o-(x) is that it 
vanishes at x = a and x = b. Supposing v0 (x) is convex, we can find the solution to this 
problem; see [18]. Taking the optimal o-(x; -\, n) in the form of 

where 

ij(x) 
o-(x) = o-(x; ,\, n) = o-o(x) + -, 

n 

o-o(x) = ✓(b - x)(x - a) PV 1b vb(x) - vb(y) dy, 
21r2 a (x - y) ✓(b - y)(y - a) 

(4.7) 

(4.8) 

denotes the density o-(x) of the original system that is with respect to the weight w0 (x) = 
x°'(l - x)/3, and 

,\ 1b ✓(b - y)(y - a) 
ij(x) = ij(x; -\) = AQ(x) = ----====PY ~---J'(y)dy, 

21r2 ✓(b - x)(x - a) a Y - x 
(4.9) 

represents the deformation of the density due to the "perturbation", -\f(x)/n. 

Theorem 4.2. For sufficiently large n, the moment generating function M 1(-\, a, fJ, n) has 
the following asymptotic expression, 

M ( fJ ) Dn(A, a, fJ) 
f A, a, 'n = Dn(O, a, fJ) 

[a
2 +2ab-b2 2 ( a+fJ) ( a+b ) ] ~ exp 16 ,\ - n + - 2- ✓(a - l)(b-1) - - 2- + 1 ,\ (4.10) 

where a and b are defined in (4--24). 

Proof. From above results, for sufficiently large n, the ratio ( 4.4) will be the approximated 
by 

where 

Dn(A, a, fJ) 
Dn(O, a, fJ) 
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In our problem, 

with 

f(x) = x, 

a /3 logw(x) 
v0 (x) = --logx - -log(l - x) = ----. 

n n n 

w ( x) = x°' ( 1 - x )f3, x E [ 0, 1], a > -1, /3 > - l. 

(4.13) 

(4.14) 

(4.15) 

We first consider the limiting density a-0 . In [2], where the limiting density denoted by 
p(x) respected to the classical Jacobi weight supported on [-1, 1] 

WJac(x) = (1 - xt(l + x)f3, x E [-1, 1], (4.16) 

is given by 

( ) = ~ n +(a+ /3)/2 ✓(B - )( - A ) (A ) P Y l 2 n Y Y n Y E n, Bn , 
7r -y 

( 4.17) 

with 

An:= (2n + ~ + /3) 2 [/32 - a 2 - 4Jn(n + a)(n + f3)(n +a+ /3)], 

Bn := (2n + ~ + /3) 2 [/32 - a 2 + 4Jn(n + a)(n + /3)(n +a+ /3)]. (4.18) 

To investigate the large n behavior, make the replacement 

a • na and /3 • n/3. (4.19) 

The limit n -+ oo gives An -+ A and Bn -+ B where 

A:= (2 +: + /3) 2 [/32 - a 2 - 4J(l + a)(l + /3)(1 +a+ /3)], 

B := (2 +: + /3) 2 [/32 - a 2 + 4J(l + a)(l + /3)(1 +a+ /3)]. (4.20) 

We now translate (-1, 1) to (0, 1) so 

( ) _ WJac(l - 2x) 
W X - 2a+,8 ' 

hence, 
v~(x) = _ w'(x) = _ w~ac(l - 2x) . 

n · w(x) n · WJac(l - 2x) 

Substituting ( 4.22) into ( 4.8) gives the desired result 

( ) 2 ( ) [ a+ /3] J(b - x)(x - a) a-0 x = -p l - 2x = 1 + --
n 2 1rx(l - x) ' 

where O < a < x < b < l, with 

l-B 
a:=--

2 

l-A 
and b·=--. 2 . 
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For S2 , substituting f(x) = x into (4.9), we have 

g(x) = 1 PV lb J(b - y)(y - a) dy 
21r2 J(b - x)(x - a) a Y - x 

(a+ b)/2 - x 

21ry'(b - x)(x - a) 
( 4.25) 

Substituting (4.23) and (4.25) into (4.12) we obtain, for large n, 

1 2 2 2n + a + /3 [ a + b ] J1 = - 8 (a + 2ab- b), J2 = 2 y'(a - l)(b - 1) - - 2- + 1 , 

with a and b given by (4.21). Since logM1(,\,a,/3,n) is convex on (0,oo), one finds J1 :'.S 0, 
so a2 + 2ab - b2 2': 0. • 

4.3 Cumulants of the distribution of the center of mass 

As a function of ,\, our M 1(,\, a, /3, n) is analytic on a neighbourhood of ,\ 
M 1(o, a, /3, n) = 1; hence there is a convergent power series expansion 

( ) ~ Km(n) ( )m logM1 ,\,a,/3,n = ~--1- -,\ , 
m. 

m=l 

0 with 

where the Km(n) are the cumulants of IP(c, a, /3, n). Combining (2.6) and (3.3), we have 

d d 
Ad,\ logM1(\a,/3,n) = Ad,\ logDn(\a,/3) = -an(-,\)-n,\-n(n+/3), 

so the Taylor coefficients of an(-,\) determine these cumulants. 
We can also write 

[ A2 ('Cn(-s) ] 
M 1(,\, a, /3, n) = exp - 2 J1 - ,\J2 + Jo s ds , 

where Cn(-s) captures the error in the approximation (4.8) and the higher order cumulants. 
In the following results, we compute the power series expansion of an(,\), starting with the 
simplest case a = /3 = 0. 

Proposition 4.3. Suppose a= /3 = 0. Then an(,\) has a convergent power series in,\, 
00 

an(,\)= -n2 + nA - L bm(n)(-,\r, (4.26) 
m=l 

where the coefficients are 

n n 2 

b1(n) = -2, b2(n) = 4(4n2 - 1)' 
n2 

b4 (n) = -16-(-4n_2 ___ 9_)_(4_n_2 ---1-)2' 

n 2(2n2 + 1) 
b6 (n) = 32(4n2 - 1)3(16n4 - 136n2 + 225)' 

n 2 (64n6 - 32n4 - 392n2 - 45) 
bs(n) = 256(4n2 - 1)4 (4n2 - 9)2(16n4 - 296n2 + 1225) · 

(4.27) 
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Proof. We express of o-n(,\) in terms Cn(.\), that is, 

(4.28) 

Substituting this into (3.4), we obtain a second order ode of C(.\). (The case of a-/- 0, fJ-/- 0 
will be studied later in the section.) Imposing the hypothesis that a = fJ = 0, we have 
a= 0, b = l, so 

.\2 [ C~ - 2 (C~) 2] = 8.\ (C~)3 - 8Cn (C~)2 - (8n2 + 7.\2 ) (C~) 2 + ( 6n2 .\ + 3~
3

) C~ 

I 2 ( 2 2) 3_\4 (3n2 1) 2 ( ) + 8,\CnCn - 2Cn - 2n + A Cn - 32 - 4 - S A , 4.29 

with Cn(0) = 0, C~(0) = 0. 
If c\(,\) := Cn(-.\), a little computation show that Cn(,\) satisfies (4.29). An outcome 

of this is that Cn(.\) is even in .\. 
Hence with the series expansion in ,\ 2 , we find ( for a fixed n) 

00 

The coefficient a1 satisfies a quadratic equation; one of the solutions is a1 = 1/8 leading to 
the solution ,\2 /8 for (4.29). We take the other solution for a 1 , giving 

6n2 - 1 n2 n2 (2n2 + 1),\6 c (.\) -----.\2 + --------.\4 + ___________ _ 
n -8(4n2 -1) 16(4n2 - 9)(4n2 -1)2 32(4n2 -1)3(16n4 -136n2 + 225) 

n2 (64n6 - 32n4 - 392n2 - 45) ,\8 (.\10) ( ) 

+ 256(4n2 - 9)2(4n2 - 1)4 (16n4 - 296n2 + 1225) + O ' 4·30 

Substituting (4.30) into (4.28) gives the expansion of o-n(,\) in.\. • 

17 



4.4 Coefficients of un(->-., a, (3) for a, (3 > -l, a# O, (3 # 0 

We relax the special assumptions on a and /3, and list the following coefficients. 

b (n a /3) = - n( a + n) 
1 ' ' a+ /3 + 2n 

b n a _ n(a+n)(/3+n)(a+f3+n) 
2 ( ' ' /3) - ( a + f3 + 2n - l) ( a + /3 + 2n )2 ( a + /3 + 2n + l) 

b3(n, a, /3) = n(a - /3)(a + /3)(a + n)(/3 + n)(a + /3 + n)/[(a + /3 + 2n - 2) 
•(a+ f3 + 2n - l)(a + f3 + 2n) 3 (a + f3 + 2n + l)(a + f3 + 2n + 2)] 

b4 (n, a, /3) ={(a+ /3 - l)(a + /3)2(a + /3 + 1) (a2 - 3a/3 + /32 + 1) - n4 (8a2 + 8/32 - 4) 

- 8n3(a + /3) (2a2 + 2/32 - 1) - 2n2 [3a4 + 12a3f3 + a 2 (18/32 - 7) 

+ 60:/3(2/32 -1) + 3/34 - 7/32 + 2] + 2n(a + /3)[a4 - 4a3f3 + a 2 (5 - 10/32 ) 

+ a (2/3 - 4/33) + /34 + 5/32 - 2]}n(a + n)(/3 + n)(a + f3 + n)/[(a + f3 + 2n)4 

•(a+ /3 + 2n - 3)(a + /3 + 2n - 2)(a + f3 + 2n - 1)2 (a + f3 + 2n + 1)2 

• ( a + /3 + 2n + 2) ( a + /3 + 2n + 3)] 

b5(n, a, /3) ={(a+ /3 - l)(a + f3)2(a + /3 + 1) (a2 - 5af3 + /32 + 5) + l6n6 + 48n5(a + /3) 

+ 4n4 (7a2 + 30af3 + 7/32 - 6) - 8n3 [(3a - f3)(a - 3/3) + 6](a + /3) 

- 2n2 [(14a2 - 11) /32 + 18a (a2 + 2) /3 + lla2 (a2 - 1) + 18a/33 + 11/34 + 10] 

- 2n(a + /3)[a4 + l0a3f3 + a 2 (18/32 - 23) + 2a/3 (5/32 + 6) + /34 - 23/32 + 10]} 
• n(a - f3)(a + f3)(a + n)(/3 + n)(a + f3 + n)/[(a + f3 + 2n - 4)(a + f3 + 2n) 5 

•(a+ /3 + 2n - 3)(a + /3 + 2n - 2)(a + f3 + 2n - 1)2(a + f3 + 2n + 1)2 

· ( a + /3 + 2n + 2) ( a + /3 + 2n + 3) ( a + /3 + 2n + 4)] 

Theorem 4.4. Then O"n(>., a, /3) has a convergent power series 

00 

O"n(>., a, /3) = -n(n + /3) + n>. - L bm(n, a, /3)(->.r 
m=l 

where the first few bm = bm(n, a, /3), m = l, 2, ... , 5 are listed above. 

Proof. Substituting ( 4.31) into (3.4), we obtain the results. 

( 4.31) 

• 
Let G be the Barnes G-function, defined by the functional equation, G(z+l) = r(z)G(z). 

For n equal to a positive integer, G(l + n) = IT]~; j!. 

Theorem 4.5. The Hankel determinant Dn(>., a, /3) has the asymptotic expression 

Dn(>., a, /3) =Dn(O, a, /3) exp [1>. -O"n(-s, a, /3) ~ ns - n(n + /3) ds] 

=Dn(O, a, /3) exp [b1(n, a, /3)>. + b2(n, a, /3) )..2 + b3(n, a, /3) )..3 
2 3 

b4(n, a, /3) )..4 b5(n, a, /3) )..5 ] 
+ 4 + 5 +··· ' ( 4.32) 

18 



where Dn(0, a, /3) is given in (/29}, p. 310) by 

Dn(0, a, /3) = IT r(j + 2)r(j +_a+ l)f(j + f3 + 1) 
j=O n!f(n+J+a+/3+1) 

= G ( n + 1 )-G_( n_+_a_+_l_)G_( n_+_/3 _+_l_)G_(_n_+_a_+_/3_+_1_) 
G(a + l)G(/3 + l)G(2n +a+ f3 + 1) . 

Corollary 4.6. Suppose that a= f3 = 0. Then Dn(>., 0, 0) has the following expansion, 

D (>. 0 0) = G(n + 1)4 . ex [- n>. b2(n) ).2 b4 (n) ).4 b6 (n) ).6 ... ] 
n ' ' G ( 2n + 1) p 2 + 2 + 4 + 6 + ' (4.33) 

where bm(n) are in agreement with those in (4.27). 

5 The asymptotic expression of IfD(c, a, (3, n) 

We extend the definition of Dn(>., a, /3) via the formula (1.6) to complex >. and obtain an 
entire function. Then the Laplace inversion formula applied to (1.4) gives 

JP(c,a,/3,n) = D / /3) 100 
e-ic>..Dn(-i>.,a,f3)d>.. 

21T n 0, a, -oo 
(5.1) 

In Appendix A, we give more details about the properties of the complex function Dn(>., a, /3) 
and the support of JP(c, a, /3, n). By Theorem 4.5, we have 

JP c, a, /3, n = - exp - b1 + c 1>. - ->. + -1>. + ->. +... d>., ( ) 1 100 
[ ( )" b2 2 b3. 3 b4 4 ] 

27!" -oo 2 3 4 

where bm = bm(n, a, /3) are the cumulants of JP(c, a, /3, n), up to factors involving only m, 
and the values of the bm are listed in Subsection 4.4. 

Edgeworth showed how to recover a probability density function from the cumulants by 
what is known as type A series, See [38]. 

Theorem 5.1. Then JP(c, a, /3, n) has the following asymptotic expansion, 

JP(c, a, /3, n) ~ P(c, a, /3, n) 

where 

[(c+b1) 4 -6b2(c+b1) 2+3b§]b4 } 
+ 4b4 + ... ' 

2 

(5.2) 

and bm(n, a, /3) are listed in subsection 4.4. 
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In Appendix A, we show that IP'(c,a,,B,n) is supported on [0,n]. This does not conflict 
with the approximate expression P(c, a, ,B, n), since the Gaussian factor exp [-(c + b1 ) 2 /(2b2)] 

decays very rapidly outside [0, n]. 

Theorem 5.2. Suppose a = ,B = 0. Then the probability density function of the center of 
mass, IP'(c, 0, 0, n), has the asymptotic expression 

IP'(c,0,0,n) ~ P(c,0,0,n) 

where 

P(c, 0, 0, n) = 

in which the coefficients are 

( ) _ 4 ( C - ? )4 2 ( C - ? ) 2 
[ 16 ( C - ? )2 - 3] + 64 ( C - ? )4 - 24 ( C - ? ) 2 + ¾ 

'T/n1 C - n6 n4 n2 ' 

64 ( C - ~) 6 /3 8192 ( C - ? )6 /3 - 2560 ( C - ? )4 + 480 ( C - ? ) 2 - 10 
'T/n2 ( C) = - 10 + 2 

n n 

(5.3) 

80 ( C - ~ )4 [ 8 ( C - ~ )2 /3 - 1] 4 ( C - ~) 2 [ 128 ( C - ~ )4 + 120 ( C - ? )2 - 15] 

+ ~ - ~ 

2048 ( c - ~ )6 / 3 - 120 ( c - ? ) 2 + 5 
n4 

Remark 5. Compare P(c,a,,B,n) with IP'(c,a,,B,n). In Appendix A, we list the com
puted formulas for IP'(c, a, ,B, n). In the Figures, we find there is almost coincidence 
when n 2 3, see Figure 1 (a = 0, ,B = 0), Figure 2 (a = 1, ,8 = 2). The other cases 

exhibit similar behavior, so we infer that the approximation P(c, a, ,B, n) is accurate 

when n > 3. The expression P( c, 0, 0, n) here gives an easy way to characterise the 
coefficients of IP'( c, 0, 0, n) conjectured in /25). 

6 Uniform convexity 

Let w0 (x) be a weight of the form w0 (x) = e-vo(x) where v0 is a continuously differentiable 
and convex real function such v0 (x) 2 log (1 + x 2 ) for all x such that x 2 2 x 0 . Then the 
energy 

100 100100 1 Ev(P) = -oo vo(x)p(dx) + -oo -oo log Ix -ylp(dx)p(dy) (6.1) 

is defined for all non-atomic probability measure p that have finite logarithmic energy. Then 
the minimal energy Iv = inf {Ev(p)} is attained for a unique probability measure p0 called 
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the equilibrium measure that has compact support [a, bl, and p0 is absolutely continuous with 
respect to Lebesgue measure, so p0 (dx) = O"o(x)dx for some probability density function 0"0 . 

See [19] and [35] for details. Also, there exist a constant Cv such that O"o is determined 
almost everywhere by the inequality 

va(x) ~ 21b log Ix - YIO"o(y)dy + Cv (x ER), (6.2) 

with equality if and only if x E ( a, b). 
The following is a complication of results which are known, or similar to those in the 

literature, See [8, 26]. 

Proposition 6.1. Suppose that p(x) = f(x)/'1rJl - x2 and q(x) = g(x)/1rJl - x2 are prob
ability density functions on [-1, 1] where f, g E L 2 ( dx / 1rJl - x2 ) have Chebyshev expansions 
f(x) = L:o bkTk(x). 

(i) Then 

1111 1 
I(p, q) = _

1 
_

1 
log Ix_ YI (p(x) - q(x)) (p(y) - q(y)) dxdy (6.3) 

satisfies 
00 

(6.4) 
k=l 

(ii) In particular, the equilibrium measure satisfies I(p, O"o) = Ev(P) - Ev(0"0 ). 
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(iii) Suppose that v is uniformly convex, so that v" ( x) 2: 1 for all x and some 1 > 0. 
Suppose that Pn is a sequence of probability density functions as above such that Ev(Pn) -+ 
Ev(O"o) as n-+ oo. Then Pn-+ O"o in the weak topology. 

(iv) Suppose that v is a polynomial. Then O"o(x) = I::~1 akTk/nJl - x2 where only 
finitely many of the ak are non-zero. 

Proof. (i) We substitute x = cos 0 and y = cos cf> and obtain 

1 11 11 1 dxdy I(p, q) = 2 log I - I (f(x) - g(x)) (f(y) - g(y)) Jl 2✓1 2 
7r -1 -1 X Y - X - y 

oo ( b ) ( b ) 11r 11r ak - k az - z 
= ~

1 47r2 -1r -1r - log I cos 0 - cos cf>I cos k0 cos lcf>d0dcp, 
,-

(6.5) 

where 
- log I cos 0 - cos c/>I = - log 2 - log I sin(0 + cf>)/21 - log I sin(0 - cf>)/21, (6.6) 

and 

1
1r . d0 11r . d0 cos kc/> 

- log I sm(0 + cf>)/21 cos k0- = - log Ism 0 /21 cos k0- cos kcf> = -k-
-1r 2n -1r 2n 2 

(6.7) 

by [22]. A similar identity holds for log I sin( 0 - cf>) /2 I, and so by orthogonality, we obtain 
the stated result. 

(ii) This follows from the identity (6.2) by a simple calculation. 
(iii) By uniform convexity, there exist 1 > 0 such that the Wasserstein transportation 

distance satisfies W2(Pn, O"o) 2 ::; ,I(Pn, O"o), so W2(Pn, O"o) -+ 0 as n -+ oo, and Pn -+ O"o 
weakly. 

(iv) By a formula of Tricomi, 

v'(x) =PV 11 20"o(Y) dy 
-1 x-y 

= f PV 11 2akTk(Y) 2 dy 
k=O -1 n(x - y)Jl - y 

00 

= -2 I:akUk-1(x), 
k=l 

(6.8) 

where Uk(x) is Chebyshev's polynomial of the second kind of degree k. If vis a polynomial, 
then the series has only finitely many non-zero terms. 

Chen and Lawrence [18] consider the effect of replacing w0 (x) by w0 (x)e->.f(x)/n or equiv
alently replacing v0 (x) by v0 (x) + >-.f(x)/n, where f(x) is a bounded and continuous real 
function. The linear statistic has mean 

(6.9) 
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and variance 

_1 1b f(x) PV 1b ✓(b - y)(y - a)f'(y) dydx. (6.10) 
2n2 a ✓(b-x)(x-a) a x-y 

For a given CTo, the possible values of the mean and variance are related, as in the following 
result. 

By a simple scaling argument, we can replace ( a, b) by ( -1, 1), and the standard deviation 
of f ( x) does not change if we add a constant to f ( x). Suppose therefore that f ( x) is an 
absolutely continuous real function on ( -1, 1) such that f ( x) and f' ( x) are square integrable 
with respect to the Chebyshev weight 1/n✓l - x2 , such that 

11 f(x) dx = 0. 
-1 n✓l - x2 

(6.11) 

For such f ( x), we consider the functional 

<I>(f) = ~ 11 f(x) PV 11 f'(y) ✓l - y2 dydx 
7r -1 ✓1 - X 2 -1 X - Y 

(6.12) 

and aim to compute the Legendre transform of <I>, as in 

<I>*(CT) = sup {11 f(x)CT(x)dx - <I>(f) : 11 f(x) 2 dx = o}. (6.13) 
f -1 -1 n✓l - X 

The following result shows that <I>* (CT) is a measure of the distance between CT and the 
Chebyshev (arcsine) distribution on [-1, 1], in a metric associated with the periodic Sobolev 
space H-1/ 2 . 

• 
Proposition 6.2. Let h(x) = 1rCT(x)✓1 - x2, and let g(x) = h(x) - J~1 h(t)dt/1r~. 
Then 

<I>*(CT) = _1 11 11 log I (1 - x)(l - y) I g(x)g(y) dxdy, (6.14) 
21r2 -1 -1 (x - y)2 ✓1 - x2✓1 - y2 

or equivalently <I>*(CT) = 2-1 I(CT, 1/n✓l - x2 ) and equality is attained in the supremum if and 
only if 

g(x) = PV ~ 11 f'(y)✓l - y2 dy 
7r -1 X - y 

(6.15) 

almost everywhere. 

Proof. We expand f(x) and h(x) in terms of Chebyshev polynomials of the first kind, so 

00 00 

f(x) = L ajTj(x), h(x) = L bjTj(x). (6.16) 
j=l j=O 
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Then J'(x) = "f:,~1 jajUj_1(x) where Uj(x) are the Chebyshev polynomials of the second 
kind as in [22], and by a formula of Tricomi 

PV ~ 11 f'(y)✓l - y2 dy = f---, ja·T-(x) 
n x-y ~ JJ 

-1 j=l 
(6.17) 

by [22]. Then 

__!__ 11 f(x) PV11 f'(y) ✓l -y2 dydx = f ja· 11 f(x)Tj(x) dx = f ja;; (6.18) 
n 2 _ 1 Jl - x2 -1 x - Y j=l J -1 nJl - x2 j=l 2 

hence <P(J) = "2:,~1 ja; /2. We deduce that 

oo oo . 2 oo b2 
* {'"' '"'Jaj} '"' j <P (h) = sup ~ bjaj - ~ 2 ~ ~ ~ 

j=l j=l j=l J 
(6.19) 

with equality attained if and only if bj = jaj for all j = 1, 2, .... Hence <P*(h) = "f:,~1 bJ/2j, 
which we can compare with the formula (6.14). We now identify this series with a double 
integral. We can write g(x) = "2:,%:1 bkTk(x); then by another formula of Tricomi [22], the 
transform 

g(x) = PV ~ 11 g(y)dy 
n -dY - x) ✓l - y2 

satisfies 
00 

j=l 

and taking the integral of the series, we obtain 

11 oo b· 
- x g(t)dt = ~ j (Tj(x) - Tj(l)), 

in which Tj(l) = 1 for all j = 1, 2, ... by [22]. Then 

-111 11 dx oo b2 
- g(x) g(t)dt------;:===:; = L ~-
n -l x nJl - x2 j=l 2J 

We can also write 

-11 g(t)dt = 11 log 11 - YI g(y)dy ' 
x -1 X - Y 1f ✓ 1 - y2 

hence by symmetrizing the variables, we have 

(6.20) 

(6.21) 

(6.22) 

(6.23) 

(6.24) 

-111 g(x) 11 g(t)dt dx = _1 11 11 log I (1 - x)(l - y) I g(x)g(y) dxdy. 
1r -1 x nJl - x 2 2n2 -1 -1 (x - y) 2 Jl - x2✓1 - y2 

(6.25) 
This identifies <P* ( (J") with the double integral. Also, the supremum is attained if and only 
if f(x) and g(x) have bj = jaj for j = 1, 2, ... , so the above integral equation holds almost 
everywhere. • 
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Example 1. Starting with the classical Jacobi weight on [-1, 1], we can introduce a limiting 
density, which lives on a proper subinterval (An, Bn). As in (4.17}, let p be the limiting 
density 

( ) = ~ n +(a+ JJ)/2 ✓(B _ )( _ A ) 
PY l 2 n Y Y n 7r - y 

(y E (An,Bn)). 

We suppose that a= jJ, so An= -Bn = -K, and then we rescale [-1, 1] to [-1/K, 1/K], 
and [-K, K] to [-1, 1], to obtain the probability density function 

✓1-x2 
CT(x) =Kl_ K 2x2 (x E [-1, 1]) 

where 11; > 0 and O < K < 1 are constants. In view of the Proposition, <I>* ( O") is a measure 
of the distance between O" and the Chebyshev (arcsine) distribution on [-1, 1]; for K = 1, we 
indeed have the arcsine distribution, whereas for K = 0, we have the semicircular law. We 
compute 

- 2 - K1r(l - x2) 
h(x) - 1rvl - X O"(x) - 1 - K2x2 , 

and then introduce the Chebyshev coefficients of h. We have 

-11 h(x)Tn(x)dx _ 1r11; 12
7!" [ 1 K 2 - 1 ( 1 1 )] in0dB an - -------;:=~=- - - - + --- ----- + ---- e 

_ 1 1r✓l - x2 21r O K 2 2K2 1 - K cos 0 1 + K cos 0 . 

We can replace this by a contour integral around the unit circle, so by an elementary calculus 
of residues, we obtain 

and 

✓1-K2 ( ~)n 
a = -1r11;--- -1 + ✓1 -K2 

n Kn+2 

1- ✓1 - K 2 

ao = 7r11;--K-2 --

(n = 1, 2 ... ), 

where 1r11; = K 2 / (1 - ✓1 - K 2 ) since O" is a probability density function. Hence 

<I>*(O") =~a~ = -1r211;2(l - K2) log [1- (-1 + ✓1 - K2)2] · 
~2n 2K4 K 
n=l 

When a = jJ = A - 1/2, the corresponding system of orthogonal polynomials is given by the 
Gegenbauer (ultraspherical) polynomials (G~)~=o which satisfy, for L>.J = - (1- x2 ) f"(x)+ 
(2,\ + l)xf'(x), the eigenfunction equation 

L>.G~ = n(n + 2,\)G~. 

We conclude this section with a result concerning fluctuations. Suppose that v0 is uni
formly convex, so that vi(x) ~ "( for all x and some "( > 0. Let V(X) = trace v0 (X), 
and fln(dX) = z-1e-nV(X)dX; note that we use a different scaling from equation (4.1). Let 
f : R ----+ R be a compactly supported smooth function, and introduce the linear statistic 
F: M!(C) ----+ R associated with f by F(X) = trace f(X). The fluctuations of Fare 

FL(X) = F(X) - f F(Y)fln(dY) (XE M~(C)). (6.26) 
J Mf:(C) 
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Proposition 6.3. Then 

lim sup { (FL(X)) 2 fln(dX) :S _!_ 1b J'(x) 2(J"a(x)dx 
n• oo J M;:_(C) I a 

and 

JM;:,(c) exp(tFL(X))fln(dX) :S exp( 211;\00
) 

Proof. By the Rayleigh-Ritz formula (4.2), we have 

(t ER). 

(Hess V, Y ® Y) ?: 1 (Y, Y) (YE M::(C)), 

(6.27) 

(6.28) 

(6.29) 

so V: Mt:(C)----+ R is uniformly convex. See [7]. By the Bakry-Emery criterion, fln satisfies 
a logarithmic Sobolev inequality in the form 

{ G(X)2 logG(x)2µn(dX) :S { G(X)2µn(dX) log { G(X)2µn(dX) 
J M;:_(C) J M;:_(C) J M;:_(C) 

+ ~ { llv7G(X)ll 2/ln(dX). (6.30) n, }M;:_(C) 

By applying this inequality to G(X) = 1 + tF L(X) with small real t, we deduce that 

{ (FL(X)) 2 /ln(dX) :S ~ { llv7F(X)ll 2/ln(dX). (6.31) J M;:_(C) na J M;:_(C) 

The right-hand side converges as n----+ oo, so 

~ { (tracef'(X)) 2 fln(dX)----+ _!_ 1b J'(x) 2(J"a(x)dx. (6.32) 
na }M;:,(c) r a 

Finally, we use (6.6) from [7] to obtain the stated concentration inequality. • 

7 Appendix A: On IF(c, a, t), n) for finite n. 

Note that the PDF of the center of mass of the unitary Jacobi ensemble is 

IP'( (3 ) - 1 loo d' -ic>.. 11 A (--+)2Iln °'(1 )f3 ixz>-d c, a, , n - D ( (3) A e I un x Xz - Xz e xz, 
27r n 0, a, _00 n. [O 1Jn 

' l=l 

The Paley-Wiener theorem reads, 

Theorem A.([39], p.108) Suppose FE £ 2 (-oo, oo ). Then F(~), the Fourier transform of the 
function f(x), vanishing outside[-((]" /21r), (J" /21r] =: [-T, Tl, i.e. F(~) := f~00 f(x)e-21rixt;dx = 

J~T f(x)e- 21rixt;dx, x E R if and only if F is an entire function of exponential type (J", 
IF(~)I :S Aealt;I, ~E C , (J" > 0 and A is a constant. 

Based on the above theorem, we have 
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Lemma 7.1. The Fourier transform of our Dn(-i>., a, (3, n) given in (5.1), denoted by 
IP'(c,a,(3,n), is supported in the interval [0,n]. 

Proof. Consider a general case 

11 n . D(z, [w], n) :=' l~n(x)II/ II w(xk)e-lXkZdxk. 
n. [0,l]n k=l 

where v > 0, and w(x) is any smooth positive function integrable over (0, 1). Then 

. 11 n n 
emz/2 D(z, [w], n) = 1 l~n(x)lv exp(-iz 2)xk - 1/2)) II w(xk)dxk 

n. [0,l]n k=l k=l 

where -n/2 :S: 2:::~=l (xk -1/2) :S: n/2, so einz/2 D(z, [w], n) is entire, and there exists C such 
that 

(z = x + iy E C). 

Hence by the Paley-Wiener theorem from Stein and Weiss [39], there exists a distribution cp 
on [-n/2, n/2] such that 

so 

einz/2 D(z, [w], n) = 1 e-iztcp(t) dt, 
[-n/2,n/2] 

D(z, [w], n) = { e-izscp(s - n/2) ds 
J[o,n] 

where cp( s - n/2) is a distribution supported on [0, n]. 

So for our problem, w(x) = xa(l - x)f3, x E (0, 1), and v = 2 follows. • 
There follow formulas for IP'(c, a, (3, n) with n = 2, ... , 5 and three cases of a and (3. 

Case I : a = 0, f3 = 0 

{
2c3 

IP'(c,0,0,2) = ' 3 2(2 - c) , 

3c8 

14 ' 

0 :S: C :S: 1, 

1 < C :S: 2; 

0 :S: C :S: 1, 

IP'(c,0,0,3) = 
.1-(-2c8 + 24c7 - 252c6 + 1512c5 - 4830c4 
14 

IP'(c,0,0,4) = 

+8568c3 - 8484c2 + 4392c - 927), 
3(3-c)8 
_1_4_' 

2c15 

3003' 

30203~42 ( C)' 
30203~43 ( C)' 
2(4-c)15 

3003 ' 

0 :S: C :S: 1, 

1 < C :S: 2, 

2 < C :S: 3, 

3 < C :S: 4. 

IP'(c, 0, 0, 5) 

28 

5c24 
140229804' 

1 < C :S: 2, 

2 < C :S: 3; 

1402~9804 ~52 ( C)' 
1402~9804 ~53 ( C)' 
1402~9804 ~54 ( C)' 
5(5-c)24 

140229804' 

0 :S: C :S: 1, 

1 < C :S: 2, 

2 < C :S: 3, 

3 < C :S: 4, 

4 < C :S: 5. 
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where 

~42 (c) = - 3c15 + 60c14 - 1680c13 + 29120c12 - 294840c11 + 1873872c10 - 7927920c9 

+ 23268960c8 - 4867 4340c7 + 73653580c6 - 80912832c5 + 63969360c4 

- 35497280c3 + 13131720c2 - 2910240c + 292464, 

~43 (c) =3c15 - 120c14 + 3360c13 - 58240c12 + 644280c11 - 4948944c10 + 28428400c9 

- 128700000c8 + 470398500c7 - 1381480100c6 + 3179336160c5 - 5531176560c4 

+ 6950332480c3 - 5910494520c2 + 3031004640c - 705916304, 

~52 (c) = - 4c24 + 120c23 - 6900c22 + 253000c21 - 5578650c20 + 79695000c19 - 785367660c18 

+ 5598232200c17 - 29915282925c16 + 123134189200c15 - 398517412920c14 

+ 1029946456560c13 - 2149736416100c12 + 3651921075600c11 - 5072249298600c10 

+ 5768661885360c9 - 5363308269495c8 + 4055447662200c7 - 2470634081300c6 

+ 1194550480200c5 - 447845361810c4 + 125530048600c3 

- 24758793900c2 + 3065085000c - 179192775, 

6 3 (c) =6c24 - 360c23 + 20700c22 - 759000c21 + 17798550c20 - 292215000c19 + 3673797820c18 

- 38235839400c17 + 347123925225c16 - 2790376974000c15 + 19589544660840c14 

- 117507788504400c13 + 592028782736300c12 - 24 79096272534000c11 

+ 8573537591434200c10 - 24367026171730000c9 + 56603181050415945c8 

- 106665764409131400c7 + 161304132700472300c6 - 192656070655587000c5 

+ 177464649282553710c4 - 121528934511474600c3 + 58223870087874900c2 

- 17407730744067000c + 2443806916000825, 

6 4 (c) = - 4c24 + 360c23 - 20700c22 + 759000c21 - 18861150c20 + 345345000c19 - 4991492660c18 

+ 59676982200c17 - 604502001675c16 + 5220961534800c15 - 38343917872920c14 

+ 238359873297840c13 - 1250073382257700c12 + 5522495132708400c11 

- 20539021982760600c10 + 64263112978594640c9 - 168820549421134545c8 

+ 370693368908418600c7 - 67 4525363862958300c6 + 1002229415508043800c5 

- 1187187920423969310c4 + 107897587 4367012600c3 - 706068990841773900c2 

+ 295689680026989000c - 59394510856327775. 
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Case II : a = 1, (3 = 1 

{ 
12 c5 ( c2 - 7 c + 7) 

JP(c, 1, 1, 2) = 1~ (2 - c)5(c2 + 3c' - 3), 

{ 
_!Q_c11 (-c3 + 21c2 - 91c + 91) 1001 , 

JP(c, 1, 1, 3) = 16~1 (}2, 

16~1 (c - 3) 11 (-c3 - 12c2 + 8c + 20), 

116~~817 c19 (c4 - 46c3 + 5O6c2 - 1771c + 1771), 
10 ;-1 

11685817 ',42, 
10 ;-1 

11685817 ',43' 
JP(c, 1, 1, 4) = 

116~~817 (c - 4) 19 (c4 + 3Oc3 + 5Oc2 - 325c + 95), 

where 

0 :S: C :S: 1, 

1 < C :S: 2; 

0 :S: C :S: 1, 

1 < C :S: 2, 

2 < C :S: 3; 

0 :S: C :S: 1, 

1 < C :S: 2, 

2 < C :S: 3; 

3 < C :S: 4; 

(j2 =2c14 - 42c13 + 182c12 + 1638c11 - 3OO3Oc10 + 234234c9 - 1135134c8 + 3683394c7 

- 8237229c6 + 12837825c5 - 139OO887c4 + 10248147c3 

- 49O5992c2 + 1375332c - 171420 

(±2 = - 3c23 + 138c22 - 1518c21 - 12397c20 + 7O3O87c19 - 13863388c18 + 176O51568c17 

- 1584694848c16 + 10532925348c15 - 53O64396O88c14 + 2O6513O65528c13 

- 6297113994O8c12 + 152O2O349O988c11 - 292614O998O88c10 + 45O8152194128c9 

- 5562236749476c8 + 547876O79O976c7 - 4275619O68336c6 + 26O8364956736c5 

- 1217O867846O6c4 + 41936O47384Oc3 - 10O53788382Oc2 + 1497471672Oc - 1043516620 

(13 =3c23 - 138c22 + 1518c21 + 301O7c20 - 1411487c19 + 27726776c18 - 352103136c17 

+ 3169389696c16 - 2O825596836c15 + 98921176376c14 - 3O96O714O92Oc13 

+ 319577156O8Oc12 + 299889548322Oc11 - 23166O3226476Oc10 + 9848952354296Oc9 

- 3OO9O136O559844c8 + 7O26258143879O4c7 - 1274O22686388144c6 + 17872847548519O4c5 

- 19O6147O44797534c4 + 149484645359896Oc3 - 812841418OO158Oc2 

+ 27372218469O48Oc - 429893087 42860 
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Case III : a = 1, f3 = 2 

{ 

5c11 ( c6 -34c5 +476c4 -2992c3 +9044c2 -12376c+6188) 

2431 ' 

IP( c, 1, 2, 3) = ~fl~, 
5(c-3)14 ( c3 +8c2 -7c-10) 

2431 ' 

0::; C::; 1, 

1 < C::; 2; 

0::; C::; 1, 

1 < C::; 2, 

2 < C::; 3; 

14c19 ( c8 -72c7 +2223c6 -33930c5 +280800c4 -1291680c3 +3256110c2 -4144140c+2072070) 
455746863 , 0::; C::; 1, 

IP(c, 1, 2, 4) = 

where 

14 ;-2 
4557 46863 '>42' 

14 ;-2 
455 7 46863 '>43' 

455i4~ 863 (4 - c) 23 (c4 + 20c3 + 15c2 - 166c + 58), 

1 < C::; 2, 

2 < C::; 3, 

3 < C::; 4. 

(12 = - 2c17 + 68c16 - 952c15 + 5984c14 - 6188c13 - 210392c12 + 2165800c11 - 12602304c10 

+ 50803038c9 - 148864716c8 + 321854676c7 - 514965360c6 + 606448752c5 

- 517823264c4 + 311355748c3 - 124876832c2 + 29971221c - 3254970 

(J2 = - 3c27 + 216c26 - 6669c25 + 101790c24 - 637650c23 - 5920200c22 + 216087300c21 

- 3344913000c20 + 36142228980c19 - 297557145600c18 + 1923619208940c17 

- 9918848071080c16 + 41224381129620c15 - 139176493635600c14 + 383891999309100c13 

- 868669502439960c12 + 1616404010663520c11 - 2475012726838080c10 

+ 3114293148449340c9 - 3208489645818600c8 + 2688680200441950c7 

- 1813643235261000c6 + 969395892583950c5 - 400947964192620c4 + 123695368658550c3 

- 26784799138656c2 + 3630982483332c - 231837186488 

(J3 =3c27 - 216c26 + 6669c25 - 101790c24 + 432900c23 + 15715440c22 - 441942930c21 

+ 6702258420c20 - 72290674170c19 + 595114291200c18 - 3835663834860c17 

+ 19460223006120c16 - 76541709247380c15 + 219451115362320c14 

- 348837579341100c13 - 516681174695400c12 + 6258220890948000c11 

- 26964761415134400c10 + 80427656700697020c9 - 184373541679041000c8 

+ 334653488151904350c7 - 483245113519139400c6 + 550261669854516750c5 

- 484028759772387180c4 + 317470979938360950c3 - 146172645886501728c2 

+42141647696842116c-5722716024060344 
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