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Abstract—In complex environments, agents must be able to
cooperate with previously unknown team-mates, and hence dy-
namically learn about other agents in the environment while
searching for optimal actions. Previous works employ Monte
Carlo Tree Search approaches. However, the search tree increases
exponentially with the number of agents, and only scenarios with
very small team sizes have been explored. Hence, in this paper we
propose a history-based version of UCT Monte Carlo Tree Search,
using a more compact representation than the original algorithm.
We perform several experiments with a varying number of agents
in the level-based foraging domain, an important testbed for ad-
hoc teamwork. We achieve better overall performance than the
state-of-the-art and better scalability with team size. Additionally,
we contribute an open-source version of our system, making it
easier for the research community to use the level-based foraging
domain as a benchmark problem for ad-hoc teamwork.

Index Terms—Collaborative Intelligence, Learning (Artificial
Intelligence), Algorithms

I. INTRODUCTION

Agents are able to accomplish great tasks with joint collab-
orative work. However, smart autonomous agents must be able
to effectively collaborate with any team, instead of assuming
pre-programmed coordination rules; leading to the exciting
research challenge known as “ad-hoc teamwork” [1].

Recent research in ad-hoc teamwork considered potential
team-mates types, which are continuously estimated in an on-
line manner [2]–[4]. Type-based reasoning allows an agent to
re-use previous knowledge (when interacting with different
teams) and is much faster than learning models from scratch.
Meanwhile, a Monte Carlo Tree Search (MCTS) approach is
usually employed to estimate best actions, given the current
type estimations [5], [6]. However, the uncertainty over team-
mates actions leads to a combinatorial explosion on the number
of possible next states, leading to an exponential number of
possible children for any given node in the search tree.

Another approach for ad-hoc teamwork represents team-
mates as probabilistic deterministic finite state controllers [7],
and employ a variation of the POMCP algorithm for estimating
best actions [8]. However, they still struggle with scalability,
and present results limited to only two agents.

Therefore, in order to enable large scale ad-hoc teamwork,
we first formalize the problem as a Markov Decision Process
(MDP), and then propose UCT-H, a new version of UCT
Monte Carlo Tree Search, using a history-based compact
representation. We evaluate our approach in the level-based
foraging domain, which has commonly been used to evaluate
ad-hoc teamwork research [6], [9], but with larger team sizes
than what has been explored before. We evaluate overall task
performance, computational time, and memory usage. We find
that our compact representation achieves better results than the
previous MCTS approaches for any team size, and scales better
with the number of agents. In fact, we show that the difference
in performance between UCT-H and UCT tends to increase as
the number of agents grows, reaching 65% better performance
with 10 agents; and the memory usage of UCT-H is roughly
constant, while UCT’s memory usage increases exponentially.

As an additional contribution, our implementation of level-
based foraging (including all MCTS algorithms) is freely
available to the community as open source, encouraging further
research using this domain as an important ad-hoc teamwork
benchmark.

II. RELATED WORK

Ad-hoc teamwork is a very active topic of research, as
shown in a recent survey on autonomous agents dynamically
modelling other agents [10]. Our research fits within the type-
based reasoning approach, where it is assumed that agents are
from a known set of potential types, and we must estimate
each team-mate’s type [2]–[6]. The type-based reasoning is
important for ad-hoc teamwork, since it is much faster than
learning models from scratch, and the types could be built
based on previous interactions with different teams.

In particular, Barrett et al. (2011) [5] introduced the idea of
sampling types for each agent, based on the current beliefs, at
each roll-out iteration of the UCT Monte Carlo Tree Search
method [11]. Albrecht and Stone (2017) [6] employ a similar
search technique, but they consider that parameters may affect
the behavior of each type, and they introduced techniques



for dynamically estimating these parameters. However, even
though type-based reasoning should be more scalable than
learning models from scratch, the previous type-based works
still did not go beyond four agents (while the “traditional” pre-
coordinated teams can easily scale to hundreds of agents (e.g.,
[12]–[14])). Therefore, it is essential to design more scalable
ad-hoc teamwork techniques.

With regards to search approaches, POMCP is a very
famous extension of the traditional UCT Monte Carlo Tree
Search, when considering partially observable environments
[8]. Recently, Panella and Gmytrasiewicz (2017) [7] proposed
an extension of POMCP for ad-hoc teamwork, when agents
can be represented by probabilistic deterministic finite state
controllers. However, their approach still does not scale easily
to a large number of agents. In fact, their results are limited
to only two agents (the main planning agent, and a single
unknown agent).

Another possible approach for scalability in ad-hoc teamwork
is to learn a single model for a team of agents, instead of
individual models for each agent. For instance, in the RoboCup
soccer domain, Riley and Veloso (2002) [15] propose a method
to identify the type of an adversarial team, which defines
probabilities for agents locations in the field. Similarly, Barrett
and Stone (2015) [16] assume a series of previous games with
potential teams, which are used to train team policies. Then,
at execution time, the most likely current team is estimated,
and its corresponding policy executed. Obviously, however, a
single team model is less flexible than learning models for
each individual agent.

In this paper, we learn a model for each team-mate, and
propose a modification for the UCT Monte Carlo Tree Search
algorithm, inspired by the representation strategy used in
POMCP [8]. However, our compact representation is aimed at
scalability in ad-hoc teamwork, instead of handling partial
observability. Additionally, in POMCP it is assumed full
knowledge of the transition function (embedded in a “black-
box simulator”), while in our work the states are sampled
from an estimated transition function, according to the current
estimations of types and parameters for each agent. Our
approach is used for finding optimal actions while dynamically
learning types and parameters, as in Albrecht and Stone (2017)
[6], but leads to a significantly better performance, and scales
better in terms of memory usage with team size.

III. METHODOLOGY

A. Ad-hoc Teamwork Model

The ad-hoc teamwork problem can be modelled a Stochastic
Game, given the presence of many agents acting in the same
environment, with fully distributed controllers (which we
assume may or may not be cooperative).

That is, let m be the number of agents, S a set of states, Ai

the set of actions available to agent i, and A the joint action
space A1×A2× . . .×Am. We consider a transition function
T: S ×A × S → [0, 1], and a reward function Ri for each
agent: S×A→ R. Hence, given a state s and the actions of

all agents, there is a probability distribution across next states
s′, and an individual reward ri for each agent.

In order to employ Monte Carlo Tree Search on-line planning
techniques, we will model the problem, under the point of view
of an agent φ, as a Markov Decision Process (MDP). That is,
we consider a set of agents Ω, which act in the same world
as φ, affecting the reward obtained at each state. However, φ
can only decide its own actions and has no control over the
actions of agents in the set Ω. Additionally, each agent ω ∈ Ω
has a probability distribution (pdf) over Aω , given the current
state s. Under the MDP point of view, we consider that a state
s may include not only the “external” environment state, but
also internal states of agents in Ω. The actions of all agents
define the probabilities of the next potential states s′, and the
obtained φ’s reward rφ. Hence, under the point of view of φ,
the problem can be modelled as a single-agent MDP, where the
uncertainty over the actions of the other agents is embedded in
a transition function T and in a stochastic reward function R.
Hence, we consider a set of states S, a set of actions Aφ, a
reward function R : S×Aφ×R→ [0, 1], and a state transition
function T : S×Aφ ×S→ [0, 1]. Note that we consider here
stochastic rewards, and R gives the probability of a reward
rφ, given a state s and φ’s action a.

As usual, we consider that φ’s objective is to find the
optimal value function, which maximizes the expected sum
of discounted rewards E[

∑∞
j=0 γ

jrt+j ], where t is the current
time and rt+j is the reward φ receives j steps in the future.
The discount factor γ ∈ [0, 1] defines how much φ considers
future rewards.

Note that given the ad-hoc teamwork context, φ’s reward
function R is not necessarily the one of a “selfish” agent.
That is, even though φ maximizes its own value function, the
rewards obtained can be defined according to team performance
metrics, instead of being focused only on φ’s performance (as
we will see in our experiments in Section IV).

The transition and reward functions (T, R) are not known
in advance since φ does not know the pdfs of the agents in
Ω. As in Albrecht and Stone (2017) [6], we assume that each
ω ∈ Ω may be from a set of possible types Θ. Additionally,
each type has a vector of parameters p. Given the true type θω
and the true parameters pω of an agent ω, the agent φ would
be able to determine ω’s pdf at each state s (since it could
also keep track of ω’s internal state). However, since θ and p
are unknown for all agents in Ω, φ must continuously estimate
a probability distribution across all types and parameters for
each ω ∈ Ω, and must also continuously estimate the internal
state of all ω ∈ Ω. φ’s estimations lead to estimated transition
and reward functions: T̃, R̃. Additionally, since the internal
state of agents in Ω is not directly observable, φ maintains an
estimated current state s̃.

As our main contribution is a new search approach for large
scale ad-hoc teamwork, we refer the reader to Albrecht and
Stone (2017) [6] for the methods employed for estimating
types, parameters, and internal states for all agents.



B. Monte-Carlo Tree Search

Although Albrecht and Stone (2017) did not explicitly
formalize the ad-hoc teamwork problem as a MDP [6], they
employed a traditional UCT Monte Carlo Tree Search [11]
(which are used for solving MDPs in an online fashion). That is,
x simulations are performed in a search-tree, where each node
n represents a state s. The root node represents the current state,
and each simulation expands a next state s′ at each node, until
a certain limit horizon l. When the limit horizon is reached, the
rewards are back-propagated, and a new simulation is started
again from the root node.

Each node holds a Q-table, where the average value of each
action across all simulations is stored, and the UCB1 algorithm
[17] is employed when deciding which action to simulate at
each node. After all x simulations are performed, the agent
is able to estimate the best action to take, by considering the
Q-table at the root note. Once a new state is reached, the whole
algorithm is repeated, in order to decide the next action in that
new state. A pseudo-code of the original UCT algorithm is
shown in Algorithm 1.

1 Function UCT(state):
2 repeat
3 Search (state, 0)
4 until Timeout;
5 return bestAction(state, 0)
6 Function Search(state, depth):
7 if Terminal(state) then return 0;
8 if Leaf(state, depth) then return Evaluate(state);
9 action := selectAction(state, depth)

10 (nextState, reward) := simulateAction(state, action)
11 q := reward + γ Search (nextState, depth + 1)
12 UpdateValue(state, action, q, depth)
13 return q

Algorithm 1: Original UCT algorithm.

Note that in line 10, the next state and reward is simulated,
which leads to the next node to be explored in the search
tree. Because of the estimated transition function T̃ (i.e., the
possible actions of all agents Ω), given the current state s
and a φ’s action aφ to be simulated, there is a set of possible
next states s′ (and a correspondingly set of next nodes n′). If
every ω ∈ Ω assigns a non-zero probability to every action in
Aω , there are precisely

∏
ω∈Ω |Aω| possible next states s′ for

each s. Hence, the search tree grows exponentially with the
number of agents |Ω| (if every agent ω has the same number
of available actions, we find |Aω||Ω| possible next states for
each s).

Therefore, in this paper, we propose UCT-H, a modification
over the original UCT algorithm for large scale ad-hoc
teamwork. Our main idea is to represent a history at every node
n in the search tree, instead of a single state s. That is, instead
of a node n representing a specific state s, it will represent a
sequence of actions a0, a1, . . . , ad−1, taken from the root up
to the current depth d. Hence, all the possible states reachable

from the root by the sequence of actions a0, a1, . . . , ad−1 will
be represented by exactly the same node n1.

Note that the root node still represents a unique state s0.
Each time we simulate taking an action a from the root towards
a child node n′, we will sample the next state s′ by simulating
taking action a in state s0. Similarly, each time we go down
from a node n to a child node n′, by taking action a, we will
sample the next state s′ by simulating taking action a in state
s (which will be fully determined by the current sequence of
action simulations up to n). We re-start the process each time
we go back to the root node for a new simulation. Therefore, at
each simulation, the same node may represent different states.
Consequently, instead of each node storing a Q-Table with
action-value pairs Q(s, a) for a certain state s, we will store
action-values Q(h, a) for each history h.

In Algorithm 2, we present UCT-H. We also illustrate the
difference between UCT and UCT-H in Figure 1, assuming a
problem with two possible actions, and two possible next states
per action. We only show the root and the nodes immediately
below the root in the figure. Note that in the extract of the tree
shown, the original UCT has 5 Q-Tables (one for each state),
while UCT-H has only 3 Q-Tables (one for each history).

1 Function UCT-H(state):
2 root = new Node
3 repeat
4 Search (state, root, 0)
5 until Timeout;
6 return bestAction(root, 0)
7 Function Search(state, node, depth):
8 if Terminal(state) then return 0;
9 if Leaf(state, depth) then return Evaluate(state);

10 action := selectAction(node, depth)
11 (nextState, reward) := simulateAction(state, action)
12 nextNode := child(node, action)
13 q := reward + γ Search (nextState, nextNode, depth

+ 1)
14 UpdateValue(node, action, q, depth)
15 return q

Algorithm 2: Our proposed history-based UCT (UCT-H).

Note, however, that in our case we do not have the true MDP
model, as mentioned in the previous section, and hence the
simulator used in the search tree (line 10 and line 11 for UCT
and UCT-H, respectively) does not match the true problem, for
both UCT and UCT-H. This happens because the transition
and reward functions (T, R) depend on the pdfs over actions
given by the agents in Ω. These pdfs, however, are a function
of the type, parameter and internal state of each ω ∈ Ω, which
are unknown.

As in Albrecht and Stone (2017) [6], each time we re-start
a simulation from the root node, we sample a type for each
agent from our estimated type probabilities, which remains

1We still consider that these are φ’s actions, but we drop the φ subscript
for notation convenience.
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Fig. 1: Illustration of original UCT, and our modified version
(UCT-H). The same action may lead to different states, given
the uncertainty in the environment. Underlined states will
be sampled at each simulation, according to the estimated
transition function. UCT-H uses a single Q-Table for each
node, instead of a Q-Table for each state.

fixed for each agent for that simulation (i.e., until we reach the
limited horizon l), and is re-sampled next time a simulation is
re-started from the root node. Given a type, we use the current
estimated parameters when sampling the agents’ pdfs in order
to simulate the reward rφ and the next state s′.

IV. EXPERIMENTS

A. Level-based Foraging Domain

We ran experiments in the level-based foraging domain,
which is a common problem for evaluating ad-hoc teamwork
[6], [9]. Based on the descriptions in Albrecht and Stone (2017)
[6], we have implemented our own open source version2.

The main idea of the domain is that a set of agents must
collaboratively collect items from an environment. Each item
has a certain weight, and each agent has a certain (unknown)
skill-level. We consider a grid-world environment, and hence
each agent has 5 possible actions: North, South, East, West,
and Load. The Load action attempts to load an item next
to the agent if the agent is currently facing that item. When
the sum of the skill-levels of the agents (that issued the load
action) surrounding a target is greater than or equal the item’s
weight, the item is “loaded” by the team. Therefore, this
domain requires close collaboration between agents, being
well suited for ad-hoc teamwork evaluations (Figure 2 shows
an illustration).

As in Albrecht and Stone (2017) [6] we consider four
possible types for the agents in Ω: two “leader” types, which
choose items in the environment to move towards, and two
“follower” types, which attempt to go towards the same items
as other agents, in order to help them load items. Additionally,
each ω’s field of vision has an angle and a maximum radius
(which are unknown). Based on ω’s type and parameter values,

2Available at https://github.com/ElnazShy/MultiAgents
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Fig. 2: Level-based foraging domain. The number next to
the boxes indicate their “weight”, and the one next to agents
indicate their skill levels. The red (dark) agent runs MCTS to
plan actions, and must estimate the type and parameters of the
other agents.

ω’s target item or target agent (if “follower” type) will be
selected, and ω’s internal state will be set to the position of
that target. Afterwards, ω will move towards the target using
the A∗ algorithm [18]. Due to space constraints, we refer the
reader to [6] for a precise description of the four types and
their respective parameters.

As mentioned, we consider an agent φ using MCTS to decide
upon actions, given its current estimations of its team-mates
types, parameters and internal states. Note that the reward rφ
for agent φ is the number of boxes collected by all agents at
each state transition, not only the number of boxes collected
by φ. Hence, φ’s objective is to maximize the overall team
performance. We will compare the original UCT algorithm
(UCT) against our history-based UCT version (UCT-H).

B. Results

In this section, we evaluate the overall performance, com-
putational time and memory usage of UCT and UCT-H. We
evaluate each execution of the algorithms in randomly generated
scenarios. We run 15 executions per experiment and plot the
average results. Error bars show the 90% confidence interval.
Additionally, when we say that one result is “significantly
better” than another, we mean better with statistical significance,
considering p < 0.1.

We evaluated the performance across several numbers of
agents (|Ω|), with the scenario size fixed to 20 × 20. We
consider “performance” as the number of time steps required
to collect all items in the scenario (hence, the lower the better).
For both UCT and UCT-H, we performed 100 simulations for
each state, and considered a limit horizon 100. Additionally,
we used discount factor 0.95, and UCB1 exploration constant
0.5√
2

.
We show results for UCT and UCT-H using two different

parameter estimation approaches: Approximate Gradient Ascent
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Fig. 3: Performance of different MCTS algorithms as the
number of agents increases (the lower the better).

(AGA) and Approximate Bayesian Updating (ABU), from [6].
We do not consider the Exact Global Optimization approach
since it is significantly more computationally expensive than
the other two.

In Figure 3 we show the results for an increasing number of
agents (|Ω|). As we can see, UCT-H has always a significantly
better performance than UCT. Additionally, the difference
between UCT and UCT-H seems to increase with |Ω|: we
can see that UCT-H is around 35% better than UCT with 2
agents, but around 65% better with 10 agents.

In Figure 4 we evaluate the computational time per time
step for each algorithm (as we limit the time of the MCTS by
the number of simulations). As we can see, the difference in
computational time is not significant between both algorithms.
Hence, UCT-H uses about the same computational time as
UCT but achieves a better performance.

We also evaluate the memory usage of both algorithms, in
Figure 5. As we can see, both UCT and UCT-H tended to use
a similar amount of memory up to 8 agents, although UCT
tended to use more memory than UCT-H (up to 8 agents, the
difference is only significant with 3 agents). For more than 8
agents, however, UCT uses a significantly higher amount of
memory. In fact, we can notice that UCT-H memory usage
tends to remain constant at |Ω|, while UCT tends to increase
exponentially as the number of agents increases. Therefore,
not only UCT-H achieves a better overall performance than
UCT, but it is also more scalable in terms of memory usage
as the number of agents in the system grows.

Additionally, we can also notice that UCT had a much larger
variance than UCT-H in terms of memory usage, especially
for a larger number of agents. Therefore, when using UCT-H
one can have a better expectation of the amount of memory
necessary to run the system.
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Fig. 4: Computational time of MCTS algorithms as the number
of agents increases.
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Fig. 5: Memory usage of MCTS algorithms as the number of
agents increases.

C. Results for Different Estimation Methods

For the interested reader, we also show the performance
results for UCT and UCT-H, depending on the specific
parameter estimation method used (Approximate Gradient
Ascent or Approximate Bayesian Updating), as the results
were combined in the previous section.

In Figure 6 we show the results. We can still see that UCT-H
obtains a significantly better performance than UCT for both
estimation methods. For AGA, we find statistical significance
for all number of agents except 2, 3, 5 and 7 (due to the large
variance in the UCT results, even though UCT-H clearly has
a lower average for all team sizes). Concerning ABU, our
performance is again significantly better for all number of
agents.
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Fig. 6: Performance of different MCTS algorithms as the
number of agents increases (the lower the better), for different
estimation methods.

V. CONCLUSION

In this paper, we presented a novel UCT Monte Carlo
Tree Search algorithm for ad-hoc teamwork. Our approach
introduces a more compact representation, by representing
each node as a history instead of a state.

We perform several experiments in the level-based foraging
domain, a problem that requires close cooperation between
agents, and thus very well suited for ad-hoc teamwork evalua-
tion. We show that our approach achieves a better performance
than the current state-of-the-art, using roughly the same amount
of computational time, and the difference tends to increase as
the number of agents grows.

Additionally, we evaluate the memory usage of our approach
and the state-of-the-art. We found that our approach tends to use
a roughly constant amount of memory, while the memory usage
of the state-of-the-art grows exponentially with the number

of agents. Hence, our approach has a better scalability, and
should better handle larger team sizes.

As an additional contribution, we provide a fully open-source
version of our system to the community, making it easier for
other researchers to use level-based foraging as an important
benchmark problem for ad-hoc teamwork.
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