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Novel method to analyse the Biomarker-strategy
design
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Recent developments in genomics and proteomics enable the discovery of biomarkers that allow identification
of subgroups of patients responding well to a treatment. One currently used clinical trial design incorporating a
predictive biomarker isthe so-called biomarker strategy design (or marker-based strategy design). Conventionally,
the results from this design are analysed by comparing the mean of the biomarker-led arm with the mean of the
randomised arm. Several problemsregarding the analysisof the data obtained from thisdesign have been identified
in the literature. In this paper, we show how these problems can be resolved if the sample sizes in the subgroups
fulfil the specified orthogonality condition. We also propose a novel analysis strategy that allows definition of
test statistics for the biomarker-by-treatment interaction effect as well as for the classical treatment effect and
the biomarker effect. We derive equations for the sample size calculation for the case of perfect and imperfect
biomarker assays. We also show that the often used 1:1 randomisation does not necessarily lead to the smallest
sample size. Application of the novel method isillustrated using a real data example.
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1. Introduction

The focus of modern medicine has shifted from broad spectrum treatments to targeted therapeutics leading to new
challenges for the design and analysis of clinical trials. Recent developments in genomics and proteomics enable the
discovery of biomarkers that allow identification of subgroups of patients responding well to a treatment. Often little is
known about this subset of patients until well into large-scale clinical trials[1].

The impact of genomic variability is often assessed in a biomarker-based design. The general question when using any
of these designsis whether different treatments should be recommended for different subgroups of patients. Establishing
clinical relevance of a biomarker test for guiding therapy decisions requires demonstrating that it can classify patients
into distinct subgroups with different recommended management [ 2]. Severa clinical trial designs using a biomarker to
identify subgroups of patients likely to respond to a treatment have been proposed in the literature. The most commonly
used designs are the enrichment design and the biomarker stratified design [3, 4].

Another currently used design incorporating a predictive biomarker is the so-called biomarker strategy design (or
marker-based strategy design) [2, 5, 6]. Within this design patients are randomised to either have their treatment based
on the biomarker (i.e. biomarker positive patients receive a new treatment while biomarker negative patients receive the
standard treatment) or to be randomly assigned to treatment T or control group C (see Figure 1).

An alternative variant of the biomarker strategy design would not randomise patients in the randomised arm but treat
everyone in this arm with the control treatment (see, for example, [7, 2, 3]). Although this design is a special case of the
design described above (the probability to be randomised into the treatment arm is set to 0), this special case is more
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frequently used [8]. The main criticism here is that a huge proportion of the patients receive the same treatment (see, for
example, [9]). Furthermore, given that all patients in the randomised arm receive the control treatment, this variant of the
biomarker-strategy design cannot establish whether the new treatment would be beneficial for biomarker negative patients
asthey all receive the control treatment (see, for example [3]).

Conventionaly, the results of a biomarker-strategy design are analysed comparing the biomarker-led arm (arm BM)
to the randomised arm (arm R) (see Figure 1). The efficiency of this analysis has been investigated (see, for example,
[8, 10]). However, all criticism is focusing on special cases of the biomarker-stragety design: Firstly, they all assume that
randomisation to the biomarker-led and the randomised armis equal. Secondly, Hoering et al. [ 8] and Young et al. [ 10] both
considered the special case of “no randomisation” in the randomised arm which meansthat all patientsin that arm receive
the control treatment. Young et al. also consider the case of equal randomisation within the randomised arm. While equal
randomisation might be frequently used, it is not clear whether this minimises the sample size of the biomarker strategy
design. Furthermore, Young et al. investigate the efficiency of the design if thereis either no treatment effect in the disease
negative patients or if the treatment effect in the disease negative patients is in the same direction as the treatment effect
for the positive patients (but only half as large). The main idea behind the biomarker strategy design is to test whether
there is a treatment-by-marker-interaction effect. This means that we assume effects for positive and negative patients to
bein opposite directions.

Biomarker-strategy / Marker-based design
Treatment
: (group Te)
Biomarker
roup BM
™ (group ) Control
(group Co)
Randomise
Treatment
YO 12 (group T)
7 Randomise
roup R
(grop B) =5 Control
2 (group C)

Figure 1. Biomarker-strategy / Marker-based design

We hence extend the previous work in the following ways: (1) we investigate the efficiency of the design if the treatment
effect in the disease negative patientsisin the opposite direction of the treatment effect for the biomarker positive patients,
(2) we investigate optimal randomisation rules for the design in order to minimise the sample size. Furthermore, we
propose a different way to analyse the data obtained from the biomarker strategy design. The “traditional” analysis does
not exploit al information that can be obtained from the data. Riicker [11] proposed a two-stage randomised clinical
trial design which in principle corresponds to the biomarker strategy design with the only difference that patients in the
“non-randomised arm” (i.e. the biomarker-led arm) choose the treatment they prefer. However, she suggests an analysis
method that allows testing of the overall treatment effect, the self-selection effect and the preference effect. Walter et. a
[12] derive optimal randomisation rules for the above mentioned design by Ruicker. Their focus lies only on optimising
the first randomisation while they assume equal allocation to treatment and control in the randomised arm.

The aim of this paper isto adopt the analysis method proposed by Riicker and extend it to the biomarker strategy design
by accounting for possible misclassifications using an imperfect assay.

2. Motivating example

Brusselle et. al [13] report the results from the AZISAST trial, a multicentre randomised double-blind placebo-controlled
trial. Patients with exacerbation-prone severe asthma received low-dose azithromycin or placebo as add-on treatment to a
combination therapy of inhaled corticosteroids and long-acting S2 agonists for 6 months. The primary outcome was the
rate of severe exacerbations and the lower respiratory tract infections (LRTI) requiring treatment with antibiotics during
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the 26-week treatment phase and one of the secondary endpoints was the forced expiratory volumein 1 s (FEV;). For the
primary endpoint as well as the above mentioned secondary endpoint, no effects were found for the overall population.
However, opposite effects were found for the primary endpoint for patients with either eosinophilic or non-eosinophilic
severe asthma. For the secondary outcome F EV; they report a baseline value of 80.1 (standard deviation SD 21.9) for
the azithromycin group and a baseline value of 84.8 (20.7) for the placebo group. They also report a mean difference
(between basedline and 26 weeks) of -0.02 for the azithromycin group and a mean difference of -0.90 for the placebo
group. They do not report the values for the two subgroups (eosinophilic or non-eosinophilic severe asthma) so for our
illustrations, we therefore assume the following values: u1, =90, ut_ =70, uc, =75, and uc_ = 95. Patients with
eosinophilic severe asthma are considered “positive”. Furthermore, we assume o1, = o1_ = oc, = oc_ = 20. For a
prevalence of p = 0.5, the effect in the treatment group is puT, + (1 — p)ut_ = 80, for the control group the effect
is puc, + (1= p)uc_ = 85, and the overall treatment effect is put, + (1 — p)uT_ — (p/tc+ +(1- p),uc_) =-5
which roughly reflects the effects observed in the AZISAST trial.

3. Notation

Let N denote the total sample size (assumed to be fixed), r1 denote the fraction of patients randomised to the biomarker-
led arm and let ngp = Nry denote the number of patients in the biomarker-led arm. Furthermore, let ng = N(1 —r1)
denote the number of patients in the randomised arm. Let r, denote the fraction of patients within the randomised arm
that receive the experimental treatment and nt = N(1 — rq)r> denote the sample size for this arm. Furthermore, let
nc = N(1—r1)(1—r2) denote the sample size for the control arm of the randomised arm. We assume that a block
randomisation is used so that the sample sizesngm, NR, N1, and nc are fixed.

Within the biomarker-led arm patients have their biomarker assessed. Due to cost, ethical or administrative reasons
an imperfect assay is used to determine the true biomarker status. Let p denote the prevalence of the true biomarker
status and let t and s denote the sensitivity and specificity of the assay used. Without loss of generality, we assume that
patients with an observed positive biomarker status receive the experimental treatment while patients with an observed
negative biomarker status receive the control treatment. Let nt, (nc,) denote the number of patients with an observed
positive (negative) biomarker status. The sample sizes follow binomial distributionswithnt,, ~ Binomial (Nr1, pg) and
Nc, ~ Binomial (Nry, pe) with pg = pt+ (1 —p)(1—s)and ps = p(l-t) + (1 - p)s=1- pg.

The primary endpoint of interest is denoted with Y and follows a normal distribution with mean x 1, and variance 0T2+

for truly biomarker positive patients receiving the experimental treatment, mean x 1_ and variance UTZ, for truly biomarker

negative patients receiving the experimental treatment, mean x ¢, and variance aé+ for truly biomarker positive patients

receiving the control treatment, and mean x c_ and variance aé_ for truly biomarker negative patientsreceiving the control

treatment. Table 1 gives an overview of some of the notation used.

Table 1. Notation

Biomarker (BM) led group Randomised group
positive BM status negative BM status

= index Te T

£ | truemean ptur, + (1 —p)A-s)ut_ - put, + (1= put_
’g samplesize N, - nt

= | daa S Y = 20 Y - Sy =2y

_ | index - Cs C

£ | truemean - P(L—t)uc, + (L~ P)suc_ | Puc, + (L - Puc.
8 sample size — nC@n nc

data - S Y=g Ve Yy =20%ye.

4. Traditional analysis

The traditional analysis of the biomarker-strategy design is to compare the mean of the biomarker-led arm x gy with the
mean of the randomised arm u R (see, for example, [14]). The null hypotheses states that HOTA: M = ur while the
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aternative hypothesis states that H{ *: gm # uR.

Let Zgym and Zr bedefinedas Zgy = %{l;rlz%y and Zr = % A test statistic for the hypothesis aboveis
then given by

Zpm — ZR
VVAR[Zgwm — ZR]
The expected value and variance of the test statistic aswell as an estimator for the variance can be found in Appendix A.

@

4.1. Criticism

Although the biomarker strategy design is sometimesregarded asthe gold standard, thereisaso alot of criticismregarding
the trial design and the analysis of the data. The main problem with the traditional analysisisthat it does not distinguish
between a situation where there is only an overall treatment effect (but no treatment-by-biomarker interaction effect), a
situation where there is only an interaction effect (but no treatment effect), and a situation where there is both a treatment
and an interaction effect. This “inability” leads to the following problems:

e Problem 1 “No interaction effect”: As mentioned above, the traditional analysis cannot distinguish between
the treatment and the interaction effect. If there is no interaction effect, we have ut, — uc, = ut. — uc_ =
UTe — lce- IN this case, the expected value of the test statistic for the traditional analysisis E[ugm — uR] =
(tp+ (1 — P)(A—9) —r2) (u1e — ftcs)- SO, aslong as tp+ (1 — p)(L—s) —r2# 0 and 14 — ice # 0, We
observe a difference between the mean of the biomarker-led arm and the randomised arm even if there is no
treatment-by-biomarker interaction effect.

e Problem 2 “Biomarker useless’: As Freidlin, McShane, and Korn [2] noted before for a design with
ro =0, it is dill possible to observe a difference between the means even if the biomarker is useless,
i.e. t=s=0.5 In generd, if t=5s=0.5, the expected difference between the two arms is (0.5-—
r2) (p(ut, — nc,)+ @ —p) (u1_ — nc_)) whichisthe same as (0.5 — r) times the “overall treatment effect”.
Hence, we would still observe a difference between the biomarker-led arm and the control arm (randomised arm)
as long as thereis an “overal treatment effect” and 0.5 — r, # 0. If the observed difference is positive, we would
recommend to use the biomarker to inform about the treatment a patients should receive athough the biomarker is
not predictive.

e Problem 3“Arbitrary randomisation” : The expected value of thetest statistic for the traditional analysis depends
on the arbitrary randomisation ratio r since E[ugm — url =tp (u1, — uc,) + A=) — p) (u1_ — pc_) —
r2(p(ut, — nc,) +@—p) (ut. —puc_)). It can be shown that if ro = (pt(ut, —puc,)+ 1 —pL-
S)(ut. — puc )/ (Plut, — uc,) + (A — p)(ut_ — nc_)) the differences between the two means is always zero
(E[usm — uRr] = 0) irrespective of the values of the other parameters.

4.2. Orthogonality condition

In the previous section, we have seen that the traditional analysis cannot distinguish between the treatment and
the interaction effect. Under Problem 1, we show that the expected value in case there is no interaction effect is
Elupm — url = Ap+ A= p)(L—S) —12) (Te — tCe) = (Pp —I2) (UTe — HCe). Oneway of solving this problem
isto setro = pg. This ensures that the traditional analysisis now atest for the interaction effect only and that if thereis
no interaction effect the expected value of the test statistic isindeed 0. Hence, setting r, = pr,, isarequirement in order
to be able to interpret the results of the traditional analysis.

We call this the “orthogonality condition” for the traditional analysis as it is similar to the “orthogonality condition”
in atwo-way ANOVA, i.e. sample sizes in the different cells have to be proportional (in our case, nt, /Nt = nNc_/Nc)
in order to distinguish between the different effects [15]. This will also solve Problem 2 as setting ro, = pg leads to
Eluem — url = pL—p)(s+t—-1) (,uT+ —uc, — (,ul - ,ucf)) sothatift =s= 0.5 E[usm — u#r] = 0. Hence,
we do not observe a difference between the means of the biomarker-led armand the randomised arm if the biomarker is of
no use a al. We also solve Problem 3, asr isnow fixed to pg.

In general, the expected difference between the mean of the biomarker-led arm and the randomised arm can now only
bezeroif (8 p=0or p=1,(b)s+t=1,or(c) ur, — uc, — (u1. — uc_) = 0. Case (a) refers to asituation where
there are no subgroups to distinguish as every patientsis either truly positive or truly negative, case (b) refersto asituation
where the biomarker is of no use to distinguish between truly positive and truly negative patients, and case (c) refersto a
situation where there is no treatment-by-biomarker interaction effect. While setting r » to pg, fixes the problems regarding
the traditional analysis, in practice, the value of pg, is often unknown. Hence, a novel method that is robust to the choice
of ry is preferable. Furthermore, there might be other reasons (ethical or financial) why a different value of r, might be
chosen.
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5. Novel analysismethod

In order to overcome the above mentioned disadvantage of the traditional analysis method, we propose a novel way to
analyse the data obtained from a biomarker-strategy design by defining three test statisticsthat clearly distinguish between
the treatment effect, the (so-called) biomarker effect, and the interaction effect.

5.1. Hypotheses

We define the following three effects: (1) the treatment effect, (2) the biomarker effect, and (3) the interaction effect with
corresponding null hypotheses

Ho : ut — pc = put, + A—put. — (Puc, + A —puc_) =0 )
HOB: KT, +uc,  UT. Fuc _0 3)
2 2
UT, — HC,  MT. — UC_
Hy: + - =0 4
0 > > 4)

5.2. Test statistics for the treatment, biomarker, and interaction effect

5.2.1. Test statistic for the treatment effect
Thetwo means u1 and ¢ can be estimated directly from the design by % " YiT = Zrrand % " Yic = Zcr
respectively. Hence, we can define atest statistic for the treatment effect as follows:
ZTr— ZCR
T =
VVAR[Z1R — ZcR]
The expected value and variance of the test statistic as well as an estimator for the varianceis givenin Appendix B.

©)

5.2.2. Test statistics for the biomarker and the interaction effect

In thefollowing, we derive test statistics for the biomarker and the interaction effect. Note that the null hypothesesfor the
biomarker and theinteraction effect depend onthemeans i1, , uc, , u1_, and uc_ which cannot be estimated directly. L et
01, =tput, + 1 —=9)(1—p)ut_. andc, = (L —t)puc, +S(1 — p)uc_. It can be shown that in the case that there
is no biomarker (interaction) effect the following expressions are true:

uty +puc, HUT.+ pcC

HE: - =
0 2 2 0
SHE: Nrift, — Nryut(pt + (11— p)(1—5)) — (Nrifc, — Nriuc(p(l—t)+s(1—-p)) =0  (6)
e HT, — HCy _ MT_ —HC. _
0 2 2 0
SHY: Nrift, — Nriut(pt + (11— p)(1—9)) + (Nrifc, — Nripuc(p(l—-t)+s(1—-p)) =0 (7)
Now, let Z1 and Z¢ be defined as follows:
NTe nT nt
Z7 :ZyT@’i - n—T@ ZyT,i )
i=1 i=1
Ncg e nc
Zc =§yc@,i - n—ce igl:yc,i- )

It can be shown that the left-hand side of Equations (6) and (7) can be estimated by Z1 — Z¢ and Zt + Zc, respectively.
Hence, atest statistic for the biomarker effect is given by:

Tg = Z1 — Zc (10)

VWVAR([ZT — Zc]

and for the interaction effect by

Z V4
T = T+ <£C (11)

~ NAR[ZT + Zc]

The expected values and variances as well as estimators for the variances can be found in Appendix C.
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5.3. Multipletesting

In cases wherelittleis known about the new treatment under investigation and/or the biomarker used, it might be desirable
to test more than one hypotheses within the same trial. For example, we might be interested in simultaneously testing the
treatment and the interaction effect. Let COV 1 g, COVT |, and COV g, denote the covariances between the test statistics
for the treatment and the biomarker effect (T,B), the treatment and the interaction effect (T,I), and the biomarker and the
interaction effect (B,l). The expected values of the covariances are given by:

VNri (eE(1—r2)(pt+ (1 — p)(1—9)) + gra(p(L —t) + (1 — p)9))

\/(1 —r)ra(1—ra) (VAR[Z7] + VAR[Zc] — 2COV [Z7, Zc)) (r202 + (1 — 12)02)
VNra (a1 =r2)(pt + (1 — p)(L—5)) — oéra(p(1—t) + (1= p)9))

\/(1 —r1)ra(1 —r2) (VAR[Z7] + VAR[Zc] — 2COV [Z7, Zc]) (r20€ + (1 —12)02)

- VAR[Z7] — VAR[Zc]
COvVg, - JVAR[ZT = Zc]VVAR[ZT + Zc] -

COVrg=— (12)

COVT, =— (13)

Let T denote the vector containing the three test statistics for the treatment, biomarker, and interaction effect with:

Tr approx.
T=|Tg ~ Ni(u, %)
T

E[Tr] 1
w=|E[Ts] |, Z =|COVrs 1
E[T] COVt, COvVg, 1

Functions like gmvnorm from the R-Package mvtnorm or the Mata function ghk () from Sata can be used in order
to find the adjusted critical values to control the overall type | error rate. However, in the following, we focus on testing
the interaction effect only, so no adjustment is made.

with

5.4. Samplesize calculation

In thefollowing, we give formul ae to approximately cal cul ate the sample sizesto test the different hypotheses given above.
To simplify the notation, let o1, oc, o7, 07, A, B, and C be defined as follows:

of =p (ﬂ% +0T2+) +d-p) (ﬂ% +0T2,) — 1%

o8 =p(ud, +08,)+@—p) (ud +08)—ud

of, =pt (i3, +02) + W= p(A-9) (u3 +0F ) - 63,
o8, =P 1) (1, +0&,)+ Q- p)s(ud +08) - 0Z
N _O'T2® + 0o + PoPo (15 + ug) = 2(Poutbrs + Poiclc.)  (1—r2)p2o? +rapdod
- r (1 —ryra(l—ro)
_Trirpg Pood +r1(1—r2) Pe Poo?

(Q—ryra(l—ro)
C =—0r,0c, — PoPoutuc + Popchry + Poutlc,

The following equations give the sample sizes required to detect a certain effect for the traditional analysis (Nt R), the
treatment effect (Nt), the biomarker effect (Ng), and the interaction effect (N, ) based on a two two-sided test with type|
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error o and power 1 — £:

2 2
NTRr ~ ( Z-a/2+ 21— )2 OTe + oCe T 201—@9(3@ n I'20"|2 +@1- rZ)O'(% (15)
Oty +0cy — (r2ut + (1 —r2)uc) r -1,

Ne A (Zl—a/Z + 21—/3)2 (1—r2)a2 41202
T ~
UT — HC A—-ryra(l—ry)

Ng N( Z1g/2+ 21-p )2(r1A—2C)
01y —Oco — PouT + Poic 2ry
+ ( g2+ 21 )4 (rlA - 2C)2 + ( g2+ 21-p )2 B 17)
01, —Oce — PouT + Pouc 2ry 15 — Oce — PouT + Popuc) 12

N N( Zi—a2+ Z1p )2(Y1A+ZC)
I ~
01y +0cs — PauT — Popc 2r,

+ ( Zi—a/2+ Z1-p )4 (rlA + ZC)2 N ( g2+ 2-p )2 B (18)
01, +6cy — PouT — Palic 2rp 015 +0ce — Pout — Pouc/ r?

It can be seen that all sample sizes depend on the randomisation ratiosr 1 and ro. Optimal solutions can be found using
agrid search.

(16)

6. Results

Based on the results for the AZISAST trial (see Section2), we calculated the sample sizes for the traditional analysis
and the interaction effect for different values of the prevalence p (from O to 1 in steps of 0.01), and the sensitivity t and
specificity s (from 0.5to 1 in steps of 0.1) for atwo-sided type| error of « = 0.05 and a power of 80%. For the traditional
analysis, ro is set to pg (as explained in Section 4.2). In order to find the optimal value for r1, we calculated the sample
sizes for values of r1 from 0 to 1 in steps of 0.01. The randomisation ratio r; is then chosen so that the resulting sample
size is minimised. Obviously, choosing smaller increments will yield a more accurate value for r 1. For the interaction
effect, we used agrid search over r1 andr, (from O to 1 in steps of 0.01). For each combination of r1 and ro we calculated
the resulting sample sizes and chose the combination that minimises the sample size for given values of p, t, and s. In
order to verify the obtained sample sizes, we simulated 10,000 data sets and estimated the resulting type | error and power
for different scenarios (see Appendix D).

6.1. Resultsfor thetraditional analysis

The left-hand side of Figure 2 shows the minimal sample sizes needed for the traditional analysis depending on the
prevalence p, the sensitivity t, the specificity s for the AZISAST trial. The black solid line shows the sample sizes for a
perfect biomarker, the grey solid line for a biomarker witht = s = 0.9, and the black dashed line for a biomarker with
t = s = 0.8. The labels show the optimal value for the randomisation ratior 1 (whenrs is set to pg).

As expected, we see that the sample size for the perfect biomarker is smaller than the sample sizes for an imperfect
biomarker with the sample size getting larger the smaller the valuesfor t and s. We a so see that the sample size increases
with smaller and larger values for the prevalence p. The sample size for the traditional analysisis smallest for a perfect
biomarker, aprevalenceof p = 0.5, and randomisationratiosof r1 = 0.47. Inthiscase, only 142 patientswoul d be needed.
If the prevalence is 0.15, the sample size increases to 516 for the perfect biomarker.

For an imperfect biomarker witht = s = 0.9, the sample size is 231 for a prevalence of 0.5 and hence, in comparison
to a perfect biomarker, we already need nearly 90 patients more. For a prevalence of 0.15, the sample size increases to
853 and therefore, nearly 340 more patients are needed in comparison to the perfect biomarker. The sample sizes are even
larger when the sensitivity and specificity are 0.8. In this case, 423 patients are needed if p = 0.5 and 1580 if p = 0.15.
Compared to the case of a perfect biomarker, the sample sizes approximately triple.

In generd, it should be noted that the optimal value for r1 is not necessarily 0.5 but varies between 0.47 and 0.51.
However, for a prevalence between 0.05 and 0.95, the difference in sample sizes for the optimal valueof r; andr1 = 0.5
is less than one patient. Therefore, in most casesr, can be set to 0.5 without a noticeable change in the sample size.
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Figure 2. Minimal sample sizesfor the traditional analysis and the interaction effect depending on the prevalence p, the sensitivity t, the specificity s, and the randomisation ratios
roandro.

6.2. Resultsfor theinteraction effect

In the following we show the results for the sample sizes for testing the interaction effect based on our proposed analysis
method. The right-hand side of Figure 2 shows the resulting sample sizes for the interaction effect. As before, the black
solid line shows the sample sizes for the perfect biomarker, the grey solid line for a biomaker witht = s = 0.9, and the
black dashed line for a biomarker witht = s = 0.8. Labels show the optimal values for ry and r, so that the sample size
isminimised for given values of p, t, and s.

absolute differences in sample sizes relative differences in sample sizes
NO.S.D.S_Nmin No.s.o.s/Nmin
150 1.5+
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45
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Figure 3. Sample sizes for the traditional analysis and the interaction effect depending on the prevalence p, the sensitivity t, the specificity s, and the randomisation ratiosry and
ro.

Again, we see that the sample sizes are smaller for prevalences around 0.5 and increase towards smaller and larger
values. For example, for a perfect biomarker and a prevalence of 0.5, the minimal sample size for the interaction effect is
142. It increases to 250 if the prevalence is 0.25 and to 530 if the prevalenceis only 0.15. We also see that (as expected)
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larger sample sizes are needed if the biomarker is not perfect. For example, for an imperfect biomarker witht = s = 0.9,
the minimal sample size is 231 (for p = 0.5), 400 (for p = 0.25), and 836 (for p = 0.15). For an imperfect biomarker
witht = s = 0.8, the following sample sizes result: 422 (for p = 0.5), 722 (for p = 0.25), and 1498 (for p = 0.15).

As for the traditional analysis, we note that the optimal value for the randomisation ratio r, iSry = pg. However,
while thisis aregquirement for the traditional analysisin order for the results to be interpretable (see Section 4.2), for the
interaction effect setting r to pg minimisesthe sample size but is not necessary in order to interpret the results of the test
dtatistic.

We &l so see that the optimal value for r; is not necessarily 0.5 but ranges between 0.47 and 0.5. Again, the differences
between the minimal sample size and the one obtained for r; = 0.5 is less than one patient as long as the second
randomisation ratio r» is chosen so that the sample size is minimised given r 1. The situation changes noticeably if both
randomisation rules are set to 0.5 which is frequently done. Let Ng 5,05 denote the sample size for the interaction effect
forry =rp = 0.5and let Nyin denote the minimal sample size. Figure 3 shows the absolute difference in the sample sizes
(No.5,05 — Nmin, left-hand side) and the relative differences (No5,0.5/ Nmin, right-hand side). As we can see, the absolute
differences vary between 0 and approximately 130 (for a prevalence between 0.15 and 0.85). The absolute difference is
even larger for smaller (and higher) values of the prevalence. While we see that the absol ute difference of the sample sizes
does not depend on the sensitivity and specificity of the biomarker, we see that the rel ative difference does (see right-hand
side of Figure 3). The highest relative differences occur for the perfect biomarker (as this has the smallest minimal sample
size).

absolute differences in sample size relative differences in sample size in %
Nrr—=N, 1OO(NTR_NI)/NI
EggA S S t=s=0.7 oo T t=s=0.7
: t=5=0.8 144 N t=5=0.8
240 !
[ R ts=09 | | === t=s=0.9
220 : 12
2004 S t=s=1.0 L t=s=1.0
) 10 ®6587,7247,660
180 \ K
g 160+ B . 8- '®3388,3656,268
< 140 : s .
9 ‘; 8 6A
O 1204 \ ]
= y o
S 100 \ 44
80 |
2A
60
40 0
204
-2 . e N .
04 T = ~.e- . -
o= 530,516,-14 N, Nre, N=Nr = 530,516,-14
-20+ -4+
T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
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Figure 4. Differences in sample sizesfor the traditional analysis and the interaction effect depending on the prevalence p, the sensitivity t, and the specificity s.

Figure 4 shows the absolute differences in sample size for the traditional analysis and the novel anaysis for the
interaction effect (left-hand side) as well asthe relative differences in sample size in percent (right-hand side) . Aswe can
see, the sample size for the traditional analysisis often higher than the sample size for the interaction effect (except for a
perfect biomarker where the sample size for the traditional design is always lower than the sample size for the interaction
effect). The absolute difference in the sample size might be substantial: for example, fort = s = 0.7 and p = 0.15 the
absolute difference in sample size is 268. The relative increase in the sample size is about 8% (from N, = 3388 to
Nt R = 3656). We can also see that in cases where the sample size for the traditional analysisis smaller than the sample
size for the interaction effect, the increase in sample size is less than 3%. For example, fort =s =1 and p = 0.15 the
sample sizeincreases from Ntr = 516 to N; = 530.

7. Conclusion
This paper investigates the performance of the traditional analysis of the biomarker-strategy design. We derive optimal

randomisation rules in order to minimise the sample size for the traditional analysis. We also propose a novel analysis
method for the data obtained from such a design and explore the properties of this method.
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Thetraditional analysis has been criticised many times (see, for example, [9, 2, 16, 17]). The main problems are that the
traditional analysis does not distinguish between the treatment and the interaction effect. Hence, it is possible to observe
no difference between the mean of the biomarker-led arm and the randomised arm even if there is an interaction effect or
to observe a difference between the means even if there is no interaction effect. We show that if the sample sizesin the
four subgroups of the biomarker-strategy design fulfil the “orthogonality condition” (i.e. are proportional to each other),
the above mentioned problems can be solved. However, while the “ orthogonality condition” ensures that the traditional
analysis provides atest statistic for the interaction effect only, the value of pg, is often not known as it depends on the true
values for the sensitivity, the specificity, and the prevalence. These values are often unknown at the planning stage of a
trial.

To overcome the disadvantages of the traditional analysis, we propose a hovel analysis method based on the work of
Rucker [11]. We define three different effects than can be measured within the biomarker-strategy design: the treatment
effect, the biomarker effect, and the interaction effect. This ensures that our analysis can clearly distinguish between the
treatment effect and the interaction effect, regardless of the randomisation rules used. We derive test statistics and show
how the sample sizes for the three effects can be calculated. Optimal randomisation rules are derived in order to minimise
the sample sizes.

Furthermore, we show that if the * orthogonality condition” is fulfilled, the sample size for the interaction effect (based
on the novel analysis method) is often smaller than the sample size for the traditional analysis. In cases where the sample
sizefor the novel analysing method islarger than the sample sizefor the traditional analysis, the difference isless than 3%
of the sample size and therefore often negligible. In general, we therefore recommend to use the novel analysis method
instead of the traditional analysis method.

Appendix A. Traditional analysis

The expected value and variance of the test statistic for the traditional analysis are given by:

E[Zsm — Zrl =(t —r2)p (a1, — 1c,) + A=s—r2)(A— p) (u1_ — c_)
=tp (ut1, —nc,) + A=) A —p) (1. —uc_) —r2(p(u1, — uc,) + A= p) (u1_ — pnc.))

(19)
2 2 2 2 2
pt (42, +02 ) + Q- p@A-39) (13 +02) - (ptur, + Q- PA-ur)
VAR[Zgm — ZR] =
Nrq
2 2 2 2 2
pa—1) (2, + 02 )+ @ - ps(ud +02) - (PA-buc, + (1 - Psuc.)
+ Nrq
_2(tput, + A= pA=9)ut) (A= puc, +s = puc_)
er
[p (5, + o, = (12, +02)) + - (18 +oF = (2 +2))]r
_|_
N(1—ry)
_[ut, + A= put)® = (Puc, + A= puc)’]r2
N(1—ry)
p (ﬂé + 0&) +(1-p) (ﬂ%_ + oé_) — (puc, + A — puc.)?
n ) (20)
N1 —ry)
The variance can be estimated by
2 2
e Y) X1 V2 Yoo ¥) e ¥ S vy
VAR[Zgm — ZR] 2T y? - % + X V- : CeN)rl—l = -2 T
BM TR (Nry)?
NA=r)rR Sy’ = (Sry)°  NA-r)A-r2) Ty’ = (L)’ -
(N(1—ryp))? (N(1—rp))?
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Appendix B. Treatment effect

The expected value and variance of the test statistic for the treatment effect are given by:

E[Ztr — Zcr]l = p(ut, — uc,) + 1= p) (u1_ — 1c_) (22)
P(uf, +0f)+ L= pP(ui +0f )~ (put, + (1 -put.)?

VAR[ZTR — ZcR] = N@A—=rqpr?

N p(ud, +0d,)+ A - p)(ud_+0&) — (puc, + (1— puc_)?

23
N1 -r)@-r2) @3
The variance can be estimated by
2 1 2 2 1 2
VAR[ZTR — Zcr] = = 2Ty - N{T-rpr2 (>ry) 2cY - N=r)(A=12) >cy) 24)
(NAL=rpr2)(N@A—=rpro—1)  (NA-r)A-r2)(NL-rDH(A2-r2)-1)
Appendix C. Biomarker and interaction effect
The expected values are given by:
E[Z7] =Nr161, — Nraut(pt + (1 - p)(1 —9)) (25)
E[Zc] =Nrifc, — Nriuc(p(1—1t) +s(1 - p)) (26)
The variances are given by:
VARIZ1] =Nr1 (pt(s}, + o) + A= A - 90d +0f) - (ptur, + Q- PL-9ur)?)
2 2 O'TZ
+ Nripy(1— pp)ut + ((Nripp)“+ Nripy(1— p+))m
—2(Nryut(tput, + 1 — p A —s)ut)(1 - py)) (27)
VARI[Zc] =Nri (pA— (2, +0&,) + (1 = psud_+08) = (pA—uc, + (1 - Psuc.)?)
+ Nrip_(1— p-)ug + (Nr1p-)® + Nrip_(1— p_)) i’
¢ N(L-r)-r2)
—2(Nriuc((X =t puc, + (1= p)suc )1 - p-)) (28)
(29)
and the covariance by:
COV [Z7, Zc] =Nry (= (tput, + 1= p A —9)u1_) (A —t)puc, +S(L— p)uc_) — PaoPouT iC
+ pouc (tput, + A — P)A —S)ut_) + Peut (L —t)puc, +s(1— p)uc_)). (30)
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The variances and covariances of Zt and Z¢ can be estimated by follows:

2
NTg _”Iea Y) — i”Iea Yi2 nt 2
VAR[Zr] = Y - (sv) -2 + 7, (1—”&)(20

i—1 Nrp—1 Nri/\i=
2
1 nr 1 nr n
= 5 Yi — =S, nrt To
2 nr nt I=l(I nt i=1 I) 1 nr,
(e (1-5)) = 2l 2 ) (&) U
i—1 i—1
(31
2 n
o (X)) -2V e\ £\
VAR[Zc] =S v2 - 22 - n _ Ce Y,
201 =3y | N)(z )
2
Lse (v —L>re Y-) nc Nce
2 Nce nc |=1( I 7 ne &i=1"l 1 Ncg,
n n 1-— -2 — Y; Yi 1-—=
Jr( S Ce( Nfl)) nc nciz;‘ ' ; ' Nry
(32)
1 NTe Ncg e NTg 1 De nT Nce 1
COv _ a . o . . ® . a
COVIZr, Zel = -G D) [ 22V * N 2V (@ZY')JFN—rl 2V (ﬁZ“)
i—1 i—1 i—1 i—1 i—1 i—1
nt nc nt nc
nr, 1 1 1 1
+ (mmene. —mm ——))(—zvi)(—zvi)—m@nc@(—zvi 15y,
NI i nc = T i3 nc =
(33)

The derivations can be found in the Supplemental Material. We anticipate the test statistics to approximately follow a
normal distribution.
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5 Appendix D. Simulation resultsfor thetypel error and power
6
7 In order to verify the sample sizes abtained in Section 6, we simulated 10,000 data sets and estimated the resulting type |
8 error and power. The power was estimated using the same values as described in Sections 2 and 6. For the type | error, the
S190 meanswereset to ut, =90, ut_ =70, uc_ = 75, and uc_ = 55 (i.e. assuming that there is no interaction effect).
11 Table 2. Results for the power based on 10,000 smulations for different valuesof p, t, s, r1, andrz
12
13 interaction effect traditional analysis
14 p t S ry ro N, o 1-p rp ro Ntrad o 1-p
15 015 08 08| 050 029 1498 0.0499 0.7927 | 051 029 1580 0.0520 0.8211
16 015 09 09050 022 83 00510 0.7938 | 0.50 0.22 853 0.0466 0.8083
17 015 10 10| 049 015 530 0.0475 0.7877 | 049 0.15 516 0.0482 0.7884
18 020 08 08|050 032 974 00518 07995 | 051 0.32 1015 0.0473 0.8147
19 020 09 09| 049 026 541 0.0467 0.7939 | 0.50 0.26 549 0.0461 0.7985
20 020 10 10|049 020 341 0.0486 0.7964 | 048 0.20 333 0.0462 0.7795
21 025 08 08049 035 722 0.0500 0.7892 | 0.50 0.35 745 0.0489 0.8065
22 025 09 09|049 030 400 0.0489 0.7967 | 049 0.30 404 0.0473 0.7963
23 025 10 10|048 025 251 00498 07943 | 0.48 025 246 0.0490 0.7876
24 030 08 08| 049 038 584 0.0478 0.7987 | 0.50 0.38 598 0.0470 0.8086
25 030 09 09|049 034 322 0.0451 0.7900 | 049 034 325 0.0533 0.7986
26 030 10 10 048 030 201 0.0490 0.7925 | 048 0.30 198 0.0500 0.7830
% 035 08 08049 041 503 0.0462 0.7912 | 0.50 041 512 0.0503 0.8029
29 035 09 09|049 038 277 0.0480 0.7870 | 0.49 0.38 278 0.0473 0.7982
30 035 10 10| 048 035 172 0.0468 0.7757 | 048 0.35 170 0.0473 0.7697
31 040 08 08| 049 044 455 0.0478 0.7904 | 0.50 0.44 461 0.0506 0.7994
32 040 09 09048 042 250 0.0497 0.7829 | 049 0.42 251 0.0496 0.7891
33 040 10 10| 047 040 154 0.0477 0.7882 | 047 0.40 154 0.0500 0.7787
34 045 08 08| 049 047 430 0.0476 0.7856 | 0.49 0.47 433 0.0471 0.8060
35 045 09 09| 048 046 235 0.0479 0.7817 | 049 0.46 236 0.0488 0.7902
36 045 10 10 |047 045 145 0.0460 0.7799 | 047 0.45 145 0.0445 0.7885
37 050 08 08049 050 422 0.0493 0.7967 | 049 0.50 423 0.0489 0.7974
050 09 09048 050 231 0.0485 0.7865 | 048 0.50 231 0.0455 0.7795
38
39 050 10 10 |047 050 142 0.0396 0.7636 | 047 0.50 142 0.0436 0.7613
40 055 08 08| 049 053 430 0.0463 0.7922 | 049 0.53 430 0.0494 0.7858
41 055 09 09| 048 054 235 0.0449 0.7841 | 048 0.54 235 0.0460 0.7834
42 055 10 10 |047 055 145 0.0460 0.7809 | 047 0.55 145 0.0447 0.7870
43 060 08 08| 049 056 455 0.0482 0.7939 | 049 0.56 454 0.0511 0.7959
44 060 09 09|048 058 250 0.0484 0.7847 | 048 0.58 249 0.0467 0.7791
45 060 10 10| 047 060 154 0.0492 0.7966 | 0.47 0.60 154 0.0471 0.7973
46 065 08 08| 049 059 503 0.0498 0.7998 | 0.49 0.59 501 0.0521 0.8003
47 065 09 09| 049 062 277 0.0459 0.7881 | 049 0.62 275 0.0430 0.7891
48 065 10 10 |048 0.65 172 0.0412 0.7645 | 048 0.65 170 0.0390 0.7657
49 070 08 08| 049 062 584 0.0510 0.7985 | 049 0.62 582 0.0488 0.7921
50 070 09 09| 049 066 322 0.0465 0.7908 | 0.49 0.66 320 0.0492 0.7888
51 070 10 10| 048 070 201 0.0528 0.7974 | 048 0.70 198 0.0452 0.7855
52 075 08 08| 049 065 722 0.0481 0.7958 | 0.49 0.65 720 0.0496 0.7915
53 075 09 09|049 070 400 0.0496 0.7942 | 049 0.70 396 0.0466 0.7875
54 075 10 10048 0.75 251 0.0567 0.8028 | 048 0.75 246 0.0524 0.7891
55 080 08 08| 050 068 974 0.0476 0.8042 | 0.50 0.68 974 0.0501 0.8010
56 080 09 09|049 074 541 0.0453 0.7931 | 049 0.74 536 0.0496 0.7895
57 080 10 10| 049 080 341 0.0524 0.7901 | 0.48 0.80 333 0.0475 0.7860
58 085 08 08|050 0.71 1498 0.0517 0.7920 | 0.50 0.71 1506 0.0509 0.8039
59 085 09 09|050 078 836 0.0505 0.7955 | 049 0.78 829 0.0558 0.7971
60 085 10 10|049 085 530 0.0481 0.7887 | 049 0.85 516 0.0475 0.7904
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