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Abstract 

Regression mixture models are a statistical approach used for estimating heterogeneity in effects. 

This study investigates the impact of sample size on regression mixture’s ability to produce 

‘stable’ results. Monte Carlo simulations and analysis of resamples from an application dataset 

were used to illustrate the types of problems that may occur with small samples in real datasets. 

The results suggest: 1) when class separation is low very large sample sizes may be needed to 

obtain stable results; 2) it may often be necessary to consider a preponderance of evidence in 

latent class enumeration; 3) regression mixtures with ordinal outcomes result in even more 

instability; and 4) with small samples it is possible to obtain spurious results without any clear 

indication of there being a problem. indicate a substantial impact of small samples (relative to 

class separation) on both the number of classes supported by the data and estimates of 

differential effects in those classes. In some cases, there was no indication of invalid results, and 

yet the reported effects were opposite to those that existed in reality. This concerning finding was 

related to another: that dramatic differences sometimes appeared between multiple subsamples 

from the same data as sample size decreased. Overall these results suggest that sample sizes 

much larger than those typically considered large are needed to assure stable results (500 to 1000 

subjects were needed for most analyses in this paper). Great caution is therefore urged in the use 

of regression mixtures with small samples, and the results highlight the importance of model 

validation. Because no one simulation can provide comprehensive guidelines for required sample 

sizes, however, it is recommended that multiple simulations reflecting the structure of the dataset 

of interest be conducted to understand model stability for a given result.  

 

Keywords: Regression mixture models, sample size, heterogeneous effects 
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The Effects of Sample Size on the Estimation of Regression Mixture Models  

 

The notion that individuals vary in their response to their environment has been well-

accepted across substantive fields.  Leading theories in the behavioral, social, and health sciences 

emphasize the synergistic role of environmental risk in individual development (Bronfenbrenner, 

2005; Elder, 1998; Patterson, DeBaryshe, & Ramsey, 1989; Sampson & Laub, 1993) and 

consequently the search for differential effects – i.e., individual differences in the relationship 

between a predictor and an outcome – has become of increased salience to applied researchers. 

Traditional approaches for assessing differential effects involve the inclusion of a multiplicative 

interaction term into a regression equation. This method is intuitive and useful for testing 

differential effects which have been hypothesized a priori and involve observed subgroups.  An 

alternative strategy, regression mixture modeling, utilizes a finite mixture model framework to 

capture unobserved heterogeneity in the effects of predictors on outcomes (Desarbo, Jedidi, & 

Sinha, 2001). In other words, regression mixture models are an exploratory approach to finding 

differential effects that do not require their predictors to be measured (Dyer, Pleck, & McBride, 

2012; Van Horn et al., 2009).  

This paper uses simulations and resamples from applied data to show how sample size 

impacts regression mixture results with the aim of providing users of this method with a starting 

point for selecting their samples. As regression mixture modeling is a relatively new method, 

further work is needed to understand the conditions under which models will provide unbiased 

and stable estimates of differential effects. The question of what sample size is needed to achieve 

reliable results is both urgent and difficult to answer. Based on our review of prior research on 

regression mixtures, we believe the answer to this questionWe aim to show that sample size 
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requirements depends critically on class separation, with both regression-parameter estimation 

and latent-class enumeration being a function of both sample size and class separation. We 

therefore hypothesize that, as sample size and/or class separation decrease the likelihood of 

unstable solutions will increase.  

Methodological Overview 

Regression mixture models are a specific form of finite mixture model. The latter term 

refers to a broad class of statistical models that estimate population heterogeneity through a finite 

set of empirically derived latent classes. Regression mixture models typically aim to identify 

discrete differences in the effect of a predictor on an outcome. This differs from other more 

commonly known mixture approaches, such as growth mixture models (B. Muthen, 2006; B. 

Muthén, Collins, & Sayer, 2001; B. O. Muthen et al., 2002) and semi-parametric models (D. S. 

Nagin, 2005; Daniel S. Nagin, Farrington, & Moffitt, 1995), in that the latent classes in a 

regression mixture are defined by bewteen-class differences in the associations between two 

variables, rather than between-class differences in the means or variances of a single variable 

(Desarbo et al., 2001; Van Horn et al., 2009; Wedel & Desarbo, 1994). The formulation, 

estimation, and details around the specification of regression mixtures are already well 

established (M. L. Van Horn et al., 2015). This paper focuses on helping users of regression 

mixtures understand the role that sample size and class seperation plays in the stability of 

regression mixture results. 

Sample size in mixture models 

 Sample-size requirements for finite mixture models can be approached from two 

perspectives. One is the standard question of power: i.e., for a given sample size what is the 

probability that some hypothesis will be rejected, given the population values for all the model 
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parameters? (It should be noted here that, if the hypothesis concerns latent-class enumeration, there is typically no alpha level associated with the test). This is a question of obtaining the sampling distribution for a specific parameter, 

and it can in principle be derived analytically. However, mixture models include many 

parameters that impact power, and attempts at latent-class enumeration typically rely on 

comparison of penalized information criteria, such as the Bayesian Information Criterion (BIC), 

for which there is no known sampling distribution. Thus, power for regression mixtures is 

typically estimated using Monte Carlo simulation. This paper raises a The second perspective relates to the present paper’s hypothesis that that a second issue exists withrelated to finite 

mixtures in general, and with regression mixtures in particular. Because mixture models (Bauer & 

Curran, 2003, 2004) and especially regression mixtures (George et al., 2011; Van Horn et al., 

2012) rely on strong distributional assumptions for parameter estimation, we hypothesize aim to show that 

model results will be increasingly unstable with smaller samples to the point that – even under ideal 

conditions – such models will yield more extreme results than expected – i.e. results may be far outside 

of the confidence interval suggested by estimated standard errors. 

 One of the difficulties encountered in estimating finite mixture models in general 

(without incorporating class-varying regression weights) is that the distribution of each model 

parameter depends on multiple model- and data- specific factors, including the number of classes 

estimated, the restrictiveness and complexity of the within-class model, the quality of the 

covariates, and the reliability of within-class observations (G. H. Lubke & Muthén, 2005; 

MacCallum, Widaman, Zhang, & Hong, 1999; Marcon, 1993; Nylund, Asparauhov, & Muthen, 

2007). {Lubke, 2007 #1084;Nylund, 2007 #1070}Moreover, sample-size considerations must 

take account of class separation, overall sample size, and the within-class sample size. If the 

estimated proportion of respondents within a given class is small, then a larger overall sample 

will likely be required to find a stable solution for that class. This makes it challenging to provide 

a “rule of thumb” for sample-size requirements. However, proposing such a rule is not our goal. 
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Rather, this paper uses both simulations of selected scenarios and resampling of a real dataset to 

raise researchers’ awareness of the types of problems that regression mixture modeling is likely 

to encounter when small samples are used, we focus specifically on the interplay between class 

separation and sample size while also looking at the proportion of subjects in each class.d.  

 Much work has looked at latent class enumeration, with some also looking at parameter 

estimation, with mixture models in general. Of particular note is work which has looked at 

sample size in factor mixture models (G. Lubke & Muthen, 2007; Nylund et al., 2007), when 

looking across the other factors this work found that class enumeration and parameter estimates 

were adequate with sample sizes of 500 or less. Few prior studies have examined the effects of 

sample-size requirements on regression mixture models specifically. Sarstedt and Schwaiger 

(2008) examined the use of regression mixture models to model market segmentation in the field 

of marketing, focusing only on the ability of these models to find the true number of latent 

classes. They found that while the Akaike’s Information Criterion (AIC; Akaike, 1973) 

performed poorly regardless of  sample sizes, the Consistent Akaike’s Information criterion 

(CAIC; Bozdogan, 1994) performed well when samples were as small as n=150 to n=250.  

However, Sarstedt and Schwaiger’s study  (2008) was focused on situations with very high class 

separation resulting from in which there were large differences across classes in both intercepts 

and multiple regression weights.  Across the different classes effect sizes, measured as R-square 

values ranged from .60 to .98, indicating that in some classes, very little residual variance 

remained. Under such conditions, there is substantial separation between latent classes, and thus 

regression mixture models would be expected to perform well even with small samples. Effects 

in the social sciences are generally much smaller; and when one’s interest is in finding 
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differential effects, intercept differences may be small to nonexistent. It should also be noted that 

Sarstedt and Schwaiger (2008) did not evaluate the precision or stability of parameter estimates. 

One other study examined sample size requirements for regression mixtures, this time 

using a negative binomial model. Park, Lord, and Hart (2010) incorporated design features 

typically seen in highway crash data into their simulation, examining bias in parameter estimates, 

and found large bias in the dispersion parameter in samples less than n=2,000 under realistic 

conditions. They noted unstable solutions with small sample sizes and moderate or low effects, 

but also found that under conditions of high class separation (i.e., large mean differences 

between classes), their model was stable for samples as small as n=300. A reason for these 

discrepant results has to do with how much classes differ; as Park, Lord, and Hart (2010) put it, 

“the sample size need not be large for well-separated data, but it can be huge for a poorly-

separated case.” Class separation is at its lowest when differences between latent classes are 

solely a function of differences in regression weights with no mean differences; and in this case, 

the multivariate distributions of the data for the different classes overlap almost completely. This 

is also the point at which regression mixtures fulfill their promise as a method for exploring for 

differential effects, since they should be capable of finding discrete groups of respondents 

distinguished primarily by differences in regression weights.  

The Current Study 

 This study aims to demonstrate the consequences of using regression mixtures to find 

differential effects as sample sizes decrease. Using both simulations and resampling of a real-

world dataset, we evaluate the impact of sample size and class balance on latent class 

enumeration, bias in model parameters, the adequacy of estimated standard errors, and model 

stability. We are particularly interested in cases where the result of small samples is not low 
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power, but rather parameter estimates which do not represent the population well. Based on the 

results of previous applied research and simulations, we hypothesize that the use of small 

samples in regression mixture models will increase the likelihood of extreme results, such that 

estimates of regression parameters across classes will be biased away from each other, while the 

confidence intervals of the estimates will be too narrow. We also hypothesize that class 

enumeration will become more difficult with small samples, and that there will be an increasing 

number of convergence problems for the model.Additional analyses focus on the role of class 

separation in this relationship. 

Ordinal logistic regression mixture models have been found effective for evaluating 

differential effects in the presence of skewed outcomes (Fagan, Van Horn, Hawkins, & Jaki, 

2012; George, Yang, Van Horn, et al., 2013; Van Horn et al., 2012). Therefore, we will also test 

the hypothesis that the effects of sample size will be stronger on the ordinal logistic model than 

on other models because they require additional parameters, and because less information is 

available for analyses with ordinal outcomes.  

 

 

Methods: Simulation Study 

  Five Hundred The Monte Carlo simulations phase of our study included 500 

simulationwere runs per condition. Because of our interests in the problems that can occur when 

latent classes are defined solely by differential effects, our initial simulations were for a two-

class model for whichwhere the only parameters that differed between the classes were 

regression weights and residual variances (more complex models are subsequently evaluated). 

We only consider 2 classes for the true model because we want to illustrate the issue in a 
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relatively simple context. The initial simulations used one predictor, X, and one outcome 

variable, Y. The regression relationship for class 1 was Y = 0.70X + e, and for class 2, Y = 

0.20X + e. In both classes, tThe predictor and the residuals, e, were drawn from a standard 

normal distribution with the residuals for Y scaled so that the standard deviation of Y is one. 

Thus, the slope of the predictor is equal to the correlation of X and Y.    

To answer our research questions, we examined 18Eighteen simulation conditions were 

examined. For the first 10 conditions, the total number of individuals in the data set (6,000, 

3,000, 1,000, 500, and 200) as well as the proportion of the sample in each class (50% in each 

class and 75% in class 1 and 25% in class 2) was varied across conditions. Our five chosen levels 

of overall sample size were 6,000, 3,000, 1,000, 500, and 200. The largest case, 6,000 

individuals in total was chosen based on prior studies (e.g., Van Horn et al., 2009; Van Horn et 

al., 2012) that suggested this was a sufficient number of individuals to find expected results. The 

smallest total sample size examined was 200 cases. For each sample size, two different balance 

designs for latent classes were examined: i.e., 50/50 and 75/25 splits of individuals in class 1 and 

class 2, respectively. 

Data were generated in R (R Core Team, 2016), and the models fit using Mplus version 7 

(L. K. Muthén & Muthén, 2008). The true model had two classes, and thus one-, two-, and three-

class models were fit for the first 10 conditions to examine how frequently the correct number of 

classes would be selected based on the BIC and the bootstrap likelihood ratio test (BLRT). 

However, due to the computational burden, BLRTs were not run for conditions 11-18. We also 

chose to focus on the BIC because it delivered the most reliable results in previous research with 

regression mixtures (George et al., 2012; Van Horn et al., 2012). Results for the AIC and 

adjusted Bayesian Information Criterion (aBIC) were also collected for the ordinal regression 
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mixture model, as these results differed across criteria. The percentage of times for which the two-class 

model would have been selected over the one-class or the three-class model were reported to 

better understand failures to select the true two-class model, we also calculated the percentage of 

times the three-class model is chosen over the two-class model; but importantly, we considered 

failure of the three-class model to converge as indicating support for the two-class result. This 

decision was based on our previous experience that over-parameterized models frequently fail to 

converge to a replicated loglikelihood (LL) value. This assumption changed results dramatically 

only for the ordinal outcomes model, class enumeration tables without this assumption are 

available from the authors upon request. Finally, the average size of the smallest class across 

simulations was recorded for each condition; and when the smallest class is relatively small (e.g., 

lower than 10% of the overall sample size), it was necessary to give further consideration to 

whether there was sufficient evidence to support a meaningful additional class, or if the apparent 

presence of an additional class was due to outliers or violations of the distributional assumption. 

We note that 10% is an arbitrary number and that it is possible to have true and meaningful 

classes below this size, given enough information in the data to reliably detect these classes. 

All study simulation conditions were evaluated for replicated convergence, model fit, 

class enumeration and parameter estimation.  Replicated-convergence is defined as a simulation 

run in which 1) a solution was obtained and 2) the log-likelihood value was replicated to the next 

integer in at least two of the 24 starting values. 

Bias in parameter estimates was examined for every replicated solution in which the true 

two-class model was selected using the BIC. Specifically, we calculated the proportion of 

individuals in each class, the average across simulations for each parameter estimate and the 

associated standard error, as well as the parameter coverage, i.e., the percentage of simulations 
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for which the true parameter is contained in the 95% confidence interval. Lastly, we displayed 

the distribution of slopes across simulations for conditions with smaller sample sizes. This serves 

two purposes. First, it helps to identify the presence of outliers in the estimated slopes; and, 

secondly, it helps to assess the robustness of the estimation and underlying sampling distribution. 

To correct for the problem of label-switching in simulations, classes were sorted such that the 

class with the stronger effect of X on Y was always class 1 (McLachlan & Peel, 2000; Sperrin, 

Jaki, & Wit, 2010). In cases where the two classes were not distinct, as evidenced by the 

distribution of the parameter estimates, average parameter estimates were somewhat biased in 

favor of the correct solution because of this class sorting.   

Results: Simulation Study 

Class Enumeration. Table 1 shows for each of the first 10 basic conditions the proportion 

of 500 replications in which the LL value was replicated Table 1 shows the proportion of 500 

replications for each of the first 10 basic conditions in which the LL value was replicated along 

with average entropy values across these replications. No problems with model estimation were 

observed for the one-class model in any conditions, or for the two-class model when sample 

sizes were moderate to large. However, the two-clas model’s rate of convergence to a replicated 

LL value dropped to around 70% for small sample sizes. In the case of the three-class model, 

only around 60% of the simulations converged to a replicated LL value when sample sizes were 

large, and when they were small, replicated convergence rates were as low as 38%. In most 

cases, non-convergence was due to the best-likelihood value not being replicated, rather than to a 

failure of convergence for all starting values. Further evaluations with 504 starting values (a 

multiple of 24, the number of processors available), 96 of which were run to convergence, did 

not improve the percentage of solutions that replicated the best LL value. This suggests that this 
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problem was largely due to model misspecification, i.e., resulted from estimating an incorrect 

three-class model when there were in fact two classes in the population. 

The entropy of the two-class and three-class results exhibits an interesting pattern with 

entropy being the lowest for the two-class models with large sample sizes. Low entropy values 

are typical for regression mixture models (Fagan et al., 2012) and can be expected when classes 

are poorly separated. Because entropy has been used as a criterion for selecting latent-class 

models (Ramaswamy, Desarbo, Reibstein, & Robinson, 1993), the true entropy values for our 

models are worth knowing. More specifically, if the true entropy is lower for the true two-class 

model, it would suggest that entropy should not be used for regression mixture model selection.  

Accordingly, we estimated the true entropy for these models using a dataset generated from the 

same population model but with 1,000,000 cases in each class. In these runs, the models with 

balanced and unbalanced class sizes had entropy values of .13 and .30, respectively. These 

dDifferences between the balanced and unbalanced designs can be attributed to the construction 

of entropy: when the highest posterior probabilities are used, individuals are more likely to be 

classified as being in the larger class, and since this class represents a larger proportion of the 

data in an unbalanced design, entropy is also higher. Therefore, we take these numbers as 

indicating that the conditions with the lowest average entropy estimates (i.e., conditions 1, 2, 6, 

and 7) are reasonably well estimated, whereas those with high entropy values (i.e., those with 

smaller sample sizes) are biased.  The results in Table 1 demonstrated two important features of 

entropy in regression mixture models: 1) that the true models may have the lowest rather than the 

highestlower values of entropy, and 2) that estimates of entropy may be upward-biased if as 

sample size decreases and/or if the model is misspecified as having too many classes. While low 

entropy values do not discredit a model i.e., it can still be effective for finding differential effects 
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in the population - they do suggest that its performance when classifying individuals will be 

poor.  

Our class-enumeration results are provided in Table 2. For the basic set-up, the BIC 

criterion usually yielded the correct two-class solution when sample sizes were 3,000 or more 

(conditions 1, 2, 6, and 7), but none of the criteria performed well when sample sizes were 

smaller than that. These analyses also looked at the size of the smallest class for both the two- 

and three-class solutions, and found that the average class size of the smallest class for the three-

class solution was always well below 10% of the overall sample size, whereas in all two-class 

solutions it was over 10%. In practice, it appears that small classes can be an indicator of a 

spurious class. For these simulations, if an arbitrary criterion of 10% in the smallest class was 

utilized to exclude a result, the three-class solution would usually be excluded from 

consideration because of the size of the smallest class. ; a two-class solution would likely be 

chosen over a one-class solution in cases where the smallest class was moderately large and the 

other criteria for the one-class and two-class solutions were similar. On the whole, these 

simulations suggest that for samples of 1,000 or more individuals researchers are reasonably 

likely to arrive at the correct two-class solution for this data generating scenario, while smaller 

samples are not if all information is used rather than any one criterion.  

 We next examined the percentage of the population estimated as being in each class.  For 

conditions 1-5, we expect 50% of the population in each class; but the results showed that on 

average, when N<1,000, the model classifies more individuals into the class with the higher 

regression weight. For conditions 6-10, in which 75% of the individuals in the population were 

actually in class 1, the pattern was somewhat different with bias only at sample sizes 200 or 500.  
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 As shown in Table 3, average model parameters were reasonably well estimated for all 

conditions in class 1 (with the larger regression weight). However, in class 2, bias in all 

parameters increased as sample size or class separation decreased, with class means (intercepts) 

showing an upward bias, and regression weights and variances showing a downward bias. While 

some of the model-parameter estimates appeared reasonable even with small samples, the 

coverage probabilities for the parameter estimates –defined as the percentage of simulations for 

which the true value is inside the 95% confidence interval – revealed serious problems with 

estimated confidence intervals as sample size decreased. Note that even in conditions with 

sample sizes over 1000, coverage was slightly less than desirable for the slope parameters. This 

suggests that estimated standard errors were too small. The very poor coverage estimates 

observed for sample sizes of 200 and 500 - especially for class 2 - could be a function of model 

instability as some simulations yielded extreme estimates (It should be nNoted here  that, for the 

residual variances, the 95% confidence interval was not accurate, because variances do not 

follow a t distribution).   

We further investigated model instability by examining the distribution of regression 

weights across simulations. Figure 1 presents histograms of the slopes for both classes mixed, for 

the conditions with less than 3,000 observations. The conditions with 3,000 and 6,000 

observations (not shown) demonstrated a clear separation between estimated slopes with little 

evidence of any outlying solution. For smaller samples distribution of the estimated slopes 

became unimodal suggesting that – across simulations – the parameter estimates for the two 

classes are not reliably distinguished. Of concern is the appearance of many outlying, which 

indicates that in many simulations the estimated parameters bear little resemblance to the true 

values in the population. These graphs should show peaks at 0.2 and 0.7, the true values for the 
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regression weights in each class. These peaks were evident in conditions 3 and 8, although both 

conditions feature some extreme outliers. However, at sample sizes of 500 and 200, the two 

peaks merge into one and there are many outliers, both above and below the true values.  

As sample sizes decrease, we also expect wider confidence intervals and more variation 

across simulations. However, the extreme results seen in some simulations are not just a function 

of sampling variability, as the models’ estimated standard errors are still relatively low and some 

of the parameter estimates are more than 15 standard errors from the true value. We then 

examined individual results from the small samples that showed extreme values, and found that 

many of the simulation results with extreme regression weights contained quite small classes that 

in practice would probably not be considered strong evidence for differential effects. However, it 

was also not uncommon to find results that featured: 1) strong effects in the opposite direction to 

the true effects with reasonably large class sizes, 2) replicated LL values, and 3) no other 

evidence that the result was erroneous. Small samples, in other words, could make it extremely 

difficult to discover that there is a problem with a given finding.  

[Figure 1] 

Our next set of simulations focused on how identification of the correct number of classes 

was affected by class separation. With a sample size of 500 in conditions 4 and fewer than 5% of 

the replications according to the BIC resulted in the correct number of classes being chosen. 

With increased class separation in conditions 11-14, the proportion of simulations that chose the 

correct number of classes rose dramatically to over 70% and 95% when between-class intercept 

differences were 1 and 1.5, respectively. Conditions 15 and 16 replicated condition 2 (with 1,500 

observations in each group), but with decreased class separation caused by decreasing the 

differences in the slopes from 0.2 and 0.7 to 0.4 and 0.7; this resulted reduced thein proportion of 
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simulations that correctly identified two latent classes crashing from 87.9% to just 4.2%. Finally, in 

conditions 17 and 18, (not included in Table 3 because of the additional parameters) we 

examined the impact of including more information in the regression mixture model by adding 

an additional predictor. In this condition with a sample size of 500, the BIC found the correct 

two class solution in more than 97% of the simulations. Parameter estimates from these models 

were all reasonable, although coverage rates were somewhat less than .95 for the models with 

strong class separation and far less than .95 for models with weaker class separation. 

We also investigated the use of an ordinal logistic model for identifying the correct 

number of classes (Table 4), which was recommended by Van Horn et al. (2012) and George et 

al. (2013) as a method for addressing non-normal errors. As in the normally distributed model, 

there were substantial issues with model convergence for the two-class ordinal logistic models 

when the sample size fell below 3,000.  Further, even with 6,000 observations (the same number 

as in George et al., 2013), the BIC chose the correct two-class model in only 5% of the 

simulation replications. The main difference between this result and the previously reported 

results (George et al, 2013; Van Horn et al., 2012) is that ours hadhere there was no intercept 

differences. When we added a between-classes intercept difference of .5 standard deviations, we 

replicated the previous results, choosing the correct two-class solution in 95% of the simulations. 

With large sample sizes, the BLRT and aBIC had better, though still inadequate results; in the 

best case scenario with a sample of 3,000 the BLRT found two classes in 74% of simulations. 

Because the correct number of classes was rarely selected, parameter estimates are not reported.  

[Table 4] 

Simulation Study: Conclusion 
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 Our initial simulations examined the effects of sample size on regression mixture models 

when the only feature defining latent classes was the heterogeneous effects of a predictor on an 

outcome. We deliberately choose chose a simulation scenario that was ideal in terms of 

distributional assumptions and the number of latent classes, but rendered more difficult by the 

very weak class separation caused by the lack of mean differences between classes in the 

outcome and no other predictors with which to separate the latent classes. We showed that, in 

such circumstances, entropy in the true model is very low and that model convergence to a 

replicated LL value becomes increasingly unlikely as sample sizes drop to 1,000 or less. None of 

the model-selection criteria were effective in selecting the true model when samples were less 

than 3000 although when a preponderance of evidence was used the correct solution could be 

found , and their performance was merely adequate with samples of 1,000. The problem appears 

to be not only a lack of power, but also the selection of solutions with superfluous, typically very 

small, classes. The problem is reduced if solutions with small classes are eliminated from 

consideration, this leaves open the question of how to find true small classes. We suspect that in 

this case either substantial class separation or very large sample sizes will be needed. We found 

that, with ordinal logistic regression model, all the selection criteria were underpowered; and that 

and no intercept differences it was possible to arrive at the right number of classes, but only if a 

preponderance of the evidence was used – an approach that implies never choosing solutions 

with any classes that contain 10% or less of the respondents. When there are no intercept 

differences between classes, it is quite difficult to arrive at the correct number of classes using 

the ordinal logistic regression mixtures.We note that a limitation of this study is that we only 

examined a true model with 2-classes. We hypothesize, but did not test, that adding additional 
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classes without increasing class separation would increase required sample size because of the 

need to estimate more parameters without having much additional information. 

 When the correct number of latent classes were found, model-parameter estimates were 

on average reasonable, except for the very small class sizes of 500 and below. However, this 

hides an additional issue. With sample sizes this small, there were many cases in which multiple 

classes were supported and apparently reasonable solutions found, but where the parameter 

estimates were extreme, or even opposite of the true values. In short, aAlthough regression 

mixture models work well with large samples, using such models with small samples appears to 

be a dangerous proposition, as it will never be completely clear that the results are correct, or 

even how to identify that they are suspect. 

 To better understand these results we further investigated the effects of class separation 

on required sample size, showing that increasing class separation led to adequate results with 

samples of 500 and decreasing class separation resulted in samples of 1000 being inadequate to 

find differential effects (the correct number of classes). A promising result came from including 

additional predictors in the model, in this case model performance improved dramatically. This 

final result calls for more research as we examined only two conditions. Finally, we examined 

the implications of these results when using ordinal outcomes, finding that this case requires 

additional class separation if the correct number of classes is to be found. 

Applied Example: Introduction 

 To illustrate the issues that can arise in practice when small samples are used in 

regression mixture models, we analyzed data from a previously published study that used 

regression mixtures to examine heterogeneity in the effects of family resources on academic 

achievement (Van Horn et al., 2009). Specifically, that prior study identified three latent classes: 
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one defined by low achievement (especially in reading but also in mathematics outcomes); one 

defined by a strong effect of basic needs (e.g., housing, food, and clothing); and the last being 

resilient to the effects of a lack of basic needs. Because the latter two classes had similar means 

for achievement, the class separation between them was weak. Nevertheless, the three classes 

appeared to be robust, especially with regards to the inclusion of covariates, and the study had a 

reasonably large sample size of 6,305. This data provides us with an opportunity for assessing 

what would have happened if a smaller dataset had been used with applied rather than simulated 

data..  

Applied Example: Methods 

Data for this phase of our research were collected between 1992 and 1997 as part of the 

National Head Start Transition study:  a thirty-site longitudinal intervention study (for a full 

description see C. T. Ramey, Ramey, & Phillips, 1996; S. L. Ramey et al., 2001). The sample 

consisted of children who had formerly been in the Head Start program and their peers from the 

same classrooms. Family resources were assessed using the Family Resource Scale (FRS; Dunst 

& Leet, 1994; Dunst, Leet, & Trivette, 1988), an instrument designed to measure the resources 

and needs of families of high-risk children. In terms of family resources specifically, tThe FRS 

assesses four aspects: ability to meet basic needs; adequacy of financial resources; amount of 

time spent together; and amount of time parents have for themselves (Van Horn, Bellis, & 

Snyder, 2001). The cChildren’s receptive language skills were measured with the Peabody 

Picture Vocabulary Test-Revised (PPVT, Dunn & Dunn, 1981), a good predictor of school 

performance among low-income children (McLoyd, 1998). To demonstrate the method, our 

analyses were run using third grade data only, collected in 1996 and 1997. 
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Analyses were run on the full dataset that includes 6,305 students. To assess the effects of 

running regression mixtures on small samples we drew 500 replications without replacement 

from the full dataset of the same four sizes used in the simulation study described above (i.e., 

n=200, 500, 1,000, and 3,000). For each sample-size condition, analyses were run for all 500 

datasets to evaluate the effect of sample size on class enumeration and parameter estimates, 

using the same methods as in our simulations. Given that the true population values for the 

empirical data were not known, we assessed the differences in the model results between the full 

dataset with 6,305 cases and the subsets of the data with smaller sample sizes. We were 

especially interested in the between-subsample differences within each condition, as these would 

indicate the range of results that might arise across many small samples. 

Applied Example: Results 

 The first step in this phase of our analyses was to examine the regression mixture solution 

for the full sample. The BIC chose a two-class solution in the full sample, the aBIC was more 

equivocal: with the two and three-class solutions being about the same, but the latter’s third class 

was small, with 8% of the students. We chose to retain the two-class solution. Its The classes 

were similar in substance to those already published; the first class containing 27% of the 

students, and defined by a strong positive effect of basic needs (B = 3.93, SE =.71) and a weaker 

negative effect of time spent with family (B = -1.76, SE = .71), and the second class with 73% of 

the students, featuring a weak positive effect of money (B = .83, SE = .31) and a weak negative 

effect of time spent with family (B = -.56, SE = .27). The intercepts for the two classes were 

quite similar, B = 98.74, SE = .67 in class one and B = 101.07, SE = .27 in Class 2. 

 Turning to our multiple replications of each smaller subsample, the first interesting result 

concerns model convergence. In simulated data, there were convergence problems for the two-
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class model in about 30% of the simulations with sample sizes of 200, and convergence was a 

problem in most simulations for the three-class model.  With the applied data, however, 

convergence was rarely a problem with a sample of 200, the two-class model converged 96% of 

the time, and the three-class model converged 94% of the time, and convergence was even 

higher in larger samples. This is consistent with previous results in which convergence became a 

problem when models were over-parameterized with simulated data that was perfectly behaved 

(M. Lee Van Horn et al., 2015), but convergence is generally not a problem with applied data, 

which never perfectly meets researchers’ model assumptions. While convergence was not a 

problem with the applied data, replicating the two-class solution was much more difficult. With a 

sample size of 3,000, only 141 of the 500 replications choose chose the two-class over the one-

class and three-class models using the BIC. This fell to 73 out of 500 replications when the 

sample size was reduced to 1,000, but then went back up again to 154 out of 500 replications 

when the sample fell further, to 500; and edged up again, to 181 out of 500 replications, with the 

very lowest sample size, 200. By this criterion alone, then, it appeared that a sample size of 200 

yielded the best model performance. We further explored these results by taking the size of the 

smallest class into account. When classes that contained less than 5% of the students were 

excluded from consideration, the two-class model was chosen 140 times with a sample of 3,000, 

less than five times when the sample was 1,000 or 500, and 139 times when it was 200. Using 

the aBIC increased all these numbers somewhat: with the two-class model being chosen 280, 

117, 109, and 71 times with samples sizes of 3,000, 1,000, 500, and 200, respectively. Still, 

theseResults indicate that there are often inconsistencies in class enumeration, and that these vary 

as varies greatly as a function of sample size, and that applied data often shows different 

properties than simulated data.  
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 Finally, we examined parameter estimates across replications within each condition. 

Here, we focused on the regression weight for the effects of students’ basic needs, looking only 

at those cases where the smallest class contained over 5% of the sample, since cases with smaller 

classes than that typically had extreme outliers. In other words, we assumed that the analyst 

would have arrived at the two-class model even if the model-selection criteria did not clearly 

indicated support for two classes. The number of 500 simulations for which the smallest class in 

the two-class solution contained more than 5% of the students was 411 when the sample size was 

200, 242 when it was 500, 346 when it was 1,000, and 496 when it was 3,000. Figure 2 presents 

histograms of each condition of regression weights for the effects of basic needs for each 

condition, and the full model results are included in Appendix A. Classes are not sorted here 

(since it would clearly be problematic in the small-sample conditions), and thus if the solution 

from is stable and matches the full dataset  is stable – we should see two relatively normal 

distributions, with one centered on about 0.2 (the non-significant effect of basic needs in the 

resilient class) and the other centered on about 3.9. When the sample size was 3,000, the results 

were almost perfectmirrored this, with nearly complete separation between the different classes. 

Thus, any 2-class solution with a sample of 3000 would lead to similar results Neither the BIC 

nor the aBIC was a highly reliable means of identifying the correct number of classes, even with 

a sample of 3,000; however, when they did identify the correct number, the results reflected the 

full sample in every case, with only a few outliers. With a sample size of 1,000, the slopes were 

still reasonable stable most of the time, although their distributions in the two classes now clearly 

overlap. It is interesting to note that in the smaller class (i.e., of students more affected by basic 

needs), the average standard error for the effect of basic needs was 1.7 across all replications. 

The observed sampling distribution for the largest class across all replications was 2.1, was far 
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larger than would be suggested by the estimated standard error; and in fact, the standard 

deviation of the slopes for the largest class across all replications was 2.1, substantially larger 

than the standard error that it supposedly represents.  Finally, the model results mostly break 

down with samples of 500 and 200, which provided vague, general evidence for the existence of 

the class with no basic-need effects, but rarely replicated the results from the full sample.  

Applied Example: Conclusions 

 Examining small sample sizes by resampling a previously published example dataset 

yielded some interesting results. First, it cconfirmed a previous antidotal finding that 

convergence issues were more common when working with simulated rather than applied data. 

The reason for this may be that simulated data meets all model assumptions, whereas applied 

data typically violates assumptions to some degree. Second, Tthese results also showed that in 

applied situations there may be more variability in the number of classes chosen than in 

simulated data: the limitations of penalized information criteria for selecting the correct model, 

since even with sample sizes of 3,000 and even when the model results appear reasonable stable 

across samples, in nearly every replication, the most common model-selection criteria chose 2 

classesthe correct model only about half the time. This result parallels that of our simulation 

study that used ordered logistic regression, which likewise implied that penalized information 

criteria can work for model selection, but are less than ideal in many cases. And thirdFinally, 

while parameter estimates were reasonable and exhibited little variability when the sample size 

was 3,000, they were markedly more variable with a sample of 1,000, and became quite poor 

when the samples were 500 or smaller. In many cases, the practical result of this would be a 

failure to find differential effects due to a one-class model being selected. In other cases, 
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however, using small samples would not only yield quite inaccurate results, but estimated 

standard errors that give the researcher a false sense of confidence in such results.  

Discussion 

One of the most common questions asked at presentations on regression mixture models 

concerns the sample size required to use this method. Our purpose in this study was to help 

applied researchers understand the interplay between class separation and sample size when 

estimating regression mixture models with continuous and ordinal outcomes. Looking across all 

results of this study suggests: 1) when class separation is low (as is typical in regression 

mixtures), sample sizes as much as an order of magnitude greater than suggested by previous 

research may be needed to obtain stable results; 2) there is a direct relationship between class 

separation and required sample size such that increasing class separation would make most 

results stable, although potentially at the cost of losing what made a regression mixture useful; 3) 

regression mixtures with ordinal outcomes result in even more instability; 4) with small samples 

it is possible to obtain spurious results without any clear indication of there being a problem; 5) 

very small latent classes may be an indicator of a spurious result (it isn’t clear to us how truly 

small classes can be reliably identified when class separation is low); 6) higher values of entropy 

are not necessarily indicative of a correct model; and 7) at least within the range of a 25% to 

75% split between classes, the effects of class size were less in our study than of sample size. 

This study provides insight into that question. We specifically focused on cases with very 

weak class separation, because it is in such cases that regression mixture models are truly defined 

by differential effects. If there are large differences in the means of the outcomes between 

classes, then class separation is deemed high and the models are more stable; but this also means 

that the primary driver of the latent classes is the mean differences rather than effect differences. 
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This study found that when there were no mean differences between classes, even when data was 

generated to be ideal (in the sense that distributional assumptions were met in every class), 

sample size had a clear effect on both latent-class enumeration and parameter recovery. As 

sample size decreased, penalized information criteria and the BLRT frequently failed to find the 

true number of classes; and, when the true number of classes was found, these models struggled 

to distinguish the true differences in parameters between classes. Classes with less residual error 

were generally better estimated.  

We conducted a series of additional simulations designed to make the point that sample 

size requirements are a function of sample size, class separation, and available information. With 

increased class separation, smaller samples will still lead to replicable results. With decreased 

class separation, even larger samples are needed. And, when more information – such as 

additional covariates – is brought into the model, results become more stable. The final point is 

interesting because it is often fairly easy for investigators to add additional predictors into a 

study.  

 

 

Taken as a whole, our results clearly demonstrate an impact of sample size on regression mixture models, with serious problems arising in small samples. We are reluctant to provide specific “rules of thumb” for sample-size requirements, which will differ strongly from study to study, and maintain that using simulations that replicate the specific details of an application is the best way to estimate that application’s stability. Ultimately, this paper verifies the hypothesis that regression mixture models are best thought of as a large-sample method (Van Horn et al., 2009) by demonstrating the potential negative impacts of small samples on both enumeration and parameter estimation. Crucially, this study also showed that when samples are relatively small, there is considerable variability between different samples; the estimated standard errors are often downward-biased; and it is possible to obtain results that do not reflect the true characteristics of the studied population (and may even in the wrong direction!), but which include no discernible evidence of such a problem. This is undoubtedly a major limitation of regression mixture modeling, and publication of the results of such modeling using only one small sample appears ill-advised unless class separation is very strong. 
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Figure Legend: 

 

Figure 1. Histogram of estimated slopes for scenarios with 1,000 or fewer observations. 

 

Figure 2. Histogram of the slope for basic needs as a function of sample size. 
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Table 1. Convergence and entropy for each simulation condition 

Cond 

ID 

 

Sample Size 

Balanced 

Design 

True Model 

Sample Sizes  

Estimated  

Latent Class Model  

2 Classes 1 Class 2 Classes 3 Classes 

N1 N2 % Cnvrg Entropy % Cnvrg Entropy % Cnvrg 

  1  

 

Balanced  

(50/50 split) 

3000 3000 100.0 0.11 100.0 0.40 58.2 

2 1500 1500 100.0 0.14 100.0 0.43 56.8 

3 500 500 100.0 0.37 90.2 0.57 50.0 

4 250 250 100.0 0.60 77.4 0.69 41.0 

5 100 100 100.0 0.75 71.0 0.78 42.2 

6       

 

Unbalanced 

(75/25 split) 

4500 1500 99.6 0.27 100.0 0.50 57.4 

7 2250 750 98.6 0.28 99.8 0.51 56.4 

8 750 250 99.4 0.49 88.2 0.65 51.0 

9 375 125 100.0 0.68 74.8 0.74 45.6 

10 150 50 100.0 0.79 71.8 0.82 37.6 

 

Note: N1 is the sample size within class 1 and N2 is the sample size in class 2. The mean entropy 

across all simulations is reported. % Cnvrg is the percentage of 500 replications which 

converged to a replicated solution.
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Table 2. Latent class enumeration across simulations. 

Cond 

ID 

Equations of Data-

Generated Scenarios   

Sample size 

Balance 

Design 

True Model Estimated Models 

Selecting 2 over 1 and 3 class Selecting 3 over 2 class 

N1 N2 

% 

BIC 

% 

BLRT 

Smallest 

Class Size 

% 

BIC 

% 

BLRT 

Smallest 

Class Size 

1 Basic Regression Mixture Set-up:  

     𝐿𝐶 1: 𝑌 = 0.2𝑋 + 𝑒 

      𝐿𝐶 2: 𝑌 = 0.7𝑋 + 𝑒 

 

 Balanced 3000 3000 99.6 95.2 42.5 0.2 4.5 2.4 

2 1500 1500 87.6 92.8 39.2 0.2 5.8 2.4 

3 500 500 18.2 40.6 26.9 5.4 1.6 2.5 

4 250 250 4.8 10.6 17.5 9.7 1.2 2.3 

5 100 100 7.2 6.2 12.3 20.3 1.0 3.4 

6 Unbalanced 

 
4500 1500 96.8 94.6 25.8 0.6 5.4 1.9 

7 2250 750 84.8 91.8 26.6 1.4 7.4 2.3 

8 750 250 21.0 42.2 19.8 6.0 3.8 1.8 

9 375 125 9.4 16.8 12.5 12.9 2.2 2.1 

10 150 50 10.0 10.4 10.5 15.2 1.2 2.9 

11 Intercept Difference of 1 
      𝐿𝐶 1:   𝑌 = 0 + 0.2𝑋 + 𝑒 

      𝐿𝐶 2:   𝑌 = 1 + 0.7𝑋 + 𝑒 

Balanced 250 250 72.8 NA 38.6 1.9 NA 6.5 

12 Unbalanced 375 125 86.0 NA 24.7 2.1 NA 4.8 

13 Intercept Difference of 1.5 
      𝐿𝐶 1:   𝑌 = 0 + 0.2𝑋 + 𝑒 

       𝐿𝐶 2:   𝑌 = 1.5 + 0.7𝑋 + 𝑒  

Balanced 250 250 97.9 NA 42.8 0.5 NA 7.0 

14 Unbalanced 375 125 98.0 NA 25.6 1.8 NA 5.9 

15 Decrease Slope Differences 
      𝐿𝐶 1:   𝑌 = 0.4𝑋 + 𝑒 

      𝐿𝐶 2:   𝑌 = 0.7𝑋 + 𝑒  

Balanced 1500 1500 4.2 NA 25.0 6.7 NA 4.1 

16 Unbalanced 2250 750 7.4 NA 20.6 0.4 NA 3.2 

17 Uncorrelated Predictors 
      𝐿𝐶 1:   𝑌 = 0.2𝑋1 + 0.2𝑋2 + 𝑒 

      𝐿𝐶 2:   𝑌 = 0.7𝑋1 + 0.7𝑋2 + 𝑒  

Balanced 250 250 98.5 NA 48.2 1.5 NA 8.3 

18 Unbalanced 375 125 97.4 NA 25.1 2.6 NA 5.4 

Note: %BIC is the percentage of simulations selecting this model using the Bayesian information criteria and BLRT is the bootstrap 

likelihood ratio test. Smallest class size is the average proportion of respondents in the smallest class across all simulations. 
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Table 3. Estimated parameter means, standards errors and coverage across all simulations.  

 

  Class 1 Class 2 

  Intercept Slope   Residual Variance Intercept Slope Residual Variance 

Condition Mean SE Cover Mean SE CoZver   Mean SE Cover Mean SE Cover Mean SE Cover Mean SE Cover 

Truth 0.00     0.70       0.51     0.00     0.20     0.96     

1 0.00 (0.03) 0.95 0.70 (0.05) 0.93   0.50 (0.06) 0.94 0.00 (0.03) 0.96 0.20 (0.06) 0.93 0.96 (0.05) 0.92 

2 0.00 (0.04) 0.96 0.71 (0.06) 0.90   0.50 (0.08) 0.91 0.00 (0.05) 0.97 0.17 (0.09) 0.93 0.96 (0.07) 0.93 

3 0.01 (0.05) 0.89 0.71 (0.07) 0.77   0.49 (0.08) 0.67 0.08 (0.09) 0.84 -0.04 (0.13) 0.68 0.88 (0.12) 0.84 

4 -0.11 (0.05) 0.85 0.61 (0.05) 0.29   0.57 (0.06) 0.26 0.37 (0.06) 0.47 -0.69 (0.09) 0.26 0.49 (0.08) 0.32 

5 0.14 (0.05) 0.79 0.67 (0.06) 0.11   0.57 (0.06) 0.23 0.40 (0.06) 0.21 -0.77 (0.05) 0.08 0.22 (0.05) 0.08 

6 0.00 (0.02) 0.95 0.70 (0.03) 0.94   0.51 (0.03) 0.93 0.00 (0.05) 0.96 0.19 (0.10) 0.93 0.95 (0.08) 0.93 

7 0.00 (0.03) 0.96 0.71 (0.04) 0.95   0.50 (0.05) 0.94 -0.01 (0.07) 0.95 0.18 (0.14) 0.91 0.95 (0.11) 0.92 

8 0.03 (0.04) 0.88 0.72 (0.05) 0.76   0.49 (0.06) 0.76 0.00 (0.13) 0.80 -0.14 (0.18) 0.67 0.84 (0.17) 0.76 

9 -0.01 (0.04) 0.86 0.69 (0.05) 0.53   0.50 (0.05) 0.42 0.44 (0.11) 0.47 -0.31 (0.11) 0.23 0.49 (0.14) 0.37 

10 0.01 (0.05) 0.79 0.72 (0.05) 0.62   0.49 (0.05) 0.62 0.44 (0.04) 0.25 -0.48 (0.03) 0.08 0.15 (0.03) 0.09 

Increased class separation                                    

Truth 1.00     0.70       0.51     0.00     0.20     0.96     

11 0.99 (0.12) 0.88 0.69 (0.09) 0.84   0.49 (0.11) 0.86 -0.09 (0.21) 0.82 0.19 (0.11) 0.92 0.88 (0.16) 0.84 

12 1.00 (0.08) 0.92 0.70 (0.06) 0.89   0.49 (0.08) 0.90 -0.13 (0.29) 0.79 0.19 (0.15) 0.88 0.82 (0.21) 0.78 

Truth 1.50     0.70       0.51     0.00     0.20     0.96     

13 1.49 (0.11) 0.92 0.71 (0.08) 0.91   0.50 (0.10) 0.90 -0.02 (0.19) 0.89 0.19 (0.09) 0.95 0.93 (0.17) 0.86 

14 1.49 (0.07) 0.93 0.71 (0.05) 0.93   0.50 (0.07) 0.92 -0.02 (0.28) 0.83 0.20 (0.13) 0.92 0.91 (0.24) 0.82 

Decreased class separation                                
 

Truth 0.00     0.70       0.51     0.00     0.40     0.84     

15 0.00 (0.06) 0.93 0.70 (0.08) 0.69   0.49 (0.10) 0.68 -0.03 (0.09) 0.83 0.23 (0.12) 0.72 0.71 (0.10) 0.71 

16 -0.01 (0.05) 0.93 0.72 (0.06) 0.72    0.48 (0.08) 0.69 0.00 (0.12) 0.85 0.22 (0.15) 0.68 0.68 (0.15) 0.67 

Note: For simulations where the 2-class solution was selected by the BIC, the median estimated standard error, and the coverage 

estimate (percentage of simulations for which the 95% confidence interval included the true value) are reported. 
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Table 4. Latent class enumeration across simulations for the ordinal regression mixture model. 

Balanced 

Design 

True Model Estimated Models  

  Selecting 2 over 1 and 3 class Selecting 3 over 2 class % of runs not converged 

N1 N2 % AIC % BIC % aBIC % BLRT % AIC % BIC % aBIC % BLRT 1-class 2-class 3-class 

Balanced  

(50/50 split) 
3000 3000 76.4 5.0 50.6 73.8 22.8 0.6 0.8 23.2 0.0 1.6 71.6 

1500 1500 60.6 4.2 15.0 39.4 24.1 4.2 4.2 23.6 0.0 17.2 71.4 

500 500 42.0 0.4 9.2 18.6 27.4 10.8 12.6 20.6 0.0 32.2 73.0 

250 250 34.8 0.0 15.4 17.6 27.6 14.3 18.9 19.0 0.0 36.2 69.8 

100 100 36.0 0.4 34.4 20.6 25.6 13.0 23.8 23.4 0.0 30.6 61.2 

Unbalanced  

(75/25 split) 
4500 1500 61.8 1.0 22.4 53.8 31.1 3.7 3.7 25.0 0.0 12.2 63.0 

2250 750 52.2 0.0 6.8 29.4 29.3 7.3 7.6 22.0 0.0 24.0 67.4 

750 250 40.6 0.4 6.4 18.2 24.5 10.1 10.9 18.8 0.0 32.4 73.2 

375 125 38.2 0.0 15.0 22.8 28.9 15.0 17.3 22.4 0.0 32.8 65.6 

150 50 37.0 0.4 36.0 21.4 29.4 16.4 26.1 27.2 0.0 32.6 61.0 
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Appendix A. Full results from applied regression mixture models. 

Full results for the analyses of the applied dataset with different sample sizes are presented in this appendix. Table 1 presents the class 

enumeration results using the BIC and aBIC for the full dataset.  

 

We next examine latent class enumeration for the smaller subsamples of the applied data, meant to simulate what would happen across 

many smaller subsamples of the data. Results in Table 2 indicate that even when the subsample size is 3000, neither the BIC nor the 

aBIC do a great job of selecting the same 2-class solution found in the full dataset. 

 

Finally, we examine the parameter estimates for the full dataset and each of the smaller subsamples. Results in Table 4 indicate that 

the mean estimates tend to be quite close to those observed in the full sample, but that there is extensive variability across estimates. 

Table 1. Class enumeration for the full dataset (n=6305)

1-class 2-class 3-class 4-class 1-class 2-class 3-class 4-class

42522.8 42478.5 42496.0 42505.2 42494.2 42427.7 42422.9 42409.9

BIC ABIC

aN>5%

2c over 

1c

3c over 

1c/2c

4c over 

1c/2c/3c

2c over 

1c/3c

2c over 

1c

3c over 

1c/2c

4c over 

1c/2c/3c

2c over 

1c/3c

n200 411 222 83 16 139 347 294 241 53

n500 242 6 3 2 3 123 105 89 18

n1000 346 10 5 1 5 152 99 74 53

n3000 496 157 17 0 140 360 82 46 278
aNumber of simulations containing at least 5% of subjects in the smallest class

BIC aBIC

Table 2. Number of simulations where the smallest class was above 5% of the sample selecting the 2, 3, 

and 4 class solutions with with BIC and aBIC
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This can especially be seen in the difference between the average standard errors and the standard deviation across subsamples in each 

of the parameters. There is substantially more variability observed than the standard errors suggest should be there. Estimates of the 

standard errors appear to underestimate the sampling variability at low samples  
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