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The evolution of Hindu Kush and Karakoram remains elusive due to the limited 19 

knowledge of crustal accretion and exhumation history. Here, we present a synoptic study 20 

of detrital zircon U-Pb geochronology and detrital muscovite 40Ar/39Ar 21 

thermochronology from modern river sediments, and numerical models on 40Ar/39Ar 22 

dates to characterize this region. Our study supports the presence of 200 Ma zircons in 23 

the Hindu Kush, which is interpreted as the result of the amalgamation of the Hindu 24 

Kush-South Pamir to the Central Pamir at this time. Detrital zircon U-Pb age peaks of 25 

110–130 Ma, 60–80 Ma peak, and <28–40 Ma seen in the modern river sediments 26 

capture phases of crustal growth prior and subsequent to India-Asia collision. Inversion 27 

of muscovite 40Ar/39Ar dates suggests high erosion rates prior to the India-Asia collision 28 

(at ca. 115–128 Ma and 71 Ma) and after collision (35 Ma, 27 Ma, and 8 Ma). The data 29 

show considerable variation between different areas. Most strikingly, 8 Ma rapid 30 

exhumation is only recorded in the east-central Karakoram, reflecting east-west along-31 

strike variation in exhumation, as previously documented with respect to metamorphic 32 

and magmatic episodes, or the proximity of river headwaters to the Karakoram Fault.  33 

1. Introduction 34 

The present-day high topography of the western parts of the Himalaya and Tibetan 35 

Plateau (Fig. 1A) represents a manifestation of complex interactions between tectonism, 36 

surficial erosional processes, and climate (e.g. Brozović et al., 1997; Maheo et al., 2002; 37 

Searle, 2015; Van Der Beek et al., 2009; Wallis et al., 2016). Hence, study of the crustal 38 

thickening and exhumation of the region bears on implications for better understanding of 39 

these tectonism-erosion-climate interactions. 40 
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In constraining the spatial-temporal erosion history of the western Himalaya and Tibetan 41 

Plateau, bedrock vertical transect studies, so called "in situ thermochronology" (Braun et 42 

al., 2006), demonstrate the utility of densely sampling basement rocks (intervals of 100s 43 

meters in vertical scale) along with thermal modeling, which provide extra information 44 

on particle trajectories during exhumation towards the surface (e.g. Van Der Beek et al., 45 

2009). Whilst these studies have high spatial resolution, the ability of vertical transect 46 

studies is limited in temporal range due to the loss of old rocks at structurally high 47 

horizons which have been removed during the earlier stages of orogenesis; such rocks 48 

contain critical information about tectonism and erosion beyond the present-day 49 

mountain belt (Braun et al., 2006; Clift et al., 2004). Hence, a substantial amount of effort 50 

in thermochronology has also been focused on the products of erosion, i.e. the detritus 51 

present in fluvial systems and preserved in the receiving basins, which has greatly 52 

extended the temporal record of orogenesis (Braun et al., 2006; Reiners and Brandon, 53 

2006). 54 

In the Hindu Kush-Kohistan-Karakoram (Fig. 1B), there is evidence for growth of high 55 

topography both prior to (e.g. Robinson 2015) and shortly after (e.g. Carter et al., 2010; 56 

Van der Beek 2009) India-Asia collision. Various episodes of crustal thickening and 57 

exhumation have been documented from collision until present day (e.g. Cerveny et al., 58 

1989; Dunlap et al., 1998; Foster et al., 1994; Krol et al., 1996a; Wallis et al., 2016), and 59 

much work has focused on the Nanga Parbat syntaxis (e.g. Schneider et al., 2001; Zeitler 60 

et al 2001). Despite these studies, knowledge of this region remains spatially and 61 

temporally incomplete.  62 
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To evaluate the regional variations in erosion and to extend the temporal range in order to 63 

better understand the long-term evolution of the region, we undertook a detrital study 64 

based on muscovite 40Ar/39Ar thermochronology on modern river sediments. The closure 65 

temperature of muscovite 40Ar/39Ar thermochronology (>350 °C) (McDougall and 66 

Harrison, 1999), with a geothermal gradient of 25 °C/km, would suggest that muscovite 67 

40Ar/39Ar thermochronology can detect crustal exhumation processes originating from 68 

depths greater than 10–15 km. We combined detrital muscovite 40Ar/39Ar 69 

thermochronology with modeling results of erosion, as well as detrital zircon U-Pb 70 

analysis, the latter to provide insight to crustal thickening in the region.  71 

2. Geological setting 72 

Our research area is located in the western part of the Himalaya and Tibetan Plateau (Fig. 73 

1A). Here, the India-Asia suture is characterized by the Cretaceous-Paleogene Kohistan 74 

Oceanic Island arc (Pudsey et al., 1985; Searle et al., 1987; Tahirkheli et al., 1979; 75 

Treloar and Izatt, 1993) which is sandwiched between the Indian and Asian plates. There 76 

is thus a double suture zone, with the Main Karakoram Thrust (MKT) or Shyok Suture 77 

Zone (SSZ) in the north separating the Kohistan arc from the Asian plate, and the Main 78 

Mantle Thrust (MMT) or the Indus Suture Zone (ISZ) in the south, separating the 79 

Kohistan arc from the Indian plate (Fig. 1B). Our research area covers the Hindu Kush 80 

and Karakoram of the Asian plate, which formed an Andean-style margin prior to India-81 

Asia collision (Hildebrand et al., 2000; Khan et al., 2009; Searle et al., 1987), and the 82 

Kohistan island arc (Fig. 1B).  83 
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Timing of collisions between the active margin of Asia (Karakoram, Hindu Kush and to 84 

the east the Lhasa terrane), India, and the Kohistan arc is debated. Whilst evidence has 85 

been provided both that the Kohistan arc collided first with Asia prior to ~85–90 Ma 86 

(Faisal et al., 2014; Petterson et al., 1985; Searle et al., 1999; Treloar et al., 1989) or with 87 

India at 65 or 50 Ma (Bouilhol et al., 2013; Khan et al., 2009), terminal suturing between 88 

India and Asia is considered by a majority of researchers to have taken place by 60–55 89 

Ma (DeCelles et al., 2014; Hu et al., 2016; Najman et al., 2017), although some have 90 

argued that it may have continued until circa 35 Ma or 25–20 Ma (Aitchison et al., 2007; 91 

Bouilhol et al., 2013; van Hinsbergen et al., 2012). 92 

Both the Hindu Kush and the Karakoram are Gondwana terranes that drifted across the 93 

Tethys and collided with Asia during the Mesozoic Cimmerian orogeny (Angiolini et al., 94 

2013; Şengör, 1984). The Hindu Kush is considered to be the western continuation of the 95 

Wakhan Block — part of the South Pamir, both comprising an extended crust (Faisal et 96 

al., 2014; Zanchi et al., 2000). The Hindu Kush consists of deformed granitoids of 97 

Cambrian-Precambrian age, Paleozoic-Mesozoic metasedimentary successions, and 98 

Jurassic to mid-Cretaceous granitoids (Zanchi et al., 2000). The Hindu Kush-South Pamir 99 

collided with the Central Pamir along the Rushan-Pshart suture zone around the Triassic-100 

Jurassic boundary (Angiolini et al., 2013), as recorded by metamorphic monazites  with 101 

U-Pb ages of ~200  Ma (Faisal et al., 2014). 102 

To the south the Hindu Kush-South Pamir is separated from the Karakoram by the 103 

Wakhan-Tirich boundary zone (Fig. 1B), with these two terranes docking in Early 104 

Jurassic times, as recorded by monazite U-Pb ages of ca. 185 Ma (Angiolini et al., 2013; 105 



 6 

Faisal et al., 2014; Zanchi and Gaetani, 2011). Following this crustal accretion event, an 106 

Andean-style subduction system was established to the south of the Karakoram which 107 

was responsible for the development of a continental magmatic arc along the Karakoram, 108 

as evidenced by, for example, the intrusion of the Karakoram Batholith at 95–130 Ma 109 

(e.g. Debon et al., 1987; Fraser et al., 2001; Heuberger et al., 2007). Late Cretaceous 110 

monazites (Faisal et al., 2014) were interpreted to record regional metamorphism 111 

associated with the re-establishment of a subduction system farther to the south after the 112 

docking of Kohistan arc prior to 85–90 Ma (Fraser et al, 2001; Searle et al., 1999; Treloar 113 

et al., 1989). 114 

The Karakoram terrane is broadly divided into three main units (Hildebrand et al., 2000; 115 

Searle et al., 1999), the Northern Karakoram Terrain, the Southern Metamorphic 116 

Complex, and the intervening batholith (Fig. 1B). The Northern Karakoram Terrain 117 

consists of a mostly sedimentary belt which comprises pre-Ordovician crystalline 118 

basement covered by an Ordovician to Cretaceous sedimentary succession (e.g. Gaetani 119 

and Garzanti, 1991; Zanchi and Gaetani, 2011). The Karakoram Batholith includes pre-120 

India-Asia collision, Andean-type, subduction-related granitoids (e.g. the Hunza 121 

Batholith) as described above, and post-collision leucogranites (e.g. the Baltoro Batholith) 122 

(Fig 1B). The formation of the Baltoro Plutonic Unit of the Karakoram Batholith, dated 123 

between ca. 25 Ma and 13 Ma, represents post-collision crustal thickening culminating in 124 

crustal melting (Parrish and Tirrul, 1989; Searle et al., 2010). Localized crustal melting 125 

and leucogranite intrusion in the Garam Chashma area of Hindu Kush at 29–22 Ma  126 

(Faisal et al., 2014; Hildebrand et al., 1998) is contemporaneous with this event. 127 
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Metamorphism of the Southern Karakoram Metamorphic Belt spans from pre India-Asia 128 

collision to Late Miocene but the record is spatially varied; metamorphic ages as old as 129 

Late Cretaceous are documented in the Hunza region to the west, whilst along strike in 130 

the Baltoro region to the east no ages older than Late Oligocene are recorded (Palin et al 131 

2012; Searle et al 2010). Pre India-Asia collision regional metamorphism is interpreted as 132 

due to Asia-Kohistan Arc collision. Post India-Asia crustal thickening and regional 133 

metamorphism is recorded in the Early Miocene in the Hunza region, and with 134 

approximately co-eval crustal melting in the Baltoro region as described above. The most 135 

recent phase of regional metamorphism occurred in the Late Miocene in the Baltoro 136 

region (Fraser et al 2001). 137 

A disproportionate number of exhumation studies of the NW Himalayan region have 138 

focused on the Nanga Parbat syntaxis where >15 km crustal materials were denudated in 139 

the past 3 Ma (e.g. Schneider et al., 2001; Zeitler et al 2001) and the Karakoram Fault 140 

region (Boutonnet et al., 2012; Dunlap et al., 1998; Foster et al., 1994; Krol et al., 1996a; 141 

Mukherjee et al., 2012; Schärer et al., 1990; Wallis et al., 2016). For example, several 142 

phases of rapid cooling associated with thrusting and strike-slip motion of the Karakoram 143 

Fault were constrained by 40Ar/39Ar (hornblende, muscovite, biotite, and K-feldspar) and 144 

apatite fission track to be at 17–13 Ma & 8–7 Ma and 7.4–3.3 Ma (Dunlap et al., 1998; 145 

Wallis et al., 2016). Contrasting with these young ages of rapid exhumation in the eastern 146 

Karakoram, studies including apatite and zircon fission track analysis and K-Ar and Ar-147 

Ar dates (biotite, hornblende, and muscovite) show that Cretaceous/Paleocene-Eocene 148 

cooling ages have been reported in the west including western Kohistan, East Hindu 149 

Kush, and the South Karakoram Metamorphic Belt (Treloar et al., 1989; Zeitler, 1985).  150 
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In the western Himalaya, the tectonostratigraphic zones that were identified in the central 151 

and eastern Himalaya, including Lesser, Higher, and Tethyan Himalayan zones, can be 152 

correlated to some extent, but they are not continuous with their correlatives to the east 153 

due to the lack of clear traces of major faults, like the Main Central Thrust (DiPietro and 154 

Pogue, 2004). Additionally, unlike the main arc of the orogen, Neogene leucogranites are 155 

absent in the western Himalaya. By contrast, much of the metamorphism and deformation 156 

recorded in the western part of the orogen occurred prior to late middle Eocene. For 157 

example, zircons from the Malakand Granite of the Swat region give a mean U-Pb age of 158 

47 Ma for the rims and an age range of 254–291 Ma for the cores, reflecting the earliest 159 

phase of Himalaya orogeny and the presence of Carboniferous igneous suites in the 160 

western Himalaya, respectively (Smith et al., 1994). 161 

3. Methodology 162 

In order to obtain an overview of the geological evolution of the region, detrital 163 

muscovite 40Ar/39Ar thermochronology and detrital zircon U-Pb geochronology analyses 164 

were applied to six modern river sand samples draining the Hindu Kush, Karakoram and 165 

Kohistan Island Arc (Figs. 2 and 3; Table 1; Tables S1 and S2). Zircon U-Pb analyses 166 

were undertaken to study crustal accretion and muscovite 40Ar/39Ar analyses to study 167 

exhumation. We apply a multidimensional scaling (MDS) method for analyzing detrital 168 

zircon U-Pb data regarding provenance analysis (Fig. 4) and new MATLAB codes to 169 

implement the inversion of muscovite 40Ar/39Ar dates to erosion rates (Figs. 5 and 6; 170 

Table S3).  171 

3.1. Modern river sediment samples 172 
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Six modern river sand (MRS) samples were taken from the western Himalaya and 173 

Tibetan Plateau (Fig. 1). Sample information including sampling coordinates is provided 174 

in Table 1. MRS 3 was taken from the Hunza River that drains the Karakoram batholith, 175 

platform carbonates and subordinate clastics of the Northern Karakoram Terrain and part 176 

of South Pamir to the north of the Tirich Mir-Wakhan Fault (Fig. 1B). MRS 4 was 177 

collected from the Ghizar-Gilgit River that drains the Karakoram Batholith, the southern 178 

Karakoram Metamorphic Belt, and the northern part of the Kohistan island arc. MRS 2 is 179 

from the Gilgit River which is the downstream confluence of the Hunza River and 180 

Ghizar-Gilgit River (Fig. 1B). 181 

MRS 5 was collected from the Chitral River that drains the Hindu Kush, the Karakoram 182 

and the Kohistan island arc. MRS 9 was taken from the Kabul River, which is the 183 

downstream continuation of the Chitral River, but at this location also flows over the 184 

Indian plate Himalaya. MRS 8 was taken from the Dir River that exclusively drain the 185 

southern part of Kohistan island arc (Fig. 1B).  186 

3.2. Zircon U-Pb Analysis 187 

Detrital zircon U-Pb ages for MRS 3, MRS 4, MRS 5, MRS 8, and MRS 9 were acquired 188 

using the London Geochronology Centre facilities at University College London based 189 

on a New Wave 193 nm laser ablation system coupled to an Agilent 7700 quadrupole-190 

based ICP-MS. Laser operating condition for zircon used an energy density of ca 2.5 191 

J/cm2 and a repetition rate of 11 Hz. Repeated measurements of external zircon standard 192 

PLESOVIC (TIMS reference age 337.13±0.37 Ma; Sláma et al., 2008) are used to correct 193 

for instrumental mass bias and depth-dependent inter-element fractionation of Pb, Th and 194 
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U and Temora (Black et al., 2003) and 91500 (Wiedenbeck et al., 2004) zircons were 195 

used as secondary age standards. 196 

Detrital zircon U-Pb ages for MRS 2 and an aliquot of MRS 3 were acquired using the 197 

Cameca IMS-1270 ion microprobe at Centre de Recherches Pétrographiques et 198 

Géochimiques (CRPG) at Nancy, France. Analytical procedure follows the method in 199 

Deloule et al. (2002). Two aliquots of MRS 3 give the same detrital zircon U-Pb ages. 200 

Detrital zircon U-Pb ages are provided in supplementary materials (Table S1).  201 

3.3. Muscovite 40Ar/39Ar Analysis 202 

Optically pure (inclusion-free) grains of muscovite were hand picked. Muscovites were 203 

packed in aluminum foil, stacked in quartz tubes, shielded with Cd, and irradiated for 18 204 

hours at the Orogen State University nuclear reactor. An in-house 40Ar/39Ar age standard, 205 

Drachenfels sanidine (DRA, 25.52 +/- 0.08 Ma) (Wijbrans et al., 1995), was used to 206 

monitor the neutron flux gradient. The analysis of single crystal muscovite following the 207 

protocol in Sun et al. (2016). The program ArArCALC2.5 was used for data reduction 208 

and age calculations (Koppers, 2002). MRS 8, draining the Kohistan Island arc only, 209 

contained no muscovite. Detrital muscovite 40Ar/39Ar ages are provided in supplementary 210 

materials (Table S2).   211 

3.4. Inversion of 40Ar/39Ar dates to exhumation rates 212 

We summarize and contrast four methods that have been developed for the inversion of 213 

detrital thermochronometer ages to erosion rates (Table 2) (Avdeev et al., 2011; Brandon 214 

et al., 1998; Brewer et al., 2003, 2006; Duvall et al., 2012; Garver et al., 1999; Ruhl and 215 
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Hodges, 2005; Willett and Brandon, 2013). The four methods share basic similarities in 216 

numerical calculations: (1) they assume vertical trajectories without lateral variations 217 

through which particles are exhumed towards the surface; (2) the detrital minerals found 218 

in modern river sands are considered to be representative of the drainage; and (3) the 219 

residence time of sediment-transport in the drainage basin is minimal. 220 

The method developed by Avdeev et al (2011) allows temporal variation in erosion; 221 

whilst the other methods consider the time-averaged erosion rates (steady state) since the 222 

crystals passed through the closure isotherm. Avdeev et al. (2011) developed the 223 

approach by applying the Bayesian interpretation of probability and Markov Chain 224 

Monte Carlo algorithm in the inversion of detrital thermochronometer ages to erosion 225 

rates. The approach proposes age-elevation models with assumptions of a vertical 226 

advection path and a flat isotherm (Avdeev et al. 2011), which makes it suitable for  227 

thermochronometers with higher closure temperatures and its application to 40Ar/39Ar is 228 

highlighted in “future directions” in Avdeev et al. (2011). Comparatively, the method 229 

allows investigation of temporal variation of erosion rates and has previously been 230 

applied to large drainages (e.g. the Yellow River, Yangtze, Mekong, etc.) of the central 231 

Tibetan Plateau with apatite U-Th/He and fission track analyses (Duvall et al., 2012). We 232 

developed a new MATLAB code and applied it to implement the Bayesian inversion of 233 

detrital muscovite 40Ar/39Ar dates (Fig. 5). 234 

The method developed by Brandon et al. (1998) investigates the spatial variation in 235 

erosion; the other three methods assume drainage-wide uniform erosion. Brandon et al. 236 

(1998) developed the approach by applying a simple one-dimensional analysis to convert 237 
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detrital thermochronological ages to erosion rates. The approach has previously been 238 

applied to a modern river sand collected from the Indus river which had been previously 239 

analyzed by the zircon fission track technique (Garver et al., 1999; Cerveny et al., 1988). 240 

Later the approach has been expanded to include apatite and zircon U-Th/He, apatite and 241 

zircon fission track analysis, and 40Ar/39Ar thermochronometers (K-feldspar, biotite, 242 

muscovite, and hornblende) (Reiners and Brandon, 2006). We developed a new 243 

MATLAB code to conduct the inversion of detrital muscovite 40Ar/39Ar dates (Fig. 6) 244 

according to the methods in Brandon et al. (1998) and Willett and Brandon (2013). 245 

Given the difference of these methods and our research interests in understanding the 246 

spatial and temporal variation in erosion of the drainage basins, we apply the Avdeev's 247 

method (Avdeev et al., 2011) and Brandon's method (Brandon et al., 1998) to the 248 

inversion of detrital muscovite 40Ar/39Ar dates to erosion rates (Table S3). We contrast 249 

results from both methods to investigate the variation in erosion of drainage basin 250 

through space and time. 251 

4. Results and discussion 252 

4.1 Detrital zircon U-Pb ages 253 

The detrital zircon U-Pb ages from modern river sediments of Indus tributaries (MRS 2, 254 

MRS 3, MRS 4, MRS 5, MRS 8, and MRS 9) are presented in Figures 2 and 3 along with 255 

compiled published bedrock data from the source terranes.   256 

As expected (see Alizai et al., 2011), the spectra from the upper Indus tributaries are 257 

distinct from those rivers draining Indian plate Himalayan formations in their significant 258 
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young <200 Ma populations (Figs. 2 and 3); this reflects their drainage area 259 

encompassing the pre-collisional Andean-type subduction-related batholiths and the 260 

Kohistan island arc.  The sample from the Indus River mouth has a hybrid spectrum (TH-261 

1 in Fig. 2) representing both young ages from the upper Indus tributaries and Paleozoic-262 

Precambrian grains which are predominant in tributaries draining the Indian plate 263 

Himalaya which is predominant in TH-1. 264 

MRS 3 (Hunza River) drains a minor part of the Southern Karakoram Metamorphic Belt, 265 

the Karakoram Batholith and Northern Karakoram Terrain as well as the South Pamir in 266 

its upper headwaters. Its U-Pb age spectrum matches with the published compilation 267 

characteristic signature of the Karakoram and the South Pamir (Fig. 2) and it lies close to 268 

the poles of the South Asian margin (the Karakoram and South Pamir) in the 269 

multidimensional scaling plot (Fig. 4), supportive of detritus derived from these terranes. 270 

The lack of Cenozoic peak, typical of the Karakoram terrain from bedrock studies (Fig. 271 

3), is likely due to the fact that post-collisional Cenozoic plutons are volumetrically 272 

minor, and their prevalence has been over-enhanced in the published compilation 273 

spectrum due to the focus of published research on such rocks. 274 

MRS 4 (Ghizar-Gilgit River) drains both the Karakoram (the Southern Karakoram 275 

Metamorphic Belt as well as Karakoram Batholith) and the Kohistan arc and MRS 2 276 

(Gilgit River) is downstream of the confluence of the Hunza River and Ghizar-Gilgit 277 

River (Fig. 1). The U-Pb zircon spectra of MRS 4 and MRS 2 resemble both the 278 

Karakoram and Kohistan arc terrains, which are in themselves very similar (Figs. 2 and 279 

3). The greater affinity of MRS 3 and MRS 2 to the South Pamir compared to MRS 4 280 
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(Fig. 4) reflects the difference in drainage basins, with MRS 2 and 3, but not MRS 4, 281 

including the South Pamir in their catchment areas, and MRS 4 consisting of a higher 282 

percentage of Kohistan arc. This is consistent with the ~40–80 Ma peak dominant in 283 

MRS 4 which is strongly represented in MRS 8 (Dir River) (Fig. 3), which exclusively 284 

drains the Kohistan arc and shows strong affinity to the pole of Kohistan arc on the 285 

multidimensional scaling plot (Fig. 4).  286 

MRS 5 (Chitral River) drains the Hindu Kush, the Karakoram (the Southern Karakoram 287 

Metamorphic Belt and Karakoram Batholith) and the Kohistan arc. Accordingly, its 288 

spectrum shows resemblance to these terranes, including a 200 Ma population (Fig. 3), 289 

documented thus far in the Hindu Kush only (Hildebrand et al., 2001).  It has, however, 290 

an unexpected high input of Precambrian grains that results in an affinity close to the 291 

poles of terranes which are typified by such old grains in the MDS plot (Fig. 4), such as 292 

the Indian plate. Prevalence of old grains in MRS 5 may be the result of this river’s long 293 

transit through a zone of sedimentary rocks in the Tirich Mir fault-Wakhan Fault Zone. 294 

The 200 Ma peak and prevalence of older grains is also observed in MRS 9 (Kabul River) 295 

(Fig. 3) draining the same terrains as MRS 5, but with the additional source downstream 296 

of the Indian plate Himalaya, which may also have contributed to the Precambrian aged 297 

zircons at the MRS 9 location. MRS 9's affinity to Asian contributions is supported by 298 

the similar detrital zircon U-Pb spectrum to that of the Upper Indus sediment sample 299 

collected at Attock (Fig. 2); MRS 9 and the Attock sample cannot be differentiated on the 300 

multidimensional scaling plot (Fig. 4). 301 



 15 

Hildebrand et al. (2001) noted that the 200 Ma population had been recorded in the Hindu 302 

Kush, but nowhere else along the southern margin of Asia. Our data would lend support 303 

to this observation in that the two samples which have a drainage area which include the 304 

Hindu Kush (samples MRS 5 and MRS 9) contain grains of such an age, whilst the 305 

samples draining the Karakoram but not the Hindu Kush (samples MRS 2, MRS 3, and 306 

MRS 4) do not (Fig. 3). Whilst it is conceivable that such a population in these two rivers 307 

was derived from the Kohistan island arc, rather than the Hindu Kush, we think this 308 

highly improbable since: 1) such grains are rare in Kohistan (samples MRS 2, MRS 4, 309 

MRS 8); 2) samples MRS 5 and MRS 9 do not display the ~40–80 Ma peak characteristic 310 

of the Kohistan island arc, and 3) the Chitral-Kabul River’s drainage basin only includes 311 

a small proportion of the Kohistan island arc. 312 

The origin of the significant Paleogene population (30–37 Ma, peak at 35 Ma, plus a few 313 

grains at ca. 50 Ma) recorded in MRS 9 is enigmatic. The significance of the peak in the 314 

downstream MRS 9, and complete absence of a similar peak in the upstream MRS 5 315 

might suggest that the grains come from the Indian plate Himalaya, through which the 316 

river of the downstream sample only flowed. However, only rare Paleogene granites have 317 

been recorded in the western part of the Indian plate, dated at 47 Ma (Smith et al., 1994), 318 

which is a poor match for the grains recorded here. Furthermore, if significant Indian 319 

plate input contributed to the zircon population, a concomitant increase in zircons of 320 

Precambrian and Paleozoic age would be expected.  321 

Grains of Palaeogene age have been recorded in the Kohistan arc (e.g. Bouilhol et al., 322 

2013; Heuberger et al., 2007), yet two lines of evidence suggest that the Kohistan arc is 323 
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not the source of the grains in MRS 9: firstly, the Kohistan batholith only forms a minor 324 

part of this drainage basin for MRS 5 and MRS 9 (Fig. 1B); secondly, the appearance of 325 

these Palaeogene zircons in MRS 9 is accompanied by the first significant appearance 326 

downstream of similar aged muscovites (Fig. 3), suggesting a common source. Such aged 327 

micas are absent from the Kohistan island arc in which muscovites are rare. We therefore 328 

suggest that the most likely source for these Paleogene zircons is the Asian plate north of 329 

the arc. We suggest that the lack of such a peak in MRS 5 is the result of increasing 330 

inputs of an unidentified source from the Asian plate to MRS 9 from Afghan tributaries 331 

with unstudied drainage basin geology, joining the Kabul River downstream.  332 

Similar aged Paleogene zircons have been also reported in the Katawaz Basin and 333 

Makran accretionary wedge to the south and the southwest of our studied area (Fig.1A); 334 

sediments in these two basins were argued to be derived from the proto-Himalayan 335 

orogen (Carter et al., 2010) or from a local source of continental arc and ophiolites from 336 

the Makran (Mohammadi et al. (2016).  337 

4.2 Detrital muscovite 40Ar/39Ar thermochronometer 338 

4.2.1 40Ar/39Ar ages 339 

We have dated 356 detrital muscovite grains. All grains are younger than 200 Ma (most < 340 

120 Ma), except one grain from MRS 3 that has an age of 267.8 Ma (Table S2).  341 

Samples MRS 3 and MRS 4, despite draining similar tectonic terranes (MRS 4 draining 342 

the Northern Kohistan Arc, the South Karakoram Metamorphic Belt and the Karakoram 343 

Batholith and MRS 3 draining minor part of the South Karakoram Metamorphic Belt, the 344 
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Karakoram Batholith, the Northern Karakoram Terrain and South Pamirs), show distinct 345 

detrital muscovite 40Ar/39Ar age distributions (Fig. 3). 40Ar/39Ar ages for the Ghizar-346 

Gilgit River (MRS 4, draining northern Kohistan, the Southern Karakoram Metamorphic 347 

Belt and the Karakoram Batholith) range between 24.6 Ma and 102.5 Ma with peaks at 348 

ca. 30 Ma, 50 Ma, 70 Ma, and 100 Ma (Fig. 3). Since muscovites are extremely rare in 349 

the igneous units of the Kohistan arc (Parrish and Tirrul, 1989; Schärer et al., 1990) (e.g. 350 

MRS 8 draining only the Kohistan arc has no micas), we interpret muscovites from MRS 351 

4 as Karakoram-derived, including the South Karakoram Metamorphic Belt and the 352 

Karakoram Batholith. These white mica 40Ar/39Ar ages are consistent with bedrock 353 

hornblende and biotite ages reported by Treloar et al (1989) from the Karakoram in the 354 

region of this river’s headwaters.  355 

By contrast, MRS 3 from the Hunza River (draining the Hunza pluton of the Karakoram 356 

Batholith, the Northern Karakoram Terrain, the South Pamir and a minor part of the 357 

Southern Karakoram Metamorphic Belt) has a range of 40Ar/39Ar ages between 4.4–32.3 358 

Ma, and grains aged < 13 Ma are dominant (60 out of 71 grains) (Fig. 3), which is 359 

broadly consistent with the ages supplied by a range of thermochronological techniques 360 

in bedrock data from that region (Krol et al 1996b). 361 

40Ar/39Ar ages of MRS 2 concentrate between 3.4 Ma and 39.8 Ma with a couple of 362 

grains at 70 Ma (Fig. 3). MRS 2 is located downstream of the confluence of MRS 3 363 

(Hunza River) and MRS 4 (Ghizar-Gilgit River); its age spectrum overlaps and shares 364 

characteristics with MRS 3 and MRS 4 but loses the age peaks of 50 Ma and 100 Ma 365 

seen in MRS4 (Fig. 3). 366 
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Most 40Ar/39Ar ages of the Chitral River MRS 5 (draining the Hindu Kush and 367 

Karakoram, and a small proportion of the Kohistan arc which does not contain 368 

muscovites) are between 110 Ma and 120 Ma with some grains around 20 Ma, 60 Ma, 369 

and 200 Ma. The downstream MRS 9, with a similar source catchment to MRS 5 with the 370 

addition of the Indian plate, has a similar range in 40Ar/39Ar age distribution (20-200 Ma) 371 

as MRS 5 but it has a major peak around 20 Ma (Fig. 3). 372 

4.3 Exhumation rates as determined from 40Ar/39Ar muscovite ages 373 

We have developed two MatLab codes and applied them to the inversion of detrital 374 

muscovite 40Ar/39Ar ages to erosion rates (Figs. 5 and 6). Method of Avdeev et al. (2011) 375 

focuses on the temporal variations, allowing evaluation on erosion histories, whilst the 376 

method of Brandon et al. (1998) emphasizes the spatial variation in erosion in drainage 377 

(Table 2). 378 

4.3.1. Long-term exhumation rate variations 379 

Numerical modeling by using the method proposed by Avdeev et al. (2011)  reveals 380 

temporal variations in erosion across the Hindu Kush-Karakoram. To the first order 381 

observation, the numerical modeling results using the method of Avdeev et al. (2011) 382 

reveal the most recent and greatest erosion in the Hunza River drainage (MRS 3) in the 383 

eastern Karakoram (Fig. 5), with the micas probably derived from a catchment 384 

encompassing the Karakoram and South Pamir. The erosion rate increases from 90.9 385 

m/Ma to 601.2 m/Ma at ca. 8.5 Ma (Fig. 5). MRS 4 from the Ghizar-Gilgit River, with 386 

muscovites interpreted as derived from the Karakoram since the Kohistan arc contains 387 
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only sparse muscovites, shows a relatively high erosion rate of 186.8 m/Ma between 34.5 388 

Ma and 24.6 Ma, and a rate of 286.3 m/Ma between 71.3 Ma and 69.6 Ma (Fig. 5).  389 

Numerical modeling results reveal that the Chitral drainage of MRS 5 experienced one 390 

phase of fast erosion with a rate of 303.3 m/Ma between 115.2 Ma and 124.5 Ma and two 391 

phases of slow erosion before and after this period (Fig. 5; Table S3). Given the drainage 392 

basin from which this sample was collected, this most likely reflects erosion in the Hindu 393 

Kush and/or western Karakoram. The numerical modeling results for MRS 9 from the 394 

Kabul River capture a fastest period of erosion with a rate of 305.7 m/Ma starting at 27.2 395 

Ma. Prior to this phase of fast erosion, there was a protracted period of slow erosion (8.7 396 

m/Ma) since 125.1 Ma. An earlier phase with comparably high erosion (173.0 m/Ma) was 397 

constrained to be between 125.1–128.8Ma that follows a period of slow erosion (Fig. 5). 398 

The timing of this earlier phase of fast erosion is similar to MRS 5 but with smaller rate. 399 

4.3.2. Spatially varying exhumation rates 400 

Numerical calculations using the method developed by Brandon et al. (1998) give 401 

temporally averaged but spatially varying erosion rates (Fig. 6). The first order 402 

observation reveals that 1) erosion rates are lower for drainages of MRS 4 (micas derived 403 

from the Karakoram), MRS 5 (micas derived from the Hindu Kush and/or western 404 

Karakoram), and MRS 9 (downstream of MRS 5); 2) the Hunza River drainage of MRS 3 405 

has the highest rates, with micas derived from a catchment encompassing the Karakoram 406 

and South Pamir (Fig. 6). The erosion rate varies from a few hundred meters/Ma to > 407 

2,000 meters/Ma (2 mm/yr) for the Hunza River drainage of MRS 3. The medium value 408 

for the Hunza River drainage of MRS 3 is 1.14 mm/yr (Fig. 6), suggesting that more than 409 
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half of the Hunza drainage of MRS 3 has an erosion rate > 1.14 mm/yr. By contrast, the 410 

medium erosion values for MRS 4, MRS 5, and MRS 9 are 0.15 mm/yr, 0.06 mm/yr, and 411 

0.32 mm/yr, respectively (Fig. 6).  412 

We note the difference in modeled erosion rates using Avdeev's method (Avdeev et al., 413 

2011) and Brandon's method (Brandon et al., 1998); this difference is rooted in different 414 

assumptions of the two methods with one focusing on the long-term average erosion rate 415 

(Avdeev et al., 2011) and the other one estimating spatial variations in present-day rate 416 

(Brandon et al., 1998).  417 

4.4 Temporal and spatial variations in crustal thickening and exhumation: 418 

relationships with tectonics 419 

The earliest recorded Mesozoic crustal accretion is documented by a population of ~200 420 

Ma detrital zircon U-Pb ages (Fig. 3) and co-eval rapid exhumations captured by detrital 421 

muscovite 40Ar/39Ar ages 179.9 Ma to 195.8 Ma of MRS 5 and MRS 9 which partially 422 

drain the Hindu Kush. Hildebrand et al. (2001) noted that zircons of such age have not 423 

yet been recorded in the Karakoram, an observation which is upheld by our new data 424 

from the Karakoram-draining rivers (MRS 2, 3, and 4). Previous work recording such 425 

ages are restricted in the Hindu Kush to monazites from the Garam Chashma pluton 426 

(Faisal et al., 2014; Hildebrand et al., 2001), located close to MRS 5. Faisal et al. (2014) 427 

record monazite populations dated between 211 +/- 7.9 to 201.5 +/- 3.6 Ma and 189.7 +/- 428 

4.8 to 184.6 +/- 3.4 Ma, which they interpret as either reflecting a single protracted 429 

metamorphic event, or two events, related first to the collision of the Hindu Kush with 430 

the Central Pamir along the Rushan-Pshart Suture, and then to the collision of the 431 
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Karakoram with the Hindu Kush along the Tirich Mir-Wakhan Fault zone. Detrital zircon 432 

U-Pb ages of ~200 Ma from MRS 5 and MRS 9, covering a period from 190.8 +/- 2.8 to 433 

212.4 +/- 2.7 Ma, overlap these two previously recorded age populations. We speculate 434 

that the presence of ca. 200 Ma population in the Hindu Kush (also recorded in the 435 

correlative South Pamir, e.g. Blayney et al 2016), but its lack of documentation, to date, 436 

in the Karakoram (see section 4.1), may be the result of the docking of the Hindu Kush – 437 

South Pamir terrane with the Central Pamir at this time, closely followed by the closure 438 

of the basin between the Hindu Kush and Karakoram along the Tirich Mir-Wakhan Fault 439 

zone to the south (Angiolini et al., 2013; Robinson, 2015; Zanchi et al., 2000). 440 

Zircons <200 Ma reflect the ongoing closure of Neotethys culminating in the eventual 441 

collision of India with Asia. All samples draining the Karakoram and Hindu Kush show a 442 

dominant peak of detrital zircon U-Pb ages at ca. 100–120 Ma (Fig. 3). This is consistent 443 

with previous work documenting similar zircon and monazite ages (95–130 Ma) in both 444 

terranes (e.g. Debon et al., 1987; Fraser et al., 2001; Heuberger et al., 2007), which is 445 

related to the subduction of Neotethys beneath the southern margin of the Andean-style 446 

margin of Asia. Two phases of fast erosion at ca. 115–124 Ma and 125–129 Ma, modeled 447 

in the MRS 5 and MRS 9 of the Chitral and Kabul river samples, overlap zircon and 448 

monazite ages and likely represent a single protracted phase of accelerating erosion 449 

across the South Asian margin of the Hindu Kush/Karakoram, related to the same 450 

subduction system. Additional evidence of fast erosion in the Hindu Kush at this time 451 

comes from the Cretaceous Reshun conglomerate unit in the Tirich Mir fault zone; its 452 

existence implies that the Hindu Kush was acting as an active source during the 453 

deposition of this conglomerate (Pudsey et al., 1985). Early Cretaceous subduction and 454 
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accretion processes were also widely observed in the Karakoram (e.g. Alizai et al., 2011; 455 

Hildebrand et al., 2001; Searle and Tirrul, 1991; Searle, 1991); the evidence includes U-456 

Pb dating on the Hushe gneiss, Hunza granodiorite, and K2 gneiss that constrained the 457 

subduction and accretion events to be between 100 Ma and 140 Ma and the synorogenic 458 

Tupop conglomerate unit which was deposited in the northern Karakoram (Gaetani et al., 459 

1993) in response to the orogenic processes of the active Asian margin (Hildebrand et al., 460 

2001). According to Faisal et al. (2014), the Early Cretaceous subduction ceased at the 461 

location described above, in the Late Cretaceous, due to collision of the Kohistan Island 462 

arc with the Asian margin at ~85–90 Ma. They interpret monazite ages of 88 and 72 Ma 463 

in the Hindu Kush as the result of the re-establishment of the subduction zone to the 464 

south. A scarcity of zircon ages in the range of ~80–90 Ma for all of our Hindu Kush- 465 

and Karakoram-draining samples may reflect this southerly jump in the location of 466 

subduction. The comparatively high erosion rate (286.3 m/Ma) at 69–71 Ma from MRS 4 467 

(Fig. 5) might reflect this collision-related erosion in the Southern Karakoram 468 

Metamorphic Belt. 469 

Our oldest recorded accelerating erosions post India-Asia collision start at 35 Ma (MRS 4; 470 

micas derived from the Karakoram) with muscovites of the same age also recorded in 471 

MRS 5) from the Kabul River, which we interpret as associated with the 30–37 Ma 472 

zircon U-Pb ages in MRS 9 (Table S2). This is followed by a second accelerated erosion 473 

at 27 Ma (MRS 9; micas derived from the Hindu Kush and Karakoram). Additionally, 474 

MRS 5 has a small peak of detrital muscovite 40Ar/39Ar ages between ca. 18 Ma and 28 475 

Ma (five grains; Table S3), possibly linked to fast erosion at this time in Chitral River 476 
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drainage although the numerical modeling did not capture this signal due to the 477 

preponderance of ~120 Ma aged grains (Figs. 3 and 5). 478 

In contrast to MRS 4’s youngest record of exhumation at 35 Ma (Fig 5, Table S3) and 479 

youngest mica age / peak of 25 and 30 Ma respectively, MRS 3, along strike to the East, 480 

with a catchment draining the Karakoram and South Pamir, has a very different mica age 481 

distribution and exhumation pattern. MRS 3 displays the most recent intense exhumation 482 

of all our samples, as reflected in the concentration of young detrital muscovite 40Ar/39Ar 483 

ages (youngest age: 4.4 Ma; 61 out of 71 grains younger than 13 Ma, Table S2; Fig. 3), 484 

and the modeled fastest erosion rate (601.2m/Ma at 8.5 Ma) (Fig. 5; Table S3). 485 

We consider that the difference in mica ages and periods of rapid exhumation between 486 

samples MRS 3 and 4, along-strike in the Karakoram may be the result of either: (1) 487 

proximity of MRS 3 river’s headwaters to the Karakoram Fault, along which young 488 

exhumation, of similar age to the 8 Ma accelerated erosion we document, has already 489 

been recorded at a number of locations (e.g. Dunlap et al., 1998; Wallis et al., 2016), or 490 

(2) along-strike variation in the tectonics of the Karakoram. Both Searle et al (2010) and 491 

Palin et al (2012) noted differences between the western (Hunza) and eastern (Baltoro) 492 

regions in terms of their metamorphic and magmatic histories. This difference they 493 

ascribed to either diachroneity of evolution along strike in the Karakoram, or variation in 494 

the degree of exhumation. Our data from the Hunza River may indicate that the Late 495 

Miocene rapid exhumation experienced in the Baltoro Region of the Karakoram 496 

(Cerveny et al., 1989; Foster et al., 1994) extends at least as far west as the eastern part of 497 
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Hunza, consistent with the work of Krol et al, (1996b). More exhumational data from 498 

further west is required to investigate this question further.   499 

Wallis et al. (2016) previously discussed spatial variations in the region. They noted a 500 

northward decrease in mineral exhumation age and increase in exhumation rate across the 501 

Indus suture zone from the Ladakh batholith to the Eastern Karakoram. They proposed a 502 

driving force related to the crustal thickening-driven uplift, subsequent creation of great 503 

relief and development of glaciation for the late Miocene rapid exhumation seen in the 504 

eastern Karakoram. Our data would indicate that this late Miocene-Pliocene rapid 505 

exhumation extended as far west as the Hunza River, if the locus of our recorded rapid 506 

exhumation in the Hunza River sample MRS 3 is taken to be the Karakoram Batholith 507 

rather than the region of the Karakoram Fault in the river’s headwaters. 508 

Our recorded rapid exhumation in the Karakoram at 8.5 Ma is observed downstream in 509 

the foreland basin.  Chirouze et al. (2015) conducted a study of bulk trace element and 510 

Hf-Nd isotopes, and detrital zircon fission track analyses on modern Indus and paleo-511 

Indus deposits in the western Himalayan foreland. Their results indicate increasing 512 

contribution of inputs from the Karakoram to the late Miocene Siwalik sediments, 513 

consistent with our documentation of increased exhumation from the Karakoram at this 514 

time. 515 

5. Conclusions 516 

Our zircon and mica data and modelled erosion rates contribute further to the growing 517 

dataset that map the extent to which the present-day topography in this region is a result 518 
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of not only post– but also pre- India-Asia collision, long-term crustal accretion, 519 

shortening, and thickening, which started with the Mesozoic amalgamation of the various 520 

Gondwanan terranes.  Our data from the Karakoram-Hindu Kush regions show a) further 521 

support to the suggestion that the ca. 200 Ma old detrital zircon population present in the 522 

Hindu Kush is absent from the Karakoram, and may reflect the collision between the 523 

Hindu Kush-South Pamir with Central Pamir, b) a dominant arc-derived peak of detrital 524 

zircon U-Pb ages at ca. 120 Ma in all MRS samples, and c) fast erosion pre-India-Asia 525 

collision at 115–128 Ma and 71 Ma. However, India-Asia collision is the most pervasive 526 

factor affecting erosion rate, as evidenced by post-collision fast erosion periods recorded 527 

at 35 Ma, 27 Ma and 8.5 Ma.  There is also significant spatial variation in exhumation, in 528 

particular the rapid exhumation at 8 Ma is only observed furthest east in our study area. 529 

Such a variation may reflect east-west along-strike variation in exhumation, as previously 530 

documented with respect to metamorphic and magmatic episodes, or the proximity of the 531 

Hunza River headwaters to the Karakoram Fault. 532 
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Figure 1. (A) Topographic map of western part of Himalaya and Tibetan Plateau with the 541 

Indus drainage. Collection sites of modern river sediment samples (MRS 2, 3, 4, 5, 8, and 542 

9, this study) are indicated by white solid circles. Purple (blue) solid circles indicate 543 

previous sampling sites of Himalaya tributary river sediments (a–g) (Alizai et al., 2011), 544 

and modern river sediments at the Indus River mouth (TH-1) (Clift et al., 2004). (B) 545 

Topographic map superimposed with simplified geology and the Upper Indus shown with 546 

tributaries and sample locations of modern river sediment (MRS) samples. Main 547 

Karakoram Thrust (MKT) / Shyok Suture Zone (SSZ), Main Mantle Thrust (MMT) / 548 

Indus Suture Zone (ISZ).  549 

Figure 2. Cumulative curves of modern river sediments of the Upper Indus tributaries 550 

(MRS 2, 3, 4, 5, 8, and 9; this study), Himalayan tributaries (a–g) (Alizai et al., 2011), 551 

and Indus River mouth sample TH-1 (Clift et al., 2004). (B) Probability density curves of 552 

detrital zircon U-Pb dates of potential source terranes. We compiled and grouped detrital 553 

zircon U-Pb ages from previous publications for Kohistan-Ladakh oceanic arcs (Bosch et 554 

al., 2011; Bouilhol et al., 2011, 2013; Clift and Gaedicke, 2002; Henderson et al., 2011; 555 

Heuberger et al., 2007; Honegger et al., 1982; Jagoutz et al., 2009; Khan et al., 2009; 556 

Krol et al., 1996a; Ravikant et al., 2009; Schärer et al., 1984; Singh et al., 2007; St-Onge 557 

et al., 2010; Upadhyay et al., 2008; Weinberg et al., 2000; White et al., 2011), Karakoram 558 

(Fraser et al., 2001; Heuberger et al., 2007; Jain and Singh, 2008; Mahar et al., 2014; 559 

Parrish and Tirrul, 1989; Phillips et al., 2004; Ravikant et al., 2009; Schärer et al., 1990; 560 

Searle et al., 1998; Sen et al., 2014; Weinberg et al., 2000), Hindu Kush (Hildebrand et 561 

al., 1998; Hildebrand et al., 2001), and South Pamir (Blayney et al., 2016). Detrital zircon 562 
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U-Pb ages for terrains of Tethyan Himalaya, Lesser Himalaya, and Higher Himalaya are 563 

compiled from Clift et al., (2014), Gehrels et al. (2003, 2008), and Hu et al. (2010).  564 

Figure 3. (A-F) Histograms of detrital muscovite 40Ar/39Ar ages and detrital zircon U-Pb 565 

ages (0~240 Ma). Note MRS 8 draining the Kohistan arc exclusively has no muscovites. 566 

(G) Kernel Density Estimation (KDE) (Vermeesch, 2012) plot of compiled detrital zircon 567 

U-Pb ages of potential source terranes. For cited references of potential source terranes, 568 

refer to Figure 2 caption.  569 

Figure 4. A multidimensional scaling plot (Vermeesch, 2013) displays the 570 

similarities/dissimilarities between the modern river sediment samples (MRS 2, 3, 4, 5, 8, 571 

and 9, this study; Himalaya tributaries, Alizai et al., 2011; lower Indus TH1, Clift et al., 572 

2004) and potential source terranes (Lesser Himalaya–LH, Higher Himalaya–HH, 573 

Tethyan Himalaya–TH; Asian margin, including Karakoram–KK, Hindu-Kush–HK, and 574 

South Pamir–SP; Kohistan Island Arc–KLA). For cited references for potential source 575 

terranes, refer to Figure 2 caption. 576 

Figure 5. Model results of MRS samples, obtained by applying new MATLAB code to 577 

implement Avdeev method (Avdeev et al., 2011) allowing variations in erosion time 578 

through time (discrete segments in elevation versus age profiles). (Left column; A, D, G, 579 

J) Plots of detrital muscovite 40Ar/39Ar age (Ma) against elevation (km). Dashed (black) 580 

line represents the best (average) model. (Middle column; B, E, H, K) Cumulative 581 

probability density plots showing actual ages (open circles) and synthetic ages modeled 582 

from the best model (dashed line) and the average model (solid line). (Right column; C, 583 

F, I, L)  Plots of erosion rate versus time (Ma).  584 
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Figure 6. Model results obtained by applying the method of Brandon et al. (1998). (Left 585 

column; a, d, g, j, m) Kernel Density Estimation (KDE) (Vermeesch, 2012) and 586 

histogram plots of detrital muscovite 40Ar/39Ar age (Ma). (Middle column; b, e, h, k, n) 587 

Kernel Density Estimation (KDE) (Vermeesch, 2012) and histogram plots of modeled 588 

erosion rates (km/Ma). (Right column; c, f, i, l, o) Cumulative plot of modeled erosion 589 

rates shown with the medium value. 590 

Table 1. Sample collection site coordinates, draiange, and tectonic terranes. 591 

Table 2. Summary of methods for the inversion of detrital thermochronometer ages to 592 

erosion rates. 593 
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Sample Drainage Sourced terrane Latitude Longitude

MRS 3 Hunza River Karakoram, Pamir 36.3119 74.6916

MRS 4 Gilgit Karakoram, N Kohistan 35.9252 74.2656

MRS 2 Hunza, Danur, Gilgit N Kohistan, Karakoram 35.8998 74.3968

MRS 5 Kesu, Chitral Karakoram, Hindu Kush, Kohistan 35.6211 71.7967

MRS 8 Dir Kohistan 35.1427 71.9018

MRS 9 Kabul, Hajizai Swat Himalaya, Kohistan, Hindu Kush 34.1648 71.5927
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Method-1 Method-2 Method-3 Method-4

Temporarily averaged 

(steady state)

Temporarily averaged 

(steady state)
Temporarily varying

Temporarily averaged (steady 

state)

Basin-wide uniform Basin-wide uniform Basin-wide uniform Spatially varying

Mean elevation and age 

(point-point)

Range of elevations and 

ages

Piecewise (segment) 

elevation-age

Small Small Large Large

Table 2. Summary of methods for the inversion of detrital thermochronometer ages to erosion rates
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Ar/
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Ar
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thermochronometers

Characters of 

modeled erosion rate

Brandon et al., 1998; Garver 

and Brandon, 1999; Willett & 

Brandon, 2013

Duvall et al., 2012; Avdeev 

et al., 2011

Hodges et al., 2005; 

Ruhl and Hodges, 2005

Apatite U-Th/He, apatite 

fission track, ziron U-Th/He, 

zircon fission track, 
40

Ar/
39

Ar

Inversion methods

1. Vertical particle trajectory (no lateral variation)

2. Representative sampling (lithology control on detrital crystal yield)

Calculation of 

erosion rates

Using elevation-age relation Erosion-dependence of timing 

of particle passage from 

closure isotherm to surface

Common 

assumptions
3. Brief residence time in the sediment-transport system

Brewers et al., 2003; 

2006
Reference

Drainage size
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fission track (encouraged 

for 
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He/

3
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Ar
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Table S1. Detrital zircon U-Pb ages.
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Table S2. Detrital muscovite single crytal 40Ar/39Ar ages.
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Table S3. Modeling results using Avdeev's method (Avdeev et al.,
2011).
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