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Abstract— Soil moisture (SM) plays an important role in
the land surface energy balance and water cycle. Microwave
remote sensing has been applied widely to estimate SM. However,
the application of such data is generally restricted because
of their coarse spatial resolution. Downscaling methods have
been applied to predict fine-resolution SM from original data
with coarse spatial resolution. Commonly, SM is highly spa-
tially variable and, consequently, such local spatial heterogeneity
should be considered in a downscaling process. Here, a hybrid
geostatistical approach, which integrates geographically weighted
regression and area-to-area kriging, is proposed for down-
scaling microwave SM products. The proposed geographically
weighted area-to-area regression kriging (GWATARK) method
combines fine-spatial-resolution optical remote sensing data and
coarse-spatial-resolution passive microwave remote sensing data,
because the combination of both information sources has great
potential for mapping fine-spatial-resolution near-surface SM.
The GWATARK method was evaluated by producing down-
scaled SM at 1-km resolution from the 25-km-resolution daily
AMSR-2 SM product. Comparison of the downscaled predictions
from the GWATARK method and two benchmark methods on
three sets of covariates with in situ observations showed that the
GWATARK method is more accurate than the two benchmarks.
On average, the root-mean-square error value decreased by 20%.
The use of additional covariates further increased the accuracy of
the downscaled predictions, particularly when using topography-
corrected land surface temperature and vegetation–temperature
condition index covariates.
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I. INTRODUCTION

SOIL moisture (SM) is an important land surface parameter
used in the modeling of ecohydrological processes and

for understanding the behavior and functioning of ecosys-
tems [1], [2]. Although traditional measurement methods
(i.e., gravimetric), wireless sensor network (WSN) dynamic
observations [3], and cosmic-ray neutron dynamic observa-
tions [4] can provide SM information with high accuracy, and
at multiple depths, the application of such methods across large
areas is impractical. At regional, continental, and global scales,
remote sensing of surface SM is considered the optimum solu-
tion. In particular, microwave remote sensing has been applied
widely to the monitoring of SM because of its high sensitivity
to SM and its robustness to atmospheric conditions [5].

There are various active (e.g., the Advanced Synthetic
Aperture Radar and Advanced Scatterometer) and passive
[e.g., the Advanced Microwave Scanning Radiometer for the
Earth Observing System (AMSR-E), Advanced Microwave
Scanning Radiometer 2 (AMSR-2), and Soil Moisture and
Ocean Salinity instrument] microwave sensors. Compared with
active sensing, which requires detailed background infor-
mation such as terrain and soil texture, passive microwave
remote sensing is better suited to capturing the spatio–temporal
variation of SM over large areas. Most passive sensors provide
SM products with fine temporal resolution of 1–3 d and coarse
spatial resolution of about 25–50 km. Launched in 2015,
the SM active–passive sensor provides different resolutions,
including a finer spatial resolution of 9 km. However, the spa-
tial resolutions of all these sensors are too coarse to be useful
in catchment-based hydroecological modeling, as required for
forecasting floods and droughts [6]. Therefore, it is necessary
to increase the spatial resolution of passive microwave SM
products.

Several methods have been developed to downscale pas-
sive microwave remote sensing products: general statistical
methods [7], machine learning methods [8], process-based
methods [9], fractal methods [10], geostatistical methods [11],
and hybrid methods [12]. Recently, Peng et al. [13] system-
atically reviewed the existing methods used for downscaling
satellite remotely sensed SM. To downscale SM, most of
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the above methods commonly combine ancillary information
with passive microwave remote sensing data [14]–[16]. For
example, direct optical remote sensing products with fine
spatial resolution, such as land surface temperature (LST) and
normalized difference vegetation index (NDVI) [17]–[19], and
indirect products, such as soil evaporative efficiency [20], [21]
and temperature–vegetation indices [22], have commonly been
employed.

The most widely used general statistical downscaling meth-
ods, e.g., quadratic regression model (QRM) [15], are easy
to apply; however, such methods focus on the parameter
space and they ignore spatial aspects. Kim and Hogue [22]
indicated that QRM might not be optimal in terms of down-
scaling accuracy. Recently, with consideration of the spatial
correlation among ecohydrological variables, geostatistical
methods have advanced [23], [24] and they have been increas-
ingly applied to downscaling SM [25], [26]. To resolve the
change of support problem (COSP), which is one of the
principal challenges in a downscaling process, two high-
performing downscaling methods have been developed: area-
to-point regression kriging (ATPRK) [27] and area-to-area
regression kriging (ATARK) [28]. These methods combine
regression kriging [29] with area-to-point or area-to-area
kriging (ATPK/ATAK) [30]–[32]. Many studies have demon-
strated the downscaling potential of ATPRK and ATARK
(see [33]–[35]); however, there have been few applications to
remote sensing [36], [37] and, as far as we are aware, none
to the downscaling of SM data.

The global approach used typically in ATPRK and ATARK
might be inadequate to capture the local behavior of highly
spatially heterogeneous SM [38]. A more suitable model
would allow for nonstationarity in the model parameters.
Geographically weighted regression (GWR) [39] is a well-
established, nonstationary regression model that has been
applied to SM data [19]; however, hybrid methods combining
GWR and kriging (e.g., GWR-kriging [40]) are rare. To tackle
the problem of local heterogeneity, this paper describes the
integration of GWR and ATAK for downscaling SM using
fine-spatial-resolution optical image covariates [e.g., Moderate
Resolution Imaging Spectroradiometer (MODIS) products].
The proposed geographically weighted area-to-area regres-
sion kriging (GWATARK) method retains the advantages of
ATARK, while capturing the spatial nonstationary relation-
ships between dependent and ancillary variables. To validate
this method, a real-world application was implemented by
downscaling, from 25 to 1 km, the AMSR-2 SM prod-
uct [41] of the Heihe Water Allied Telemetry Experimental
Research (HiWATER) [42] experiment.

The structure of the remainder of this paper is as follows.
Section II describes the proposed GWATARK downscaling
approach. Section III presents the case study and it provides
the experimental results used for the validation, which are
discussed in Section IV. Section V presents the conclusion.

II. METHODS

A. General Formulation

Assume that vector Z(O) � �Z(Oi ), i � 1, 2, . . . , n�
represents the coarse SM observations at n spatially

distributed pixels Oi � (Ui , Vi ) (i � 1, 2, . . . , n) and that
Z(o) � �Z(o j ), j � 1, 2, . . . , nF2� represents the fine SM
predictions atnF2 spatial observation pixels o j � (u j , v j ) ( j �
1, 2, . . . , nF2). Here, F is the ratio between the coarse- and
fine-spatial resolutions, and (Ui , Vi ) and (u j , v j ) are the
geographic positions (latitudes and longitudes) of the centers
of the coarse- and fine-resolution pixels, respectively. The pro-
posed downscaling approach contains two phases: a regression
model that predicts the spatial trend of SM at fine resolution,
and an interpolation model to downscale the regression resid-
uals in order to obtain fine-resolution predictions. The general
form of the GWATARK prediction, therefore, comprises a
trend component and a residual component

Z(o j ) � m(o j ) � R(o j ) (1)

where m(o j ) is the deterministic part estimated by GWR
and R(o j ) is the regression residual interpolated with ATAK.
Here, R(o j ) is assumed normally distributed with zero mean,
spatially constant variance, and spatial correlation that is a
function only of separation distance.

B. GWR to Estimate the Spatial Trend

Benefitting from the fine-spatial-resolution information of
the covariates, the regression step in GWATARK aims to
establish the trend model of the fine-resolution SM using fine-
resolution covariates. Let xk(Oi ) (k � 1, . . . , p) be the value
of the kth covariate at coarse pixel Oi , and �(Ui , Vi ) �

�βl(Ui , Vi ), l � 0, 1, . . . , p� be the regression coefficients
with geographic position (Ui , Vi ). The corresponding fine-
resolution data and parameters are xk(o j ) for pixel o j

and �(u j , v j ) � �βl(u j , v j ), l � 0, 1, . . . , p� for posi-
tion (u j , v j ), with β0(�, �) as the intercept.

The relationship between the SM and the covariates at fine
resolution is modeled by linear regression using the GWR
model

m(o j ) � β0(u j , v j ) �

p∑
k�1

βk(u j , v j ) � xk(o j ). (2)

We impose that �(u j , v j ) is equal to �(Ui , Vi ) when pixel o j

is located in large pixel Oi (i.e., we do not allow the �(u j , v j )
coefficients to vary within large pixels). This restriction is
acceptable given that the large pixels are still small compared
with the extent of the study area. Recall that each large pixel
corresponds to F2 small pixels. Therefore, the sum of the
GWR predictions at fine resolution within Oi can be written
as

F2∑
j�1,o j�Oi

m(o j ) �

F2∑
j�1,o j�Oi

β0(u j , v j )

�

F2∑
j�1,o j�Oi

p∑
k�1

βk(u j , v j ) � xk(o j ). (3)

Acknowledging that coefficients are constant within large
pixels and dividing by F2 gives

m(Oi ) � β0(Ui , Vi ) �

p∑
k�1

βk(Ui , Vi ) � xk(Oi ) (4)
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where m(Oi ) is the average of m(o j ) within Oi and xk(Oi ) is
the average of xk(o j ) within Oi . It is evident that (3) yields (4)
because the regression coefficients are constant within a large
pixel; hence, it can be placed in front of the summation over
the small pixels.

Equation (4) implies that the regression coefficients could
be fit using the coarse-resolution data (SM data from AMSR-2
and upscaled covariates), whereas (2) shows that the fit model
could be applied at fine spatial resolution. The spatially
varying regression coefficients �(Ui , Vi ) at different positions
are estimated using the weighted least-squares method in basic
GWR, in which one of the important steps is to choose
a distance-decay function to represent the strength of the
connectivity between pixels. Here, the common Gaussian
distance-decay function is selected. Furthermore, the GWR
with a locally compensated ridge term [43] is employed to
address local collinearity.

In practice, the estimation of the regression coefficients and
of the trend from the available data introduces an estimation
error. Accounting for this and turning to vector notation,
we write �m(Oi ) � x(Oi )

T � ��(Ui , Vi ). The estimation error
variance is given by

�σ 2
GWR(Oi ) � Var� �m(Oi ) � m(Oi )�

� Var�x(Oi )
T � ��(Ui , Vi ) � m(Oi )�

� �σ 2 � H (Oi) (5)

in which

H (Oi) � x(Oi )
T � �X T W (Oi )X	�1 � X T � W (Oi )

� W (Oi )
T � X � �X T W (Oi )X	�T � x(Oi ) (6)

and the residual variance is

�σ 2 � RSS/EDF (7)

where W (Oi ) is the weight matrix at location Oi , X is the
design matrix, RSS is the residual sum of squares, and EDF
is the efficient degrees of freedom. For details, we refer the
reader to [44].

C. ATAK for Downscaling the Residuals
If the regression models were perfect and if there were

no observation errors in the coarse-resolution SM, then the
regression coefficients would be estimated without error and
the stochastic residual R would be 0. This means that regres-
sion (2) would perform downscaling without error. However,
in practice, this is never the case and regression residuals
do occur. In the proposed method, their spatial variation is
modeled using geostatistical techniques. If the residuals have
spatial structure, they can be interpolated to reduce the final
residuals of the integrated GWATARK model.

The residuals at coarse resolution were computed by sub-
tracting the upscaled trend from the observed SM at each large
pixel as follows


R(Oi ) � Z(Oi ) �

[
�β0(Ui , Vi ) �

p∑
k�1

�βk(Ui , Vi ) � xk(Oi )

]
.

(8)

Next, ATAK was employed to downscale the regression resid-
uals to obtain predictions of the residuals at fine resolution.
For a given pixel o j , the residual SM is predicted as a linear
combination of the residuals R(Oh ) (h � 1, . . . , m) in m
coarse neighboring pixels

�R(o j ) �

m∑
h�1

λh j � �R(Oh) (9)

where λh j represents the ATAK weights. The weights are
estimated by minimizing the prediction error variance, while
preserving unbiasedness. The corresponding kriging system
can be written as⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

m∑
i�1

λi j �C(Oh , Oi ) � μ(o j ) � �C(Oh , o j ), h � 1, 2 . . . m

m∑
i�1

λi j � 1

(10)

where �C(Oh , Oi ) and �C(Oh , o j ) are block-to-block covari-
ance terms and μ(o j ) are Lagrange multipliers. The covariance
terms are derived from the point support semivariogram,
which is derived from the coarse (block) observations using
a deconvolution procedure. For further details, the reader is
referred to [45]. The ATAK prediction error variance for the
residual averaged over the fine pixel is computed as

Var� �R(o j ) � R(o j )� � σ 2
ATAK(o j )

� �C(o j , o j )�

m∑
h�1

λh j �C(Oh , o j )�μ(o j ).

(11)

D. GWATARK Method
By combining the estimated trend and downscaled predic-

tion of residuals using (2) and (9), the general form of the
GWATARK (1) predictor can be written as

�Z(o j )

� �m(o j ) � �R(o j )

� �β0(u j , v j ) �

p∑
k�1

�βk(u j , v j ) � xk(o j ) �

m∑
h�1

λh j

�

{
Z(Oh) �

[
�β0(Uh, Vh) �

p∑
k�1

�βk(Uh, Vh) � xk(Oh)

]}
.

(12)

The corresponding prediction error variance involves two
parts, analogous to the GWRK prediction error variance
in [40]: the first part represents the trend estimation error and
the second part reflects the residual interpolation variance. The
GWATARK prediction error variance at o j is, thus, given by

�σ 2
GWATARK(o j )

� Var� �Z(o j ) � Z(o j )�

� Var� �m(o j )� � σ 2
ATAK(o j )
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Fig. 1. Flowchart of downscaling strategy used in this paper.

� �σ 2x(o j )
T � �X T W (Oi )X	�1 � X T � W (Oi )

� W (Oi )
T � X � �X T W (Oi )X	�T � x(o j )

� �C(o j , o j ) �

[
m∑

h�1

λh j �C(Oh , o j ) � μ(o j )

]
. (13)

The methodology described in this section was implemented
with the R software [46].

III. EXPERIMENTS

The proposed GWATARK method was tested on the
25-km-resolution daily AMSR-2 SM product with three sets
of covariates separately, to obtain the downscaled SM at 1-km
resolution. The result was compared with predictions from two
similar methods, namely, ATARK and QRM. The experiments
were run over both ascending and descending periods during
three months (from June 2014 to September 2014) in the
upstream area of the Heihe River Basin (HRB).

A. Methodological Setup
The experimental methodology included data preparation,

method implementation, and validation steps (Fig. 1). First, all
variables at 1- and 25-km spatial resolutions were preprocessed
for perfect alignment within the same grid system.

Second, the three downscaling methods, which comprised
spatial trend extraction and residual prediction, were applied.

The different trend models were explored at the coarse reso-
lution of 25 km. Based on the scale invariance of the trend,
as discussed in Section II-B, the regression models of the three
methods were used to predict the spatial trend of SM at the
fine spatial resolution of 1 km. Specifically, we used GWR (2)
for GWATARK, ordinary linear regression for ATARK, and
quadratic regression for QRM.

Third, the residuals at the fine resolution of 1 km were
predicted from the coarse 25-km regression residuals. Here,
QRM used bilinear interpolation to downscale the coarse
residuals to the fine resolution, while GWATARK and ATARK
used ATAK, as explained in Section II-C. The number of
coarse neighboring pixels in ATAK was taken as m � 25.
By combining the trend and residual predictions, we obtained
the downscaled SM results at 1-km resolution.

Finally, to check the proposed GWATARK method, we ana-
lyzed the downscaled results obtained by different methods
across the entire study area and we compared the downscaled
results with in situ observations within a subarea. Several
validation measures were employed, i.e., the cumulative dis-
tribution function (CDF), root-mean-square error (RMSE)
(m3 � m�3), mean error (ME) (m3 � m�3), correlation coef-
ficient (r ), slope (S) of the linear regression between in situ
observations and remote sensing SM values, and the composite
indices GDOWN and G�

DOWN. The latter two comprise compo-
nents in terms of r , S, and the mean bias [47]. To address any
potential bias between the AMSR-2 SM values and the in situ
measurements, we applied bias correction to the downscaled
SM, which consist of subtracting the bias (mean difference)
between the AMSR-2 SM values and the in situ measurements
from the downscaled SM. Some studies have applied bias
correction to remotely sensed SM products before downscaling
(see [48]); however, such a procedure could cause error
propagation during the downscaling process. As a preliminary
exploration and given the lack of sufficient ground observa-
tions, here, we ignored error accumulation and we applied
bias correction to the downscaled results before comparison
with the ground reference data. After bias correction, the five
indices (RMSE, ME, r , S, and G�

DOWN) were calculated for
comparison, whereby the index G�

DOWN should be evaluated
only in terms of r and S. The comparison results before bias
correction are presented in the Appendix.

B. Study Area and Materials
1) Study Area: The study area was defined as the upper

reaches of the HRB (37.66°–39.16°N, 98.50°–101.25°E) in
northwestern China (Fig. 2). It includes the Babao River Basin,
which is one of the focal experimental areas of the compre-
hensive HiWATER ecohydrological program. The study area
covers approximately 2452 km2 with elevation ranging from
2640 to 5000 m. It is a typical cold-region landscape with
natural grassland as the main vegetation type. Precipitation is
between 270 and 600 mm per year. The topography of the
study area, ground-based site locations, and the AMSR-2 grid
pixels are shown in Fig. 2.

2) Ground Measurements: In the upstream area of the HRB,
seven ordinary automatic meteorological stations and a super-
station at A’rou have been installed to capture atmospheric
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Fig. 2. (a) Elevation and delineation of the HRB study area. (b) Ground-based
site locations and AMSR-2 grid pixels.

state variables (i.e., precipitation) and SM. The ecohydrolog-
ical WSN (EHWSN) was designed and deployed to monitor
surface SM [49]. Detailed information on instrument settings
and acquired data are available in [42] and on the dedicated
website of the Environmental and Ecological Science Data
Center for West China (http://westdc.westgis.ac.cn/). The spa-
tial distribution of ground stations is shown in Fig. 2(b).
There are 40 EHWSN nodes obtaining data dynamically at
depths of 4, 10, and 20 cm. In this paper, three months’
in situ SM observations were acquired from June 11, 2014 to
September 11, 2014. For validation of the downscaled
AMSR-2 SM, observations averaged over the depths of 0–4 cm
during the three hours before and the three hours after the
satellite overpasses were used (i.e., from 22:30 to 04:30 for
the descending overpass, and from 10:30 to 16:30 for the
ascending overpass). The nodes were mainly concentrated in
the Babao River Basin and this part of the study area was
employed as the comparison area [Fig. 2(b)] to evaluate the
downscaled predictions against in situ observations. Because
of the availability of remote sensing images, different periods
were adopted for the validation of the descending and ascend-
ing cases. Fig. 3 shows the daily mean and standard deviation
values of SM, daily cumulative rainfall for the entire study area
during the two validation periods, and daily coverage fraction
of MODIS. Note that as expected, the SM values are larger
on rainy days.

3) Satellite Sensor Measurements: This paper employed the
AMSR-2 SM, MODIS LST, MODIS NDVI, and digital eleva-
tion model (DEM) products in which the DEM is provided by
the Shuttle Radar Topographic Mission (SRTM). To maintain
consistency between the AMSR-2 and MODIS data, intervals
of 27 and 29 d within the period of interest, as indicated
in Fig. 3, were selected for the ascending and descending
cases, respectively.

Fig. 3. SM observations, daily cumulative rainfall, and daily coverage
fraction of MODIS for the entire study area during the two validation periods.
(a) Ascending. (b) Descending. (The red dot is the mean and the bar is
�1 standard deviation.)

Fig. 4. (a) Vegetation–temperature trapezoidal feature space and
(b) calculated VTCI at 1-km resolution for August 21.

The successor AMSR-2 radiometer was launched on
May 17, 2012, as the first satellite of the Global Change
Observation Mission-Water [50], providing an important data
source for global observations of SM, after the AMSR-E [51]
mission was terminated in 2011. This paper used the Level 3
surface SM product of AMSR-2 (version 001), including
descending and ascending data, retrieved from the X-band by
the land parameter retrieval model. This data set, published by
the Goddard Earth Sciences Data and Information Services
Center, covers the period from May 2012 to the present at
25-km spatial resolution and 1-d temporal resolution. To match
the MODIS grid data, the three months’ SM data of the study
area were resampled to 25 � 25 km regular grids [Fig. 2(b)],
using the nearest neighbor resampling technique. Only days
with full spatial coverage were selected.

Given the satellite is Sun-synchronous with equator cross-
ings at 01:30 and 13:30 local solar time, the Version 5 MODIS
product of Aqua at 1-km spatial resolution was applied. The
day and night LSTs were extracted from the MYD11A1 prod-
uct. The NDVI data were acquired from the 16-d composite
product of MYD13A2. Because of cloud disturbance, the daily
MODIS product does not provide full coverage, but the 16-d
NDVI product is cloud free. The daily MODIS LST product
was not completely cloud free for the study area and the period
considered. Only days with a high LST data coverage fraction
(or no cloud fraction) were selected from all available dates.
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Fig. 5. Residual variograms at coarse spatial resolution (points) and fit model (lines) for the first two days in ascending and descending periods. (a) June 28.
(b) July 1. (c) June 28. (d) July 6. (Each row represents one set of covariates.)

The coverage fraction values were >0.5. Spline interpolation
was used to interpolate the pixel values in cloud-covered
regions. All of the MODIS data were projected and extracted
consistently with the coarse AMSR-2 data, and the aggregated
coarse MODIS images achieved full coverage.

The version 4 SRTM DEM product at 90-m spatial reso-
lution was used (http://srtm.csi.cgiar.org/index.asp). The data
were resampled to 1 � 1 and 25 � 25 km regular grids.

4) Covariates: Three sets of covariates were used in the
experiments. The LST and NDVI were employed first. For
August 21, the correlation coefficients between the coarse-
resolution SM and both LST and NDVI were �0.52 and 0.61,
respectively. The variance inflation factors of LST and NDVI
were both smaller than 10, which showed the suitability of
employing these two covariates without considering multi-
collinearity.

Second, considering the topographic effects in the hilly
surrounding area, a topography-corrected LST [21] variable
was used to replace the LST of the first set. It was calculated
as follows


CLST � LST � γ � (H � H) (14)

where CLST is the topography-corrected LST, H is the eleva-
tion of the MODIS grid, H is the elevation of the correspond-
ing AMSR-2 grid, and γ is the mean lapse rate (°C � m�1).
The lapse rate was set at 0.006 °C � m�1.

The sensitivity of LST to SM varies with vegetation type,
resulting in a physically meaningful triangular or trapezoidal
feature space of the plotted LST and NDVI. Temperature–
vegetation indices based on LST and NDVI have been used
widely in estimating SM, e.g., the vegetation–temperature
condition index (VTCI) [52] and the temperature–vegetation

Fig. 6. Coarse residuals from regression models in ATARK and GWATARK
on the first two days in ascending and descending periods. (a) June 28.
(b) July 1. (c) June 28. (d) July 6. (Left) ATARK. (Right) GWATARK.

dryness index (TVDI) [53]. The VTCI is correlated positively
with SM, whereas the TVDI has negative correlation with
SM [54]. Here, we chose the VTCI as an independent variable
of the third set. The VTCI is calculated in every NDVI interval
as

VTCI �
LSTmax � LST

LSTmax � LSTmin
(15)

where LSTmin and LSTmax are the largest and smallest values
of LST that lie within the same NDVI interval range. The
normalized LST and the vegetation fraction cover (normalized
NDVI) were employed to describe the feature space.
Fig. 4 displays the vegetation–temperature feature space and
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Fig. 7. Images of 25-km AMSR-2 data. (a) July 23 (ascending period). (b) August 21 (descending period).

Fig. 8. Downscaled SM images on July 23 (ascending period) using three downscaling methods. (a) One-kilometer downscaled SM with VLST�NDVI.
(b) One-kilometer downscaled SM with VCLST�NDVI. (c) One-kilometer downscaled SM with VVTCI.

the calculated VTCI at 1-km resolution on August 21. The
shape of the plotted normalized LST and vegetation fraction
resembles a trapezoidal feature space; the fit line of all
maximum LST values that lie within the same NDVI interval
range forms the wet edge, and all minimum values form the
dry edge.

In the subsequent analysis, we use VLST�NDVI, VCLST�NDVI,
and VVTCI to denote the three sets of covariates.

C. Downscaled Results
1) Spatial Correlation in Residuals: In the proposed

method, ATAK is used to downscale the regression resid-
uals of GWR, which depends on their spatial correlation.
After automatic bandwidth selection for locally compensated
ridge GWR [43], the bandwidths used in GWR ranged from
25 to 155 km in the ascending case and from 25 to 149 km
in the descending case. To illustrate the spatial correlation
of the residual component, variograms of the GWR residuals
at coarse resolution of the first two days in the ascending
and descending periods are displayed in Fig. 5. Each row
corresponds to a different set of covariates, as explained
in Section III-B. The clear spatial correlation indicates the
feasibility of modeling the residuals with ATAK. Taking the

example of VLST�NDVI, the corresponding coarse residual
images from the regression models in ATARK and GWATARK
are shown for a few example dates in Fig. 6. The latter
residuals are smoother than the former, which illustrates that
GWR is better at capturing the local heterogeneity.

2) Downscaled SM Maps: To display the downscaled
images, single example days for both the ascending and the
descending periods were chosen. Fig. 7 shows the SM images
of AMSR-2 at 25-km resolution for the chosen dates. The
downscaled 1-km SM predictions on July 23 of the ascending
period and on August 21 of the descending period are shown
in Figs. 8 and 9, respectively. For each row of Figs. 8 and 9,
the same set of covariates was used, while each column refers
to one of the three downscaling approaches.

On both days, the nine downscaled images have similar
overall spatial patterns (Figs. 8 and 9). The white areas in
the images refer to the largest SM values. The top right
corner in each image displays the smallest SM values. The
GWATARK and ATARK methods produced predictions that
are most similar to the coarse SM image. Some white areas
(or white pixels) in the coarse SM image of the ascending
case disappear in the downscaled images produced by ATARK
and QRM (Fig. 8). The downscaled GWATARK images have



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

Fig. 9. Downscaled SM images on August 21 (descending period) using three downscaling methods. (a) One-kilometer downscaled SM with VLST�NDVI.
(b) One-kilometer downscaled SM with VCLST�NDVI. (c) One-kilometer downscaled SM with VVTCI.

Fig. 10. Prediction error variance images of GWATARK. (a) July 23 (ascending period). (b) August 21 (descending period).

greater spatial variation than the downscaled ATARK images.
Although these improvements in the descending case (Fig. 9)
are not visually obvious, the following validation illustrates
the good performance of GWATARK. Values greater than
approximately 0.7 m3 �m�3 in the downscaled SM predictions
in Fig. 9 might not agree with what could be expected in this
cold region. The discrepancy might be caused by the large
original SM values of the AMSR-2 data. In this paper, we
focused on evaluating the downscaling methods and we did
not attempt to correct further for the AMSR-2 SM product.
Section III-D analyzes this more closely.

The corresponding prediction error variance images for
GWATARK are shown in Fig. 10. Each column corresponds
to one of the three sets of covariates. The prediction error
variance increases at the edges of the coarse grids, and it
reaches its maximum at the boundary of the study area.
The GWR predictions in the boundary regions tend to be

worse than those in other areas because of the lack of data
in their neighborhoods. In VCLST�NDVI and VVTCI cases,
the prediction error variances are smaller than VLST�NDVI,
indicating greater prediction precision. The VVTCI covariate
produced the greatest prediction accuracy.

D. Validation and Comparison
CDF curves and the RMSE, ME, r , S, GDOWN, and G�

DOWN
statistics were calculated to validate and compare the down-
scaled results. Fig. 11 shows the CDF curves of AMSR-2 data
in the study area for the 27 d of the ascending period and
the 29 d of the descending period. Fig. 12 shows the CDF
curves of the downscaled images for the different approaches
for each of the three sets of covariates. The CDF curves of the
downscaled results display trends similar to those of AMSR-2
for both periods. The percent occurrences of each SM value
are similar. The CDF comparison shows that the downscaled
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Fig. 11. CDF of 25-km SM in study area. (a) Ascending period.
(b) Descending period.

Fig. 12. CDF of downscaled SM including (a)–(c) ascending and
(d)–(f) descending periods with VLST�NDVI, VCLST�NDVI, and VVTCI.
(Legend is the same as in Fig. 11.)

results of QRM deviate substantially from those of AMSR-2,
whereas the GWATARK and ATARK curves are closer.

The results of each combination of downscaling method
and set of covariates were validated with in situ observations.
Fig. 13 presents scatterplots comparing AMSR-2 predictions
versus in situ measurements, and it summarizes the compari-
son results for the two periods separately. There is substantial
discrepancy between the remote sensing data and the ground

Fig. 13. Twenty-five-kilometer SM of AMSR-2 versus in situ measurements
and a summary of the comparison results in the study area. (a) Ascending
period. (b) Descending period.

measurements, which might be attributable to the large original
SM values of the AMSR-2 data. The same situation in each
method guaranteed the effectiveness of the validation results.
The discrepancy is smaller in the ascending period than that in
the descending period. In the descending case, the correspond-
ing AMSR-2 SM values are almost all greater than the in situ
measurements. In both cases, the values of r and S are small.
The small correlation with the ground measurements might
be caused by the difference in the spatial support between the
in situ measurements and the predictions.

To provide a more suitable comparison with the ground
observations, bias correction was applied to the down-
scaled SM, as described in Section III-A. The corrected
downscaled SM predictions are plotted against the in situ
measurements for the ascending and descending periods
in Fig. 14, together with the results of the comparisons
between different downscaling approaches.

The comparison results were consistent across the sepa-
rate periods. The comparison results included RMSE, ME,
r , S, and G�

DOWN, which can avoid considering the mean
bias again. The points were clustered around the 1:1 line
and all comparison results improved substantially for both
periods, especially for the ascending period. The values of
RMSE and ME decreased significantly, while the values of
r and S increased considerably. It is clear that with the smallest
RMSE value of 0.018 m3 � m�3, smallest ME absolute value
of �0.002 m3 � m�3, and largest G�

DOWN value of 1.008,
the GWATARK method using VTCI produced the greatest
accuracy for the ascending period. The same conclusion
holds for the descending period, with the smallest RMSE
value of 0.091 m3 � m�3, smallest ME absolute value of
�0.003 m3 � m�3, and the largest G�

DOWN value of 0.826.
The GWATARK method using CLST and NDVI obtained
the second-best performance. On average, the RMSE value
decreased by 20% using the proposed method. Table I shows
the same statistics as Fig. 14 but for the combined ascending
and descending periods. It shows that the GWATARK method
using the third and second sets of covariates achieved the
most accurate results for the combined period. Moreover,
the comparison results before bias correction (further details
in the Appendix) were consistent with the above conclusion,
whereby the GDOWN index showed reasonable performance.
The most accurate downscaled results were achieved by
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Fig. 14. Downscaled SM predictions versus in situ measurements for the ascending period and descending period. (a) With VLST�NDVI. (b) With VCLST�NDVI.
(c) With VVTCI. (G denotes the G �

DOWN.) (Top row) Ascending period. (Bottom row) Descending period.

GWATARK in each set, and the accuracy of the downscaled
predictions was increased by employing the final two sets of
variables in each method.

IV. DISCUSSION

As illustrated in the experiments, all downscaled SM images
exhibited the largest SM values in the upper–middle parts
of the images and the smallest values in the northeast,
in accordance with the low elevation of the upstream area,
and the conditions of high temperature and low vegetation
coverage, respectively. Because of rainfall, the SM values
on August 21 were larger than those on July 23. On the
descending day, the variance range was wide and the variance
values were large, which might be because of the unexpectedly
large values of the descending AMSR-2 SM data, introducing
greater errors. The comparison of results with ground mea-
surements also showed that the ascending product had higher
data quality than the descending product. The ground stations
are located within a small region of the study area. Validation
could be improved by collecting data from the entire area.
Because of the lack of a spatially distributed reference data
set, there is a residual need to validate the spatial patterns of
the downscaled SM. Some studies have retrieved SM products
at coarse spatial resolution with acceptable quality using land
data assimilation methods [55], [56]. Precipitation data have
also been used to explore the spatial pattern of SM [57].
In future research, cross validation and further exploration of
the spatial SM patterns could be achieved by comparison with
the downscaled results of SM assimilation data sets and fine-
resolution precipitation data sets.

The GWATARK method produces predictions that are more
accurate when the property of interest is spatially hetero-
geneous. It should be noted that the differences between
the predictions and the observations are caused not only by
prediction errors, but also by measurement errors and the
comparison of variables at different resolutions [58], [59],
i.e., point values versus either 1 � 1 km regular grid predic-
tions or 25 � 25 km regular grid predictions. To some extent,
the downscaling indices GDOWN and G�

DOWN could overcome
these shortcomings. After removing the bias between the
AMSR-2 SM values and the in situ measurements, the values
of the five accuracy statistics (Table I) were improved signifi-
cantly. The results demonstrate the applicability of GWATARK
in a downscaling process. Geostatistical upscaling approaches
(such as block kriging) could be used to upscale point observa-
tions to a 1�1 km grid before validation. However, upscaling
also introduces uncertainties that should be considered when
making comparisons between predictions and upscaled obser-
vations. In future research, ground measurement errors could
be considered in a downscaling strategy to increase prediction
accuracy, e.g., as a priori knowledge or correction data during
the downscaling process.

In this paper, only one or two ancillary variables were
used as covariates in the downscaling process. Based on
the accuracy statistics, it could be concluded that the down-
scaling method using the VTCI performed more accurately
than the others for each period. However, the downscaled
images using VTCI (Figs. 8 and 9) display much smoother
variation. Although some covariates combine LST and NDVI
information, some information will be lost when using just
one covariate. In fact, multiple variables can be employed
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TABLE I

SUMMARY STATISTICS OF COMPARISON BETWEEN DOWNSCALED PREDICTIONS AND In Situ MEASUREMENTS COMBINING TWO PERIODS. CR REFERS
TO THE CORRESPONDING AMSR-2 DATA AT COARSE RESOLUTION. FR REFERS TO THE DOWNSCALED PREDICTIONS AT FINE RESOLUTION

TABLE II

SUMMARY STATISTICS OF COMPARISON BETWEEN REMOTE SENSING DATA AND In Situ MEASUREMENTS FROM ASCENDING

AND DESCENDING PERIODS BEFORE BIAS CORRECTION. CR REFERS TO AMSR-2 DATA AT COARSE RESOLUTION.
FR REFERS TO THE DOWNSCALED PREDICTIONS AT FINE RESOLUTION

readily in the proposed method. The selection of further mul-
tiple covariates is encouraged to improve mapping, provided
these covariates carry complementary information about SM.
Candidate additional covariates are land cover maps, apparent
thermal inertia [60], and soil texture information [61].

The geostatistical part of GWATARK operates on the resid-
uals of the GWR. It was assumed that the residuals satisfy
a stationarity assumption such that their spatial correlation
could be characterized by a variogram that depends only
on the separation distance between locations. Because GWR
is a local regression approach, it is more efficient than a
global regression model in removing local heterogeneity. Thus,
the corresponding residuals might not vary greatly from area to
area and might not meet the stationarity assumption as readily.
If the GWR model captured the full spatial structure of SM,
the residuals of GWR might become uncorrelated spatially
(i.e., white noise) meaning that spatial prediction could not
benefit from a kriging step. In such a case, GWATARK would
reduce to GWR.

If the target spatial resolution was very fine, such that
the pixels at the fine resolution might be regarded as points,
an alternative method named geographically weighted area-
to-point regression kriging (GWATPRK) could be used. This
method uses ATPK instead of ATAK. Then, the main challenge
is that the point support nugget cannot easily be inferred from
the block support observations [62]. Moreover, the GWATARK
method is more general. For example, when dealing with
variables with irregular support (e.g., administrative units),
the proposed GWATARK method will be more applicable than
GWATPRK. However, it should be noted that downscaling

methods could only be applied on cloud-free days because
of the requirements of optical/thermal data.

The methodology presented here was restricted to contin-
uous variables, but otherwise, it has few restrictions. Thus,
GWATARK downscaling could be achieved readily for other
continuous variables such as rainfall, temperature, and wind
speed. Here, outcomes of coarse-resolution weather models
could be used as input variables that are then downscaled using
fine-resolution covariates.

V. CONCLUSION

SM observations from satellite sensors are made at coarse
spatial resolution, and their subsequent downscaling using
covariates represents an important objective. Downscaling
is now being applied to transform coarse-spatial-resolution
SM observations to fine resolution to support monitoring
and modeling over large areas. This paper developed a new
downscaling approach that combines GWR with ATAK that is
applicable to downscaling SM. The new GWATARK method
was demonstrated through application to the AMSR-2 SM
product in the upper reaches of the HRB. Compared with
two benchmark downscaling methods (ATARK and QRM),
the GWATARK method produced downscaled SM images that
were more accurate as measured by five accuracy metrics,
and it emerged as the most accurate method for downscal-
ing SM from coarse-resolution remotely sensed images. The
GWATARK method has the dual advantages of addressing
local spatial heterogeneity and the COSP. A further impor-
tant advantage in comparison with deterministic downscaling
approaches, in addition to deriving the downscaled predictions,
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Fig. 15. Downscaled SM predictions versus in situ measurements for ascending and descending periods before bias correction. (a) VLST�NDVI.
(b) VCLST�NDVI. (c) VVTCI.

TABLE III

SUMMARY STATISTICS OF COMPARISON BETWEEN REMOTE SENSING DATA AND In Situ MEASUREMENTS COMBINING TWO PERIODS

BEFORE BIAS CORRECTION. CR REFERS TO THE CORRESPONDING AMSR-2 DATA AT COARSE RESOLUTION. FR REFERS

TO THE DOWNSCALED PREDICTIONS AT FINE RESOLUTION

is that the associated prediction error variances are also
obtained. The applicability of three different sets of covariates
in the downscaling process was also analyzed. CLST was
found to be more informative than both LST and VTCI, and
it led to the most accurate downscaled predictions. Moreover,
the validation data were obtained with quasi-point support
and they contained measurement errors. Therefore, further
assessment is warranted using ground data that are more
representative. The proposed method is entirely general and
it could be applied to downscale other continuous variables
obtained by remote sensing both in the optical and in the
microwave domains.

APPENDIX

The comparison results obtained before bias correction were
represented here using five indices (RMSE, ME, r , S, and
GDOWN). Fig. 15 shows the comparison scatterplots of the

downscaled predictions versus in situ measurements for both
periods. The clustering of points is similar to that in Fig. 13.
The downscaled predictions are almost all above the 1:1 line
in the descending case. Table II shows summary statistics of
the comparison between remote sensing data (including the
AMSR-2 data and downscaled data) and in situ measurements
for the ascending and descending periods, separately. The
RMSE and ME of the downscaled results are not smaller
than those of the coarse-resolution case, i.e., they are around
0.133 and �0.011 m3 � m�3 for the ascending case and
0.258 and 0.221 m3 �m�3 for the descending case, respectively.
For each downscaled result in each period, the r values were
small and the S values were not close to 1.

For each set of covariates, the RMSE and ME of the
GWATARK method were smaller than those of ATARK and
QRM, while the GDOWN values were greater than those
of the other two methods. These results demonstrate that
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the GWATARK downscaling method attained more accurate
downscaled predictions than the other two methods for both
periods. By comparing the results among the three sets of
covariates, the RMSE and ME of the latter two sets were
smaller than those of the first set and the GDOWN values
were greater. This indicates that using VCLST�NDVI and VVTCI
increased the downscaled prediction accuracy. The RMSE,
ME, and GDOWN showed the method performed more accu-
rately for the third set than for the second set, in addition
to the GDOWN values for the descending period. This might
reflect the negative values of r and S in every third set of
the descending period, for which the corresponding values
were positive at coarse resolution. Moreover, the values of
r and S varied with little regularity. The largest value of
r was obtained for the third set. This set also produced
values of S closest to 1. Table III shows the same statistics
as Table II but for the combined ascending and descend-
ing periods. The most accurate values of RMSE, ME, and
GDOWN, i.e., 0.189 m3 � m�3, 0.089 m3 � m�3, and 0.046,
respectively, were obtained using the GWATARK method.
The comparison results were consistent between the periods.
From Tables II and III, the produced RMSE, ME, r ,
and S values indicate that the predictions still deviated greatly
from the in situ observations, primarily because of the bias
between the AMSR-2 SM values and the in situ measurements,
although the GDOWN index showed reasonable performance.
In general, the results indicate that the GWATARK downscal-
ing method achieved the greatest accuracy, and that the latter
two sets of independent variables increased the accuracy of
the downscaled predictions.
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