
 Abstract

The early identification and documentation of crosscutting

concerns enables better change management and traceability
of requirements. Moreover, this also improves the early
identification of candidate aspects in the design and
implementation stages. Current techniques for identifying
aspects in requirements are ineffective when requirements are
complex or unstructured. This paper describes an approach
that utilises corpus-based natural language processing (NLP)
techniques to effectively enable the identification of aspects in
a semi-automated way. The technique proposed here describes
how unstructured sources of requirements (e.g., interviews,
natural language description of the system) or requirements
documents can be automatically mined to help the
requirements engineer quickly identify and build a structured
aspect-oriented model of the requirements.

1. Introduction

A challenging dilemma faced by the software engineering
community is how to deliver quality software when severe
time constraints are imposed [6]. In many cases, developers
resort to ad-hoc “short cuts” that accelerate the development
process, but suffer from lack of structure, impacting the quality
of the process and its deliverables.

Aspect-oriented software development (AOSD) is a
technique that has shown encouraging results in improving
modularization of software systems, therefore enhancing
evolution and lowering time to market. In order to maximize
its benefits, AOSD should be used from the early stages of
software development such as domain analysis and
requirements engineering [1- 4].

An important step towards effectively supporting early
aspects identification is to provide not only abstractions that
represent crosscutting requirements, but also to offer
mechanisms (e.g., tool support) for mining aspects in
requirements documents [1, 4]. This helps the requirements
engineer to identify aspectual requirements and their
relationships with other requirements.

 However, current techniques for mining aspects in
requirements do not provide an effective approach when

requirements are complex or unstructured. For instance, the
Theme/Doc [1] approach provides a tool for semi-automatic
identification of crosscutting behaviours in requirements
specifications. The identification process is based on a lexical
analysis of the requirements document, which searches the
document for some keywords provided by the developer. The
tool automatically produces a graphical view that maps the
relationships between the behaviours, which can help the
developer to identify the aspect candidates.

Despite presenting interesting ideas on how to identify and
model crosscutting concerns, this approach relies on an
inadequate and sometimes inefficient way of analysing the
document. The first problem is that the analyst has to read all
the requirements document to input the keywords which can be
time consuming and unrealistic for complex and time-
constrained projects. Moreover, the tool presupposes that the
requirements document is described in a certain way suited to
fit the lexical analyser. Therefore, these limitations impose
serious issues when the problem is complex and development
is document centric, where requirements can be obtained from
various sources such as documented interviews with
stakeholders, legacy documents and extensive requirements
documents (e.g., thousands of textual pages).

The other approach presented in [4] focuses on using
information retrieval techniques for mining specific aspects in
requirements documents. In this approach, the analyst uses the
tool to search places in the document where some crosscutting
influence occurs. The search is based on the analyst’s
assumption of some concern that s/he thinks should be
crosscutting (e.g., performance), and then, highlights only
specific parts of the requirements document that match the
criteria.

Therefore, this approach, when compared to Theme/Doc,
saves time for finding requirements crosscut by some specific
concern. However, Theme/Doc is more suitable with the task
of finding all the crosscutting influences and modelling their
relationships.

Our paper describes an approach that builds upon the ideas
presented in the two previous approaches, but utilises corpus-
based [11] natural language processing (NLP) techniques in
order to effectively enable the identification of aspects in a
semi-automated way. The proposed technique describes how
unstructured sources of requirements (e.g., interviews, natural

Mining Aspects in Requirements

Américo Sampaio, Neil Loughran, Awais Rashid and Paul Rayson
Computing Department, Lancaster University, Lancaster, UK

{a.sampaio, loughran, marash, paul}@comp.lancs.ac.uk

language descriptions of the system) or requirements
documents can be automatically mined, thus allowing the
requirements engineer to quickly develop a structured aspect-
oriented model of the requirements.

The main goal of our approach is to determine potential
aspect candidates in requirements documents regardless of
how they are structured. The approach uses NLP techniques
which provide support for context sensitive analysis of
requirements [5]. Tool support is provided to help the
developer automatically mine and model the crosscutting
concerns without having to previously read the requirements
documents.

The remainder of this paper is described as follows. Section
2 describes the approach proposed and how NLP is used.
Section 3 shows a small example and outlines how tool
support can help developers mine aspects. Finally, Section 4
concludes the paper.

2. Approach for Mining Aspects

Requirements can be obtained from many different sources

such as interviews with stakeholders, standards, ordinary
documents and legacy systems. Moreover, requirements
documents can be expressed in many ways ranging from
natural language descriptions to more structured methods such
as use cases [8], viewpoints [9] and formal specifications [10].
Each approach has its own merits and demerits and can be
better suited for a specific purpose or situation.

Figure 1 shows our approach of identifying and representing
aspects in requirements documents. The main advantages of
our approach are:
o It can work with any kind of textual documents regardless

of their structure (interviews, natural language
descriptions, use case textual descriptions, etc.).

o The most time consuming activities, such as identifying
concerns, viewpoints and action words, are partially
automated.

Nearly all applications of NLP to requirements engineering
have used rule-based techniques. This severely restricts their
applicability to well-formed requirements documents that use a
controlled subset of natural language and means that (for
example) uncontrolled text such as transcripts of stakeholder
interviews are intractable to this kind of processing. In
practice, fully automated synthesis of requirements from such
documents is infeasible. However, Goldin and Berry [7] and
our own work on the REVERE project [5] have successfully
used NLP to help the analyst identify important concepts
(objects, agents, functions etc). REVERE’s tools are based on
underlying statistical techniques which enable them to be
robust on uncontrolled text. WMATRIX [5] uses a
combination of part-of-speech and semantic tagging, frequency
analysis and concordances to identify domain concepts of
potential significance. Part-of-speech analysis automates the
extraction of nouns and verbs from the text. Semantic analysis
groups related words and multi-word expressions into concepts

even when many different word forms are used in the
documents, e.g., vehicle, vehicles, driver, drivers and traffic
grouped into the semantic field ‘land transport’ from the
example below (Section 3).

The approach begins (Phase 1) by analysing existing
documents that are sources for requirements elicitation such as
interviews done with stakeholders (e.g., clients, managers,
users) or informal descriptions of the system. The mining tool
reads these files and passes them to WMATRIX, which can
produce analyses that helps to identify concerns and
viewpoints using natural language processing techniques. The
mining tool enables tailoring the information that flows in and
out from WMATRIX, for example, showing only a subset of
the action words (verbs identified by WMATRIX) based on
some criteria.

At the end of Phase 1 a more structured requirements
specification (Intermediate Model) can be produced as an
output. It is important to note that this specification is not fully
automated by the tools, whose main focus is to help the
requirements engineer in discovering concerns and viewpoints
in order to have a more structured description of the
requirements.

WMATRIX

Mining Tool

Informal spec. in
Natural Language or

Req. Document

Intermediate Model
e.g. Viewpoints

Aspectual Model

Phase 1

Phase 2

[optional]

[optional]

WMATRIX

Mining Tool

Informal spec. in
Natural Language or

Req. Document

Intermediate Model
e.g. Viewpoints

Aspectual Model

Phase 1

Phase 2

[optional]

[optional]

Figure 1 - Model for Aspect Mining

The next phase (Phase 2) is to read directly from the
informal files, or from the intermediate model, and process the
information in order to search for crosscutting requirements
and candidate aspects. The mining tool has the role of setting
the criteria (e.g., applying filters to send/receive information
to/from WMATRIX) that will be used by WMATRIX to
process the information. Moreover, the mining tool can filter
the results in order to identify what the candidate aspects are
and produce a model that represents the relationships between
the requirements. In phase 2 we can reuse the intermediate
viewpoint model. The mining tool (via WMATRIX) examines
the dispersion of candidate aspects across the various
requirements. If a candidate aspect is well dispersed - i.e.

appears in many requirements, then the case for that candidate
aspect is stronger.

Our approach for mining aspects can be used regardless of
the structure of the textual document provided as input (e.g.,
informal descriptions, interviews, structured documents).
Document-heavy domains based on regulations, standards and
various types of extensive documentation can thus benefit
from our approach. The tools enable accelerated development
because they do not impose any kind of specific format and do
not depend on previous knowledge on the requirements by the
requirements engineer.

The tools enable the developer to quickly mine the
requirements and gain an overall understanding of them, for
example, using semi-automatic features for producing an
intermediate model using viewpoints. Moreover, the tools also
help to semi-automatically mine for crosscutting requirements,
enabling the early identification and separation of concerns,
and, therefore, benefiting following stages. It is important to
mention that the tools require the intervention of the
requirements engineer for creating the models. The next
section shows how the tools can be used and how their
capabilities can enhance development.

3. Example

In this section we give a small example to show how the
approach described in Section 2 works. The system described
is a simplified version of the toll collection system on the
Portuguese highways [2, 3]. The system has the following
informal description:

“In a road traffic pricing system, drivers of authorised
vehicles are charged at toll gates automatically. The gates are
placed at special lanes called green lanes. A driver has to
install a device (a gizmo) in his/her vehicle. The registration
of authorised vehicles includes the owner’s personal data,
bank account number and vehicle details. The gizmo is sent to
the client to be activated using an ATM that informs the
system upon gizmo activation. A gizmo is read by the toll gate
sensors. The information read is stored by the system and used
to debit the respective account. When an authorised vehicle
passes through a green lane, a green light is turned on, and
the amount being debited is displayed. If an unauthorised
vehicle passes through it, a yellow light is turned on and a
camera takes a photo of the plate (used to fine the owner of
the vehicle). There are three types of toll gates: single toll,
where the same type of vehicles pay a fixed amount, entry toll
to enter a motorway and exit toll to leave it. The amount paid
on motorways depends on the type of the vehicle and the
distance traveled”.

A file containing the textual description above is then
provided as input to the mining tool that communicates with
the natural language processor (WMATRIX). WMATRIX
provides support in the following tasks:

I. Identifying Viewpoints: WMATRIX has been used before
in [5] to identify stakeholders in requirements documents. The

criteria used there, was to identify human agent nouns with
common endings for job titles (such as ‘er’ or ‘et’ or ‘or’ or
‘man’) such as controller, pilot, etc. This can be extended to
identify other kinds of viewpoints that are not human such as
gizmo, exit toll, ATM (In the toll system). The list of
candidate viewpoints is produced automatically and shown to
the requirements engineer so that s/he can select the relevant
ones and produce the intermediate model described in Section
2. Moreover, the mining tool can also insert tags in the text
that help the engineer to quickly find the requirements related
to the viewpoints.

Figure 2 shows how WMATRIX is used to analyse the
informal description given above and list the candidate
viewpoints.

Candidate Viewpoints

All occurrences of toll

Text Surrounding 3rd occurrence of toll

Candidate Viewpoints

All occurrences of toll

Text Surrounding 3rd occurrence of toll

Figure 2 - Viewpoints Identification

Candidate Viewpoints are automatically identified by

WMATRIX by listing the nouns in the text alongside their part
of speech (POS) class (e.g., NN1 – Singular nouns, NN2 –
Plural nouns) and frequency of occurrence. The user is able to
view parts of small sentences where all occurrences of a
specific word occur, such as “toll”. Moreover, s/he has the
option of viewing a more detailed slice of text for each
occurrence of the word “toll”.

These features enable the user to quickly mine the
viewpoints and their related requirements as s/he has to focus
on reading only small parts of the text as shown next for the
toll viewpoint.

Viewpoint: Toll.
Requirements:
1. Vehicles are charged at toll gates automatically.
2. A gizmo is read by the toll gate sensors.
3. There are three types of toll gates: single toll, where
the same type of vehicles pay a fixed amount, entry toll
to enter a motorway and exit toll to leave it.

A c t io n W o rd s
T e x t S u r ro u n d in g “p a s s e s ” A c t io n w o rd

Figure 3 - Action Words Identification

Moreover, some candidate viewpoints can be immediately

discarded by the user, as they do not comply well with the
concept of a viewpoint (e.g., type and data). Therefore, the
tool enables the user to quickly scan through the text reading
only relevant information, providing him/her not only
requirements’ understanding, but also an effective way of
producing a more structured requirements description using
viewpoints.

II. Identifying Crosscutting Requirements: This task can be

supported in different ways by the tools. In one approach,
similar to that of Theme/Doc, the tool can automatically look
for action words, which can be identified as verbs by the
WMATRIX tool, and produce a model that represents the
relationships between the requirements. The engineer does not
have to provide the action words in advance and, also, the
natural language processor enables a more context sensitive
analysis of the words recognising for example, that the actions
“collect” and “pick up” are in the same semantic field.

Figure 3 shows how WMATRIX is used to list the action
words recognized as verbs in the text of our example
requirements specification.

The tool provides features for filtering the previous list by,
for example, excluding verbs that do not represent an action
such as auxiliary verbs (is, are, be). The list can also be filtered
to present, as a single action, different verbs that have the same
semantic meaning in the context. Action words (e.g., passes)
and their relating requirements (surrounding phrases such as
“authorised vehicle passes through a green lane”) can be
automatically identified by the tools in order to produce a
model that represents their relationships. Such a model can
thus help the developer to identify and model crosscutting
requirements.

Another approach to identify crosscutting influences could
be to set filters which search for known classes of words that

map to non-functional requirements such as security,
persistence and performance and suggest them as concerns as
shown in [2, 3]. The problem with this approach is that
sometimes these concerns are implicit and difficult to
automatically mine, relying more on the judgment of the
developers.

Figure 4 - Concern Identification by Semantic Analysis

Figure 4 shows an example of how semantic analysis can be

performed to group words by their semantic classes. For
example, the tool identified 3 occurrences of the semantic

class S7.4, which means permission, with a positive meaning.
The three occurrences refer to the word “authorised” and are
shown in Figure 4. This can help the developer identify some
concerns related to the authorization of vehicles such as
security and correctness. The system must ensure that
authorized vehicles are detected and proper actions are taken.
The bottom of the figure shows the identification of the same
semantic class but with a negative meaning. This suggests that
a different set of actions has to be considered for
“unauthorised” vehicles.

The examples described in this section point out the
capabilities provided by our approach of mining aspects in
requirements. It is important to mention that the mining tool is
still in an early stage of development, but the capabilities
provided by the WMATRIX tool shown in [5] make us believe
that the approach described previously is feasible due to the
effectiveness of NLP in context-sensitive analysis.

4. Conclusions

This paper has proposed an approach for mining aspects
from requirements-related documents. The approach is based
on NLP techniques that enable an efficient context sensitive
analysis of textual documents. Documents analysed by the
tools can vary from very informal textual documents, such as
interviews and high level descriptions of the system, to more
structured documents such as use case textual descriptions or
viewpoint descriptions.

The approach suggests an optional step for producing a
more structured description of the system, using viewpoints,
which can be partially automated. However, the main goal of
the tool is to provide partially automated support for aspect
mining through concern identification or action word mapping.

Our future work will focus on completing the mining tool
and applying it in a practical project. The tool will focus on
providing support for automating the approach presented in
this paper by using the features provided in the WMATRIX
tool.

Acknowledgement: This work is supported by European
Commission grant IST-2-004349: European Network of
Excellence on Aspect-Oriented Software Development
(AOSD-Europe), 2004-2008.

References

[1] E. Baniassad and S. Clarke. Finding Aspects in Requirements with

Theme/Doc. In Proceedings of Early Aspects 2004: Aspect-Oriented
Requirements Engineering and Architecture Design, Lancaster, UK, 22
Mar. 2004.

[2] A. Rashid, A. Moreira, and J. Araujo. Modularisation and Composition
of Aspectual Requirements. In Proceedings of the 2nd International
Conference on Aspect-Oriented Software Development, pages 11–20.
ACM Press, 2003.

[3] A. Rashid, P. Sawyer, A. Moreira, and J. Araujo. Early Aspects: A
Model for Aspect-Oriented Requirements Engineering. In Proceedings

of IEEE Joint International Conference on Requirements Engineering
(RE 2002), pages 199–202. IEEE Computer Society, 2002.

[4] L. Rosenhainer. Identifying Crosscutting Concerns in Requirements
Specifications. In Proceedings of OOPSLA Early Aspects 2004: Aspect-
Oriented Requirements Engineering and Architecture Design
Workshop. October 2004, Vancouver, Canada.

[5] P. Sawyer, P. Rayson, and R. Garside. REVERE: support for
requirements synthesis from documents. Information Systems Frontiers
Journal. Volume 4, issue 3, Kluwer, Netherlands, pp. 343 – 353, 2000.

[6] Agile Alliance Website. Availabe at: http://www.agilealliance.org/home.
[7] L. Goldin, D. Berry, AbstFinder, A Prototype Natural Language Text

Abstraction Finder for Use in Requirements Elicitation, Automated
Software Engineering, 4, 1997.

[8] I. Jacobson. Object-Oriented Software Engineering: A Use Case Driven
Approach. 1st Edition, Addison-Wesley, 1992.

[9] I. Sommerville and P. Sawyer. Requirements Engineering – A Good
Practice Guide. Wiley, 1997.

[10] B. Potter et al. An Introduction to Formal Specification and Z. Prentice
Hall, 1991.

[11] R. Garside et al. Corpus Annotation: Linguistic Information from
Computer Text Corpora. Addison Wesley Longman,1997.

