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Abstract

In this paper a Bayesian geostatistical model is presented for fusion of data

obtained at point and areal resolutions. The model is fitted using the INLA

and SPDE approaches. In the SPDE approach, a continuously indexed Gaussian

random field is represented as a discretely indexed Gaussian Markov random

field (GMRF) by means of a finite basis function defined on a triangulation of

the region of study. In order to allow the combination of point and areal data,

a new projection matrix for mapping the GMRF from the observation locations

to the triangulation nodes is proposed which takes into account the types of

data to be combined. The performance of the model is examined and compared

with the performance of the method RAMPS via simulation when it is fitted

to i) point, ii) areal, and iii) point and areal data to predict several simulated

surfaces that can appear in real settings. The model is applied to predict the

concentration of fine particulate matter (PM2.5), in Los Angeles and Ventura

counties, United States, during 2011.
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1. Introduction

Spatial and spatio-temporal data arise in a wide range of scientific disciplines,

including the environmental, epidemiological, geographical and ecological fields

[1]. Data are typically observed either at points in space (point data), or over

areal units such as counties or postal codes (areal data). Examples include air5

pollution measurements taken at a set of ambient stations, temperature and

precipitation measurements from weather stations, and population sizes from

census tracts. In epidemiology, point data arise when the locations at which

cases of disease occur are available, and areal data are often reported when

point data are aggregated over geographical subregions of the region of study10

due to ethical concerns over data use and patient confidentiality [2].

Spatially misaligned data are becoming increasingly common due to ad-

vances in both data collection and management, as well as to the ability to

merge data from large databases such as disease registries. When information is

available from multiple sources on different scales, data may be fused to exam-15

ine just one variable, such as disease counts recorded in different administrative

units. Here the aim is interpolation [3]. Alternatively, we might wish to relate

one variable to other variables that are available at different spatial resolutions

and alignments. An example is determining whether the risk of an adverse out-

come provided at zip level is related to exposure to an environmental pollutant20

measured at a network of stations, after adjusting for population at risk and

other county level demographic information. Here the aim is regression [3].

In this paper we will focus on the data fusion problem which seeks to learn

about a particular variable by combining data that are available at different

spatial scales. Others have previously developed Bayesian models enabling fu-25

sion of data obtained at areal and point-referenced resolutions via the use of

latent point-level processes [4] , hierarchical downscaling [5], modelling data

conditional on the resolution [6], and the use of algorithms such as the repa-

rameterized and marginalized posterior sampling (RAMPS) [7].

The previous approaches use Bayesian predictive inference implemented via30
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Markov chain Monte Carlo (MCMC) based methods. These methods have made

a great impact on statistical practice by making Bayesian inference tractable for

complex models but they also present a wide range of problems in terms of con-

vergence and computational time [8]. In this paper we propose general and

flexible hierarchical Bayesian models to analyze spatially misaligned data. In35

order to fit the models, we resort to the Integrated Nested Laplace approx-

imation (INLA) [9] and the Stochastic Partial Differential Equation (SPDE)

[10] approaches which are a computationally effective alternative to MCMC for

Bayesian inference. In order to allow the combination of data at different spa-

tial resolutions, we propose a new projection matrix for mapping the GMRF in40

the SPDE method which takes into account how the different types of data are

collected. This new approach is fast and flexible.

The outline of the paper is as follows. First, we present flexible models for

handling spatial misaligned data in fusion problems. Then, we briefly introduce

the INLA and SPDE approaches for Bayesian inference, and present the pro-45

jection matrix that allows the combination of point and areal data. In Section

3, a simulation study is carried out to compare the performance of the model

when estimating several simulated surfaces using point, areal, and point and

areal data combined. Then, in Section 4 we evaluate the model in comparison

to the RAMPS alternative method for data fusion by applying the methods to50

several simulated data scenarios. In Section 5, we present an application of the

model to real data showing spatial misalignment. In this application, we ob-

tain the spatial distribution of fine particulate matter (PM2.5), in Los Angeles

and Ventura counties, United States, during 2011. Finally, the conclusions are

presented.55

2. Models and Inference

2.1. Models

The models proposed assume that there is a spatially continuous variable

underlying all observations that can be modeled using a Gaussian random field
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process. This process is denoted by S = {S(x) : x ∈ D ⊂ R2}, has mean

function E[S(x)] = 0 and stationary covariance function Cov(S(x), S(x′)) =

Σ(x − x′). Conditionally on S, point data Yi observed at a finite set of sites,

say xi ∈ D, i = 1, 2, . . . , I, are mutually independent with

Yi|S(xi) ∼ N(µ(xi) + S(xi), τ
2),

where µ(xi) represents the large scale structure. Areal data observations arise

as block averages in blocks Bj ⊂ D, j = 1, 2, . . . , J ,

Y (Bj) = |Bj |−1
∫
Bj

(µ(x) + S(x))dx, |Bj | > 0,

where |Bj | =
∫
Bj

1dx denotes the area of Bj .

These models can also accommodate explanatory covariates by including

them in the large scale part of the model. Moreover, the models can also be ex-60

tended to include random effects that can deal with other sources of variability.

2.2. Inference

We fit the models by using the INLA [11, 9] and SPDE approaches [10] which

can be easily applied using the R package R-INLA [12]. INLA uses a combina-

tion of analytical approximation and numerical integration to do approximate65

Bayesian inference in latent Gaussian models which includes a large class of

models ranging from generalized linear mixed to spatial and spatio-temporal

models.

The combination of INLA and SPDE permits analysis of point-level data. In

the SPDE approach, the continuously indexed Gaussian field S is represented as

a discretely indexed Gaussian Markov random field (GMRF) by means of a finite

basis function defined on a triangulation of the region of study. Specifically,

S(x) =

G∑
g=1

ψg(x)Sg,

where, ψg(·) denotes piecewise polynomial basis functions on each triangle, {Sg}

are zero-mean Gaussian distributed weights, and G are the number of vertices70

in the triangulation.
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In the SPDE approach, the covariance function of the Gaussian field S is

required to belong to the Matérn family which represents a very flexible class

of covariance functions that appears naturally in many scientific fields [13].

Specifically, for locations xi and xj ∈ R2, the Matérn covariance function is

defined as

Cov(S(xi), S(xj)) =
σ2

2ν−1Γ(ν)
(κ||xi − xj ||)νKν(κ||xi − xj ||).

Here, Kν is the modified Bessel function of second kind and order ν > 0. The

integer value of ν determines the mean square differentiability of the process

and it is usually fixed since it is poorly identified in applications. σ2 denotes

the variance and κ > 0 is related to the range ρ, the distance at which the75

spatial correlation is close to 0.1 [14].

2.3. Approximation of integrals

In practice, the integrals appearing in the models proposed may not be

available in a closed-form. In our approach, we will approximate them using

the representation of the continuous Gaussian random field as a GMRF provided

by the SPDE approach. Thus,∫
Bj

S(x)dx ≈
G∑
g=1

AjgSg,

where G is the number of vertices in the triangulation, {Sg} are zero-mean

Gaussian distributed weights, and A is a J × G sparse matrix that maps the

GMRF from the J observation locations to the G triangulation nodes.80

The matrix A specified in the SPDE approach is designed to deal with point-

referenced data. To adapt this approach to our problem, we need to make

some modifications that allow accommodation of both point and areal data.

Specifically, for the construction of A, we need to differentiate between point

and areal observations. If we consider observations taken at point locations in85

the study region, the projection matrix A can be chosen in the same way as in the

SPDE approach. Thus, the row i in A corresponding to an observation at point

xi, will possibly have three non-zero values at the columns that represent the
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vertices of the triangle that contains the point. If xi is within the triangle, these

values are equal to the barycentric coordinates. That is, they are proportional90

to the areas of each of the three subtriangles defined by the point xi and the

triangle’s vertices, and sum to 1. If xi is equal to a vertex of the triangle, row

i will have just one non-zero value equal to 1 at that vertex. Intuitively, if we

assume that each triangulation vertex has a weight given by the GMRF S, the

value of S(x) at a location that lies within one triangle, is the projection of the95

plane formed by the triangle vertices weights at location x.

On the other hand, the model specifies that a particular observation in an

area B and the process S are linked through the mean value of the random

field in the entire area: |B|−1
∫
B
S(x)dx, where |B| denotes the area of B. As

a result, the rows of A corresponding to a particular observation in an area will100

have non-zero values in all vertices inside the area and will be equal to 1/H,

where H is the number of vertices within the area. Here we need to note that we

approximate the integral of the process in the area by an average of all vertices

weights inside the area. Therefore, to minimize the error of the approximation,

it is important to construct a fine triangulation of the domain.105

The R code for the combined analysis of point-level and area-level data using

this approach is provided in the Appendix.

3. Simulation study

In this section we carry out a small simulation study to assess the perfor-

mance of the method when predicting different spatial surfaces combining data110

that have been obtained at several configurations of points and areas in the

region of study. First, we generate several spatial surfaces that may reproduce

some of the situations that can appear in real settings. Then, for each of the

surfaces, the model is fitted using point and areal measurements of the surfaces

taken at different configurations. Finally, the merits of the model in each of115

the simulated situations are evaluated. The rest of this section describes the

geographic region and the data configurations we decide to use throughout the
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simulations, the models used to generate the spatial surfaces, the models fitted,

and the results of the simulation study.

3.1. Simulated data120

We are interested in testing the method in a range of situations that can

appear in real settings. To do so, we decide to simulate several spatial surfaces

of phenomena that can have continuous values in R. These data may represent,

for example, concentration levels of some air pollutant, and may be measured

directly at points where monitoring stations are located, or may be obtained125

at cells of a regular grid produced by numerical models. In our simulation, we

consider the unit square as the study region and take observations at different

configurations of randomly generated points and regular grids and vertical bands

over the region of study.

The different data scenarios are created by varying the number of points130

and areas in the data sets to be combined. Specifically, data sets of 10, 15,

30, 60 and 100 points are combined with data sets of 4, 16 and 100 squared

areas, or 2, 4 and 10 vertical areas. We also create scenarios with no point data

and scenarios with no areal data. Examples of such configurations are shown in

Figure 1.135

We construct four surfaces for simulated data. For locations xi in the unit

square, observations Yi in R are simulated as follows:

Yi = ziβ + S(xi), i = 1, . . . , n,

where zi = (1, zi) denotes the vector of the intercept and covariates, β =

(β0, βc)
′ is the coefficient vector, and S is a zero-mean Gaussian field with

Matérn covariance function with variance σ2 and range ρ. In the simulations,

we set the intercept β0 = 0, σ2 equal to 4 or 1 and ρ equal to 0.7 or 0.1. Moreover,

we use as a covariate a geographic trend with βc = 2. The trend covariate is140

calculated as (x2i −x2), where x2i is the second coordinate of location xi, and x2

is the mean of the second coordinate over the study region. In this way, we are

generating a surface where the values increase from south to north. This could
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Figure 1: Examples of point and areal configurations used in the simulation study.

represent a surface that reflects changes in temperature or other environmental

covariates that are related with latitude. The values of the parameters for each145

of the simulated surfaces are presented in Table 1. Examples of the simulated

surfaces are shown in Figures 2 to 5.

covariate βc σ2 ρ

US1 - - 4 0.7

US2 - - 1 0.1

US3 trend 2 4 0.7

US4 trend 2 1 0.1

Table 1: Parameters of the models used to generate the surfaces in the simulation study.

3.2. Fitted models

Let Yi, i = 1, . . . , n + m, denote the simulated observations at points xi,

i = 1, . . . , n, and areas Bi, i = n + 1, . . . , n + m. The fitted models assume a

Normal likelihood with mean µi for the first level, and the following structure
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for µi in the second level:

µi = ziβ + S(xi), i = 1, . . . , n,

µi = ziβ + |Bi|−1
∫
Bi

S(x)dx, i = n+ 1, . . . , n+m.

Here, zi = (1, zi) denotes the vector of the intercept and the covariate,

β = (β0, βc)
′ is the coefficient vector, and S is a zero-mean Gaussian field with150

Matérn covariance function with parameters σ2 and ρ. If the data are simulated

without a covariate, the fitted models do not incorporate the covariate term. If

they are simulated using a covariate, the models incorporate the effect of the

same covariate.

The models are fitted assuming the following prior distributions. The model155

parameter ν is set fixed to 1 in the Matérn function implying a continuous

domain Markov field. We assign a flat improper prior to the intercept β0, and

a zero-mean Gaussian distribution with precision equal to 0.001 for the effect

of the covariate. Finally, S ∼ N(0, Q−1) where Q is a sparse precision matrix

depending on hyperparameters κ and σ2.160

3.3. Results

For each simulated pattern, we generate point and areal data and predict

the simulated surface applying the model to i) point, ii) areal, and iii) point and

areal data combined. We generate 100 surfaces from each simulated scenario to

have stable results. The merits of the model in each situation are assessed using

the mean squared errors (MSE) of the predictions. The MSE for each simulated

data set is calculated as

MSE =

(
1

R

∑
x∈R

(u(x)− û(x))2

)1/2

,

where R denotes the number of locations in the study region, u(x) is the value of

the simulated surface at location x, and û(x) is the prediction of u(x). Figures 2

to 5 show the MSEs for each of the scenarios and combinations of data averaged

over the 100 replications.165
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The results show that the MSE depends on the simulated surfaces and also

on the types of data used to fit the model. We observe that when the model

is applied using data obtained in just areas or points, the MSE decreases as

the number of areas or points increases. There are some situations, however,

where the decrease of MSE is very small. This is the case of scenario US2170

where the data are generated using σ2 = 1, ρ = 0.1 and with no covariates. We

also see that in general, the combination of point and areal data provides better

predictions than if the method is applied just to one type of data. There are a few

exceptions however. For example, when there is a large amount of areal or point

data then information from just one type of data could be enough to accurately175

predict the real process. In these situations, a joint analysis is not useful to

improve the predictions obtained using a point or areal analysis. For example,

if there are 100 squared areal observations and just a few point observations, the

addition of point data to the analysis does not provide additional information

to obtain better predictions.180

Figure 2: Scenario US1 results. First column: one of the 100 simulated surfaces. Second to

fourth columns: MSEs of the predictions obtained for the simulated surfaces US1 averaged

over 100 replications by type of analysis.
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Figure 3: Scenario US2 results. First column: one of the 100 simulated surfaces. Second to

fourth columns: MSEs of the predictions obtained for the simulated surfaces US2 averaged

over 100 replications by type of analysis.

4. Performance evaluation in comparison with RAMPS

In this section, we compare the method presented with another existing

method for data fusion. Specifically, we present a performance evaluation of

our method in comparison with the reparameterized and marginalized posterior

sampling (RAMPS) algorithm for complex Bayesian geostatistical models. We

chose RAMPS for comparison because of its flexibility and the availability of

an R package called ramps that implements all of its capabilities [15]. RAMPS

enables joint modeling of areal and point data arising from the same underly-

ing spatial process, and allows accommodation of non-spatial correlation and

variance heterogeneity as well as spatial and/or temporal correlation. Specifi-

cally, an observation vector Y which may contain both point and areal data is

modeled as follows:

Y = Xβ +Wγ +KZ + ε,

γ ∼ N(0,Σγ), Z ∼ N(0,ΣZ), ε ∼ N(0,Σε),
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Figure 4: Scenario US3 results. First column: one of the 100 simulated surfaces. Second to

fourth columns: MSEs of the predictions obtained for the simulated surfaces US3 averaged

over 100 replications by type of analysis.

where β is a vector of regression coefficients, γ is a vector of non-spatial random

effects, Z is an vector of spatial random effects, ε is a vector of measurements

errors, and the matrices X, W , and K are design matrices for fixed effects,

non-spatial random effects, and spatial random effects, respectively. The model185

is fitted using an algorithm that involves reparameterizing the variance param-

eters, reformulating the means structure, marginalizing the joint posterior dis-

tribution, and applying the slice sampling MCMC method based on simplexes.

Here, we simulate four surfaces with different characteristics and obtain point

and areal observations. Then, our method and RAMPS are applied to predict190

the simulated surfaces using all the observations combined. Finally, the per-

formance of the methods is evaluated by means of the MSE, the parameter

estimates and the run time.

The four spatial surfaces are generated on [0, 1] × [0, 1] using a Gaussian

model with a Matérn covariance structure with variance σ2, range ρ and overall195

mean β0 = 0. For surfaces S1 and S3, we set σ2 = 4 and ρ = 0.7, in surfaces

S2 and S4, σ2 = 1 and ρ = 0.1. Moreover, in surfaces S3 and S4 we use a
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Figure 5: Scenario US4 results. First column: one of the 100 simulated surfaces. Second to

fourth columns: MSEs of the predictions obtained for the simulated surfaces US4 averaged

over 100 replications by type of analysis.

geographic trend covariate calculated as (x2i − x2) and coefficient βc = 2. The

observations to be combined are obtained as the point values corresponding to

100 randomly generated locations and the average values in the cells of a 4× 4200

regular grid. The surfaces generated and the areal and point observations for

each scenario are shown in Figure 6.

We apply our method and RAMPS to predict the simulated surfaces. Let

Yi, i = 1, . . . , n+m, denote the simulated observations at points xi, i = 1, . . . , n,

and areas Bi, i = n+1, . . . , n+m. The model fitted assumes a Normal likelihood

with mean µi expressed as

µi = ziβ + S(xi), i = 1, . . . , n,

µi = ziβ + |Bi|−1
∫
Bi

S(x)dx, i = n+ 1, . . . , n+m.

Here, zi = (1, zi) is the vector of the intercept and the covariate, β = (β0, βc)
′

is the coefficient vector, and S is a zero-mean Gaussian field with Matérn co-

variance function with parameters σ2 and ρ. This model is fitted to the data205

simulated using a covariate. If the data are simulated without covariate, the

13



fitted model does not incorporate the covariate term. Due to the large amount

of time needed to fit the model using RAMPS, prediction is just done at 231

uniformly distributed locations.

The priors used when applying our method are the same as the ones em-210

ployed in the simulation study in Section 3. When applying RAMPS, flat priors

are used on the intercept β0 and the covariate coefficient βc. An inverse gamma

prior with shape and scale parameters set to 0.01 is used for σ2, and an uniform

prior on (0, 2) is used for the range ρ. Using RAMPS, convergence is achieved

running a MCMC chain of 30, 000 iterations and using a burn-in of 1, 000 and215

a thinning rate of 30 iterations for each of the surfaces. Posterior means and

95% CIs are calculated with the remaining 966 iterations. We note that the

use of different priors may result in different estimates and run times. How-

ever, showing results from even only these priors reveals the main differences in

performance between our method and RAMPS.220

For each of the simulated surfaces and methods, we calculate the MSE, the

posterior means and 95% CIs for the model parameters, and the run times.

These values are shown in Table 2. We observe that lower MSEs are obtained

with our method than with RAMPS in all surfaces except for surface S2, where

ours is 0.02 higher (0.89 with our method and 0.87 with RAMPS). The highest225

difference in MSE is obtained when the methods are applied to predict surface

S3 which is simulated using a geographic trend as a covariate, σ2 = 4 and

ρ = 0.7. In S3, the MSE obtained with our method is equal to 0.46 compared

to 1.75 with RAMPS. We see that neither our method nor RAMPS accurately

recover the true values of the parameters used in the simulations, both methods230

yield 95% CIs that contain the true values for most of the parameters. We also

see that in the simulated surfaces S1 and S3, that is, when σ2 = 4 and ρ = 0.7,

the upper limits of the 95% CIs for σ2 obtained with RAMPS are very high.

With our method, however, narrower 95% CIs for σ2 are obtained. Finally, we

note that RAMPS needs longer run times than our method. Specifically, for all235

surfaces RAMPS takes more than three hours whereas our method finishes in

less than one minute.
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5. Application to air pollution data

The methodology proposed provides a valuable tool in a wide range of re-

search fields. Here, we present an application where we obtain the spatial dis-240

tribution of a common air pollutant: fine particulate matter (PM2.5) in Los

Angeles and Ventura counties, United States, during 2011. We fit a spatial

model combining information for the variable of interest from point and areal

resolutions. We also model point and areal data separately to assess the differ-

ences in the predictions obtained.245

Particulate matter, or PM, are a mixture of microscopic solids and liquid

droplets floating in the air that are considered harmful to public health and the

environment [16]. These particles are made up of a number of components such

as acids, chemicals, metals, soil and dust, and are emitted in the atmosphere

either directly from a source or as result of complicated chemicals reactions.250

Particulate matter which are less than 2.5 µm in diameter (PM2.5) pose one of

the greatest problems since they can get deep into the lungs and cause serious

health effects including increased respiratory symptoms, heart or lung diseases,

and even premature death [16].

Information on concentration (micrograms per cubic meter) for PM2.5 in255

Los Angeles and Ventura counties are available as direct measurements at loca-

tions of monitoring sites, and as estimates inferred from satellite-derived PM2.5

sources at a raster grid. The monitoring data have been obtained from a set

of 14 sites sparsely located in the region at which the United States Environ-

mental Protection Agency (EPA) regularly measures PM2.5 among other air260

pollutants [17] We have used the mean of the daily measurements recorded in

year 2011 in each of the monitoring stations. The satellite-derived estimates rep-

resent three-year mean grids (2010-2012) of PM2.5 concentrations derived from

a combination of MODIS (Moderate Resolution Imaging Spectroradiometer),

MISR (Multi-angle Imaging SpectroRadiometer) and SeaWIFS (Sea-Viewing265

Wide Field-of-View Sensor) AOD (Aerosol Optical Depth) satellite retrievals

[18, 19]. The raster grid has a grid cell resolution of 6 arc-minutes (0.1 degree
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or approximately 10 km at the equator). Figure 7 shows the concentration

values in each of the monitoring stations and in the raster grid.

The model used to predict PM2.5 values in the study region is specified as

follows. The PM2.5 concentration, Yi, at each of the locations of the monitoring

stations, xi, i = 1, . . . , n, and cells of the raster grid, Bi, i = n+ 1, . . . , n+m,

are modeled as Gaussian observations with mean µi:

Yi ∼ Normal(µi, σ
2), i = 1, . . . , n, n+ 1, . . . , n+m,

µi = β0 + S(xi), i = 1, . . . , n,

µi = β0 + |Bi|−1
∫
Bi

S(x)dx, i = n+ 1, . . . , n+m,

where β0 is the intercept and S is a zero-mean Gaussian field with Matérn270

covariance function with parameters σ2 and ρ. We fit the model three times

using areal, point and areal and point data. The model is fitted using the same

priors as the ones employed in the simulation study in Section 3.

Although estimates differed by analysis the 95% CIs overlapped (Table 3).

The most accurate predictions (tightest CIs) for model parameters were gener-275

ally for the areal model, then our model, while using only the point data resulted

in large uncertainty around the estimates.

Maps of the predictions obtained and the 95% CI showing the range of

plausible values for each location are shown in Figure 8. Although all maps show

a predicted PM2.5 higher in the south, there are some differences depending on280

the analysis used. For example, with the joint analysis the predicted PM2.5 is

higher close to the city of Los Angeles than the predicted PM2.5 obtained with

the areal analysis. Also, by using both areal and point data, we are able to

obtain more accurate predictions in the south where there is both point and

areal information than the ones obtained using just one type of data.285

6. Discussion

In this paper we have presented a joint Bayesian model to combine point

and areal data. The model assumes that underlying all observations there is a
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spatially continuous variable that can be modeled using a Gaussian random field

process. INLA and SPDE approaches were used to fit the data and represent290

the continuously indexed Gaussian random field as a discretely indexed GMRF

by means of a basis function representation defined on a triangulation of the

region of interest. In order to allow the combination of point and areal data, we

proposed a new projection matrix for mapping the GMRF from the observation

locations to the triangulation nodes which takes into account the types of data.295

The results show that the goodness of fit depends on the simulated surfaces

and also the types of data used to fit the model. In most situations we observe

that the combination of point and areal data provides better predictions than

if the method is applied to just one type of data, and this was consistent over

both simulated and real data. Our method was also demonstrably superior to300

RAMPS by obtaining better predictions in much shorter run times on simulated

data.

Real data are messy, especially when attempting to use multiple sources

of information. Our method performed well when applied to monitored air

pollution data. When predicting the concentration of PM2.5 in Los Angeles305

and Ventura counties during 2011, the point analysis gave markedly different

results to the areal analysis (Figure 8). In part, this may be due to differences

in time periods, as well as the relative lack of monitoring stations in the north.

Combining these estimates using our method enabled more accurate predictions

of the concentration of PM2.5, particularly in the south.310

A limitation of the method proposed is that it is only applicable to Gaussian

data. Unfortunately, this does not include many important settings such as

disease mapping problems where data are typically modelled using Poisson or

Binomial distributions and non-identity link functions.

Models based on aggregated data contain the potential for ecological fallacy315

which occurs when estimated associations obtained from analyses of variables

measured at an aggregated level lead to conclusions different from analyses

based on the same variables measured at the individual level. The resulting

bias, called ecological bias, is comprised of two effects: the aggregation bias due
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to the grouping of individuals, and the specification bias due to the differential320

distribution of confounding variables created by grouping [20], [21]. In many

situations, however, it is difficult to obtain sufficient point data to obtain con-

clusions and we should make the most of the information from the available

data regardless of their spatial resolution. For example, [22] show how the com-

bination of disease data from different sources can improve inferences from that325

using a single data set, and demonstrate that analyses combining related data

at both the individual and aggregate level can reduce ecological bias and add

precision.

There are many situations where data are very hard to obtain and especially

in these cases it is very important to optimize the use of all available informa-330

tion. The method proposed enables obtaining better predictions by combining

data obtained at different resolutions. However, we should be aware that bias

could arise if we combine data that are not completely comparable such as data

collected about different populations or at different times. In such situations we

may decide to use just one of the data sets or alternatively to adjust for bias in335

the model.

A major advantage of the method presented is that the Bayesian framework

used could be easily extended to adequately model many problems of interest.

For example, the model may be extended to accommodate spatio-temporal data

as follows. Let us consider a spatio-temporal Gaussian process S = {S(x, t) :

x ∈ D ⊂ R2, t ∈ T ⊂ R} with E[S(x, t)] = 0 and stationary covariance

function Cov(S(x, t), S(x′, t′)) = Σ(x − x′, t − t′). Data observed at locations

xi, i = 1, . . . , I, and times tk, k = 1, . . . ,K may be modeled as

Yi,k|S(xi, tk) ∼ N(µ(xi, tk) + S(xi, tk), τ2).

Then, observations in areas Bj ⊂ D, j = 1, 2, . . . , J , and periods of time τl ∈ T ,

l = 1, . . . , L, are expressed averaging the process in space and also in time,

Y (Bj , τl) = |Bj |−1|τl|−1
∫
Bj

∫
τl

(µ(x, t) + S(x, t))dxdt, |Bj | > 0, |τl| > 0.

Also, it is possible to include covariates, and handling and representing different

18



sources of uncertainty, including sampling error, measurement error, as well as

prediction errors at unsampled locations. Another advantage of the method is

that by using the approximate methods INLA and SPDE, we are able to obtain340

results quickly and avoid assessing the convergence and mixing properties of

the chains generated by using MCMC-based methods. In addition, since this

method is less computationally intensive we are able to deal with large data

sets.

The combination of point-level and area-level referenced data is an important345

and not yet completely resolved methodological issue within the general area

of spatial statistics. We think that the approach presented may be a helpful

advance in this area by providing a useful tool that is applicable in a wide range

of situations where information at different spatial resolutions is combined.
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Appendix

R code for combined analysis of point-level and area-level data using INLA420

and SPDE.

# Point observations

# coop: matrix of point locations

# yp: vector of observed values at points

# xp: vector of covariate values at points425

# Areal observations

# spol: SpatialPolygons object containing the areas

# cooa: matrix of the spatial coordinates of spol

# ya: vector of observed values in areas430

# xa: vector of covariate values in areas

# Prediction points

# coopred: matrix with point locations for prediction

# ypred: vector of observed values in prediction points (NA)435

# xpred: vector of covariate values in prediction points

# Mesh

# meshfit: fine triangulated mesh

440

# Matern SPDE model object

spde <- inla.spde2.matern(mesh=meshfit, alpha=2)

# Point observations

Ap <- inla.spde.make.A(mesh=meshfit, loc=coop)445

stk.p <- inla.stack(tag=’point’,

data=list(y=yp),

A=list(Ap, 1),
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effects=list(s=1:spde$n.spde, data.frame(b0=1, x=xp)))

450

# Areal observations

locin <- meshfit$loc[as.vector(which(!is.na(over(SpatialPoints(meshfit$loc), spol)))),]

block <- rep(0, nrow(locin))

for(i in 1:length(spol)){

block[as.vector(which(!is.na(over(SpatialPoints(locin), spol[i]))))] <- i455

}

Aa <- inla.spde.make.A(mesh=meshfit, loc=locin, block=block, block.rescale="sum")

stk.a <- inla.stack(tag=’areal’,

data=list(y=ya),

A=list(Aa, 1),460

effects=list(s=1:spde$n.spde, data.frame(b0=1, x=xa)))

# Prediction points

Apred <- inla.spde.make.A(mesh=meshfit, loc=coopred)

stk.pred <- inla.stack(tag=’pred’,465

data=list(y=ypred),

A=list(Apred, 1),

effects=list(s=1:spde$n.spde, data.frame(b0=1, x=xpred)))

# Stack470

stk.full <- inla.stack(stk.p, stk.a, stk.pred)

# Fit model

formula <- y ~ 0 + b0 + x + f(s, model=spde)

res <- inla(formula, data=inla.stack.data(stk.full),475

control.predictor=list(compute=TRUE, A=inla.stack.A(stk.full)))
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Parameters values Simulated surfaces Areal observations Point observations

S1:

β0 = 0

βc = −

σ2 = 4

ρ = 0.7

S2:

β0 = 0

βc = −

σ2 = 1

ρ = 0.1

S3:

β0 = 0

βc = 2

σ2 = 4

ρ = 0.7

S4:

β0 = 0

βc = 2

σ2 = 1

ρ = 0.1

Figure 6: Simulated surfaces and point and areal observations used in the performance study.
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Figure 7: PM2.5 concentration (micrograms per cubic meter) in monitoring stations (left) and

raster grid together with monitoring stations (right) in Los Angeles and Ventura counties in

2011.

β0 σ2 ρ

Joint analysis 7.31 (6.46 , 8.22) 2.72 (0.94 , 6.35) 1.20 (0.60 , 2.22)

Areal analysis 7.50 (7.09 , 7.91) 3.74 (1.65 , 7.50) 0.85 (0.52 , 1.34)

Point analysis 9.51 (5.42 , 12.94) 7.00 (1.78 , 20.2) 0.74 (0.31 , 1.55)

Table 3: Posterior means and 95% CIs of the model parameters in the air pollution study.
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Mean 2.5 percentile 97.5 percentile

Joint

analysis

Areal

analysis

Point

analysis

Figure 8: Posterior PM2.5 concentration (micrograms per cubic meter) by type of analysis,

Los Angeles and Ventura counties, 2011.
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