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Abstract: We present the continuous frequency modulation of a metamaterial resonance using selective 

damping of coupled plasmonic resonators with electrostatically gated graphene. A resonance frequency 

tuning range >150 GHz is achieved at 1.5 THz making this device suitable for use as an optoelectronic, 

tunable frequency modulator for THz frequencies.  
OCIS codes: (160.3918) Metamaterials; (160.2100) Electro-optical materials; (230.4110) Modulators 

 

1. Introduction 

In recent years there has been a growing interest in using metamaterials to interact with and manipulate THz radiation. 

By fabricating metamaterial structures from basic sub-wavelength resonator antennas, the permittivity and 

permeability of the structure can be lithographically tuned to display optical features not normally observed in nature. 

In previous works [1,2] metamaterial resonant structures with strong optical reflection at THz frequencies have been 

reported which can be variably dampened by the electrostatic gating of monolayer graphene, resulting in amplitude 

modulator devices as fast as 100 MHz. Here, a similar electrical tuning mechanism has been used to demonstrate 

continuous frequency tuning of a metamaterial resonance whilst maintaining the Q factor of the resonance, with no 

detriment to the reconfiguration speed. To achieve this, a metamaterial design based on two strongly coupled 

resonators has been implemented using graphene’s tunable conductivity to variably dampen one of the resonators. 

By electrically changing the graphene conductivity, the anti-crossing of the resonators can be actively tuned, thus 

allowing for the resonant peak frequency to be modulated. This high speed optoelectronic frequency manipulation 

could have applications in multispectral detectors, biochemical sensors, dynamically tunable notch filters and 

integration with external cavity tuned quantum cascade lasers [3].  

 

2.  Device design and fabrication 

The modulator design is based on two resonators with close resonance frequencies, 𝜔𝐿 (left resonator) and 𝜔𝑅  (right 

resonator) capacitively coupled together as shown in Fig. 1a). When excited by THz radiation polarized in the Ey 

direction, current is induced in the left resonator. Current in the right resonator is mainly excited indirectly from 

capacitive coupling with the left resonator. Due to this coupling there will be a splitting of the resonance resulting in 

a low frequency bonding mode at 𝜔𝐵𝑜𝑛𝑑𝑖𝑛𝑔 and a higher frequency anti-bonding mode at 𝜔𝐴𝑛𝑡𝑖𝐵𝑜𝑛𝑑𝑖𝑛𝑔 . The device 

is fabricated on a p -doped silicon substrate (500 µm)  with a SiO2  insulating layer (290 nm)  on top. E-beam 

lithography and thermal evaporation of Ti/Au (10-80 nm) is used to fabricate the resonators. Chemical vapor 

deposition (CVD) grown [4] graphene is then transferred on top of the resonators before being shaped and etched 

into square areas (5x5 µm2) using e-beam lithography and oxygen plasma respectively. Fig. 1a) presents a sketch of 

the metamaterial unit and is illustrating the current directions of the bonding mode present when the resonators are 

excited with THz radiation at 𝜔𝐵𝑜𝑛𝑑𝑖𝑛𝑔. 

 
 
Fig. 1. (a) Sketch of device design illustrating bonding mode of the coupled resonators showing the induced current. (b) SEM image of device 

array showing gold resonators on top on Si/SiO2 substrate and dark graphene square shunting the right resonator. 
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Fig. 2. TDS data of transmission as a function of frequency for different graphene backgate voltages. 

 

In order to increase the efficiency of the coupling with external radiation the metamaterial unit is arranged into arrays 

with a typical size of 1x1 mm2 (Fig 1b).The horizontal lines shown in Fig.1b) are used to bias the graphene squares 

and don’t interact directly with the incident THz radiation. As the conductivity of the graphene shorting the capacitive 

gap of the right resonator is increased, the resonator will become more lossy and the individual resonance of the left 

resonator will then dominate, resulting in a continuous tuning of the resonance frequency from 𝜔𝐵𝑜𝑛𝑑𝑖𝑛𝑔  to 𝜔𝐿. 

 

3.  Results 

The transmission of the device is measured using a Time domain spectroscopy (TDS) system (TERA K15 from 

Menlo systems) and normalized to the substrate. As the backgate voltage changes the concentration of free charge 

carriers in the graphene will change and hence the conductivity can be modulated. A source drain measurement of a 

separate graphene patch, which was fabricated from the same batch, was performed for different backgate voltages 

and the Dirac point was measured to be around 25 V which is consistent with CVD grown p-doped graphene. Fig. 2 

shows how the transmission of the device changes as a function of frequency for different backgate voltages. In the 

metamaterial device, when the graphene is most resistive at 25 V there are two clear resonances observed at 1.4 and 

1.85 THz due to the anti-crossing. As the voltage is decreased from 25 V to -100 V the conductivity of the graphene 

increases by a factor of 4 allowing us to modulate the strength of the anti-crossing. The two resonances from the 

resonator coupling transform into one resonance as the right resonator is dampened giving a continuous frequency 

tuning of 80 GHz between 𝜔𝐵𝑜𝑛𝑑𝑖𝑛𝑔 and 𝜔𝐿. The amplitude remains relatively constant from 25 V to -50 V but the 

frequency of the resonance shifts by more than 50 GHz. The frequency shift can be increased by lithographically 

tuning 𝜔𝑅 and 𝜔𝐿 to be closer, in order to increase the interaction strength between the two resonant elements. By 

doing this, frequency shifts of 150 GHz have been measured in other devices, however the amplitude and Q-factor 

do not remain as constant, resulting in a less continuous tuning. This electrically tunable coupled resonator design is 

highly customizable due to the inherent flexibility of the lithographic design of metamaterials, opening up a large 

range of interesting applications for active dispersion tuning and electromagnetic induced transparency modulation. 

4.  Conclusion 

Continuous electronic frequency modulation of a metamaterial resonance is reported at 1.5 THz using coupled 

resonators and selective graphene damping. This could be used as a fast optoelectronic tunable frequency filter with 

a tuning range of 80 GHz. Due to the flexibility of metamaterials, this device could be scaled to work at any required 

frequency and could be integrated, for example, with an external cavity quantum cascade laser working in the THz 

for dispersion and frequency tuning [3].  
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